Ebenengleichung

Gleichung, die eine Ebene im dreidimensionalen Raum beschreibt

Eine Ebenengleichung ist in der Mathematik eine Gleichung, die eine Ebene im dreidimensionalen Raum beschreibt. Eine Ebene besteht dabei aus denjenigen Punkten in einem kartesischen Koordinatensystem, deren Koordinatenvektoren die Ebenengleichung erfüllen.

Ebenengleichungen und ihre Beziehungen

Stehen die einzelnen Koordinaten der Ebenenpunkte in einer Gleichungsbeziehung, spricht man von einer Koordinatengleichung, zu denen die Koordinatenform und die Achsenabschnittsform gehören. Stehen die Ortsvektoren der Ebenenpunkte in der Gleichung, handelt es sich um eine Vektorgleichung, zu denen die Parameterform und die Dreipunkteform gehören. Enthält die Gleichung einen Normalenvektor der Ebene, so spricht man von einer Normalengleichung, zu denen die Normalenform und die Hessesche Normalform gehören.

Durch Vektorgleichungen können auch Ebenen in höherdimensionalen Räumen dargestellt werden, während Koordinatengleichungen und Normalengleichungen in diesem Fall Hyperebenen beschreiben.

Koordinatengleichungen

Bearbeiten

In der analytischen Geometrie wird jeder Punkt im dreidimensionalen Raum mit Hilfe eines kartesischen Koordinatensystems durch ein Koordinatentupel   identifiziert. Eine Gleichung mit den Unbekannten  ,   und   beschreibt dann eine Menge von Punkten im Raum, und zwar diejenigen Punkte, deren Koordinaten die Gleichung erfüllen. Ebenen sind nun dadurch ausgezeichnet, dass es sich bei einer solchen Gleichung um eine lineare Gleichung handelt. Zur Notation von Ebenen werden verschiedene Schreibweisen verwendet. Die vor allem in der Schulmathematik gebräuchliche Schreibweise

 

bedeutet, dass die Ebene   aus denjenigen Punkten besteht, deren Koordinaten   die Ebenengleichung   erfüllen. Die in der höheren Mathematik verwendete Mengenschreibweise lautet entsprechend

 .

Für Ebenengleichungen gibt es nun unterschiedliche Darstellungsformen, je nachdem welche Kenngrößen der Ebene vorgeschrieben sind.

Koordinatenform

Bearbeiten
 
Koordinatenform

Bei der Koordinatenform wird eine Ebene durch vier reelle Zahlen  ,  ,   und   beschrieben. Eine Ebene besteht dann aus denjenigen Punkten, deren Koordinaten   die Gleichung

 

erfüllen. Hierbei muss mindestens eine der drei Zahlen   ungleich null sein. Die Koordinatenform entspricht der Normalenform (siehe unten) nach Ausmultiplizieren, wobei  ,   und   die Komponenten des (nicht notwendigerweise normierten) Normalenvektors   sind und   gesetzt wird, wobei   der Stützvektor der Ebene ist (siehe unten). Der Abstand der Ebene vom Koordinatenursprung ist dann durch   gegeben. Ist der Normalenvektor normiert, dann beträgt der Abstand gerade  .

Achsenabschnittsform

Bearbeiten
 
Achsenabschnittsform

Bei der Achsenabschnittsform wird eine Ebene, die keine Ursprungsebene ist, durch drei Achsenabschnitte  ,   und   beschrieben. Eine Ebene besteht dann aus denjenigen Punkten, deren Koordinaten   die Gleichung

 

erfüllen. Hierbei sind  ,   und   die Schnittpunkte der Ebene mit den drei Koordinatenachsen, die auch als Spurpunkte bezeichnet werden. Die Schnittgeraden der Ebene mit den drei Koordinatenebenen heißen Spurgeraden und bilden das Spurdreieck. Verläuft eine Ebene parallel zu einer oder zwei Koordinatenachsen, dann fällt der jeweilige Spurpunkt und damit auch der entsprechende Term in der Achsenabschnittsform weg. Die Achsenabschnittsform kann aus der Koordinatenform mittels Division durch   errechnet werden.

Vektorgleichungen

Bearbeiten

Ebenen werden häufig auch mit Hilfe von Vektoren beschrieben. Eine Ebene besteht dann aus der Menge von Punkten, deren Ortsvektoren die Ebenengleichung erfüllen. Der Ortsvektor eines Punkts   wird üblicherweise als Spaltenvektor

 

notiert. Vektorgleichungen sind dann komponentenweise zu verstehen, das heißt jede Komponente des Vektors muss die Gleichung erfüllen. Dabei wird jeder Punkt der Ebene in Abhängigkeit von zwei reellen Parametern beschrieben. Auf diese Weise erhält man eine Parameterdarstellung der Ebene.

Parameterform

Bearbeiten
 
Parameterform

Bei der Parameterform oder Punktrichtungsform wird eine Ebene durch einen Stützvektor   und zwei Richtungsvektoren   und   beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren   die Gleichung

    mit    

erfüllen. Der Stützvektor ist dabei der Ortsvektor eines beliebigen Punkts in der Ebene, der auch als Stützpunkt oder Aufpunkt bezeichnet wird. Die beiden Richtungsvektoren, auch Spannvektoren genannt, müssen in der Ebene liegen und ungleich dem Nullvektor sein. Sie dürfen auch nicht kollinear sein, das heißt   darf kein Vielfaches von   sein und umgekehrt. Die Richtungsvektoren spannen ein affines Koordinatensystem auf, wobei   die affinen Koordinaten eines Punkts der Ebene sind. Jedem Wertepaar dieser Parameter entspricht dann genau ein Punkt der Ebene.

Dreipunkteform

Bearbeiten
 
Dreipunkteform

Bei der Dreipunkteform wird eine Ebene durch die Ortsvektoren  ,   und   dreier Punkte der Ebene beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren   die Gleichung

    mit    

erfüllen. Die drei Punkte dürfen dabei nicht alle auf einer Geraden liegen. Auch hier entspricht jedem Wertepaar der Parameter   genau ein Punkt der Ebene. Aus der Dreipunkteform erhält man die Punktrichtungsform, indem man einen der drei Punkte als Aufpunkt auswählt und als Richtungsvektoren die Verbindungsvektoren von diesem Punkt zu den anderen beiden Punkten wählt. Eine verwandte Darstellung einer Ebene mit Hilfe dreier Ebenenpunkte verwendet baryzentrische Koordinaten.

Normalengleichungen

Bearbeiten

Bei den Normalenformen einer Ebenengleichung werden die Punkte der Ebene durch eine skalare Gleichung mit Hilfe eines Normalenvektors der Ebene charakterisiert. Hierzu wird das Skalarprodukt zweier Vektoren verwendet, das durch

 

definiert wird. Auf diese Weise erhält man eine implizite Darstellung der Ebene.

Normalenform

Bearbeiten
 
Normalenform

Bei der Normalenform wird eine Ebene durch einen Stützvektor   und einen Normalenvektor   beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren   die Gleichung

 

erfüllen. Das Skalarprodukt zweier Vektoren (ungleich dem Nullvektor) ist genau dann gleich null, wenn die beiden Vektoren senkrecht aufeinander stehen. In der Normalenform besteht eine Ebene demnach aus denjenigen Punkten im Raum, für die der Differenzvektor aus Ortsvektor und Stützvektor senkrecht zum Normalenvektor der Ebene steht. Aus zwei Spannvektoren der Ebene   und   lässt sich ein Normalenvektor der Ebene über das Kreuzprodukt   ermitteln.

Hessesche Normalform

Bearbeiten
 
Hessesche Normalform

Bei der hesseschen Normalform wird eine Ebene durch einen normierten und orientierten Normalenvektor   und den Abstand vom Koordinatenursprung   beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren   die Gleichung

 

erfüllen. Der Normalenvektor muss hierbei die Länge eins haben und vom Koordinatenursprung in Richtung der Ebene zeigen. Man erhält die hessesche Normalform aus der Normalenform durch Normierung und Orientierung des Normalenvektors sowie durch anschließende Wahl von  . Die hessesche Normalform erlaubt eine effiziente Berechnung des Abstands eines beliebigen Punkts im Raum zu der Ebene, denn das Skalarprodukt   entspricht gerade der Länge der Orthogonalprojektion eines beliebigen Vektors   auf die Ursprungsgerade mit Richtungsvektor  .

Verallgemeinerungen

Bearbeiten

Auch in höherdimensionalen Räumen können Ebenen betrachtet werden. Eine Ebene ist dann eine lineare 2-Mannigfaltigkeit im  -dimensionalen euklidischen Raum  . Die Parameterform und die Dreipunkteform behalten ihre Darstellung, wobei lediglich mit  -komponentigen statt dreikomponentigen Vektoren gerechnet wird. Durch die impliziten Formen wird allerdings in höherdimensionalen Räumen keine Ebene mehr beschrieben, sondern eine Hyperebene der Dimension  . Jede Ebene kann jedoch als Schnitt von   Hyperebenen mit linear unabhängigen Normalenvektoren dargestellt werden und muss demnach ebenso viele Koordinatengleichungen gleichzeitig erfüllen.

Siehe auch

Bearbeiten

Literatur

Bearbeiten
Bearbeiten