Fil:Line integral of scalar field.gif

Line_integral_of_scalar_field.gif (400 × 300 billedpunkter, filstørrelse: 580 KB, MIME-type: image/gif, gentaget, 61 rammer, 39 s)


Denne fil er fra Wikimedia Commons

Beskrivelse

Beskrivelse
English: Line integral of a scalar field, f. The area under the curve C, traced on the surface defined by z = f(x,y), is the value of the integral. See full description.
فارسی: انتگرال خطی یک میدان اسکالر f. مقدار انتگرال مساحت زیر منحنی C تعریف شده توسط سطح (z = f(x,y است.
Français : L′intégrale curviligne d′un champ scalaire, f. L′aire sous la courbe C, tracée sur la surface définie par z = f(x,y), est la valeur de l'intégrale.
Italiano: Integrale di linea di un campo scalare, f. Il valore dell'integrale è pari all'area sotto la curva C, tracciata sulla superficie definita da z = f(x,y).
Русский: Иллюстрация криволинейного интеграла первого рода на скалярном поле.
Dato
Kilde Eget arbejde
Forfatter Lucas Vieira
Tilladelse
(Genbrug af denne fil)
Public domain Jeg, indehaveren af ophavsretten til dette værk, udgiver dette værk som offentlig ejendom. Dette gælder i hele verden.
I nogle lande er dette ikke juridisk muligt. I så fald:
Jeg giver enhver ret til at anvende dette værk til ethvert formål, uden nogen restriktioner, medmindre sådanne restriktioner er påkrævede ved lov.
Andre versioner

Vurdering

Billede of the year
Billede of the year
Featured billede

Wikimedia CommonsWikipedia

Denne fil var finalist i afstemningen om Årets billede i 2012.
Dette er et udvalgt billede på Wikimedia Commons (Fremragende billeder) og er regnet som et af de bedste billeder.

 Dette er et udvalgt billede på engelsk Wikipedia (Featured pictures) og er regnet som et af de bedste billeder.
 Dette er et udvalgt billede på persisk Wikipedia (نگاره‌های برگزیده) og er regnet som et af de bedste billeder.

Hvis du har et billede af tilsvarende kvalitet, der kan udgives under en passende ophavsretslig licens, må du meget gerne lægge det op, tagge det og nominere det.

Full description (English)

A scalar field has a value associated to each point in space. Examples of scalar fields are height, temperature or pressure maps. In a two-dimensional field, the value at each point can be thought of as a height of a surface embedded in three dimensions. The line integral of a curve along this scalar field is equivalent to the area under a curve traced over the surface defined by the field.

In this animation, all these processes are represented step-by-step, directly linking the concept of the line integral over a scalar field to the representation of integrals familiar to students, as the area under a simpler curve. A breakdown of the steps:

  1. The color-coded scalar field f and a curve C are shown. The curve C starts at a and ends at b
  2. The field is rotated in 3D to illustrate how the scalar field describes a surface. The curve C, in blue, is now shown along this surface. This shows how at each point in the curve, a scalar value (the height) can be associated.
  3. The curve is projected onto the plane XY (in gray), giving us the red curve, which is exactly the curve C as seen from above in the beginning. This is red curve is the curve in which the line integral is performed. The distances from the projected curve (red) to the curve along the surface (blue) describes a "curtain" surface (in blue).
  4. The graph is rotated to face the curve from a better angle
  5. The projected curve is rectified (made straight), and the same transformation follows on the blue curve, along the surface. This shows how the line integral is applied to the arc length of the given curve
  6. The graph is rotated so we view the blue surface defined by both curves face on
  7. This final view illustrates the line integral as the familiar integral of a function, whose value is the "signed area" between the X axis (the red curve, now a straight line) and the blue curve (which gives the value of the scalar field at each point). Thus, we conclude that the two integrals are the same, illustrating the concept of a line integral on a scalar field in an intuitive way.

Captions

Tilføj en kort forklaring på en enkelt linje om hvad filen viser

Elementer som er med i denne fil

afbilder

image/gif

Filhistorik

Klik på en dato/tid for at se filen som den så ud på det tidspunkt.

Dato/tidMiniaturebilledeDimensionerBrugerKommentar
nuværende14. aug. 2012, 17:43Miniature af versionen fra 14. aug. 2012, 17:43400 × 300 (580 KB)LucasVBUnoptimized. Sticking with local palettes for better color resolution per frame. Added bands of color to the field instead of a smooth gradient. Overall, it should look sharper, though the file will be bigger. Worth it, I say!
25. jul. 2012, 13:24Miniature af versionen fra 25. jul. 2012, 13:24400 × 300 (328 KB)LucasVBAlternative illustration of the "straightening" of the curve. It should convey the concept better than the previous one, which may be interpreted as a mere projection. Also, changed to pattern dithering. Seems to look better, and file is smaller even t...
24. jul. 2012, 17:59Miniature af versionen fra 24. jul. 2012, 17:59400 × 300 (337 KB)LucasVB{{Information |Description= |Source={{own}} |Date=2012-07-24 |Author= Kieff |Permission={{PD-self}} |other_versions= }}

De følgende 3 sider bruger denne fil:

Global filanvendelse

Følgende andre wikier anvender denne fil:

Vis flere globale anvendelser af denne fil.