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Preface

Just a few years ago, there were no legions of deep learning scientists developing intelli-
gent products and services at major companies and startups. When we entered the field,
machine learning did not command headlines in daily newspapers. Our parents had no idea
what machine learning was, let alone why we might prefer it to a career in medicine or law.
Machine learning was a blue skies academic discipline whose industrial significance was
limited to a narrow set of real-world applications, including speech recognition and com-
puter vision. Moreover, many of these applications required so much domain knowledge
that they were often regarded as entirely separate areas for which machine learning was
one small component. At that time, neural networks—the predecessors of the deep learn-
ing methods that we focus on in this book—were generally regarded as outmoded.

Yet in just few years, deep learning has taken the world by surprise, driving rapid progress
in such diverse fields as computer vision, natural language processing, automatic speech
recognition, reinforcement learning, and biomedical informatics. Moreover, the success
of deep learning in so many tasks of practical interest has even catalyzed developments in
theoretical machine learning and statistics. With these advances in hand, we can now build
cars that drive themselves with more autonomy than ever before (though less autonomy
than some companies might have you believe), dialogue systems that debug code by asking
clarifying questions, and software agents beating the best human players in the world at
board games such as Go, a feat once thought to be decades away. Already, these tools exert
ever-wider influence on industry and society, changing the way movies are made, diseases
are diagnosed, and playing a growing role in basic sciences—from astrophysics, to climate
modeling, to weather prediction, to biomedicine.

About This Book

This book represents our attempt to make deep learning approachable, teaching you the
concepts, the context, and the code.

One Medium Combining Code, Math, and HTML
For any computing technology to reach its full impact, it must be well understood, well
documented, and supported by mature, well-maintained tools. The key ideas should be
clearly distilled, minimizing the onboarding time needed to bring new practitioners up to
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date. Mature libraries should automate common tasks, and exemplar code should make
it easy for practitioners to modify, apply, and extend common applications to suit their
needs.

As an example, take dynamic web applications. Despite a large number of companies,
such as Amazon, developing successful database-driven web applications in the 1990s, the
potential of this technology to aid creative entrepreneurs was realized to a far greater degree
only in the past ten years, owing in part to the development of powerful, well-documented
frameworks.

Testing the potential of deep learning presents unique challenges because any single appli-
cation brings together various disciplines. Applying deep learning requires simultaneously
understanding (i) the motivations for casting a problem in a particular way; (ii) the math-
ematical form of a given model; (iii) the optimization algorithms for fitting the models to
data; (iv) the statistical principles that tell us when we should expect our models to general-
ize to unseen data and practical methods for certifying that they have, in fact, generalized;
and (v) the engineering techniques required to train models efficiently, navigating the pit-
falls of numerical computing and getting the most out of available hardware. Teaching the
critical thinking skills required to formulate problems, the mathematics to solve them, and
the software tools to implement those solutions all in one place presents formidable chal-
lenges. Our goal in this book is to present a unified resource to bring would-be practitioners
up to speed.

Whenwe started this book project, there were no resources that simultaneously (i) remained
up to date; (ii) covered the breadth of modern machine learning practices with sufficient
technical depth; and (iii) interleaved exposition of the quality one expects of a textbook
with the clean runnable code that one expects of a hands-on tutorial. We found plenty of
code examples illustrating how to use a given deep learning framework (e.g., how to do
basic numerical computing with matrices in TensorFlow) or for implementing particular
techniques (e.g., code snippets for LeNet, AlexNet, ResNet, etc.) scattered across various
blog posts and GitHub repositories. However, these examples typically focused on how to
implement a given approach, but left out the discussion of why certain algorithmic deci-
sions are made. While some interactive resources have popped up sporadically to address a
particular topic, e.g., the engaging blog posts published on the website Distill1 , or personal
blogs, they only covered selected topics in deep learning, and often lacked associated code.
On the other hand, while several deep learning textbooks have emerged—e.g., Goodfellow
et al. (2016), which offers a comprehensive survey on the basics of deep learning—these
resources do not marry the descriptions to realizations of the concepts in code, sometimes
leaving readers clueless as to how to implement them. Moreover, too many resources are
hidden behind the paywalls of commercial course providers.

We set out to create a resource that could (i) be freely available for everyone; (ii) offer suffi-
cient technical depth to provide a starting point on the path to actually becoming an applied
machine learning scientist; (iii) include runnable code, showing readers how to solve prob-
lems in practice; (iv) allow for rapid updates, both by us and also by the community at large;
and (v) be complemented by a forum2 for interactive discussion of technical details and to
answer questions.

http://distill.pub
https://discuss.d2l.ai/c/5
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These goals were often in conflict. Equations, theorems, and citations are best managed and
laid out in LaTeX. Code is best described in Python. And webpages are native in HTML
and JavaScript. Furthermore, we want the content to be accessible both as executable code,
as a physical book, as a downloadable PDF, and on the Internet as a website. No workflows
seemed suited to these demands, so we decided to assemble our own (Section B.6). We
settled on GitHub to share the source and to facilitate community contributions; Jupyter
notebooks formixing code, equations and text; Sphinx as a rendering engine; andDiscourse
as a discussion platform. While our system is not perfect, these choices strike a compromise
among the competing concerns. We believe thatDive into Deep Learningmight be the first
book published using such an integrated workflow.

Learning by Doing
Many textbooks present concepts in succession, covering each in exhaustive detail. For
example, the excellent textbook of Bishop (2006), teaches each topic so thoroughly that
getting to the chapter on linear regression requires a nontrivial amount of work. While
experts love this book precisely for its thoroughness, for true beginners, this property limits
its usefulness as an introductory text.

In this book, we teach most concepts just in time. In other words, you will learn concepts
at the very moment that they are needed to accomplish some practical end. While we
take some time at the outset to teach fundamental preliminaries, like linear algebra and
probability, wewant you to taste the satisfaction of training your first model before worrying
about more esoteric concepts.

Aside from a few preliminary notebooks that provide a crash course in the basic mathe-
matical background, each subsequent chapter both introduces a reasonable number of new
concepts and provides several self-contained working examples, using real datasets. This
presented an organizational challenge. Some models might logically be grouped together
in a single notebook. And some ideas might be best taught by executing several models
in succession. By contrast, there is a big advantage to adhering to a policy of one working
example, one notebook: This makes it as easy as possible for you to start your own research
projects by leveraging our code. Just copy a notebook and start modifying it.

Throughout, we interleave the runnable code with background material as needed. In gen-
eral, we err on the side of making tools available before explaining them fully (often filling
in the background later). For instance, we might use stochastic gradient descent before
explaining why it is useful or offering some intuition for why it works. This helps to give
practitioners the necessary ammunition to solve problems quickly, at the expense of requir-
ing the reader to trust us with some curatorial decisions.

This book teaches deep learning concepts from scratch. Sometimes, we delve into fine
details about models that would typically be hidden from users by modern deep learning
frameworks. This comes up especially in the basic tutorials, where we want you to un-
derstand everything that happens in a given layer or optimizer. In these cases, we often
present two versions of the example: one where we implement everything from scratch,
relying only on NumPy-like functionality and automatic differentiation, and a more prac-
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tical example, where we write succinct code using the high-level APIs of deep learning
frameworks. After explaining how some component works, we rely on the high-level API
in subsequent tutorials.

Content and Structure
The book can be divided into roughly three parts, dealing with preliminaries, deep learning
techniques, and advanced topics focused on real systems and applications (Fig. 1).

tFig. 1 Book structure.

• Part 1: Basics and Preliminaries. Chapter 1 is an introduction to deep learning. Then,
in Chapter 2, we quickly bring you up to speed on the prerequisites required for hands-
on deep learning, such as how to store and manipulate data, and how to apply vari-
ous numerical operations based on elementary concepts from linear algebra, calculus,
and probability. Chapter 3 and Chapter 5 cover the most fundamental concepts and
techniques in deep learning, including regression and classification; linear models;
multilayer perceptrons; and overfitting and regularization.

• Part 2: Modern Deep Learning Techniques. Chapter 6 describes the key computa-
tional components of deep learning systems and lays the groundwork for our sub-
sequent implementations of more complex models. Next, Chapter 7 and Chapter 8
present convolutional neural networks (CNNs), powerful tools that form the back-
bone of most modern computer vision systems. Similarly, Chapter 9 and Chapter 10
introduce recurrent neural networks (RNNs), models that exploit sequential (e.g., tem-
poral) structure in data and are commonly used for natural language processing and
time series prediction. In Chapter 11, we describe a relatively new class of models,
based on so-called attention mechanisms, that has displaced RNNs as the dominant
architecture for most natural language processing tasks. These sections will bring
you up to speed on the most powerful and general tools that are widely used by deep
learning practitioners.
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• Part 3: Scalability, Efficiency, andApplications (available online3). In Chapter 12, we
discuss several common optimization algorithms used to train deep learning models.
Next, in Chapter 13, we examine several key factors that influence the computational
performance of deep learning code. Then, in Chapter 14, we illustrate major applica-
tions of deep learning in computer vision. Finally, in Chapter 15 and Chapter 16, we
demonstrate how to pretrain language representation models and apply them to natural
language processing tasks.

Code
Most sections of this book feature executable code. We believe that some intuitions are best
developed via trial and error, tweaking the code in small ways and observing the results.
Ideally, an elegant mathematical theory might tell us precisely how to tweak our code to
achieve a desired result. However, deep learning practitioners today must often tread where
no solid theory provides guidance. Despite our best attempts, formal explanations for the
efficacy of various techniques are still lacking, for a variety of reasons: the mathematics to
characterize these models can be so difficult; the explanation likely depends on properties
of the data that currently lack clear definitions; and serious inquiry on these topics has
only recently kicked into high gear. We are hopeful that as the theory of deep learning
progresses, each future edition of this book will provide insights that eclipse those presently
available.

To avoid unnecessary repetition, we capture some of our most frequently imported and used
functions and classes in the d2l package. Throughout, we mark blocks of code (such as
functions, classes, or collection of import statements) with #@save to indicate that they will
be accessed later via the d2l package. We offer a detailed overview of these classes and
functions in Section B.8. The d2l package is lightweight and only requires the following
dependencies:

#@save
import collections
import hashlib
import inspect
import math
import os
import random
import re
import shutil
import sys
import tarfile
import time
import zipfile
from collections import defaultdict
import pandas as pd
import requests
from IPython import display
from matplotlib import pyplot as plt
from matplotlib_inline import backend_inline

d2l = sys.modules[__name__]

https://d2l.ai
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Most of the code in this book is based on Apache MXNet, an open-source framework for
deep learning that is the preferred choice of AWS (AmazonWeb Services), as well as many
colleges and companies. All of the code in this book has passed tests under the newest
MXNet version. However, due to the rapid development of deep learning, some code in
the print edition may not work properly in future versions of MXNet. We plan to keep the
online version up to date. In case you encounter any problems, please consult Installation
(page xxxiii) to update your code and runtime environment. Below lists dependencies in
our MXNet implementation.

#@save
from mxnet import autograd, context, gluon, image, init, np, npx
from mxnet.gluon import nn, rnn

Target Audience
This book is for students (undergraduate or graduate), engineers, and researchers, who seek
a solid grasp of the practical techniques of deep learning. Because we explain every con-
cept from scratch, no previous background in deep learning or machine learning is required.
Fully explaining the methods of deep learning requires some mathematics and program-
ming, but we will only assume that you enter with some basics, including modest amounts
of linear algebra, calculus, probability, and Python programming. Just in case you have
forgotten anything, the online Appendix4 provides a refresher on most of the mathematics
you will find in this book. Usually, we will prioritize intuition and ideas over mathematical
rigor. If you would like to extend these foundations beyond the prerequisites to understand
our book, we happily recommend some other terrific resources: Linear Analysis by Bol-
lobás (1999) covers linear algebra and functional analysis in great depth. All of Statistics
(Wasserman, 2013) provides a marvelous introduction to statistics. Joe Blitzstein’s books5

and courses6 on probability and inference are pedagogical gems. And if you have not used
Python before, you may want to peruse this Python tutorial7 .

Notebooks, Website, GitHub, and Forum
All of our notebooks are available for download on the D2L.ai website8 and on GitHub9 .
Associated with this book, we have launched a discussion forum, located at discuss.d2l.ai
10 . Whenever you have questions on any section of the book, you can find a link to the
associated discussion page at the end of each notebook.
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Summary

Deep learning has revolutionized pattern recognition, introducing technology that now
powers a wide range of technologies, in such diverse fields as computer vision, natural
language processing, and automatic speech recognition. To successfully apply deep learn-
ing, you must understand how to cast a problem, the basic mathematics of modeling, the
algorithms for fitting your models to data, and the engineering techniques to implement it
all. This book presents a comprehensive resource, including prose, figures, mathematics,
and code, all in one place.

Exercises

1. Register an account on the discussion forum of this book discuss.d2l.ai11 .

2. Install Python on your computer.

3. Follow the links at the bottom of the section to the forum, where you will be able to
seek out help and discuss the book and find answers to your questions by engaging the
authors and broader community.

Discussions12 .

https://discuss.d2l.ai/
https://discuss.d2l.ai/t/18
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Installation

In order to get up and running, we will need an environment for running Python, the Jupyter
Notebook, the relevant libraries, and the code needed to run the book itself.

Installing Miniconda

Your simplest option is to install Miniconda13 . Note that the Python 3.x version is required.
You can skip the following steps if your machine already has conda installed.

Visit the Miniconda website and determine the appropriate version for your system based
on your Python 3.x version and machine architecture. Suppose that your Python version is
3.9 (our tested version). If you are usingmacOS, youwould download the bash script whose
name contains the strings “MacOSX”, navigate to the download location, and execute the
installation as follows (taking Intel Macs as an example):

# The file name is subject to changes
sh Miniconda3-py39_4.12.0-MacOSX-x86_64.sh -b

ALinux user would download the file whose name contains the strings “Linux” and execute
the following at the download location:

# The file name is subject to changes
sh Miniconda3-py39_4.12.0-Linux-x86_64.sh -b

AWindows user would download and install Miniconda by following its online instructions
14 . On Windows, you may search for cmd to open the Command Prompt (command-line
interpreter) for running commands.

Next, initialize the shell so we can run conda directly.

~/miniconda3/bin/conda init

Then close and reopen your current shell. You should be able to create a new environment
as follows:

xxxiii
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conda create --name d2l python=3.9 -y

Now we can activate the d2l environment:

conda activate d2l

Installing the Deep Learning Framework and the
d2l Package

Before installing any deep learning framework, please first check whether or not you have
proper GPUs on your machine (the GPUs that power the display on a standard laptop are
not relevant for our purposes). For example, if your computer has NVIDIA GPUs and has
installed CUDA 15 , then you are all set. If your machine does not house any GPU, there
is no need to worry just yet. Your CPU provides more than enough horsepower to get you
through the first few chapters. Just remember that you will want to access GPUs before
running larger models.

To install a GPU-enabled version ofMXNet, we need to find out what version of CUDA you
have installed. You can check this by running nvcc --version or cat /usr/local/cuda/

version.txt. Assume that you have installed CUDA 11.2, then execute the following
command:

# For macOS and Linux users
pip install mxnet-cu112==1.9.1

# For Windows users
pip install mxnet-cu112==1.9.1 -f https://dist.mxnet.io/python

You may change the last digits according to your CUDA version, e.g., cu101 for CUDA
10.1 and cu90 for CUDA 9.0.

If your machine has no NVIDIA GPUs or CUDA, you can install the CPU version as fol-
lows:

pip install mxnet==1.9.1

Our next step is to install the d2l package that we developed in order to encapsulate fre-
quently used functions and classes found throughout this book:

pip install d2l==1.0.3

https://developer.nvidia.com/cuda-downloads
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Downloading and Running the Code

Next, you will want to download the notebooks so that you can run each of the book’s
code blocks. Simply click on the “Notebooks” tab at the top of any HTML page on the
D2L.ai website16 to download the code and then unzip it. Alternatively, you can fetch the
notebooks from the command line as follows:

mkdir d2l-en && cd d2l-en
curl https://d2l.ai/d2l-en-1.0.3.zip -o d2l-en.zip
unzip d2l-en.zip && rm d2l-en.zip
cd mxnet

If you do not already have unzip installed, first run sudo apt-get install unzip. Now
we can start the Jupyter Notebook server by running:

jupyter notebook

At this point, you can open http://localhost:8888 (it may have already opened automatically)
in your web browser. Then we can run the code for each section of the book. Whenever
you open a new command line window, you will need to execute conda activate d2l

to activate the runtime environment before running the D2L notebooks, or updating your
packages (either the deep learning framework or the d2l package). To exit the environment,
run conda deactivate.

Discussions17 .
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Notation

Throughout this book, we adhere to the following notational conventions. Note that some
of these symbols are placeholders, while others refer to specific objects. As a general rule
of thumb, the indefinite article “a” often indicates that the symbol is a placeholder and that
similarly formatted symbols can denote other objects of the same type. For example, “𝑥: a
scalar” means that lowercased letters generally represent scalar values, but “Z: the set of
integers” refers specifically to the symbol Z.

Numerical Objects

• 𝑥: a scalar

• x: a vector

• X: a matrix

• X: a general tensor

• I: the identity matrix (of some given dimension), i.e., a square matrix with 1 on all
diagonal entries and 0 on all off-diagonals

• 𝑥𝑖 , [x]𝑖: the 𝑖th element of vector x

• 𝑥𝑖 𝑗 , 𝑥𝑖, 𝑗 ,[X]𝑖 𝑗 , [X]𝑖, 𝑗 : the element of matrix X at row 𝑖 and column 𝑗 .

Set Theory

• X: a set

• Z: the set of integers

• Z+: the set of positive integers

• R: the set of real numbers

• R𝑛: the set of 𝑛-dimensional vectors of real numbers

xxxvi
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• R𝑎×𝑏: The set of matrices of real numbers with 𝑎 rows and 𝑏 columns

• |X|: cardinality (number of elements) of set X

• A ∪ B: union of sets A and B

• A ∩ B: intersection of sets A and B

• A \ B: set subtraction of B from A (contains only those elements of A that do not
belong to B)

Functions and Operators

• 𝑓 (·): a function

• log(·): the natural logarithm (base 𝑒)

• log2 (·): logarithm to base 2

• exp(·): the exponential function

• 1(·): the indicator function; evaluates to 1 if the boolean argument is true, and 0 other-
wise

• 1X (𝑧): the set-membership indicator function; evaluates to 1 if the element 𝑧 belongs to
the set X and 0 otherwise

• (·)>: transpose of a vector or a matrix

• X−1: inverse of matrix X

• �: Hadamard (elementwise) product

• [·, ·]: concatenation

• ‖ · ‖ 𝑝: ℓ𝑝 norm

• ‖ · ‖: ℓ2 norm

• 〈x,y〉: inner (dot) product of vectors x and y

• ∑
: summation over a collection of elements

• ∏
: product over a collection of elements

• def
= : an equality asserted as a definition of the symbol on the left-hand side
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Calculus

• 𝑑𝑦
𝑑𝑥 : derivative of 𝑦 with respect to 𝑥

• 𝜕𝑦
𝜕𝑥 : partial derivative of 𝑦 with respect to 𝑥

• ∇x𝑦: gradient of 𝑦 with respect to x

•
∫ 𝑏
𝑎
𝑓 (𝑥) 𝑑𝑥: definite integral of 𝑓 from 𝑎 to 𝑏 with respect to 𝑥

•
∫
𝑓 (𝑥) 𝑑𝑥: indefinite integral of 𝑓 with respect to 𝑥

Probability and Information Theory

• 𝑋: a random variable

• 𝑃: a probability distribution

• 𝑋 ∼ 𝑃: the random variable 𝑋 follows distribution 𝑃

• 𝑃(𝑋 = 𝑥): the probability assigned to the event where random variable 𝑋 takes value 𝑥

• 𝑃(𝑋 | 𝑌 ): the conditional probability distribution of 𝑋 given 𝑌

• 𝑝(·): a probability density function (PDF) associated with distribution 𝑃

• 𝐸 [𝑋]: expectation of a random variable 𝑋

• 𝑋 ⊥ 𝑌 : random variables 𝑋 and 𝑌 are independent

• 𝑋 ⊥ 𝑌 | 𝑍: random variables 𝑋 and 𝑌 are conditionally independent given 𝑍

• 𝜎𝑋: standard deviation of random variable 𝑋

• Var(𝑋): variance of random variable 𝑋 , equal to 𝜎2
𝑋

• Cov(𝑋,𝑌 ): covariance of random variables 𝑋 and 𝑌

• 𝜌(𝑋,𝑌 ): the Pearson correlation coefficient between 𝑋 and 𝑌 , equals Cov(𝑋,𝑌 )
𝜎𝑋𝜎𝑌

• 𝐻 (𝑋): entropy of random variable 𝑋

• 𝐷KL (𝑃‖𝑄): the KL-divergence (or relative entropy) from distribution 𝑄 to distribution
𝑃
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1 Introduction

Until recently, nearly every computer program that youmight have interactedwith during an
ordinary day was coded up as a rigid set of rules specifying precisely how it should behave.
Say that we wanted to write an application to manage an e-commerce platform. After
huddling around a whiteboard for a few hours to ponder the problem, we might settle on
the broad strokes of a working solution, for example: (i) users interact with the application
through an interface running in a web browser or mobile application; (ii) our application
interacts with a commercial-grade database engine to keep track of each user’s state and
maintain records of historical transactions; and (iii) at the heart of our application, the
business logic (you might say, the brains) of our application spells out a set of rules that
map every conceivable circumstance to the corresponding action that our program should
take.

To build the brains of our application, we might enumerate all the common events that our
program should handle. For example, whenever a customer clicks to add an item to their
shopping cart, our program should add an entry to the shopping cart database table, associ-
ating that user’s ID with the requested product’s ID. We might then attempt to step through
every possible corner case, testing the appropriateness of our rules and making any neces-
sary modifications. What happens if a user initiates a purchase with an empty cart? While
few developers ever get it completely right the first time (it might take some test runs to
work out the kinks), for the most part we can write such programs and confidently launch
them before ever seeing a real customer. Our ability to manually design automated sys-
tems that drive functioning products and systems, often in novel situations, is a remarkable
cognitive feat. And when you are able to devise solutions that work 100% of the time, you
typically should not be worrying about machine learning.

Fortunately for the growing community of machine learning scientists, many tasks that we
would like to automate do not bend so easily to human ingenuity. Imagine huddling around
the whiteboard with the smartest minds you know, but this time you are tackling one of the
following problems:

• Write a program that predicts tomorrow’sweather given geographic information, satellite
images, and a trailing window of past weather.

• Write a program that takes in a factoid question, expressed in free-form text, and answers
it correctly.

• Write a program that, given an image, identifies every person depicted in it and draws
outlines around each.

1
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• Write a program that presents users with products that they are likely to enjoy but un-
likely, in the natural course of browsing, to encounter.

For these problems, even elite programmers would struggle to code up solutions from
scratch. The reasons can vary. Sometimes the program that we are looking for follows
a pattern that changes over time, so there is no fixed right answer! In such cases, any
successful solution must adapt gracefully to a changing world. At other times, the rela-
tionship (say between pixels, and abstract categories) may be too complicated, requiring
thousands or millions of computations and following unknown principles. In the case of
image recognition, the precise steps required to perform the task lie beyond our conscious
understanding, even though our subconscious cognitive processes execute the task effort-
lessly.

Machine learning is the study of algorithms that can learn from experience. As a machine
learning algorithm accumulates more experience, typically in the form of observational
data or interactions with an environment, its performance improves. Contrast this with
our deterministic e-commerce platform, which follows the same business logic, no matter
how much experience accrues, until the developers themselves learn and decide that it is
time to update the software. In this book, we will teach you the fundamentals of machine
learning, focusing in particular on deep learning, a powerful set of techniques driving in-
novations in areas as diverse as computer vision, natural language processing, healthcare,
and genomics.

1.1 A Motivating Example

Before beginning writing, the authors of this book, like much of the work force, had to
become caffeinated. We hopped in the car and started driving. Using an iPhone, Alex called
out “Hey Siri”, awakening the phone’s voice recognition system. Then Mu commanded
“directions to Blue Bottle coffee shop”. The phone quickly displayed the transcription of
his command. It also recognized that we were asking for directions and launched the Maps
application (app) to fulfill our request. Once launched, the Maps app identified a number
of routes. Next to each route, the phone displayed a predicted transit time. While this story
was fabricated for pedagogical convenience, it demonstrates that in the span of just a few
seconds, our everyday interactions with a smart phone can engage several machine learning
models.

Imagine just writing a program to respond to a wake word such as “Alexa”, “OK Google”,
and “Hey Siri”. Try coding it up in a room by yourself with nothing but a computer and
a code editor, as illustrated in Fig. 1.1.1. How would you write such a program from first
principles? Think about it… the problem is hard. Every second, the microphone will col-
lect roughly 44,000 samples. Each sample is a measurement of the amplitude of the sound
wave. What rule could map reliably from a snippet of raw audio to confident predictions
{yes, no} about whether the snippet contains the wake word? If you are stuck, do not worry.
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We do not know how to write such a program from scratch either. That is why we use ma-
chine learning.

tFig. 1.1.1 Identify a wake word.

Here is the trick. Often, even when we do not know how to tell a computer explicitly how
to map from inputs to outputs, we are nonetheless capable of performing the cognitive feat
ourselves. In other words, even if you do not know how to program a computer to rec-
ognize the word “Alexa”, you yourself are able to recognize it. Armed with this ability,
we can collect a huge dataset containing examples of audio snippets and associated labels,
indicating which snippets contain the wake word. In the currently dominant approach to
machine learning, we do not attempt to design a system explicitly to recognize wake words.
Instead, we define a flexible program whose behavior is determined by a number of pa-
rameters. Then we use the dataset to determine the best possible parameter values, i.e.,
those that improve the performance of our program with respect to a chosen performance
measure.

You can think of the parameters as knobs that we can turn, manipulating the behavior of
the program. Once the parameters are fixed, we call the program a model. The set of all
distinct programs (input–output mappings) that we can produce just by manipulating the
parameters is called a family of models. And the “meta-program” that uses our dataset to
choose the parameters is called a learning algorithm.

Before we can go ahead and engage the learning algorithm, we have to define the problem
precisely, pinning down the exact nature of the inputs and outputs, and choosing an ap-
propriate model family. In this case, our model receives a snippet of audio as input, and
the model generates a selection among {yes, no} as output. If all goes according to plan
the model’s guesses will typically be correct as to whether the snippet contains the wake
word.

If we choose the right family of models, there should exist one setting of the knobs such
that the model fires “yes” every time it hears the word “Alexa”. Because the exact choice of
the wake word is arbitrary, we will probably need a model family sufficiently rich that, via
another setting of the knobs, it could fire “yes” only upon hearing the word “Apricot”. We
expect that the same model family should be suitable for “Alexa” recognition and “Apricot”
recognition because they seem, intuitively, to be similar tasks. However, we might need a
different family of models entirely if we want to deal with fundamentally different inputs
or outputs, say if we wanted to map from images to captions, or from English sentences to
Chinese sentences.

As you might guess, if we just set all of the knobs randomly, it is unlikely that our model
will recognize “Alexa”, “Apricot”, or any other English word. In machine learning, the
learning is the process by which we discover the right setting of the knobs for coercing the
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desired behavior from our model. In other words, we train our model with data. As shown
in Fig. 1.1.2, the training process usually looks like the following:

1. Start off with a randomly initialized model that cannot do anything useful.

2. Grab some of your data (e.g., audio snippets and corresponding {yes, no} labels).

3. Tweak the knobs to make the model perform better as assessed on those examples.

4. Repeat Steps 2 and 3 until the model is awesome.

tFig. 1.1.2 A typical training process.

To summarize, rather than code up a wake word recognizer, we code up a program that can
learn to recognize wake words, if presented with a large labeled dataset. You can think of
this act of determining a program’s behavior by presenting it with a dataset as programming
with data. That is to say, we can “program” a cat detector by providing ourmachine learning
system with many examples of cats and dogs. This way the detector will eventually learn
to emit a very large positive number if it is a cat, a very large negative number if it is a
dog, and something closer to zero if it is not sure. This barely scratches the surface of what
machine learning can do. Deep learning, which we will explain in greater detail later, is
just one among many popular methods for solving machine learning problems.

1.2 Key Components

In our wake word example, we described a dataset consisting of audio snippets and binary
labels, and we gave a hand-wavy sense of how we might train a model to approximate a
mapping from snippets to classifications. This sort of problem, where we try to predict a
designated unknown label based on known inputs given a dataset consisting of examples
for which the labels are known, is called supervised learning. This is just one among many
kinds of machine learning problems. Before we explore other varieties, we would like to
shed more light on some core components that will follow us around, no matter what kind
of machine learning problem we tackle:

1. The data that we can learn from.

2. A model of how to transform the data.

3. An objective function that quantifies how well (or badly) the model is doing.

4. An algorithm to adjust the model’s parameters to optimize the objective function.
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1.2.1 Data
It might go without saying that you cannot do data science without data. We could lose
hundreds of pages pondering what precisely data is, but for now, we will focus on the key
properties of the datasets that we will be concerned with. Generally, we are concerned with
a collection of examples. In order to work with data usefully, we typically need to come
up with a suitable numerical representation. Each example (or data point, data instance,
sample) typically consists of a set of attributes called features (sometimes called covariates
or inputs), based on which the model must make its predictions. In supervised learning
problems, our goal is to predict the value of a special attribute, called the label (or target),
that is not part of the model’s input.

If we were working with image data, each example might consist of an individual photo-
graph (the features) and a number indicating the category to which the photograph belongs
(the label). The photograph would be represented numerically as three grids of numerical
values representing the brightness of red, green, and blue light at each pixel location. For
example, a 200 × 200 pixel color photograph would consist of 200 × 200 × 3 = 120000
numerical values.

Alternatively, we might work with electronic health record data and tackle the task of pre-
dicting the likelihood that a given patient will survive the next 30 days. Here, our features
might consist of a collection of readily available attributes and frequently recorded mea-
surements, including age, vital signs, comorbidities, current medications, and recent pro-
cedures. The label available for training would be a binary value indicating whether each
patient in the historical data survived within the 30-day window.

In such cases, when every example is characterized by the same number of numerical fea-
tures, we say that the inputs are fixed-length vectors and we call the (constant) length of
the vectors the dimensionality of the data. As you might imagine, fixed-length inputs can
be convenient, giving us one less complication to worry about. However, not all data can
easily be represented as fixed-length vectors. While we might expect microscope images to
come from standard equipment, we cannot expect imagesmined from the Internet all to have
the same resolution or shape. For images, we might consider cropping them to a standard
size, but that strategy only gets us so far. We risk losing information in the cropped-out
portions. Moreover, text data resists fixed-length representations even more stubbornly.
Consider the customer reviews left on e-commerce sites such as Amazon, IMDb, and Tri-
pAdvisor. Some are short: “it stinks!”. Others ramble for pages. One major advantage of
deep learning over traditional methods is the comparative grace with which modern models
can handle varying-length data.

Generally, the more data we have, the easier our job becomes. When we have more data, we
can train more powerful models and rely less heavily on preconceived assumptions. The
regime change from (comparatively) small to big data is a major contributor to the success
of modern deep learning. To drive the point home, many of the most exciting models in
deep learning do not work without large datasets. Some others might work in the small
data regime, but are no better than traditional approaches.

Finally, it is not enough to have lots of data and to process it cleverly. We need the right
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data. If the data is full of mistakes, or if the chosen features are not predictive of the target
quantity of interest, learning is going to fail. The situation is captured well by the cliché:
garbage in, garbage out. Moreover, poor predictive performance is not the only poten-
tial consequence. In sensitive applications of machine learning, like predictive policing,
resume screening, and risk models used for lending, we must be especially alert to the con-
sequences of garbage data. One commonly occurring failure mode concerns datasets where
some groups of people are unrepresented in the training data. Imagine applying a skin can-
cer recognition system that had never seen black skin before. Failure can also occur when
the data does not only under-represent some groups but reflects societal prejudices. For ex-
ample, if past hiring decisions are used to train a predictive model that will be used to screen
resumes then machine learning models could inadvertently capture and automate historical
injustices. Note that this can all happen without the data scientist actively conspiring, or
even being aware.

1.2.2 Models
Most machine learning involves transforming the data in some sense. We might want to
build a system that ingests photos and predicts smiley-ness. Alternatively, we might want to
ingest a set of sensor readings and predict how normal vs. anomalous the readings are. By
model, we denote the computational machinery for ingesting data of one type, and spitting
out predictions of a possibly different type. In particular, we are interested in statistical
models that can be estimated from data. While simple models are perfectly capable of ad-
dressing appropriately simple problems, the problems that we focus on in this book stretch
the limits of classical methods. Deep learning is differentiated from classical approaches
principally by the set of powerful models that it focuses on. These models consist of many
successive transformations of the data that are chained together top to bottom, thus the
name deep learning. On our way to discussing deep models, we will also discuss some
more traditional methods.

1.2.3 Objective Functions
Earlier, we introduced machine learning as learning from experience. By learning here, we
mean improving at some task over time. Butwho is to saywhat constitutes an improvement?
You might imagine that we could propose updating our model, and some people might
disagree on whether our proposal constituted an improvement or not.

In order to develop a formal mathematical system of learning machines, we need to have
formal measures of how good (or bad) our models are. In machine learning, and optimiza-
tion more generally, we call these objective functions. By convention, we usually define
objective functions so that lower is better. This is merely a convention. You can take any
function for which higher is better, and turn it into a new function that is qualitatively iden-
tical but for which lower is better by flipping the sign. Because we choose lower to be
better, these functions are sometimes called loss functions.

When trying to predict numerical values, the most common loss function is squared error,
i.e., the square of the difference between the prediction and the ground truth target. For
classification, the most common objective is to minimize error rate, i.e., the fraction of
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examples on which our predictions disagree with the ground truth. Some objectives (e.g.,
squared error) are easy to optimize, while others (e.g., error rate) are difficult to optimize
directly, owing to non-differentiability or other complications. In these cases, it is common
instead to optimize a surrogate objective.

During optimization, we think of the loss as a function of the model’s parameters, and treat
the training dataset as a constant. We learn the best values of our model’s parameters by
minimizing the loss incurred on a set consisting of some number of examples collected for
training. However, doing well on the training data does not guarantee that we will do well
on unseen data. So we will typically want to split the available data into two partitions:
the training dataset (or training set), for learning model parameters; and the test dataset
(or test set), which is held out for evaluation. At the end of the day, we typically report
how our models perform on both partitions. You could think of training performance as
analogous to the scores that a student achieves on the practice exams used to prepare for
some real final exam. Even if the results are encouraging, that does not guarantee success
on the final exam. Over the course of studying, the student might begin to memorize the
practice questions, appearing to master the topic but faltering when faced with previously
unseen questions on the actual final exam. When a model performs well on the training set
but fails to generalize to unseen data, we say that it is overfitting to the training data.

1.2.4 Optimization Algorithms
Once we have got some data source and representation, a model, and a well-defined objec-
tive function, we need an algorithm capable of searching for the best possible parameters
for minimizing the loss function. Popular optimization algorithms for deep learning are
based on an approach called gradient descent. In brief, at each step, this method checks
to see, for each parameter, how that training set loss would change if you perturbed that
parameter by just a small amount. It would then update the parameter in the direction that
lowers the loss.

1.3 Kinds of Machine Learning Problems

The wake word problem in our motivating example is just one among many that machine
learning can tackle. To motivate the reader further and provide us with some common
language that will follow us throughout the book, we now provide a broad overview of the
landscape of machine learning problems.

1.3.1 Supervised Learning
Supervised learning describes tasks where we are given a dataset containing both features
and labels and asked to produce a model that predicts the labels when given input features.
Each feature–label pair is called an example. Sometimes, when the context is clear, we
may use the term examples to refer to a collection of inputs, even when the corresponding
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labels are unknown. The supervision comes into play because, for choosing the parame-
ters, we (the supervisors) provide the model with a dataset consisting of labeled examples.
In probabilistic terms, we typically are interested in estimating the conditional probability
of a label given input features. While it is just one among several paradigms, supervised
learning accounts for the majority of successful applications of machine learning in indus-
try. Partly that is because many important tasks can be described crisply as estimating the
probability of something unknown given a particular set of available data:

• Predict cancer vs. not cancer, given a computer tomography image.

• Predict the correct translation in French, given a sentence in English.

• Predict the price of a stock next month based on this month’s financial reporting data.

While all supervised learning problems are captured by the simple description “predicting
the labels given input features”, supervised learning itself can take diverse forms and require
tons of modeling decisions, depending on (among other considerations) the type, size, and
quantity of the inputs and outputs. For example, we use different models for processing
sequences of arbitrary lengths and fixed-length vector representations. We will visit many
of these problems in depth throughout this book.

Informally, the learning process looks something like the following. First, grab a big col-
lection of examples for which the features are known and select from them a random subset,
acquiring the ground truth labels for each. Sometimes these labels might be available data
that have already been collected (e.g., did a patient die within the following year?) and
other times we might need to employ human annotators to label the data, (e.g., assigning
images to categories). Together, these inputs and corresponding labels comprise the train-
ing set. We feed the training dataset into a supervised learning algorithm, a function that
takes as input a dataset and outputs another function: the learned model. Finally, we can
feed previously unseen inputs to the learned model, using its outputs as predictions of the
corresponding label. The full process is drawn in Fig. 1.3.1.

tFig. 1.3.1 Supervised learning.

Regression
Perhaps the simplest supervised learning task to wrap your head around is regression. Con-
sider, for example, a set of data harvested from a database of home sales. We might con-
struct a table, in which each row corresponds to a different house, and each column cor-
responds to some relevant attribute, such as the square footage of a house, the number of
bedrooms, the number of bathrooms, and the number of minutes (walking) to the center
of town. In this dataset, each example would be a specific house, and the corresponding



9 Kinds of Machine Learning Problems

19

feature vector would be one row in the table. If you live in New York or San Francisco, and
you are not the CEO of Amazon, Google, Microsoft, or Facebook, the (sq. footage, no. of
bedrooms, no. of bathrooms, walking distance) feature vector for your home might look
something like: [600, 1, 1, 60]. However, if you live in Pittsburgh, it might look more like
[3000, 4, 3, 10]. Fixed-length feature vectors like this are essential for most classic machine
learning algorithms.

What makes a problem a regression is actually the form of the target. Say that you are in the
market for a new home. You might want to estimate the fair market value of a house, given
some features such as above. The data here might consist of historical home listings and the
labels might be the observed sales prices. When labels take on arbitrary numerical values
(even within some interval), we call this a regression problem. The goal is to produce a
model whose predictions closely approximate the actual label values.

Lots of practical problems are easily described as regression problems. Predicting the rating
that a user will assign to a movie can be thought of as a regression problem and if you
designed a great algorithm to accomplish this feat in 2009, you might have won the 1-
million-dollar Netflix prize 19 . Predicting the length of stay for patients in the hospital is
also a regression problem. A good rule of thumb is that any how much? or how many?
problem is likely to be regression. For example:

• How many hours will this surgery take?

• How much rainfall will this town have in the next six hours?

Even if you have never worked with machine learning before, you have probably worked
through a regression problem informally. Imagine, for example, that you had your drains re-
paired and that your contractor spent 3 hours removing gunk from your sewage pipes. Then
they sent you a bill of 350 dollars. Now imagine that your friend hired the same contractor
for 2 hours and received a bill of 250 dollars. If someone then asked you how much to
expect on their upcoming gunk-removal invoice you might make some reasonable assump-
tions, such as more hours worked costs more dollars. You might also assume that there is
some base charge and that the contractor then charges per hour. If these assumptions held
true, then given these two data examples, you could already identify the contractor’s pricing
structure: 100 dollars per hour plus 50 dollars to show up at your house. If you followed
that much, then you already understand the high-level idea behind linear regression.

In this case, we could produce the parameters that exactly matched the contractor’s prices.
Sometimes this is not possible, e.g., if some of the variation arises from factors beyond
your two features. In these cases, we will try to learn models that minimize the distance
between our predictions and the observed values. In most of our chapters, we will focus on
minimizing the squared error loss function. As we will see later, this loss corresponds to
the assumption that our data were corrupted by Gaussian noise.

Classification
While regressionmodels are great for addressing howmany? questions, lots of problems do
not fit comfortably in this template. Consider, for example, a bank that wants to develop a

https://en.wikipedia.org/wiki/Netflix_Prize
https://en.wikipedia.org/wiki/Netflix_Prize
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check scanning feature for its mobile app. Ideally, the customer would simply snap a photo
of a check and the app would automatically recognize the text from the image. Assuming
that we had some ability to segment out image patches corresponding to each handwritten
character, then the primary remaining task would be to determine which character among
some known set is depicted in each image patch. These kinds of which one? problems
are called classification and require a different set of tools from those used for regression,
although many techniques will carry over.

In classification, we want our model to look at features, e.g., the pixel values in an image,
and then predict to which category (sometimes called a class) among some discrete set
of options, an example belongs. For handwritten digits, we might have ten classes, corre-
sponding to the digits 0 through 9. The simplest form of classification is when there are
only two classes, a problem which we call binary classification. For example, our dataset
could consist of images of animals and our labels might be the classes {cat, dog}. Whereas
in regression we sought a regressor to output a numerical value, in classification we seek a
classifier, whose output is the predicted class assignment.

For reasons that we will get into as the book gets more technical, it can be difficult to opti-
mize a model that can only output a firm categorical assignment, e.g., either “cat” or “dog”.
In these cases, it is usually much easier to express our model in the language of probabili-
ties. Given features of an example, our model assigns a probability to each possible class.
Returning to our animal classification example where the classes are {cat, dog}, a classi-
fier might see an image and output the probability that the image is a cat as 0.9. We can
interpret this number by saying that the classifier is 90% sure that the image depicts a cat.
The magnitude of the probability for the predicted class conveys a notion of uncertainty.
It is not the only one available and we will discuss others in chapters dealing with more
advanced topics.

Whenwe havemore than two possible classes, we call the problemmulticlass classification.
Common examples include handwritten character recognition {0, 1, 2, ... 9, a, b, c, ...}. While
we attacked regression problems by trying to minimize the squared error loss function, the
common loss function for classification problems is called cross-entropy, whose name will
be demystified when we introduce information theory in later chapters.

Note that the most likely class is not necessarily the one that you are going to use for your
decision. Assume that you find a beautiful mushroom in your backyard as shown in Fig.
1.3.2.

Now, assume that you built a classifier and trained it to predict whether a mushroom is poi-
sonous based on a photograph. Say our poison-detection classifier outputs that the proba-
bility that Fig. 1.3.2 shows a death cap is 0.2. In other words, the classifier is 80% sure that
our mushroom is not a death cap. Still, you would have to be a fool to eat it. That is because
the certain benefit of a delicious dinner is not worth a 20% risk of dying from it. In other
words, the effect of the uncertain risk outweighs the benefit by far. Thus, in order to make
a decision about whether to eat the mushroom, we need to compute the expected detriment
associated with each action which depends both on the likely outcomes and the benefits or
harms associated with each. In this case, the detriment incurred by eating the mushroom
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tFig. 1.3.2 Death cap - do not eat!
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might be 0.2×∞+ 0.8× 0 = ∞, whereas the loss of discarding it is 0.2× 0+ 0.8× 1 = 0.8.
Our caution was justified: as any mycologist would tell us, the mushroom in Fig. 1.3.2 is
actually a death cap.

Classification can get much more complicated than just binary or multiclass classification.
For instance, there are some variants of classification addressing hierarchically structured
classes. In such cases not all errors are equal—if wemust err, wemight prefer tomisclassify
to a related class rather than a distant class. Usually, this is referred to as hierarchical
classification. For inspiration, you might think of Linnaeus 20 , who organized fauna in a
hierarchy.

In the case of animal classification, it might not be so bad tomistake a poodle for a schnauzer,
but our model would pay a huge penalty if it confused a poodle with a dinosaur. Which
hierarchy is relevant might depend on how you plan to use the model. For example, rat-
tlesnakes and garter snakes might be close on the phylogenetic tree, but mistaking a rattler
for a garter could have fatal consequences.

Tagging
Some classification problems fit neatly into the binary or multiclass classification setups.
For example, we could train a normal binary classifier to distinguish cats from dogs. Given
the current state of computer vision, we can do this easily, with off-the-shelf tools. Nonethe-
less, no matter how accurate our model gets, we might find ourselves in trouble when the
classifier encounters an image of the Town Musicians of Bremen, a popular German fairy
tale featuring four animals (Fig. 1.3.3).

As you can see, the photo features a cat, a rooster, a dog, and a donkey, with some trees in
the background. If we anticipate encountering such images, multiclass classification might
not be the right problem formulation. Instead, we might want to give the model the option
of saying the image depicts a cat, a dog, a donkey, and a rooster.

https://en.wikipedia.org/wiki/Carl_Linnaeus
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tFig. 1.3.3 A donkey, a dog, a cat, and a rooster.
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The problem of learning to predict classes that are not mutually exclusive is called multi-
label classification. Auto-tagging problems are typically best described in terms of multi-
label classification. Think of the tags people might apply to posts on a technical blog, e.g.,
“machine learning”, “technology”, “gadgets”, “programming languages”, “Linux”, “cloud
computing”, “AWS”. A typical article might have 5–10 tags applied. Typically, tags will
exhibit some correlation structure. Posts about “cloud computing” are likely to mention
“AWS” and posts about “machine learning” are likely to mention “GPUs”.

Sometimes such tagging problems draw on enormous label sets. The National Library of
Medicine employs many professional annotators who associate each article to be indexed in
PubMed with a set of tags drawn from the Medical Subject Headings (MeSH) ontology, a
collection of roughly 28,000 tags. Correctly tagging articles is important because it allows
researchers to conduct exhaustive reviews of the literature. This is a time-consuming pro-
cess and typically there is a one-year lag between archiving and tagging. Machine learning
can provide provisional tags until each article has a proper manual review. Indeed, for
several years, the BioASQ organization has hosted competitions21 for this task.

http://bioasq.org/
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Search
In the field of information retrieval, we often impose ranks on sets of items. Take web
search for example. The goal is less to determine whether a particular page is relevant for a
query, but rather which, among a set of relevant results, should be shown most prominently
to a particular user. One way of doing this might be to first assign a score to every element
in the set and then to retrieve the top-rated elements. PageRank 22 , the original secret
sauce behind the Google search engine, was an early example of such a scoring system.
Weirdly, the scoring provided by PageRank did not depend on the actual query. Instead,
they relied on a simple relevance filter to identify the set of relevant candidates and then
used PageRank to prioritize the more authoritative pages. Nowadays, search engines use
machine learning and behavioral models to obtain query-dependent relevance scores. There
are entire academic conferences devoted to this subject.

Recommender Systems
Recommender systems are another problem setting that is related to search and ranking.
The problems are similar insofar as the goal is to display a set of items relevant to the user.
The main difference is the emphasis on personalization to specific users in the context of
recommender systems. For instance, for movie recommendations, the results page for a
science fiction fan and the results page for a connoisseur of Peter Sellers comedies might
differ significantly. Similar problems pop up in other recommendation settings, e.g., for
retail products, music, and news recommendation.

In some cases, customers provide explicit feedback, communicating how much they liked a
particular product (e.g., the product ratings and reviews on Amazon, IMDb, or Goodreads).
In other cases, they provide implicit feedback, e.g., by skipping titles on a playlist, which
might indicate dissatisfaction or maybe just indicate that the song was inappropriate in
context. In the simplest formulations, these systems are trained to estimate some score,
such as an expected star rating or the probability that a given user will purchase a particular
item.

Given such a model, for any given user, we could retrieve the set of objects with the largest
scores, which could then be recommended to the user. Production systems are consider-
ably more advanced and take detailed user activity and item characteristics into account
when computing such scores. Fig. 1.3.4 displays the deep learning books recommended by
Amazon based on personalization algorithms tuned to capture Aston’s preferences.

Despite their tremendous economic value, recommender systems naively built on top of
predictive models suffer some serious conceptual flaws. To start, we only observe censored
feedback: users preferentially rate movies that they feel strongly about. For example, on
a five-point scale, you might notice that items receive many one- and five-star ratings but
that there are conspicuously few three-star ratings. Moreover, current purchase habits are
often a result of the recommendation algorithm currently in place, but learning algorithms
do not always take this detail into account. Thus it is possible for feedback loops to form
where a recommender system preferentially pushes an item that is then taken to be better
(due to greater purchases) and in turn is recommended even more frequently. Many of

https://en.wikipedia.org/wiki/PageRank
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tFig. 1.3.4 Deep learning books recommended by Amazon.

these problems—about how to deal with censoring, incentives, and feedback loops—are
important open research questions.

Sequence Learning
So far, we have looked at problems where we have some fixed number of inputs and produce
a fixed number of outputs. For example, we considered predicting house prices given a
fixed set of features: square footage, number of bedrooms, number of bathrooms, and the
transit time to downtown. We also discussed mapping from an image (of fixed dimension)
to the predicted probabilities that it belongs to each among a fixed number of classes and
predicting star ratings associated with purchases based on the user ID and product ID alone.
In these cases, once our model is trained, after each test example is fed into our model, it
is immediately forgotten. We assumed that successive observations were independent and
thus there was no need to hold on to this context.

But how should we deal with video snippets? In this case, each snippet might consist of
a different number of frames. And our guess of what is going on in each frame might be
much stronger if we take into account the previous or succeeding frames. The same goes for
language. For example, one popular deep learning problem is machine translation: the task
of ingesting sentences in some source language and predicting their translations in another
language.

Such problems also occur in medicine. We might want a model to monitor patients in the
intensive care unit and to fire off alerts whenever their risk of dying in the next 24 hours
exceeds some threshold. Here, we would not throw away everything that we know about
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the patient history every hour, because we might not want to make predictions based only
on the most recent measurements.

Questions like these are among the most exciting applications of machine learning and
they are instances of sequence learning. They require a model either to ingest sequences
of inputs or to emit sequences of outputs (or both). Specifically, sequence-to-sequence
learning considers problems where both inputs and outputs consist of variable-length se-
quences. Examples include machine translation and speech-to-text transcription. While it
is impossible to consider all types of sequence transformations, the following special cases
are worth mentioning.

Tagging and Parsing. This involves annotating a text sequence with attributes. Here,
the inputs and outputs are aligned, i.e., they are of the same number and occur in a corre-
sponding order. For instance, in part-of-speech (PoS) tagging, we annotate every word in
a sentence with the corresponding part of speech, i.e., “noun” or “direct object”. Alterna-
tively, we might want to know which groups of contiguous words refer to named entities,
like people, places, or organizations. In the cartoonishly simple example below, we might
just want to indicate whether or not any word in the sentence is part of a named entity
(tagged as “Ent”).

Tom has dinner in Washington with Sally
Ent - - - Ent - Ent

Automatic Speech Recognition. With speech recognition, the input sequence is an audio
recording of a speaker (Fig. 1.3.5), and the output is a transcript of what the speaker said.
The challenge is that there are many more audio frames (sound is typically sampled at
8kHz or 16kHz) than text, i.e., there is no 1:1 correspondence between audio and text,
since thousands of samples may correspond to a single spoken word. These are sequence-
to-sequence learning problems, where the output is much shorter than the input. While
humans are remarkably good at recognizing speech, even from low-quality audio, getting
computers to perform the same feat is a formidable challenge.

tFig. 1.3.5 -D-e-e-p- L-ea-r-ni-ng- in an audio recording.

Text to Speech. This is the inverse of automatic speech recognition. Here, the input is text
and the output is an audio file. In this case, the output is much longer than the input.

Machine Translation. Unlike the case of speech recognition, where corresponding inputs
and outputs occur in the same order, in machine translation, unaligned data poses a new
challenge. Here the input and output sequences can have different lengths, and the corre-
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sponding regions of the respective sequences may appear in a different order. Consider the
following illustrative example of the peculiar tendency of Germans to place the verbs at the
end of sentences:

German: Haben Sie sich schon dieses grossartige Lehrwerk angeschaut?
English: Have you already looked at this excellent textbook?
Wrong alignment: Have you yourself already this excellent textbook looked at?

Many related problems pop up in other learning tasks. For instance, determining the order
in which a user reads a webpage is a two-dimensional layout analysis problem. Dialogue
problems exhibit all kinds of additional complications, where determining what to say next
requires taking into account real-world knowledge and the prior state of the conversation
across long temporal distances. Such topics are active areas of research.

1.3.2 Unsupervised and Self-Supervised Learning
The previous examples focused on supervised learning, where we feed the model a giant
dataset containing both the features and corresponding label values. You could think of
the supervised learner as having an extremely specialized job and an extremely dictatorial
boss. The boss stands over the learner’s shoulder and tells them exactly what to do in every
situation until they learn to map from situations to actions. Working for such a boss sounds
pretty lame. On the other hand, pleasing such a boss is pretty easy. You just recognize the
pattern as quickly as possible and imitate the boss’s actions.

Considering the opposite situation, it could be frustrating to work for a boss who has no
idea what they want you to do. However, if you plan to be a data scientist, you had better
get used to it. The boss might just hand you a giant dump of data and tell you to do some
data science with it! This sounds vague because it is vague. We call this class of problems
unsupervised learning, and the type and number of questions we can ask is limited only by
our creativity. We will address unsupervised learning techniques in later chapters. To whet
your appetite for now, we describe a few of the following questions you might ask.

• Can we find a small number of prototypes that accurately summarize the data? Given a
set of photos, can we group them into landscape photos, pictures of dogs, babies, cats,
and mountain peaks? Likewise, given a collection of users’ browsing activities, can
we group them into users with similar behavior? This problem is typically known as
clustering.

• Can we find a small number of parameters that accurately capture the relevant properties
of the data? The trajectories of a ball are well described by velocity, diameter, and
mass of the ball. Tailors have developed a small number of parameters that describe
human body shape fairly accurately for the purpose of fitting clothes. These problems
are referred to as subspace estimation. If the dependence is linear, it is called principal
component analysis.

• Is there a representation of (arbitrarily structured) objects in Euclidean space such that
symbolic properties can be well matched? This can be used to describe entities and
their relations, such as “Rome” − “Italy” + “France” = “Paris”.



17 Kinds of Machine Learning Problems

• Is there a description of the root causes of much of the data that we observe? For instance,
if we have demographic data about house prices, pollution, crime, location, education,
and salaries, can we discover how they are related simply based on empirical data?
The fields concerned with causality and probabilistic graphical models tackle such
questions.

• Another important and exciting recent development in unsupervised learning is the ad-
vent of deep generative models. These models estimate the density of the data, either
explicitly or implicitly. Once trained, we can use a generative model either to score
examples according to how likely they are, or to sample synthetic examples from the
learned distribution. Early deep learning breakthroughs in generative modeling came
with the invention of variational autoencoders (Kingma and Welling, 2014, Rezende
et al., 2014) and continued with the development of generative adversarial networks
(Goodfellow et al., 2014). More recent advances include normalizing flows (Dinh et
al., 2014, Dinh et al., 2017) and diffusion models (Ho et al., 2020, Sohl-Dickstein et
al., 2015, Song and Ermon, 2019, Song et al., 2021).

A further development in unsupervised learning has been the rise of self-supervised learn-
ing, techniques that leverage some aspect of the unlabeled data to provide supervision. For
text, we can train models to “fill in the blanks” by predicting randomly masked words us-
ing their surrounding words (contexts) in big corpora without any labeling effort (Devlin
et al., 2018)! For images, we may train models to tell the relative position between two
cropped regions of the same image (Doersch et al., 2015), to predict an occluded part of an
image based on the remaining portions of the image, or to predict whether two examples
are perturbed versions of the same underlying image. Self-supervised models often learn
representations that are subsequently leveraged by fine-tuning the resulting models on some
downstream task of interest.

1.3.3 Interacting with an Environment
So far, we have not discussed where data actually comes from, or what actually happens
when a machine learning model generates an output. That is because supervised learning
and unsupervised learning do not address these issues in a very sophisticated way. In each
case, we grab a big pile of data upfront, then set our pattern recognition machines in motion
without ever interacting with the environment again. Because all the learning takes place
after the algorithm is disconnected from the environment, this is sometimes called offline
learning. For example, supervised learning assumes the simple interaction pattern depicted
in Fig. 1.3.6.

This simplicity of offline learning has its charms. The upside is that we can worry about
pattern recognition in isolation, with no concern about complications arising from interac-
tions with a dynamic environment. But this problem formulation is limiting. If you grew
up reading Asimov’s Robot novels, then you probably picture artificially intelligent agents
capable not only of making predictions, but also of taking actions in the world. We want
to think about intelligent agents, not just predictive models. This means that we need to
think about choosing actions, not just making predictions. In contrast to mere predictions,
actions actually impact the environment. If we want to train an intelligent agent, we must
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tFig. 1.3.6 Collecting data for supervised learning from an environment.

account for the way its actions might impact the future observations of the agent, and so
offline learning is inappropriate.

Considering the interaction with an environment opens a whole set of new modeling ques-
tions. The following are just a few examples.

• Does the environment remember what we did previously?

• Does the environment want to help us, e.g., a user reading text into a speech recognizer?

• Does the environment want to beat us, e.g., spammers adapting their emails to evade
spam filters?

• Does the environment have shifting dynamics? For example, would future data always
resemble the past or would the patterns change over time, either naturally or in re-
sponse to our automated tools?

These questions raise the problem of distribution shift, where training and test data are
different. An example of this, that many of us may have met, is when taking exams written
by a lecturer, while the homework was composed by their teaching assistants. Next, we
briefly describe reinforcement learning, a rich framework for posing learning problems in
which an agent interacts with an environment.

1.3.4 Reinforcement Learning
If you are interested in using machine learning to develop an agent that interacts with an
environment and takes actions, then you are probably going to wind up focusing on re-
inforcement learning. This might include applications to robotics, to dialogue systems,
and even to developing artificial intelligence (AI) for video games. Deep reinforcement
learning, which applies deep learning to reinforcement learning problems, has surged in
popularity. The breakthrough deep Q-network, that beat humans at Atari games using only
the visual input (Mnih et al., 2015), and the AlphaGo program, which dethroned the world
champion at the board game Go (Silver et al., 2016), are two prominent examples.

Reinforcement learning gives a very general statement of a problem in which an agent inter-
acts with an environment over a series of time steps. At each time step, the agent receives
some observation from the environment and must choose an action that is subsequently
transmitted back to the environment via some mechanism (sometimes called an actuator),
when, after each loop, the agent receives a reward from the environment. This process is
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illustrated in Fig. 1.3.7. The agent then receives a subsequent observation, and chooses a
subsequent action, and so on. The behavior of a reinforcement learning agent is governed
by a policy. In brief, a policy is just a function that maps from observations of the environ-
ment to actions. The goal of reinforcement learning is to produce good policies.

tFig. 1.3.7 The interaction between reinforcement learning and an environment.

It is hard to overstate the generality of the reinforcement learning framework. For example,
supervised learning can be recast as reinforcement learning. Say we had a classification
problem. We could create a reinforcement learning agent with one action corresponding
to each class. We could then create an environment which gave a reward that was exactly
equal to the loss function from the original supervised learning problem.

Further, reinforcement learning can also address many problems that supervised learning
cannot. For example, in supervised learning, we always expect that the training input comes
associated with the correct label. But in reinforcement learning, we do not assume that,
for each observation the environment tells us the optimal action. In general, we just get
some reward. Moreover, the environment may not even tell us which actions led to the
reward.

Consider the game of chess. The only real reward signal comes at the end of the game when
we either win, earning a reward of, say, 1, or when we lose, receiving a reward of, say,
−1. So reinforcement learners must deal with the credit assignment problem: determining
which actions to credit or blame for an outcome. The same goes for an employee who gets
a promotion on October 11. That promotion likely reflects a number of well-chosen actions
over the previous year. Getting promoted in the future requires figuring out which actions
along the way led to the earlier promotions.

Reinforcement learners may also have to deal with the problem of partial observability.
That is, the current observation might not tell you everything about your current state. Say
your cleaning robot found itself trapped in one of many identical closets in your house.
Rescuing the robot involves inferring its precise location which might require considering
earlier observations prior to it entering the closet.

Finally, at any given point, reinforcement learners might know of one good policy, but
there might be many other better policies that the agent has never tried. The reinforcement
learner must constantly choose whether to exploit the best (currently) known strategy as a
policy, or to explore the space of strategies, potentially giving up some short-term reward
in exchange for knowledge.

The general reinforcement learning problem has a very general setting. Actions affect sub-
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sequent observations. Rewards are only observed when they correspond to the chosen ac-
tions. The environment may be either fully or partially observed. Accounting for all this
complexity at once may be asking too much. Moreover, not every practical problem ex-
hibits all this complexity. As a result, researchers have studied a number of special cases
of reinforcement learning problems.

When the environment is fully observed, we call the reinforcement learning problem a
Markov decision process. When the state does not depend on the previous actions, we call
it a contextual bandit problem. When there is no state, just a set of available actions with
initially unknown rewards, we have the classic multi-armed bandit problem.

1.4 Roots

We have just reviewed a small subset of problems that machine learning can address. For
a diverse set of machine learning problems, deep learning provides powerful tools for their
solution. Although many deep learning methods are recent inventions, the core ideas be-
hind learning from data have been studied for centuries. In fact, humans have held the
desire to analyze data and to predict future outcomes for ages, and it is this desire that is
at the root of much of natural science and mathematics. Two examples are the Bernoulli
distribution, named after Jacob Bernoulli (1655–1705) 23 , and the Gaussian distribution
discovered by Carl Friedrich Gauss (1777–1855)24 . Gauss invented, for instance, the least
mean squares algorithm, which is still used today for a multitude of problems from insur-
ance calculations to medical diagnostics. Such tools enhanced the experimental approach
in the natural sciences—for instance, Ohm’s law relating current and voltage in a resistor
is perfectly described by a linear model.

Even in the middle ages, mathematicians had a keen intuition of estimates. For instance,
the geometry book of Jacob Köbel (1460–1533) 25 illustrates averaging the length of 16
adult men’s feet to estimate the typical foot length in the population (Fig. 1.4.1).

As a group of individuals exited a church, 16 adult men were asked to line up in a row
and have their feet measured. The sum of these measurements was then divided by 16 to
obtain an estimate for what now is called one foot. This “algorithm” was later improved to
deal with misshapen feet; The two men with the shortest and longest feet were sent away,
averaging only over the remainder. This is among the earliest examples of a trimmed mean
estimate.

Statistics really took off with the availability and collection of data. One of its pioneers,
Ronald Fisher (1890–1962)26 , contributed significantly to its theory and also its applica-
tions in genetics. Many of his algorithms (such as linear discriminant analysis) and con-
cepts (such as the Fisher information matrix) still hold a prominent place in the founda-
tions of modern statistics. Even his data resources had a lasting impact. The Iris dataset
that Fisher released in 1936 is still sometimes used to demonstrate machine learning algo-
rithms. Fisher was also a proponent of eugenics, which should remind us that the morally

https://en.wikipedia.org/wiki/Jacob_Bernoulli
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://www.maa.org/press/periodicals/convergence/mathematical-treasures-jacob-kobels-geometry
https://en.wikipedia.org/wiki/Ronald_Fisher
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tFig. 1.4.1 Estimating the length of a foot.
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dubious use of data science has as long and enduring a history as its productive use in
industry and the natural sciences.

Other influences for machine learning came from the information theory of Claude Shan-
non (1916–2001)27 and the theory of computation proposed by Alan Turing (1912–1954)
28 . Turing posed the question “can machines think?” in his famous paper Computing Ma-
chinery and Intelligence (Turing, 1950). Describing what is now known as the Turing test,
he proposed that a machine can be considered intelligent if it is difficult for a human evalu-
ator to distinguish between the replies from a machine and those of a human, based purely
on textual interactions.

Further influences came from neuroscience and psychology. After all, humans clearly ex-
hibit intelligent behavior. Many scholars have asked whether one could explain and pos-
sibly reverse engineer this capacity. One of the first biologically inspired algorithms was
formulated by Donald Hebb (1904–1985) 29 . In his groundbreaking book The Organiza-
tion of Behavior (Hebb, 1949), he posited that neurons learn by positive reinforcement.
This became known as the Hebbian learning rule. These ideas inspired later work, such
as Rosenblatt’s perceptron learning algorithm, and laid the foundations of many stochastic
gradient descent algorithms that underpin deep learning today: reinforce desirable behav-
ior and diminish undesirable behavior to obtain good settings of the parameters in a neural
network.

https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Donald_O._Hebb
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Biological inspiration is what gave neural networks their name. For over a century (dating
back to the models of Alexander Bain, 1873, and James Sherrington, 1890), researchers
have tried to assemble computational circuits that resemble networks of interacting neurons.
Over time, the interpretation of biology has become less literal, but the name stuck. At its
heart lie a few key principles that can be found in most networks today:

• The alternation of linear and nonlinear processing units, often referred to as layers.

• The use of the chain rule (also known as backpropagation) for adjusting parameters in
the entire network at once.

After initial rapid progress, research in neural networks languished from around 1995 until
2005. This was mainly due to two reasons. First, training a network is computationally
very expensive. While random-access memory was plentiful at the end of the past century,
computational power was scarce. Second, datasets were relatively small. In fact, Fisher’s
Iris dataset from 1936 was still a popular tool for testing the efficacy of algorithms. The
MNIST dataset with its 60,000 handwritten digits was considered huge.

Given the scarcity of data and computation, strong statistical tools such as kernel methods,
decision trees, and graphical models proved empirically superior in many applications.
Moreover, unlike neural networks, they did not require weeks to train and provided pre-
dictable results with strong theoretical guarantees.

1.5 The Road to Deep Learning

Much of this changed with the availability of massive amounts of data, thanks to the World
Wide Web, the advent of companies serving hundreds of millions of users online, a dis-
semination of low-cost, high-quality sensors, inexpensive data storage (Kryder’s law), and
cheap computation (Moore’s law). In particular, the landscape of computation in deep
learning was revolutionized by advances in GPUs that were originally engineered for com-
puter gaming. Suddenly algorithms and models that seemed computationally infeasible
were within reach. This is best illustrated in tab_intro_decade.

:Dataset vs. computer memory and computational power

Table 1.5.1: label:tab_intro_decade
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Decade Dataset Mem-
ory

Floating point calculations per
second

1970 100 (Iris) 1 KB 100 KF (Intel 8080)
1980 1 K (house prices in Boston) 100

KB
1 MF (Intel 80186)

1990 10 K (optical character recog-
nition)

10 MB 10 MF (Intel 80486)

2000 10 M (web pages) 100
MB

1 GF (Intel Core)

2010 10 G (advertising) 1 GB 1 TF (NVIDIA C2050)
2020 1 T (social network) 100

GB
1 PF (NVIDIA DGX-2)

Note that random-access memory has not kept pace with the growth in data. At the same
time, increases in computational power have outpaced the growth in datasets. This means
that statistical models need to become more memory efficient, and so they are free to spend
more computer cycles optimizing parameters, thanks to the increased compute budget.
Consequently, the sweet spot in machine learning and statistics moved from (generalized)
linear models and kernel methods to deep neural networks. This is also one of the rea-
sons why many of the mainstays of deep learning, such as multilayer perceptrons (McCul-
loch and Pitts, 1943), convolutional neural networks (LeCun et al., 1998), long short-term
memory (Hochreiter and Schmidhuber, 1997), and Q-Learning (Watkins and Dayan, 1992),
were essentially “rediscovered” in the past decade, after lying comparatively dormant for
considerable time.

The recent progress in statistical models, applications, and algorithms has sometimes been
likened to the Cambrian explosion: a moment of rapid progress in the evolution of species.
Indeed, the state of the art is not just a mere consequence of available resources applied
to decades-old algorithms. Note that the list of ideas below barely scratches the surface of
what has helped researchers achieve tremendous progress over the past decade.

• Novelmethods for capacity control, such as dropout (Srivastava et al., 2014), have helped
to mitigate overfitting. Here, noise is injected (Bishop, 1995) throughout the neural
network during training.

• Attention mechanisms solved a second problem that had plagued statistics for over a
century: how to increase the memory and complexity of a system without increasing
the number of learnable parameters. Researchers found an elegant solution by using
what can only be viewed as a learnable pointer structure (Bahdanau et al., 2014).
Rather than having to remember an entire text sequence, e.g., for machine translation
in a fixed-dimensional representation, all that needed to be stored was a pointer to the
intermediate state of the translation process. This allowed for significantly increased
accuracy for long sequences, since the model no longer needed to remember the entire
sequence before commencing the generation of a new one.

• Built solely on attentionmechanisms, the Transformer architecture (Vaswani et al., 2017)
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has demonstrated superior scaling behavior: it performs better with an increase in
dataset size, model size, and amount of training compute (Kaplan et al., 2020). This
architecture has demonstrated compelling success in a wide range of areas, such as
natural language processing (Brown et al., 2020, Devlin et al., 2018), computer vision
(Dosovitskiy et al., 2021, Liu et al., 2021), speech recognition (Gulati et al., 2020),
reinforcement learning (Chen et al., 2021), and graph neural networks (Dwivedi and
Bresson, 2020). For example, a single Transformer pretrained onmodalities as diverse
as text, images, joint torques, and button presses can play Atari, caption images, chat,
and control a robot (Reed et al., 2022).

• Modeling probabilities of text sequences, language models can predict text given other
text. Scaling up the data, model, and compute has unlocked a growing number of
capabilities of language models to perform desired tasks via human-like text genera-
tion based on input text (Anil et al., 2023, Brown et al., 2020, Chowdhery et al., 2022,
Hoffmann et al., 2022, OpenAI, 2023, Rae et al., 2021, Touvron et al., 2023a, Touvron
et al., 2023b). For instance, aligning language models with human intent (Ouyang et
al., 2022), OpenAI’s ChatGPT 30 allows users to interact with it in a conversational
way to solve problems, such as code debugging and creative writing.

• Multi-stage designs, e.g., via thememory networks (Sukhbaatar et al., 2015) and the neu-
ral programmer-interpreter (Reed and De Freitas, 2015) permitted statistical modelers
to describe iterative approaches to reasoning. These tools allow for an internal state of
the deep neural network to be modified repeatedly, thus carrying out subsequent steps
in a chain of reasoning, just as a processor can modify memory for a computation.

• A key development in deep generative modeling was the invention of generative adver-
sarial networks (Goodfellow et al., 2014). Traditionally, statistical methods for density
estimation and generative models focused on finding proper probability distributions
and (often approximate) algorithms for sampling from them. As a result, these algo-
rithms were largely limited by the lack of flexibility inherent in the statistical models.
The crucial innovation in generative adversarial networks was to replace the sampler
by an arbitrary algorithm with differentiable parameters. These are then adjusted in
such a way that the discriminator (effectively a two-sample test) cannot distinguish
fake from real data. Through the ability to use arbitrary algorithms to generate data,
density estimation was opened up to a wide variety of techniques. Examples of gal-
loping zebras (Zhu et al., 2017) and of fake celebrity faces (Karras et al., 2017) are
each testimony to this progress. Even amateur doodlers can produce photorealistic
images just based on sketches describing the layout of a scene (Park et al., 2019).

• Furthermore, while the diffusion process gradually adds random noise to data samples,
diffusion models (Ho et al., 2020, Sohl-Dickstein et al., 2015) learn the denoising pro-
cess to gradually construct data samples from random noise, reversing the diffusion
process. They have started to replace generative adversarial networks in more recent
deep generative models, such as in DALL-E 2 (Ramesh et al., 2022) and Imagen (Sa-
haria et al., 2022) for creative art and image generation based on text descriptions.

• In many cases, a single GPU is insufficient for processing the large amounts of data

https://chat.openai.com/
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available for training. Over the past decade the ability to build parallel and distributed
training algorithms has improved significantly. One of the key challenges in designing
scalable algorithms is that the workhorse of deep learning optimization, stochastic
gradient descent, relies on relatively small minibatches of data to be processed. At
the same time, small batches limit the efficiency of GPUs. Hence, training on 1,024
GPUs with a minibatch size of, say, 32 images per batch amounts to an aggregate
minibatch of about 32,000 images. Work, first by Li (2017) and subsequently by You
et al. (2017) and Jia et al. (2018) pushed the size up to 64,000 observations, reducing
training time for the ResNet-50 model on the ImageNet dataset to less than 7 minutes.
By comparison, training times were initially of the order of days.

• The ability to parallelize computation has also contributed to progress in reinforcement
learning. This has led to significant progress in computers achieving superhuman
performance on tasks like Go, Atari games, Starcraft, and in physics simulations (e.g.,
using MuJoCo) where environment simulators are available. See, e.g., Silver et al.
(2016) for a description of such achievements in AlphaGo. In a nutshell, reinforcement
learning works best if plenty of (state, action, reward) tuples are available. Simulation
provides such an avenue.

• Deep learning frameworks have played a crucial role in disseminating ideas. The first
generation of open-source frameworks for neural network modeling consisted of Caffe
31 , Torch 32 , and Theano 33 . Many seminal papers were written using these tools.
These have now been superseded by TensorFlow34 (often used via its high-level API
Keras 35 ), CNTK 36 , Caffe 2 37 , and Apache MXNet 38 . The third generation of
frameworks consists of so-called imperative tools for deep learning, a trend that was
arguably ignited by Chainer 39 , which used a syntax similar to Python NumPy to
describe models. This idea was adopted by both PyTorch 40 , the Gluon API 41 of
MXNet, and JAX42 .

The division of labor between system researchers building better tools and statistical mod-
elers building better neural networks has greatly simplified things. For instance, training a
linear logistic regression model used to be a nontrivial homework problem, worthy to give
to new machine learning Ph.D. students at Carnegie Mellon University in 2014. By now,
this task can be accomplished with under 10 lines of code, putting it firmly within the reach
of any programmer.

1.6 Success Stories

Artificial intelligence has a long history of delivering results that would be difficult to ac-
complish otherwise. For instance, mail sorting systems using optical character recognition
have been deployed since the 1990s. This is, after all, the source of the famous MNIST
dataset of handwritten digits. The same applies to reading checks for bank deposits and
scoring creditworthiness of applicants. Financial transactions are checked for fraud auto-

https://github.com/BVLC/caffe
https://github.com/torch
https://github.com/Theano/Theano
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras
https://github.com/Microsoft/CNTK
https://github.com/caffe2/caffe2
https://github.com/apache/incubator-mxnet
https://github.com/chainer/chainer
https://github.com/pytorch/pytorch
https://github.com/apache/incubator-mxnet
https://github.com/google/jax
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matically. This forms the backbone of many e-commerce payment systems, such as PayPal,
Stripe, AliPay, WeChat, Apple, Visa, and MasterCard. Computer programs for chess have
been competitive for decades. Machine learning feeds search, recommendation, personal-
ization, and ranking on the Internet. In other words, machine learning is pervasive, albeit
often hidden from sight.

It is only recently that AI has been in the limelight, mostly due to solutions to problems that
were considered intractable previously and that are directly related to consumers. Many of
such advances are attributed to deep learning.

• Intelligent assistants, such as Apple’s Siri, Amazon’s Alexa, and Google’s assistant, are
able to respond to spoken requests with a reasonable degree of accuracy. This in-
cludes menial jobs, like turning on light switches, and more complex tasks, such as
arranging barber’s appointments and offering phone support dialog. This is likely the
most noticeable sign that AI is affecting our lives.

• A key ingredient in digital assistants is their ability to recognize speech accurately. The
accuracy of such systems has gradually increased to the point of achieving parity with
humans for certain applications (Xiong et al., 2018).

• Object recognition has likewise come a long way. Identifying the object in a picture was
a fairly challenging task in 2010. On the ImageNet benchmark researchers from NEC
Labs and University of Illinois at Urbana-Champaign achieved a top-five error rate
of 28% (Lin et al., 2010). By 2017, this error rate was reduced to 2.25% (Hu et al.,
2018). Similarly, stunning results have been achieved for identifying birdsong and for
diagnosing skin cancer.

• Prowess in games used to provide a measuring stick for human ability. Starting from
TD-Gammon, a program for playing backgammon using temporal difference rein-
forcement learning, algorithmic and computational progress has led to algorithms for
a wide range of applications. Compared with backgammon, chess has a much more
complex state space and set of actions. DeepBlue beat Garry Kasparov using mas-
sive parallelism, special-purpose hardware and efficient search through the game tree
(Campbell et al., 2002). Go is more difficult still, due to its huge state space. AlphaGo
reached human parity in 2015, using deep learning combined with Monte Carlo tree
sampling (Silver et al., 2016). The challenge in Poker was that the state space is large
and only partially observed (we do not know the opponents’ cards). Libratus exceeded
human performance in Poker using efficiently structured strategies (Brown and Sand-
holm, 2017).

• Another indication of progress in AI is the advent of self-driving vehicles. While full
autonomy is not yet within reach, excellent progress has been made in this direction,
with companies such as Tesla, NVIDIA, and Waymo shipping products that enable
partial autonomy. What makes full autonomy so challenging is that proper driving
requires the ability to perceive, to reason and to incorporate rules into a system. At
present, deep learning is used primarily in the visual aspect of these problems. The
rest is heavily tuned by engineers.
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This barely scratches the surface of significant applications of machine learning. For in-
stance, robotics, logistics, computational biology, particle physics, and astronomy owe
some of their most impressive recent advances at least in parts to machine learning, which
is thus becoming a ubiquitous tool for engineers and scientists.

Frequently, questions about a coming AI apocalypse and the plausibility of a singularity
have been raised in non-technical articles. The fear is that somehow machine learning
systems will become sentient and make decisions, independently of their programmers,
that directly impact the lives of humans. To some extent, AI already affects the livelihood
of humans in direct ways: creditworthiness is assessed automatically, autopilots mostly
navigate vehicles, decisions about whether to grant bail use statistical data as input. More
frivolously, we can ask Alexa to switch on the coffee machine.

Fortunately, we are far from a sentient AI system that could deliberately manipulate its
human creators. First, AI systems are engineered, trained, and deployed in a specific, goal-
oriented manner. While their behavior might give the illusion of general intelligence, it is a
combination of rules, heuristics and statistical models that underlie the design. Second, at
present, there are simply no tools for artificial general intelligence that are able to improve
themselves, reason about themselves, and that are able to modify, extend, and improve their
own architecture while trying to solve general tasks.

A much more pressing concern is how AI is being used in our daily lives. It is likely that
many routine tasks, currently fulfilled by humans, can and will be automated. Farm robots
will likely reduce the costs for organic farmers but they will also automate harvesting op-
erations. This phase of the industrial revolution may have profound consequences for large
swaths of society, since menial jobs provide much employment in many countries. Fur-
thermore, statistical models, when applied without care, can lead to racial, gender, or age
bias and raise reasonable concerns about procedural fairness if automated to drive conse-
quential decisions. It is important to ensure that these algorithms are used with care. With
what we know today, this strikes us as a much more pressing concern than the potential of
malevolent superintelligence for destroying humanity.

1.7 The Essence of Deep Learning

Thus far, we have talked in broad terms about machine learning. Deep learning is the subset
of machine learning concerned with models based on many-layered neural networks. It is
deep in precisely the sense that its models learn many layers of transformations. While this
might sound narrow, deep learning has given rise to a dizzying array of models, techniques,
problem formulations, and applications. Many intuitions have been developed to explain
the benefits of depth. Arguably, all machine learning has many layers of computation, the
first consisting of feature processing steps. What differentiates deep learning is that the
operations learned at each of the many layers of representations are learned jointly from
data.
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The problems that we have discussed so far, such as learning from the raw audio signal, the
raw pixel values of images, or mapping between sentences of arbitrary lengths and their
counterparts in foreign languages, are those where deep learning excels and traditional
methods falter. It turns out that these many-layered models are capable of addressing low-
level perceptual data in a way that previous tools could not. Arguably the most significant
commonality in deep learning methods is end-to-end training. That is, rather than assem-
bling a system based on components that are individually tuned, one builds the system and
then tunes their performance jointly. For instance, in computer vision scientists used to
separate the process of feature engineering from the process of building machine learn-
ing models. The Canny edge detector (Canny, 1987) and Lowe’s SIFT feature extractor
(Lowe, 2004) reigned supreme for over a decade as algorithms for mapping images into
feature vectors. In bygone days, the crucial part of applying machine learning to these
problems consisted of coming up with manually-engineered ways of transforming the data
into some form amenable to shallow models. Unfortunately, there is only so much that
humans can accomplish by ingenuity in comparison with a consistent evaluation over mil-
lions of choices carried out automatically by an algorithm. When deep learning took over,
these feature extractors were replaced by automatically tuned filters that yielded superior
accuracy.

Thus, one key advantage of deep learning is that it replaces not only the shallow models at
the end of traditional learning pipelines, but also the labor-intensive process of feature engi-
neering. Moreover, by replacing much of the domain-specific preprocessing, deep learning
has eliminated many of the boundaries that previously separated computer vision, speech
recognition, natural language processing, medical informatics, and other application areas,
thereby offering a unified set of tools for tackling diverse problems.

Beyond end-to-end training, we are experiencing a transition from parametric statistical
descriptions to fully nonparametric models. When data is scarce, one needs to rely on sim-
plifying assumptions about reality in order to obtain useful models. When data is abundant,
these can be replaced by nonparametric models that better fit the data. To some extent, this
mirrors the progress that physics experienced in the middle of the previous century with
the availability of computers. Rather than solving by hand parametric approximations of
how electrons behave, one can now resort to numerical simulations of the associated par-
tial differential equations. This has led to much more accurate models, albeit often at the
expense of interpretation.

Another difference from previous work is the acceptance of suboptimal solutions, dealing
with nonconvex nonlinear optimization problems, and the willingness to try things before
proving them. This new-found empiricism in dealing with statistical problems, combined
with a rapid influx of talent has led to rapid progress in the development of practical algo-
rithms, albeit in many cases at the expense of modifying and re-inventing tools that existed
for decades.

In the end, the deep learning community prides itself on sharing tools across academic and
corporate boundaries, releasing many excellent libraries, statistical models, and trained
networks as open source. It is in this spirit that the notebooks forming this book are freely
available for distribution and use. We have worked hard to lower the barriers of access for
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anyone wishing to learn about deep learning and we hope that our readers will benefit from
this.

1.8 Summary

Machine learning studies how computer systems can leverage experience (often data) to
improve performance at specific tasks. It combines ideas from statistics, data mining, and
optimization. Often, it is used as a means of implementing AI solutions. As a class of
machine learning, representational learning focuses on how to automatically find the ap-
propriate way to represent data. Considered as multi-level representation learning through
learning many layers of transformations, deep learning replaces not only the shallow mod-
els at the end of traditional machine learning pipelines, but also the labor-intensive process
of feature engineering. Much of the recent progress in deep learning has been triggered
by an abundance of data arising from cheap sensors and Internet-scale applications, and
by significant progress in computation, mostly through GPUs. Furthermore, the availabil-
ity of efficient deep learning frameworks has made design and implementation of whole
system optimization significantly easier, and this is a key component in obtaining high
performance.

1.9 Exercises

1. Which parts of code that you are currently writing could be “learned”, i.e., improved
by learning and automatically determining design choices that are made in your code?
Does your code include heuristic design choices? What data might you need to learn
the desired behavior?

2. Which problems that you encounter have many examples for their solution, yet no spe-
cific way for automating them? These may be prime candidates for using deep learning.

3. Describe the relationships between algorithms, data, and computation. How do char-
acteristics of the data and the current available computational resources influence the
appropriateness of various algorithms?

4. Name some settings where end-to-end training is not currently the default approach but
where it might be useful.

Discussions43 .

https://discuss.d2l.ai/t/22
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To prepare for your dive into deep learning, you will need a few survival skills: (i) tech-
niques for storing and manipulating data; (ii) libraries for ingesting and preprocessing data
from a variety of sources; (iii) knowledge of the basic linear algebraic operations that we
apply to high-dimensional data elements; (iv) just enough calculus to determine which di-
rection to adjust each parameter in order to decrease the loss function; (v) the ability to
automatically compute derivatives so that you can forget much of the calculus you just
learned; (vi) some basic fluency in probability, our primary language for reasoning under
uncertainty; and (vii) some aptitude for finding answers in the official documentation when
you get stuck.

In short, this chapter provides a rapid introduction to the basics that you will need to follow
most of the technical content in this book.

2.1 Data Manipulation

In order to get anything done, we need some way to store and manipulate data. Generally,
there are two important things we need to do with data: (i) acquire them; and (ii) process
them once they are inside the computer. There is no point in acquiring data without some
way to store it, so to start, let’s get our hands dirty with 𝑛-dimensional arrays, which we
also call tensors. If you already know the NumPy scientific computing package, this will be
a breeze. For all modern deep learning frameworks, the tensor class (ndarray in MXNet,
Tensor in PyTorch and TensorFlow) resembles NumPy’s ndarray, with a few killer fea-
tures added. First, the tensor class supports automatic differentiation. Second, it leverages
GPUs to accelerate numerical computation, whereas NumPy only runs on CPUs. These
properties make neural networks both easy to code and fast to run.

2.1.1 Getting Started
To start, we import the np (numpy) and npx (numpy_extension) modules from MXNet.
Here, the np module includes functions supported by NumPy, while the npx module con-
tains a set of extensions developed to empower deep learning within a NumPy-like envir-
onment. When using tensors, we almost always invoke the set_np function: this is for
compatibility of tensor processing by other components of MXNet.

30
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from mxnet import np, npx

npx.set_np()

A tensor represents a (possibly multidimensional) array of numerical values. In the one-
dimensional case, i.e., when only one axis is needed for the data, a tensor is called a vector.
With two axes, a tensor is called a matrix. With 𝑘 > 2 axes, we drop the specialized names
and just refer to the object as a 𝑘 th-order tensor.

MXNet provides a variety of functions for creating new tensors prepopulated with values.
For example, by invoking arange(n), we can create a vector of evenly spaced values, start-
ing at 0 (included) and ending at n (not included). By default, the interval size is 1. Unless
otherwise specified, new tensors are stored in main memory and designated for CPU-based
computation.

x = np.arange(12)
x

[21:58:20] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.])

Each of these values is called an element of the tensor. The tensor x contains 12 elements.
We can inspect the total number of elements in a tensor via its size attribute.

x.size

12

We can access a tensor’s shape (the length along each axis) by inspecting its shape attribute.
Because we are dealing with a vector here, the shape contains just a single element and is
identical to the size.

x.shape

(12,)

Wecan change the shape of a tensor without altering its size or values, by invoking reshape.
For example, we can transform our vector x whose shape is (12,) to a matrix X with shape
(3, 4). This new tensor retains all elements but reconfigures them into a matrix. Notice that
the elements of our vector are laid out one row at a time and thus x[3] == X[0, 3].
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X = x.reshape(3, 4)
X

array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])

Note that specifying every shape component to reshape is redundant. Because we already
know our tensor’s size, we can work out one component of the shape given the rest. For
example, given a tensor of size 𝑛 and target shape (ℎ, 𝑤), we know that 𝑤 = 𝑛/ℎ. To
automatically infer one component of the shape, we can place a -1 for the shape component
that should be inferred automatically. In our case, instead of calling x.reshape(3, 4), we
could have equivalently called x.reshape(-1, 4) or x.reshape(3, -1).

Practitioners often need to work with tensors initialized to contain all 0s or 1s. We can
construct a tensor with all elements set to 0 and a shape of (2, 3, 4) via the zeros func-
tion.

np.zeros((2, 3, 4))

array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])

Similarly, we can create a tensor with all 1s by invoking ones.

np.ones((2, 3, 4))

array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])

We often wish to sample each element randomly (and independently) from a given prob-
ability distribution. For example, the parameters of neural networks are often initialized
randomly. The following snippet creates a tensor with elements drawn from a standard
Gaussian (normal) distribution with mean 0 and standard deviation 1.
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np.random.normal(0, 1, size=(3, 4))

array([[ 2.2122064 , 1.1630787 , 0.7740038 , 0.4838046 ],
[ 1.0434403 , 0.29956347, 1.1839255 , 0.15302546],
[ 1.8917114 , -1.1688148 , -1.2347414 , 1.5580711 ]])

Finally, we can construct tensors by supplying the exact values for each element by sup-
plying (possibly nested) Python list(s) containing numerical literals. Here, we construct a
matrix with a list of lists, where the outermost list corresponds to axis 0, and the inner list
corresponds to axis 1.

np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])

array([[2., 1., 4., 3.],
[1., 2., 3., 4.],
[4., 3., 2., 1.]])

2.1.2 Indexing and Slicing
As with Python lists, we can access tensor elements by indexing (starting with 0). To access
an element based on its position relative to the end of the list, we can use negative indexing.
Finally, we can access whole ranges of indices via slicing (e.g., X[start:stop]), where
the returned value includes the first index (start) but not the last (stop). Finally, when
only one index (or slice) is specified for a 𝑘 th-order tensor, it is applied along axis 0. Thus,
in the following code, [-1] selects the last row and [1:3] selects the second and third
rows.

X[-1], X[1:3]

(array([ 8., 9., 10., 11.]),
array([[ 4., 5., 6., 7.],

[ 8., 9., 10., 11.]]))

Beyond reading them, we can also write elements of a matrix by specifying indices.

X[1, 2] = 17
X

array([[ 0., 1., 2., 3.],
[ 4., 5., 17., 7.],
[ 8., 9., 10., 11.]])

If we want to assign multiple elements the same value, we apply the indexing on the left-
hand side of the assignment operation. For instance, [:2, :] accesses the first and second
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rows, where : takes all the elements along axis 1 (column). While we discussed indexing
formatrices, this alsoworks for vectors and for tensors ofmore than two dimensions.

X[:2, :] = 12
X

array([[12., 12., 12., 12.],
[12., 12., 12., 12.],
[ 8., 9., 10., 11.]])

2.1.3 Operations
Now that we know how to construct tensors and how to read from and write to their ele-
ments, we can begin to manipulate them with various mathematical operations. Among the
most useful of these are the elementwise operations. These apply a standard scalar opera-
tion to each element of a tensor. For functions that take two tensors as inputs, elementwise
operations apply some standard binary operator on each pair of corresponding elements.
We can create an elementwise function from any function that maps from a scalar to a
scalar.

In mathematical notation, we denote such unary scalar operators (taking one input) by the
signature 𝑓 : R → R. This just means that the function maps from any real number onto
some other real number. Most standard operators, including unary ones like 𝑒𝑥 , can be
applied elementwise.

np.exp(x)

array([1.0000000e+00, 2.7182817e+00, 7.3890562e+00, 2.0085537e+01,
5.4598148e+01, 1.4841316e+02, 4.0342880e+02, 1.0966332e+03,
2.9809580e+03, 8.1030840e+03, 2.2026465e+04, 5.9874141e+04])

Likewise, we denote binary scalar operators, which map pairs of real numbers to a (single)
real number via the signature 𝑓 : R,R → R. Given any two vectors u and v of the
same shape, and a binary operator 𝑓 , we can produce a vector c = 𝐹 (u,v) by setting
𝑐𝑖 ← 𝑓 (𝑢𝑖 , 𝑣𝑖) for all 𝑖, where 𝑐𝑖 , 𝑢𝑖 , and 𝑣𝑖 are the 𝑖th elements of vectors c,u, and v.
Here, we produced the vector-valued 𝐹 : R𝑑 ,R𝑑 → R𝑑 by lifting the scalar function to an
elementwise vector operation. The common standard arithmetic operators for addition (+),
subtraction (-), multiplication (*), division (/), and exponentiation (**) have all been lifted
to elementwise operations for identically-shaped tensors of arbitrary shape.

x = np.array([1, 2, 4, 8])
y = np.array([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
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(array([ 3., 4., 6., 10.]),
array([-1., 0., 2., 6.]),
array([ 2., 4., 8., 16.]),
array([0.5, 1. , 2. , 4. ]),
array([ 1., 4., 16., 64.]))

In addition to elementwise computations, we can also perform linear algebraic operations,
such as dot products and matrix multiplications. We will elaborate on these in Section
2.3.

We can also concatenate multiple tensors, stacking them end-to-end to form a larger one.
We just need to provide a list of tensors and tell the system along which axis to concatenate.
The example below shows what happens when we concatenate two matrices along rows
(axis 0) instead of columns (axis 1). We can see that the first output’s axis-0 length (6) is
the sum of the two input tensors’ axis-0 lengths (3 + 3); while the second output’s axis-1
length (8) is the sum of the two input tensors’ axis-1 lengths (4 + 4).

X = np.arange(12).reshape(3, 4)
Y = np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
np.concatenate([X, Y], axis=0), np.concatenate([X, Y], axis=1)

(array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 2., 1., 4., 3.],
[ 1., 2., 3., 4.],
[ 4., 3., 2., 1.]]),

array([[ 0., 1., 2., 3., 2., 1., 4., 3.],
[ 4., 5., 6., 7., 1., 2., 3., 4.],
[ 8., 9., 10., 11., 4., 3., 2., 1.]]))

Sometimes, we want to construct a binary tensor via logical statements. Take X == Y as an
example. For each position i, j, if X[i, j] and Y[i, j] are equal, then the corresponding
entry in the result takes value 1, otherwise it takes value 0.

X == Y

array([[False, True, False, True],
[False, False, False, False],
[False, False, False, False]])

Summing all the elements in the tensor yields a tensor with only one element.

X.sum()

array(66.)
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2.1.4 Broadcasting
By now, you know how to perform elementwise binary operations on two tensors of the
same shape. Under certain conditions, even when shapes differ, we can still perform ele-
mentwise binary operations by invoking the broadcasting mechanism. Broadcasting works
according to the following two-step procedure: (i) expand one or both arrays by copying
elements along axes with length 1 so that after this transformation, the two tensors have the
same shape; (ii) perform an elementwise operation on the resulting arrays.

a = np.arange(3).reshape(3, 1)
b = np.arange(2).reshape(1, 2)
a, b

(array([[0.],
[1.],
[2.]]),

array([[0., 1.]]))

Since a and b are 3 × 1 and 1 × 2 matrices, respectively, their shapes do not match up.
Broadcasting produces a larger 3× 2 matrix by replicating matrix a along the columns and
matrix b along the rows before adding them elementwise.

a + b

array([[0., 1.],
[1., 2.],
[2., 3.]])

2.1.5 Saving Memory
Running operations can cause new memory to be allocated to host results. For example, if
we write Y = X + Y, we dereference the tensor that Y used to point to and instead point Y at
the newly allocated memory. We can demonstrate this issue with Python’s id() function,
which gives us the exact address of the referenced object in memory. Note that after we
run Y = Y + X, id(Y) points to a different location. That is because Python first evaluates
Y + X, allocating new memory for the result and then points Y to this new location in
memory.

before = id(Y)
Y = Y + X
id(Y) == before

False

This might be undesirable for two reasons. First, we do not want to run around allocat-
ing memory unnecessarily all the time. In machine learning, we often have hundreds of
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megabytes of parameters and update all of them multiple times per second. Whenever
possible, we want to perform these updates in place. Second, we might point at the same
parameters from multiple variables. If we do not update in place, we must be careful to
update all of these references, lest we spring a memory leak or inadvertently refer to stale
parameters.

Fortunately, performing in-place operations is easy. We can assign the result of an oper-
ation to a previously allocated array Y by using slice notation: Y[:] = <expression>.
To illustrate this concept, we overwrite the values of tensor Z, after initializing it, using
zeros_like, to have the same shape as Y.

Z = np.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))

id(Z): 139767554095872
id(Z): 139767554095872

If the value of X is not reused in subsequent computations, we can also use X[:] = X + Y

or X += Y to reduce the memory overhead of the operation.

before = id(X)
X += Y
id(X) == before

True

2.1.6 Conversion to Other Python Objects
Converting to a NumPy tensor (ndarray), or vice versa, is easy. The converted result
does not share memory. This minor inconvenience is actually quite important: when you
perform operations on the CPU or on GPUs, you do not want to halt computation, waiting
to see whether the NumPy package of Python might want to be doing something else with
the same chunk of memory.

A = X.asnumpy()
B = np.array(A)
type(A), type(B)

(numpy.ndarray, mxnet.numpy.ndarray)

To convert a size-1 tensor to a Python scalar, we can invoke the item function or Python’s
built-in functions.
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a = np.array([3.5])
a, a.item(), float(a), int(a)

(array([3.5]), 3.5, 3.5, 3)

2.1.7 Summary
The tensor class is the main interface for storing and manipulating data in deep learning li-
braries. Tensors provide a variety of functionalities including construction routines; index-
ing and slicing; basic mathematics operations; broadcasting; memory-efficient assignment;
and conversion to and from other Python objects.

2.1.8 Exercises
1. Run the code in this section. Change the conditional statement X == Y to X < Y or X >

Y, and then see what kind of tensor you can get.

2. Replace the two tensors that operate by element in the broadcasting mechanism with
other shapes, e.g., 3-dimensional tensors. Is the result the same as expected?

Discussions44 .

2.2 Data Preprocessing

So far, we have been working with synthetic data that arrived in ready-made tensors. How-
ever, to apply deep learning in the wild we must extract messy data stored in arbitrary
formats, and preprocess it to suit our needs. Fortunately, the pandas library45 can do much
of the heavy lifting. This section, while no substitute for a proper pandas tutorial46 , will
give you a crash course on some of the most common routines.

2.2.1 Reading the Dataset
Comma-separated values (CSV) files are ubiquitous for the storing of tabular (spreadsheet-
like) data. In them, each line corresponds to one record and consists of several (comma-
separated) fields, e.g., “Albert Einstein,March 14 1879,Ulm,Federal polytechnic school,field
of gravitational physics”. To demonstrate how to load CSV files with pandas, we create a
CSV file below ../data/house_tiny.csv. This file represents a dataset of homes, where
each row corresponds to a distinct home and the columns correspond to the number of
rooms (NumRooms), the roof type (RoofType), and the price (Price).

https://discuss.d2l.ai/t/26
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
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import os

os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:

f.write('''NumRooms,RoofType,Price
NA,NA,127500
2,NA,106000
4,Slate,178100
NA,NA,140000''')

Now let’s import pandas and load the dataset with read_csv.

import pandas as pd

data = pd.read_csv(data_file)
print(data)

NumRooms RoofType Price
0 NaN NaN 127500
1 2.0 NaN 106000
2 4.0 Slate 178100
3 NaN NaN 140000

2.2.2 Data Preparation
In supervised learning, we train models to predict a designated target value, given some
set of input values. Our first step in processing the dataset is to separate out columns cor-
responding to input versus target values. We can select columns either by name or via
integer-location based indexing (iloc).

You might have noticed that pandas replaced all CSV entries with value NA with a spe-
cial NaN (not a number) value. This can also happen whenever an entry is empty, e.g.,
“3„,270000”. These are called missing values and they are the “bed bugs” of data science,
a persistent menace that you will confront throughout your career. Depending upon the
context, missing values might be handled either via imputation or deletion. Imputation re-
places missing values with estimates of their values while deletion simply discards either
those rows or those columns that contain missing values.

Here are some common imputation heuristics. For categorical input fields, we can treat NaN
as a category. Since the RoofType column takes values Slate and NaN, pandas can convert
this column into two columns RoofType_Slate and RoofType_nan. A rowwhose roof type
is Slate will set values of RoofType_Slate and RoofType_nan to 1 and 0, respectively.
The converse holds for a row with a missing RoofType value.

inputs, targets = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
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NumRooms RoofType_Slate RoofType_nan
0 NaN False True
1 2.0 False True
2 4.0 True False
3 NaN False True

For missing numerical values, one common heuristic is to replace the NaN entries with the
mean value of the corresponding column.

inputs = inputs.fillna(inputs.mean())
print(inputs)

NumRooms RoofType_Slate RoofType_nan
0 3.0 False True
1 2.0 False True
2 4.0 True False
3 3.0 False True

2.2.3 Conversion to the Tensor Format
Now that all the entries in inputs and targets are numerical, we can load them into a
tensor (recall Section 2.1).

from mxnet import np

X, y = np.array(inputs.to_numpy(dtype=float)), np.array(targets.to_
↩→numpy(dtype=float))
X, y

[22:09:02] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(array([[3., 0., 1.],
[2., 0., 1.],
[4., 1., 0.],
[3., 0., 1.]], dtype=float64),

array([127500., 106000., 178100., 140000.], dtype=float64))

2.2.4 Discussion
You now know how to partition data columns, impute missing variables, and load pan-

das data into tensors. In Section 5.7, you will pick up some more data processing skills.
While this crash course kept things simple, data processing can get hairy. For example,
rather than arriving in a single CSV file, our dataset might be spread across multiple files
extracted from a relational database. For instance, in an e-commerce application, customer
addresses might live in one table and purchase data in another. Moreover, practitioners face
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myriad data types beyond categorical and numeric, for example, text strings, images, audio
data, and point clouds. Oftentimes, advanced tools and efficient algorithms are required
in order to prevent data processing from becoming the biggest bottleneck in the machine
learning pipeline. These problems will arise when we get to computer vision and natural
language processing. Finally, we must pay attention to data quality. Real-world datasets are
often plagued by outliers, faulty measurements from sensors, and recording errors, which
must be addressed before feeding the data into any model. Data visualization tools such as
seaborn47 , Bokeh48 , or matplotlib49 can help you to manually inspect the data and develop
intuitions about the type of problems you may need to address.

2.2.5 Exercises
1. Try loading datasets, e.g., Abalone from the UCI Machine Learning Repository50 and

inspect their properties. What fraction of them has missing values? What fraction of
the variables is numerical, categorical, or text?

2. Try indexing and selecting data columns by name rather than by column number. The
pandas documentation on indexing51 has further details on how to do this.

3. How large a dataset do you think you could load this way? What might be the limita-
tions? Hint: consider the time to read the data, representation, processing, and memory
footprint. Try this out on your laptop. What happens if you try it out on a server?

4. How would you deal with data that has a very large number of categories? What if the
category labels are all unique? Should you include the latter?

5. What alternatives to pandas can you think of? How about loading NumPy tensors from
a file52 ? Check out Pillow53 , the Python Imaging Library.

Discussions54 .

2.3 Linear Algebra

By now, we can load datasets into tensors and manipulate these tensors with basic math-
ematical operations. To start building sophisticated models, we will also need a few tools
from linear algebra. This section offers a gentle introduction to the most essential concepts,
starting from scalar arithmetic and ramping up to matrix multiplication.

from mxnet import np, npx

npx.set_np()

2.3.1 Scalars

https://seaborn.pydata.org/
https://docs.bokeh.org/
https://matplotlib.org/
https://archive.ics.uci.edu/ml/datasets.php
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
https://numpy.org/doc/stable/reference/generated/numpy.load.html
https://numpy.org/doc/stable/reference/generated/numpy.load.html
https://python-pillow.org/
https://discuss.d2l.ai/t/28
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Most everyday mathematics consists of manipulating numbers one at a time. Formally, we
call these values scalars. For example, the temperature in Palo Alto is a balmy 72 degrees
Fahrenheit. If you wanted to convert the temperature to Celsius you would evaluate the
expression 𝑐 = 5

9 ( 𝑓 − 32), setting 𝑓 to 72. In this equation, the values 5, 9, and 32 are
constant scalars. The variables 𝑐 and 𝑓 in general represent unknown scalars.

We denote scalars by ordinary lower-cased letters (e.g., 𝑥, 𝑦, and 𝑧) and the space of all
(continuous) real-valued scalars by R. For expedience, we will skip past rigorous defini-
tions of spaces: just remember that the expression 𝑥 ∈ R is a formal way to say that 𝑥 is
a real-valued scalar. The symbol ∈ (pronounced “in”) denotes membership in a set. For
example, 𝑥, 𝑦 ∈ {0, 1} indicates that 𝑥 and 𝑦 are variables that can only take values 0 or
1.

Scalars are implemented as tensors that contain only one element. Below, we assign two
scalars and perform the familiar addition, multiplication, division, and exponentiation op-
erations.

x = np.array(3.0)
y = np.array(2.0)

x + y, x * y, x / y, x ** y

[21:50:12] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(array(5.), array(6.), array(1.5), array(9.))

2.3.2 Vectors
For current purposes, you can think of a vector as a fixed-length array of scalars. As with
their code counterparts, we call these scalars the elements of the vector (synonyms include
entries and components). When vectors represent examples from real-world datasets, their
values hold some real-world significance. For example, if we were training a model to
predict the risk of a loan defaulting, we might associate each applicant with a vector whose
components correspond to quantities like their income, length of employment, or number of
previous defaults. If we were studying the risk of heart attack, each vector might represent
a patient and its components might correspond to their most recent vital signs, cholesterol
levels, minutes of exercise per day, etc. We denote vectors by bold lowercase letters, (e.g.,
x, y, and z).

Vectors are implemented as 1st-order tensors. In general, such tensors can have arbitrary
lengths, subject to memory limitations. Caution: in Python, as in most programming lan-
guages, vector indices start at 0, also known as zero-based indexing, whereas in linear
algebra subscripts begin at 1 (one-based indexing).
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x = np.arange(3)
x

array([0., 1., 2.])

We can refer to an element of a vector by using a subscript. For example, 𝑥2 denotes the
second element of x. Since 𝑥2 is a scalar, we do not bold it. By default, we visualize vectors
by stacking their elements vertically.

x =


𝑥1
...

𝑥𝑛

 , (2.3.1)

Here 𝑥1, . . . , 𝑥𝑛 are elements of the vector. Later on, we will distinguish between such
column vectors and row vectors whose elements are stacked horizontally. Recall that we
access a tensor’s elements via indexing.

x[2]

array(2.)

To indicate that a vector contains 𝑛 elements, we write x ∈ R𝑛. Formally, we call 𝑛 the
dimensionality of the vector. In code, this corresponds to the tensor’s length, accessible via
Python’s built-in len function.

len(x)

3

We can also access the length via the shape attribute. The shape is a tuple that indicates
a tensor’s length along each axis. Tensors with just one axis have shapes with just one
element.

x.shape

(3,)

Oftentimes, the word “dimension” gets overloaded to mean both the number of axes and the
length along a particular axis. To avoid this confusion, we use order to refer to the number
of axes and dimensionality exclusively to refer to the number of components.

2.3.3 Matrices
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Just as scalars are 0th-order tensors and vectors are 1st-order tensors, matrices are 2nd-order
tensors. We denote matrices by bold capital letters (e.g.,X,Y, and Z), and represent them
in code by tensors with two axes. The expression A ∈ R𝑚×𝑛 indicates that a matrix A

contains 𝑚 × 𝑛 real-valued scalars, arranged as 𝑚 rows and 𝑛 columns. When 𝑚 = 𝑛, we
say that a matrix is square. Visually, we can illustrate any matrix as a table. To refer to an
individual element, we subscript both the row and column indices, e.g., 𝑎𝑖 𝑗 is the value that
belongs to A’s 𝑖th row and 𝑗 th column:

A =


𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛


. (2.3.2)

In code, we represent a matrix A ∈ R𝑚×𝑛 by a 2nd-order tensor with shape (𝑚, 𝑛). We can
convert any appropriately sized 𝑚 × 𝑛 tensor into an 𝑚 × 𝑛 matrix by passing the desired
shape to reshape:

A = np.arange(6).reshape(3, 2)
A

array([[0., 1.],
[2., 3.],
[4., 5.]])

Sometimes we want to flip the axes. When we exchange a matrix’s rows and columns, the
result is called its transpose. Formally, we signify a matrix A’s transpose by A> and if
B = A>, then 𝑏𝑖 𝑗 = 𝑎 𝑗𝑖 for all 𝑖 and 𝑗 . Thus, the transpose of an 𝑚 × 𝑛 matrix is an 𝑛 × 𝑚
matrix:

A> =


𝑎11 𝑎21 . . . 𝑎𝑚1
𝑎12 𝑎22 . . . 𝑎𝑚2
...

...
. . .

...

𝑎1𝑛 𝑎2𝑛 . . . 𝑎𝑚𝑛


. (2.3.3)

In code, we can access any matrix’s transpose as follows:

A.T

array([[0., 2., 4.],
[1., 3., 5.]])

Symmetric matrices are the subset of square matrices that are equal to their own transposes:
A = A>. The following matrix is symmetric:

A = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
A == A.T



45 Linear Algebra

array([[ True, True, True],
[ True, True, True],
[ True, True, True]])

Matrices are useful for representing datasets. Typically, rows correspond to individual
records and columns correspond to distinct attributes.

2.3.4 Tensors
While you can go far in your machine learning journey with only scalars, vectors, and
matrices, eventually you may need to work with higher-order tensors. Tensors give us
a generic way of describing extensions to 𝑛th-order arrays. We call software objects of
the tensor class “tensors” precisely because they too can have arbitrary numbers of axes.
While it may be confusing to use the word tensor for both the mathematical object and its
realization in code, our meaning should usually be clear from context. We denote general
tensors by capital letters with a special font face (e.g., X, Y, and Z) and their indexing
mechanism (e.g., 𝑥𝑖 𝑗𝑘 and [X]1,2𝑖−1,3) follows naturally from that of matrices.

Tensors will become more important when we start working with images. Each image
arrives as a 3rd-order tensor with axes corresponding to the height, width, and channel. At
each spatial location, the intensities of each color (red, green, and blue) are stacked along the
channel. Furthermore, a collection of images is represented in code by a 4th-order tensor,
where distinct images are indexed along the first axis. Higher-order tensors are constructed,
as were vectors and matrices, by growing the number of shape components.

np.arange(24).reshape(2, 3, 4)

array([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]],

[[12., 13., 14., 15.],
[16., 17., 18., 19.],
[20., 21., 22., 23.]]])

2.3.5 Basic Properties of Tensor Arithmetic
Scalars, vectors, matrices, and higher-order tensors all have some handy properties. For ex-
ample, elementwise operations produce outputs that have the same shape as their operands.

A = np.arange(6).reshape(2, 3)
B = A.copy() # Assign a copy of A to B by allocating new memory
A, A + B
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(array([[0., 1., 2.],
[3., 4., 5.]]),

array([[ 0., 2., 4.],
[ 6., 8., 10.]]))

The elementwise product of two matrices is called their Hadamard product (denoted �).
We can spell out the entries of the Hadamard product of twomatricesA,B ∈ R𝑚×𝑛:

A � B =


𝑎11𝑏11 𝑎12𝑏12 . . . 𝑎1𝑛𝑏1𝑛
𝑎21𝑏21 𝑎22𝑏22 . . . 𝑎2𝑛𝑏2𝑛
...

...
. . .

...

𝑎𝑚1𝑏𝑚1 𝑎𝑚2𝑏𝑚2 . . . 𝑎𝑚𝑛𝑏𝑚𝑛


. (2.3.4)

A * B

array([[ 0., 1., 4.],
[ 9., 16., 25.]])

Adding or multiplying a scalar and a tensor produces a result with the same shape as
the original tensor. Here, each element of the tensor is added to (or multiplied by) the
scalar.

a = 2
X = np.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape

(array([[[ 2., 3., 4., 5.],
[ 6., 7., 8., 9.],
[10., 11., 12., 13.]],

[[14., 15., 16., 17.],
[18., 19., 20., 21.],
[22., 23., 24., 25.]]]),

(2, 3, 4))

2.3.6 Reduction
Often, we wish to calculate the sum of a tensor’s elements. To express the sum of the
elements in a vectorx of length 𝑛, we write

∑𝑛
𝑖=1 𝑥𝑖 . There is a simple function for it:

x = np.arange(3)
x, x.sum()

(array([0., 1., 2.]), array(3.))
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To express sums over the elements of tensors of arbitrary shape, we simply sum over all
its axes. For example, the sum of the elements of an 𝑚 × 𝑛 matrix A could be written∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖 𝑗 .

A.shape, A.sum()

((2, 3), array(15.))

By default, invoking the sum function reduces a tensor along all of its axes, eventually
producing a scalar. Our libraries also allow us to specify the axes along which the tensor
should be reduced. To sum over all elements along the rows (axis 0), we specify axis=0 in
sum. Since the input matrix reduces along axis 0 to generate the output vector, this axis is
missing from the shape of the output.

A.shape, A.sum(axis=0).shape

((2, 3), (3,))

Specifying axis=1 will reduce the column dimension (axis 1) by summing up elements of
all the columns.

A.shape, A.sum(axis=1).shape

((2, 3), (2,))

Reducing a matrix along both rows and columns via summation is equivalent to summing
up all the elements of the matrix.

A.sum(axis=[0, 1]) == A.sum() # Same as A.sum()

array(True)

A related quantity is the mean, also called the average. We calculate the mean by dividing
the sum by the total number of elements. Because computing the mean is so common, it
gets a dedicated library function that works analogously to sum.

A.mean(), A.sum() / A.size

(array(2.5), array(2.5))

Likewise, the function for calculating the mean can also reduce a tensor along specific
axes.
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A.mean(axis=0), A.sum(axis=0) / A.shape[0]

(array([1.5, 2.5, 3.5]), array([1.5, 2.5, 3.5]))

2.3.7 Non-Reduction Sum
Sometimes it can be useful to keep the number of axes unchanged when invoking the func-
tion for calculating the sum or mean. This matters when we want to use the broadcast
mechanism.

sum_A = A.sum(axis=1, keepdims=True)
sum_A, sum_A.shape

(array([[ 3.],
[12.]]),

(2, 1))

For instance, since sum_A keeps its two axes after summing each row, we can divide A by
sum_A with broadcasting to create a matrix where each row sums up to 1.

A / sum_A

array([[0. , 0.33333334, 0.6666667 ],
[0.25 , 0.33333334, 0.41666666]])

If we want to calculate the cumulative sum of elements of A along some axis, say axis=0

(row by row), we can call the cumsum function. By design, this function does not reduce
the input tensor along any axis.

A.cumsum(axis=0)

array([[0., 1., 2.],
[3., 5., 7.]])

2.3.8 Dot Products
So far, we have only performed elementwise operations, sums, and averages. And if this was
all we could do, linear algebra would not deserve its own section. Fortunately, this is where
things get more interesting. One of the most fundamental operations is the dot product.
Given two vectors x,y ∈ R𝑑 , their dot product x>y (also known as inner product, 〈x,y〉)
is a sum over the products of the elements at the same position: x>y =

∑𝑑
𝑖=1 𝑥𝑖𝑦𝑖 .
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y = np.ones(3)
x, y, np.dot(x, y)

(array([0., 1., 2.]), array([1., 1., 1.]), array(3.))

Equivalently, we can calculate the dot product of two vectors by performing an elementwise
multiplication followed by a sum:

np.sum(x * y)

array(3.)

Dot products are useful in a wide range of contexts. For example, given some set of val-
ues, denoted by a vector x ∈ R𝑛, and a set of weights, denoted by w ∈ R𝑛, the weighted
sum of the values in x according to the weights w could be expressed as the dot product
x>w. When the weights are nonnegative and sum to 1, i.e.,

(∑𝑛
𝑖=1 𝑤𝑖 = 1

)
, the dot prod-

uct expresses a weighted average. After normalizing two vectors to have unit length, the
dot products express the cosine of the angle between them. Later in this section, we will
formally introduce this notion of length.

2.3.9 Matrix–Vector Products
Now that we know how to calculate dot products, we can begin to understand the product
between an 𝑚 × 𝑛 matrix A and an 𝑛-dimensional vector x. To start off, we visualize our
matrix in terms of its row vectors

A =


a>1
a>2
...

a>𝑚


, (2.3.5)

where each a>𝑖 ∈ R𝑛 is a row vector representing the 𝑖th row of the matrix A.

The matrix–vector product Ax is simply a column vector of length 𝑚, whose 𝑖th element
is the dot product a>𝑖 x:

Ax =


a>1
a>2
...

a>𝑚


x =


a>1 x
a>2 x
...

a>𝑚x


. (2.3.6)

We can think of multiplication with a matrix A ∈ R𝑚×𝑛 as a transformation that projects
vectors from R𝑛 to R𝑚. These transformations are remarkably useful. For example, we can
represent rotations as multiplications by certain square matrices. Matrix–vector products
also describe the key calculation involved in computing the outputs of each layer in a neural
network given the outputs from the previous layer.
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To express a matrix–vector product in code, we use the same dot function. The operation
is inferred based on the type of the arguments. Note that the column dimension of A (its
length along axis 1) must be the same as the dimension of x (its length).

A.shape, x.shape, np.dot(A, x)

((2, 3), (3,), array([ 5., 14.]))

2.3.10 Matrix–Matrix Multiplication
Once you have gotten the hang of dot products and matrix–vector products, then matrix–
matrix multiplication should be straightforward.

Say that we have two matrices A ∈ R𝑛×𝑘 and B ∈ R𝑘×𝑚:

A =


𝑎11 𝑎12 · · · 𝑎1𝑘
𝑎21 𝑎22 · · · 𝑎2𝑘
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑘


, B =


𝑏11 𝑏12 · · · 𝑏1𝑚
𝑏21 𝑏22 · · · 𝑏2𝑚
...

...
. . .

...

𝑏𝑘1 𝑏𝑘2 · · · 𝑏𝑘𝑚


. (2.3.7)

Let a>𝑖 ∈ R𝑘 denote the row vector representing the 𝑖th row of the matrixA and let b 𝑗 ∈ R𝑘
denote the column vector from the 𝑗 th column of the matrix B:

A =


a>1
a>2
...

a>𝑛


, B =

[
b1 b2 · · · b𝑚

]
. (2.3.8)

To form the matrix product C ∈ R𝑛×𝑚, we simply compute each element 𝑐𝑖 𝑗 as the dot
product between the 𝑖th row of A and the 𝑗 th column of B, i.e., a>𝑖 b 𝑗 :

C = AB =


a>1
a>2
...

a>𝑛


[
b1 b2 · · · b𝑚

]
=


a>1 b1 a>1 b2 · · · a>1 b𝑚
a>2 b1 a>2 b2 · · · a>2 b𝑚
...

...
. . .

...

a>𝑛b1 a>𝑛b2 · · · a>𝑛b𝑚


. (2.3.9)

We can think of thematrix–matrix multiplicationAB as performing𝑚matrix–vector prod-
ucts or 𝑚 × 𝑛 dot products and stitching the results together to form an 𝑛×𝑚 matrix. In the
following snippet, we perform matrix multiplication on A and B. Here, A is a matrix with
two rows and three columns, and B is a matrix with three rows and four columns. After
multiplication, we obtain a matrix with two rows and four columns.

B = np.ones(shape=(3, 4))
np.dot(A, B)
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array([[ 3., 3., 3., 3.],
[12., 12., 12., 12.]])

The term matrix–matrix multiplication is often simplified to matrix multiplication, and
should not be confused with the Hadamard product.

2.3.11 Norms
Some of the most useful operators in linear algebra are norms. Informally, the norm of a
vector tells us how big it is. For instance, the ℓ2 norm measures the (Euclidean) length of a
vector. Here, we are employing a notion of size that concerns the magnitude of a vector’s
components (not its dimensionality).

A norm is a function ‖ · ‖ that maps a vector to a scalar and satisfies the following three
properties:

1. Given any vector x, if we scale (all elements of) the vector by a scalar 𝛼 ∈ R, its norm
scales accordingly:

‖𝛼x‖ = |𝛼 |‖x‖. (2.3.10)

2. For any vectors x and y: norms satisfy the triangle inequality:

‖x + y‖ ≤ ‖x‖ + ‖y‖. (2.3.11)

3. The norm of a vector is nonnegative and it only vanishes if the vector is zero:

‖x‖ > 0 for all x ≠ 0. (2.3.12)

Many functions are valid norms and different norms encode different notions of size. The
Euclidean norm that we all learned in elementary school geometry when calculating the
hypotenuse of a right triangle is the square root of the sum of squares of a vector’s elements.
Formally, this is called the ℓ2 norm and expressed as

‖x‖2 =

√√
𝑛∑
𝑖=1

𝑥2
𝑖 . (2.3.13)

The method norm calculates the ℓ2 norm.

u = np.array([3, -4])
np.linalg.norm(u)

array(5.)
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The ℓ1 norm is also common and the associated measure is called the Manhattan distance.
By definition, the ℓ1 norm sums the absolute values of a vector’s elements:

‖x‖1 =
𝑛∑
𝑖=1
|𝑥𝑖 | . (2.3.14)

Compared to the ℓ2 norm, it is less sensitive to outliers. To compute the ℓ1 norm, we
compose the absolute value with the sum operation.

np.abs(u).sum()

array(7.)

Both the ℓ2 and ℓ1 norms are special cases of the more general ℓ𝑝 norms:

‖x‖ 𝑝 =

(
𝑛∑
𝑖=1
|𝑥𝑖 |𝑝

)1/𝑝

. (2.3.15)

In the case of matrices, matters are more complicated. After all, matrices can be viewed
both as collections of individual entries and as objects that operate on vectors and transform
them into other vectors. For instance, we can ask by how much longer the matrix–vector
product Xv could be relative to v. This line of thought leads to what is called the spectral
norm. For now, we introduce the Frobenius norm, which is much easier to compute and
defined as the square root of the sum of the squares of a matrix’s elements:

‖X‖F =

√√√ 𝑚∑
𝑖=1

𝑛∑
𝑗=1
𝑥2
𝑖 𝑗 . (2.3.16)

The Frobenius norm behaves as if it were an ℓ2 norm of a matrix-shaped vector. Invoking
the following function will calculate the Frobenius norm of a matrix.

np.linalg.norm(np.ones((4, 9)))

array(6.)

While we do not want to get too far ahead of ourselves, we already can plant some intu-
ition about why these concepts are useful. In deep learning, we are often trying to solve
optimization problems: maximize the probability assigned to observed data; maximize the
revenue associated with a recommender model; minimize the distance between predictions
and the ground truth observations;minimize the distance between representations of photos
of the same person whilemaximizing the distance between representations of photos of dif-
ferent people. These distances, which constitute the objectives of deep learning algorithms,
are often expressed as norms.



53 Linear Algebra

2.3.12 Discussion
In this section, we have reviewed all the linear algebra that you will need to understand a
significant chunk of modern deep learning. There is a lot more to linear algebra, though,
and much of it is useful for machine learning. For example, matrices can be decomposed
into factors, and these decompositions can reveal low-dimensional structure in real-world
datasets. There are entire subfields of machine learning that focus on using matrix decom-
positions and their generalizations to high-order tensors to discover structure in datasets
and solve prediction problems. But this book focuses on deep learning. And we believe
you will be more inclined to learn more mathematics once you have gotten your hands dirty
applying machine learning to real datasets. So while we reserve the right to introduce more
mathematics later on, we wrap up this section here.

If you are eager to learn more linear algebra, there are many excellent books and online
resources. For a more advanced crash course, consider checking out Strang (1993), Kolter
(2008), and Petersen and Pedersen (2008).

To recap:

• Scalars, vectors, matrices, and tensors are the basic mathematical objects used in linear
algebra and have zero, one, two, and an arbitrary number of axes, respectively.

• Tensors can be sliced or reduced along specified axes via indexing, or operations such
as sum and mean, respectively.

• Elementwise products are called Hadamard products. By contrast, dot products, matrix–
vector products, and matrix–matrix products are not elementwise operations and in
general return objects having shapes that are different from the the operands.

• Compared to Hadamard products, matrix–matrix products take considerably longer to
compute (cubic rather than quadratic time).

• Norms capture various notions of the magnitude of a vector (or matrix), and are com-
monly applied to the difference of two vectors to measure their distance apart.

• Common vector norms include the ℓ1 and ℓ2 norms, and common matrix norms include
the spectral and Frobenius norms.

2.3.13 Exercises
1. Prove that the transpose of the transpose of a matrix is the matrix itself: (A>)> = A.

2. Given two matrices A and B, show that sum and transposition commute: A> +B> =
(A +B)>.

3. Given any square matrix A, is A +A> always symmetric? Can you prove the result by
using only the results of the previous two exercises?

4. We defined the tensor X of shape (2, 3, 4) in this section. What is the output of len(X)?
Write your answer without implementing any code, then check your answer using code.
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5. For a tensor X of arbitrary shape, does len(X) always correspond to the length of a
certain axis of X? What is that axis?

6. Run A / A.sum(axis=1) and see what happens. Can you analyze the results?

7. When traveling between two points in downtown Manhattan, what is the distance that
you need to cover in terms of the coordinates, i.e., in terms of avenues and streets? Can
you travel diagonally?

8. Consider a tensor of shape (2, 3, 4). What are the shapes of the summation outputs
along axes 0, 1, and 2?

9. Feed a tensor with three or more axes to the linalg.norm function and observe its
output. What does this function compute for tensors of arbitrary shape?

10. Consider three large matrices, say A ∈ R210×216 , B ∈ R216×25 and C ∈ R25×214 , ini-
tialized with Gaussian random variables. You want to compute the product ABC. Is
there any difference in memory footprint and speed, depending on whether you compute
(AB)C or A(BC). Why?

11. Consider three large matrices, say A ∈ R210×216 , B ∈ R216×25 and C ∈ R25×216 . Is there
any difference in speed depending on whether you computeAB orAC>? Why? What
changes if you initialize C = B> without cloning memory? Why?

12. Consider three matrices, sayA,B,C ∈ R100×200. Construct a tensor with three axes by
stacking [A,B,C]. What is the dimensionality? Slice out the second coordinate of the
third axis to recover B. Check that your answer is correct.

Discussions55 .

2.4 Calculus

For a long time, how to calculate the area of a circle remained a mystery. Then, in Ancient
Greece, the mathematician Archimedes came up with the clever idea to inscribe a series of
polygons with increasing numbers of vertices on the inside of a circle (Fig. 2.4.1). For a
polygon with 𝑛 vertices, we obtain 𝑛 triangles. The height of each triangle approaches the
radius 𝑟 as we partition the circle more finely. At the same time, its base approaches 2𝜋𝑟/𝑛,
since the ratio between arc and secant approaches 1 for a large number of vertices. Thus,
the area of the polygon approaches 𝑛 · 𝑟 · 1

2 (2𝜋𝑟/𝑛) = 𝜋𝑟2.

tFig. 2.4.1 Finding the area of a circle as a limit procedure.

https://discuss.d2l.ai/t/30
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This limiting procedure is at the root of both differential calculus and integral calculus. The
former can tell us how to increase or decrease a function’s value by manipulating its argu-
ments. This comes in handy for the optimization problems that we face in deep learning,
where we repeatedly update our parameters in order to decrease the loss function. Opti-
mization addresses how to fit ourmodels to training data, and calculus is its key prerequisite.
However, do not forget that our ultimate goal is to perform well on previously unseen data.
That problem is called generalization and will be a key focus of other chapters.

%matplotlib inline
from matplotlib_inline import backend_inline
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

2.4.1 Derivatives and Differentiation
Put simply, a derivative is the rate of change in a function with respect to changes in its
arguments. Derivatives can tell us how rapidly a loss function would increase or decrease
were we to increase or decrease each parameter by an infinitesimally small amount. For-
mally, for functions 𝑓 : R → R, that map from scalars to scalars, the derivative of 𝑓 at a
point 𝑥 is defined as

𝑓 ′ (𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

. (2.4.1)

This term on the right hand side is called a limit and it tells us what happens to the value of
an expression as a specified variable approaches a particular value. This limit tells us what
the ratio between a perturbation ℎ and the change in the function value 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
converges to as we shrink its size to zero.

When 𝑓 ′ (𝑥) exists, 𝑓 is said to be differentiable at 𝑥; and when 𝑓 ′ (𝑥) exists for all 𝑥 on a
set, e.g., the interval [𝑎, 𝑏], we say that 𝑓 is differentiable on this set. Not all functions are
differentiable, includingmany that wewish to optimize, such as accuracy and the area under
the receiving operating characteristic (AUC). However, because computing the derivative
of the loss is a crucial step in nearly all algorithms for training deep neural networks, we
often optimize a differentiable surrogate instead.

We can interpret the derivative 𝑓 ′ (𝑥) as the instantaneous rate of change of 𝑓 (𝑥) with
respect to 𝑥. Let’s develop some intuition with an example. Define 𝑢 = 𝑓 (𝑥) = 3𝑥2 −
4𝑥.

def f(x):
return 3 * x ** 2 - 4 * x

Setting 𝑥 = 1, we see that 𝑓 (𝑥+ℎ)− 𝑓 (𝑥 )
ℎ approaches 2 as ℎ approaches 0. While this ex-

periment lacks the rigor of a mathematical proof, we can quickly see that indeed 𝑓 ′ (1) =
2.
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for h in 10.0**np.arange(-1, -6, -1):
print(f'h={h:.5f}, numerical limit={(f(1+h)-f(1))/h:.5f}')

h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.02999
h=0.00100, numerical limit=2.00295
h=0.00010, numerical limit=2.00033
h=0.00001, numerical limit=2.00272
[21:50:15] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

There are several equivalent notational conventions for derivatives. Given 𝑦 = 𝑓 (𝑥), the
following expressions are equivalent:

𝑓 ′ (𝑥) = 𝑦′ = 𝑑𝑦

𝑑𝑥
=
𝑑𝑓

𝑑𝑥
=
𝑑

𝑑𝑥
𝑓 (𝑥) = 𝐷 𝑓 (𝑥) = 𝐷𝑥 𝑓 (𝑥), (2.4.2)

where the symbols 𝑑
𝑑𝑥 and 𝐷 are differentiation operators. Below, we present the deriva-

tives of some common functions:

𝑑

𝑑𝑥
𝐶 = 0 for any constant 𝐶

𝑑

𝑑𝑥
𝑥𝑛 = 𝑛𝑥𝑛−1 for 𝑛 ≠ 0

𝑑

𝑑𝑥
𝑒𝑥 = 𝑒𝑥

𝑑

𝑑𝑥
ln 𝑥 = 𝑥−1.

(2.4.3)

Functions composed from differentiable functions are often themselves differentiable. The
following rules come in handy for working with compositions of any differentiable func-
tions 𝑓 and 𝑔, and constant 𝐶.

𝑑

𝑑𝑥
[𝐶 𝑓 (𝑥)] = 𝐶 𝑑

𝑑𝑥
𝑓 (𝑥) Constant multiple rule

𝑑

𝑑𝑥
[ 𝑓 (𝑥) + 𝑔(𝑥)] = 𝑑

𝑑𝑥
𝑓 (𝑥) + 𝑑

𝑑𝑥
𝑔(𝑥) Sum rule

𝑑

𝑑𝑥
[ 𝑓 (𝑥)𝑔(𝑥)] = 𝑓 (𝑥) 𝑑

𝑑𝑥
𝑔(𝑥) + 𝑔(𝑥) 𝑑

𝑑𝑥
𝑓 (𝑥) Product rule

𝑑

𝑑𝑥

𝑓 (𝑥)
𝑔(𝑥) =

𝑔(𝑥) 𝑑𝑑𝑥 𝑓 (𝑥) − 𝑓 (𝑥)
𝑑
𝑑𝑥 𝑔(𝑥)

𝑔2 (𝑥)
Quotient rule

(2.4.4)

Using this, we can apply the rules to find the derivative of 3𝑥2 − 4𝑥 via

𝑑

𝑑𝑥
[3𝑥2 − 4𝑥] = 3

𝑑

𝑑𝑥
𝑥2 − 4

𝑑

𝑑𝑥
𝑥 = 6𝑥 − 4. (2.4.5)

Plugging in 𝑥 = 1 shows that, indeed, the derivative equals 2 at this location. Note that
derivatives tell us the slope of a function at a particular location.
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2.4.2 Visualization Utilities
We can visualize the slopes of functions using the matplotlib library. We need to de-
fine a few functions. As its name indicates, use_svg_display tells matplotlib to output
graphics in SVG format for crisper images. The comment #@save is a special modifier that
allows us to save any function, class, or other code block to the d2l package so that we can
invoke it later without repeating the code, e.g., via d2l.use_svg_display().

def use_svg_display(): #@save
"""Use the svg format to display a plot in Jupyter."""
backend_inline.set_matplotlib_formats('svg')

Conveniently, we can set figure sizes with set_figsize. Since the import statement from
matplotlib import pyplot as plt was marked via #@save in the d2l package, we can
call d2l.plt.

def set_figsize(figsize=(3.5, 2.5)): #@save
"""Set the figure size for matplotlib."""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize

The set_axes function can associate axes with properties, including labels, ranges, and
scales.

#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):

"""Set the axes for matplotlib."""
axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)
axes.set_xscale(xscale), axes.set_yscale(yscale)
axes.set_xlim(xlim), axes.set_ylim(ylim)
if legend:

axes.legend(legend)
axes.grid()

With these three functions, we can define a plot function to overlay multiple curves. Much
of the code here is just ensuring that the sizes and shapes of inputs match.

#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None,

ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):

"""Plot data points."""

def has_one_axis(X): # True if X (tensor or list) has 1 axis
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)

and not hasattr(X[0], "__len__"))

if has_one_axis(X): X = [X]
if Y is None:

X, Y = [[]] * len(X), X

(continues on next page)
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(continued from previous page)

elif has_one_axis(Y):
Y = [Y]

if len(X) != len(Y):
X = X * len(Y)

set_figsize(figsize)
if axes is None:

axes = d2l.plt.gca()
axes.cla()
for x, y, fmt in zip(X, Y, fmts):

axes.plot(x,y,fmt) if len(x) else axes.plot(y,fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

Now we can plot the function 𝑢 = 𝑓 (𝑥) and its tangent line 𝑦 = 2𝑥 − 3 at 𝑥 = 1, where the
coefficient 2 is the slope of the tangent line.

x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])

2.4.3 Partial Derivatives and Gradients
Thus far, we have been differentiating functions of just one variable. In deep learning, we
also need to work with functions of many variables. We briefly introduce notions of the
derivative that apply to such multivariate functions.

Let 𝑦 = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a function with 𝑛 variables. The partial derivative of 𝑦 with
respect to its 𝑖th parameter 𝑥𝑖 is

𝜕𝑦

𝜕𝑥𝑖
= lim
ℎ→0

𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 + ℎ, 𝑥𝑖+1, . . . , 𝑥𝑛) − 𝑓 (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑛)
ℎ

. (2.4.6)

To calculate 𝜕𝑦
𝜕𝑥𝑖

, we can treat 𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛 as constants and calculate the deriva-
tive of 𝑦 with respect to 𝑥𝑖 . The following notational conventions for partial derivatives are
all common and all mean the same thing:

𝜕𝑦

𝜕𝑥𝑖
=
𝜕 𝑓

𝜕𝑥𝑖
= 𝜕𝑥𝑖 𝑓 = 𝜕𝑖 𝑓 = 𝑓𝑥𝑖 = 𝑓𝑖 = 𝐷𝑖 𝑓 = 𝐷𝑥𝑖 𝑓 . (2.4.7)

We can concatenate partial derivatives of a multivariate function with respect to all its
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variables to obtain a vector that is called the gradient of the function. Suppose that the
input of function 𝑓 : R𝑛 → R is an 𝑛-dimensional vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]> and the
output is a scalar. The gradient of the function 𝑓 with respect to x is a vector of 𝑛 partial
derivatives:

∇x 𝑓 (x) =
[
𝜕𝑥1 𝑓 (x), 𝜕𝑥2 𝑓 (x), . . . 𝜕𝑥𝑛 𝑓 (x)

]>
. (2.4.8)

When there is no ambiguity, ∇x 𝑓 (x) is typically replaced by ∇ 𝑓 (x). The following rules
come in handy for differentiating multivariate functions:

• For all A ∈ R𝑚×𝑛 we have ∇xAx = A> and ∇xx>A = A.

• For square matrices A ∈ R𝑛×𝑛 we have that ∇xx>Ax = (A +A>)x and in particular
∇x‖x‖2 = ∇xx>x = 2x.

Similarly, for any matrix X, we have ∇X‖X‖2F = 2X.

2.4.4 Chain Rule
In deep learning, the gradients of concern are often difficult to calculate because we are
workingwith deeply nested functions (of functions (of functions…)). Fortunately, the chain
rule takes care of this. Returning to functions of a single variable, suppose that 𝑦 = 𝑓 (𝑔(𝑥))
and that the underlying functions 𝑦 = 𝑓 (𝑢) and 𝑢 = 𝑔(𝑥) are both differentiable. The chain
rule states that

𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
. (2.4.9)

Turning back to multivariate functions, suppose that 𝑦 = 𝑓 (u) has variables 𝑢1, 𝑢2, . . . , 𝑢𝑚,
where each 𝑢𝑖 = 𝑔𝑖 (x) has variables 𝑥1, 𝑥2, . . . , 𝑥𝑛, i.e., u = 𝑔(x). Then the chain rule
states that

𝜕𝑦

𝜕𝑥𝑖
=
𝜕𝑦

𝜕𝑢1

𝜕𝑢1

𝜕𝑥𝑖
+ 𝜕𝑦

𝜕𝑢2

𝜕𝑢2

𝜕𝑥𝑖
+ . . . + 𝜕𝑦

𝜕𝑢𝑚

𝜕𝑢𝑚
𝜕𝑥𝑖

and so ∇x𝑦 = A∇u𝑦, (2.4.10)

where A ∈ R𝑛×𝑚 is a matrix that contains the derivative of vector u with respect to vector
x. Thus, evaluating the gradient requires computing a vector–matrix product. This is one
of the key reasons why linear algebra is such an integral building block in building deep
learning systems.

2.4.5 Discussion
While we have just scratched the surface of a deep topic, a number of concepts already come
into focus: first, the composition rules for differentiation can be applied routinely, enabling
us to compute gradients automatically. This task requires no creativity and thus we can
focus our cognitive powers elsewhere. Second, computing the derivatives of vector-valued
functions requires us to multiply matrices as we trace the dependency graph of variables
from output to input. In particular, this graph is traversed in a forward direction when
we evaluate a function and in a backwards direction when we compute gradients. Later
chapters will formally introduce backpropagation, a computational procedure for applying
the chain rule.
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From the viewpoint of optimization, gradients allow us to determine how to move the pa-
rameters of a model in order to lower the loss, and each step of the optimization algorithms
used throughout this book will require calculating the gradient.

2.4.6 Exercises
1. So far we took the rules for derivatives for granted. Using the definition and limits prove

the properties for (i) 𝑓 (𝑥) = 𝑐, (ii) 𝑓 (𝑥) = 𝑥𝑛, (iii) 𝑓 (𝑥) = 𝑒𝑥 and (iv) 𝑓 (𝑥) = log 𝑥.

2. In the same vein, prove the product, sum, and quotient rule from first principles.

3. Prove that the constant multiple rule follows as a special case of the product rule.

4. Calculate the derivative of 𝑓 (𝑥) = 𝑥𝑥 .

5. What does it mean that 𝑓 ′ (𝑥) = 0 for some 𝑥? Give an example of a function 𝑓 and a
location 𝑥 for which this might hold.

6. Plot the function 𝑦 = 𝑓 (𝑥) = 𝑥3 − 1
𝑥 and plot its tangent line at 𝑥 = 1.

7. Find the gradient of the function 𝑓 (x) = 3𝑥2
1 + 5𝑒𝑥2 .

8. What is the gradient of the function 𝑓 (x) = ‖x‖2? What happens for x = 0?

9. Can you write out the chain rule for the case where 𝑢 = 𝑓 (𝑥, 𝑦, 𝑧) and 𝑥 = 𝑥(𝑎, 𝑏),
𝑦 = 𝑦(𝑎, 𝑏), and 𝑧 = 𝑧(𝑎, 𝑏)?

10. Given a function 𝑓 (𝑥) that is invertible, compute the derivative of its inverse 𝑓 −1 (𝑥).
Here we have that 𝑓 −1 ( 𝑓 (𝑥)) = 𝑥 and conversely 𝑓 ( 𝑓 −1 (𝑦)) = 𝑦. Hint: use these
properties in your derivation.

Discussions56 .

2.5 Automatic Differentiation

Recall from Section 2.4 that calculating derivatives is the crucial step in all the optimization
algorithms that we will use to train deep networks. While the calculations are straightfor-
ward, working them out by hand can be tedious and error-prone, and these issues only grow
as our models become more complex.

Fortunately all modern deep learning frameworks take this work off our plates by offering
automatic differentiation (often shortened to autograd). As we pass data through each
successive function, the framework builds a computational graph that tracks how each value
depends on others. To calculate derivatives, automatic differentiation works backwards
through this graph applying the chain rule. The computational algorithm for applying the
chain rule in this fashion is called backpropagation.

While autograd libraries have become a hot concern over the past decade, they have a

https://discuss.d2l.ai/t/32
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long history. In fact the earliest references to autograd date back over half of a century
(Wengert, 1964). The core ideas behind modern backpropagation date to a PhD thesis
from 1980 (Speelpenning, 1980) and were further developed in the late 1980s (Griewank,
1989). While backpropagation has become the default method for computing gradients,
it is not the only option. For instance, the Julia programming language employs forward
propagation (Revels et al., 2016). Before exploring methods, let’s first master the autograd
package.

from mxnet import autograd, np, npx

npx.set_np()

2.5.1 A Simple Function
Let’s assume that we are interested in differentiating the function 𝑦 = 2x>x with respect to
the column vector x. To start, we assign x an initial value.

x = np.arange(4.0)
x

[22:07:05] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([0., 1., 2., 3.])

Before we calculate the gradient of 𝑦 with respect to x, we need a place to store it. In
general, we avoid allocating new memory every time we take a derivative because deep
learning requires successively computing derivatives with respect to the same parameters
a great many times, and we might risk running out of memory. Note that the gradient of
a scalar-valued function with respect to a vector x is vector-valued with the same shape as
x.

# We allocate memory for a tensor's gradient by invoking `attach_grad`
x.attach_grad()
# After we calculate a gradient taken with respect to `x`, we will be able to
# access it via the `grad` attribute, whose values are initialized with 0s
x.grad

array([0., 0., 0., 0.])

We now calculate our function of x and assign the result to y.

# Our code is inside an `autograd.record` scope to build the computational
# graph

(continues on next page)
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(continued from previous page)

with autograd.record():
y = 2 * np.dot(x, x)

y

array(28.)

We can now take the gradient of y with respect to x by calling its backwardmethod. Next,
we can access the gradient via x’s grad attribute.

y.backward()
x.grad

[22:07:05] ../src/base.cc:48: GPU context requested, but no GPUs found.

array([ 0., 4., 8., 12.])

We already know that the gradient of the function 𝑦 = 2x>x with respect to x should be
4x. We can now verify that the automatic gradient computation and the expected result are
identical.

x.grad == 4 * x

array([ True, True, True, True])

Now let’s calculate another function of x and take its gradient. Note that MXNet resets the
gradient buffer whenever we record a new gradient.

with autograd.record():
y = x.sum()

y.backward()
x.grad # Overwritten by the newly calculated gradient

array([1., 1., 1., 1.])

2.5.2 Backward for Non-Scalar Variables
When y is a vector, the most natural representation of the derivative of y with respect
to a vector x is a matrix called the Jacobian that contains the partial derivatives of each
component of y with respect to each component of x. Likewise, for higher-order y and x,
the result of differentiation could be an even higher-order tensor.

While Jacobians do show up in some advanced machine learning techniques, more com-
monly we want to sum up the gradients of each component of y with respect to the full
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vector x, yielding a vector of the same shape as x. For example, we often have a vector
representing the value of our loss function calculated separately for each example among a
batch of training examples. Here, we just want to sum up the gradients computed individ-
ually for each example.

MXNet handles this problem by reducing all tensors to scalars by summing before com-
puting a gradient. In other words, rather than returning the Jacobian 𝜕xy, it returns the
gradient of the sum 𝜕x

∑
𝑖 𝑦𝑖 .

with autograd.record():
y = x * x

y.backward()
x.grad # Equals the gradient of y = sum(x * x)

array([0., 2., 4., 6.])

2.5.3 Detaching Computation
Sometimes, we wish to move some calculations outside of the recorded computational
graph. For example, say that we use the input to create some auxiliary intermediate terms
for which we do not want to compute a gradient. In this case, we need to detach the re-
spective computational graph from the final result. The following toy example makes this
clearer: suppose we have z = x * y and y = x * x but we want to focus on the direct
influence of x on z rather than the influence conveyed via y. In this case, we can create a
new variable u that takes the same value as y but whose provenance (how it was created)
has been wiped out. Thus u has no ancestors in the graph and gradients do not flow through
u to x. For example, taking the gradient of z = x * u will yield the result u, (not 3 * x

* x as you might have expected since z = x * x * x).

with autograd.record():
y = x * x
u = y.detach()
z = u * x

z.backward()
x.grad == u

array([ True, True, True, True])

Note that while this procedure detaches y’s ancestors from the graph leading to z, the com-
putational graph leading to y persists and thus we can calculate the gradient of y with
respect to x.

y.backward()
x.grad == 2 * x
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array([ True, True, True, True])

2.5.4 Gradients and Python Control Flow
So far we reviewed cases where the path from input to output was well defined via a func-
tion such as z = x * x * x. Programming offers us a lot more freedom in how we
compute results. For instance, we can make them depend on auxiliary variables or condi-
tion choices on intermediate results. One benefit of using automatic differentiation is that
even if building the computational graph of a function required passing through a maze
of Python control flow (e.g., conditionals, loops, and arbitrary function calls), we can still
calculate the gradient of the resulting variable. To illustrate this, consider the following
code snippet where the number of iterations of the while loop and the evaluation of the if
statement both depend on the value of the input a.

def f(a):
b = a * 2
while np.linalg.norm(b) < 1000:

b = b * 2
if b.sum() > 0:

c = b
else:

c = 100 * b
return c

Below, we call this function, passing in a random value, as input. Since the input is a
random variable, we do not know what form the computational graph will take. However,
whenever we execute f(a) on a specific input, we realize a specific computational graph
and can subsequently run backward.

a = np.random.normal()
a.attach_grad()
with autograd.record():

d = f(a)
d.backward()

Even though our function f is, for demonstration purposes, a bit contrived, its dependence
on the input is quite simple: it is a linear function of a with piecewise defined scale. As
such, f(a) / a is a vector of constant entries and, moreover, f(a) / a needs to match the
gradient of f(a) with respect to a.

a.grad == d / a

array(True)

Dynamic control flow is very common in deep learning. For instance, when processing
text, the computational graph depends on the length of the input. In these cases, automatic
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differentiation becomes vital for statistical modeling since it is impossible to compute the
gradient a priori.

2.5.5 Discussion
You have now gotten a taste of the power of automatic differentiation. The development of
libraries for calculating derivatives both automatically and efficiently has been a massive
productivity booster for deep learning practitioners, liberating them so they can focus on
less menial. Moreover, autograd lets us design massive models for which pen and paper
gradient computations would be prohibitively time consuming. Interestingly, while we use
autograd to optimize models (in a statistical sense) the optimization of autograd libraries
themselves (in a computational sense) is a rich subject of vital interest to framework design-
ers. Here, tools from compilers and graph manipulation are leveraged to compute results
in the most expedient and memory-efficient manner.

For now, try to remember these basics: (i) attach gradients to those variables with respect
to which we desire derivatives; (ii) record the computation of the target value; (iii) execute
the backpropagation function; and (iv) access the resulting gradient.

2.5.6 Exercises
1. Why is the second derivative much more expensive to compute than the first derivative?

2. After running the function for backpropagation, immediately run it again and see what
happens. Investigate.

3. In the control flow example where we calculate the derivative of d with respect to a,
what would happen if we changed the variable a to a random vector or a matrix? At
this point, the result of the calculation f(a) is no longer a scalar. What happens to the
result? How do we analyze this?

4. Let 𝑓 (𝑥) = sin(𝑥). Plot the graph of 𝑓 and of its derivative 𝑓 ′. Do not exploit the fact
that 𝑓 ′ (𝑥) = cos(𝑥) but rather use automatic differentiation to get the result.

5. Let 𝑓 (𝑥) = ((log 𝑥2) · sin 𝑥) + 𝑥−1. Write out a dependency graph tracing results from
𝑥 to 𝑓 (𝑥).

6. Use the chain rule to compute the derivative 𝑑 𝑓𝑑𝑥 of the aforementioned function, placing
each term on the dependency graph that you constructed previously.

7. Given the graph and the intermediate derivative results, you have a number of options
when computing the gradient. Evaluate the result once starting from 𝑥 to 𝑓 and once
from 𝑓 tracing back to 𝑥. The path from 𝑥 to 𝑓 is commonly known as forward differ-
entiation, whereas the path from 𝑓 to 𝑥 is known as backward differentiation.

8. When might you want to use forward, and when backward, differentiation? Hint: con-
sider the amount of intermediate data needed, the ability to parallelize steps, and the
size of matrices and vectors involved.

Discussions57 .

https://discuss.d2l.ai/t/34
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2.6 Probability and Statistics

One way or another, machine learning is all about uncertainty. In supervised learning, we
want to predict something unknown (the target) given something known (the features). De-
pending on our objective, we might attempt to predict the most likely value of the target.
Or we might predict the value with the smallest expected distance from the target. And
sometimes we wish not only to predict a specific value but to quantify our uncertainty. For
example, given some features describing a patient, we might want to know how likely they
are to suffer a heart attack in the next year. In unsupervised learning, we often care about
uncertainty. To determine whether a set of measurements are anomalous, it helps to know
how likely one is to observe values in a population of interest. Furthermore, in reinforce-
ment learning, we wish to develop agents that act intelligently in various environments.
This requires reasoning about how an environment might be expected to change and what
rewards one might expect to encounter in response to each of the available actions.

Probability is the mathematical field concerned with reasoning under uncertainty. Given a
probabilistic model of some process, we can reason about the likelihood of various events.
The use of probabilities to describe the frequencies of repeatable events (like coin tosses) is
fairly uncontroversial. In fact, frequentist scholars adhere to an interpretation of probability
that applies only to such repeatable events. By contrast Bayesian scholars use the language
of probability more broadly to formalize reasoning under uncertainty. Bayesian probability
is characterized by two unique features: (i) assigning degrees of belief to non-repeatable
events, e.g., what is the probability that a dam will collapse?; and (ii) subjectivity. While
Bayesian probability provides unambiguous rules for how one should update their beliefs in
light of new evidence, it allows for different individuals to start off with different prior be-
liefs. Statistics helps us to reason backwards, starting off with collection and organization
of data and backing out to what inferences we might draw about the process that generated
the data. Whenever we analyze a dataset, hunting for patterns that we hope might charac-
terize a broader population, we are employing statistical thinking. Many courses, majors,
theses, careers, departments, companies, and institutions have been devoted to the study of
probability and statistics. While this section only scratches the surface, we will provide the
foundation that you need to begin building models.

%matplotlib inline
import random
from mxnet import np, npx
from mxnet.numpy.random import multinomial
from d2l import mxnet as d2l

npx.set_np()

2.6.1 A Simple Example: Tossing Coins
Imagine that we plan to toss a coin and want to quantify how likely we are to see heads
(vs. tails). If the coin is fair, then both outcomes (heads and tails), are equally likely.
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Moreover if we plan to toss the coin 𝑛 times then the fraction of heads that we expect to
see should exactly match the expected fraction of tails. One intuitive way to see this is
by symmetry: for every possible outcome with 𝑛h heads and 𝑛t = (𝑛 − 𝑛h) tails, there is
an equally likely outcome with 𝑛t heads and 𝑛h tails. Note that this is only possible if on
average we expect to see 1/2 of tosses come up heads and 1/2 come up tails. Of course, if
you conduct this experiment many times with 𝑛 = 1000000 tosses each, you might never
see a trial where 𝑛h = 𝑛t exactly.

Formally, the quantity 1/2 is called a probability and here it captures the certainty with
which any given toss will come up heads. Probabilities assign scores between 0 and 1 to
outcomes of interest, called events. Here the event of interest is heads and we denote the
corresponding probability 𝑃(heads). A probability of 1 indicates absolute certainty (imag-
ine a trick coin where both sides were heads) and a probability of 0 indicates impossibility
(e.g., if both sides were tails). The frequencies 𝑛h/𝑛 and 𝑛t/𝑛 are not probabilities but rather
statistics. Probabilities are theoretical quantities that underly the data generating process.
Here, the probability 1/2 is a property of the coin itself. By contrast, statistics are empirical
quantities that are computed as functions of the observed data. Our interests in probabilis-
tic and statistical quantities are inextricably intertwined. We often design special statistics
called estimators that, given a dataset, produce estimates of model parameters such as prob-
abilities. Moreover, when those estimators satisfy a nice property called consistency, our
estimates will converge to the corresponding probability. In turn, these inferred probabili-
ties tell about the likely statistical properties of data from the same population that wemight
encounter in the future.

Suppose that we stumbled upon a real coin for which we did not know the true 𝑃(heads).
To investigate this quantity with statistical methods, we need to (i) collect some data; and
(ii) design an estimator. Data acquisition here is easy; we can toss the coin many times
and record all the outcomes. Formally, drawing realizations from some underlying random
process is called sampling. As you might have guessed, one natural estimator is the ratio
of the number of observed heads to the total number of tosses.

Now, suppose that the coin was in fact fair, i.e., 𝑃(heads) = 0.5. To simulate tosses of a
fair coin, we can invoke any random number generator. There are some easy ways to draw
samples of an event with probability 0.5. For example Python’s random.random yields
numbers in the interval [0, 1] where the probability of lying in any sub-interval [𝑎, 𝑏] ⊂
[0, 1] is equal to 𝑏 − 𝑎. Thus we can get out 0 and 1 with probability 0.5 each by testing
whether the returned float number is greater than 0.5:

num_tosses = 100
heads = sum([random.random() > 0.5 for _ in range(num_tosses)])
tails = num_tosses - heads
print("heads, tails: ", [heads, tails])

heads, tails: [48, 52]

More generally, we can simulate multiple draws from any variable with a finite number
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of possible outcomes (like the toss of a coin or roll of a die) by calling the multinomial
function, setting the first argument to the number of draws and the second as a list of prob-
abilities associated with each of the possible outcomes. To simulate ten tosses of a fair coin,
we assign probability vector [0.5, 0.5], interpreting index 0 as heads and index 1 as tails.
The function returns a vector with length equal to the number of possible outcomes (here,
2), where the first component tells us the number of occurrences of heads and the second
component tells us the number of occurrences of tails.

fair_probs = [0.5, 0.5]
multinomial(100, fair_probs)

[22:11:28] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([46, 54], dtype=int64)

Each time you run this sampling process, you will receive a new random value that may
differ from the previous outcome. Dividing by the number of tosses gives us the frequency
of each outcome in our data. Note that these frequencies, just like the probabilities that they
are intended to estimate, sum to 1.

multinomial(100, fair_probs) / 100

array([0.53, 0.47])

Here, even though our simulated coin is fair (we ourselves set the probabilities [0.5, 0.

5]), the counts of heads and tails may not be identical. That is because we only drew a
relatively small number of samples. If we did not implement the simulation ourselves, and
only saw the outcome, how would we know if the coin were slightly unfair or if the possible
deviation from 1/2 was just an artifact of the small sample size? Let’s see what happens
when we simulate 10,000 tosses.

counts = multinomial(10000, fair_probs).astype(np.float32)
counts / 10000

array([0.4952, 0.5048])

In general, for averages of repeated events (like coin tosses), as the number of repetitions
grows, our estimates are guaranteed to converge to the true underlying probabilities. The
mathematical formulation of this phenomenon is called the law of large numbers and the
central limit theorem tells us that in many situations, as the sample size 𝑛 grows, these
errors should go down at a rate of (1/√𝑛). Let’s get some more intuition by studying how
our estimate evolves as we grow the number of tosses from 1 to 10,000.
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counts = multinomial(1, fair_probs, size=10000)
cum_counts = counts.astype(np.float32).cumsum(axis=0)
estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True)

d2l.set_figsize((4.5, 3.5))
d2l.plt.plot(estimates[:, 0], label=("P(coin=heads)"))
d2l.plt.plot(estimates[:, 1], label=("P(coin=tails)"))
d2l.plt.axhline(y=0.5, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Samples')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();

Each solid curve corresponds to one of the two values of the coin and gives our estimated
probability that the coin turns up that value after each group of experiments. The dashed
black line gives the true underlying probability. As we get more data by conducting more
experiments, the curves converge towards the true probability. You might already begin to
see the shape of some of the more advanced questions that preoccupy statisticians: How
quickly does this convergence happen? If we had already tested many coins manufactured
at the same plant, how might we incorporate this information?

2.6.2 A More Formal Treatment
We have already gotten pretty far: posing a probabilistic model, generating synthetic data,
running a statistical estimator, empirically assessing convergence, and reporting error met-
rics (checking the deviation). However, to go much further, we will need to be more pre-
cise.

When dealing with randomness, we denote the set of possible outcomes S and call it the
sample space or outcome space. Here, each element is a distinct possible outcome. In
the case of rolling a single coin, S = {heads, tails}. For a single die, S = {1, 2, 3, 4, 5, 6}.
When flipping two coins, possible outcomes are {(heads, heads), (heads, tails), (tails, heads), (tails, tails)}.
Events are subsets of the sample space. For instance, the event “the first coin toss comes
up heads” corresponds to the set {(heads, heads), (heads, tails)}. Whenever the outcome
𝑧 of a random experiment satisfies 𝑧 ∈ A, then event A has occurred. For a single roll
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of a die, we could define the events “seeing a 5” (A = {5}) and “seeing an odd number”
(B = {1, 3, 5}). In this case, if the die came up 5, we would say that bothA andB occurred.
On the other hand, if 𝑧 = 3, then A did not occur but B did.

A probability function maps events onto real values 𝑃 : A ⊆ S → [0, 1]. The probabil-
ity, denoted 𝑃(A), of an event A in the given sample space S, has the following proper-
ties:

• The probability of any event A is a nonnegative real number, i.e., 𝑃(A) ≥ 0;

• The probability of the entire sample space is 1, i.e., 𝑃(S) = 1;

• For any countable sequence of eventsA1,A2, . . . that are mutually exclusive (i.e.,A𝑖 ∩
A 𝑗 = ∅ for all 𝑖 ≠ 𝑗), the probability that any of them happens is equal to the sum of
their individual probabilities, i.e., 𝑃(⋃∞𝑖=1A𝑖) =

∑∞
𝑖=1 𝑃(A𝑖).

These axioms of probability theory, proposed by Kolmogorov (1933), can be applied to
rapidly derive a number of important consequences. For instance, it follows immediately
that the probability of any eventA or its complementA′ occurring is 1 (becauseA∪A′ =
S). We can also prove that 𝑃(∅) = 0 because 1 = 𝑃(S ∪S′) = 𝑃(S ∪ ∅) = 𝑃(S) + 𝑃(∅) =
1 + 𝑃(∅). Consequently, the probability of any event A and its complement A′ occurring
simultaneously is 𝑃(A∩A′) = 0. Informally, this tells us that impossible events have zero
probability of occurring.

2.6.3 Random Variables
When we spoke about events like the roll of a die coming up odds or the first coin toss
coming up heads, we were invoking the idea of a random variable. Formally, random
variables are mappings from an underlying sample space to a set of (possibly many) values.
You might wonder how a random variable is different from the sample space, since both are
collections of outcomes. Importantly, random variables can be much coarser than the raw
sample space. We can define a binary random variable like “greater than 0.5” even when
the underlying sample space is infinite, e.g., points on the line segment between 0 and 1.
Additionally, multiple random variables can share the same underlying sample space. For
example “whether my home alarm goes off” and “whether my house was burgled” are both
binary random variables that share an underlying sample space. Consequently, knowing the
value taken by one random variable can tell us something about the likely value of another
random variable. Knowing that the alarm went off, we might suspect that the house was
likely burgled.

Every value taken by a random variable corresponds to a subset of the underlying sample
space. Thus the occurrence where the random variable 𝑋 takes value 𝑣, denoted by 𝑋 = 𝑣,
is an event and 𝑃(𝑋 = 𝑣) denotes its probability. Sometimes this notation can get clunky,
and we can abuse notation when the context is clear. For example, we might use 𝑃(𝑋) to
refer broadly to the distribution of 𝑋 , i.e., the function that tells us the probability that 𝑋
takes any given value. Other times we write expressions like 𝑃(𝑋,𝑌 ) = 𝑃(𝑋)𝑃(𝑌 ), as a
shorthand to express a statement that is true for all of the values that the random variables
𝑋 and 𝑌 can take, i.e., for all 𝑖, 𝑗 it holds that 𝑃(𝑋 = 𝑖 and 𝑌 = 𝑗) = 𝑃(𝑋 = 𝑖)𝑃(𝑌 = 𝑗).
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Other times, we abuse notation by writing 𝑃(𝑣) when the random variable is clear from the
context. Since an event in probability theory is a set of outcomes from the sample space,
we can specify a range of values for a random variable to take. For example, 𝑃(1 ≤ 𝑋 ≤ 3)
denotes the probability of the event {1 ≤ 𝑋 ≤ 3}.

Note that there is a subtle difference between discrete random variables, like flips of a coin
or tosses of a die, and continuous ones, like the weight and the height of a person sampled
at random from the population. In this case we seldom really care about someone’s exact
height. Moreover, if we took precise enough measurements, we would find that no two
people on the planet have the exact same height. In fact, with fine enough measurements,
you would never have the same height when you wake up and when you go to sleep. There
is little point in asking about the exact probability that someone is 1.801392782910287192
meters tall. Instead, we typically care more about being able to say whether someone’s
height falls into a given interval, say between 1.79 and 1.81 meters. In these cases we work
with probability densities. The height of exactly 1.80meters has no probability, but nonzero
density. To work out the probability assigned to an interval, we must take an integral of the
density over that interval.

2.6.4 Multiple Random Variables
Youmight have noticed that we could not even make it through the previous section without
making statements involving interactions amongmultiple randomvariables (recall 𝑃(𝑋,𝑌 ) =
𝑃(𝑋)𝑃(𝑌 )). Most ofmachine learning is concernedwith such relationships. Here, the sam-
ple space would be the population of interest, say customers who transact with a business,
photographs on the Internet, or proteins known to biologists. Each random variable would
represent the (unknown) value of a different attribute. Whenever we sample an individual
from the population, we observe a realization of each of the random variables. Because
the values taken by random variables correspond to subsets of the sample space that could
be overlapping, partially overlapping, or entirely disjoint, knowing the value taken by one
random variable can cause us to update our beliefs about which values of another random
variable are likely. If a patient walks into a hospital and we observe that they are having
trouble breathing and have lost their sense of smell, then we believe that they are more
likely to have COVID-19 than we might if they had no trouble breathing and a perfectly
ordinary sense of smell.

When working with multiple random variables, we can construct events corresponding to
every combination of values that the variables can jointly take. The probability function
that assigns probabilities to each of these combinations (e.g. 𝐴 = 𝑎 and 𝐵 = 𝑏) is called the
joint probability function and simply returns the probability assigned to the intersection
of the corresponding subsets of the sample space. The joint probability assigned to the
event where random variables 𝐴 and 𝐵 take values 𝑎 and 𝑏, respectively, is denoted 𝑃(𝐴 =
𝑎, 𝐵 = 𝑏), where the comma indicates “and”. Note that for any values 𝑎 and 𝑏, it follows
that

𝑃(𝐴 = 𝑎, 𝐵 = 𝑏) ≤ 𝑃(𝐴 = 𝑎) and 𝑃(𝐴 = 𝑎, 𝐵 = 𝑏) ≤ 𝑃(𝐵 = 𝑏), (2.6.1)

since for 𝐴 = 𝑎 and 𝐵 = 𝑏 to happen, 𝐴 = 𝑎 has to happen and 𝐵 = 𝑏 also has to
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happen. Interestingly, the joint probability tells us all that we can know about these random
variables in a probabilistic sense, and can be used to derive many other useful quantities,
including recovering the individual distributions 𝑃(𝐴) and 𝑃(𝐵). To recover 𝑃(𝐴 = 𝑎)
we simply sum up 𝑃(𝐴 = 𝑎, 𝐵 = 𝑣) over all values 𝑣 that the random variable 𝐵 can take:
𝑃(𝐴 = 𝑎) = ∑

𝑣 𝑃(𝐴 = 𝑎, 𝐵 = 𝑣).

The ratio 𝑃 (𝐴=𝑎,𝐵=𝑏)
𝑃 (𝐴=𝑎) ≤ 1 turns out to be extremely important. It is called the conditional

probability, and is denoted via the “|” symbol:

𝑃(𝐵 = 𝑏 | 𝐴 = 𝑎) = 𝑃(𝐴 = 𝑎, 𝐵 = 𝑏)/𝑃(𝐴 = 𝑎). (2.6.2)

It tells us the new probability associated with the event 𝐵 = 𝑏, once we condition on the
fact 𝐴 = 𝑎 took place. We can think of this conditional probability as restricting attention
only to the subset of the sample space associated with 𝐴 = 𝑎 and then renormalizing so that
all probabilities sum to 1. Conditional probabilities are in fact just ordinary probabilities
and thus respect all of the axioms, as long as we condition all terms on the same event and
thus restrict attention to the same sample space. For instance, for disjoint events B and B′,
we have that 𝑃(B ∪ B′ | 𝐴 = 𝑎) = 𝑃(B | 𝐴 = 𝑎) + 𝑃(B′ | 𝐴 = 𝑎).

Using the definition of conditional probabilities, we can derive the famous result called
Bayes’ theorem. By construction, we have that 𝑃(𝐴, 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴) and 𝑃(𝐴, 𝐵) =
𝑃(𝐴 | 𝐵)𝑃(𝐵). Combining both equations yields 𝑃(𝐵 | 𝐴)𝑃(𝐴) = 𝑃(𝐴 | 𝐵)𝑃(𝐵) and
hence

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴)
𝑃(𝐵) . (2.6.3)

This simple equation has profound implications because it allows us to reverse the order of
conditioning. If we know how to estimate 𝑃(𝐵 | 𝐴), 𝑃(𝐴), and 𝑃(𝐵), then we can estimate
𝑃(𝐴 | 𝐵). We often find it easier to estimate one term directly but not the other and Bayes’
theorem can come to the rescue here. For instance, if we know the prevalence of symptoms
for a given disease, and the overall prevalences of the disease and symptoms, respectively,
we can determine how likely someone is to have the disease based on their symptoms. In
some cases we might not have direct access to 𝑃(𝐵), such as the prevalence of symptoms.
In this case a simplified version of Bayes’ theorem comes in handy:

𝑃(𝐴 | 𝐵) ∝ 𝑃(𝐵 | 𝐴)𝑃(𝐴). (2.6.4)

Since we know that 𝑃(𝐴 | 𝐵) must be normalized to 1, i.e.,
∑
𝑎 𝑃(𝐴 = 𝑎 | 𝐵) = 1, we can

use it to compute

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴)∑
𝑎 𝑃(𝐵 | 𝐴 = 𝑎)𝑃(𝐴 = 𝑎) . (2.6.5)

In Bayesian statistics, we think of an observer as possessing some (subjective) prior be-
liefs about the plausibility of the available hypotheses encoded in the prior 𝑃(𝐻), and a
likelihood function that says how likely one is to observe any value of the collected evi-
dence for each of the hypotheses in the class 𝑃(𝐸 | 𝐻). Bayes’ theorem is then interpreted
as telling us how to update the initial prior 𝑃(𝐻) in light of the available evidence 𝐸 to
produce posterior beliefs 𝑃(𝐻 | 𝐸) = 𝑃 (𝐸 |𝐻 )𝑃 (𝐻 )

𝑃 (𝐸 ) . Informally, this can be stated as “pos-
terior equals prior times likelihood, divided by the evidence”. Now, because the evidence
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𝑃(𝐸) is the same for all hypotheses, we can get away with simply normalizing over the
hypotheses.

Note that
∑
𝑎 𝑃(𝐴 = 𝑎 | 𝐵) = 1 also allows us to marginalize over random variables.

That is, we can drop variables from a joint distribution such as 𝑃(𝐴, 𝐵). After all, we have
that ∑

𝑎

𝑃(𝐵 | 𝐴 = 𝑎)𝑃(𝐴 = 𝑎) =
∑
𝑎

𝑃(𝐵, 𝐴 = 𝑎) = 𝑃(𝐵). (2.6.6)

Independence is another fundamentally important concept that forms the backbone of many
important ideas in statistics. In short, two variables are independent if conditioning on the
value of 𝐴 does not cause any change to the probability distribution associated with 𝐵 and
vice versa. More formally, independence, denoted 𝐴 ⊥ 𝐵, requires that 𝑃(𝐴 | 𝐵) = 𝑃(𝐴)
and, consequently, that 𝑃(𝐴, 𝐵) = 𝑃(𝐴 | 𝐵)𝑃(𝐵) = 𝑃(𝐴)𝑃(𝐵). Independence is often
an appropriate assumption. For example, if the random variable 𝐴 represents the outcome
from tossing one fair coin and the random variable 𝐵 represents the outcome from tossing
another, then knowing whether 𝐴 came up heads should not influence the probability of 𝐵
coming up heads.

Independence is especially useful when it holds among the successive draws of our data
from some underlying distribution (allowing us to make strong statistical conclusions) or
when it holds among various variables in our data, allowing us to work with simpler models
that encode this independence structure. On the other hand, estimating the dependencies
among random variables is often the very aim of learning. We care to estimate the probabil-
ity of disease given symptoms specifically because we believe that diseases and symptoms
are not independent.

Note that because conditional probabilities are proper probabilities, the concepts of inde-
pendence and dependence also apply to them. Two random variables 𝐴 and 𝐵 are condition-
ally independent given a third variable 𝐶 if and only if 𝑃(𝐴, 𝐵 | 𝐶) = 𝑃(𝐴 | 𝐶)𝑃(𝐵 | 𝐶).
Interestingly, two variables can be independent in general but become dependent when
conditioning on a third. This often occurs when the two random variables 𝐴 and 𝐵 cor-
respond to causes of some third variable 𝐶. For example, broken bones and lung cancer
might be independent in the general population but if we condition on being in the hospital
then we might find that broken bones are negatively correlated with lung cancer. That is
because the broken bone explains away why some person is in the hospital and thus lowers
the probability that they are hospitalized because of having lung cancer.

And conversely, two dependent random variables can become independent upon condition-
ing on a third. This often happens when two otherwise unrelated events have a common
cause. Shoe size and reading level are highly correlated among elementary school students,
but this correlation disappears if we condition on age.

2.6.5 An Example
Let’s put our skills to the test. Assume that a doctor administers an HIV test to a patient.
This test is fairly accurate and fails only with 1% probability if the patient is healthy but
reported as diseased, i.e., healthy patients test positive in 1% of cases. Moreover, it never
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fails to detect HIV if the patient actually has it. We use 𝐷1 ∈ {0, 1} to indicate the diagnosis
(0 if negative and 1 if positive) and 𝐻 ∈ {0, 1} to denote the HIV status.

Conditional probability 𝐻 = 1 𝐻 = 0
𝑃(𝐷1 = 1 | 𝐻) 1 0.01
𝑃(𝐷1 = 0 | 𝐻) 0 0.99

Note that the column sums are all 1 (but the row sums do not), since they are conditional
probabilities. Let’s compute the probability of the patient having HIV if the test comes
back positive, i.e., 𝑃(𝐻 = 1 | 𝐷1 = 1). Intuitively this is going to depend on how common
the disease is, since it affects the number of false alarms. Assume that the population is
fairly free of the disease, e.g., 𝑃(𝐻 = 1) = 0.0015. To apply Bayes’ theorem, we need to
apply marginalization to determine

𝑃(𝐷1 = 1) =𝑃(𝐷1 = 1, 𝐻 = 0) + 𝑃(𝐷1 = 1, 𝐻 = 1)
=𝑃(𝐷1 = 1 | 𝐻 = 0)𝑃(𝐻 = 0) + 𝑃(𝐷1 = 1 | 𝐻 = 1)𝑃(𝐻 = 1)
=0.011485.

(2.6.7)

This leads us to

𝑃(𝐻 = 1 | 𝐷1 = 1) = 𝑃(𝐷1 = 1 | 𝐻 = 1)𝑃(𝐻 = 1)
𝑃(𝐷1 = 1) = 0.1306. (2.6.8)

In other words, there is only a 13.06% chance that the patient actually has HIV, despite the
test being pretty accurate. Aswe can see, probability can be counterintuitive. What should a
patient do upon receiving such terrifying news? Likely, the patient would ask the physician
to administer another test to get clarity. The second test has different characteristics and it
is not as good as the first one.

Conditional probability 𝐻 = 1 𝐻 = 0
𝑃(𝐷2 = 1 | 𝐻) 0.98 0.03
𝑃(𝐷2 = 0 | 𝐻) 0.02 0.97

Unfortunately, the second test comes back positive, too. Let’s calculate the requisite prob-
abilities to invoke Bayes’ theorem by assuming conditional independence:

𝑃(𝐷1 = 1, 𝐷2 = 1 | 𝐻 = 0) = 𝑃(𝐷1 = 1 | 𝐻 = 0)𝑃(𝐷2 = 1 | 𝐻 = 0) = 0.0003,
𝑃(𝐷1 = 1, 𝐷2 = 1 | 𝐻 = 1) = 𝑃(𝐷1 = 1 | 𝐻 = 1)𝑃(𝐷2 = 1 | 𝐻 = 1) = 0.98.

(2.6.9)

Now we can apply marginalization to obtain the probability that both tests come back pos-
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itive:

𝑃(𝐷1 = 1, 𝐷2 = 1)
= 𝑃(𝐷1 = 1, 𝐷2 = 1, 𝐻 = 0) + 𝑃(𝐷1 = 1, 𝐷2 = 1, 𝐻 = 1)
= 𝑃(𝐷1 = 1, 𝐷2 = 1 | 𝐻 = 0)𝑃(𝐻 = 0) + 𝑃(𝐷1 = 1, 𝐷2 = 1 | 𝐻 = 1)𝑃(𝐻 = 1)
= 0.00176955.

(2.6.10)

Finally, the probability of the patient having HIV given that both tests are positive is

𝑃(𝐻 = 1 | 𝐷1 = 1, 𝐷2 = 1) = 𝑃(𝐷1 = 1, 𝐷2 = 1 | 𝐻 = 1)𝑃(𝐻 = 1)
𝑃(𝐷1 = 1, 𝐷2 = 1) = 0.8307. (2.6.11)

That is, the second test allowed us to gain much higher confidence that not all is well. De-
spite the second test being considerably less accurate than the first one, it still significantly
improved our estimate. The assumption of both tests being conditionally independent of
each other was crucial for our ability to generate a more accurate estimate. Take the ex-
treme case where we run the same test twice. In this situation we would expect the same
outcome both times, hence no additional insight is gained from running the same test again.
The astute reader might have noticed that the diagnosis behaved like a classifier hiding in
plain sight where our ability to decide whether a patient is healthy increases as we obtain
more features (test outcomes).

2.6.6 Expectations
Often, making decisions requires not just looking at the probabilities assigned to individ-
ual events but composing them together into useful aggregates that can provide us with
guidance. For example, when random variables take continuous scalar values, we often
care about knowing what value to expect on average. This quantity is formally called an
expectation. If we are making investments, the first quantity of interest might be the return
we can expect, averaging over all the possible outcomes (and weighting by the appropri-
ate probabilities). For instance, say that with 50% probability, an investment might fail
altogether, with 40% probability it might provide a 2× return, and with 10% probability
it might provide a 10× return 10×. To calculate the expected return, we sum over all re-
turns, multiplying each by the probability that they will occur. This yields the expectation
0.5 · 0 + 0.4 · 2 + 0.1 · 10 = 1.8. Hence the expected return is 1.8×.

In general, the expectation (or average) of the random variable 𝑋 is defined as

𝐸 [𝑋] = 𝐸𝑥∼𝑃 [𝑥] =
∑
𝑥

𝑥𝑃(𝑋 = 𝑥). (2.6.12)

Likewise, for densities we obtain 𝐸 [𝑋] =
∫
𝑥 𝑑𝑝(𝑥). Sometimes we are interested in the

expected value of some function of 𝑥. We can calculate these expectations as

𝐸𝑥∼𝑃 [ 𝑓 (𝑥)] =
∑
𝑥

𝑓 (𝑥)𝑃(𝑥) and 𝐸𝑥∼𝑃 [ 𝑓 (𝑥)] =
∫

𝑓 (𝑥)𝑝(𝑥) 𝑑𝑥 (2.6.13)

for discrete probabilities and densities, respectively. Returning to the investment exam-
ple from above, 𝑓 might be the utility (happiness) associated with the return. Behavior
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economists have long noted that people associate greater disutility with losing money than
the utility gained from earning one dollar relative to their baseline. Moreover, the value
of money tends to be sub-linear. Possessing 100k dollars versus zero dollars can make the
difference between paying the rent, eating well, and enjoying quality healthcare versus suf-
fering through homelessness. On the other hand, the gains due to possessing 200k versus
100k are less dramatic. Reasoning like this motivates the cliché that “the utility of money
is logarithmic”.

If the utility associated with a total loss were −1, and the utilities associated with returns of
1, 2, and 10 were 1, 2 and 4, respectively, then the expected happiness of investing would
be 0.5 · (−1) + 0.4 · 2+ 0.1 · 4 = 0.7 (an expected loss of utility of 30%). If indeed this were
your utility function, you might be best off keeping the money in the bank.

For financial decisions, wemight also want to measure how risky an investment is. Here, we
care not just about the expected value but how much the actual values tend to vary relative
to this value. Note that we cannot just take the expectation of the difference between the
actual and expected values. This is because the expectation of a difference is the difference
of the expectations, i.e., 𝐸 [𝑋 − 𝐸 [𝑋]] = 𝐸 [𝑋] − 𝐸 [𝐸 [𝑋]] = 0. However, we can look at
the expectation of any non-negative function of this difference. The variance of a random
variable is calculated by looking at the expected value of the squared differences:

Var[𝑋] = 𝐸
[
(𝑋 − 𝐸 [𝑋])2

]
= 𝐸 [𝑋2] − 𝐸 [𝑋]2. (2.6.14)

Here the equality follows by expanding (𝑋 − 𝐸 [𝑋])2 = 𝑋2 − 2𝑋𝐸 [𝑋] + 𝐸 [𝑋]2 and taking
expectations for each term. The square root of the variance is another useful quantity called
the standard deviation. While this and the variance convey the same information (either can
be calculated from the other), the standard deviation has the nice property that it is expressed
in the same units as the original quantity represented by the random variable.

Lastly, the variance of a function of a random variable is defined analogously as

Var𝑥∼𝑃 [ 𝑓 (𝑥)] = 𝐸𝑥∼𝑃 [ 𝑓 2 (𝑥)] − 𝐸𝑥∼𝑃 [ 𝑓 (𝑥)]2. (2.6.15)

Returning to our investment example, we can now compute the variance of the investment.
It is given by 0.5 · 0 + 0.4 · 22 + 0.1 · 102 − 1.82 = 8.36. For all intents and purposes this
is a risky investment. Note that by mathematical convention mean and variance are often
referenced as 𝜇 and 𝜎2. This is particularly the case whenever we use it to parametrize a
Gaussian distribution.

In the same way as we introduced expectations and variance for scalar random variables,
we can do so for vector-valued ones. Expectations are easy, since we can apply them el-
ementwise. For instance, 𝝁 def

= 𝐸x∼𝑃 [x] has coordinates 𝜇𝑖 = 𝐸x∼𝑃 [𝑥𝑖]. Covariances
are more complicated. We define them by taking expectations of the outer product of the
difference between random variables and their mean:

𝚺
def
= Covx∼𝑃 [x] = 𝐸x∼𝑃

[
(x − 𝝁) (x − 𝝁)>

]
. (2.6.16)

This matrix 𝚺 is referred to as the covariance matrix. An easy way to see its effect is to
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consider some vector v of the same size as x. It follows that

v>𝚺v = 𝐸x∼𝑃
[
v> (x − 𝝁) (x − 𝝁)>v

]
= Var𝑥∼𝑃 [v>x] . (2.6.17)

As such, 𝚺 allows us to compute the variance for any linear function of x by a simple
matrix multiplication. The off-diagonal elements tell us how correlated the coordinates
are: a value of 0 means no correlation, where a larger positive value means that they are
more strongly correlated.

2.6.7 Discussion
In machine learning, there are many things to be uncertain about! We can be uncertain
about the value of a label given an input. We can be uncertain about the estimated value of
a parameter. We can even be uncertain about whether data arriving at deployment is even
from the same distribution as the training data.

By aleatoric uncertainty, we mean uncertainty that is intrinsic to the problem, and due to
genuine randomness unaccounted for by the observed variables. By epistemic uncertainty,
we mean uncertainty over a model’s parameters, the sort of uncertainty that we can hope
to reduce by collecting more data. We might have epistemic uncertainty concerning the
probability that a coin turns up heads, but even once we know this probability, we are left
with aleatoric uncertainty about the outcome of any future toss. No matter how long we
watch someone tossing a fair coin, we will never be more or less than 50% certain that
the next toss will come up heads. These terms come from mechanical modeling, (see e.g.,
Der Kiureghian and Ditlevsen (2009) for a review on this aspect of uncertainty quantifica-
tion58 ). It is worth noting, however, that these terms constitute a slight abuse of language.
The term epistemic refers to anything concerning knowledge and thus, in the philosophical
sense, all uncertainty is epistemic.

We saw that sampling data from some unknown probability distribution can provide us with
information that can be used to estimate the parameters of the data generating distribution.
That said, the rate at which this is possible can be quite slow. In our coin tossing example
(and many others) we can do no better than to design estimators that converge at a rate of
1/√𝑛, where 𝑛 is the sample size (e.g., the number of tosses). This means that by going
from 10 to 1000 observations (usually a very achievable task) we see a tenfold reduction of
uncertainty, whereas the next 1000 observations help comparatively little, offering only a
1.41 times reduction. This is a persistent feature of machine learning: while there are often
easy gains, it takes a very large amount of data, and often with it an enormous amount of
computation, to make further gains. For an empirical review of this fact for large scale
language models see Revels et al. (2016).

We also sharpened our language and tools for statistical modeling. In the process of that
we learned about conditional probabilities and about one of the most important equations
in statistics—Bayes’ theorem. It is an effective tool for decoupling information conveyed
by data through a likelihood term 𝑃(𝐵 | 𝐴) that addresses how well observations 𝐵 match
a choice of parameters 𝐴, and a prior probability 𝑃(𝐴) which governs how plausible a par-
ticular choice of 𝐴 was in the first place. In particular, we saw how this rule can be applied

https://en.wikipedia.org/wiki/Uncertainty_quantification
https://en.wikipedia.org/wiki/Uncertainty_quantification
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to assign probabilities to diagnoses, based on the efficacy of the test and the prevalence of
the disease itself (i.e., our prior).

Lastly, we introduced a first set of nontrivial questions about the effect of a specific proba-
bility distribution, namely expectations and variances. While there are many more than just
linear and quadratic expectations for a probability distribution, these two already provide
a good deal of knowledge about the possible behavior of the distribution. For instance,
Chebyshev’s inequality 59 states that 𝑃( |𝑋 − 𝜇 | ≥ 𝑘𝜎) ≤ 1/𝑘2, where 𝜇 is the expecta-
tion, 𝜎2 is the variance of the distribution, and 𝑘 > 1 is a confidence parameter of our
choosing. It tells us that draws from a distribution lie with at least 50% probability within
a [−
√

2𝜎,
√

2𝜎] interval centered on the expectation.

2.6.8 Exercises
1. Give an example where observing more data can reduce the amount of uncertainty about

the outcome to an arbitrarily low level.

2. Give an example where observing more data will only reduce the amount of uncertainty
up to a point and then no further. Explain why this is the case and where you expect this
point to occur.

3. We empirically demonstrated convergence to the mean for the toss of a coin. Calculate
the variance of the estimate of the probability that we see a head after drawing 𝑛 samples.

1. How does the variance scale with the number of observations?

2. Use Chebyshev’s inequality to bound the deviation from the expectation.

3. How does it relate to the central limit theorem?

4. Assume that we draw 𝑚 samples 𝑥𝑖 from a probability distribution with zero mean and
unit variance. Compute the averages 𝑧𝑚

def
= 𝑚−1 ∑𝑚

𝑖=1 𝑥𝑖 . Can we apply Chebyshev’s
inequality for every 𝑧𝑚 independently? Why not?

5. Given two events with probability 𝑃(A) and 𝑃(B), compute upper and lower bounds
on 𝑃(A ∪ B) and 𝑃(A ∩ B). Hint: graph the situation using a Venn diagram60 .

6. Assume that we have a sequence of random variables, say 𝐴, 𝐵, and𝐶, where 𝐵 only de-
pends on 𝐴, and𝐶 only depends on 𝐵, can you simplify the joint probability 𝑃(𝐴, 𝐵, 𝐶)?
Hint: this is a Markov chain61 .

7. In Section 2.6.5, assume that the outcomes of the two tests are not independent. In
particular assume that either test on its own has a false positive rate of 10% and a false
negative rate of 1%. That is, assume that 𝑃(𝐷 = 1 | 𝐻 = 0) = 0.1 and that 𝑃(𝐷 =
0 | 𝐻 = 1) = 0.01. Moreover, assume that for 𝐻 = 1 (infected) the test outcomes are
conditionally independent, i.e., that 𝑃(𝐷1, 𝐷2 | 𝐻 = 1) = 𝑃(𝐷1 | 𝐻 = 1)𝑃(𝐷2 | 𝐻 =
1) but that for healthy patients the outcomes are coupled via 𝑃(𝐷1 = 𝐷2 = 1 | 𝐻 =
0) = 0.02.

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality
https://en.wikipedia.org/wiki/Venn_diagram
https://en.wikipedia.org/wiki/Markov_chain
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1. Work out the joint probability table for 𝐷1 and 𝐷2, given 𝐻 = 0 based on the infor-
mation you have so far.

2. Derive the probability that the patient is diseased (𝐻 = 1) after one test returns
positive. You can assume the same baseline probability 𝑃(𝐻 = 1) = 0.0015 as
before.

3. Derive the probability that the patient is diseased (𝐻 = 1) after both tests return
positive.

8. Assume that you are an asset manager for an investment bank and you have a choice of
stocks 𝑠𝑖 to invest in. Your portfolio needs to add up to 1 with weights 𝛼𝑖 for each stock.
The stocks have an average return 𝝁 = 𝐸s∼𝑃 [s] and covariance 𝚺 = Covs∼𝑃 [s].

1. Compute the expected return for a given portfolio 𝜶.

2. If you wanted to maximize the return of the portfolio, how should you choose your
investment?

3. Compute the variance of the portfolio.

4. Formulate an optimization problem of maximizing the return while keeping the vari-
ance constrained to an upper bound. This is the Nobel-Prize winningMarkovitz port-
folio62 (Mangram, 2013). To solve it you will need a quadratic programming solver,
something way beyond the scope of this book.

Discussions63 .

2.7 Documentation

While we cannot possibly introduce every single MXNet function and class (and the infor-
mation might become outdated quickly), the API documentation64 and additional tutorials
65 and examples provide such documentation. This section provides some guidance for
how to explore the MXNet API.

from mxnet import np

2.7.1 Functions and Classes in a Module
To know which functions and classes can be called in a module, we invoke the dir func-
tion. For instance, we can query all properties in the module for generating random num-
bers:

print(dir(np.random))

https://en.wikipedia.org/wiki/Markowitz_model
https://en.wikipedia.org/wiki/Markowitz_model
https://discuss.d2l.ai/t/36
https://mxnet.apache.org/versions/1.8.0/api
https://mxnet.apache.org/versions/1.8.0/api/python/docs/tutorials/


80 Preliminaries

['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__',
↩→'__name__', '__package__', '__spec__', '_mx_nd_np', 'beta', 'chisquare',
↩→'choice', 'exponential', 'gamma', 'gumbel', 'logistic', 'lognormal',
↩→'multinomial', 'multivariate_normal', 'normal', 'pareto', 'power', 'rand',
↩→'randint', 'randn', 'rayleigh', 'shuffle', 'uniform', 'weibull']

Generally, we can ignore functions that start and end with __ (special objects in Python) or
functions that start with a single _(usually internal functions). Based on the remaining func-
tion or attribute names, we might hazard a guess that this module offers various methods for
generating random numbers, including sampling from the uniform distribution (uniform),
normal distribution (normal), and multinomial distribution (multinomial).

2.7.2 Specific Functions and Classes
For specific instructions on how to use a given function or class, we can invoke the help
function. As an example, let’s explore the usage instructions for tensors’ ones function.

help(np.ones)

Help on function ones in module mxnet.numpy:

ones(shape, dtype=<class 'numpy.float32'>, order='C', ctx=None)

Return a new array of given shape and type, filled with ones.

This function currently only supports storing multi-dimensional data

in row-major (C-style).

Parameters

----------

shape : int or tuple of int

The shape of the empty array.

dtype : str or numpy.dtype, optional

An optional value type. Default is numpy.float32. Note that this

behavior is different from NumPy's ones function where float64

is the default value, because float32 is considered as the default

data type in deep learning.

order : {'C'}, optional, default: 'C'

How to store multi-dimensional data in memory, currently only row-major

(C-style) is supported.

ctx : Context, optional

An optional device context (default is the current default context).

↩→

Returns

-------

out : ndarray
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Array of ones with the given shape, dtype, and ctx.

Examples

--------

>>> np.ones(5)

array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)

array([1, 1, 1, 1, 1], dtype=int64)

>>> np.ones((2, 1))

array([[1.],

[1.]])

>>> s = (2,2)

>>> np.ones(s)

array([[1., 1.],

[1., 1.]])

From the documentation, we can see that the ones function creates a new tensor with the
specified shape and sets all the elements to the value of 1. Whenever possible, you should
run a quick test to confirm your interpretation:

np.ones(4)

[22:07:42] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([1., 1., 1., 1.])

In the Jupyter notebook, we can use ? to display the document in another window. For
example, list? will create content that is almost identical to help(list), displaying it
in a new browser window. In addition, if we use two question marks, such as list??, the
Python code implementing the function will also be displayed.

The official documentation provides plenty of descriptions and examples that are beyond
this book. We emphasize important use cases that will get you started quickly with prac-
tical problems, rather than completeness of coverage. We also encourage you to study the
source code of the libraries to see examples of high-quality implementations of production
code. By doing this you will become a better engineer in addition to becoming a better
scientist.

Discussions66 .

https://discuss.d2l.ai/t/38


3 Linear Neural Networks for Regression

Before we worry about making our neural networks deep, it will be helpful to implement
some shallow ones, for which the inputs connect directly to the outputs. This will prove im-
portant for a few reasons. First, rather than getting distracted by complicated architectures,
we can focus on the basics of neural network training, including parametrizing the output
layer, handling data, specifying a loss function, and training the model. Second, this class
of shallow networks happens to comprise the set of linear models, which subsumes many
classical methods of statistical prediction, including linear and softmax regression. Un-
derstanding these classical tools is pivotal because they are widely used in many contexts
and we will often need to use them as baselines when justifying the use of fancier archi-
tectures. This chapter will focus narrowly on linear regression and the next one will extend
our modeling repertoire by developing linear neural networks for classification.

3.1 Linear Regression

Regression problems pop up whenever we want to predict a numerical value. Common ex-
amples include predicting prices (of homes, stocks, etc.), predicting the length of stay (for
patients in the hospital), forecasting demand (for retail sales), among numerous others. Not
every prediction problem is one of classical regression. Later on, we will introduce classifi-
cation problems, where the goal is to predict membership among a set of categories.

As a running example, suppose that we wish to estimate the prices of houses (in dollars)
based on their area (in square feet) and age (in years). To develop a model for predicting
house prices, we need to get our hands on data, including the sales price, area, and age for
each home. In the terminology of machine learning, the dataset is called a training dataset
or training set, and each row (containing the data corresponding to one sale) is called an
example (or data point, instance, sample). The thing we are trying to predict (price) is
called a label (or target). The variables (age and area) upon which the predictions are
based are called features (or covariates).

%matplotlib inline
import math
import time

(continues on next page)
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(continued from previous page)

from mxnet import np
from d2l import mxnet as d2l

3.1.1 Basics
Linear regression is both the simplest and most popular among the standard tools for tack-
ling regression problems. Dating back to the dawn of the 19th century (Gauss, 1809, Leg-
endre, 1805), linear regression flows from a few simple assumptions. First, we assume that
the relationship between features x and target 𝑦 is approximately linear, i.e., that the con-
ditional mean 𝐸 [𝑌 | 𝑋 = x] can be expressed as a weighted sum of the features x. This
setup allows that the target value may still deviate from its expected value on account of
observation noise. Next, we can impose the assumption that any such noise is well behaved,
following a Gaussian distribution. Typically, we will use 𝑛 to denote the number of exam-
ples in our dataset. We use superscripts to enumerate samples and targets, and subscripts
to index coordinates. More concretely, x(𝑖) denotes the 𝑖th sample and 𝑥 (𝑖)𝑗 denotes its 𝑗 th
coordinate.

Model
At the heart of every solution is a model that describes how features can be transformed
into an estimate of the target. The assumption of linearity means that the expected value of
the target (price) can be expressed as a weighted sum of the features (area and age):

price = 𝑤area · area + 𝑤age · age + 𝑏. (3.1.1)

Here 𝑤area and 𝑤age are called weights, and 𝑏 is called a bias (or offset or intercept). The
weights determine the influence of each feature on our prediction. The bias determines the
value of the estimate when all features are zero. Even though we will never see any newly-
built homes with precisely zero area, we still need the bias because it allows us to express
all linear functions of our features (rather than restricting us to lines that pass through the
origin). Strictly speaking, (3.1.1) is an affine transformation of input features, which is
characterized by a linear transformation of features via a weighted sum, combined with a
translation via the added bias. Given a dataset, our goal is to choose the weights w and
the bias 𝑏 that, on average, make our model’s predictions fit the true prices observed in the
data as closely as possible.

In disciplines where it is common to focus on datasets with just a few features, explicitly
expressing models long-form, as in (3.1.1), is common. In machine learning, we usually
work with high-dimensional datasets, where it is more convenient to employ compact lin-
ear algebra notation. When our inputs consist of 𝑑 features, we can assign each an index
(between 1 and 𝑑) and express our prediction 𝑦̂ (in general the “hat” symbol denotes an
estimate) as

𝑦̂ = 𝑤1𝑥1 + · · · + 𝑤𝑑𝑥𝑑 + 𝑏. (3.1.2)
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Collecting all features into a vector x ∈ R𝑑 and all weights into a vector w ∈ R𝑑 , we can
express our model compactly via the dot product between w and x:

𝑦̂ = w>x + 𝑏. (3.1.3)

In (3.1.3), the vector x corresponds to the features of a single example. We will often
find it convenient to refer to features of our entire dataset of 𝑛 examples via the design
matrix X ∈ R𝑛×𝑑 . Here, X contains one row for every example and one column for every
feature. For a collection of features X, the predictions ŷ ∈ R𝑛 can be expressed via the
matrix–vector product:

ŷ = Xw + 𝑏, (3.1.4)

where broadcasting (Section 2.1.4) is applied during the summation. Given features of a
training dataset X and corresponding (known) labels y, the goal of linear regression is to
find the weight vectorw and the bias term 𝑏 such that, given features of a new data example
sampled from the same distribution as X, the new example’s label will (in expectation) be
predicted with the smallest error.

Even if we believe that the best model for predicting 𝑦 given x is linear, we would not
expect to find a real-world dataset of 𝑛 examples where 𝑦 (𝑖) exactly equals w>x(𝑖) + 𝑏
for all 1 ≤ 𝑖 ≤ 𝑛. For example, whatever instruments we use to observe the features X
and labels y, there might be a small amount of measurement error. Thus, even when we
are confident that the underlying relationship is linear, we will incorporate a noise term to
account for such errors.

Before we can go about searching for the best parameters (or model parameters) w and 𝑏,
we will need two more things: (i) a measure of the quality of some given model; and (ii) a
procedure for updating the model to improve its quality.

Loss Function
Naturally, fitting our model to the data requires that we agree on some measure of fitness
(or, equivalently, of unfitness). Loss functions quantify the distance between the real and
predicted values of the target. The loss will usually be a nonnegative number where smaller
values are better and perfect predictions incur a loss of 0. For regression problems, the most
common loss function is the squared error. When our prediction for an example 𝑖 is 𝑦̂ (𝑖)
and the corresponding true label is 𝑦 (𝑖) , the squared error is given by:

𝑙 (𝑖) (w, 𝑏) = 1
2

(
𝑦̂ (𝑖) − 𝑦 (𝑖)

)2
. (3.1.5)

The constant 1
2 makes no real difference but proves to be notationally convenient, since it

cancels out when we take the derivative of the loss. Because the training dataset is given
to us, and thus is out of our control, the empirical error is only a function of the model
parameters. In Fig. 3.1.1, we visualize the fit of a linear regression model in a problem
with one-dimensional inputs.

Note that large differences between estimates 𝑦̂ (𝑖) and targets 𝑦 (𝑖) lead to even larger contri-
butions to the loss, due to its quadratic form (this quadraticity can be a double-edge sword;
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tFig. 3.1.1 Fitting a linear regression model to one-dimensional data.

while it encourages the model to avoid large errors it can also lead to excessive sensitivity
to anomalous data). To measure the quality of a model on the entire dataset of 𝑛 examples,
we simply average (or equivalently, sum) the losses on the training set:

𝐿 (w, 𝑏) = 1
𝑛

𝑛∑
𝑖=1

𝑙 (𝑖) (w, 𝑏) = 1
𝑛

𝑛∑
𝑖=1

1
2

(
w>x(𝑖) + 𝑏 − 𝑦 (𝑖)

)2
. (3.1.6)

When training the model, we seek parameters (w∗, 𝑏∗) that minimize the total loss across
all training examples:

w∗, 𝑏∗ = argmin
w,𝑏

𝐿 (w, 𝑏). (3.1.7)

Analytic Solution
Unlike most of the models that we will cover, linear regression presents us with a surpris-
ingly easy optimization problem. In particular, we can find the optimal parameters (as
assessed on the training data) analytically by applying a simple formula as follows. First,
we can subsume the bias 𝑏 into the parameter w by appending a column to the design ma-
trix consisting of all 1s. Then our prediction problem is to minimize ‖y −Xw‖2. As long
as the design matrix X has full rank (no feature is linearly dependent on the others), then
there will be just one critical point on the loss surface and it corresponds to the minimum
of the loss over the entire domain. Taking the derivative of the loss with respect to w and
setting it equal to zero yields:

𝜕w‖y −Xw‖2 = 2X> (Xw − y) = 0 and hence X>y = X>Xw. (3.1.8)

Solving for w provides us with the optimal solution for the optimization problem. Note
that this solution

w∗ = (X>X)−1X>y (3.1.9)

will only be unique when the matrixX>X is invertible, i.e., when the columns of the design
matrix are linearly independent (Golub and Van Loan, 1996).

While simple problems like linear regression may admit analytic solutions, you should
not get used to such good fortune. Although analytic solutions allow for nice mathematical
analysis, the requirement of an analytic solution is so restrictive that it would exclude almost
all exciting aspects of deep learning.
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Minibatch Stochastic Gradient Descent
Fortunately, even in cases where we cannot solve the models analytically, we can still of-
ten train models effectively in practice. Moreover, for many tasks, those hard-to-optimize
models turn out to be so much better that figuring out how to train them ends up being well
worth the trouble.

The key technique for optimizing nearly every deep learning model, and which we will
call upon throughout this book, consists of iteratively reducing the error by updating the
parameters in the direction that incrementally lowers the loss function. This algorithm is
called gradient descent.

The most naive application of gradient descent consists of taking the derivative of the loss
function, which is an average of the losses computed on every single example in the dataset.
In practice, this can be extremely slow: we must pass over the entire dataset before making
a single update, even if the update steps might be very powerful (Liu and Nocedal, 1989).
Even worse, if there is a lot of redundancy in the training data, the benefit of a full update
is limited.

The other extreme is to consider only a single example at a time and to take update steps
based on one observation at a time. The resulting algorithm, stochastic gradient descent
(SGD) can be an effective strategy (Bottou, 2010), even for large datasets. Unfortunately,
SGD has drawbacks, both computational and statistical. One problem arises from the fact
that processors are a lot faster multiplying and adding numbers than they are at moving data
from main memory to processor cache. It is up to an order of magnitude more efficient
to perform a matrix–vector multiplication than a corresponding number of vector–vector
operations. Thismeans that it can take a lot longer to process one sample at a time compared
to a full batch. A second problem is that some of the layers, such as batch normalization
(to be described in Section 8.5), only work well when we have access to more than one
observation at a time.

The solution to both problems is to pick an intermediate strategy: rather than taking a full
batch or only a single sample at a time, we take aminibatch of observations (Li et al., 2014).
The specific choice of the size of the said minibatch depends on many factors, such as the
amount of memory, the number of accelerators, the choice of layers, and the total dataset
size. Despite all that, a number between 32 and 256, preferably a multiple of a large power
of 2, is a good start. This leads us to minibatch stochastic gradient descent.

In its most basic form, in each iteration 𝑡, we first randomly sample a minibatch B𝑡 consist-
ing of a fixed number |B| of training examples. We then compute the derivative (gradient)
of the average loss on the minibatch with respect to the model parameters. Finally, we mul-
tiply the gradient by a predetermined small positive value 𝜂, called the learning rate, and
subtract the resulting term from the current parameter values. We can express the update
as follows:

(w, 𝑏) ← (w, 𝑏) − 𝜂

|B|
∑
𝑖∈B𝑡

𝜕(w,𝑏) 𝑙
(𝑖) (w, 𝑏). (3.1.10)

In summary, minibatch SGD proceeds as follows: (i) initialize the values of the model
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parameters, typically at random; (ii) iteratively sample random minibatches from the data,
updating the parameters in the direction of the negative gradient. For quadratic losses and
affine transformations, this has a closed-form expansion:

w← w − 𝜂

|B|
∑
𝑖∈B𝑡

𝜕w𝑙
(𝑖) (w, 𝑏) = w − 𝜂

|B|
∑
𝑖∈B𝑡

x(𝑖)
(
w>x(𝑖) + 𝑏 − 𝑦 (𝑖)

)
𝑏 ← 𝑏 − 𝜂

|B|
∑
𝑖∈B𝑡

𝜕𝑏𝑙
(𝑖) (w, 𝑏) = 𝑏 − 𝜂

|B|
∑
𝑖∈B𝑡

(
w>x(𝑖) + 𝑏 − 𝑦 (𝑖)

)
.

(3.1.11)

Since we pick a minibatch B we need to normalize by its size |B|. Frequently minibatch
size and learning rate are user-defined. Such tunable parameters that are not updated in the
training loop are called hyperparameters. They can be tuned automatically by a number
of techniques, such as Bayesian optimization (Frazier, 2018). In the end, the quality of the
solution is typically assessed on a separate validation dataset (or validation set).

After training for some predetermined number of iterations (or until some other stopping
criterion is met), we record the estimatedmodel parameters, denoted ŵ, 𝑏̂. Note that even if
our function is truly linear and noiseless, these parameters will not be the exact minimizers
of the loss, nor even deterministic. Although the algorithm converges slowly towards the
minimizers it typically will not find them exactly in a finite number of steps. Moreover,
the minibatches B used for updating the parameters are chosen at random. This breaks
determinism.

Linear regression happens to be a learning problem with a global minimum (whenever X
is full rank, or equivalently, whenever X>X is invertible). However, the loss surfaces for
deep networks contain many saddle points and minima. Fortunately, we typically do not
care about finding an exact set of parameters but merely any set of parameters that leads
to accurate predictions (and thus low loss). In practice, deep learning practitioners seldom
struggle to find parameters that minimize the loss on training sets (Frankle and Carbin,
2018, Izmailov et al., 2018). The more formidable task is to find parameters that lead
to accurate predictions on previously unseen data, a challenge called generalization. We
return to these topics throughout the book.

Predictions

Given the model ŵ>x + 𝑏̂, we can now make predictions for a new example, e.g., pre-
dicting the sales price of a previously unseen house given its area 𝑥1 and age 𝑥2. Deep
learning practitioners have taken to calling the prediction phase inference but this is a bit of
a misnomer—inference refers broadly to any conclusion reached on the basis of evidence,
including both the values of the parameters and the likely label for an unseen instance. If
anything, in the statistics literature inference more often denotes parameter inference and
this overloading of terminology creates unnecessary confusion when deep learning prac-
titioners talk to statisticians. In the following we will stick to prediction whenever possi-
ble.

3.1.2 Vectorization for Speed
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When training our models, we typically want to process whole minibatches of examples si-
multaneously. Doing this efficiently requires that we vectorize the calculations and leverage
fast linear algebra libraries rather than writing costly for-loops in Python.

To see why this matters so much, let’s consider twomethods for adding vectors. To start, we
instantiate two 10,000-dimensional vectors containing all 1s. In the first method, we loop
over the vectors with a Python for-loop. In the second, we rely on a single call to +.

n = 10000
a = np.ones(n)
b = np.ones(n)

[22:06:52] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Now we can benchmark the workloads. First, we add them, one coordinate at a time, using
a for-loop.

c = np.zeros(n)
t = time.time()
for i in range(n):

c[i] = a[i] + b[i]
f'{time.time() - t:.5f} sec'

'4.71889 sec'

Alternatively, we rely on the reloaded + operator to compute the elementwise sum.

t = time.time()
d = a + b
f'{time.time() - t:.5f} sec'

'0.00053 sec'

The second method is dramatically faster than the first. Vectorizing code often yields order-
of-magnitude speedups. Moreover, we push more of the mathematics to the library so we
do not have to write as many calculations ourselves, reducing the potential for errors and
increasing portability of the code.

3.1.3 The Normal Distribution and Squared Loss
So far we have given a fairly functional motivation of the squared loss objective: the optimal
parameters return the conditional expectation 𝐸 [𝑌 | 𝑋] whenever the underlying pattern
is truly linear, and the loss assigns large penalties for outliers. We can also provide a more
formal motivation for the squared loss objective by making probabilistic assumptions about
the distribution of noise.
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Linear regression was invented at the turn of the 19th century. While it has long been
debated whether Gauss or Legendre first thought up the idea, it was Gauss who also dis-
covered the normal distribution (also called the Gaussian). It turns out that the normal
distribution and linear regression with squared loss share a deeper connection than com-
mon parentage.

To begin, recall that a normal distribution with mean 𝜇 and variance 𝜎2 (standard deviation
𝜎) is given as

𝑝(𝑥) = 1
√

2𝜋𝜎2
exp

(
− 1

2𝜎2 (𝑥 − 𝜇)
2
)
. (3.1.12)

Below we define a function to compute the normal distribution.

def normal(x, mu, sigma):
p = 1 / math.sqrt(2 * math.pi * sigma**2)
return p * np.exp(-0.5 * (x - mu)**2 / sigma**2)

We can now visualize the normal distributions.

# Use NumPy again for visualization
x = np.arange(-7, 7, 0.01)

# Mean and standard deviation pairs
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x.asnumpy(), [normal(x, mu, sigma).asnumpy() for mu, sigma in params],
↩→ xlabel='x',

ylabel='p(x)', figsize=(4.5, 2.5),
legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])

Note that changing the mean corresponds to a shift along the 𝑥-axis, and increasing the
variance spreads the distribution out, lowering its peak.

One way to motivate linear regression with squared loss is to assume that observations arise
from noisymeasurements, where the noise 𝜖 follows the normal distributionN(0, 𝜎2):

𝑦 = w>x + 𝑏 + 𝜖 where 𝜖 ∼ N(0, 𝜎2). (3.1.13)

Thus, we can now write out the likelihood of seeing a particular 𝑦 for a given x via

𝑃(𝑦 | x) = 1
√

2𝜋𝜎2
exp

(
− 1

2𝜎2 (𝑦 −w
>x − 𝑏)2

)
. (3.1.14)
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As such, the likelihood factorizes. According to the principle of maximum likelihood, the
best values of parameters w and 𝑏 are those that maximize the likelihood of the entire
dataset:

𝑃(y | X) =
𝑛∏
𝑖=1

𝑝(𝑦 (𝑖) | x(𝑖) ). (3.1.15)

The equality follows since all pairs (x(𝑖) , 𝑦 (𝑖) ) were drawn independently of each other. Es-
timators chosen according to the principle of maximum likelihood are calledmaximum like-
lihood estimators. While, maximizing the product of many exponential functions, might
look difficult, we can simplify things significantly, without changing the objective, by max-
imizing the logarithm of the likelihood instead. For historical reasons, optimizations are
more often expressed as minimization rather thanmaximization. So, without changing any-
thing, we canminimize the negative log-likelihood, whichwe can express as follows:

− log 𝑃(y | X) =
𝑛∑
𝑖=1

1
2

log(2𝜋𝜎2) + 1
2𝜎2

(
𝑦 (𝑖) −w>x(𝑖) − 𝑏

)2
. (3.1.16)

If we assume that 𝜎 is fixed, we can ignore the first term, because it does not depend on w

or 𝑏. The second term is identical to the squared error loss introduced earlier, except for
the multiplicative constant 1

𝜎2 . Fortunately, the solution does not depend on 𝜎 either. It
follows that minimizing the mean squared error is equivalent to the maximum likelihood
estimation of a linear model under the assumption of additive Gaussian noise.

3.1.4 Linear Regression as a Neural Network
While linear models are not sufficiently rich to express the many complicated networks
that we will introduce in this book, (artificial) neural networks are rich enough to subsume
linear models as networks in which every feature is represented by an input neuron, all of
which are connected directly to the output.

Fig. 3.1.2 depicts linear regression as a neural network. The diagram highlights the con-
nectivity pattern, such as how each input is connected to the output, but not the specific
values taken by the weights or biases.

tFig. 3.1.2 Linear regression is a single-layer neural network.

The inputs are 𝑥1, . . . , 𝑥𝑑 . We refer to 𝑑 as the number of inputs or the feature dimensional-
ity in the input layer. The output of the network is 𝑜1. Because we are just trying to predict
a single numerical value, we have only one output neuron. Note that the input values are all
given. There is just a single computed neuron. In summary, we can think of linear regres-
sion as a single-layer fully connected neural network. We will encounter networks with far
more layers in later chapters.
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Biology
Because linear regression predates computational neuroscience, it might seem anachro-
nistic to describe linear regression in terms of neural networks. Nonetheless, they were a
natural place to start when the cyberneticists and neurophysiologists Warren McCulloch
and Walter Pitts began to develop models of artificial neurons. Consider the cartoonish
picture of a biological neuron in Fig. 3.1.3, consisting of dendrites (input terminals), the
nucleus (CPU), the axon (output wire), and the axon terminals (output terminals), enabling
connections to other neurons via synapses.

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

NucleustFig. 3.1.3 The real neuron (source: “Anatomy and Physiology” by the US National Cancer
Institute’s Surveillance, Epidemiology and End Results (SEER) Program).

Information 𝑥𝑖 arriving from other neurons (or environmental sensors) is received in the
dendrites. In particular, that information is weighted by synaptic weights 𝑤𝑖 , determining
the effect of the inputs, e.g., activation or inhibition via the product 𝑥𝑖𝑤𝑖 . The weighted
inputs arriving from multiple sources are aggregated in the nucleus as a weighted sum 𝑦 =∑
𝑖 𝑥𝑖𝑤𝑖 + 𝑏, possibly subject to some nonlinear postprocessing via a function 𝜎(𝑦). This

information is then sent via the axon to the axon terminals, where it reaches its destination
(e.g., an actuator such as a muscle) or it is fed into another neuron via its dendrites.

Certainly, the high-level idea that many such units could be combined, provided they have
the correct connectivity and learning algorithm, to produce far more interesting and com-
plex behavior than any one neuron alone could express arises from our study of real bi-
ological neural systems. At the same time, most research in deep learning today draws
inspiration from a much wider source. We invoke Russell and Norvig (2016) who pointed
out that although airplanes might have been inspired by birds, ornithology has not been
the primary driver of aeronautics innovation for some centuries. Likewise, inspiration in
deep learning these days comes in equal or greater measure from mathematics, linguistics,
psychology, statistics, computer science, and many other fields.

3.1.5 Summary
In this section, we introduced traditional linear regression, where the parameters of a linear
function are chosen to minimize squared loss on the training set. We also motivated this
choice of objective both via some practical considerations and through an interpretation
of linear regression as maximimum likelihood estimation under an assumption of linearity
andGaussian noise. After discussing both computational considerations and connections to
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statistics, we showed how such linear models could be expressed as simple neural networks
where the inputs are directly wired to the output(s). While we will soon move past linear
models altogether, they are sufficient to introduce most of the components that all of our
models require: parametric forms, differentiable objectives, optimization via minibatch
stochastic gradient descent, and ultimately, evaluation on previously unseen data.

3.1.6 Exercises
1. Assume that we have some data 𝑥1, . . . , 𝑥𝑛 ∈ R. Our goal is to find a constant 𝑏 such

that
∑
𝑖 (𝑥𝑖 − 𝑏)2 is minimized.

1. Find an analytic solution for the optimal value of 𝑏.

2. How does this problem and its solution relate to the normal distribution?

3. What if we change the loss from
∑
𝑖 (𝑥𝑖 − 𝑏)2 to

∑
𝑖 |𝑥𝑖 − 𝑏 |? Can you find the optimal

solution for 𝑏?

2. Prove that the affine functions that can be expressed by x>w+ 𝑏 are equivalent to linear
functions on (x, 1).

3. Assume that you want to find quadratic functions of x, i.e., 𝑓 (x) = 𝑏 + ∑
𝑖 𝑤𝑖𝑥𝑖 +∑

𝑗≤𝑖 𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗 . How would you formulate this in a deep network?

4. Recall that one of the conditions for the linear regression problem to be solvable was
that the design matrix X>X has full rank.

1. What happens if this is not the case?

2. How could you fix it? What happens if you add a small amount of coordinate-wise
independent Gaussian noise to all entries of X?

3. What is the expected value of the design matrix X>X in this case?

4. What happens with stochastic gradient descent when X>X does not have full rank?

5. Assume that the noise model governing the additive noise 𝜖 is the exponential distribu-
tion. That is, 𝑝(𝜖) = 1

2 exp(−|𝜖 |).

1. Write out the negative log-likelihood of the data under the model − log 𝑃(y | X).

2. Can you find a closed form solution?

3. Suggest a minibatch stochastic gradient descent algorithm to solve this problem.
What could possibly go wrong (hint: what happens near the stationary point as we
keep on updating the parameters)? Can you fix this?

6. Assume that we want to design a neural network with two layers by composing two
linear layers. That is, the output of the first layer becomes the input of the second layer.
Why would such a naive composition not work?

7. What happens if you want to use regression for realistic price estimation of houses or
stock prices?
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68

69

1. Show that the additive Gaussian noise assumption is not appropriate. Hint: can we
have negative prices? What about fluctuations?

2. Whywould regression to the logarithm of the price bemuch better, i.e., 𝑦 = log price?

3. What do you need to worry about when dealing with pennystock, i.e., stock with very
low prices? Hint: can you trade at all possible prices? Why is this a bigger problem
for cheap stock? For more information review the celebrated Black–Scholes model
for option pricing (Black and Scholes, 1973).

8. Suppose we want to use regression to estimate the number of apples sold in a grocery
store.

1. What are the problems with a Gaussian additive noise model? Hint: you are selling
apples, not oil.

2. The Poisson distribution 67 captures distributions over counts. It is given by 𝑝(𝑘 |
𝜆) = 𝜆𝑘𝑒−𝜆/𝑘!. Here 𝜆 is the rate function and 𝑘 is the number of events you see.
Prove that 𝜆 is the expected value of counts 𝑘 .

3. Design a loss function associated with the Poisson distribution.

4. Design a loss function for estimating log𝜆 instead.

Discussions68 .

3.2 Object-Oriented Design for Implementation

In our introduction to linear regression, we walked through various components including
the data, the model, the loss function, and the optimization algorithm. Indeed, linear re-
gression is one of the simplest machine learning models. Training it, however, uses many of
the same components that other models in this book require. Therefore, before diving into
the implementation details it is worth designing some of the APIs that we use throughout.
Treating components in deep learning as objects, we can start by defining classes for these
objects and their interactions. This object-oriented design for implementation will greatly
streamline the presentation and you might even want to use it in your projects.

Inspired by open-source libraries such as PyTorch Lightning 69 , at a high level we wish
to have three classes: (i) Module contains models, losses, and optimization methods; (ii)
DataModule provides data loaders for training and validation; (iii) both classes are com-
bined using the Trainer class, which allows us to train models on a variety of hardware
platforms. Most code in this book adapts Module and DataModule. We will touch upon
the Trainer class only when we discuss GPUs, CPUs, parallel training, and optimization
algorithms.

https://en.wikipedia.org/wiki/Poisson_distribution
https://discuss.d2l.ai/t/40
https://www.pytorchlightning.ai/
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import time
import numpy as np
from mxnet.gluon import nn
from d2l import mxnet as d2l

3.2.1 Utilities
We need a few utilities to simplify object-oriented programming in Jupyter notebooks. One
of the challenges is that class definitions tend to be fairly long blocks of code. Notebook
readability demands short code fragments, interspersed with explanations, a requirement
incompatible with the style of programming common for Python libraries. The first utility
function allows us to register functions asmethods in a class after the class has been created.
In fact, we can do so even after we have created instances of the class! It allows us to split
the implementation of a class into multiple code blocks.

def add_to_class(Class): #@save
"""Register functions as methods in created class."""
def wrapper(obj):

setattr(Class, obj.__name__, obj)
return wrapper

Let’s have a quick look at how to use it. We plan to implement a class A with a method do.
Instead of having code for both A and do in the same code block, we can first declare the
class A and create an instance a.

class A:
def __init__(self):

self.b = 1

a = A()

Next we define the method do as we normally would, but not in class A’s scope. Instead,
we decorate this method by add_to_class with class A as its argument. In doing so, the
method is able to access the member variables of A just as we would expect had it been
included as part of A’s definition. Let’s see what happens when we invoke it for the instance
a.

@add_to_class(A)
def do(self):

print('Class attribute "b" is', self.b)

a.do()

Class attribute "b" is 1

The second one is a utility class that saves all arguments in a class’s __init__ method
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as class attributes. This allows us to extend constructor call signatures implicitly without
additional code.

class HyperParameters: #@save
"""The base class of hyperparameters."""
def save_hyperparameters(self, ignore=[]):

raise NotImplemented

We defer its implementation into Section B.7. To use it, we define our class that inherits
from HyperParameters and calls save_hyperparameters in the __init__method.

# Call the fully implemented HyperParameters class saved in d2l
class B(d2l.HyperParameters):

def __init__(self, a, b, c):
self.save_hyperparameters(ignore=['c'])
print('self.a =', self.a, 'self.b =', self.b)
print('There is no self.c =', not hasattr(self, 'c'))

b = B(a=1, b=2, c=3)

self.a = 1 self.b = 2
There is no self.c = True

The final utility allows us to plot experiment progress interactively while it is going on.
In deference to the much more powerful (and complex) TensorBoard 70 we name it Pro-
gressBoard. The implementation is deferred to Section B.7. For now, let’s simply see it
in action.

The draw method plots a point (x, y) in the figure, with label specified in the legend.
The optional every_n smooths the line by only showing 1/𝑛 points in the figure. Their
values are averaged from the 𝑛 neighbor points in the original figure.

class ProgressBoard(d2l.HyperParameters): #@save
"""The board that plots data points in animation."""
def __init__(self, xlabel=None, ylabel=None, xlim=None,

ylim=None, xscale='linear', yscale='linear',
ls=['-', '--', '-.', ':'], colors=['C0', 'C1', 'C2', 'C3'],
fig=None, axes=None, figsize=(3.5, 2.5), display=True):

self.save_hyperparameters()

def draw(self, x, y, label, every_n=1):
raise NotImplemented

In the following example, we draw sin and coswith a different smoothness. If you run this
code block, you will see the lines grow in animation.

board = d2l.ProgressBoard('x')
for x in np.arange(0, 10, 0.1):

board.draw(x, np.sin(x), 'sin', every_n=2)
board.draw(x, np.cos(x), 'cos', every_n=10)

https://www.tensorflow.org/tensorboard
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3.2.2 Models
The Module class is the base class of all models we will implement. At the very least
we need three methods. The first, __init__, stores the learnable parameters, the train-
ing_stepmethod accepts a data batch to return the loss value, and finally, configure_optimizers
returns the optimization method, or a list of them, that is used to update the learnable pa-
rameters. Optionally we can define validation_step to report the evaluation measures.
Sometimes we put the code for computing the output into a separate forward method to
make it more reusable.

class Module(nn.Block, d2l.HyperParameters): #@save
"""The base class of models."""
def __init__(self, plot_train_per_epoch=2, plot_valid_per_epoch=1):

super().__init__()
self.save_hyperparameters()
self.board = ProgressBoard()

def loss(self, y_hat, y):
raise NotImplementedError

def forward(self, X):
assert hasattr(self, 'net'), 'Neural network is defined'
return self.net(X)

def plot(self, key, value, train):
"""Plot a point in animation."""
assert hasattr(self, 'trainer'), 'Trainer is not inited'
self.board.xlabel = 'epoch'
if train:

x = self.trainer.train_batch_idx / \
self.trainer.num_train_batches

n = self.trainer.num_train_batches / \
self.plot_train_per_epoch

else:
x = self.trainer.epoch + 1
n = self.trainer.num_val_batches / \

self.plot_valid_per_epoch
self.board.draw(x, value.asnumpy(), (

'train_' if train else 'val_') + key, every_n=int(n))
def training_step(self, batch):

l = self.loss(self(*batch[:-1]), batch[-1])
self.plot('loss', l, train=True)

(continues on next page)
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(continued from previous page)

return l

def validation_step(self, batch):
l = self.loss(self(*batch[:-1]), batch[-1])
self.plot('loss', l, train=False)

def configure_optimizers(self):
raise NotImplementedError

You may notice that Module is a subclass of nn.Block, the base class of neural networks
in Gluon. It provides convenient features for handling neural networks. For example, if
we define a forward method, such as forward(self, X), then for an instance a we can
invoke this method by a(X). This works since it calls the forward method in the built-in
__call__ method. You can find more details and examples about nn.Block in Section
6.1.

3.2.3 Data
The DataModule class is the base class for data. Quite frequently the __init__ method is
used to prepare the data. This includes downloading and preprocessing if needed. The
train_dataloader returns the data loader for the training dataset. A data loader is a
(Python) generator that yields a data batch each time it is used. This batch is then fed
into the training_step method of Module to compute the loss. There is an optional
val_dataloader to return the validation dataset loader. It behaves in the same manner,
except that it yields data batches for the validation_step method in Module.

class DataModule(d2l.HyperParameters): #@save
"""The base class of data."""
def __init__(self, root='../data', num_workers=4):

self.save_hyperparameters()

def get_dataloader(self, train):
raise NotImplementedError

def train_dataloader(self):
return self.get_dataloader(train=True)

def val_dataloader(self):
return self.get_dataloader(train=False)

3.2.4 Training
The Trainer class trains the learnable parameters in the Module class with data specified
in DataModule. The key method is fit, which accepts two arguments: model, an instance
of Module, and data, an instance of DataModule. It then iterates over the entire dataset
max_epochs times to train the model. As before, we will defer the implementation of this
method to later chapters.
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class Trainer(d2l.HyperParameters): #@save
"""The base class for training models with data."""
def __init__(self, max_epochs, num_gpus=0, gradient_clip_val=0):

self.save_hyperparameters()
assert num_gpus == 0, 'No GPU support yet'

def prepare_data(self, data):
self.train_dataloader = data.train_dataloader()
self.val_dataloader = data.val_dataloader()
self.num_train_batches = len(self.train_dataloader)
self.num_val_batches = (len(self.val_dataloader)

if self.val_dataloader is not None else 0)

def prepare_model(self, model):
model.trainer = self
model.board.xlim = [0, self.max_epochs]
self.model = model

def fit(self, model, data):
self.prepare_data(data)
self.prepare_model(model)
self.optim = model.configure_optimizers()
self.epoch = 0
self.train_batch_idx = 0
self.val_batch_idx = 0
for self.epoch in range(self.max_epochs):

self.fit_epoch()

def fit_epoch(self):
raise NotImplementedError

3.2.5 Summary
To highlight the object-oriented design for our future deep learning implementation, the
above classes simply show how their objects store data and interact with each other. We
will keep enriching implementations of these classes, such as via @add_to_class, in the
rest of the book. Moreover, these fully implemented classes are saved in the D2L library71

, a lightweight toolkit that makes structured modeling for deep learning easy. In particular,
it facilitates reusing many components between projects without changing much at all. For
instance, we can replace just the optimizer, just the model, just the dataset, etc.; this degree
of modularity pays dividends throughout the book in terms of conciseness and simplicity
(this is why we added it) and it can do the same for your own projects.

3.2.6 Exercises
1. Locate full implementations of the above classes that are saved in the D2L library 72

. We strongly recommend that you look at the implementation in detail once you have
gained some more familiarity with deep learning modeling.

2. Remove the save_hyperparameters statement in the B class. Can you still print self.a

https://github.com/d2l-ai/d2l-en/tree/master/d2l
https://github.com/d2l-ai/d2l-en/tree/master/d2l
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73

and self.b? Optional: if you have dived into the full implementation of the HyperPa-
rameters class, can you explain why?

Discussions73 .

3.3 Synthetic Regression Data

Machine learning is all about extracting information from data. So you might wonder,
what could we possibly learn from synthetic data? While we might not care intrinsically
about the patterns that we ourselves baked into an artificial data generating model, such
datasets are nevertheless useful for didactic purposes, helping us to evaluate the properties
of our learning algorithms and to confirm that our implementations work as expected. For
example, if we create data for which the correct parameters are known a priori, then we
can check that our model can in fact recover them.

%matplotlib inline
import random
from mxnet import gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

3.3.1 Generating the Dataset
For this example, we will work in low dimension for succinctness. The following code
snippet generates 1000 examples with 2-dimensional features drawn from a standard nor-
mal distribution. The resulting design matrixX belongs toR1000×2. We generate each label
by applying a ground truth linear function, corrupting them via additive noise 𝝐 , drawn in-
dependently and identically for each example:

y = Xw + 𝑏 + 𝝐 . (3.3.1)

For convenience we assume that 𝝐 is drawn from a normal distribution with mean 𝜇 = 0
and standard deviation 𝜎 = 0.01. Note that for object-oriented design we add the code to
the __init__method of a subclass of d2l.DataModule (introduced in Section 3.2.3). It is
good practice to allow the setting of any additional hyperparameters. We accomplish this
with save_hyperparameters(). The batch_size will be determined later.

class SyntheticRegressionData(d2l.DataModule): #@save
"""Synthetic data for linear regression."""
def __init__(self, w, b, noise=0.01, num_train=1000, num_val=1000,

batch_size=32):
super().__init__()
self.save_hyperparameters()
n = num_train + num_val

(continues on next page)

https://discuss.d2l.ai/t/6645
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(continued from previous page)

self.X = np.random.randn(n, len(w))
noise = np.random.randn(n, 1) * noise
self.y = np.dot(self.X, w.reshape((-1, 1))) + b + noise

Below, we set the true parameters to w = [2,−3.4]> and 𝑏 = 4.2. Later, we can check our
estimated parameters against these ground truth values.

data = SyntheticRegressionData(w=np.array([2, -3.4]), b=4.2)

[22:03:54] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Each row in features consists of a vector in R2 and each row in labels is a scalar. Let’s
have a look at the first entry.

print('features:', data.X[0],'\nlabel:', data.y[0])

features: [2.2122064 1.1630787]
label: [4.684836]

3.3.2 Reading the Dataset
Training machine learning models often requires multiple passes over a dataset, grabbing
one minibatch of examples at a time. This data is then used to update the model. To
illustrate how this works, we implement the get_dataloader method, registering it in
the SyntheticRegressionData class via add_to_class (introduced in Section 3.2.1). It
takes a batch size, a matrix of features, and a vector of labels, and generates minibatches of
size batch_size. As such, each minibatch consists of a tuple of features and labels. Note
that we need to be mindful of whether we’re in training or validation mode: in the former,
we will want to read the data in random order, whereas for the latter, being able to read data
in a pre-defined order may be important for debugging purposes.

@d2l.add_to_class(SyntheticRegressionData)
def get_dataloader(self, train):

if train:
indices = list(range(0, self.num_train))
# The examples are read in random order
random.shuffle(indices)

else:
indices = list(range(self.num_train, self.num_train+self.num_val))

for i in range(0, len(indices), self.batch_size):
batch_indices = np.array(indices[i: i+self.batch_size])
yield self.X[batch_indices], self.y[batch_indices]

To build some intuition, let’s inspect the first minibatch of data. Each minibatch of fea-
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tures provides us with both its size and the dimensionality of input features. Likewise, our
minibatch of labels will have a matching shape given by batch_size.

X, y = next(iter(data.train_dataloader()))
print('X shape:', X.shape, '\ny shape:', y.shape)

X shape: (32, 2)
y shape: (32, 1)

While seemingly innocuous, the invocation of iter(data.train_dataloader()) illus-
trates the power of Python’s object-oriented design. Note that we added a method to the
SyntheticRegressionData class after creating the data object. Nonetheless, the object
benefits from the ex post facto addition of functionality to the class.

Throughout the iteration we obtain distinct minibatches until the entire dataset has been
exhausted (try this). While the iteration implemented above is good for didactic purposes,
it is inefficient in ways that might get us into trouble with real problems. For example, it
requires that we load all the data in memory and that we perform lots of random memory
access. The built-in iterators implemented in a deep learning framework are considerably
more efficient and they can deal with sources such as data stored in files, data received via
a stream, and data generated or processed on the fly. Next let’s try to implement the same
method using built-in iterators.

3.3.3 Concise Implementation of the Data Loader
Rather than writing our own iterator, we can call the existing API in a framework to load
data. As before, we need a dataset with features X and labels y. Beyond that, we set
batch_size in the built-in data loader and let it take care of shuffling examples effi-
ciently.

@d2l.add_to_class(d2l.DataModule) #@save
def get_tensorloader(self, tensors, train, indices=slice(0, None)):

tensors = tuple(a[indices] for a in tensors)
dataset = gluon.data.ArrayDataset(*tensors)
return gluon.data.DataLoader(dataset, self.batch_size,

shuffle=train)

@d2l.add_to_class(SyntheticRegressionData) #@save
def get_dataloader(self, train):

i = slice(0, self.num_train) if train else slice(self.num_train, None)
return self.get_tensorloader((self.X, self.y), train, i)

The new data loader behaves just like the previous one, except that it is more efficient and
has some added functionality.

X, y = next(iter(data.train_dataloader()))
print('X shape:', X.shape, '\ny shape:', y.shape)
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X shape: (32, 2)
y shape: (32, 1)

For instance, the data loader provided by the framework API supports the built-in __len__
method, so we can query its length, i.e., the number of batches.

len(data.train_dataloader())

32

3.3.4 Summary
Data loaders are a convenient way of abstracting out the process of loading and manipu-
lating data. This way the same machine learning algorithm is capable of processing many
different types and sources of data without the need for modification. One of the nice things
about data loaders is that they can be composed. For instance, we might be loading images
and then have a postprocessing filter that crops them or modifies them in other ways. As
such, data loaders can be used to describe an entire data processing pipeline.

As for the model itself, the two-dimensional linear model is about the simplest we might
encounter. It lets us test out the accuracy of regression models without worrying about
having insufficient amounts of data or an underdetermined system of equations. We will
put this to good use in the next section.

3.3.5 Exercises
1. What will happen if the number of examples cannot be divided by the batch size. How

would you change this behavior by specifying a different argument by using the frame-
work’s API?

2. Suppose that we want to generate a huge dataset, where both the size of the parameter
vector w and the number of examples num_examples are large.

1. What happens if we cannot hold all data in memory?

2. Howwould you shuffle the data if it is held on disk? Your task is to design an efficient
algorithm that does not require too many random reads or writes. Hint: pseudoran-
dom permutation generators 74 allow you to design a reshuffle without the need to
store the permutation table explicitly (Naor and Reingold, 1999).

3. Implement a data generator that produces new data on the fly, every time the iterator is
called.

4. How would you design a random data generator that generates the same data each time
it is called?

Discussions75 .

https://en.wikipedia.org/wiki/Pseudorandom_permutation
https://en.wikipedia.org/wiki/Pseudorandom_permutation
https://discuss.d2l.ai/t/6662
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3.4 Linear Regression Implementation from Scratch

We are now ready to work through a fully functioning implementation of linear regression.
In this section, we will implement the entire method from scratch, including (i) the model;
(ii) the loss function; (iii) a minibatch stochastic gradient descent optimizer; and (iv) the
training function that stitches all of these pieces together. Finally, we will run our synthetic
data generator fromSection 3.3 and apply ourmodel on the resulting dataset. Whilemodern
deep learning frameworks can automate nearly all of this work, implementing things from
scratch is the only way to make sure that you really know what you are doing. Moreover,
when it is time to customize models, defining our own layers or loss functions, understand-
ing how things work under the hood will prove handy. In this section, we will rely only
on tensors and automatic differentiation. Later, we will introduce a more concise imple-
mentation, taking advantage of the bells and whistles of deep learning frameworks while
retaining the structure of what follows below.

%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l

npx.set_np()

3.4.1 Defining the Model
Before we can begin optimizing our model’s parameters by minibatch SGD, we need to
have some parameters in the first place. In the following we initialize weights by drawing
random numbers from a normal distribution with mean 0 and a standard deviation of 0.01.
The magic number 0.01 often works well in practice, but you can specify a different value
through the argument sigma. Moreover we set the bias to 0. Note that for object-oriented
design we add the code to the __init__ method of a subclass of d2l.Module (introduced
in Section 3.2.2).

class LinearRegressionScratch(d2l.Module): #@save
"""The linear regression model implemented from scratch."""
def __init__(self, num_inputs, lr, sigma=0.01):

super().__init__()
self.save_hyperparameters()
self.w = np.random.normal(0, sigma, (num_inputs, 1))
self.b = np.zeros(1)
self.w.attach_grad()
self.b.attach_grad()

Next we must define our model, relating its input and parameters to its output. Using the
same notation as (3.1.4) for our linear model we simply take the matrix–vector product of
the input features X and the model weights w, and add the offset 𝑏 to each example. The
product Xw is a vector and 𝑏 is a scalar. Because of the broadcasting mechanism (see
Section 2.1.4), when we add a vector and a scalar, the scalar is added to each component of
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the vector. The resulting forwardmethod is registered in the LinearRegressionScratch
class via add_to_class (introduced in Section 3.2.1).

@d2l.add_to_class(LinearRegressionScratch) #@save
def forward(self, X):

return np.dot(X, self.w) + self.b

3.4.2 Defining the Loss Function
Since updating our model requires taking the gradient of our loss function, we ought to
define the loss function first. Here we use the squared loss function in (3.1.5). In the
implementation, we need to transform the true value y into the predicted value’s shape
y_hat. The result returned by the followingmethod will also have the same shape as y_hat.
We also return the averaged loss value among all examples in the minibatch.

@d2l.add_to_class(LinearRegressionScratch) #@save
def loss(self, y_hat, y):

l = (y_hat - y) ** 2 / 2
return l.mean()

3.4.3 Defining the Optimization Algorithm
As discussed in Section 3.1, linear regression has a closed-form solution. However, our
goal here is to illustrate how to train more general neural networks, and that requires that
we teach you how to use minibatch SGD. Hence we will take this opportunity to introduce
your first working example of SGD. At each step, using a minibatch randomly drawn from
our dataset, we estimate the gradient of the loss with respect to the parameters. Next, we
update the parameters in the direction that may reduce the loss.

The following code applies the update, given a set of parameters, a learning rate lr. Since
our loss is computed as an average over the minibatch, we do not need to adjust the learning
rate against the batch size. In later chapters we will investigate how learning rates should
be adjusted for very large minibatches as they arise in distributed large-scale learning. For
now, we can ignore this dependency.

We define our SGD class, a subclass of d2l.HyperParameters (introduced in Section 3.2.1),
to have a similar API as the built-in SGD optimizer. We update the parameters in the step
method. It accepts a batch_size argument that can be ignored.

class SGD(d2l.HyperParameters): #@save
"""Minibatch stochastic gradient descent."""
def __init__(self, params, lr):

self.save_hyperparameters()

def step(self, _):
for param in self.params:

param -= self.lr * param.grad
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We next define the configure_optimizers method, which returns an instance of the SGD
class.

@d2l.add_to_class(LinearRegressionScratch) #@save
def configure_optimizers(self):

return SGD([self.w, self.b], self.lr)

3.4.4 Training
Now that we have all of the parts in place (parameters, loss function, model, and optimizer),
we are ready to implement the main training loop. It is crucial that you understand this
code fully since you will employ similar training loops for every other deep learning model
covered in this book. In each epoch, we iterate through the entire training dataset, passing
once through every example (assuming that the number of examples is divisible by the
batch size). In each iteration, we grab a minibatch of training examples, and compute its
loss through the model’s training_step method. Then we compute the gradients with
respect to each parameter. Finally, we will call the optimization algorithm to update the
model parameters. In summary, we will execute the following loop:

• Initialize parameters (w, 𝑏)

• Repeat until done

– Compute gradient g← 𝜕(w,𝑏)
1
| B |

∑
𝑖∈B 𝑙 (x(𝑖) , 𝑦 (𝑖) ,w, 𝑏)

– Update parameters (w, 𝑏) ← (w, 𝑏) − 𝜂g

Recall that the synthetic regression dataset that we generated in Section 3.3 does not provide
a validation dataset. In most cases, however, we will want a validation dataset to measure
our model quality. Here we pass the validation dataloader once in each epoch to mea-
sure the model performance. Following our object-oriented design, the prepare_batch

and fit_epoch methods are registered in the d2l.Trainer class (introduced in Section
3.2.4).

@d2l.add_to_class(d2l.Trainer) #@save
def prepare_batch(self, batch):

return batch

@d2l.add_to_class(d2l.Trainer) #@save
def fit_epoch(self):

for batch in self.train_dataloader:
with autograd.record():

loss = self.model.training_step(self.prepare_batch(batch))
loss.backward()
if self.gradient_clip_val > 0:

self.clip_gradients(self.gradient_clip_val, self.model)
self.optim.step(1)
self.train_batch_idx += 1

if self.val_dataloader is None:

(continues on next page)
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(continued from previous page)

return
for batch in self.val_dataloader:

self.model.validation_step(self.prepare_batch(batch))
self.val_batch_idx += 1

We are almost ready to train the model, but first we need some training data. Here we use
the SyntheticRegressionData class and pass in some ground truth parameters. Then
we train our model with the learning rate lr=0.03 and set max_epochs=3. Note that in
general, both the number of epochs and the learning rate are hyperparameters. In general,
setting hyperparameters is tricky and we will usually want to use a three-way split, one
set for training, a second for hyperparameter selection, and the third reserved for the final
evaluation. We elide these details for now but will revise them later.

model = LinearRegressionScratch(2, lr=0.03)
data = d2l.SyntheticRegressionData(w=np.array([2, -3.4]), b=4.2)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model, data)

Because we synthesized the dataset ourselves, we know precisely what the true parameters
are. Thus, we can evaluate our success in training by comparing the true parameters with
those that we learned through our training loop. Indeed they turn out to be very close to
each other.

print(f'error in estimating w: {data.w - model.w.reshape(data.w.shape)}')
print(f'error in estimating b: {data.b - model.b}')

error in estimating w: [ 0.11080897 -0.12691855]
error in estimating b: [0.19214153]

We should not take the ability to exactly recover the ground truth parameters for granted.
In general, for deep models unique solutions for the parameters do not exist, and even
for linear models, exactly recovering the parameters is only possible when no feature is
linearly dependent on the others. However, inmachine learning, we are often less concerned
with recovering true underlying parameters, but rather with parameters that lead to highly
accurate prediction (Vapnik, 1992). Fortunately, even on difficult optimization problems,
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stochastic gradient descent can often find remarkably good solutions, owing partly to the
fact that, for deep networks, there exist many configurations of the parameters that lead to
highly accurate prediction.

3.4.5 Summary
In this section, we took a significant step towards designing deep learning systems by im-
plementing a fully functional neural network model and training loop. In this process, we
built a data loader, a model, a loss function, an optimization procedure, and a visualization
and monitoring tool. We did this by composing a Python object that contains all relevant
components for training a model. While this is not yet a professional-grade implementation
it is perfectly functional and code like this could already help you to solve small problems
quickly. In the coming sections, we will see how to do this both more concisely (avoiding
boilerplate code) and more efficiently (using our GPUs to their full potential).

3.4.6 Exercises
1. What would happen if we were to initialize the weights to zero. Would the algorithm

still work? What if we initialized the parameters with variance 1000 rather than 0.01?

2. Assume that you are Georg Simon Ohm 76 trying to come up with a model for resis-
tance that relates voltage and current. Can you use automatic differentiation to learn the
parameters of your model?

3. Can you use Planck’s Law77 to determine the temperature of an object using spectral
energy density? For reference, the spectral density 𝐵 of radiation emanating from a

black body is 𝐵(𝜆, 𝑇) = 2ℎ𝑐2

𝜆5 ·
(
exp ℎ𝑐

𝜆𝑘𝑇 − 1
)−1

. Here 𝜆 is the wavelength, 𝑇 is the
temperature, 𝑐 is the speed of light, ℎ is Planck’s constant, and 𝑘 is the Boltzmann
constant. You measure the energy for different wavelengths 𝜆 and you now need to fit
the spectral density curve to Planck’s law.

4. What are the problems youmight encounter if you wanted to compute the second deriva-
tives of the loss? How would you fix them?

5. Why is the reshape method needed in the loss function?

6. Experiment using different learning rates to find out how quickly the loss function value
drops. Can you reduce the error by increasing the number of epochs of training?

7. If the number of examples cannot be divided by the batch size, what happens to data_iter
at the end of an epoch?

8. Try implementing a different loss function, such as the absolute value loss (y_hat -

d2l.reshape(y, y_hat.shape)).abs().sum().

1. Check what happens for regular data.

2. Check whether there is a difference in behavior if you actively perturb some entries,
such as 𝑦5 = 10000, of y.

https://en.wikipedia.org/wiki/Georg_Ohm
https://en.wikipedia.org/wiki/Planck%27s_law
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3. Can you think of a cheap solution for combining the best aspects of squared loss and
absolute value loss? Hint: how can you avoid really large gradient values?

9. Why do we need to reshuffle the dataset? Can you design a case where a maliciously
constructed dataset would break the optimization algorithm otherwise?

Discussions78 .

3.5 Concise Implementation of Linear Regression

Deep learning has witnessed a sort of Cambrian explosion over the past decade. The sheer
number of techniques, applications and algorithms by far surpasses the progress of pre-
vious decades. This is due to a fortuitous combination of multiple factors, one of which
is the powerful free tools offered by a number of open-source deep learning frameworks.
Theano (Bergstra et al., 2010), DistBelief (Dean et al., 2012), and Caffe (Jia et al., 2014)
arguably represent the first generation of such models that found widespread adoption.
In contrast to earlier (seminal) works like SN2 (Simulateur Neuristique) (Bottou and Le
Cun, 1988), which provided a Lisp-like programming experience, modern frameworks of-
fer automatic differentiation and the convenience of Python. These frameworks allow us
to automate and modularize the repetitive work of implementing gradient-based learning
algorithms.

In Section 3.4, we relied only on (i) tensors for data storage and linear algebra; and (ii)
automatic differentiation for calculating gradients. In practice, because data iterators, loss
functions, optimizers, and neural network layers are so common, modern libraries imple-
ment these components for us as well. In this section, we will show you how to implement
the linear regression model from Section 3.4 concisely by using high-level APIs of deep
learning frameworks.

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

3.5.1 Defining the Model
When we implemented linear regression from scratch in Section 3.4, we defined our model
parameters explicitly and coded up the calculations to produce output using basic linear
algebra operations. You should know how to do this. But once your models get more
complex, and once you have to do this nearly every day, you will be glad of the assistance.
The situation is similar to coding up your own blog from scratch. Doing it once or twice
is rewarding and instructive, but you would be a lousy web developer if you spent a month
reinventing the wheel.

https://discuss.d2l.ai/t/42
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For standard operations, we can use a framework’s predefined layers, which allow us to
focus on the layers used to construct the model rather than worrying about their implemen-
tation. Recall the architecture of a single-layer network as described in Fig. 3.1.2. The
layer is called fully connected, since each of its inputs is connected to each of its outputs
by means of a matrix–vector multiplication.

In Gluon, the fully connected layer is defined in the Dense class. Since we only want
to generate a single scalar output, we set that number to 1. It is worth noting that, for
convenience, Gluon does not require us to specify the input shape for each layer. Hence
we do not need to tell Gluon how many inputs go into this linear layer. When we first pass
data through our model, e.g., when we execute net(X) later, Gluon will automatically infer
the number of inputs to each layer and thus instantiate the correct model. We will describe
how this works in more detail later.

class LinearRegression(d2l.Module): #@save
"""The linear regression model implemented with high-level APIs."""
def __init__(self, lr):

super().__init__()
self.save_hyperparameters()
self.net = nn.Dense(1)
self.net.initialize(init.Normal(sigma=0.01))

In the forward method we just invoke the built-in __call__ method of the predefined
layers to compute the outputs.

@d2l.add_to_class(LinearRegression) #@save
def forward(self, X):

return self.net(X)

3.5.2 Defining the Loss Function
The lossmodule defines many useful loss functions. For speed and convenience, we forgo
implementing our own and choose the built-in loss.L2Loss instead. Because the loss

that it returns is the squared error for each example, we use meanto average the loss across
over the minibatch.

@d2l.add_to_class(LinearRegression) #@save
def loss(self, y_hat, y):

fn = gluon.loss.L2Loss()
return fn(y_hat, y).mean()

3.5.3 Defining the Optimization Algorithm
Minibatch SGD is a standard tool for optimizing neural networks and thus Gluon supports
it alongside a number of variations on this algorithm through its Trainer class. Note that
Gluon’s Trainer class stands for the optimization algorithm, while the Trainer class we
created in Section 3.2 contains the training method, i.e., repeatedly call the optimizer to
update the model parameters. When we instantiate Trainer, we specify the parameters to
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optimize over, obtainable from our model net via net.collect_params(), the optimiza-
tion algorithm we wish to use (sgd), and a dictionary of hyperparameters required by our
optimization algorithm.

@d2l.add_to_class(LinearRegression) #@save
def configure_optimizers(self):

return gluon.Trainer(self.collect_params(),
'sgd', {'learning_rate': self.lr})

3.5.4 Training
You might have noticed that expressing our model through high-level APIs of a deep learn-
ing framework requires fewer lines of code. We did not have to allocate parameters indi-
vidually, define our loss function, or implement minibatch SGD. Once we start working
with much more complex models, the advantages of the high-level API will grow consid-
erably.

Now that we have all the basic pieces in place, the training loop itself is the same as the
one we implemented from scratch. So we just call the fit method (introduced in Section
3.2.4), which relies on the implementation of the fit_epochmethod in Section 3.4, to train
our model.

model = LinearRegression(lr=0.03)
data = d2l.SyntheticRegressionData(w=np.array([2, -3.4]), b=4.2)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model, data)

Below, we compare the model parameters learned by training on finite data and the actual
parameters that generated our dataset. To access parameters, we access the weights and bias
of the layer that we need. As in our implementation from scratch, note that our estimated
parameters are close to their true counterparts.

@d2l.add_to_class(LinearRegression) #@save
def get_w_b(self):

return (self.net.weight.data(), self.net.bias.data())
w, b = model.get_w_b()
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3.5.5 Summary
This section contains the first implementation of a deep network (in this book) to tap into
the conveniences afforded by modern deep learning frameworks, such as MXNet (Chen
et al., 2015), JAX (Frostig et al., 2018), PyTorch (Paszke et al., 2019), and Tensorflow
(Abadi et al., 2016). We used framework defaults for loading data, defining a layer, a loss
function, an optimizer and a training loop. Whenever the framework provides all necessary
features, it is generally a good idea to use them, since the library implementations of these
components tend to be heavily optimized for performance and properly tested for reliability.
At the same time, try not to forget that these modules can be implemented directly. This is
especially important for aspiring researchers who wish to live on the leading edge of model
development, where you will be inventing new components that cannot possibly exist in
any current library.

In Gluon, the data module provides tools for data processing, the nn module defines a
large number of neural network layers, and the loss module defines many common loss
functions. Moreover, the initializer gives access to many choices for parameter initial-
ization. Conveniently for the user, dimensionality and storage are automatically inferred.
A consequence of this lazy initialization is that you must not attempt to access parameters
before they have been instantiated (and initialized).

3.5.6 Exercises
1. How would you need to change the learning rate if you replace the aggregate loss over

the minibatch with an average over the loss on the minibatch?

2. Review the framework documentation to see which loss functions are provided. In par-
ticular, replace the squared loss with Huber’s robust loss function. That is, use the loss
function

𝑙 (𝑦, 𝑦′) =
{
|𝑦 − 𝑦′ | − 𝜎

2 if |𝑦 − 𝑦′ | > 𝜎
1

2𝜎 (𝑦 − 𝑦′)2 otherwise
(3.5.1)

3. How do you access the gradient of the weights of the model?

4. What is the effect on the solution if you change the learning rate and the number of
epochs? Does it keep on improving?

5. How does the solution change as you vary the amount of data generated?

1. Plot the estimation error for ŵ − w and 𝑏̂ − 𝑏 as a function of the amount of data.
Hint: increase the amount of data logarithmically rather than linearly, i.e., 5, 10, 20,
50, …, 10,000 rather than 1000, 2000, …, 10,000.

2. Why is the suggestion in the hint appropriate?

Discussions79 .

https://discuss.d2l.ai/t/44
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3.6 Generalization

Consider two college students diligently preparing for their final exam. Commonly, this
preparation will consist of practicing and testing their abilities by taking exams adminis-
tered in previous years. Nonetheless, doing well on past exams is no guarantee that they will
excel when it matters. For instance, imagine a student, Extraordinary Ellie, whose prepara-
tion consisted entirely of memorizing the answers to previous years’ exam questions. Even
if Ellie were endowed with an extraordinary memory, and thus could perfectly recall the an-
swer to any previously seen question, she might nevertheless freeze when faced with a new
(previously unseen) question. By comparison, imagine another student, Inductive Irene,
with comparably poor memorization skills, but a knack for picking up patterns. Note that
if the exam truly consisted of recycled questions from a previous year, Ellie would handily
outperform Irene. Even if Irene’s inferred patterns yielded 90% accurate predictions, they
could never compete with Ellie’s 100% recall. However, even if the exam consisted entirely
of fresh questions, Irene might maintain her 90% average.

Asmachine learning scientists, our goal is to discover patterns. But how can we be sure that
we have truly discovered a general pattern and not simply memorized our data? Most of the
time, our predictions are only useful if our model discovers such a pattern. We do not want
to predict yesterday’s stock prices, but tomorrow’s. We do not need to recognize already
diagnosed diseases for previously seen patients, but rather previously undiagnosed ailments
in previously unseen patients. This problem—how to discover patterns that generalize—is
the fundamental problem of machine learning, and arguably of all of statistics. We might
cast this problem as just one slice of a far grander question that engulfs all of science:
when are we ever justified in making the leap from particular observations to more general
statements?

In real life, we must fit our models using a finite collection of data. The typical scales
of that data vary wildly across domains. For many important medical problems, we can
only access a few thousand data points. When studying rare diseases, we might be lucky to
access hundreds. By contrast, the largest public datasets consisting of labeled photographs,
e.g., ImageNet (Deng et al., 2009), contain millions of images. And some unlabeled image
collections such as the Flickr YFC100M dataset can be even larger, containing over 100
million images (Thomee et al., 2016). However, even at this extreme scale, the number of
available data points remains infinitesimally small compared to the space of all possible
images at a megapixel resolution. Whenever we work with finite samples, we must keep in
mind the risk that we might fit our training data, only to discover that we failed to discover
a generalizable pattern.

The phenomenon of fitting closer to our training data than to the underlying distribution is
called overfitting, and techniques for combatting overfitting are often called regularization
methods. While it is no substitute for a proper introduction to statistical learning theory
(see Boucheron et al. (2005), Vapnik (1998)), we will give you just enough intuition to get
going. We will revisit generalization in many chapters throughout the book, exploring both
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what is known about the principles underlying generalization in various models, and also
heuristic techniques that have been found (empirically) to yield improved generalization on
tasks of practical interest.

3.6.1 Training Error and Generalization Error
In the standard supervised learning setting, we assume that the training data and the test
data are drawn independently from identical distributions. This is commonly called the
IID assumption. While this assumption is strong, it is worth noting that, absent any such
assumption, we would be dead in the water. Why should we believe that training data
sampled from distribution 𝑃(𝑋,𝑌 ) should tell us how to make predictions on test data
generated by a different distribution𝑄(𝑋,𝑌 )? Making such leaps turns out to require strong
assumptions about how 𝑃 and 𝑄 are related. Later on we will discuss some assumptions
that allow for shifts in distribution but first we need to understand the IID case, where
𝑃(·) = 𝑄(·).

To begin with, we need to differentiate between the training error 𝑅emp, which is a statistic
calculated on the training dataset, and the generalization error 𝑅, which is an expectation
taken with respect to the underlying distribution. You can think of the generalization error
as what you would see if you applied your model to an infinite stream of additional data
examples drawn from the same underlying data distribution. Formally the training error is
expressed as a sum (with the same notation as Section 3.1):

𝑅emp [X,y, 𝑓 ] =
1
𝑛

𝑛∑
𝑖=1

𝑙 (x(𝑖) , 𝑦 (𝑖) , 𝑓 (x(𝑖) )), (3.6.1)

while the generalization error is expressed as an integral:

𝑅[𝑝, 𝑓 ] = 𝐸 (x,𝑦)∼𝑃 [𝑙 (x, 𝑦, 𝑓 (x))] =
∫ ∫

𝑙 (x, 𝑦, 𝑓 (x))𝑝(x, 𝑦) 𝑑x𝑑𝑦. (3.6.2)

Problematically, we can never calculate the generalization error 𝑅 exactly. Nobody ever
tells us the precise form of the density function 𝑝(x, 𝑦). Moreover, we cannot sample
an infinite stream of data points. Thus, in practice, we must estimate the generalization
error by applying our model to an independent test set constituted of a random selection
of examples X′ and labels y′ that were withheld from our training set. This consists of
applying the same formula that was used for calculating the empirical training error but to
a test set X′,y′.

Crucially, when we evaluate our classifier on the test set, we are working with a fixed classi-
fier (it does not depend on the sample of the test set), and thus estimating its error is simply
the problem of mean estimation. However the same cannot be said for the training set. Note
that the model we wind up with depends explicitly on the selection of the training set and
thus the training error will in general be a biased estimate of the true error on the underly-
ing population. The central question of generalization is then when should we expect our
training error to be close to the population error (and thus the generalization error).
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Model Complexity
In classical theory, when we have simple models and abundant data, the training and gen-
eralization errors tend to be close. However, when we work with more complex models
and/or fewer examples, we expect the training error to go down but the generalization gap
to grow. This should not be surprising. Imagine a model class so expressive that for any
dataset of 𝑛 examples, we can find a set of parameters that can perfectly fit arbitrary labels,
even if randomly assigned. In this case, even if we fit our training data perfectly, how can
we conclude anything about the generalization error? For all we know, our generalization
error might be no better than random guessing.

In general, absent any restriction on our model class, we cannot conclude, based on fitting
the training data alone, that our model has discovered any generalizable pattern (Vapnik et
al., 1994). On the other hand, if our model class was not capable of fitting arbitrary labels,
then it must have discovered a pattern. Learning-theoretic ideas about model complexity
derived some inspiration from the ideas of Karl Popper, an influential philosopher of sci-
ence, who formalized the criterion of falsifiability. According to Popper, a theory that can
explain any and all observations is not a scientific theory at all! After all, what has it told us
about the world if it has not ruled out any possibility? In short, what we want is a hypothesis
that could not explain any observations we might conceivably make and yet nevertheless
happens to be compatible with those observations that we in fact make.

Now what precisely constitutes an appropriate notion of model complexity is a complex
matter. Often, models with more parameters are able to fit a greater number of arbitrarily
assigned labels. However, this is not necessarily true. For instance, kernel methods operate
in spaces with infinite numbers of parameters, yet their complexity is controlled by other
means (Schölkopf and Smola, 2002). One notion of complexity that often proves useful
is the range of values that the parameters can take. Here, a model whose parameters are
permitted to take arbitrary values would be more complex. We will revisit this idea in the
next section, when we introduce weight decay, your first practical regularization technique.
Notably, it can be difficult to compare complexity amongmembers of substantially different
model classes (say, decision trees vs. neural networks).

At this point, we must stress another important point that we will revisit when introducing
deep neural networks. When a model is capable of fitting arbitrary labels, low training
error does not necessarily imply low generalization error. However, it does not necessarily
imply high generalization error either! All we can say with confidence is that low training
error alone is not enough to certify low generalization error. Deep neural networks turn
out to be just such models: while they generalize well in practice, they are too powerful
to allow us to conclude much on the basis of training error alone. In these cases we must
rely more heavily on our holdout data to certify generalization after the fact. Error on the
holdout data, i.e., validation set, is called the validation error.

3.6.2 Underfitting or Overfitting?
When we compare the training and validation errors, we want to be mindful of two com-
mon situations. First, we want to watch out for cases when our training error and validation
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error are both substantial but there is a little gap between them. If the model is unable to
reduce the training error, that could mean that our model is too simple (i.e., insufficiently
expressive) to capture the pattern that we are trying to model. Moreover, since the gener-
alization gap (𝑅emp − 𝑅) between our training and generalization errors is small, we have
reason to believe that we could get away with a more complex model. This phenomenon is
known as underfitting.

On the other hand, as we discussed above, we want to watch out for the cases when our
training error is significantly lower than our validation error, indicating severe overfitting.
Note that overfitting is not always a bad thing. In deep learning especially, the best pre-
dictive models often perform far better on training data than on holdout data. Ultimately,
we usually care about driving the generalization error lower, and only care about the gap
insofar as it becomes an obstacle to that end. Note that if the training error is zero, then the
generalization gap is precisely equal to the generalization error and we can make progress
only by reducing the gap.

Polynomial Curve Fitting
To illustrate some classical intuition about overfitting and model complexity, consider the
following: given training data consisting of a single feature 𝑥 and a corresponding real-
valued label 𝑦, we try to find the polynomial of degree 𝑑

𝑦̂ =
𝑑∑
𝑖=0

𝑥𝑖𝑤𝑖 (3.6.3)

for estimating the label 𝑦. This is just a linear regression problem where our features are
given by the powers of 𝑥, the model’s weights are given by 𝑤𝑖 , and the bias is given by 𝑤0
since 𝑥0 = 1 for all 𝑥. Since this is just a linear regression problem, we can use the squared
error as our loss function.

A higher-order polynomial function is more complex than a lower-order polynomial func-
tion, since the higher-order polynomial hasmore parameters and themodel function’s selec-
tion range is wider. Fixing the training dataset, higher-order polynomial functions should
always achieve lower (at worst, equal) training error relative to lower-degree polynomials.
In fact, whenever each data example has a distinct value of 𝑥, a polynomial function with
degree equal to the number of data examples can fit the training set perfectly. We compare
the relationship between polynomial degree (model complexity) and both underfitting and
overfitting in Fig. 3.6.1.

Dataset Size
As the above bound already indicates, another big consideration to bear in mind is dataset
size. Fixing our model, the fewer samples we have in the training dataset, the more likely
(and more severely) we are to encounter overfitting. As we increase the amount of training
data, the generalization error typically decreases. Moreover, in general, more data never
hurts. For a fixed task and data distribution, model complexity should not increase more
rapidly than the amount of data. Given more data, we might attempt to fit a more complex
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tFig. 3.6.1 Influence of model complexity on underfitting and overfitting.
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model. Absent sufficient data, simpler models may be more difficult to beat. For many
tasks, deep learning only outperforms linear models when many thousands of training ex-
amples are available. In part, the current success of deep learning owes considerably to the
abundance of massive datasets arising from Internet companies, cheap storage, connected
devices, and the broad digitization of the economy.

3.6.3 Model Selection
Typically, we select our final model only after evaluating multiple models that differ in vari-
ous ways (different architectures, training objectives, selected features, data preprocessing,
learning rates, etc.). Choosing among many models is aptly called model selection.

In principle, we should not touch our test set until after we have chosen all our hyperpa-
rameters. Were we to use the test data in the model selection process, there is a risk that we
might overfit the test data. Then we would be in serious trouble. If we overfit our training
data, there is always the evaluation on test data to keep us honest. But if we overfit the test
data, how would we ever know? See Ong et al. (2005) for an example of how this can lead
to absurd results even for models where the complexity can be tightly controlled.

Thus, we should never rely on the test data for model selection. And yet we cannot rely
solely on the training data for model selection either because we cannot estimate the gen-
eralization error on the very data that we use to train the model.

In practical applications, the picture gets muddier. While ideally we would only touch the
test data once, to assess the very best model or to compare a small number of models with
each other, real-world test data is seldom discarded after just one use. We can seldom
afford a new test set for each round of experiments. In fact, recycling benchmark data for
decades can have a significant impact on the development of algorithms, e.g., for image
classification80 and optical character recognition81 .

The common practice for addressing the problem of training on the test set is to split our
data three ways, incorporating a validation set in addition to the training and test datasets.
The result is a murky business where the boundaries between validation and test data are
worryingly ambiguous. Unless explicitly stated otherwise, in the experiments in this book
we are really working with what should rightly be called training data and validation data,

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-mnist
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with no true test sets. Therefore, the accuracy reported in each experiment of the book is
really the validation accuracy and not a true test set accuracy.

Cross-Validation
When training data is scarce, we might not even be able to afford to hold out enough data to
constitute a proper validation set. One popular solution to this problem is to employ 𝐾-fold
cross-validation. Here, the original training data is split into 𝐾 non-overlapping subsets.
Then model training and validation are executed 𝐾 times, each time training on 𝐾 − 1
subsets and validating on a different subset (the one not used for training in that round).
Finally, the training and validation errors are estimated by averaging over the results from
the 𝐾 experiments.

3.6.4 Summary
This section explored some of the underpinnings of generalization in machine learning.
Some of these ideas become complicated and counterintuitive when we get to deeper mod-
els; here, models are capable of overfitting data badly, and the relevant notions of complex-
ity can be both implicit and counterintuitive (e.g., larger architectures with more parameters
generalizing better). We leave you with a few rules of thumb:

1. Use validation sets (or 𝐾-fold cross-validation) for model selection;

2. More complex models often require more data;

3. Relevant notions of complexity include both the number of parameters and the range of
values that they are allowed to take;

4. Keeping all else equal, more data almost always leads to better generalization;

5. This entire talk of generalization is all predicated on the IID assumption. If we relax
this assumption, allowing for distributions to shift between the train and testing peri-
ods, then we cannot say anything about generalization absent a further (perhaps milder)
assumption.

3.6.5 Exercises
1. When can you solve the problem of polynomial regression exactly?

2. Give at least five exampleswhere dependent randomvariablesmake treating the problem
as IID data inadvisable.

3. Can you ever expect to see zero training error? Under which circumstances would you
see zero generalization error?

4. Why is 𝐾-fold cross-validation very expensive to compute?

5. Why is the 𝐾-fold cross-validation error estimate biased?

6. The VC dimension is defined as the maximum number of points that can be classified
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with arbitrary labels {±1} by a function of a class of functions. Why might this not be
a good idea for measuring how complex the class of functions is? Hint: consider the
magnitude of the functions.

7. Your manager gives you a difficult dataset on which your current algorithm does not
perform so well. How would you justify to him that you need more data? Hint: you
cannot increase the data but you can decrease it.

Discussions82 .

3.7 Weight Decay

Now that we have characterized the problem of overfitting, we can introduce our first reg-
ularization technique. Recall that we can always mitigate overfitting by collecting more
training data. However, that can be costly, time consuming, or entirely out of our control,
making it impossible in the short run. For now, we can assume that we already have as
much high-quality data as our resources permit and focus the tools at our disposal when the
dataset is taken as a given.

Recall that in our polynomial regression example (Section 3.6.2) we could limit our model’s
capacity by tweaking the degree of the fitted polynomial. Indeed, limiting the number of
features is a popular technique for mitigating overfitting. However, simply tossing aside
features can be too blunt an instrument. Sticking with the polynomial regression example,
consider what might happen with high-dimensional input. The natural extensions of poly-
nomials to multivariate data are called monomials, which are simply products of powers
of variables. The degree of a monomial is the sum of the powers. For example, 𝑥2

1𝑥2, and
𝑥3𝑥

2
5 are both monomials of degree 3.

Note that the number of terms with degree 𝑑 blows up rapidly as 𝑑 grows larger. Given 𝑘
variables, the number of monomials of degree 𝑑 is

(𝑘−1+𝑑
𝑘−1

)
. Even small changes in degree,

say from 2 to 3, dramatically increase the complexity of our model. Thus we often need a
more fine-grained tool for adjusting function complexity.

%matplotlib inline
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

3.7.1 Norms and Weight Decay
Rather than directly manipulating the number of parameters, weight decay, operates by
restricting the values that the parameters can take. More commonly called ℓ2 regularization
outside of deep learning circles when optimized by minibatch stochastic gradient descent,

https://discuss.d2l.ai/t/96
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weight decay might be the most widely used technique for regularizing parametric machine
learning models. The technique is motivated by the basic intuition that among all functions
𝑓 , the function 𝑓 = 0 (assigning the value 0 to all inputs) is in some sense the simplest, and
that we can measure the complexity of a function by the distance of its parameters from
zero. But how precisely should we measure the distance between a function and zero?
There is no single right answer. In fact, entire branches of mathematics, including parts
of functional analysis and the theory of Banach spaces, are devoted to addressing such
issues.

One simple interpretation might be to measure the complexity of a linear function 𝑓 (x) =
w>x by some norm of its weight vector, e.g., ‖w‖2. Recall that we introduced the ℓ2 norm
and ℓ1 norm, which are special cases of the more general ℓ𝑝 norm, in Section 2.3.11. The
most common method for ensuring a small weight vector is to add its norm as a penalty
term to the problem of minimizing the loss. Thus we replace our original objective, min-
imizing the prediction loss on the training labels, with new objective, minimizing the sum
of the prediction loss and the penalty term. Now, if our weight vector grows too large, our
learning algorithm might focus on minimizing the weight norm ‖w‖2 rather than minimiz-
ing the training error. That is exactly what we want. To illustrate things in code, we revive
our previous example from Section 3.1 for linear regression. There, our loss was given
by

𝐿 (w, 𝑏) = 1
𝑛

𝑛∑
𝑖=1

1
2

(
w>x(𝑖) + 𝑏 − 𝑦 (𝑖)

)2
. (3.7.1)

Recall that x(𝑖) are the features, 𝑦 (𝑖) is the label for any data example 𝑖, and (w, 𝑏) are
the weight and bias parameters, respectively. To penalize the size of the weight vector,
we must somehow add ‖w‖2 to the loss function, but how should the model trade off the
standard loss for this new additive penalty? In practice, we characterize this trade-off via
the regularization constant 𝜆, a nonnegative hyperparameter that we fit using validation
data:

𝐿 (w, 𝑏) + 𝜆
2
‖w‖2. (3.7.2)

For 𝜆 = 0, we recover our original loss function. For 𝜆 > 0, we restrict the size of ‖w‖.
We divide by 2 by convention: when we take the derivative of a quadratic function, the
2 and 1/2 cancel out, ensuring that the expression for the update looks nice and simple.
The astute reader might wonder why we work with the squared norm and not the standard
norm (i.e., the Euclidean distance). We do this for computational convenience. By squaring
the ℓ2 norm, we remove the square root, leaving the sum of squares of each component of
the weight vector. This makes the derivative of the penalty easy to compute: the sum of
derivatives equals the derivative of the sum.

Moreover, you might ask why we work with the ℓ2 norm in the first place and not, say,
the ℓ1 norm. In fact, other choices are valid and popular throughout statistics. While ℓ2-
regularized linear models constitute the classic ridge regression algorithm, ℓ1-regularized
linear regression is a similarly fundamental method in statistics, popularly known as lasso
regression. One reason to work with the ℓ2 norm is that it places an outsize penalty on large
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components of the weight vector. This biases our learning algorithm towards models that
distribute weight evenly across a larger number of features. In practice, this might make
them more robust to measurement error in a single variable. By contrast, ℓ1 penalties lead
to models that concentrate weights on a small set of features by clearing the other weights
to zero. This gives us an effective method for feature selection, which may be desirable for
other reasons. For example, if our model only relies on a few features, then we may not
need to collect, store, or transmit data for the other (dropped) features.

Using the same notation in (3.1.11), minibatch stochastic gradient descent updates for ℓ2-
regularized regression as follows:

w← (1 − 𝜂𝜆)w − 𝜂

|B|
∑
𝑖∈B

x(𝑖)
(
w>x(𝑖) + 𝑏 − 𝑦 (𝑖)

)
. (3.7.3)

As before, we update w based on the amount by which our estimate differs from the ob-
servation. However, we also shrink the size of w towards zero. That is why the method is
sometimes called “weight decay”: given the penalty term alone, our optimization algorithm
decays the weight at each step of training. In contrast to feature selection, weight decay
offers us a mechanism for continuously adjusting the complexity of a function. Smaller
values of 𝜆 correspond to less constrainedw, whereas larger values of 𝜆 constrainw more
considerably. Whether we include a corresponding bias penalty 𝑏2 can vary across imple-
mentations, and may vary across layers of a neural network. Often, we do not regularize
the bias term. Besides, although ℓ2 regularization may not be equivalent to weight decay
for other optimization algorithms, the idea of regularization through shrinking the size of
weights still holds true.

3.7.2 High-Dimensional Linear Regression
We can illustrate the benefits of weight decay through a simple synthetic example.

First, we generate some data as before:

𝑦 = 0.05 +
𝑑∑
𝑖=1

0.01𝑥𝑖 + 𝜖 where 𝜖 ∼ N(0, 0.012). (3.7.4)

In this synthetic dataset, our label is given by an underlying linear function of our inputs,
corrupted by Gaussian noise with zero mean and standard deviation 0.01. For illustrative
purposes, we can make the effects of overfitting pronounced, by increasing the dimen-
sionality of our problem to 𝑑 = 200 and working with a small training set with only 20
examples.

class Data(d2l.DataModule):
def __init__(self, num_train, num_val, num_inputs, batch_size):

self.save_hyperparameters()
n = num_train + num_val
self.X = np.random.randn(n, num_inputs)
noise = np.random.randn(n, 1) * 0.01
w, b = np.ones((num_inputs, 1)) * 0.01, 0.05
self.y = np.dot(self.X, w) + b + noise

(continues on next page)
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(continued from previous page)

def get_dataloader(self, train):
i = slice(0, self.num_train) if train else slice(self.num_train, None)
return self.get_tensorloader([self.X, self.y], train, i)

3.7.3 Implementation from Scratch
Now, let’s try implementingweight decay from scratch. Sinceminibatch stochastic gradient
descent is our optimizer, we just need to add the squared ℓ2 penalty to the original loss
function.

Defining ℓ2 Norm Penalty
Perhaps the most convenient way of implementing this penalty is to square all terms in
place and sum them.

def l2_penalty(w):
return (w ** 2).sum() / 2

Defining the Model
In the final model, the linear regression and the squared loss have not changed since Section
3.4, so we will just define a subclass of d2l.LinearRegressionScratch. The only change
here is that our loss now includes the penalty term.

class WeightDecayScratch(d2l.LinearRegressionScratch):
def __init__(self, num_inputs, lambd, lr, sigma=0.01):

super().__init__(num_inputs, lr, sigma)
self.save_hyperparameters()

def loss(self, y_hat, y):
return (super().loss(y_hat, y) +

self.lambd * l2_penalty(self.w))

The following code fits our model on the training set with 20 examples and evaluates it on
the validation set with 100 examples.

data = Data(num_train=20, num_val=100, num_inputs=200, batch_size=5)
trainer = d2l.Trainer(max_epochs=10)

def train_scratch(lambd):
model = WeightDecayScratch(num_inputs=200, lambd=lambd, lr=0.01)
model.board.yscale='log'
trainer.fit(model, data)
print('L2 norm of w:', float(l2_penalty(model.w)))
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[22:08:21] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Training without Regularization
We now run this code with lambd = 0, disabling weight decay. Note that we overfit
badly, decreasing the training error but not the validation error—a textbook case of over-
fitting.

train_scratch(0)

L2 norm of w: 0.009325511753559113

Using Weight Decay
Below, we run with substantial weight decay. Note that the training error increases but
the validation error decreases. This is precisely the effect we expect from regulariza-
tion.

train_scratch(3)

L2 norm of w: 0.0012076478451490402
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3.7.4 Concise Implementation
Because weight decay is ubiquitous in neural network optimization, the deep learning
framework makes it especially convenient, integrating weight decay into the optimization
algorithm itself for easy use in combination with any loss function. Moreover, this integra-
tion serves a computational benefit, allowing implementation tricks to add weight decay
to the algorithm, without any additional computational overhead. Since the weight decay
portion of the update depends only on the current value of each parameter, the optimizer
must touch each parameter once anyway.

Below, we specify the weight decay hyperparameter directly through wd when instantiating
our Trainer. By default, Gluon decays both weights and biases simultaneously. Note that
the hyperparameter wd will be multiplied by wd_mult when updating model parameters.
Thus, if we set wd_mult to zero, the bias parameter 𝑏 will not decay.

class WeightDecay(d2l.LinearRegression):
def __init__(self, wd, lr):

super().__init__(lr)
self.save_hyperparameters()
self.wd = wd

def configure_optimizers(self):
self.collect_params('.*bias').setattr('wd_mult', 0)
return gluon.Trainer(self.collect_params(),

'sgd',
{'learning_rate': self.lr, 'wd': self.wd})

The plot looks similar to that when we implemented weight decay from scratch. How-
ever, this version runs faster and is easier to implement, benefits that will become more
pronounced as you address larger problems and this work becomes more routine.

model = WeightDecay(wd=3, lr=0.01)
model.board.yscale='log'
trainer.fit(model, data)

print('L2 norm of w:', float(l2_penalty(model.get_w_b()[0])))

L2 norm of w: 0.0013100637588649988
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So far, we have touched upon one notion of what constitutes a simple linear function. How-
ever, even for simple nonlinear functions, the situation can be much more complex. To see
this, the concept of reproducing kernel Hilbert space (RKHS)83 allows one to apply tools
introduced for linear functions in a nonlinear context. Unfortunately, RKHS-based algo-
rithms tend to scale poorly to large, high-dimensional data. In this book we will often
adopt the common heuristic whereby weight decay is applied to all layers of a deep net-
work.

3.7.5 Summary
Regularization is a common method for dealing with overfitting. Classical regularization
techniques add a penalty term to the loss function (when training) to reduce the complexity
of the learned model. One particular choice for keeping the model simple is using an ℓ2
penalty. This leads to weight decay in the update steps of the minibatch stochastic gradient
descent algorithm. In practice, the weight decay functionality is provided in optimizers
from deep learning frameworks. Different sets of parameters can have different update
behaviors within the same training loop.

3.7.6 Exercises
1. Experiment with the value of 𝜆 in the estimation problem in this section. Plot training

and validation accuracy as a function of 𝜆. What do you observe?

2. Use a validation set to find the optimal value of 𝜆. Is it really the optimal value? Does
this matter?

3. What would the update equations look like if instead of ‖w‖2 we used
∑
𝑖 |𝑤𝑖 | as our

penalty of choice (ℓ1 regularization)?

4. We know that ‖w‖2 = w>w. Can you find a similar equation for matrices (see the
Frobenius norm in Section 2.3.11)?

5. Review the relationship between training error and generalization error. In addition to
weight decay, increased training, and the use of a model of suitable complexity, what
other ways might help us deal with overfitting?

6. In Bayesian statistics we use the product of prior and likelihood to arrive at a posterior
via 𝑃(𝑤 | 𝑥) ∝ 𝑃(𝑥 | 𝑤)𝑃(𝑤). How can you identify 𝑃(𝑤) with regularization?

Discussions84 .

https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
https://discuss.d2l.ai/t/98
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Now that you have worked through all of the mechanics you are ready to apply the skills
you have learned to broader kinds of tasks. Even as we pivot towards classification, most
of the plumbing remains the same: loading the data, passing it through the model, generat-
ing output, calculating the loss, taking gradients with respect to weights, and updating the
model. However, the precise form of the targets, the parametrization of the output layer,
and the choice of loss function will adapt to suit the classification setting.

4.1 Softmax Regression

In Section 3.1, we introduced linear regression, working through implementations from
scratch in Section 3.4 and again using high-level APIs of a deep learning framework in
Section 3.5 to do the heavy lifting.

Regression is the hammer we reach for when we want to answer how much? or how many?
questions. If you want to predict the number of dollars (price) at which a house will be sold,
or the number of wins a baseball team might have, or the number of days that a patient will
remain hospitalized before being discharged, then you are probably looking for a regression
model. However, even within regression models, there are important distinctions. For
instance, the price of a house will never be negative and changes might often be relative
to its baseline price. As such, it might be more effective to regress on the logarithm of the
price. Likewise, the number of days a patient spends in hospital is a discrete nonnegative
random variable. As such, least mean squares might not be an ideal approach either. This
sort of time-to-event modeling comes with a host of other complications that are dealt with
in a specialized subfield called survival modeling.

The point here is not to overwhelm you but just to let you know that there is a lot more
to estimation than simply minimizing squared errors. And more broadly, there is a lot
more to supervised learning than regression. In this section, we focus on classification
problems where we put aside how much? questions and instead focus on which category?
questions.

• Does this email belong in the spam folder or the inbox?

• Is this customer more likely to sign up or not to sign up for a subscription service?

125
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• Does this image depict a donkey, a dog, a cat, or a rooster?

• Which movie is Aston most likely to watch next?

• Which section of the book are you going to read next?

Colloquially, machine learning practitioners overload the word classification to describe
two subtly different problems: (i) those where we are interested only in hard assignments
of examples to categories (classes); and (ii) those where we wish to make soft assignments,
i.e., to assess the probability that each category applies. The distinction tends to get blurred,
in part, because often, even when we only care about hard assignments, we still use models
that make soft assignments.

Even more, there are cases where more than one label might be true. For instance, a news
article might simultaneously cover the topics of entertainment, business, and space flight,
but not the topics of medicine or sports. Thus, categorizing it into one of the above cate-
gories on their own would not be very useful. This problem is commonly known as multi-
label classification 85 . See Tsoumakas and Katakis (2007) for an overview and Huang et
al. (2015) for an effective algorithm when tagging images.

4.1.1 Classification
To get our feet wet, let’s start with a simple image classification problem. Here, each input
consists of a 2× 2 grayscale image. We can represent each pixel value with a single scalar,
giving us four features 𝑥1, 𝑥2, 𝑥3, 𝑥4. Further, let’s assume that each image belongs to one
among the categories “cat”, “chicken”, and “dog”.

Next, we have to choose how to represent the labels. We have two obvious choices. Per-
haps themost natural impulse would be to choose 𝑦 ∈ {1, 2, 3}, where the integers represent
{dog, cat, chicken} respectively. This is a great way of storing such information on a com-
puter. If the categories had some natural ordering among them, say if we were trying to
predict {baby, toddler, adolescent, young adult, adult, geriatric}, then it might even make
sense to cast this as an ordinal regression 86 problem and keep the labels in this format.
See Moon et al. (2010) for an overview of different types of ranking loss functions and
Beutel et al. (2014) for a Bayesian approach that addresses responses with more than one
mode.

In general, classification problems do not come with natural orderings among the classes.
Fortunately, statisticians long ago invented a simple way to represent categorical data: the
one-hot encoding. A one-hot encoding is a vector with as many components as we have
categories. The component corresponding to a particular instance’s category is set to 1 and
all other components are set to 0. In our case, a label 𝑦 would be a three-dimensional vector,
with (1, 0, 0) corresponding to “cat”, (0, 1, 0) to “chicken”, and (0, 0, 1) to “dog”:

𝑦 ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (4.1.1)

https://en.wikipedia.org/wiki/Multi-label_classification
https://en.wikipedia.org/wiki/Multi-label_classification
https://en.wikipedia.org/wiki/Ordinal_regression
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Linear Model
In order to estimate the conditional probabilities associated with all the possible classes,
we need a model with multiple outputs, one per class. To address classification with lin-
ear models, we will need as many affine functions as we have outputs. Strictly speaking,
we only need one fewer, since the final category has to be the difference between 1 and
the sum of the other categories, but for reasons of symmetry we use a slightly redundant
parametrization. Each output corresponds to its own affine function. In our case, since
we have 4 features and 3 possible output categories, we need 12 scalars to represent the
weights (𝑤 with subscripts), and 3 scalars to represent the biases (𝑏 with subscripts). This
yields:

𝑜1 = 𝑥1𝑤11 + 𝑥2𝑤12 + 𝑥3𝑤13 + 𝑥4𝑤14 + 𝑏1,

𝑜2 = 𝑥1𝑤21 + 𝑥2𝑤22 + 𝑥3𝑤23 + 𝑥4𝑤24 + 𝑏2,

𝑜3 = 𝑥1𝑤31 + 𝑥2𝑤32 + 𝑥3𝑤33 + 𝑥4𝑤34 + 𝑏3.

(4.1.2)

The corresponding neural network diagram is shown in Fig. 4.1.1. Just as in linear regres-
sion, we use a single-layer neural network. And since the calculation of each output, 𝑜1, 𝑜2,
and 𝑜3, depends on every input, 𝑥1, 𝑥2, 𝑥3, and 𝑥4, the output layer can also be described as
a fully connected layer.

tFig. 4.1.1 Softmax regression is a single-layer neural network.

For a more concise notation we use vectors and matrices: o = Wx+b is much better suited
for mathematics and code. Note that we have gathered all of our weights into a 3×4 matrix
and all biases b ∈ R3 in a vector.

The Softmax
Assuming a suitable loss function, we could try, directly, to minimize the difference be-
tween o and the labels y. While it turns out that treating classification as a vector-valued
regression problemworks surprisingly well, it is nonetheless unsatisfactory in the following
ways:

• There is no guarantee that the outputs 𝑜𝑖 sum up to 1 in the way we expect probabilities
to behave.

• There is no guarantee that the outputs 𝑜𝑖 are even nonnegative, even if their outputs sum
up to 1, or that they do not exceed 1.

Both aspects render the estimation problem difficult to solve and the solution very brittle
to outliers. For instance, if we assume that there is a positive linear dependency between
the number of bedrooms and the likelihood that someone will buy a house, the probability
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might exceed 1 when it comes to buying a mansion! As such, we need a mechanism to
“squish” the outputs.

There are many ways we might accomplish this goal. For instance, we could assume that
the outputs o are corrupted versions of y, where the corruption occurs by means of adding
noise 𝝐 drawn from a normal distribution. In other words, y = o+ 𝝐 , where 𝜖𝑖 ∼ N(0, 𝜎2).
This is the so-called probit model87 , first introduced by Fechner (1860). While appealing,
it does not work quite as well nor lead to a particularly nice optimization problem, when
compared to the softmax.

Another way to accomplish this goal (and to ensure nonnegativity) is to use an exponential
function 𝑃(𝑦 = 𝑖) ∝ exp 𝑜𝑖 . This does indeed satisfy the requirement that the conditional
class probability increases with increasing 𝑜𝑖 , it is monotonic, and all probabilities are
nonnegative. We can then transform these values so that they add up to 1 by dividing each
by their sum. This process is called normalization. Putting these two pieces together gives
us the softmax function:

ŷ = softmax(o) where 𝑦̂𝑖 =
exp(𝑜𝑖)∑
𝑗 exp(𝑜 𝑗 )

. (4.1.3)

Note that the largest coordinate of o corresponds to the most likely class according to ŷ.
Moreover, because the softmax operation preserves the ordering among its arguments, we
do not need to compute the softmax to determine which class has been assigned the highest
probability. Thus,

argmax
𝑗

𝑦̂ 𝑗 = argmax
𝑗

𝑜 𝑗 . (4.1.4)

The idea of a softmax dates back to Gibbs (1902), who adapted ideas from physics. Dating
even further back, Boltzmann, the father of modern statistical physics, used this trick to
model a distribution over energy states in gas molecules. In particular, he discovered that
the prevalence of a state of energy in a thermodynamic ensemble, such as the molecules in a
gas, is proportional to exp(−𝐸/𝑘𝑇). Here, 𝐸 is the energy of a state, 𝑇 is the temperature,
and 𝑘 is the Boltzmann constant. When statisticians talk about increasing or decreasing
the “temperature” of a statistical system, they refer to changing 𝑇 in order to favor lower
or higher energy states. Following Gibbs’ idea, energy equates to error. Energy-based
models (Ranzato et al., 2007) use this point of view when describing problems in deep
learning.

Vectorization
To improve computational efficiency, we vectorize calculations in minibatches of data. As-
sume that we are given a minibatchX ∈ R𝑛×𝑑 of 𝑛 examples with dimensionality (number
of inputs) 𝑑. Moreover, assume that we have 𝑞 categories in the output. Then the weights
satisfy W ∈ R𝑑×𝑞 and the bias satisfies b ∈ R1×𝑞 .

O = XW + b,
Ŷ = softmax(O).

(4.1.5)

https://en.wikipedia.org/wiki/Probit_model
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This accelerates the dominant operation into a matrix–matrix product XW. Moreover,
since each row inX represents a data example, the softmax operation itself can be computed
rowwise: for each row of O, exponentiate all entries and then normalize them by the sum.
Note, though, that care must be taken to avoid exponentiating and taking logarithms of large
numbers, since this can cause numerical overflow or underflow. Deep learning frameworks
take care of this automatically.

4.1.2 Loss Function
Now that we have a mapping from features x to probabilities ŷ, we need a way to optimize
the accuracy of this mapping. We will rely on maximum likelihood estimation, the very
same method that we encountered when providing a probabilistic justification for the mean
squared error loss in Section 3.1.3.

Log-Likelihood
The softmax function gives us a vector ŷ, which we can interpret as the (estimated) con-
ditional probabilities of each class, given any input x, such as 𝑦̂1 = 𝑃(𝑦 = cat | x). In the
following we assume that for a dataset with features X the labels Y are represented using
a one-hot encoding label vector. We can compare the estimates with reality by checking
how probable the actual classes are according to our model, given the features:

𝑃(Y | X) =
𝑛∏
𝑖=1

𝑃(y (𝑖) | x(𝑖) ). (4.1.6)

We are allowed to use the factorization since we assume that each label is drawn indepen-
dently from its respective distribution 𝑃(y | x(𝑖) ). Since maximizing the product of terms
is awkward, we take the negative logarithm to obtain the equivalent problem of minimizing
the negative log-likelihood:

− log 𝑃(Y | X) =
𝑛∑
𝑖=1
− log 𝑃(y (𝑖) | x(𝑖) ) =

𝑛∑
𝑖=1

𝑙 (y (𝑖) , ŷ (𝑖) ), (4.1.7)

where for any pair of label y and model prediction ŷ over 𝑞 classes, the loss function 𝑙
is

𝑙 (y, ŷ) = −
𝑞∑
𝑗=1

𝑦 𝑗 log 𝑦̂ 𝑗 . (4.1.8)

For reasons explained later on, the loss function in (4.1.8) is commonly called the cross-
entropy loss. Since y is a one-hot vector of length 𝑞, the sum over all its coordinates 𝑗 van-
ishes for all but one term. Note that the loss 𝑙 (y, ŷ) is bounded from below by 0 whenever ŷ
is a probability vector: no single entry is larger than 1, hence their negative logarithm can-
not be lower than 0; 𝑙 (y, ŷ) = 0 only if we predict the actual label with certainty. This can
never happen for any finite setting of the weights because taking a softmax output towards
1 requires taking the corresponding input 𝑜𝑖 to infinity (or all other outputs 𝑜 𝑗 for 𝑗 ≠ 𝑖

to negative infinity). Even if our model could assign an output probability of 0, any error
made when assigning such high confidence would incur infinite loss (− log 0 = ∞).
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Softmax and Cross-Entropy Loss
Since the softmax function and the corresponding cross-entropy loss are so common, it is
worth understanding a bit better how they are computed. Plugging (4.1.3) into the defini-
tion of the loss in (4.1.8) and using the definition of the softmax we obtain

𝑙 (y, ŷ) = −
𝑞∑
𝑗=1

𝑦 𝑗 log
exp(𝑜 𝑗 )∑𝑞
𝑘=1 exp(𝑜𝑘)

=
𝑞∑
𝑗=1

𝑦 𝑗 log
𝑞∑
𝑘=1

exp(𝑜𝑘) −
𝑞∑
𝑗=1

𝑦 𝑗𝑜 𝑗

= log
𝑞∑
𝑘=1

exp(𝑜𝑘) −
𝑞∑
𝑗=1

𝑦 𝑗𝑜 𝑗 .

(4.1.9)

To understand a bit better what is going on, consider the derivative with respect to any logit
𝑜 𝑗 . We get

𝜕𝑜 𝑗 𝑙 (y, ŷ) =
exp(𝑜 𝑗 )∑𝑞
𝑘=1 exp(𝑜𝑘)

− 𝑦 𝑗 = softmax(o) 𝑗 − 𝑦 𝑗 . (4.1.10)

In other words, the derivative is the difference between the probability assigned by our
model, as expressed by the softmax operation, and what actually happened, as expressed
by elements in the one-hot label vector. In this sense, it is very similar to what we saw in
regression, where the gradient was the difference between the observation 𝑦 and estimate
𝑦̂. This is not a coincidence. In any exponential family model, the gradients of the log-
likelihood are given by precisely this term. This fact makes computing gradients easy in
practice.

Now consider the case where we observe not just a single outcome but an entire distribution
over outcomes. We can use the same representation as before for the label y. The only dif-
ference is that rather than a vector containing only binary entries, say (0, 0, 1), we now have
a generic probability vector, say (0.1, 0.2, 0.7). The math that we used previously to define
the loss 𝑙 in (4.1.8) still works well, just that the interpretation is slightly more general. It
is the expected value of the loss for a distribution over labels. This loss is called the cross-
entropy loss and it is one of the most commonly used losses for classification problems. We
can demystify the name by introducing just the basics of information theory. In a nutshell,
it measures the number of bits needed to encode what we see, y, relative to what we predict
that should happen, ŷ. We provide a very basic explanation in the following. For further
details on information theory see Cover and Thomas (1999) or MacKay (2003).

4.1.3 Information Theory Basics
Many deep learning papers use intuition and terms from information theory. To make sense
of them, we need some common language. This is a survival guide. Information theory
deals with the problem of encoding, decoding, transmitting, and manipulating information
(also known as data).
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Entropy
The central idea in information theory is to quantify the amount of information contained
in data. This places a limit on our ability to compress data. For a distribution 𝑃 its entropy,
𝐻 [𝑃], is defined as:

𝐻 [𝑃] =
∑
𝑗

−𝑃( 𝑗) log 𝑃( 𝑗). (4.1.11)

One of the fundamental theorems of information theory states that in order to encode data
drawn randomly from the distribution 𝑃, we need at least 𝐻 [𝑃] “nats” to encode it (Shan-
non, 1948). If you wonder what a “nat” is, it is the equivalent of bit but when using a code
with base 𝑒 rather than one with base 2. Thus, one nat is 1

log(2) ≈ 1.44 bit.

Surprisal
Youmight be wondering what compression has to do with prediction. Imagine that we have
a stream of data that we want to compress. If it is always easy for us to predict the next
token, then this data is easy to compress. Take the extreme example where every token in
the stream always takes the same value. That is a very boring data stream! And not only
it is boring, but it is also easy to predict. Because the tokens are always the same, we do
not have to transmit any information to communicate the contents of the stream. Easy to
predict, easy to compress.

However if we cannot perfectly predict every event, then we might sometimes be surprised.
Our surprise is greater when an event is assigned lower probability. Claude Shannon settled
on log 1

𝑃 ( 𝑗 ) = − log 𝑃( 𝑗) to quantify one’s surprisal at observing an event 𝑗 having assigned
it a (subjective) probability 𝑃( 𝑗). The entropy defined in (4.1.11) is then the expected
surprisal when one assigned the correct probabilities that truly match the data-generating
process.

Cross-Entropy Revisited
So if entropy is the level of surprise experienced by someone who knows the true proba-
bility, then you might be wondering, what is cross-entropy? The cross-entropy from 𝑃 to
𝑄, denoted 𝐻 (𝑃,𝑄), is the expected surprisal of an observer with subjective probabilities
𝑄 upon seeing data that was actually generated according to probabilities 𝑃. This is given
by 𝐻 (𝑃,𝑄) def

=
∑
𝑗 −𝑃( 𝑗) log𝑄( 𝑗). The lowest possible cross-entropy is achieved when

𝑃 = 𝑄. In this case, the cross-entropy from 𝑃 to 𝑄 is 𝐻 (𝑃, 𝑃) = 𝐻 (𝑃).

In short, we can think of the cross-entropy classification objective in two ways: (i) as max-
imizing the likelihood of the observed data; and (ii) as minimizing our surprisal (and thus
the number of bits) required to communicate the labels.

4.1.4 Summary and Discussion
In this section, we encountered the first nontrivial loss function, allowing us to optimize over
discrete output spaces. Key in its design was that we took a probabilistic approach, treating
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discrete categories as instances of draws from a probability distribution. As a side effect,
we encountered the softmax, a convenient activation function that transforms outputs of an
ordinary neural network layer into valid discrete probability distributions. We saw that the
derivative of the cross-entropy loss when combined with softmax behaves very similarly
to the derivative of squared error; namely by taking the difference between the expected
behavior and its prediction. And, while we were only able to scratch the very surface of it,
we encountered exciting connections to statistical physics and information theory.

While this is enough to get you on your way, and hopefully enough to whet your appetite,
we hardly dived deep here. Among other things, we skipped over computational con-
siderations. Specifically, for any fully connected layer with 𝑑 inputs and 𝑞 outputs, the
parametrization and computational cost is O(𝑑𝑞), which can be prohibitively high in prac-
tice. Fortunately, this cost of transforming 𝑑 inputs into 𝑞 outputs can be reduced through
approximation and compression. For instance Deep Fried Convnets (Yang et al., 2015)
uses a combination of permutations, Fourier transforms, and scaling to reduce the cost
from quadratic to log-linear. Similar techniques work for more advanced structural matrix
approximations (Sindhwani et al., 2015). Lastly, we can use quaternion-like decomposi-
tions to reduce the cost to O( 𝑑𝑞𝑛 ), again if we are willing to trade off a small amount of
accuracy for computational and storage cost (Zhang et al., 2021) based on a compression
factor 𝑛. This is an active area of research. What makes it challenging is that we do not
necessarily strive for the most compact representation or the smallest number of floating
point operations but rather for the solution that can be executed most efficiently on modern
GPUs.

4.1.5 Exercises
1. We can explore the connection between exponential families and softmax in some more

depth.

1. Compute the second derivative of the cross-entropy loss 𝑙 (y, ŷ) for softmax.

2. Compute the variance of the distribution given by softmax(o) and show that it matches
the second derivative computed above.

2. Assume that we have three classes which occur with equal probability, i.e., the proba-
bility vector is ( 13 ,

1
3 ,

1
3 ).

1. What is the problem if we try to design a binary code for it?

2. Can you design a better code? Hint: what happens if we try to encode two indepen-
dent observations? What if we encode 𝑛 observations jointly?

3. When encoding signals transmitted over a physical wire, engineers do not always use
binary codes. For instance, PAM-388 uses three signal levels {−1, 0, 1} as opposed to
two levels {0, 1}. How many ternary units do you need to transmit an integer in the
range {0, . . . , 7}? Why might this be a better idea in terms of electronics?

4. The Bradley–Terry model89 uses a logistic model to capture preferences. For a user to

https://en.wikipedia.org/wiki/Ternary_signal
https://en.wikipedia.org/wiki/Bradley%E2%80%93Terry_model
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choose between apples and oranges one assumes scores 𝑜apple and 𝑜orange. Our require-
ments are that larger scores should lead to a higher likelihood in choosing the associated
item and that the item with the largest score is the most likely one to be chosen (Bradley
and Terry, 1952).

1. Prove that softmax satisfies this requirement.

2. What happens if you want to allow for a default option of choosing neither apples
nor oranges? Hint: now the user has three choices.

5. Softmax gets its name from the following mapping: RealSoftMax(𝑎, 𝑏) = log(exp(𝑎) +
exp(𝑏)).

1. Prove that RealSoftMax(𝑎, 𝑏) > max(𝑎, 𝑏).

2. How small can you make the difference between both functions? Hint: without loss
of generality you can set 𝑏 = 0 and 𝑎 ≥ 𝑏.

3. Prove that this holds for 𝜆−1RealSoftMax(𝜆𝑎, 𝜆𝑏), provided that 𝜆 > 0.

4. Show that for 𝜆→∞ we have 𝜆−1RealSoftMax(𝜆𝑎, 𝜆𝑏) → max(𝑎, 𝑏).

5. Construct an analogous softmin function.

6. Extend this to more than two numbers.

6. The function 𝑔(x) def
= log

∑
𝑖 exp 𝑥𝑖 is sometimes also referred to as the log-partition

function90 .

1. Prove that the function is convex. Hint: to do so, use the fact that the first derivative
amounts to the probabilities from the softmax function and show that the second
derivative is the variance.

2. Show that 𝑔 is translation invariant, i.e., 𝑔(x + 𝑏) = 𝑔(x).

3. What happens if some of the coordinates 𝑥𝑖 are very large? What happens if they’re
all very small?

4. Show that if we choose 𝑏 = max𝑖𝑥𝑖 we end up with a numerically stable implemen-
tation.

7. Assume that we have some probability distribution 𝑃. Suppose we pick another distri-
bution 𝑄 with 𝑄(𝑖) ∝ 𝑃(𝑖)𝛼 for 𝛼 > 0.

1. Which choice of 𝛼 corresponds to doubling the temperature? Which choice corre-
sponds to halving it?

2. What happens if we let the temperature approach 0?

3. What happens if we let the temperature approach∞?

Discussions91 .

https://en.wikipedia.org/wiki/Partition_function_(mathematics)
https://en.wikipedia.org/wiki/Partition_function_(mathematics)
https://discuss.d2l.ai/t/46
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4.2 The Image Classification Dataset

One widely used dataset for image classification is the MNIST dataset 92 (LeCun et al.,
1998) of handwritten digits. At the time of its release in the 1990s it posed a formidable
challenge to most machine learning algorithms, consisting of 60,000 images of 28 × 28
pixels resolution (plus a test dataset of 10,000 images). To put things into perspective, back
in 1995, a Sun SPARCStation 5with awhopping 64MBof RAMand a blistering 5MFLOPs
was considered state of the art equipment for machine learning at AT&T Bell Laboratories.
Achieving high accuracy on digit recognition was a key component in automating letter
sorting for the USPS in the 1990s. Deep networks such as LeNet-5 (LeCun et al., 1995),
support vector machines with invariances (Schölkopf et al., 1996), and tangent distance
classifiers (Simard et al., 1998) all could reach error rates below 1%.

For over a decade, MNIST served as the point of reference for comparing machine learn-
ing algorithms. While it had a good run as a benchmark dataset, even simple models by
today’s standards achieve classification accuracy over 95%, making it unsuitable for distin-
guishing between strong models and weaker ones. Even more, the dataset allows for very
high levels of accuracy, not typically seen in many classification problems. This skewed
algorithmic development towards specific families of algorithms that can take advantage
of clean datasets, such as active set methods and boundary-seeking active set algorithms.
Today, MNIST serves as more of a sanity check than as a benchmark. ImageNet (Deng et
al., 2009) poses a much more relevant challenge. Unfortunately, ImageNet is too large for
many of the examples and illustrations in this book, as it would take too long to train to
make the examples interactive. As a substitute we will focus our discussion in the coming
sections on the qualitatively similar, but much smaller Fashion-MNIST dataset (Xiao et al.,
2017) which was released in 2017. It contains images of 10 categories of clothing at 28×28
pixels resolution.

%matplotlib inline
import time
from mxnet import gluon, npx
from mxnet.gluon.data.vision import transforms
from d2l import mxnet as d2l

npx.set_np()

d2l.use_svg_display()

4.2.1 Loading the Dataset
Since the Fashion-MNIST dataset is so useful, all major frameworks provide preprocessed
versions of it. We can download and read it into memory using built-in framework utili-
ties.

https://en.wikipedia.org/wiki/MNIST_database
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class FashionMNIST(d2l.DataModule): #@save
"""The Fashion-MNIST dataset."""
def __init__(self, batch_size=64, resize=(28, 28)):

super().__init__()
self.save_hyperparameters()
trans = transforms.Compose([transforms.Resize(resize),

transforms.ToTensor()])
self.train = gluon.data.vision.FashionMNIST(

train=True).transform_first(trans)
self.val = gluon.data.vision.FashionMNIST(

train=False).transform_first(trans)

Fashion-MNIST consists of images from 10 categories, each represented by 6000 images
in the training dataset and by 1000 in the test dataset. A test dataset is used for evaluating
model performance (it must not be used for training). Consequently the training set and the
test set contain 60,000 and 10,000 images, respectively.

data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)

[22:09:46] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(60000, 10000)

The images are grayscale and upscaled to 32×32 pixels in resolution above. This is similar
to the original MNIST dataset which consisted of (binary) black and white images. Note,
though, that most modern image data has three channels (red, green, blue) and that hyper-
spectral images can have in excess of 100 channels (the HyMap sensor has 126 channels).
By convention we store an image as a 𝑐 × ℎ × 𝑤 tensor, where 𝑐 is the number of color
channels, ℎ is the height and 𝑤 is the width.

data.train[0][0].shape

(1, 32, 32)

The categories of Fashion-MNIST have human-understandable names. The following con-
venience method converts between numeric labels and their names.

@d2l.add_to_class(FashionMNIST) #@save
def text_labels(self, indices):

"""Return text labels."""
labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',

'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [labels[int(i)] for i in indices]
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4.2.2 Reading a Minibatch
To make our life easier when reading from the training and test sets, we use the built-in data
iterator rather than creating one from scratch. Recall that at each iteration, a data iterator
reads a minibatch of data with size batch_size. We also randomly shuffle the examples
for the training data iterator.

@d2l.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):

data = self.train if train else self.val
return gluon.data.DataLoader(data, self.batch_size, shuffle=train,

num_workers=self.num_workers)

To see how this works, let’s load a minibatch of images by invoking the train_dataloader
method. It contains 64 images.

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

(64, 1, 32, 32) float32 (64,) int32

Let’s look at the time it takes to read the images. Even though it is a built-in loader, it is not
blazingly fast. Nonetheless, this is sufficient since processing images with a deep network
takes quite a bit longer. Hence it is good enough that training a network will not be I/O
constrained.

tic = time.time()
for X, y in data.train_dataloader():

continue
f'{time.time() - tic:.2f} sec'

'4.60 sec'

4.2.3 Visualization
We will often be using the Fashion-MNIST dataset. A convenience function show_images
can be used to visualize the images and the associated labels. Skipping implementation
details, we just show the interface below: we only need to know how to invoke d2l.

show_images rather than how it works for such utility functions.

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""Plot a list of images."""
raise NotImplementedError

Let’s put it to good use. In general, it is a good idea to visualize and inspect data that you are
training on. Humans are very good at spotting oddities and because of that, visualization
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serves as an additional safeguard against mistakes and errors in the design of experiments.
Here are the images and their corresponding labels (in text) for the first few examples in the
training dataset.

@d2l.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):

X, y = batch
if not labels:

labels = self.text_labels(y)
d2l.show_images(X.squeeze(1), nrows, ncols, titles=labels)

batch = next(iter(data.val_dataloader()))
data.visualize(batch)

Weare now ready toworkwith the Fashion-MNIST dataset in the sections that follow.

4.2.4 Summary
We now have a slightly more realistic dataset to use for classification. Fashion-MNIST is an
apparel classification dataset consisting of images representing 10 categories. We will use
this dataset in subsequent sections and chapters to evaluate various network designs, from
a simple linear model to advanced residual networks. As we commonly do with images,
we read them as a tensor of shape (batch size, number of channels, height, width). For now,
we only have one channel as the images are grayscale (the visualization above uses a false
color palette for improved visibility).

Lastly, data iterators are a key component for efficient performance. For instance, we might
use GPUs for efficient image decompression, video transcoding, or other preprocessing.
Whenever possible, you should rely on well-implemented data iterators that exploit high-
performance computing to avoid slowing down your training loop.

4.2.5 Exercises
1. Does reducing the batch_size (for instance, to 1) affect the reading performance?

2. The data iterator performance is important. Do you think the current implementation
is fast enough? Explore various options to improve it. Use a system profiler to find out
where the bottlenecks are.

3. Check out the framework’s online API documentation. Which other datasets are avail-
able?

Discussions93 .

https://discuss.d2l.ai/t/48
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4.3 The Base Classification Model

You may have noticed that the implementations from scratch and the concise implementa-
tion using framework functionality were quite similar in the case of regression. The same
is true for classification. Since many models in this book deal with classification, it is worth
adding functionalities to support this setting specifically. This section provides a base class
for classification models to simplify future code.

from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

4.3.1 The Classifier Class
We define the Classifier class below. In the validation_step we report both the loss
value and the classification accuracy on a validation batch. We draw an update for every
num_val_batches batches. This has the benefit of generating the averaged loss and ac-
curacy on the whole validation data. These average numbers are not exactly correct if the
final batch contains fewer examples, but we ignore this minor difference to keep the code
simple.

class Classifier(d2l.Module): #@save
"""The base class of classification models."""
def validation_step(self, batch):

Y_hat = self(*batch[:-1])
self.plot('loss', self.loss(Y_hat, batch[-1]), train=False)
self.plot('acc', self.accuracy(Y_hat, batch[-1]), train=False)

By default we use a stochastic gradient descent optimizer, operating on minibatches, just
as we did in the context of linear regression.

@d2l.add_to_class(d2l.Module) #@save
def configure_optimizers(self):

params = self.parameters()
if isinstance(params, list):

return d2l.SGD(params, self.lr)
return gluon.Trainer(params, 'sgd', {'learning_rate': self.lr})

4.3.2 Accuracy
Given the predicted probability distribution y_hat, we typically choose the class with the
highest predicted probability whenever we must output a hard prediction. Indeed, many
applications require that we make a choice. For instance, Gmail must categorize an email
into “Primary”, “Social”, “Updates”, “Forums”, or “Spam”. It might estimate probabilities
internally, but at the end of the day it has to choose one among the classes.
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When predictions are consistent with the label class y, they are correct. The classification
accuracy is the fraction of all predictions that are correct. Although it can be difficult to
optimize accuracy directly (it is not differentiable), it is often the performance measure that
we care about the most. It is often the relevant quantity in benchmarks. As such, we will
nearly always report it when training classifiers.

Accuracy is computed as follows. First, if y_hat is a matrix, we assume that the second di-
mension stores prediction scores for each class. We use argmax to obtain the predicted class
by the index for the largest entry in each row. Then we compare the predicted class with
the ground truth y elementwise. Since the equality operator == is sensitive to data types,
we convert y_hat’s data type to match that of y. The result is a tensor containing entries
of 0 (false) and 1 (true). Taking the sum yields the number of correct predictions.

@d2l.add_to_class(Classifier) #@save
def accuracy(self, Y_hat, Y, averaged=True):

"""Compute the number of correct predictions."""
Y_hat = Y_hat.reshape((-1, Y_hat.shape[-1]))
preds = Y_hat.argmax(axis=1).astype(Y.dtype)
compare = (preds == Y.reshape(-1)).astype(np.float32)
return compare.mean() if averaged else compare

@d2l.add_to_class(d2l.Module) #@save
def get_scratch_params(self):

params = []
for attr in dir(self):

a = getattr(self, attr)
if isinstance(a, np.ndarray):

params.append(a)
if isinstance(a, d2l.Module):

params.extend(a.get_scratch_params())
return params

@d2l.add_to_class(d2l.Module) #@save
def parameters(self):

params = self.collect_params()
return params if isinstance(params, gluon.parameter.ParameterDict) and len(

params.keys()) else self.get_scratch_params()

4.3.3 Summary
Classification is a sufficiently common problem that it warrants its own convenience func-
tions. Of central importance in classification is the accuracy of the classifier. Note that
while we often care primarily about accuracy, we train classifiers to optimize a variety of
other objectives for statistical and computational reasons. However, regardless of which
loss function was minimized during training, it is useful to have a convenience method for
assessing the accuracy of our classifier empirically.

4.3.4 Exercises
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1. Denote by 𝐿v the validation loss, and let 𝐿q
v be its quick and dirty estimate computed

by the loss function averaging in this section. Lastly, denote by 𝑙bv the loss on the last
minibatch. Express 𝐿v in terms of 𝐿q

v, 𝑙bv , and the sample and minibatch sizes.

2. Show that the quick and dirty estimate 𝐿q
v is unbiased. That is, show that 𝐸 [𝐿v] =

𝐸 [𝐿q
v]. Why would you still want to use 𝐿v instead?

3. Given a multiclass classification loss, denoting by 𝑙 (𝑦, 𝑦′) the penalty of estimating
𝑦′ when we see 𝑦 and given a probabilty 𝑝(𝑦 | 𝑥), formulate the rule for an optimal
selection of 𝑦′. Hint: express the expected loss, using 𝑙 and 𝑝(𝑦 | 𝑥).

Discussions94 .

4.4 Softmax Regression Implementation from
Scratch

Because softmax regression is so fundamental, we believe that you ought to know how to
implement it yourself. Here, we limit ourselves to defining the softmax-specific aspects of
the model and reuse the other components from our linear regression section, including the
training loop.

from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

4.4.1 The Softmax
Let’s begin with the most important part: the mapping from scalars to probabilities. For a
refresher, recall the operation of the sum operator along specific dimensions in a tensor, as
discussed in Section 2.3.6 and Section 2.3.7. Given a matrix Xwe can sum over all elements
(by default) or only over elements in the same axis. The axis variable lets us compute row
and column sums:

X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdims=True), X.sum(1, keepdims=True)

[22:09:48] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(array([[5., 7., 9.]]),
array([[ 6.],

[15.]]))

https://discuss.d2l.ai/t/6808
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Computing the softmax requires three steps: (i) exponentiation of each term; (ii) a sum
over each row to compute the normalization constant for each example; (iii) division of
each row by its normalization constant, ensuring that the result sums to 1:

softmax(X)𝑖 𝑗 =
exp(X𝑖 𝑗 )∑
𝑘 exp(X𝑖𝑘)

. (4.4.1)

The (logarithm of the) denominator is called the (log) partition function. It was introduced
in statistical physics95 to sum over all possible states in a thermodynamic ensemble. The
implementation is straightforward:

def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1, keepdims=True)
return X_exp / partition # The broadcasting mechanism is applied here

For any input X, we turn each element into a nonnegative number. Each row sums up to
1, as is required for a probability. Caution: the code above is not robust against very large
or very small arguments. While it is sufficient to illustrate what is happening, you should
not use this code verbatim for any serious purpose. Deep learning frameworks have such
protections built in and we will be using the built-in softmax going forward.

X = np.random.rand(2, 5)
X_prob = softmax(X)
X_prob, X_prob.sum(1)

(array([[0.17777154, 0.1857739 , 0.20995119, 0.23887765, 0.18762572],
[0.24042214, 0.1757977 , 0.23786479, 0.15572716, 0.19018826]]),

array([1., 1.]))

4.4.2 The Model
We now have everything that we need to implement the softmax regression model. As in
our linear regression example, each instance will be represented by a fixed-length vector.
Since the raw data here consists of 28 × 28 pixel images, we flatten each image, treating
them as vectors of length 784. In later chapters, we will introduce convolutional neural
networks, which exploit the spatial structure in a more satisfying way.

In softmax regression, the number of outputs from our network should be equal to the
number of classes. Since our dataset has 10 classes, our network has an output dimension
of 10. Consequently, our weights constitute a 784 × 10 matrix plus a 1 × 10 row vector for
the biases. As with linear regression, we initialize the weights W with Gaussian noise. The
biases are initialized as zeros.

class SoftmaxRegressionScratch(d2l.Classifier):
def __init__(self, num_inputs, num_outputs, lr, sigma=0.01):

super().__init__()

(continues on next page)

https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
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(continued from previous page)

self.save_hyperparameters()
self.W = np.random.normal(0, sigma, (num_inputs, num_outputs))
self.b = np.zeros(num_outputs)
self.W.attach_grad()
self.b.attach_grad()

def collect_params(self):
return [self.W, self.b]

The code below defines how the network maps each input to an output. Note that we flatten
each 28 × 28 pixel image in the batch into a vector using reshape before passing the data
through our model.

@d2l.add_to_class(SoftmaxRegressionScratch)
def forward(self, X):

X = X.reshape((-1, self.W.shape[0]))
return softmax(np.dot(X, self.W) + self.b)

4.4.3 The Cross-Entropy Loss
Next we need to implement the cross-entropy loss function (introduced in Section 4.1.2).
This may be the most common loss function in all of deep learning. At the moment, appli-
cations of deep learning easily cast as classification problems far outnumber those better
treated as regression problems.

Recall that cross-entropy takes the negative log-likelihood of the predicted probability as-
signed to the true label. For efficiency we avoid Python for-loops and use indexing instead.
In particular, the one-hot encoding in y allows us to select the matching terms in ŷ.

To see this in action we create sample data y_hatwith 2 examples of predicted probabilities
over 3 classes and their corresponding labels y. The correct labels are 0 and 2 respectively
(i.e., the first and third class). Using y as the indices of the probabilities in y_hat, we can
pick out terms efficiently.

y = np.array([0, 2])
y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

array([0.1, 0.5])

Now we can implement the cross-entropy loss function by averaging over the logarithms of
the selected probabilities.

def cross_entropy(y_hat, y):
return -np.log(y_hat[list(range(len(y_hat))), y]).mean()

cross_entropy(y_hat, y)
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array(1.4978662)

@d2l.add_to_class(SoftmaxRegressionScratch)
def loss(self, y_hat, y):

return cross_entropy(y_hat, y)

4.4.4 Training
We reuse the fitmethod defined in Section 3.4 to train the model with 10 epochs. Note that
the number of epochs (max_epochs), the minibatch size (batch_size), and learning rate
(lr) are adjustable hyperparameters. That means that while these values are not learned
during our primary training loop, they still influence the performance of our model, both
vis-à-vis training and generalization performance. In practice you will want to choose these
values based on the validation split of the data and then, ultimately, to evaluate your final
model on the test split. As discussed in Section 3.6.3, wewill regard the test data of Fashion-
MNIST as the validation set, thus reporting validation loss and validation accuracy on this
split.

data = d2l.FashionMNIST(batch_size=256)
model = SoftmaxRegressionScratch(num_inputs=784, num_outputs=10, lr=0.1)
trainer = d2l.Trainer(max_epochs=10)
trainer.fit(model, data)

4.4.5 Prediction
Now that training is complete, our model is ready to classify some images.

X, y = next(iter(data.val_dataloader()))
preds = model(X).argmax(axis=1)
preds.shape

(256,)

We are more interested in the images we label incorrectly. We visualize them by comparing
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their actual labels (first line of text output) with the predictions from the model (second line
of text output).

wrong = preds.astype(y.dtype) != y
X, y, preds = X[wrong], y[wrong], preds[wrong]
labels = [a+'\n'+b for a, b in zip(

data.text_labels(y), data.text_labels(preds))]
data.visualize([X, y], labels=labels)

4.4.6 Summary
By now we are starting to get some experience with solving linear regression and classifi-
cation problems. With it, we have reached what would arguably be the state of the art of
1960–1970s of statistical modeling. In the next section, we will show you how to leverage
deep learning frameworks to implement this model much more efficiently.

4.4.7 Exercises
1. In this section, we directly implemented the softmax function based on themathematical

definition of the softmax operation. As discussed in Section 4.1 this can cause numerical
instabilities.

1. Test whether softmax still works correctly if an input has a value of 100.

2. Test whether softmax still works correctly if the largest of all inputs is smaller than
−100?

3. Implement a fix by looking at the value relative to the largest entry in the argument.

2. Implement a cross_entropy function that follows the definition of the cross-entropy
loss function

∑
𝑖 𝑦𝑖 log 𝑦̂𝑖 .

1. Try it out in the code example of this section.

2. Why do you think it runs more slowly?

3. Should you use it? When would it make sense to?

4. What do you need to be careful of? Hint: consider the domain of the logarithm.

3. Is it always a good idea to return the most likely label? For example, would you do this
for medical diagnosis? How would you try to address this?

4. Assume that we want to use softmax regression to predict the next word based on some
features. What are some problems that might arise from a large vocabulary?
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5. Experiment with the hyperparameters of the code in this section. In particular:

1. Plot how the validation loss changes as you change the learning rate.

2. Do the validation and training loss change as you change the minibatch size? How
large or small do you need to go before you see an effect?

Discussions96 .

4.5 Concise Implementation of Softmax Regression

Just as high-level deep learning frameworks made it easier to implement linear regression
(see Section 3.5), they are similarly convenient here.

from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

4.5.1 Defining the Model
As in Section 3.5, we construct our fully connected layer using the built-in layer. The built-
in __call__method then invokes forwardwhenever we need to apply the network to some
input.

Even though the input X is a fourth-order tensor, the built-in Dense layer will automati-
cally convert X into a second-order tensor by keeping the dimensionality along the first axis
unchanged.

class SoftmaxRegression(d2l.Classifier): #@save
"""The softmax regression model."""
def __init__(self, num_outputs, lr):

super().__init__()
self.save_hyperparameters()
self.net = nn.Dense(num_outputs)
self.net.initialize()

def forward(self, X):
return self.net(X)

4.5.2 Softmax Revisited
In Section 4.4 we calculated our model’s output and applied the cross-entropy loss. While
this is perfectly reasonable mathematically, it is risky computationally, because of numer-
ical underflow and overflow in the exponentiation.

Recall that the softmax function computes probabilities via 𝑦̂ 𝑗 =
exp(𝑜 𝑗 )∑
𝑘 exp(𝑜𝑘 ) . If some of the

https://discuss.d2l.ai/t/50
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𝑜𝑘 are very large, i.e., very positive, then exp(𝑜𝑘) might be larger than the largest number
we can have for certain data types. This is called overflow. Likewise, if every argument is
a very large negative number, we will get underflow. For instance, single precision floating
point numbers approximately cover the range of 10−38 to 1038. As such, if the largest term
in o lies outside the interval [−90, 90], the result will not be stable. A way round this
problem is to subtract 𝑜 def

= max𝑘 𝑜𝑘 from all entries:

𝑦̂ 𝑗 =
exp 𝑜 𝑗∑
𝑘 exp 𝑜𝑘

=
exp(𝑜 𝑗 − 𝑜) exp 𝑜∑
𝑘 exp(𝑜𝑘 − 𝑜) exp 𝑜

=
exp(𝑜 𝑗 − 𝑜)∑
𝑘 exp(𝑜𝑘 − 𝑜)

. (4.5.1)

By construction we know that 𝑜 𝑗 − 𝑜 ≤ 0 for all 𝑗 . As such, for a 𝑞-class classification
problem, the denominator is contained in the interval [1, 𝑞]. Moreover, the numerator
never exceeds 1, thus preventing numerical overflow. Numerical underflow only occurs
when exp(𝑜 𝑗 − 𝑜) numerically evaluates as 0. Nonetheless, a few steps down the road we
might find ourselves in trouble when we want to compute log 𝑦̂ 𝑗 as log 0. In particular, in
backpropagation, we might find ourselves faced with a screenful of the dreaded NaN (Not a
Number) results.

Fortunately, we are saved by the fact that even though we are computing exponential func-
tions, we ultimately intend to take their log (when calculating the cross-entropy loss). By
combining softmax and cross-entropy, we can escape the numerical stability issues alto-
gether. We have:

log 𝑦̂ 𝑗 = log
exp(𝑜 𝑗 − 𝑜)∑
𝑘 exp(𝑜𝑘 − 𝑜)

= 𝑜 𝑗 − 𝑜 − log
∑
𝑘

exp(𝑜𝑘 − 𝑜). (4.5.2)

This avoids both overflow and underflow. We will want to keep the conventional softmax
function handy in case we ever want to evaluate the output probabilities by our model. But
instead of passing softmax probabilities into our new loss function, we just pass the logits
and compute the softmax and its log all at once inside the cross-entropy loss function, which
does smart things like the “LogSumExp trick”97 .

@d2l.add_to_class(d2l.Classifier) #@save
def loss(self, Y_hat, Y, averaged=True):

Y_hat = Y_hat.reshape((-1, Y_hat.shape[-1]))
Y = Y.reshape((-1,))
fn = gluon.loss.SoftmaxCrossEntropyLoss()
l = fn(Y_hat, Y)
return l.mean() if averaged else l

4.5.3 Training
Next we train our model. We use Fashion-MNIST images, flattened to 784-dimensional
feature vectors.

data = d2l.FashionMNIST(batch_size=256)
model = SoftmaxRegression(num_outputs=10, lr=0.1)
trainer = d2l.Trainer(max_epochs=10)
trainer.fit(model, data)

https://en.wikipedia.org/wiki/LogSumExp
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As before, this algorithm converges to a solution that is reasonably accurate, albeit this time
with fewer lines of code than before.

4.5.4 Summary
High-level APIs are very convenient at hiding from their user potentially dangerous aspects,
such as numerical stability. Moreover, they allow users to design models concisely with
very few lines of code. This is both a blessing and a curse. The obvious benefit is that it
makes things highly accessible, even to engineers who never took a single class of statistics
in their life (in fact, they are part of the target audience of the book). But hiding the sharp
edges also comes with a price: a disincentive to add new and different components on your
own, since there is little muscle memory for doing it. Moreover, it makes it more difficult
to fix things whenever the protective padding of a framework fails to cover all the corner
cases entirely. Again, this is due to lack of familiarity.

As such, we strongly urge you to review both the bare bones and the elegant versions of
many of the implementations that follow. While we emphasize ease of understanding, the
implementations are nonetheless usually quite performant (convolutions are the big excep-
tion here). It is our intention to allow you to build on these when you invent something new
that no framework can give you.

4.5.5 Exercises
1. Deep learning uses many different number formats, including FP64 double precision

(used extremely rarely), FP32 single precision, BFLOAT16 (good for compressed rep-
resentations), FP16 (very unstable), TF32 (a new format from NVIDIA), and INT8.
Compute the smallest and largest argument of the exponential function for which the
result does not lead to numerical underflow or overflow.

2. INT8 is a very limited format consisting of nonzero numbers from 1 to 255. How could
you extend its dynamic range without using more bits? Do standard multiplication and
addition still work?

3. Increase the number of epochs for training. Whymight the validation accuracy decrease
after a while? How could we fix this?

4. What happens as you increase the learning rate? Compare the loss curves for several
learning rates. Which one works better? When?
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4.6 Generalization in Classification

So far, we have focused on how to tackle multiclass classification problems by training
(linear) neural networks with multiple outputs and softmax functions. Interpreting our
model’s outputs as probabilistic predictions, we motivated and derived the cross-entropy
loss function, which calculates the negative log likelihood that our model (for a fixed set
of parameters) assigns to the actual labels. And finally, we put these tools into practice
by fitting our model to the training set. However, as always, our goal is to learn general
patterns, as assessed empirically on previously unseen data (the test set). High accuracy
on the training set means nothing. Whenever each of our inputs is unique (and indeed this
is true for most high-dimensional datasets), we can attain perfect accuracy on the training
set by just memorizing the dataset on the first training epoch, and subsequently looking up
the label whenever we see a new image. And yet, memorizing the exact labels associated
with the exact training examples does not tell us how to classify new examples. Absent
further guidance, we might have to fall back on random guessing whenever we encounter
new examples.

A number of burning questions demand immediate attention:

1. How many test examples do we need to give a good estimate of the accuracy of our
classifiers on the underlying population?

2. What happens if we keep evaluating models on the same test repeatedly?

3. Why should we expect that fitting our linear models to the training set should fare any
better than our naive memorization scheme?

Whereas Section 3.6 introduced the basics of overfitting and generalization in the context of
linear regression, this chapter will go a little deeper, introducing some of the foundational
ideas of statistical learning theory. It turns out that we often can guarantee generalization
a priori: for many models, and for any desired upper bound on the generalization gap 𝜖 ,
we can often determine some required number of samples 𝑛 such that if our training set
contains at least 𝑛 samples, our empirical error will lie within 𝜖 of the true error, for any
data generating distribution. Unfortunately, it also turns out that while these sorts of guar-
antees provide a profound set of intellectual building blocks, they are of limited practical
utility to the deep learning practitioner. In short, these guarantees suggest that ensuring
generalization of deep neural networks a priori requires an absurd number of examples
(perhaps trillions or more), even when we find that, on the tasks we care about, deep neural
networks typically generalize remarkably well with far fewer examples (thousands). Thus
deep learning practitioners often forgo a priori guarantees altogether, instead employing
methods that have generalized well on similar problems in the past, and certifying gen-
eralization post hoc through empirical evaluations. When we get to Chapter 5, we will

https://discuss.d2l.ai/t/52
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revisit generalization and provide a light introduction to the vast scientific literature that
has sprung in attempts to explain why deep neural networks generalize in practice.

4.6.1 The Test Set
Since we have already begun to rely on test sets as the gold standard method for assessing
generalization error, let’s get started by discussing the properties of such error estimates.
Let’s focus on a fixed classifier 𝑓 , without worrying about how it was obtained. Moreover
suppose that we possess a fresh dataset of examples D = (x(𝑖) , 𝑦 (𝑖) )𝑛𝑖=1 that were not used
to train the classifier 𝑓 . The empirical error of our classifier 𝑓 on D is simply the fraction
of instances for which the prediction 𝑓 (x(𝑖) ) disagrees with the true label 𝑦 (𝑖) , and is given
by the following expression:

𝜖D ( 𝑓 ) =
1
𝑛

𝑛∑
𝑖=1

1( 𝑓 (x(𝑖) ) ≠ 𝑦 (𝑖) ). (4.6.1)

By contrast, the population error is the expected fraction of examples in the underlying pop-
ulation (some distribution 𝑃(𝑋,𝑌 ) characterized by probability density function 𝑝(x, 𝑦))
for which our classifier disagrees with the true label:

𝜖 ( 𝑓 ) = 𝐸 (x,𝑦)∼𝑃1( 𝑓 (x) ≠ 𝑦) =
∫ ∫

1( 𝑓 (x) ≠ 𝑦)𝑝(x, 𝑦) 𝑑x𝑑𝑦. (4.6.2)

While 𝜖 ( 𝑓 ) is the quantity that we actually care about, we cannot observe it directly, just
as we cannot directly observe the average height in a large population without measuring
every single person. We can only estimate this quantity based on samples. Because our
test set D is statistically representative of the underlying population, we can view 𝜖D ( 𝑓 )
as a statistical estimator of the population error 𝜖 ( 𝑓 ). Moreover, because our quantity of
interest 𝜖 ( 𝑓 ) is an expectation (of the random variable 1( 𝑓 (𝑋) ≠ 𝑌 )) and the corresponding
estimator 𝜖D ( 𝑓 ) is the sample average, estimating the population error is simply the classic
problem of mean estimation, which you may recall from Section 2.6.

An important classical result from probability theory called the central limit theorem guar-
antees that whenever we possess 𝑛 random samples 𝑎1, ..., 𝑎𝑛 drawn from any distribution
with mean 𝜇 and standard deviation 𝜎, then, as the number of samples 𝑛 approaches infin-
ity, the sample average 𝜇̂ approximately tends towards a normal distribution centered at the
true mean and with standard deviation 𝜎/√𝑛. Already, this tells us something important:
as the number of examples grows large, our test error 𝜖D ( 𝑓 ) should approach the true error
𝜖 ( 𝑓 ) at a rate of O(1/√𝑛). Thus, to estimate our test error twice as precisely, we must
collect four times as large a test set. To reduce our test error by a factor of one hundred, we
must collect ten thousand times as large a test set. In general, such a rate of O(1/√𝑛) is
often the best we can hope for in statistics.

Now that we know something about the asymptotic rate at which our test error 𝜖D ( 𝑓 )
converges to the true error 𝜖 ( 𝑓 ), we can zoom in on some important details. Recall that
the random variable of interest 1( 𝑓 (𝑋) ≠ 𝑌 ) can only take values 0 and 1 and thus is
a Bernoulli random variable, characterized by a parameter indicating the probability that
it takes value 1. Here, 1 means that our classifier made an error, so the parameter of our
random variable is actually the true error rate 𝜖 ( 𝑓 ). The variance𝜎2 of a Bernoulli depends
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on its parameter (here, 𝜖 ( 𝑓 )) according to the expression 𝜖 ( 𝑓 )(1 − 𝜖 ( 𝑓 )). While 𝜖 ( 𝑓 ) is
initially unknown, we know that it cannot be greater than 1. A little investigation of this
function reveals that our variance is highest when the true error rate is close to 0.5 and can
be far lower when it is close to 0 or close to 1. This tells us that the asymptotic standard
deviation of our estimate 𝜖D ( 𝑓 ) of the error 𝜖 ( 𝑓 ) (over the choice of the 𝑛 test samples)
cannot be any greater than

√
0.25/𝑛.

If we ignore the fact that this rate characterizes behavior as the test set size approaches
infinity rather than when we possess finite samples, this tells us that if we want our test
error 𝜖D ( 𝑓 ) to approximate the population error 𝜖 ( 𝑓 ) such that one standard deviation
corresponds to an interval of ±0.01, then we should collect roughly 2500 samples. If we
want to fit two standard deviations in that range and thus be 95% confident that 𝜖D ( 𝑓 ) ∈
𝜖 ( 𝑓 ) ± 0.01, then we will need 10,000 samples!

This turns out to be the size of the test sets for many popular benchmarks in machine learn-
ing. You might be surprised to find out that thousands of applied deep learning papers get
published every year making a big deal out of error rate improvements of 0.01 or less. Of
course, when the error rates are much closer to 0, then an improvement of 0.01 can indeed
be a big deal.

One pesky feature of our analysis thus far is that it really only tells us about asymptotics,
i.e., how the relationship between 𝜖D and 𝜖 evolves as our sample size goes to infinity.
Fortunately, because our random variable is bounded, we can obtain valid finite sample
bounds by applying an inequality due to Hoeffding (1963):

𝑃(𝜖D ( 𝑓 ) − 𝜖 ( 𝑓 ) ≥ 𝑡) < exp
(
−2𝑛𝑡2

)
. (4.6.3)

Solving for the smallest dataset size that would allow us to conclude with 95% confidence
that the distance 𝑡 between our estimate 𝜖D ( 𝑓 ) and the true error rate 𝜖 ( 𝑓 ) does not exceed
0.01, you will find that roughly 15,000 examples are required as compared to the 10,000
examples suggested by the asymptotic analysis above. If you go deeper into statistics you
will find that this trend holds generally. Guarantees that hold even in finite samples are
typically slightly more conservative. Note that in the scheme of things, these numbers
are not so far apart, reflecting the general usefulness of asymptotic analysis for giving us
ballpark figures even if they are not guarantees we can take to court.

4.6.2 Test Set Reuse
In some sense, you are now set up to succeed at conducting empirical machine learning
research. Nearly all practical models are developed and validated based on test set perfor-
mance and you are now a master of the test set. For any fixed classifier 𝑓 , you know how
to evaluate its test error 𝜖D ( 𝑓 ), and know precisely what can (and cannot) be said about its
population error 𝜖 ( 𝑓 ).

So let’s say that you take this knowledge and prepare to train your first model 𝑓1. Knowing
just how confident you need to be in the performance of your classifier’s error rate you apply
our analysis above to determine an appropriate number of examples to set aside for the test
set. Moreover, let’s assume that you took the lessons from Section 3.6 to heart and made
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sure to preserve the sanctity of the test set by conducting all of your preliminary analysis,
hyperparameter tuning, and even selection among multiple competing model architectures
on a validation set. Finally you evaluate your model 𝑓1 on the test set and report an unbiased
estimate of the population error with an associated confidence interval.

So far everything seems to be going well. However, that night you wake up at 3am with
a brilliant idea for a new modeling approach. The next day, you code up your new model,
tune its hyperparameters on the validation set and not only are you getting your new model
𝑓2 to work but its error rate appears to be much lower than 𝑓1’s. However, the thrill of
discovery suddenly fades as you prepare for the final evaluation. You do not have a test
set!

Even though the original test setD is still sitting on your server, you now face two formidable
problems. First, when you collected your test set, you determined the required level of pre-
cision under the assumption that you were evaluating a single classifier 𝑓 . However, if
you get into the business of evaluating multiple classifiers 𝑓1, ..., 𝑓𝑘 on the same test set,
you must consider the problem of false discovery. Before, you might have been 95% sure
that 𝜖D ( 𝑓 ) ∈ 𝜖 ( 𝑓 ) ± 0.01 for a single classifier 𝑓 and thus the probability of a misleading
result was a mere 5%. With 𝑘 classifiers in the mix, it can be hard to guarantee that there
is not even one among them whose test set performance is misleading. With 20 classifiers
under consideration, you might have no power at all to rule out the possibility that at least
one among them received a misleading score. This problem relates to multiple hypothesis
testing, which despite a vast literature in statistics, remains a persistent problem plaguing
scientific research.

If that is not enough to worry you, there is a special reason to distrust the results that you
get on subsequent evaluations. Recall that our analysis of test set performance rested on
the assumption that the classifier was chosen absent any contact with the test set and thus
we could view the test set as drawn randomly from the underlying population. Here, not
only are you testing multiple functions, the subsequent function 𝑓2 was chosen after you
observed the test set performance of 𝑓1. Once information from the test set has leaked
to the modeler, it can never be a true test set again in the strictest sense. This problem is
called adaptive overfitting and has recently emerged as a topic of intense interest to learning
theorists and statisticians (Dwork et al., 2015). Fortunately, while it is possible to leak all
information out of a holdout set, and the theoretical worst case scenarios are bleak, these
analyses may be too conservative. In practice, take care to create real test sets, to consult
them as infrequently as possible, to account for multiple hypothesis testing when reporting
confidence intervals, and to dial up your vigilance more aggressively when the stakes are
high and your dataset size is small. When running a series of benchmark challenges, it is
often good practice to maintain several test sets so that after each round, the old test set can
be demoted to a validation set.

4.6.3 Statistical Learning Theory
Put simply, test sets are all that we really have, and yet this fact seems strangely unsatisfy-
ing. First, we seldom possess a true test set—unless we are the ones creating the dataset,
someone else has probably already evaluated their own classifier on our ostensible “test
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set”. And even when we have first dibs, we soon find ourselves frustrated, wishing we
could evaluate our subsequent modeling attempts without the gnawing feeling that we can-
not trust our numbers. Moreover, even a true test set can only tell us post hoc whether a
classifier has in fact generalized to the population, not whether we have any reason to expect
a priori that it should generalize.

With these misgivings in mind, you might now be sufficiently primed to see the appeal of
statistical learning theory, the mathematical subfield of machine learning whose practi-
tioners aim to elucidate the fundamental principles that explain why/when models trained
on empirical data can/will generalize to unseen data. One of the primary aims of statistical
learning researchers has been to bound the generalization gap, relating the properties of the
model class to the number of samples in the dataset.

Learning theorists aim to bound the difference between the empirical error 𝜖S ( 𝑓S) of a
learned classifier 𝑓S , both trained and evaluated on the training set S, and the true error
𝜖 ( 𝑓S) of that same classifier on the underlying population. This might look similar to
the evaluation problem that we just addressed but there is a major difference. Earlier, the
classifier 𝑓 was fixed and we only needed a dataset for evaluative purposes. And indeed,
any fixed classifier does generalize: its error on a (previously unseen) dataset is an unbiased
estimate of the population error. But what can we say when a classifier is trained and
evaluated on the same dataset? Can we ever be confident that the training error will be
close to the testing error?

Suppose that our learned classifier 𝑓S must be chosen from some pre-specified set of func-
tions F . Recall from our discussion of test sets that while it is easy to estimate the error of a
single classifier, things get hairy when we begin to consider collections of classifiers. Even
if the empirical error of any one (fixed) classifier will be close to its true error with high
probability, once we consider a collection of classifiers, we need to worry about the possi-
bility that just one of them will receive a badly estimated error. The worry is that we might
pick such a classifier and thereby grossly underestimate the population error. Moreover,
even for linear models, because their parameters are continuously valued, we are typically
choosing from an infinite class of functions (|F | = ∞).

One ambitious solution to the problem is to develop analytic tools for proving uniform
convergence, i.e., that with high probability, the empirical error rate for every classifier
in the class 𝑓 ∈ F will simultaneously converge to its true error rate. In other words,
we seek a theoretical principle that would allow us to state that with probability at least
1 − 𝛿 (for some small 𝛿) no classifier’s error rate 𝜖 ( 𝑓 ) (among all classifiers in the class
F ) will be misestimated by more than some small amount 𝛼. Clearly, we cannot make
such statements for all model classes F . Recall the class of memorization machines that
always achieve empirical error 0 but never outperform random guessing on the underlying
population.

In a sense the class of memorizers is too flexible. No such a uniform convergence result
could possibly hold. On the other hand, a fixed classifier is useless—it generalizes perfectly,
but fits neither the training data nor the test data. The central question of learning has
thus historically been framed as a trade-off between more flexible (higher variance) model
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classes that better fit the training data but risk overfitting, versus more rigid (higher bias)
model classes that generalize well but risk underfitting. A central question in learning
theory has been to develop the appropriate mathematical analysis to quantify where a model
sits along this spectrum, and to provide the associated guarantees.

In a series of seminal papers, Vapnik and Chervonenkis extended the theory on the con-
vergence of relative frequencies to more general classes of functions (Vapnik and Cher-
vonenkis, 1964, Vapnik and Chervonenkis, 1968, Vapnik and Chervonenkis, 1971, Vap-
nik and Chervonenkis, 1981, Vapnik and Chervonenkis, 1991, Vapnik and Chervonenkis,
1974). One of the key contributions of this line of work is the Vapnik–Chervonenkis (VC)
dimension, which measures (one notion of) the complexity (flexibility) of a model class.
Moreover, one of their key results bounds the difference between the empirical error and
the population error as a function of the VC dimension and the number of samples:

𝑃
(
𝑅[𝑝, 𝑓 ] − 𝑅emp [X,Y, 𝑓 ] < 𝛼

)
≥ 1 − 𝛿 for 𝛼 ≥ 𝑐

√
(VC − log 𝛿)/𝑛. (4.6.4)

Here 𝛿 > 0 is the probability that the bound is violated, 𝛼 is the upper bound on the
generalization gap, and 𝑛 is the dataset size. Lastly, 𝑐 > 0 is a constant that depends only
on the scale of the loss that can be incurred. One use of the bound might be to plug in
desired values of 𝛿 and 𝛼 to determine how many samples to collect. The VC dimension
quantifies the largest number of data points for which we can assign any arbitrary (binary)
labeling and for each find some model 𝑓 in the class that agrees with that labeling. For
example, linear models on 𝑑-dimensional inputs have VC dimension 𝑑 + 1. It is easy to
see that a line can assign any possible labeling to three points in two dimensions, but not
to four. Unfortunately, the theory tends to be overly pessimistic for more complex models
and obtaining this guarantee typically requires far more examples than are actually needed
to achieve the desired error rate. Note also that fixing the model class and 𝛿, our error rate
again decays with the usual O(1/√𝑛) rate. It seems unlikely that we could do better in
terms of 𝑛. However, as we vary the model class, VC dimension can present a pessimistic
picture of the generalization gap.

4.6.4 Summary
The most straightforward way to evaluate a model is to consult a test set comprised of pre-
viously unseen data. Test set evaluations provide an unbiased estimate of the true error
and converge at the desired O(1/√𝑛) rate as the test set grows. We can provide approx-
imate confidence intervals based on exact asymptotic distributions or valid finite sample
confidence intervals based on (more conservative) finite sample guarantees. Indeed test
set evaluation is the bedrock of modern machine learning research. However, test sets are
seldom true test sets (used by multiple researchers again and again). Once the same test set
is used to evaluate multiple models, controlling for false discovery can be difficult. This
can cause huge problems in theory. In practice, the significance of the problem depends on
the size of the holdout sets in question and whether they are merely being used to choose
hyperparameters or if they are leaking information more directly. Nevertheless, it is good
practice to curate real test sets (or multiple) and to be as conservative as possible about how
often they are used.
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Hoping to provide a more satisfying solution, statistical learning theorists have developed
methods for guaranteeing uniform convergence over a model class. If indeed every model’s
empirical error simultaneously converges to its true error, then we are free to choose the
model that performs best, minimizing the training error, knowing that it too will perform
similarly well on the holdout data. Crucially, any one of such results must depend on some
property of the model class. Vladimir Vapnik and Alexey Chernovenkis introduced the VC
dimension, presenting uniform convergence results that hold for all models in a VC class.
The training errors for all models in the class are (simultaneously) guaranteed to be close
to their true errors, and guaranteed to grow even closer at O(1/√𝑛) rates. Following the
revolutionary discovery of VC dimension, numerous alternative complexity measures have
been proposed, each facilitating an analogous generalization guarantee. See Boucheron
et al. (2005) for a detailed discussion of several advanced ways of measuring function
complexity. Unfortunately, while these complexity measures have become broadly useful
tools in statistical theory, they turn out to be powerless (as straightforwardly applied) for
explaining why deep neural networks generalize. Deep neural networks often have millions
of parameters (or more), and can easily assign random labels to large collections of points.
Nevertheless, they generalize well on practical problems and, surprisingly, they often gen-
eralize better, when they are larger and deeper, despite incurring higher VC dimensions. In
the next chapter, we will revisit generalization in the context of deep learning.

4.6.5 Exercises
1. If we wish to estimate the error of a fixed model 𝑓 to within 0.0001 with probability

greater than 99.9%, how many samples do we need?

2. Suppose that somebody else possesses a labeled test setD and only makes available the
unlabeled inputs (features). Now suppose that you can only access the test set labels by
running a model 𝑓 (with no restrictions placed on the model class) on each of the un-
labeled inputs and receiving the corresponding error 𝜖D ( 𝑓 ). How many models would
you need to evaluate before you leak the entire test set and thus could appear to have
error 0, regardless of your true error?

3. What is the VC dimension of the class of fifth-order polynomials?

4. What is the VC dimension of axis-aligned rectangles on two-dimensional data?

Discussions99 .

4.7 Environment and Distribution Shift

In the previous sections, we worked through a number of hands-on applications of machine
learning, fitting models to a variety of datasets. And yet, we never stopped to contemplate
either where data came from in the first place or what we ultimately plan to do with the

https://discuss.d2l.ai/t/6829
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outputs from our models. Too often, machine learning developers in possession of data
rush to develop models without pausing to consider these fundamental issues.

Many failed machine learning deployments can be traced back to this failure. Sometimes
models appear to perform marvelously as measured by test set accuracy but fail catastroph-
ically in deployment when the distribution of data suddenly shifts. More insidiously, some-
times the very deployment of a model can be the catalyst that perturbs the data distribution.
Say, for example, that we trained a model to predict who will repay rather than default on a
loan, finding that an applicant’s choice of footwear was associated with the risk of default
(Oxfords indicate repayment, sneakers indicate default). We might be inclined thereafter
to grant a loan to any applicant wearing Oxfords and to deny all applicants wearing sneak-
ers.

In this case, our ill-considered leap from pattern recognition to decision-making and our
failure to critically consider the environment might have disastrous consequences. For
starters, as soon as we began making decisions based on footwear, customers would catch
on and change their behavior. Before long, all applicants would be wearing Oxfords, with-
out any coincident improvement in credit-worthiness. Take a minute to digest this because
similar issues abound in many applications of machine learning: by introducing our model-
based decisions to the environment, we might break the model.

While we cannot possibly give these topics a complete treatment in one section, we aim here
to expose some common concerns, and to stimulate the critical thinking required to detect
such situations early, mitigate damage, and use machine learning responsibly. Some of the
solutions are simple (ask for the “right” data), some are technically difficult (implement a
reinforcement learning system), and others require that we step outside the realm of sta-
tistical prediction altogether and grapple with difficult philosophical questions concerning
the ethical application of algorithms.

4.7.1 Types of Distribution Shift
To begin, we stick with the passive prediction setting considering the various ways that data
distributionsmight shift andwhatmight be done to salvagemodel performance. In one clas-
sic setup, we assume that our training data was sampled from some distribution 𝑝𝑆 (x, 𝑦)
but that our test data will consist of unlabeled examples drawn from some different distri-
bution 𝑝𝑇 (x, 𝑦). Already, we must confront a sobering reality. Absent any assumptions on
how 𝑝𝑆 and 𝑝𝑇 relate to each other, learning a robust classifier is impossible.

Consider a binary classification problem, where we wish to distinguish between dogs and
cats. If the distribution can shift in arbitrary ways, then our setup permits the pathological
case in which the distribution over inputs remains constant: 𝑝𝑆 (x) = 𝑝𝑇 (x), but the labels
are all flipped: 𝑝𝑆 (𝑦 | x) = 1− 𝑝𝑇 (𝑦 | x). In other words, if God can suddenly decide that
in the future all “cats” are now dogs and what we previously called “dogs” are now cats—
without any change in the distribution of inputs 𝑝(x), then we cannot possibly distinguish
this setting from one in which the distribution did not change at all.

Fortunately, under some restricted assumptions on the ways our data might change in the fu-
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ture, principled algorithms can detect shift and sometimes even adapt on the fly, improving
on the accuracy of the original classifier.

Covariate Shift
Among categories of distribution shift, covariate shift may be the most widely studied.
Here, we assume that while the distribution of inputs may change over time, the labeling
function, i.e., the conditional distribution 𝑃(𝑦 | x) does not change. Statisticians call this
covariate shift because the problem arises due to a shift in the distribution of the covari-
ates (features). While we can sometimes reason about distribution shift without invoking
causality, we note that covariate shift is the natural assumption to invoke in settings where
we believe that x causes 𝑦.

Consider the challenge of distinguishing cats and dogs. Our training data might consist of
images of the kind in Fig. 4.7.1.

tFig. 4.7.1 Training data for distinguishing cats and dogs (illustrations: Lafeez Hossain / 500px /
Getty Images; ilkermetinkursova / iStock / Getty Images Plus; GlobalP / iStock / Getty
Images Plus; Musthafa Aboobakuru / 500px / Getty Images).

At test time we are asked to classify the images in Fig. 4.7.2.

tFig. 4.7.2 Test data for distinguishing cats and dogs (illustrations: SIBAS_minich / iStock / Getty
Images Plus; Ghrzuzudu / iStock / Getty Images Plus; id-work / DigitalVision Vectors /
Getty Images; Yime / iStock / Getty Images Plus).

The training set consists of photos, while the test set contains only cartoons. Training on a



157 Environment and Distribution Shift

dataset with substantially different characteristics from the test set can spell trouble absent
a coherent plan for how to adapt to the new domain.

Label Shift
Label shift describes the converse problem. Here, we assume that the label marginal 𝑃(𝑦)
can change but the class-conditional distribution 𝑃(x | 𝑦) remains fixed across domains.
Label shift is a reasonable assumption to make when we believe that 𝑦 causes x. For ex-
ample, we may want to predict diagnoses given their symptoms (or other manifestations),
even as the relative prevalence of diagnoses are changing over time. Label shift is the ap-
propriate assumption here because diseases cause symptoms. In some degenerate cases the
label shift and covariate shift assumptions can hold simultaneously. For example, when the
label is deterministic, the covariate shift assumption will be satisfied, even when 𝑦 causes
x. Interestingly, in these cases, it is often advantageous to work with methods that flow
from the label shift assumption. That is because these methods tend to involve manipulat-
ing objects that look like labels (often low-dimensional), as opposed to objects that look
like inputs, which tend to be high-dimensional in deep learning.

Concept Shift
We may also encounter the related problem of concept shift, which arises when the very
definitions of labels can change. This sounds weird—a cat is a cat, no? However, other
categories are subject to changes in usage over time. Diagnostic criteria for mental illness,
what passes for fashionable, and job titles, are all subject to considerable amounts of con-
cept shift. It turns out that if we navigate around the United States, shifting the source of
our data by geography, we will find considerable concept shift regarding the distribution of
names for soft drinks as shown in Fig. 4.7.3.

If we were to build a machine translation system, the distribution 𝑃(𝑦 | x) might be dif-
ferent depending on our location. This problem can be tricky to spot. We might hope to
exploit knowledge that shift only takes place gradually either in a temporal or geographic
sense.

4.7.2 Examples of Distribution Shift
Before delving into formalism and algorithms, we can discuss some concrete situations
where covariate or concept shift might not be obvious.

Medical Diagnostics
Imagine that youwant to design an algorithm to detect cancer. You collect data from healthy
and sick people and you train your algorithm. It works fine, giving you high accuracy and
you conclude that you are ready for a successful career in medical diagnostics. Not so
fast.

The distributions that gave rise to the training data and those you will encounter in the wild
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tFig. 4.7.3 Concept shift for soft drink names in the United States (CC-BY: Alan McConchie,
PopVsSoda.com).

might differ considerably. This happened to an unfortunate startup that some of we authors
worked with years ago. They were developing a blood test for a disease that predominantly
affects older men and hoped to study it using blood samples that they had collected from
patients. However, it is considerably more difficult to obtain blood samples from healthy
men than from sick patients already in the system. To compensate, the startup solicited
blood donations from students on a university campus to serve as healthy controls in de-
veloping their test. Then they asked whether we could help them to build a classifier for
detecting the disease.

As we explained to them, it would indeed be easy to distinguish between the healthy and
sick cohorts with near-perfect accuracy. However, that is because the test subjects differed
in age, hormone levels, physical activity, diet, alcohol consumption, and many more fac-
tors unrelated to the disease. This was unlikely to be the case with real patients. Due to
their sampling procedure, we could expect to encounter extreme covariate shift. Moreover,
this case was unlikely to be correctable via conventional methods. In short, they wasted a
significant sum of money.

Self-Driving Cars
Say a company wanted to leverage machine learning for developing self-driving cars. One
key component here is a roadside detector. Since real annotated data is expensive to get,
they had the (smart and questionable) idea to use synthetic data from a game rendering
engine as additional training data. This worked really well on “test data” drawn from the
rendering engine. Alas, inside a real car it was a disaster. As it turned out, the roadside had
been rendered with a very simplistic texture. More importantly, all the roadside had been
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rendered with the same texture and the roadside detector learned about this “feature” very
quickly.

A similar thing happened to the US Army when they first tried to detect tanks in the forest.
They took aerial photographs of the forest without tanks, then drove the tanks into the forest
and took another set of pictures. The classifier appeared to work perfectly. Unfortunately, it
had merely learned how to distinguish trees with shadows from trees without shadows—the
first set of pictures was taken in the early morning, the second set at noon.

Nonstationary Distributions
A much more subtle situation arises when the distribution changes slowly (also known
as nonstationary distribution) and the model is not updated adequately. Below are some
typical cases.

• We train a computational advertising model and then fail to update it frequently (e.g., we
forget to incorporate that an obscure new device called an iPad was just launched).

• We build a spam filter. It works well at detecting all spam that we have seen so far. But
then the spammers wise up and craft new messages that look unlike anything we have
seen before.

• We build a product recommendation system. It works throughout the winter but then
continues to recommend Santa hats long after Christmas.

More Anecdotes
• We build a face detector. It works well on all benchmarks. Unfortunately it fails on test

data—the offending examples are close-ups where the face fills the entire image (no
such data was in the training set).

• We build a web search engine for the US market and want to deploy it in the UK.

• We train an image classifier by compiling a large dataset where each among a large set
of classes is equally represented in the dataset, say 1000 categories, represented by
1000 images each. Then we deploy the system in the real world, where the actual
label distribution of photographs is decidedly non-uniform.

4.7.3 Correction of Distribution Shift
As we have discussed, there are many cases where training and test distributions 𝑃(x, 𝑦)
are different. In some cases, we get lucky and the models work despite covariate, label,
or concept shift. In other cases, we can do better by employing principled strategies to
cope with the shift. The remainder of this section grows considerably more technical. The
impatient reader could continue on to the next section as this material is not prerequisite to
subsequent concepts.
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Empirical Risk and Risk
Let’s first reflect on what exactly is happening during model training: we iterate over fea-
tures and associated labels of training data {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} and update the param-
eters of a model 𝑓 after every minibatch. For simplicity we do not consider regularization,
so we largely minimize the loss on the training:

minimize
𝑓

1
𝑛

𝑛∑
𝑖=1

𝑙 ( 𝑓 (x𝑖), 𝑦𝑖), (4.7.1)

where 𝑙 is the loss function measuring “how bad” the prediction 𝑓 (x𝑖) is given the associ-
ated label 𝑦𝑖 . Statisticians call the term in (4.7.1) empirical risk. The empirical risk is an
average loss over the training data for approximating the risk, which is the expectation of
the loss over the entire population of data drawn from their true distribution 𝑝(x, 𝑦):

𝐸𝑝 (x,𝑦) [𝑙 ( 𝑓 (x), 𝑦)] =
∫ ∫

𝑙 ( 𝑓 (x), 𝑦)𝑝(x, 𝑦) 𝑑x𝑑𝑦. (4.7.2)

However, in practice we typically cannot obtain the entire population of data. Thus, em-
pirical risk minimization, which is minimizing the empirical risk in (4.7.1), is a practical
strategy for machine learning, with the hope of approximately minimizing the risk.

Covariate Shift Correction
Assume that we want to estimate some dependency 𝑃(𝑦 | x) for which we have labeled data
(x𝑖 , 𝑦𝑖). Unfortunately, the observations x𝑖 are drawn from some source distribution 𝑞(x)
rather than the target distribution 𝑝(x). Fortunately, the dependency assumption means
that the conditional distribution does not change: 𝑝(𝑦 | x) = 𝑞(𝑦 | x). If the source
distribution 𝑞(x) is “wrong”, we can correct for that by using the following simple identity
in the risk:∫ ∫

𝑙 ( 𝑓 (x), 𝑦)𝑝(𝑦 | x)𝑝(x) 𝑑x𝑑𝑦 =
∫ ∫

𝑙 ( 𝑓 (x), 𝑦)𝑞(𝑦 | x)𝑞(x) 𝑝(x)
𝑞(x) 𝑑x𝑑𝑦.

(4.7.3)

In other words, we need to reweigh each data example by the ratio of the probability that it
would have been drawn from the correct distribution to that from the wrong one:

𝛽𝑖
def
=
𝑝(x𝑖)
𝑞(x𝑖)

. (4.7.4)

Plugging in the weight 𝛽𝑖 for each data example (x𝑖 , 𝑦𝑖) we can train our model using
weighted empirical risk minimization:

minimize
𝑓

1
𝑛

𝑛∑
𝑖=1

𝛽𝑖 𝑙 ( 𝑓 (x𝑖), 𝑦𝑖). (4.7.5)

Alas, we do not know that ratio, so before we can do anything useful we need to estimate
it. Many methods are available, including some fancy operator-theoretic approaches that
attempt to recalibrate the expectation operator directly using a minimum-norm or a maxi-
mum entropy principle. Note that for any such approach, we need samples drawn from both
distributions—the “true” 𝑝, e.g., by access to test data, and the one used for generating the
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training set 𝑞 (the latter is trivially available). Note however, that we only need features
x ∼ 𝑝(x); we do not need to access labels 𝑦 ∼ 𝑝(𝑦).

In this case, there exists a very effective approach that will give almost as good results
as the original: namely, logistic regression, which is a special case of softmax regression
(see Section 4.1) for binary classification. This is all that is needed to compute estimated
probability ratios. We learn a classifier to distinguish between data drawn from 𝑝(x) and
data drawn from 𝑞(x). If it is impossible to distinguish between the two distributions then
it means that the associated instances are equally likely to come from either one of those
two distributions. On the other hand, any instances that can be well discriminated should
be significantly overweighted or underweighted accordingly.

For simplicity’s sake assume that we have an equal number of instances from both distribu-
tions 𝑝(x) and 𝑞(x), respectively. Now denote by 𝑧 labels that are 1 for data drawn from 𝑝

and −1 for data drawn from 𝑞. Then the probability in a mixed dataset is given by

𝑃(𝑧 = 1 | x) = 𝑝(x)
𝑝(x) + 𝑞(x) and hence

𝑃(𝑧 = 1 | x)
𝑃(𝑧 = −1 | x) =

𝑝(x)
𝑞(x) . (4.7.6)

Thus, if we use a logistic regression approach, where 𝑃(𝑧 = 1 | x) = 1
1+exp(−ℎ (x) ) (ℎ is a

parametrized function), it follows that

𝛽𝑖 =
1/(1 + exp(−ℎ(x𝑖)))

exp(−ℎ(x𝑖))/(1 + exp(−ℎ(x𝑖)))
= exp(ℎ(x𝑖)). (4.7.7)

As a result, we need to solve two problems: the first, to distinguish between data drawn
from both distributions, and then aweighted empirical riskminimization problem in (4.7.5)
where we weigh terms by 𝛽𝑖 .

Now we are ready to describe a correction algorithm. Suppose that we have a training set
{(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} and an unlabeled test set {u1, . . . ,u𝑚}. For covariate shift, we
assume that x𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 are drawn from some source distribution and u𝑖 for all
1 ≤ 𝑖 ≤ 𝑚 are drawn from the target distribution. Here is a prototypical algorithm for
correcting covariate shift:

1. Create a binary-classification training set: {(x1,−1), . . . , (x𝑛,−1), (u1, 1), . . . , (u𝑚, 1)}.

2. Train a binary classifier using logistic regression to get the function ℎ.

3. Weigh training data using 𝛽𝑖 = exp(ℎ(x𝑖)) or better 𝛽𝑖 = min(exp(ℎ(x𝑖)), 𝑐) for some
constant 𝑐.

4. Use weights 𝛽𝑖 for training on {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} in (4.7.5).

Note that the above algorithm relies on a crucial assumption. For this scheme to work, we
need that each data example in the target (e.g., test time) distribution had nonzero proba-
bility of occurring at training time. If we find a point where 𝑝(x) > 0 but 𝑞(x) = 0, then
the corresponding importance weight should be infinity.
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Label Shift Correction
Assume that we are dealing with a classification task with 𝑘 categories. Using the same
notation in Section 4.7.3, 𝑞 and 𝑝 are the source distribution (e.g., training time) and target
distribution (e.g., test time), respectively. Assume that the distribution of labels shifts over
time: 𝑞(𝑦) ≠ 𝑝(𝑦), but the class-conditional distribution stays the same: 𝑞(x | 𝑦) = 𝑝(x |
𝑦). If the source distribution 𝑞(𝑦) is “wrong”, we can correct for that according to the
following identity in the risk as defined in (4.7.2):∫ ∫

𝑙 ( 𝑓 (x), 𝑦)𝑝(x | 𝑦)𝑝(𝑦) 𝑑x𝑑𝑦 =
∫ ∫

𝑙 ( 𝑓 (x), 𝑦)𝑞(x | 𝑦)𝑞(𝑦) 𝑝(𝑦)
𝑞(𝑦) 𝑑x𝑑𝑦.

(4.7.8)

Here, our importance weights will correspond to the label likelihood ratios:

𝛽𝑖
def
=
𝑝(𝑦𝑖)
𝑞(𝑦𝑖)

. (4.7.9)

One nice thing about label shift is that if we have a reasonably good model on the source
distribution, then we can get consistent estimates of these weights without ever having to
deal with the ambient dimension. In deep learning, the inputs tend to be high-dimensional
objects like images, while the labels are often simpler objects like categories.

To estimate the target label distribution, we first take our reasonably good off-the-shelf
classifier (typically trained on the training data) and compute its “confusion” matrix using
the validation set (also from the training distribution). The confusion matrix,C, is simply a
𝑘 × 𝑘 matrix, where each column corresponds to the label category (ground truth) and each
row corresponds to our model’s predicted category. Each cell’s value 𝑐𝑖 𝑗 is the fraction of
total predictions on the validation set where the true label was 𝑗 and our model predicted
𝑖.

Now, we cannot calculate the confusion matrix on the target data directly because we do
not get to see the labels for the examples that we see in the wild, unless we invest in a
complex real-time annotation pipeline. What we can do, however, is average all of our
model’s predictions at test time together, yielding the mean model outputs 𝜇(ŷ) ∈ R𝑘 ,
where the 𝑖th element 𝜇( 𝑦̂𝑖) is the fraction of the total predictions on the test set where our
model predicted 𝑖.

It turns out that under some mild conditions—if our classifier was reasonably accurate in
the first place, and if the target data contains only categories that we have seen before, and
if the label shift assumption holds in the first place (the strongest assumption here)—we
can estimate the test set label distribution by solving a simple linear system

C𝑝(y) = 𝜇(ŷ), (4.7.10)

because as an estimate
∑𝑘
𝑗=1 𝑐𝑖 𝑗 𝑝(𝑦 𝑗 ) = 𝜇( 𝑦̂𝑖) holds for all 1 ≤ 𝑖 ≤ 𝑘 , where 𝑝(𝑦 𝑗 ) is

the 𝑗 th element of the 𝑘-dimensional label distribution vector 𝑝(y). If our classifier is
sufficiently accurate to begin with, then the confusion matrix C will be invertible, and we
get a solution 𝑝(y) = C−1𝜇(ŷ).

Because we observe the labels on the source data, it is easy to estimate the distribution
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𝑞(𝑦). Then, for any training example 𝑖 with label 𝑦𝑖 , we can take the ratio of our esti-
mated 𝑝(𝑦𝑖)/𝑞(𝑦𝑖) to calculate the weight 𝛽𝑖 , and plug this into weighted empirical risk
minimization in (4.7.5).

Concept Shift Correction
Concept shift is much harder to fix in a principledmanner. For instance, in a situation where
suddenly the problem changes from distinguishing cats from dogs to one of distinguishing
white from black animals, it will be unreasonable to assume that we can do much better
than just collecting new labels and training from scratch. Fortunately, in practice, such
extreme shifts are rare. Instead, what usually happens is that the task keeps on changing
slowly. To make things more concrete, here are some examples:

• In computational advertising, new products are launched, old products become less pop-
ular. This means that the distribution over ads and their popularity changes gradually
and any click-through rate predictor needs to change gradually with it.

• Traffic camera lenses degrade gradually due to environmental wear, affecting image
quality progressively.

• News content changes gradually (i.e., most of the news remains unchanged but new sto-
ries appear).

In such cases, we can use the same approach that we used for training networks to make
them adapt to the change in the data. In other words, we use the existing network weights
and simply perform a few update stepswith the new data rather than training from scratch.

4.7.4 A Taxonomy of Learning Problems
Armed with knowledge about how to deal with changes in distributions, we can now con-
sider some other aspects of machine learning problem formulation.

Batch Learning
In batch learning, we have access to training features and labels {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)},
which we use to train a model 𝑓 (x). Later on, we deploy this model to score new data (x, 𝑦)
drawn from the same distribution. This is the default assumption for any of the problems
that we discuss here. For instance, we might train a cat detector based on lots of pictures
of cats and dogs. Once we have trained it, we ship it as part of a smart catdoor computer
vision system that lets only cats in. This is then installed in a customer’s home and is never
updated again (barring extreme circumstances).

Online Learning
Now imagine that the data (x𝑖 , 𝑦𝑖) arrives one sample at a time. More specifically, assume
that we first observe x𝑖 , then we need to come up with an estimate 𝑓 (x𝑖). Only once
we have done this do we observe 𝑦𝑖 and so receive a reward or incur a loss, given our
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decision. Many real problems fall into this category. For example, we need to predict
tomorrow’s stock price, which allows us to trade based on that estimate and at the end
of the day we find out whether our estimate made us a profit. In other words, in online
learning, we have the following cycle where we are continuously improving our model
given new observations:

model 𝑓𝑡 −→ data x𝑡 −→ estimate 𝑓𝑡 (x𝑡 ) −→
observation 𝑦𝑡 −→ loss 𝑙 (𝑦𝑡 , 𝑓𝑡 (x𝑡 )) −→ model 𝑓𝑡+1

(4.7.11)

Bandits
Bandits are a special case of the problem above. While in most learning problems we have
a continuously parametrized function 𝑓 where we want to learn its parameters (e.g., a deep
network), in a bandit problem we only have a finite number of arms that we can pull, i.e.,
a finite number of actions that we can take. It is not very surprising that for this simpler
problem stronger theoretical guarantees in terms of optimality can be obtained. We list
it mainly since this problem is often (confusingly) treated as if it were a distinct learning
setting.

Control
In many cases the environment remembers what we did. Not necessarily in an adversarial
manner but it will just remember and the response will depend on what happened before.
For instance, a coffee boiler controller will observe different temperatures depending on
whether it was heating the boiler previously. PID (proportional-integral-derivative) con-
troller algorithms are a popular choice there. Likewise, a user’s behavior on a news site
will depend on what we showed them previously (e.g., they will read most news only once).
Many such algorithms form a model of the environment in which they act so as to make
their decisions appear less random. Recently, control theory (e.g., PID variants) has also
been used to automatically tune hyperparameters to achieve better disentangling and recon-
struction quality, and improve the diversity of generated text and the reconstruction quality
of generated images (Shao et al., 2020).

Reinforcement Learning
In the more general case of an environment with memory, we may encounter situations
where the environment is trying to cooperate with us (cooperative games, in particular
for non-zero-sum games), or others where the environment will try to win. Chess, Go,
Backgammon, or StarCraft are some of the cases in reinforcement learning. Likewise, we
might want to build a good controller for autonomous cars. Other cars are likely to respond
to the autonomous car’s driving style in nontrivial ways, e.g., trying to avoid it, trying to
cause an accident, or trying to cooperate with it.
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Considering the Environment
One key distinction between the different situations above is that a strategy that might have
worked throughout in the case of a stationary environment, might not work throughout in
an environment that can adapt. For instance, an arbitrage opportunity discovered by a trader
is likely to disappear once it is exploited. The speed and manner at which the environment
changes determines to a large extent the type of algorithms that we can bring to bear. For
instance, if we know that things may only change slowly, we can force any estimate to
change only slowly, too. If we know that the environment might change instantaneously,
but only very infrequently, we can make allowances for that. These types of knowledge are
crucial for the aspiring data scientist in dealing with concept shift, i.e., when the problem
that is being solved can change over time.

4.7.5 Fairness, Accountability, and Transparency in Machine
Learning

Finally, it is important to remember that when you deploy machine learning systems you
are not merely optimizing a predictive model—you are typically providing a tool that will
be used to (partially or fully) automate decisions. These technical systems can impact the
lives of individuals who are subject to the resulting decisions. The leap from considering
predictions to making decisions raises not only new technical questions, but also a slew of
ethical questions that must be carefully considered. If we are deploying a medical diagnos-
tic system, we need to know for which populations it may work and for which it may not.
Overlooking foreseeable risks to the welfare of a subpopulation could cause us to adminis-
ter inferior care. Moreover, once we contemplate decision-making systems, we must step
back and reconsider how we evaluate our technology. Among other consequences of this
change of scope, we will find that accuracy is seldom the right measure. For instance, when
translating predictions into actions, wewill often want to take into account the potential cost
sensitivity of erring in various ways. If one way of misclassifying an image could be per-
ceived as a racial sleight of hand, while misclassification to a different category would be
harmless, then we might want to adjust our thresholds accordingly, accounting for societal
values in designing the decision-making protocol. We also want to be careful about how
prediction systems can lead to feedback loops. For example, consider predictive policing
systems, which allocate patrol officers to areas with high forecasted crime. It is easy to see
how a worrying pattern can emerge:

1. Neighborhoods with more crime get more patrols.

2. Consequently, more crimes are discovered in these neighborhoods, entering the training
data available for future iterations.

3. Exposed to more positives, the model predicts yet more crime in these neighborhoods.

4. In the next iteration, the updated model targets the same neighborhood even more heav-
ily leading to yet more crimes discovered, etc.

Often, the various mechanisms by which a model’s predictions become coupled to its train-
ing data are unaccounted for in the modeling process. This can lead to what researchers
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100

call runaway feedback loops. Additionally, we want to be careful about whether we are
addressing the right problem in the first place. Predictive algorithms now play an outsize
role in mediating the dissemination of information. Should the news that an individual en-
counters be determined by the set of Facebook pages they have Liked? These are just a few
among the many pressing ethical dilemmas that you might encounter in a career in machine
learning.

4.7.6 Summary
In many cases training and test sets do not come from the same distribution. This is called
distribution shift. The risk is the expectation of the loss over the entire population of data
drawn from their true distribution. However, this entire population is usually unavailable.
Empirical risk is an average loss over the training data to approximate the risk. In practice,
we perform empirical risk minimization.

Under the corresponding assumptions, covariate and label shift can be detected and cor-
rected for at test time. Failure to account for this bias can become problematic at test time.
In some cases, the environment may remember automated actions and respond in surprising
ways. We must account for this possibility when building models and continue to moni-
tor live systems, open to the possibility that our models and the environment will become
entangled in unanticipated ways.

4.7.7 Exercises
1. What could happen when we change the behavior of a search engine? What might the

users do? What about the advertisers?

2. Implement a covariate shift detector. Hint: build a classifier.

3. Implement a covariate shift corrector.

4. Besides distribution shift, what else could affect how the empirical risk approximates
the risk?

Discussions100 .

https://discuss.d2l.ai/t/105


5 Multilayer Perceptrons

In this chapter, we will introduce your first truly deep network. The simplest deep networks
are called multilayer perceptrons, and they consist of multiple layers of neurons each fully
connected to those in the layer below (from which they receive input) and those above
(which they, in turn, influence). Although automatic differentiation significantly simplifies
the implementation of deep learning algorithms, we will dive deep into how these gradi-
ents are calculated in deep networks. Then we will be ready to discuss issues relating to
numerical stability and parameter initialization that are key to successfully training deep
networks. When we train such high-capacity models we run the risk of overfitting. Thus,
we will revisit regularization and generalization for deep networks. Throughout, we aim to
give you a firm grasp not just of the concepts but also of the practice of using deep networks.
At the end of this chapter, we apply what we have introduced so far to a real case: house
price prediction. We punt matters relating to the computational performance, scalability,
and efficiency of our models to subsequent chapters.

5.1 Multilayer Perceptrons

In Section 4.1, we introduced softmax regression, implementing the algorithm from scratch
(Section 4.4) and using high-level APIs (Section 4.5). This allowed us to train classifiers ca-
pable of recognizing 10 categories of clothing from low-resolution images. Along the way,
we learned how to wrangle data, coerce our outputs into a valid probability distribution,
apply an appropriate loss function, and minimize it with respect to our model’s parameters.
Now that we have mastered these mechanics in the context of simple linear models, we
can launch our exploration of deep neural networks, the comparatively rich class of models
with which this book is primarily concerned.

%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l

npx.set_np()

5.1.1 Hidden Layers
167
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We described affine transformations in Section 3.1.1 as linear transformations with added
bias. To begin, recall the model architecture corresponding to our softmax regression ex-
ample, illustrated in Fig. 4.1.1. This model maps inputs directly to outputs via a single
affine transformation, followed by a softmax operation. If our labels truly were related to
the input data by a simple affine transformation, then this approach would be sufficient.
However, linearity (in affine transformations) is a strong assumption.

Limitations of Linear Models
For example, linearity implies the weaker assumption of monotonicity, i.e., that any in-
crease in our feature must either always cause an increase in our model’s output (if the
corresponding weight is positive), or always cause a decrease in our model’s output (if
the corresponding weight is negative). Sometimes that makes sense. For example, if we
were trying to predict whether an individual will repay a loan, we might reasonably assume
that all other things being equal, an applicant with a higher income would always be more
likely to repay than one with a lower income. While monotonic, this relationship likely
is not linearly associated with the probability of repayment. An increase in income from
$0 to $50,000 likely corresponds to a bigger increase in likelihood of repayment than an
increase from $1 million to $1.05 million. One way to handle this might be to postprocess
our outcome such that linearity becomes more plausible, by using the logistic map (and
thus the logarithm of the probability of outcome).

Note that we can easily come up with examples that violate monotonicity. Say for example
that we want to predict health as a function of body temperature. For individuals with a
normal body temperature above 37°C (98.6°F), higher temperatures indicate greater risk.
However, if the body temperatures drops below 37°C, lower temperatures indicate greater
risk! Again, we might resolve the problem with some clever preprocessing, such as using
the distance from 37°C as a feature.

But what about classifying images of cats and dogs? Should increasing the intensity of the
pixel at location (13, 17) always increase (or always decrease) the likelihood that the image
depicts a dog? Reliance on a linear model corresponds to the implicit assumption that the
only requirement for differentiating cats and dogs is to assess the brightness of individual
pixels. This approach is doomed to fail in a world where inverting an image preserves the
category.

And yet despite the apparent absurdity of linearity here, as compared with our previous
examples, it is less obvious that we could address the problem with a simple preprocessing
fix. That is, because the significance of any pixel depends in complex ways on its context
(the values of the surrounding pixels). While there might exist a representation of our data
that would take into account the relevant interactions among our features, on top of which
a linear model would be suitable, we simply do not know how to calculate it by hand. With
deep neural networks, we used observational data to jointly learn both a representation via
hidden layers and a linear predictor that acts upon that representation.

This problem of nonlinearity has been studied for at least a century (Fisher, 1925). For
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instance, decision trees in their most basic form use a sequence of binary decisions to de-
cide upon class membership (Quinlan, 1993). Likewise, kernel methods have been used
for many decades to model nonlinear dependencies (Aronszajn, 1950). This has found its
way into nonparametric spline models (Wahba, 1990) and kernel methods (Schölkopf and
Smola, 2002). It is also something that the brain solves quite naturally. After all, neu-
rons feed into other neurons which, in turn, feed into other neurons again (Ramón y Cajal
and Azoulay, 1894). Consequently we have a sequence of relatively simple transforma-
tions.

Incorporating Hidden Layers
We can overcome the limitations of linear models by incorporating one or more hidden
layers. The easiest way to do this is to stack many fully connected layers on top of one
another. Each layer feeds into the layer above it, until we generate outputs. We can think of
the first 𝐿 − 1 layers as our representation and the final layer as our linear predictor. This
architecture is commonly called a multilayer perceptron, often abbreviated as MLP (Fig.
5.1.1).

tFig. 5.1.1 An MLP with a hidden layer of five hidden units.

This MLP has four inputs, three outputs, and its hidden layer contains five hidden units.
Since the input layer does not involve any calculations, producing outputs with this network
requires implementing the computations for both the hidden and output layers; thus, the
number of layers in this MLP is two. Note that both layers are fully connected. Every
input influences every neuron in the hidden layer, and each of these in turn influences every
neuron in the output layer. Alas, we are not quite done yet.

From Linear to Nonlinear
As before, we denote by the matrixX ∈ R𝑛×𝑑 a minibatch of 𝑛 examples where each exam-
ple has 𝑑 inputs (features). For a one-hidden-layer MLP whose hidden layer has ℎ hidden
units, we denote by H ∈ R𝑛×ℎ the outputs of the hidden layer, which are hidden represen-
tations. Since the hidden and output layers are both fully connected, we have hidden-layer
weightsW (1) ∈ R𝑑×ℎ and biases b(1) ∈ R1×ℎ and output-layer weightsW (2) ∈ Rℎ×𝑞 and
biases b(2) ∈ R1×𝑞 . This allows us to calculate the outputs O ∈ R𝑛×𝑞 of the one-hidden-
layer MLP as follows:

H = XW (1) + b(1) ,
O = HW (2) + b(2) .

(5.1.1)
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Note that after adding the hidden layer, our model now requires us to track and update
additional sets of parameters. So what have we gained in exchange? Youmight be surprised
to find out that—in the model defined above—we gain nothing for our troubles! The reason
is plain. The hidden units above are given by an affine function of the inputs, and the outputs
(pre-softmax) are just an affine function of the hidden units. An affine function of an affine
function is itself an affine function. Moreover, our linear model was already capable of
representing any affine function.

To see this formallywe can just collapse out the hidden layer in the above definition, yielding
an equivalent single-layer model with parameters W = W (1)W (2) and b = b(1)W (2) +
b(2) :

O = (XW (1) + b(1) )W (2) + b(2) = XW (1)W (2) + b(1)W (2) + b(2) = XW + b.
(5.1.2)

In order to realize the potential of multilayer architectures, we need one more key ingre-
dient: a nonlinear activation function 𝜎 to be applied to each hidden unit following the
affine transformation. For instance, a popular choice is the ReLU (rectified linear unit) ac-
tivation function (Nair and Hinton, 2010) 𝜎(𝑥) = max(0, 𝑥) operating on its arguments
elementwise. The outputs of activation functions 𝜎(·) are called activations. In general,
with activation functions in place, it is no longer possible to collapse our MLP into a linear
model:

H = 𝜎(XW (1) + b(1) ),
O = HW (2) + b(2) .

(5.1.3)

Since each row in X corresponds to an example in the minibatch, with some abuse of
notation, we define the nonlinearity 𝜎 to apply to its inputs in a rowwise fashion, i.e., one
example at a time. Note that we used the same notation for softmax when we denoted a
rowwise operation in Section 4.1.1. Quite frequently the activation functions we use apply
not merely rowwise but elementwise. That means that after computing the linear portion of
the layer, we can calculate each activation without looking at the values taken by the other
hidden units.

To build more general MLPs, we can continue stacking such hidden layers, e.g., H(1) =
𝜎1 (XW (1) +b(1) ) andH(2) = 𝜎2 (H(1)W (2) +b(2) ), one atop another, yielding ever more
expressive models.

Universal Approximators
We know that the brain is capable of very sophisticated statistical analysis. As such, it is
worth asking, just how powerful a deep network could be. This question has been answered
multiple times, e.g., in Cybenko (1989) in the context of MLPs, and in Micchelli (1984) in
the context of reproducing kernel Hilbert spaces in a way that could be seen as radial basis
function (RBF) networks with a single hidden layer. These (and related results) suggest that
even with a single-hidden-layer network, given enough nodes (possibly absurdly many),
and the right set of weights, we can model any function. Actually learning that function
is the hard part, though. You might think of your neural network as being a bit like the
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C programming language. The language, like any other modern language, is capable of
expressing any computable program. But actually coming up with a program that meets
your specifications is the hard part.

Moreover, just because a single-hidden-layer network can learn any function does not mean
that you should try to solve all of your problems with one. In fact, in this case kernel
methods are way more effective, since they are capable of solving the problem exactly even
in infinite dimensional spaces (Kimeldorf and Wahba, 1971, Schölkopf et al., 2001). In
fact, we can approximate many functions much more compactly by using deeper (rather
than wider) networks (Simonyan and Zisserman, 2014). We will touch upon more rigorous
arguments in subsequent chapters.

5.1.2 Activation Functions
Activation functions decide whether a neuron should be activated or not by calculating the
weighted sum and further adding bias to it. They are differentiable operators for trans-
forming input signals to outputs, while most of them add nonlinearity. Because activation
functions are fundamental to deep learning, let’s briefly survey some common ones.

ReLU Function
The most popular choice, due to both simplicity of implementation and its good perfor-
mance on a variety of predictive tasks, is the rectified linear unit (ReLU) (Nair and Hinton,
2010). ReLU provides a very simple nonlinear transformation. Given an element 𝑥, the
function is defined as the maximum of that element and 0:

ReLU(𝑥) = max(𝑥, 0). (5.1.4)

Informally, the ReLU function retains only positive elements and discards all negative el-
ements by setting the corresponding activations to 0. To gain some intuition, we can plot
the function. As you can see, the activation function is piecewise linear.

x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():

y = npx.relu(x)
d2l.plot(x, y, 'x', 'relu(x)', figsize=(5, 2.5))

[21:54:14] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

When the input is negative, the derivative of the ReLU function is 0, and when the input
is positive, the derivative of the ReLU function is 1. Note that the ReLU function is not
differentiable when the input takes value precisely equal to 0. In these cases, we default to
the left-hand-side derivative and say that the derivative is 0 when the input is 0. We can
get away with this because the input may never actually be zero (mathematicians would say
that it is nondifferentiable on a set of measure zero). There is an old adage that if subtle
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boundary conditions matter, we are probably doing (real) mathematics, not engineering.
That conventional wisdom may apply here, or at least, the fact that we are not performing
constrained optimization (Mangasarian, 1965, Rockafellar, 1970). We plot the derivative
of the ReLU function below.

y.backward()
d2l.plot(x, x.grad, 'x', 'grad of relu', figsize=(5, 2.5))

[21:54:14] ../src/base.cc:48: GPU context requested, but no GPUs found.

The reason for using ReLU is that its derivatives are particularly well behaved: either they
vanish or they just let the argument through. This makes optimization better behaved and
it mitigated the well-documented problem of vanishing gradients that plagued previous
versions of neural networks (more on this later).

Note that there are many variants to the ReLU function, including the parametrized ReLU
(pReLU) function (He et al., 2015). This variation adds a linear term to ReLU, so some
information still gets through, even when the argument is negative:

pReLU(𝑥) = max(0, 𝑥) + 𝛼min(0, 𝑥). (5.1.5)

Sigmoid Function
The sigmoid function transforms those inputs whose values lie in the domain R, to outputs
that lie on the interval (0, 1). For that reason, the sigmoid is often called a squashing func-
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tion: it squashes any input in the range (-inf, inf) to some value in the range (0, 1):

sigmoid(𝑥) = 1
1 + exp(−𝑥) . (5.1.6)

In the earliest neural networks, scientists were interested in modeling biological neurons
that either fire or do not fire. Thus the pioneers of this field, going all the way back to
McCulloch and Pitts, the inventors of the artificial neuron, focused on thresholding units
(McCulloch and Pitts, 1943). A thresholding activation takes value 0 when its input is
below some threshold and value 1 when the input exceeds the threshold.

When attention shifted to gradient-based learning, the sigmoid functionwas a natural choice
because it is a smooth, differentiable approximation to a thresholding unit. Sigmoids are
still widely used as activation functions on the output units when we want to interpret the
outputs as probabilities for binary classification problems: you can think of the sigmoid as a
special case of the softmax. However, the sigmoid has largely been replaced by the simpler
and more easily trainable ReLU for most use in hidden layers. Much of this has to do with
the fact that the sigmoid poses challenges for optimization (LeCun et al., 1998) since its
gradient vanishes for large positive and negative arguments. This can lead to plateaus that
are difficult to escape from. Nonetheless sigmoids are important. In later chapters (e.g.,
Section 10.1) on recurrent neural networks, we will describe architectures that leverage
sigmoid units to control the flow of information across time.

Below, we plot the sigmoid function. Note that when the input is close to 0, the sigmoid
function approaches a linear transformation.

with autograd.record():
y = npx.sigmoid(x)

d2l.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5))

The derivative of the sigmoid function is given by the following equation:

𝑑

𝑑𝑥
sigmoid(𝑥) = exp(−𝑥)

(1 + exp(−𝑥))2
= sigmoid(𝑥) (1 − sigmoid(𝑥)) . (5.1.7)

The derivative of the sigmoid function is plotted below. Note that when the input is 0, the
derivative of the sigmoid function reaches a maximum of 0.25. As the input diverges from
0 in either direction, the derivative approaches 0.
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y.backward()
d2l.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))

Tanh Function
Like the sigmoid function, the tanh (hyperbolic tangent) function also squashes its inputs,
transforming them into elements on the interval between −1 and 1:

tanh(𝑥) = 1 − exp(−2𝑥)
1 + exp(−2𝑥) . (5.1.8)

We plot the tanh function below. Note that as input nears 0, the tanh function approaches a
linear transformation. Although the shape of the function is similar to that of the sigmoid
function, the tanh function exhibits point symmetry about the origin of the coordinate sys-
tem (Kalman and Kwasny, 1992).

with autograd.record():
y = np.tanh(x)

d2l.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5))

The derivative of the tanh function is:
𝑑

𝑑𝑥
tanh(𝑥) = 1 − tanh2 (𝑥). (5.1.9)

It is plotted below. As the input nears 0, the derivative of the tanh function approaches a
maximum of 1. And as we saw with the sigmoid function, as input moves away from 0 in
either direction, the derivative of the tanh function approaches 0.
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y.backward()
d2l.plot(x, x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))

5.1.3 Summary and Discussion
We now know how to incorporate nonlinearities to build expressive multilayer neural net-
work architectures. As a side note, your knowledge already puts you in command of a sim-
ilar toolkit to a practitioner circa 1990. In some ways, you have an advantage over anyone
working back then, because you can leverage powerful open-source deep learning frame-
works to build models rapidly, using only a few lines of code. Previously, training these
networks required researchers to code up layers and derivatives explicitly in C, Fortran, or
even Lisp (in the case of LeNet).

A secondary benefit is that ReLU is significantly more amenable to optimization than the
sigmoid or the tanh function. One could argue that this was one of the key innovations that
helped the resurgence of deep learning over the past decade. Note, though, that research in
activation functions has not stopped. For instance, the GELU (Gaussian error linear unit)
activation function 𝑥Φ(𝑥) by Hendrycks and Gimpel (2016) (Φ(𝑥) is the standard Gaussian
cumulative distribution function) and the Swish activation function 𝜎(𝑥) = 𝑥 sigmoid(𝛽𝑥)
as proposed in Ramachandran et al. (2017) can yield better accuracy in many cases.

5.1.4 Exercises
1. Show that adding layers to a linear deep network, i.e., a network without nonlinearity
𝜎 can never increase the expressive power of the network. Give an example where it
actively reduces it.

2. Compute the derivative of the pReLU activation function.

3. Compute the derivative of the Swish activation function 𝑥 sigmoid(𝛽𝑥).

4. Show that an MLP using only ReLU (or pReLU) constructs a continuous piecewise
linear function.

5. Sigmoid and tanh are very similar.

1. Show that tanh(𝑥) + 1 = 2 sigmoid(2𝑥).
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2. Prove that the function classes parametrized by both nonlinearities are identical.
Hint: affine layers have bias terms, too.

6. Assume that we have a nonlinearity that applies to one minibatch at a time, such as the
batch normalization (Ioffe and Szegedy, 2015). What kinds of problems do you expect
this to cause?

7. Provide an example where the gradients vanish for the sigmoid activation function.

Discussions101 .

5.2 Implementation of Multilayer Perceptrons

Multilayer perceptrons (MLPs) are notmuchmore complex to implement than simple linear
models. The key conceptual difference is that we now concatenate multiple layers.

from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

5.2.1 Implementation from Scratch
Let’s begin again by implementing such a network from scratch.

Initializing Model Parameters
Recall that Fashion-MNIST contains 10 classes, and that each image consists of a 28 ×
28 = 784 grid of grayscale pixel values. As before we will disregard the spatial structure
among the pixels for now, so we can think of this as a classification dataset with 784 input
features and 10 classes. To begin, wewill implement anMLPwith one hidden layer and 256
hidden units. Both the number of layers and their width are adjustable (they are considered
hyperparameters). Typically, we choose the layer widths to be divisible by larger powers of
2. This is computationally efficient due to the way memory is allocated and addressed in
hardware.

Again, we will represent our parameters with several tensors. Note that for every layer, we
must keep track of one weight matrix and one bias vector. As always, we allocate memory
for the gradients of the loss with respect to these parameters.

In the code below, we first define and initialize the parameters and then enable gradient
tracking.

https://discuss.d2l.ai/t/90
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class MLPScratch(d2l.Classifier):
def __init__(self, num_inputs, num_outputs, num_hiddens, lr, sigma=0.01):

super().__init__()
self.save_hyperparameters()
self.W1 = np.random.randn(num_inputs, num_hiddens) * sigma
self.b1 = np.zeros(num_hiddens)
self.W2 = np.random.randn(num_hiddens, num_outputs) * sigma
self.b2 = np.zeros(num_outputs)
for param in self.get_scratch_params():

param.attach_grad()

Model
To make sure we know how everything works, we will implement the ReLU activation
ourselves rather than invoking the built-in relu function directly.

def relu(X):
return np.maximum(X, 0)

Since we are disregarding spatial structure, we reshape each two-dimensional image into
a flat vector of length num_inputs. Finally, we implement our model with just a few lines
of code. Since we use the framework built-in autograd this is all that it takes.

@d2l.add_to_class(MLPScratch)
def forward(self, X):

X = X.reshape((-1, self.num_inputs))
H = relu(np.dot(X, self.W1) + self.b1)
return np.dot(H, self.W2) + self.b2

Training
Fortunately, the training loop for MLPs is exactly the same as for softmax regression.
We define the model, data, and trainer, then finally invoke the fit method on model and
data.

model = MLPScratch(num_inputs=784, num_outputs=10, num_hiddens=256, lr=0.1)
data = d2l.FashionMNIST(batch_size=256)
trainer = d2l.Trainer(max_epochs=10)
trainer.fit(model, data)

5.2.2 Concise Implementation
As you might expect, by relying on the high-level APIs, we can implement MLPs even
more concisely.



178 Multilayer Perceptrons

Model
Comparedwith our concise implementation of softmax regression implementation (Section
4.5), the only difference is that we add two fully connected layers wherewe previously added
only one. The first is the hidden layer, the second is the output layer.

class MLP(d2l.Classifier):
def __init__(self, num_outputs, num_hiddens, lr):

super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(nn.Dense(num_hiddens, activation='relu'),

nn.Dense(num_outputs))
self.net.initialize()

Previously, we defined forward methods for models to transform input using the model
parameters. These operations are essentially a pipeline: you take an input and apply a
transformation (e.g., matrix multiplication with weights followed by bias addition), then
repetitively use the output of the current transformation as input to the next transforma-
tion. However, you may have noticed that no forward method is defined here. In fact,
MLP inherits the forward method from the Module class (Section 3.2.2) to simply invoke
self.net(X) (X is input), which is now defined as a sequence of transformations via the
Sequential class. The Sequential class abstracts the forward process enabling us to fo-
cus on the transformations. We will further discuss how the Sequential class works in
Section 6.1.2.

Training
The training loop is exactly the same as when we implemented softmax regression. This
modularity enables us to separate matters concerning the model architecture from orthog-
onal considerations.

model = MLP(num_outputs=10, num_hiddens=256, lr=0.1)
trainer.fit(model, data)

5.2.3 Summary
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Now that we have more practice in designing deep networks, the step from a single to mul-
tiple layers of deep networks does not pose such a significant challenge any longer. In
particular, we can reuse the training algorithm and data loader. Note, though, that imple-
menting MLPs from scratch is nonetheless messy: naming and keeping track of the model
parameters makes it difficult to extend models. For instance, imagine wanting to insert
another layer between layers 42 and 43. This might now be layer 42b, unless we are willing
to perform sequential renaming. Moreover, if we implement the network from scratch, it
is much more difficult for the framework to perform meaningful performance optimiza-
tions.

Nonetheless, you have now reached the state of the art of the late 1980s when fully con-
nected deep networks were the method of choice for neural network modeling. Our next
conceptual step will be to consider images. Before we do so, we need to review a number
of statistical basics and details on how to compute models efficiently.

5.2.4 Exercises
1. Change the number of hidden units num_hiddens and plot how its number affects the

accuracy of the model. What is the best value of this hyperparameter?

2. Try adding a hidden layer to see how it affects the results.

3. Why is it a bad idea to insert a hidden layer with a single neuron? What could go wrong?

4. How does changing the learning rate alter your results? With all other parameters fixed,
which learning rate gives you the best results? How does this relate to the number of
epochs?

5. Let’s optimize over all hyperparameters jointly, i.e., learning rate, number of epochs,
number of hidden layers, and number of hidden units per layer.

1. What is the best result you can get by optimizing over all of them?

2. Why it is much more challenging to deal with multiple hyperparameters?

3. Describe an efficient strategy for optimizing over multiple parameters jointly.

6. Compare the speed of the framework and the from-scratch implementation for a chal-
lenging problem. How does it change with the complexity of the network?
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7. Measure the speed of tensor–matrix multiplications for well-aligned and misaligned
matrices. For instance, test for matrices with dimension 1024, 1025, 1026, 1028, and
1032.

1. How does this change between GPUs and CPUs?

2. Determine the memory bus width of your CPU and GPU.

8. Try out different activation functions. Which one works best?

9. Is there a difference between weight initializations of the network? Does it matter?

Discussions102 .

5.3 Forward Propagation, Backward Propagation,
and Computational Graphs

So far, we have trained our models with minibatch stochastic gradient descent. However,
when we implemented the algorithm, we only worried about the calculations involved in
forward propagation through the model. When it came time to calculate the gradients, we
just invoked the backpropagation function provided by the deep learning framework.

The automatic calculation of gradients profoundly simplifies the implementation of deep
learning algorithms. Before automatic differentiation, even small changes to complicated
models required recalculating complicated derivatives by hand. Surprisingly often, aca-
demic papers had to allocate numerous pages to deriving update rules. While we must
continue to rely on automatic differentiation so we can focus on the interesting parts, you
ought to know how these gradients are calculated under the hood if you want to go beyond
a shallow understanding of deep learning.

In this section, we take a deep dive into the details of backward propagation (more com-
monly called backpropagation). To convey some insight for both the techniques and their
implementations, we rely on some basic mathematics and computational graphs. To start,
we focus our exposition on a one-hidden-layer MLP with weight decay (ℓ2 regularization,
to be described in subsequent chapters).

5.3.1 Forward Propagation
Forward propagation (or forward pass) refers to the calculation and storage of intermediate
variables (including outputs) for a neural network in order from the input layer to the output
layer. We now work step-by-step through the mechanics of a neural network with one
hidden layer. This may seem tedious but in the eternal words of funk virtuoso James Brown,
you must “pay the cost to be the boss”.

For the sake of simplicity, let’s assume that the input example is x ∈ R𝑑 and that our hidden

https://discuss.d2l.ai/t/92
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layer does not include a bias term. Here the intermediate variable is:

z = W (1)x, (5.3.1)

where W (1) ∈ Rℎ×𝑑 is the weight parameter of the hidden layer. After running the inter-
mediate variable z ∈ Rℎ through the activation function 𝜙 we obtain our hidden activation
vector of length ℎ:

h = 𝜙(z). (5.3.2)

The hidden layer output h is also an intermediate variable. Assuming that the parameters
of the output layer possess only a weight of W (2) ∈ R𝑞×ℎ, we can obtain an output layer
variable with a vector of length 𝑞:

o = W (2)h. (5.3.3)

Assuming that the loss function is 𝑙 and the example label is 𝑦, we can then calculate the
loss term for a single data example,

𝐿 = 𝑙 (o, 𝑦). (5.3.4)

As we will see the definition of ℓ2 regularization to be introduced later, given the hyperpa-
rameter 𝜆, the regularization term is

𝑠 =
𝜆

2

(
‖W (1) ‖2F + ‖W (2) ‖2F

)
, (5.3.5)

where the Frobenius norm of the matrix is simply the ℓ2 norm applied after flattening the
matrix into a vector. Finally, themodel’s regularized loss on a given data example is:

𝐽 = 𝐿 + 𝑠. (5.3.6)

We refer to 𝐽 as the objective function in the following discussion.

5.3.2 Computational Graph of Forward Propagation
Plotting computational graphs helps us visualize the dependencies of operators and vari-
ables within the calculation. Fig. 5.3.1 contains the graph associated with the simple net-
work described above, where squares denote variables and circles denote operators. The
lower-left corner signifies the input and the upper-right corner is the output. Notice that
the directions of the arrows (which illustrate data flow) are primarily rightward and up-
ward.

tFig. 5.3.1 Computational graph of forward propagation.
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5.3.3 Backpropagation
Backpropagation refers to the method of calculating the gradient of neural network param-
eters. In short, the method traverses the network in reverse order, from the output to the
input layer, according to the chain rule from calculus. The algorithm stores any interme-
diate variables (partial derivatives) required while calculating the gradient with respect to
some parameters. Assume that we have functions Y = 𝑓 (X) and Z = 𝑔(Y), in which the
input and the output X,Y,Z are tensors of arbitrary shapes. By using the chain rule, we can
compute the derivative of Z with respect to X via

𝜕Z

𝜕X
= prod

(
𝜕Z

𝜕Y
,
𝜕Y

𝜕X

)
. (5.3.7)

Here we use the prod operator to multiply its arguments after the necessary operations,
such as transposition and swapping input positions, have been carried out. For vectors,
this is straightforward: it is simply matrix–matrix multiplication. For higher dimensional
tensors, we use the appropriate counterpart. The operator prod hides all the notational
overhead.

Recall that the parameters of the simple network with one hidden layer, whose computa-
tional graph is in Fig. 5.3.1, are W (1) and W (2) . The objective of backpropagation is to
calculate the gradients 𝜕𝐽/𝜕W (1) and 𝜕𝐽/𝜕W (2) . To accomplish this, we apply the chain
rule and calculate, in turn, the gradient of each intermediate variable and parameter. The
order of calculations are reversed relative to those performed in forward propagation, since
we need to start with the outcome of the computational graph and work our way towards
the parameters. The first step is to calculate the gradients of the objective function 𝐽 = 𝐿+𝑠
with respect to the loss term 𝐿 and the regularization term 𝑠:

𝜕𝐽

𝜕𝐿
= 1 and

𝜕𝐽

𝜕𝑠
= 1. (5.3.8)

Next, we compute the gradient of the objective function with respect to variable of the
output layer o according to the chain rule:

𝜕𝐽

𝜕o
= prod

(
𝜕𝐽

𝜕𝐿
,
𝜕𝐿

𝜕o

)
=
𝜕𝐿

𝜕o
∈ R𝑞 . (5.3.9)

Next, we calculate the gradients of the regularization term with respect to both parame-
ters:

𝜕𝑠

𝜕W (1) = 𝜆W
(1) and

𝜕𝑠

𝜕W (2) = 𝜆W
(2) . (5.3.10)

Now we are able to calculate the gradient 𝜕𝐽/𝜕W (2) ∈ R𝑞×ℎ of the model parameters
closest to the output layer. Using the chain rule yields:

𝜕𝐽

𝜕W (2) = prod
(
𝜕𝐽

𝜕o
,

𝜕o

𝜕W (2)

)
+ prod

(
𝜕𝐽

𝜕𝑠
,

𝜕𝑠

𝜕W (2)

)
=
𝜕𝐽

𝜕o
h> + 𝜆W (2) . (5.3.11)

To obtain the gradient with respect to W (1) we need to continue backpropagation along
the output layer to the hidden layer. The gradient with respect to the hidden layer output
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𝜕𝐽/𝜕h ∈ Rℎ is given by

𝜕𝐽

𝜕h
= prod

(
𝜕𝐽

𝜕o
,
𝜕o

𝜕h

)
= W (2)> 𝜕𝐽

𝜕o
. (5.3.12)

Since the activation function 𝜙 applies elementwise, calculating the gradient 𝜕𝐽/𝜕z ∈ Rℎ
of the intermediate variable z requires that we use the elementwise multiplication operator,
which we denote by �:

𝜕𝐽

𝜕z
= prod

(
𝜕𝐽

𝜕h
,
𝜕h

𝜕z

)
=
𝜕𝐽

𝜕h
� 𝜙′ (z) . (5.3.13)

Finally, we can obtain the gradient 𝜕𝐽/𝜕W (1) ∈ Rℎ×𝑑 of the model parameters closest to
the input layer. According to the chain rule, we get

𝜕𝐽

𝜕W (1) = prod
(
𝜕𝐽

𝜕z
,

𝜕z

𝜕W (1)

)
+ prod

(
𝜕𝐽

𝜕𝑠
,

𝜕𝑠

𝜕W (1)

)
=
𝜕𝐽

𝜕z
x> + 𝜆W (1) . (5.3.14)

5.3.4 Training Neural Networks
When training neural networks, forward and backward propagation depend on each other.
In particular, for forward propagation, we traverse the computational graph in the direc-
tion of dependencies and compute all the variables on its path. These are then used for
backpropagation where the compute order on the graph is reversed.

Take the aforementioned simple network as an illustrative example. On the one hand, com-
puting the regularization term (5.3.5) during forward propagation depends on the current
values of model parametersW (1) andW (2) . They are given by the optimization algorithm
according to backpropagation in the most recent iteration. On the other hand, the gradient
calculation for the parameter (5.3.11) during backpropagation depends on the current value
of the hidden layer output h, which is given by forward propagation.

Therefore when training neural networks, once model parameters are initialized, we alter-
nate forward propagation with backpropagation, updating model parameters using gradi-
ents given by backpropagation. Note that backpropagation reuses the stored intermediate
values from forward propagation to avoid duplicate calculations. One of the consequences
is that we need to retain the intermediate values until backpropagation is complete. This is
also one of the reasons why training requires significantly more memory than plain predic-
tion. Besides, the size of such intermediate values is roughly proportional to the number of
network layers and the batch size. Thus, training deeper networks using larger batch sizes
more easily leads to out-of-memory errors.

5.3.5 Summary
Forward propagation sequentially calculates and stores intermediate variables within the
computational graph defined by the neural network. It proceeds from the input to the out-
put layer. Backpropagation sequentially calculates and stores the gradients of intermediate
variables and parameters within the neural network in the reversed order. When training
deep learning models, forward propagation and backpropagation are interdependent, and
training requires significantly more memory than prediction.
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5.3.6 Exercises
1. Assume that the inputs X to some scalar function 𝑓 are 𝑛 × 𝑚 matrices. What is the

dimensionality of the gradient of 𝑓 with respect to X?

2. Add a bias to the hidden layer of the model described in this section (you do not need
to include bias in the regularization term).

1. Draw the corresponding computational graph.

2. Derive the forward and backward propagation equations.

3. Compute the memory footprint for training and prediction in the model described in this
section.

4. Assume that you want to compute second derivatives. What happens to the computa-
tional graph? How long do you expect the calculation to take?

5. Assume that the computational graph is too large for your GPU.

1. Can you partition it over more than one GPU?

2. What are the advantages and disadvantages over training on a smaller minibatch?

Discussions103 .

5.4 Numerical Stability and Initialization

Thus far, every model that we have implemented required that we initialize its parameters
according to some pre-specified distribution. Until now, we took the initialization scheme
for granted, glossing over the details of how these choices are made. You might have even
gotten the impression that these choices are not especially important. On the contrary, the
choice of initialization scheme plays a significant role in neural network learning, and it
can be crucial for maintaining numerical stability. Moreover, these choices can be tied up
in interesting ways with the choice of the nonlinear activation function. Which function
we choose and how we initialize parameters can determine how quickly our optimization
algorithm converges. Poor choices here can cause us to encounter exploding or vanishing
gradients while training. In this section, we delve into these topics in greater detail and
discuss some useful heuristics that you will find useful throughout your career in deep
learning.

%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l

npx.set_np()

https://discuss.d2l.ai/t/102
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5.4.1 Vanishing and Exploding Gradients
Consider a deep network with 𝐿 layers, input x and output o. With each layer 𝑙 defined by
a transformation 𝑓𝑙 parametrized by weights W (𝑙) , whose hidden layer output is h(𝑙) (let
h(0) = x), our network can be expressed as:

h(𝑙) = 𝑓𝑙 (h(𝑙−1) ) and thus o = 𝑓𝐿 ◦ · · · ◦ 𝑓1 (x). (5.4.1)

If all the hidden layer output and the input are vectors, we can write the gradient of o with
respect to any set of parameters W (𝑙) as follows:

𝜕W (𝑙)o = 𝜕h(𝐿−1)h(𝐿)︸        ︷︷        ︸
M(𝐿) def=

· · · 𝜕h(𝑙)h(𝑙+1)︸      ︷︷      ︸
M(𝑙+1) def=

𝜕W (𝑙)h(𝑙)︸     ︷︷     ︸
v (𝑙)

def
=

.
(5.4.2)

In other words, this gradient is the product of 𝐿 − 𝑙 matrices M(𝐿) · · ·M(𝑙+1) and the
gradient vector v (𝑙) . Thus we are susceptible to the same problems of numerical underflow
that often crop up when multiplying together too many probabilities. When dealing with
probabilities, a common trick is to switch into log-space, i.e., shifting pressure from the
mantissa to the exponent of the numerical representation. Unfortunately, our problem above
is more serious: initially the matrices M(𝑙) may have a wide variety of eigenvalues. They
might be small or large, and their product might be very large or very small.

The risks posed by unstable gradients go beyond numerical representation. Gradients of
unpredictable magnitude also threaten the stability of our optimization algorithms. Wemay
be facing parameter updates that are either (i) excessively large, destroying our model (the
exploding gradient problem); or (ii) excessively small (the vanishing gradient problem),
rendering learning impossible as parameters hardly move on each update.

Vanishing Gradients
One frequent culprit causing the vanishing gradient problem is the choice of the activation
function 𝜎 that is appended following each layer’s linear operations. Historically, the sig-
moid function 1/(1+exp(−𝑥)) (introduced in Section 5.1) was popular because it resembles
a thresholding function. Since early artificial neural networks were inspired by biological
neural networks, the idea of neurons that fire either fully or not at all (like biological neu-
rons) seemed appealing. Let’s take a closer look at the sigmoid to see why it can cause
vanishing gradients.

x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():

y = npx.sigmoid(x)
y.backward()

d2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))



186 Multilayer Perceptrons

[21:56:14] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
[21:56:14] ../src/base.cc:48: GPU context requested, but no GPUs found.

As you can see, the sigmoid’s gradient vanishes both when its inputs are large and when
they are small. Moreover, when backpropagating through many layers, unless we are in the
Goldilocks zone, where the inputs to many of the sigmoids are close to zero, the gradients
of the overall product may vanish. When our network boasts many layers, unless we are
careful, the gradient will likely be cut off at some layer. Indeed, this problem used to plague
deep network training. Consequently, ReLUs, which are more stable (but less neurally
plausible), have emerged as the default choice for practitioners.

Exploding Gradients
The opposite problem, when gradients explode, can be similarly vexing. To illustrate this
a bit better, we draw 100 Gaussian random matrices and multiply them with some initial
matrix. For the scale that we picked (the choice of the variance 𝜎2 = 1), the matrix product
explodes. When this happens because of the initialization of a deep network, we have no
chance of getting a gradient descent optimizer to converge.

M = np.random.normal(size=(4, 4))
print('a single matrix', M)
for i in range(100):

M = np.dot(M, np.random.normal(size=(4, 4)))
print('after multiplying 100 matrices', M)

a single matrix [[ 2.2122064 1.1630787 0.7740038 0.4838046 ]
[ 1.0434403 0.29956347 1.1839255 0.15302546]
[ 1.8917114 -1.1688148 -1.2347414 1.5580711 ]
[-1.771029 -0.5459446 -0.45138445 -2.3556297 ]]
after multiplying 100 matrices [[ 3.4459747e+23 -7.8040759e+23 5.9973355e+23 ␣
↩→4.5230040e+23]
[ 2.5275059e+23 -5.7240258e+23 4.3988419e+23 3.3174704e+23]
[ 1.3731275e+24 -3.1097129e+24 2.3897754e+24 1.8022945e+24]
[-4.4951091e+23 1.0180045e+24 -7.8232368e+23 -5.9000419e+23]]
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Breaking the Symmetry
Another problem in neural network design is the symmetry inherent in their parametriza-
tion. Assume that we have a simple MLP with one hidden layer and two units. In this case,
we could permute the weights W (1) of the first layer and likewise permute the weights of
the output layer to obtain the same function. There is nothing special differentiating the
first and second hidden units. In other words, we have permutation symmetry among the
hidden units of each layer.

This is more than just a theoretical nuisance. Consider the aforementioned one-hidden-
layer MLP with two hidden units. For illustration, suppose that the output layer transforms
the two hidden units into only one output unit. Imagine what would happen if we initialized
all the parameters of the hidden layer asW (1) = 𝑐 for some constant 𝑐. In this case, during
forward propagation either hidden unit takes the same inputs and parameters producing the
same activation which is fed to the output unit. During backpropagation, differentiating the
output unit with respect to parameters W (1) gives a gradient all of whose elements take
the same value. Thus, after gradient-based iteration (e.g., minibatch stochastic gradient de-
scent), all the elements ofW (1) still take the same value. Such iterations would never break
the symmetry on their own and we might never be able to realize the network’s expressive
power. The hidden layer would behave as if it had only a single unit. Note that while mini-
batch stochastic gradient descent would not break this symmetry, dropout regularization
(to be introduced later) would!

5.4.2 Parameter Initialization
One way of addressing—or at least mitigating—the issues raised above is through care-
ful initialization. As we will see later, additional care during optimization and suitable
regularization can further enhance stability.

Default Initialization
In the previous sections, e.g., in Section 3.5, we used a normal distribution to initialize the
values of our weights. If we do not specify the initialization method, the framework will
use a default random initialization method, which often works well in practice for moderate
problem sizes.

Xavier Initialization
Let’s look at the scale distribution of an output 𝑜𝑖 for some fully connected layer without
nonlinearities. With 𝑛in inputs 𝑥 𝑗 and their associated weights 𝑤𝑖 𝑗 for this layer, an output
is given by

𝑜𝑖 =
𝑛in∑
𝑗=1
𝑤𝑖 𝑗𝑥 𝑗 . (5.4.3)

The weights 𝑤𝑖 𝑗 are all drawn independently from the same distribution. Furthermore, let’s
assume that this distribution has zero mean and variance 𝜎2. Note that this does not mean
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that the distribution has to be Gaussian, just that the mean and variance need to exist. For
now, let’s assume that the inputs to the layer 𝑥 𝑗 also have zero mean and variance 𝛾2 and that
they are independent of 𝑤𝑖 𝑗 and independent of each other. In this case, we can compute
the mean of 𝑜𝑖:

𝐸 [𝑜𝑖] =
𝑛in∑
𝑗=1

𝐸 [𝑤𝑖 𝑗𝑥 𝑗 ]

=
𝑛in∑
𝑗=1

𝐸 [𝑤𝑖 𝑗 ]𝐸 [𝑥 𝑗 ]

= 0,

(5.4.4)

and the variance:

Var[𝑜𝑖] = 𝐸 [𝑜2
𝑖 ] − (𝐸 [𝑜𝑖])2

=
𝑛in∑
𝑗=1

𝐸 [𝑤2
𝑖 𝑗𝑥

2
𝑗 ] − 0

=
𝑛in∑
𝑗=1

𝐸 [𝑤2
𝑖 𝑗 ]𝐸 [𝑥2

𝑗 ]

= 𝑛in𝜎
2𝛾2.

(5.4.5)

One way to keep the variance fixed is to set 𝑛in𝜎2 = 1. Now consider backpropagation.
There we face a similar problem, albeit with gradients being propagated from the layers
closer to the output. Using the same reasoning as for forward propagation, we see that the
gradients’ variance can blow up unless 𝑛out𝜎2 = 1, where 𝑛out is the number of outputs
of this layer. This leaves us in a dilemma: we cannot possibly satisfy both conditions
simultaneously. Instead, we simply try to satisfy:

1
2
(𝑛in + 𝑛out)𝜎2 = 1 or equivalently 𝜎 =

√
2

𝑛in + 𝑛out
. (5.4.6)

This is the reasoning underlying the now-standard and practically beneficial Xavier initial-
ization, named after the first author of its creators (Glorot and Bengio, 2010). Typically, the
Xavier initialization samples weights from aGaussian distribution with zeromean and vari-
ance 𝜎2 = 2

𝑛in+𝑛out . We can also adapt this to choose the variance when sampling weights
from a uniform distribution. Note that the uniform distribution 𝑈 (−𝑎, 𝑎) has variance 𝑎2

3 .
Plugging 𝑎2

3 into our condition on 𝜎2 prompts us to initialize according to

𝑈
©­«−

√
6

𝑛in + 𝑛out
,

√
6

𝑛in + 𝑛out
ª®¬ . (5.4.7)

Though the assumption for nonexistence of nonlinearities in the above mathematical rea-
soning can be easily violated in neural networks, the Xavier initialization method turns out
to work well in practice.
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Beyond
The reasoning above barely scratches the surface of modern approaches to parameter ini-
tialization. A deep learning framework often implements over a dozen different heuristics.
Moreover, parameter initialization continues to be a hot area of fundamental research in
deep learning. Among these are heuristics specialized for tied (shared) parameters, super-
resolution, sequence models, and other situations. For instance, Xiao et al. (2018) demon-
strated the possibility of training 10,000-layer neural networks without architectural tricks
by using a carefully-designed initialization method.

If the topic interests you we suggest a deep dive into this module’s offerings, reading the
papers that proposed and analyzed each heuristic, and then exploring the latest publications
on the topic. Perhaps you will stumble across or even invent a clever idea and contribute
an implementation to deep learning frameworks.

5.4.3 Summary
Vanishing and exploding gradients are common issues in deep networks. Great care in
parameter initialization is required to ensure that gradients and parameters remain well
controlled. Initialization heuristics are needed to ensure that the initial gradients are neither
too large nor too small. Random initialization is key to ensuring that symmetry is broken
before optimization. Xavier initialization suggests that, for each layer, variance of any
output is not affected by the number of inputs, and variance of any gradient is not affected by
the number of outputs. ReLU activation functions mitigate the vanishing gradient problem.
This can accelerate convergence.

5.4.4 Exercises
1. Can you design other cases where a neural network might exhibit symmetry that needs

breaking, besides the permutation symmetry in an MLP’s layers?

2. Can we initialize all weight parameters in linear regression or in softmax regression to
the same value?

3. Look up analytic bounds on the eigenvalues of the product of two matrices. What does
this tell you about ensuring that gradients are well conditioned?

4. If we know that some terms diverge, can we fix this after the fact? Look at the paper on
layerwise adaptive rate scaling for inspiration (You et al., 2017).

Discussions104 .

5.5 Generalization in Deep Learning

In Chapter 3 and Chapter 4, we tackled regression and classification problems by fitting
linear models to training data. In both cases, we provided practical algorithms for finding

https://discuss.d2l.ai/t/103
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the parameters that maximized the likelihood of the observed training labels. And then,
towards the end of each chapter, we recalled that fitting the training data was only an in-
termediate goal. Our real quest all along was to discover general patterns on the basis
of which we can make accurate predictions even on new examples drawn from the same
underlying population. Machine learning researchers are consumers of optimization algo-
rithms. Sometimes, we must even develop new optimization algorithms. But at the end
of the day, optimization is merely a means to an end. At its core, machine learning is a
statistical discipline and we wish to optimize training loss only insofar as some statistical
principle (known or unknown) leads the resulting models to generalize beyond the training
set.

On the bright side, it turns out that deep neural networks trained by stochastic gradient de-
scent generalize remarkably well across myriad prediction problems, spanning computer
vision; natural language processing; time series data; recommender systems; electronic
health records; protein folding; value function approximation in video games and board
games; and numerous other domains. On the downside, if you were looking for a straight-
forward account of either the optimization story (why we can fit them to training data) or
the generalization story (why the resulting models generalize to unseen examples), then you
might want to pour yourself a drink. While our procedures for optimizing linear models
and the statistical properties of the solutions are both described well by a comprehensive
body of theory, our understanding of deep learning still resembles the wild west on both
fronts.

Both the theory and practice of deep learning are rapidly evolving, with theorists adopting
new strategies to explain what’s going on, even as practitioners continue to innovate at
a blistering pace, building arsenals of heuristics for training deep networks and a body of
intuitions and folk knowledge that provide guidance for deciding which techniques to apply
in which situations.

The summary of the present moment is that the theory of deep learning has produced
promising lines of attack and scattered fascinating results, but still appears far from a com-
prehensive account of both (i) why we are able to optimize neural networks and (ii) how
models learned by gradient descent manage to generalize so well, even on high-dimensional
tasks. However, in practice, (i) is seldom a problem (we can always find parameters that will
fit all of our training data) and thus understanding generalization is far the bigger problem.
On the other hand, even absent the comfort of a coherent scientific theory, practitioners
have developed a large collection of techniques that may help you to produce models that
generalize well in practice. While no pithy summary can possibly do justice to the vast
topic of generalization in deep learning, and while the overall state of research is far from
resolved, we hope, in this section, to present a broad overview of the state of research and
practice.

5.5.1 Revisiting Overfitting and Regularization
According to the “no free lunch” theorem of Wolpert and Macready (1995), any learn-
ing algorithm generalizes better on data with certain distributions, and worse with other
distributions. Thus, given a finite training set, a model relies on certain assumptions: to
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achieve human-level performance it may be useful to identify inductive biases that reflect
how humans think about the world. Such inductive biases show preferences for solutions
with certain properties. For example, a deep MLP has an inductive bias towards building
up a complicated function by the composition of simpler functions.

With machine learning models encoding inductive biases, our approach to training them
typically consists of two phases: (i) fit the training data; and (ii) estimate the generalization
error (the true error on the underlying population) by evaluating the model on holdout data.
The difference between our fit on the training data and our fit on the test data is called the
generalization gap and when this is large, we say that our models overfit to the training data.
In extreme cases of overfitting, we might exactly fit the training data, even when the test
error remains significant. And in the classical view, the interpretation is that our models are
too complex, requiring that we either shrink the number of features, the number of nonzero
parameters learned, or the size of the parameters as quantified. Recall the plot of model
complexity compared with loss (Fig. 3.6.1) from Section 3.6.

However deep learning complicates this picture in counterintuitive ways. First, for classifi-
cation problems, our models are typically expressive enough to perfectly fit every training
example, even in datasets consisting of millions (Zhang et al., 2021). In the classical pic-
ture, we might think that this setting lies on the far right extreme of the model complexity
axis, and that any improvements in generalization error must come by way of regulariza-
tion, either by reducing the complexity of the model class, or by applying a penalty, severely
constraining the set of values that our parameters might take. But that is where things start
to get weird.

Strangely, for many deep learning tasks (e.g., image recognition and text classification) we
are typically choosing among model architectures, all of which can achieve arbitrarily low
training loss (and zero training error). Because all models under consideration achieve
zero training error, the only avenue for further gains is to reduce overfitting. Even stranger,
it is often the case that despite fitting the training data perfectly, we can actually reduce
the generalization error further by making the model even more expressive, e.g., adding
layers, nodes, or training for a larger number of epochs. Stranger yet, the pattern relating
the generalization gap to the complexity of the model (as captured, for example, in the depth
or width of the networks) can be non-monotonic, with greater complexity hurting at first
but subsequently helping in a so-called “double-descent” pattern (Nakkiran et al., 2021).
Thus the deep learning practitioner possesses a bag of tricks, some of which seemingly
restrict the model in some fashion and others that seemingly make it even more expressive,
and all of which, in some sense, are applied to mitigate overfitting.

Complicating things even further, while the guarantees provided by classical learning the-
ory can be conservative even for classical models, they appear powerless to explain why
it is that deep neural networks generalize in the first place. Because deep neural networks
are capable of fitting arbitrary labels even for large datasets, and despite the use of famil-
iar methods such as ℓ2 regularization, traditional complexity-based generalization bounds,
e.g., those based on the VC dimension or Rademacher complexity of a hypothesis class
cannot explain why neural networks generalize.
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5.5.2 Inspiration from Nonparametrics
Approaching deep learning for the first time, it is tempting to think of them as parametric
models. After all, the models do have millions of parameters. When we update the models,
we update their parameters. When we save the models, we write their parameters to disk.
However, mathematics and computer science are riddled with counterintuitive changes of
perspective, and surprising isomorphisms between seemingly different problems. While
neural networks clearly have parameters, in some ways it can be more fruitful to think of
them as behaving like nonparametric models. So what precisely makes a model nonpara-
metric? While the name covers a diverse set of approaches, one common theme is that
nonparametric methods tend to have a level of complexity that grows as the amount of
available data grows.

Perhaps the simplest example of a nonparametric model is the 𝑘-nearest neighbor algorithm
(we will cover more nonparametric models later, for example in Section 11.2). Here, at
training time, the learner simply memorizes the dataset. Then, at prediction time, when
confronted with a new point x, the learner looks up the 𝑘 nearest neighbors (the 𝑘 points
x′𝑖 that minimize some distance 𝑑 (x,x′𝑖)). When 𝑘 = 1, this algorithm is called 1-nearest
neighbors, and the algorithm will always achieve a training error of zero. That however,
does not mean that the algorithm will not generalize. In fact, it turns out that under some
mild conditions, the 1-nearest neighbor algorithm is consistent (eventually converging to
the optimal predictor).

Note that 1-nearest neighbor requires that we specify some distance function 𝑑, or equiva-
lently, that we specify some vector-valued basis function 𝜙(x) for featurizing our data. For
any choice of the distance metric, we will achieve zero training error and eventually reach
an optimal predictor, but different distance metrics 𝑑 encode different inductive biases and
with a finite amount of available data will yield different predictors. Different choices of
the distance metric 𝑑 represent different assumptions about the underlying patterns and the
performance of the different predictors will depend on how compatible the assumptions are
with the observed data.

In a sense, because neural networks are over-parametrized, possessing many more parame-
ters than are needed to fit the training data, they tend to interpolate the training data (fitting
it perfectly) and thus behave, in some ways, more like nonparametric models. More re-
cent theoretical research has established deep connection between large neural networks
and nonparametric methods, notably kernel methods. In particular, Jacot et al. (2018)
demonstrated that in the limit, as multilayer perceptrons with randomly initialized weights
grow infinitely wide, they become equivalent to (nonparametric) kernel methods for a spe-
cific choice of the kernel function (essentially, a distance function), which they call the
neural tangent kernel. While current neural tangent kernel models may not fully explain
the behavior of modern deep networks, their success as an analytical tool underscores the
usefulness of nonparametric modeling for understanding the behavior of over-parametrized
deep networks.

5.5.3 Early Stopping
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While deep neural networks are capable of fitting arbitrary labels, even when labels are
assigned incorrectly or randomly (Zhang et al., 2021), this capability only emerges over
many iterations of training. A new line of work (Rolnick et al., 2017) has revealed that
in the setting of label noise, neural networks tend to fit cleanly labeled data first and only
subsequently to interpolate the mislabeled data. Moreover, it has been established that this
phenomenon translates directly into a guarantee on generalization: whenever a model has
fitted the cleanly labeled data but not randomly labeled examples included in the training
set, it has in fact generalized (Garg et al., 2021).

Together these findings help to motivate early stopping, a classic technique for regularizing
deep neural networks. Here, rather than directly constraining the values of the weights, one
constrains the number of epochs of training. The most common way to determine the
stopping criterion is to monitor validation error throughout training (typically by checking
once after each epoch) and to cut off training when the validation error has not decreased
by more than some small amount 𝜖 for some number of epochs. This is sometimes called a
patience criterion. As well as the potential to lead to better generalization in the setting of
noisy labels, another benefit of early stopping is the time saved. Once the patience criterion
is met, one can terminate training. For large models that might require days of training
simultaneously across eight or more GPUs, well-tuned early stopping can save researchers
days of time and can save their employers many thousands of dollars.

Notably, when there is no label noise and datasets are realizable (the classes are truly sep-
arable, e.g., distinguishing cats from dogs), early stopping tends not to lead to significant
improvements in generalization. On the other hand, when there is label noise, or intrinsic
variability in the label (e.g., predicting mortality among patients), early stopping is crucial.
Training models until they interpolate noisy data is typically a bad idea.

5.5.4 Classical Regularization Methods for Deep Networks
In Chapter 3, we described several classical regularization techniques for constraining the
complexity of our models. In particular, Section 3.7 introduced a method called weight
decay, which consists of adding a regularization term to the loss function in order to penalize
large values of the weights. Depending on which weight norm is penalized this technique
is known either as ridge regularization (for ℓ2 penalty) or lasso regularization (for an ℓ1
penalty). In the classical analysis of these regularizers, they are considered as sufficiently
restrictive on the values that the weights can take to prevent the model from fitting arbitrary
labels.

In deep learning implementations, weight decay remains a popular tool. However, re-
searchers have noted that typical strengths of ℓ2 regularization are insufficient to prevent the
networks from interpolating the data (Zhang et al., 2021) and thus the benefits if interpreted
as regularization might only make sense in combination with the early stopping criterion.
Absent early stopping, it is possible that just like the number of layers or number of nodes
(in deep learning) or the distance metric (in 1-nearest neighbor), these methods may lead to
better generalization not because they meaningfully constrain the power of the neural net-
work but rather because they somehow encode inductive biases that are better compatible
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with the patterns found in datasets of interests. Thus, classical regularizers remain popular
in deep learning implementations, even if the theoretical rationale for their efficacy may be
radically different.

Notably, deep learning researchers have also built on techniques first popularized in classi-
cal regularization contexts, such as adding noise to model inputs. In the next section wewill
introduce the famous dropout technique (invented by Srivastava et al. (2014)), which has
become a mainstay of deep learning, even as the theoretical basis for its efficacy remains
similarly mysterious.

5.5.5 Summary
Unlike classical linear models, which tend to have fewer parameters than examples, deep
networks tend to be over-parametrized, and for most tasks are capable of perfectly fitting
the training set. This interpolation regime challenges many hard fast-held intuitions. Func-
tionally, neural networks look like parametric models. But thinking of them as nonpara-
metric models can sometimes be a more reliable source of intuition. Because it is often
the case that all deep networks under consideration are capable of fitting all of the train-
ing labels, nearly all gains must come by mitigating overfitting (closing the generalization
gap). Paradoxically, the interventions that reduce the generalization gap sometimes appear
to increase model complexity and at other times appear to decrease complexity. However,
these methods seldom decrease complexity sufficiently for classical theory to explain the
generalization of deep networks, and why certain choices lead to improved generalization
remains for the most part a massive open question despite the concerted efforts of many
brilliant researchers.

5.5.6 Exercises
1. Inwhat sense do traditional complexity-basedmeasures fail to account for generalization

of deep neural networks?

2. Why might early stopping be considered a regularization technique?

3. How do researchers typically determine the stopping criterion?

4. What important factor seems to differentiate cases when early stopping leads to big
improvements in generalization?

5. Beyond generalization, describe another benefit of early stopping.

Discussions105 .

5.6 Dropout

Let’s think briefly about what we expect from a good predictive model. We want it to pe-
form well on unseen data. Classical generalization theory suggests that to close the gap

https://discuss.d2l.ai/t/7473
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between train and test performance, we should aim for a simple model. Simplicity can
come in the form of a small number of dimensions. We explored this when discussing the
monomial basis functions of linear models in Section 3.6. Additionally, as we saw when
discussing weight decay (ℓ2 regularization) in Section 3.7, the (inverse) norm of the param-
eters also represents a useful measure of simplicity. Another useful notion of simplicity
is smoothness, i.e., that the function should not be sensitive to small changes to its inputs.
For instance, when we classify images, we would expect that adding some random noise to
the pixels should be mostly harmless.

Bishop (1995) formalized this idea when he proved that training with input noise is equiva-
lent to Tikhonov regularization. This work drew a clear mathematical connection between
the requirement that a function be smooth (and thus simple), and the requirement that it be
resilient to perturbations in the input.

Then, Srivastava et al. (2014) developed a clever idea for how to apply Bishop’s idea to the
internal layers of a network, too. Their idea, called dropout, involves injecting noise while
computing each internal layer during forward propagation, and it has become a standard
technique for training neural networks. The method is called dropout because we literally
drop out some neurons during training. Throughout training, on each iteration, standard
dropout consists of zeroing out some fraction of the nodes in each layer before calculating
the subsequent layer.

To be clear, we are imposing our own narrative with the link to Bishop. The original pa-
per on dropout offers intuition through a surprising analogy to sexual reproduction. The
authors argue that neural network overfitting is characterized by a state in which each layer
relies on a specific pattern of activations in the previous layer, calling this condition co-
adaptation. Dropout, they claim, breaks up co-adaptation just as sexual reproduction is
argued to break up co-adapted genes. While such an justification of this theory is cer-
tainly up for debate, the dropout technique itself has proved enduring, and various forms of
dropout are implemented in most deep learning libraries.

The key challenge is how to inject this noise. One idea is to inject it in an unbiased manner
so that the expected value of each layer—while fixing the others—equals the value it would
have taken absent noise. In Bishop’s work, he added Gaussian noise to the inputs to a linear
model. At each training iteration, he added noise sampled from a distribution with mean
zero 𝜖 ∼ N(0, 𝜎2) to the input x, yielding a perturbed point x′ = x + 𝜖 . In expectation,
𝐸 [x′] = x.

In standard dropout regularization, one zeros out some fraction of the nodes in each layer
and then debiases each layer by normalizing by the fraction of nodes that were retained (not
dropped out). In other words, with dropout probability 𝑝, each intermediate activation ℎ is
replaced by a random variable ℎ′ as follows:

ℎ′ =

{
0 with probability 𝑝
ℎ

1−𝑝 otherwise
(5.6.1)

By design, the expectation remains unchanged, i.e., 𝐸 [ℎ′] = ℎ.
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from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

5.6.1 Dropout in Practice
Recall the MLP with a hidden layer and five hidden units from Fig. 5.1.1. When we apply
dropout to a hidden layer, zeroing out each hidden unit with probability 𝑝, the result can
be viewed as a network containing only a subset of the original neurons. In Fig. 5.6.1, ℎ2
and ℎ5 are removed. Consequently, the calculation of the outputs no longer depends on ℎ2
or ℎ5 and their respective gradient also vanishes when performing backpropagation. In this
way, the calculation of the output layer cannot be overly dependent on any one element of
ℎ1, . . . , ℎ5.

tFig. 5.6.1 MLP before and after dropout.

Typically, we disable dropout at test time. Given a trained model and a new example,
we do not drop out any nodes and thus do not need to normalize. However, there are
some exceptions: some researchers use dropout at test time as a heuristic for estimating the
uncertainty of neural network predictions: if the predictions agree across many different
dropout outputs, then we might say that the network is more confident.

5.6.2 Implementation from Scratch
To implement the dropout function for a single layer, we must draw as many samples from a
Bernoulli (binary) random variable as our layer has dimensions, where the random variable
takes value 1 (keep) with probability 1 − 𝑝 and 0 (drop) with probability 𝑝. One easy way
to implement this is to first draw samples from the uniform distribution 𝑈 [0, 1]. Then we
can keep those nodes for which the corresponding sample is greater than 𝑝, dropping the
rest.

In the following code, we implement a dropout_layer function that drops out the elements
in the tensor input X with probability dropout, rescaling the remainder as described above:
dividing the survivors by 1.0-dropout.
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def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1: return np.zeros_like(X)
mask = np.random.uniform(0, 1, X.shape) > dropout
return mask.astype(np.float32) * X / (1.0 - dropout)

We can test out the dropout_layer function on a few examples. In the following lines of
code, we pass our input X through the dropout operation, with probabilities 0, 0.5, and 1,
respectively.

X = np.arange(16).reshape(2, 8)
print('dropout_p = 0:', dropout_layer(X, 0))
print('dropout_p = 0.5:', dropout_layer(X, 0.5))
print('dropout_p = 1:', dropout_layer(X, 1))

dropout_p = 0: [[ 0. 1. 2. 3. 4. 5. 6. 7.]
[ 8. 9. 10. 11. 12. 13. 14. 15.]]
dropout_p = 0.5: [[ 0. 0. 0. 0. 8. 10. 12. 0.]
[16. 0. 20. 22. 0. 0. 0. 30.]]
dropout_p = 1: [[0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0.]]
[21:50:21] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Defining the Model
Themodel below applies dropout to the output of each hidden layer (following the activation
function). We can set dropout probabilities for each layer separately. A common choice is
to set a lower dropout probability closer to the input layer. We ensure that dropout is only
active during training.

class DropoutMLPScratch(d2l.Classifier):
def __init__(self, num_outputs, num_hiddens_1, num_hiddens_2,

dropout_1, dropout_2, lr):
super().__init__()
self.save_hyperparameters()
self.lin1 = nn.Dense(num_hiddens_1, activation='relu')
self.lin2 = nn.Dense(num_hiddens_2, activation='relu')
self.lin3 = nn.Dense(num_outputs)
self.initialize()

def forward(self, X):
H1 = self.lin1(X)
if autograd.is_training():

H1 = dropout_layer(H1, self.dropout_1)
H2 = self.lin2(H1)
if autograd.is_training():

H2 = dropout_layer(H2, self.dropout_2)
return self.lin3(H2)
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Training
The following is similar to the training of MLPs described previously.

hparams = {'num_outputs':10, 'num_hiddens_1':256, 'num_hiddens_2':256,
'dropout_1':0.5, 'dropout_2':0.5, 'lr':0.1}

model = DropoutMLPScratch(**hparams)
data = d2l.FashionMNIST(batch_size=256)
trainer = d2l.Trainer(max_epochs=10)
trainer.fit(model, data)

5.6.3 Concise Implementation
With high-level APIs, all we need to do is add a Dropout layer after each fully connected
layer, passing in the dropout probability as the only argument to its constructor. During
training, the Dropout layer will randomly drop out outputs of the previous layer (or equiv-
alently, the inputs to the subsequent layer) according to the specified dropout probability.
When not in training mode, the Dropout layer simply passes the data through during test-
ing.

class DropoutMLP(d2l.Classifier):
def __init__(self, num_outputs, num_hiddens_1, num_hiddens_2,

dropout_1, dropout_2, lr):
super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(nn.Dense(num_hiddens_1, activation="relu"),

nn.Dropout(dropout_1),
nn.Dense(num_hiddens_2, activation="relu"),
nn.Dropout(dropout_2),
nn.Dense(num_outputs))

self.net.initialize()

Next, we train the model.

model = DropoutMLP(**hparams)
trainer.fit(model, data)

5.6.4 Summary
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Beyond controlling the number of dimensions and the size of the weight vector, dropout is
yet another tool for avoiding overfitting. Often tools are used jointly. Note that dropout is
used only during training: it replaces an activation ℎ with a random variable with expected
value ℎ.

5.6.5 Exercises
1. What happens if you change the dropout probabilities for the first and second layers?

In particular, what happens if you switch the ones for both layers? Design an experi-
ment to answer these questions, describe your results quantitatively, and summarize the
qualitative takeaways.

2. Increase the number of epochs and compare the results obtained when using dropout
with those when not using it.

3. What is the variance of the activations in each hidden layer when dropout is and is not
applied? Draw a plot to show how this quantity evolves over time for both models.

4. Why is dropout not typically used at test time?

5. Using the model in this section as an example, compare the effects of using dropout and
weight decay. What happens when dropout and weight decay are used at the same time?
Are the results additive? Are there diminished returns (or worse)? Do they cancel each
other out?

6. What happens if we apply dropout to the individual weights of the weight matrix rather
than the activations?

7. Invent another technique for injecting random noise at each layer that is different from
the standard dropout technique. Can you develop a method that outperforms dropout on
the Fashion-MNIST dataset (for a fixed architecture)?

Discussions106 .

https://discuss.d2l.ai/t/100
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5.7 Predicting House Prices on Kaggle

Now that we have introduced some basic tools for building and training deep networks and
regularizing them with techniques including weight decay and dropout, we are ready to
put all this knowledge into practice by participating in a Kaggle competition. The house
price prediction competition is a great place to start. The data is fairly generic and do not
exhibit exotic structure that might require specialized models (as audio or video might).
This dataset, collected by De Cock (2011), covers house prices in Ames, Iowa from the
period 2006–2010. It is considerably larger than the famous Boston housing dataset107 of
Harrison and Rubinfeld (1978), boasting both more examples and more features.

In this section, we will walk you through details of data preprocessing, model design, and
hyperparameter selection. We hope that through a hands-on approach, you will gain some
intuitions that will guide you in your career as a data scientist.

%matplotlib inline
import pandas as pd
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

5.7.1 Downloading Data
Throughout the book, we will train and test models on various downloaded datasets. Here,
we implement two utility functions for downloading and extracting zip or tar files. Again,
we skip implementation details of such utility functions.

def download(url, folder, sha1_hash=None):
"""Download a file to folder and return the local filepath."""

def extract(filename, folder):
"""Extract a zip/tar file into folder."""

5.7.2 Kaggle
Kaggle 108 is a popular platform that hosts machine learning competitions. Each com-
petition centers on a dataset and many are sponsored by stakeholders who offer prizes to
the winning solutions. The platform helps users to interact via forums and shared code,
fostering both collaboration and competition. While leaderboard chasing often spirals out
of control, with researchers focusing myopically on preprocessing steps rather than asking
fundamental questions, there is also tremendous value in the objectivity of a platform that
facilitates direct quantitative comparisons among competing approaches as well as code
sharing so that everyone can learn what did and did not work. If you want to participate in
a Kaggle competition, you will first need to register for an account (see Fig. 5.7.1).

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names
https://www.kaggle.com
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tFig. 5.7.1 The Kaggle website.

On the house price prediction competition page, as illustrated in Fig. 5.7.2, you can find
the dataset (under the “Data” tab), submit predictions, and see your ranking, The URL is
right here:

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

tFig. 5.7.2 The house price prediction competition page.

5.7.3 Accessing and Reading the Dataset
Note that the competition data is separated into training and test sets. Each record includes
the property value of the house and attributes such as street type, year of construction, roof
type, basement condition, etc. The features consist of various data types. For example,
the year of construction is represented by an integer, the roof type by discrete categorical
assignments, and other features by floating point numbers. And here is where reality com-
plicates things: for some examples, some data is altogether missing with the missing value
marked simply as “na”. The price of each house is included for the training set only (it is
a competition after all). We will want to partition the training set to create a validation set,
but we only get to evaluate our models on the official test set after uploading predictions to

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
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Kaggle. The “Data” tab on the competition tab in Fig. 5.7.2 has links for downloading the
data.

To get started, we will read in and process the data using pandas, which we introduced
in Section 2.2. For convenience, we can download and cache the Kaggle housing dataset.
If a file corresponding to this dataset already exists in the cache directory and its SHA-1
matches sha1_hash, our code will use the cached file to avoid clogging up your Internet
with redundant downloads.

class KaggleHouse(d2l.DataModule):
def __init__(self, batch_size, train=None, val=None):

super().__init__()
self.save_hyperparameters()
if self.train is None:

self.raw_train = pd.read_csv(d2l.download(
d2l.DATA_URL + 'kaggle_house_pred_train.csv', self.root,
sha1_hash='585e9cc93e70b39160e7921475f9bcd7d31219ce'))

self.raw_val = pd.read_csv(d2l.download(
d2l.DATA_URL + 'kaggle_house_pred_test.csv', self.root,
sha1_hash='fa19780a7b011d9b009e8bff8e99922a8ee2eb90'))

The training dataset includes 1460 examples, 80 features, and one label, while the validation
data contains 1459 examples and 80 features.

data = KaggleHouse(batch_size=64)
print(data.raw_train.shape)
print(data.raw_val.shape)

Downloading ../data/kaggle_house_pred_train.csv from http://d2l-data.s3-
↩→accelerate.amazonaws.com/kaggle_house_pred_train.csv...
Downloading ../data/kaggle_house_pred_test.csv from http://d2l-data.s3-
↩→accelerate.amazonaws.com/kaggle_house_pred_test.csv...
(1460, 81)
(1459, 80)

5.7.4 Data Preprocessing
Let’s take a look at the first four and final two features as well as the label (SalePrice) from
the first four examples.

print(data.raw_train.iloc[:4, [0, 1, 2, 3, -3, -2, -1]])

Id MSSubClass MSZoning LotFrontage SaleType SaleCondition SalePrice
0 1 60 RL 65.0 WD Normal 208500
1 2 20 RL 80.0 WD Normal 181500
2 3 60 RL 68.0 WD Normal 223500
3 4 70 RL 60.0 WD Abnorml 140000

We can see that in each example, the first feature is the identifier. This helps the model
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determine each training example. While this is convenient, it does not carry any information
for prediction purposes. Hence, we will remove it from the dataset before feeding the data
into the model. Furthermore, given a wide variety of data types, we will need to preprocess
the data before we can start modeling.

Let’s start with the numerical features. First, we apply a heuristic, replacing all missing
values by the corresponding feature’s mean. Then, to put all features on a common scale,
we standardize the data by rescaling features to zero mean and unit variance:

𝑥 ← 𝑥 − 𝜇
𝜎

, (5.7.1)

where 𝜇 and 𝜎 denote mean and standard deviation, respectively. To verify that this indeed
transforms our feature (variable) such that it has zero mean and unit variance, note that
𝐸 [ 𝑥−𝜇𝜎 ] =

𝜇−𝜇
𝜎 = 0 and that 𝐸 [(𝑥 − 𝜇)2] = (𝜎2 + 𝜇2) − 2𝜇2 + 𝜇2 = 𝜎2. Intuitively, we

standardize the data for two reasons. First, it proves convenient for optimization. Second,
because we do not know a prioriwhich features will be relevant, we do not want to penalize
coefficients assigned to one feature more than any other.

Next we deal with discrete values. These include features such as “MSZoning”. We replace
them by a one-hot encoding in the same way that we earlier transformed multiclass labels
into vectors (see Section 4.1.1). For instance, “MSZoning” assumes the values “RL” and
“RM”. Dropping the “MSZoning” feature, two new indicator features “MSZoning_RL”
and “MSZoning_RM” are created with values being either 0 or 1. According to one-hot
encoding, if the original value of “MSZoning” is “RL”, then “MSZoning_RL” is 1 and
“MSZoning_RM” is 0. The pandas package does this automatically for us.

@d2l.add_to_class(KaggleHouse)
def preprocess(self):

# Remove the ID and label columns
label = 'SalePrice'
features = pd.concat(

(self.raw_train.drop(columns=['Id', label]),
self.raw_val.drop(columns=['Id'])))

# Standardize numerical columns
numeric_features = features.dtypes[features.dtypes!='object'].index
features[numeric_features] = features[numeric_features].apply(

lambda x: (x - x.mean()) / (x.std()))
# Replace NAN numerical features by 0
features[numeric_features] = features[numeric_features].fillna(0)
# Replace discrete features by one-hot encoding
features = pd.get_dummies(features, dummy_na=True)
# Save preprocessed features
self.train = features[:self.raw_train.shape[0]].copy()
self.train[label] = self.raw_train[label]
self.val = features[self.raw_train.shape[0]:].copy()

You can see that this conversion increases the number of features from 79 to 331 (excluding
ID and label columns).

data.preprocess()
data.train.shape
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(1460, 331)

5.7.5 Error Measure
To get started we will train a linear model with squared loss. Not surprisingly, our linear
model will not lead to a competition-winning submission but it does provide a sanity check
to see whether there is meaningful information in the data. If we cannot do better than
random guessing here, then there might be a good chance that we have a data processing
bug. And if things work, the linear model will serve as a baseline giving us some intuition
about how close the simple model gets to the best reported models, giving us a sense of
how much gain we should expect from fancier models.

With house prices, as with stock prices, we care about relative quantities more than ab-
solute quantities. Thus we tend to care more about the relative error 𝑦− 𝑦̂

𝑦 than about the
absolute error 𝑦 − 𝑦̂. For instance, if our prediction is off by $100,000 when estimating the
price of a house in rural Ohio, where the value of a typical house is $125,000, then we are
probably doing a horrible job. On the other hand, if we err by this amount in Los Altos
Hills, California, this might represent a stunningly accurate prediction (there, the median
house price exceeds $4 million).

One way to address this problem is to measure the discrepancy in the logarithm of the price
estimates. In fact, this is also the official error measure used by the competition to evaluate
the quality of submissions. After all, a small value 𝛿 for | log 𝑦 − log 𝑦̂ | ≤ 𝛿 translates into
𝑒−𝛿 ≤ 𝑦̂

𝑦 ≤ 𝑒𝛿 . This leads to the following root-mean-squared-error between the logarithm
of the predicted price and the logarithm of the label price:√√

1
𝑛

𝑛∑
𝑖=1
(log 𝑦𝑖 − log 𝑦̂𝑖)2. (5.7.2)

@d2l.add_to_class(KaggleHouse)
def get_dataloader(self, train):

label = 'SalePrice'
data = self.train if train else self.val
if label not in data: return
get_tensor = lambda x: np.array(x.values.astype(float),

dtype=np.float32)
# Logarithm of prices
tensors = (get_tensor(data.drop(columns=[label])), # X

np.log(get_tensor(data[label])).reshape((-1, 1))) # Y
return self.get_tensorloader(tensors, train)

5.7.6 𝐾-Fold Cross-Validation
You might recall that we introduced cross-validation in Section 3.6.3, where we discussed
how to deal with model selection. We will put this to good use to select the model design
and to adjust the hyperparameters. We first need a function that returns the 𝑖th fold of the
data in a 𝐾-fold cross-validation procedure. It proceeds by slicing out the 𝑖th segment as
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validation data and returning the rest as training data. Note that this is not the most efficient
way of handling data and we would definitely do something much smarter if our dataset was
considerably larger. But this added complexity might obfuscate our code unnecessarily so
we can safely omit it here owing to the simplicity of our problem.

def k_fold_data(data, k):
rets = []
fold_size = data.train.shape[0] // k
for j in range(k):

idx = range(j * fold_size, (j+1) * fold_size)
rets.append(KaggleHouse(data.batch_size, data.train.drop(index=idx),

data.train.loc[idx]))
return rets

The average validation error is returnedwhenwe train𝐾 times in the𝐾-fold cross-validation.

def k_fold(trainer, data, k, lr):
val_loss, models = [], []
for i, data_fold in enumerate(k_fold_data(data, k)):

model = d2l.LinearRegression(lr)
model.board.yscale='log'
if i != 0: model.board.display = False
trainer.fit(model, data_fold)
val_loss.append(float(model.board.data['val_loss'][-1].y))
models.append(model)

print(f'average validation log mse = {sum(val_loss)/len(val_loss)}')
return models

5.7.7 Model Selection
In this example, we pick an untuned set of hyperparameters and leave it up to the reader to
improve the model. Finding a good choice can take time, depending on howmany variables
one optimizes over. With a large enough dataset, and the normal sorts of hyperparameters,
𝐾-fold cross-validation tends to be reasonably resilient against multiple testing. However,
if we try an unreasonably large number of options we might find that our validation perfor-
mance is no longer representative of the true error.

trainer = d2l.Trainer(max_epochs=10)
models = k_fold(trainer, data, k=5, lr=0.01)

average validation log mse = 0.12402758479118345

Notice that sometimes the number of training errors for a set of hyperparameters can be very
low, even as the number of errors on 𝐾-fold cross-validation grows considerably higher.
This indicates that we are overfitting. Throughout training you will want to monitor both
numbers. Less overfitting might indicate that our data can support a more powerful model.
Massive overfitting might suggest that we can gain by incorporating regularization tech-
niques.
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5.7.8 Submitting Predictions on Kaggle
Now that we know what a good choice of hyperparameters should be, we might calculate
the average predictions on the test set by all the 𝐾 models. Saving the predictions in a csv
file will simplify uploading the results to Kaggle. The following code will generate a file
called submission.csv.

preds = [model(np.array(data.val.values.astype(float), dtype=np.float32))
for model in models]

# Taking exponentiation of predictions in the logarithm scale
ensemble_preds = np.exp(np.concatenate(preds, 1)).mean(1)
submission = pd.DataFrame({'Id':data.raw_val.Id,

'SalePrice':ensemble_preds.asnumpy()})
submission.to_csv('submission.csv', index=False)

Next, as demonstrated in Fig. 5.7.3, we can submit our predictions on Kaggle and see how
they compare with the actual house prices (labels) on the test set. The steps are quite
simple:

• Log in to the Kaggle website and visit the house price prediction competition page.

• Click the “Submit Predictions” or “Late Submission” button.

• Click the “Upload Submission File” button in the dashed box at the bottom of the page
and select the prediction file you wish to upload.

• Click the “Make Submission” button at the bottom of the page to view your results.

5.7.9 Summary and Discussion
Real data often contains a mix of different data types and needs to be preprocessed. Rescal-
ing real-valued data to zero mean and unit variance is a good default. So is replacing miss-
ing values with their mean. Furthermore, transforming categorical features into indicator
features allows us to treat them like one-hot vectors. When we tend to care more about the
relative error than about the absolute error, we can measure the discrepancy in the loga-
rithm of the prediction. To select the model and adjust the hyperparameters, we can use
𝐾-fold cross-validation .

5.7.10 Exercises
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tFig. 5.7.3 Submitting data to Kaggle
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1. Submit your predictions for this section to Kaggle. How good are they?

2. Is it always a good idea to replace missing values by a mean? Hint: can you construct a
situation where the values are not missing at random?

3. Improve the score by tuning the hyperparameters through 𝐾-fold cross-validation.

4. Improve the score by improving the model (e.g., layers, weight decay, and dropout).

5. What happens if we do not standardize the continuous numerical features as we have
done in this section?

Discussions109 .

https://discuss.d2l.ai/t/106
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Alongside giant datasets and powerful hardware, great software tools have played an in-
dispensable role in the rapid progress of deep learning. Starting with the pathbreaking
Theano library released in 2007, flexible open-source tools have enabled researchers to
rapidly prototype models, avoiding repetitive work when recycling standard components
while still maintaining the ability to make low-level modifications. Over time, deep learn-
ing’s libraries have evolved to offer increasingly coarse abstractions. Just as semiconductor
designers went from specifying transistors to logical circuits to writing code, neural net-
works researchers have moved from thinking about the behavior of individual artificial neu-
rons to conceiving of networks in terms of whole layers, and now often design architectures
with far coarser blocks in mind.

So far, we have introduced some basic machine learning concepts, ramping up to fully-
functional deep learning models. In the last chapter, we implemented each component of
an MLP from scratch and even showed how to leverage high-level APIs to roll out the
same models effortlessly. To get you that far that fast, we called upon the libraries, but
skipped over more advanced details about how they work. In this chapter, we will peel
back the curtain, digging deeper into the key components of deep learning computation,
namely model construction, parameter access and initialization, designing custom layers
and blocks, reading and writing models to disk, and leveraging GPUs to achieve dramatic
speedups. These insights will move you from end user to power user, giving you the tools
needed to reap the benefits of amature deep learning library while retaining the flexibility to
implement more complex models, including those you invent yourself! While this chapter
does not introduce any new models or datasets, the advanced modeling chapters that follow
rely heavily on these techniques.

6.1 Layers and Modules

When we first introduced neural networks, we focused on linear models with a single out-
put. Here, the entire model consists of just a single neuron. Note that a single neuron (i)
takes some set of inputs; (ii) generates a corresponding scalar output; and (iii) has a set of
associated parameters that can be updated to optimize some objective function of interest.
Then, once we started thinking about networks with multiple outputs, we leveraged vec-
torized arithmetic to characterize an entire layer of neurons. Just like individual neurons,

208
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layers (i) take a set of inputs, (ii) generate corresponding outputs, and (iii) are described by
a set of tunable parameters. When we worked through softmax regression, a single layer
was itself the model. However, even when we subsequently introduced MLPs, we could
still think of the model as retaining this same basic structure.

Interestingly, for MLPs, both the entire model and its constituent layers share this structure.
The entire model takes in raw inputs (the features), generates outputs (the predictions), and
possesses parameters (the combined parameters from all constituent layers). Likewise,
each individual layer ingests inputs (supplied by the previous layer) generates outputs (the
inputs to the subsequent layer), and possesses a set of tunable parameters that are updated
according to the signal that flows backwards from the subsequent layer.

While you might think that neurons, layers, and models give us enough abstractions to go
about our business, it turns out that we often find it convenient to speak about components
that are larger than an individual layer but smaller than the entire model. For example, the
ResNet-152 architecture, which is wildly popular in computer vision, possesses hundreds of
layers. These layers consist of repeating patterns of groups of layers. Implementing such
a network one layer at a time can grow tedious. This concern is not just hypothetical—
such design patterns are common in practice. The ResNet architecture mentioned above
won the 2015 ImageNet and COCO computer vision competitions for both recognition and
detection (He et al., 2016) and remains a go-to architecture for many vision tasks. Similar
architectures in which layers are arranged in various repeating patterns are now ubiquitous
in other domains, including natural language processing and speech.

To implement these complex networks, we introduce the concept of a neural network mod-
ule. A module could describe a single layer, a component consisting of multiple layers,
or the entire model itself! One benefit of working with the module abstraction is that they
can be combined into larger artifacts, often recursively. This is illustrated in Fig. 6.1.1.
By defining code to generate modules of arbitrary complexity on demand, we can write
surprisingly compact code and still implement complex neural networks.

tFig. 6.1.1 Multiple layers are combined into modules, forming repeating patterns of larger models.

From a programming standpoint, a module is represented by a class. Any subclass of it
must define a forward propagation method that transforms its input into output and must
store any necessary parameters. Note that some modules do not require any parameters at
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all. Finally a module must possess a backpropagation method, for purposes of calculating
gradients. Fortunately, due to some behind-the-scenes magic supplied by the auto differen-
tiation (introduced in Section 2.5) when defining our own module, we only need to worry
about parameters and the forward propagation method.

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

To begin, we revisit the code that we used to implement MLPs (Section 5.1). The follow-
ing code generates a network with one fully connected hidden layer with 256 units and
ReLU activation, followed by a fully connected output layer with ten units (no activation
function).

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()

X = np.random.uniform(size=(2, 20))
net(X).shape

[21:53:59] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(2, 10)

In this example, we constructed our model by instantiating an nn.Sequential, assigning
the returned object to the net variable. Next, we repeatedly call its addmethod, appending
layers in the order that they should be executed. In short, nn.Sequential defines a special
kind of Block, the class that presents a module in Gluon. It maintains an ordered list
of constituent Blocks. The add method simply facilitates the addition of each successive
Block to the list. Note that each layer is an instance of the Dense class which is itself a
subclass of Block. The forward propagation (forward) method is also remarkably simple:
it chains each Block in the list together, passing the output of each as input to the next.
Note that until now, we have been invoking our models via the construction net(X) to
obtain their outputs. This is actually just shorthand for net.forward(X), a slick Python
trick achieved via the Block class’s __call__ method.

6.1.1 A Custom Module
Perhaps the easiest way to develop intuition about how a module works is to implement
one ourselves. Before we do that, we briefly summarize the basic functionality that each
module must provide:

1. Ingest input data as arguments to its forward propagation method.
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2. Generate an output by having the forward propagation method return a value. Note
that the output may have a different shape from the input. For example, the first fully
connected layer in our model above ingests an input of arbitrary dimension but returns
an output of dimension 256.

3. Calculate the gradient of its output with respect to its input, which can be accessed via
its backpropagation method. Typically this happens automatically.

4. Store and provide access to those parameters necessary for executing the forward prop-
agation computation.

5. Initialize model parameters as needed.

In the following snippet, we code up a module from scratch corresponding to an MLP
with one hidden layer with 256 hidden units, and a 10-dimensional output layer. Note that
the MLP class below inherits the class that represents a module. We will heavily rely on
the parent class’s methods, supplying only our own constructor (the __init__ method in
Python) and the forward propagation method.

class MLP(nn.Block):
def __init__(self):

# Call the constructor of the MLP parent class nn.Block to perform
# the necessary initialization
super().__init__()
self.hidden = nn.Dense(256, activation='relu')
self.out = nn.Dense(10)

# Define the forward propagation of the model, that is, how to return the
# required model output based on the input X
def forward(self, X):

return self.out(self.hidden(X))

Let’s first focus on the forward propagation method. Note that it takes X as input, calcu-
lates the hidden representation with the activation function applied, and outputs its logits.
In this MLP implementation, both layers are instance variables. To see why this is reason-
able, imagine instantiating two MLPs, net1 and net2, and training them on different data.
Naturally, we would expect them to represent two different learned models.

We instantiate the MLP’s layers in the constructor and subsequently invoke these layers on
each call to the forward propagation method. Note a few key details. First, our customized
__init__ method invokes the parent class’s __init__ method via super().__init__()
sparing us the pain of restating boilerplate code applicable to most modules. We then
instantiate our two fully connected layers, assigning them to self.hidden and self.out.
Note that unless we implement a new layer, we need not worry about the backpropagation
method or parameter initialization. The system will generate these methods automatically.
Let’s try this out.

net = MLP()
net.initialize()
net(X).shape



212 Builders’ Guide

(2, 10)

A key virtue of the module abstraction is its versatility. We can subclass a module to create
layers (such as the fully connected layer class), entire models (such as the MLP class above),
or various components of intermediate complexity. We exploit this versatility throughout
the coming chapters, such as when addressing convolutional neural networks.

6.1.2 The Sequential Module
We can now take a closer look at how the Sequential class works. Recall that Sequen-
tial was designed to daisy-chain other modules together. To build our own simplified
MySequential, we just need to define two key methods:

1. A method for appending modules one by one to a list.

2. A forward propagation method for passing an input through the chain of modules, in the
same order as they were appended.

The following MySequential class delivers the same functionality of the default Sequen-
tial class.

class MySequential(nn.Block):
def add(self, block):

# Here, block is an instance of a Block subclass, and we assume that
# it has a unique name. We save it in the member variable _children of
# the Block class, and its type is OrderedDict. When the MySequential
# instance calls the initialize method, the system automatically
# initializes all members of _children
self._children[block.name] = block

def forward(self, X):
# OrderedDict guarantees that members will be traversed in the order
# they were added
for block in self._children.values():

X = block(X)
return X

The add method adds a single block to the ordered dictionary _children. You might
wonder why every Gluon Block possesses a _children attribute and why we used it rather
than just define a Python list ourselves. In short the chief advantage of _children is that
during our block’s parameter initialization, Gluon knows to look inside the _children

dictionary to find sub-blocks whose parameters also need to be initialized.

When our MySequential’s forward propagation method is invoked, each added module is
executed in the order in which they were added. We can now reimplement an MLP using
our MySequential class.

net = MySequential()
net.add(nn.Dense(256, activation='relu'))

(continues on next page)
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(continued from previous page)

net.add(nn.Dense(10))
net.initialize()
net(X).shape

(2, 10)

Note that this use of MySequential is identical to the code we previously wrote for the
Sequential class (as described in Section 5.1).

6.1.3 Executing Code in the Forward Propagation Method
The Sequential class makes model construction easy, allowing us to assemble new archi-
tectures without having to define our own class. However, not all architectures are simple
daisy chains. When greater flexibility is required, we will want to define our own blocks.
For example, we might want to execute Python’s control flow within the forward propaga-
tion method. Moreover, we might want to perform arbitrary mathematical operations, not
simply relying on predefined neural network layers.

You may have noticed that until now, all of the operations in our networks have acted upon
our network’s activations and its parameters. Sometimes, however, we might want to in-
corporate terms that are neither the result of previous layers nor updatable parameters. We
call these constant parameters. Say for example that we want a layer that calculates the
function 𝑓 (x,w) = 𝑐 ·w>x, where x is the input,w is our parameter, and 𝑐 is some speci-
fied constant that is not updated during optimization. So we implement a FixedHiddenMLP
class as follows.

class FixedHiddenMLP(nn.Block):
def __init__(self):

super().__init__()
# Random weight parameters created with the get_constant method
# are not updated during training (i.e., constant parameters)
self.rand_weight = self.params.get_constant(

'rand_weight', np.random.uniform(size=(20, 20)))
self.dense = nn.Dense(20, activation='relu')

def forward(self, X):
X = self.dense(X)
# Use the created constant parameters, as well as the relu and dot
# functions
X = npx.relu(np.dot(X, self.rand_weight.data()) + 1)
# Reuse the fully connected layer. This is equivalent to sharing
# parameters with two fully connected layers
X = self.dense(X)
# Control flow
while np.abs(X).sum() > 1:

X /= 2
return X.sum()

In this model, we implement a hidden layer whose weights (self.rand_weight) are ini-
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tialized randomly at instantiation and are thereafter constant. This weight is not a model
parameter and thus it is never updated by backpropagation. The network then passes the
output of this “fixed” layer through a fully connected layer.

Note that before returning the output, our model did something unusual. We ran a while-
loop, testing on the condition its ℓ1 norm is larger than 1, and dividing our output vector
by 2 until it satisfied the condition. Finally, we returned the sum of the entries in X. To our
knowledge, no standard neural network performs this operation. Note that this particular
operation may not be useful in any real-world task. Our point is only to show you how to
integrate arbitrary code into the flow of your neural network computations.

net = FixedHiddenMLP()
net.initialize()
net(X)

array(0.52637565)

We can mix and match various ways of assembling modules together. In the following
example, we nest modules in some creative ways.

class NestMLP(nn.Block):
def __init__(self, **kwargs):

super().__init__(**kwargs)
self.net = nn.Sequential()
self.net.add(nn.Dense(64, activation='relu'),

nn.Dense(32, activation='relu'))
self.dense = nn.Dense(16, activation='relu')

def forward(self, X):
return self.dense(self.net(X))

chimera = nn.Sequential()
chimera.add(NestMLP(), nn.Dense(20), FixedHiddenMLP())
chimera.initialize()
chimera(X)

array(0.97720534)

6.1.4 Summary
Individual layers can be modules. Many layers can comprise a module. Many modules can
comprise a module.

A module can contain code. Modules take care of lots of housekeeping, including param-
eter initialization and backpropagation. Sequential concatenations of layers and modules
are handled by the Sequential module.

6.1.5 Exercises
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1. What kinds of problems will occur if you change MySequential to store modules in a
Python list?

2. Implement a module that takes two modules as an argument, say net1 and net2 and
returns the concatenated output of both networks in the forward propagation. This is
also called a parallel module.

3. Assume that you want to concatenate multiple instances of the same network. Imple-
ment a factory function that generates multiple instances of the same module and build
a larger network from it.

Discussions110 .

6.2 Parameter Management

Once we have chosen an architecture and set our hyperparameters, we proceed to the train-
ing loop, where our goal is to find parameter values that minimize our loss function. After
training, we will need these parameters in order to make future predictions. Additionally,
we will sometimes wish to extract the parameters perhaps to reuse them in some other
context, to save our model to disk so that it may be executed in other software, or for ex-
amination in the hope of gaining scientific understanding.

Most of the time, we will be able to ignore the nitty-gritty details of how parameters are
declared and manipulated, relying on deep learning frameworks to do the heavy lifting.
However, when we move away from stacked architectures with standard layers, we will
sometimes need to get into the weeds of declaring and manipulating parameters. In this
section, we cover the following:

• Accessing parameters for debugging, diagnostics, and visualizations.

• Sharing parameters across different model components.

from mxnet import init, np, npx
from mxnet.gluon import nn

npx.set_np()

We start by focusing on an MLP with one hidden layer.

net = nn.Sequential()
net.add(nn.Dense(8, activation='relu'))
net.add(nn.Dense(1))
net.initialize() # Use the default initialization method

X = np.random.uniform(size=(2, 4))
net(X).shape

https://discuss.d2l.ai/t/54


216 Builders’ Guide

[21:49:32] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(2, 1)

6.2.1 Parameter Access
Let’s start with how to access parameters from the models that you already know.

When amodel is defined via the Sequential class, we can first access any layer by indexing
into the model as though it were a list. Each layer’s parameters are conveniently located in
its attribute.

We can inspect the parameters of the second fully connected layer as follows.

net[1].params

dense1_ (
Parameter dense1_weight (shape=(1, 8), dtype=float32)
Parameter dense1_bias (shape=(1,), dtype=float32)

)

We can see that this fully connected layer contains two parameters, corresponding to that
layer’s weights and biases, respectively.

Targeted Parameters
Note that each parameter is represented as an instance of the parameter class. To do any-
thing useful with the parameters, we first need to access the underlying numerical values.
There are several ways to do this. Some are simpler while others are more general. The
following code extracts the bias from the second neural network layer, which returns a
parameter class instance, and further accesses that parameter’s value.

type(net[1].bias), net[1].bias.data()

(mxnet.gluon.parameter.Parameter, array([0.]))

Parameters are complex objects, containing values, gradients, and additional information.
That is why we need to request the value explicitly.

In addition to the value, each parameter also allows us to access the gradient. Because we
have not invoked backpropagation for this network yet, it is in its initial state.

net[1].weight.grad()
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array([[0., 0., 0., 0., 0., 0., 0., 0.]])

All Parameters at Once
When we need to perform operations on all parameters, accessing them one-by-one can
grow tedious. The situation can grow especially unwieldy when we work with more com-
plex, e.g., nested, modules, since we would need to recurse through the entire tree to extract
each sub-module’s parameters. Below we demonstrate accessing the parameters of all lay-
ers.

net.collect_params()

sequential0_ (
Parameter dense0_weight (shape=(8, 4), dtype=float32)
Parameter dense0_bias (shape=(8,), dtype=float32)
Parameter dense1_weight (shape=(1, 8), dtype=float32)
Parameter dense1_bias (shape=(1,), dtype=float32)

)

6.2.2 Tied Parameters
Often, wewant to share parameters acrossmultiple layers. Let’s see how to do this elegantly.
In the following we allocate a fully connected layer and then use its parameters specifically
to set those of another layer. Here we need to run the forward propagation net(X) before
accessing the parameters.

net = nn.Sequential()
# We need to give the shared layer a name so that we can refer to its
# parameters
shared = nn.Dense(8, activation='relu')
net.add(nn.Dense(8, activation='relu'),

shared,
nn.Dense(8, activation='relu', params=shared.params),
nn.Dense(10))

net.initialize()

X = np.random.uniform(size=(2, 20))

net(X)
# Check whether the parameters are the same
print(net[1].weight.data()[0] == net[2].weight.data()[0])
net[1].weight.data()[0, 0] = 100
# Make sure that they are actually the same object rather than just having the
# same value
print(net[1].weight.data()[0] == net[2].weight.data()[0])

[ True True True True True True True True]
[ True True True True True True True True]
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This example shows that the parameters of the second and third layer are tied. They are
not just equal, they are represented by the same exact tensor. Thus, if we change one of the
parameters, the other one changes, too.

You might wonder, when parameters are tied what happens to the gradients? Since the
model parameters contain gradients, the gradients of the second hidden layer and the third
hidden layer are added together during backpropagation.

6.2.3 Summary
We have several ways of accessing and tying model parameters.

6.2.4 Exercises
1. Use the NestMLP model defined in Section 6.1 and access the parameters of the various

layers.

2. Construct an MLP containing a shared parameter layer and train it. During the training
process, observe the model parameters and gradients of each layer.

3. Why is sharing parameters a good idea?

Discussions111 .

6.3 Parameter Initialization

Now that we know how to access the parameters, let’s look at how to initialize them prop-
erly. We discussed the need for proper initialization in Section 5.4. The deep learning
framework provides default random initializations to its layers. However, we often want to
initialize our weights according to various other protocols. The framework provides most
commonly used protocols, and also allows to create a custom initializer.

from mxnet import init, np, npx
from mxnet.gluon import nn

npx.set_np()

By default, MXNet initializes weight parameters by randomly drawing from a uniform dis-
tribution𝑈 (−0.07, 0.07), clearing bias parameters to zero. MXNet’s initmodule provides
a variety of preset initialization methods.

net = nn.Sequential()
net.add(nn.Dense(8, activation='relu'))
net.add(nn.Dense(1))
net.initialize() # Use the default initialization method

(continues on next page)

https://discuss.d2l.ai/t/56
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(continued from previous page)

X = np.random.uniform(size=(2, 4))
net(X).shape

[22:10:04] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(2, 1)

6.3.1 Built-in Initialization
Let’s begin by calling on built-in initializers. The code below initializes all weight parame-
ters as Gaussian random variables with standard deviation 0.01, while bias parameters are
cleared to zero.

# Here force_reinit ensures that parameters are freshly initialized even if
# they were already initialized previously
net.initialize(init=init.Normal(sigma=0.01), force_reinit=True)
net[0].weight.data()[0]

array([ 0.00354961, -0.00614133, 0.0107317 , 0.01830765])

We can also initialize all the parameters to a given constant value (say, 1).

net.initialize(init=init.Constant(1), force_reinit=True)
net[0].weight.data()[0]

array([1., 1., 1., 1.])

We can also apply different initializers for certain blocks. For example, below we initialize
the first layer with the Xavier initializer and initialize the second layer to a constant value
of 42.

net[0].weight.initialize(init=init.Xavier(), force_reinit=True)
net[1].initialize(init=init.Constant(42), force_reinit=True)
print(net[0].weight.data()[0])
print(net[1].weight.data())

[-0.26102373 0.15249556 -0.19274211 -0.24742058]
[[42. 42. 42. 42. 42. 42. 42. 42.]]
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Custom Initialization
Sometimes, the initialization methods we need are not provided by the deep learning frame-
work. In the example below, we define an initializer for any weight parameter 𝑤 using the
following strange distribution:

𝑤 ∼

𝑈 (5, 10) with probability 1

4

0 with probability 1
2

𝑈 (−10,−5) with probability 1
4

(6.3.1)

Here we define a subclass of the Initializer class. Usually, we only need to implement
the _init_weight function which takes a tensor argument (data) and assigns to it the
desired initialized values.

class MyInit(init.Initializer):
def _init_weight(self, name, data):

print('Init', name, data.shape)
data[:] = np.random.uniform(-10, 10, data.shape)
data *= np.abs(data) >= 5

net.initialize(MyInit(), force_reinit=True)
net[0].weight.data()[:2]

Init dense0_weight (8, 4)
Init dense1_weight (1, 8)

array([[-6.0683527, 8.991421 , -0. , 0. ],
[ 6.4198647, -9.728567 , -8.057975 , 0. ]])

Note that we always have the option of setting parameters directly.

net[0].weight.data()[:] += 1
net[0].weight.data()[0, 0] = 42
net[0].weight.data()[0]

array([42. , 9.991421, 1. , 1. ])

6.3.2 Summary
We can initialize parameters using built-in and custom initializers.

6.3.3 Exercises
Look up the online documentation for more built-in initializers.

Discussions112 .

https://discuss.d2l.ai/t/8089
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6.4 Lazy Initialization

So far, it might seem that we got away with being sloppy in setting up our networks. Specif-
ically, we did the following unintuitive things, which might not seem like they should
work:

• We defined the network architectures without specifying the input dimensionality.

• We added layers without specifying the output dimension of the previous layer.

• We even “initialized” these parameters before providing enough information to deter-
mine how many parameters our models should contain.

You might be surprised that our code runs at all. After all, there is no way the deep learning
framework could tell what the input dimensionality of a network would be. The trick here
is that the framework defers initialization, waiting until the first time we pass data through
the model, to infer the sizes of each layer on the fly.

Later on, when working with convolutional neural networks, this technique will become
even more convenient since the input dimensionality (e.g., the resolution of an image) will
affect the dimensionality of each subsequent layer. Hence the ability to set parameters
without the need to know, at the time of writing the code, the value of the dimension can
greatly simplify the task of specifying and subsequently modifying our models. Next, we
go deeper into the mechanics of initialization.

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

To begin, let’s instantiate an MLP.

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))

At this point, the network cannot possibly know the dimensions of the input layer’s weights
because the input dimension remains unknown.

Consequently the framework has not yet initialized any parameters. We confirm by at-
tempting to access the parameters below.

print(net.collect_params)
print(net.collect_params())
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<bound method Block.collect_params of Sequential(
(0): Dense(-1 -> 256, Activation(relu))
(1): Dense(-1 -> 10, linear)

)>
sequential0_ (

Parameter dense0_weight (shape=(256, -1), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)
Parameter dense1_weight (shape=(10, -1), dtype=float32)
Parameter dense1_bias (shape=(10,), dtype=float32)

)

Note that while the parameter objects exist, the input dimension to each layer is listed as
-1. MXNet uses the special value -1 to indicate that the parameter dimension remains un-
known. At this point, attempts to access net[0].weight.data() would trigger a runtime
error stating that the network must be initialized before the parameters can be accessed.
Now let’s see what happens when we attempt to initialize parameters via the initialize
method.

net.initialize()
net.collect_params()

[22:11:11] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

sequential0_ (
Parameter dense0_weight (shape=(256, -1), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)
Parameter dense1_weight (shape=(10, -1), dtype=float32)
Parameter dense1_bias (shape=(10,), dtype=float32)

)

Aswe can see, nothing has changed. When input dimensions are unknown, calls to initialize
do not truly initialize the parameters. Instead, this call registers toMXNet that wewish (and
optionally, according to which distribution) to initialize the parameters.

Next let’s pass data through the network to make the framework finally initialize parame-
ters.

X = np.random.uniform(size=(2, 20))
net(X)

net.collect_params()

sequential0_ (
Parameter dense0_weight (shape=(256, 20), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)
Parameter dense1_weight (shape=(10, 256), dtype=float32)

(continues on next page)
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(continued from previous page)

Parameter dense1_bias (shape=(10,), dtype=float32)
)

As soon as we know the input dimensionality, 20, the framework can identify the shape of
the first layer’s weight matrix by plugging in the value of 20. Having recognized the first
layer’s shape, the framework proceeds to the second layer, and so on through the computa-
tional graph until all shapes are known. Note that in this case, only the first layer requires
lazy initialization, but the framework initializes sequentially. Once all parameter shapes
are known, the framework can finally initialize the parameters.

6.4.1 Summary
Lazy initialization can be convenient, allowing the framework to infer parameter shapes
automatically, making it easy to modify architectures and eliminating one common source
of errors. We can pass data through the model to make the framework finally initialize
parameters.

6.4.2 Exercises
1. What happens if you specify the input dimensions to the first layer but not to subsequent

layers? Do you get immediate initialization?

2. What happens if you specify mismatching dimensions?

3. What would you need to do if you have input of varying dimensionality? Hint: look at
the parameter tying.

Discussions113 .

6.5 Custom Layers

One factor behind deep learning’s success is the availability of a wide range of layers that
can be composed in creative ways to design architectures suitable for a wide variety of
tasks. For instance, researchers have invented layers specifically for handling images, text,
looping over sequential data, and performing dynamic programming. Sooner or later, you
will need a layer that does not exist yet in the deep learning framework. In these cases, you
must build a custom layer. In this section, we show you how.

from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

https://discuss.d2l.ai/t/280
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6.5.1 Layers without Parameters
To start, we construct a custom layer that does not have any parameters of its own. This
should look familiar if you recall our introduction to modules in Section 6.1. The following
CenteredLayer class simply subtracts the mean from its input. To build it, we simply need
to inherit from the base layer class and implement the forward propagation function.

class CenteredLayer(nn.Block):
def __init__(self, **kwargs):

super().__init__(**kwargs)

def forward(self, X):
return X - X.mean()

Let’s verify that our layer works as intended by feeding some data through it.

layer = CenteredLayer()
layer(np.array([1.0, 2, 3, 4, 5]))

[21:49:18] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([-2., -1., 0., 1., 2.])

We can now incorporate our layer as a component in constructing more complex mod-
els.

net = nn.Sequential()
net.add(nn.Dense(128), CenteredLayer())
net.initialize()

As an extra sanity check, we can send random data through the network and check that the
mean is in fact 0. Because we are dealing with floating point numbers, we may still see a
very small nonzero number due to quantization.

Y = net(np.random.rand(4, 8))
Y.mean()

array(3.783498e-10)

6.5.2 Layers with Parameters
Now that we know how to define simple layers, let’s move on to defining layers with pa-
rameters that can be adjusted through training. We can use built-in functions to create
parameters, which provide some basic housekeeping functionality. In particular, they gov-
ern access, initialization, sharing, saving, and loading model parameters. This way, among
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other benefits, we will not need to write custom serialization routines for every custom
layer.

Now let’s implement our own version of the fully connected layer. Recall that this layer
requires two parameters, one to represent the weight and the other for the bias. In this im-
plementation, we bake in the ReLU activation as a default. This layer requires two input
arguments: in_units and units, which denote the number of inputs and outputs, respec-
tively.

class MyDense(nn.Block):
def __init__(self, units, in_units, **kwargs):

super().__init__(**kwargs)
self.weight = self.params.get('weight', shape=(in_units, units))
self.bias = self.params.get('bias', shape=(units,))

def forward(self, x):
linear = np.dot(x, self.weight.data(ctx=x.ctx)) + self.bias.data(

ctx=x.ctx)
return npx.relu(linear)

Next, we instantiate the MyDense class and access its model parameters.

dense = MyDense(units=3, in_units=5)
dense.params

mydense0_ (
Parameter mydense0_weight (shape=(5, 3), dtype=<class 'numpy.float32'>)
Parameter mydense0_bias (shape=(3,), dtype=<class 'numpy.float32'>)

)

We can directly carry out forward propagation calculations using custom layers.

dense.initialize()
dense(np.random.uniform(size=(2, 5)))

array([[0. , 0.01633355, 0. ],
[0. , 0.01581812, 0. ]])

We can also construct models using custom layers. Once we have that we can use it just
like the built-in fully connected layer.

net = nn.Sequential()
net.add(MyDense(8, in_units=64),

MyDense(1, in_units=8))
net.initialize()
net(np.random.uniform(size=(2, 64)))
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array([[0.06508517],
[0.0615553 ]])

6.5.3 Summary
We can design custom layers via the basic layer class. This allows us to define flexible
new layers that behave differently from any existing layers in the library. Once defined,
custom layers can be invoked in arbitrary contexts and architectures. Layers can have local
parameters, which can be created through built-in functions.

6.5.4 Exercises
1. Design a layer that takes an input and computes a tensor reduction, i.e., it returns 𝑦𝑘 =∑

𝑖, 𝑗𝑊𝑖 𝑗𝑘𝑥𝑖𝑥 𝑗 .

2. Design a layer that returns the leading half of the Fourier coefficients of the data.

Discussions114 .

6.6 File I/O

So far we have discussed how to process data and how to build, train, and test deep learn-
ing models. However, at some point we will hopefully be happy enough with the learned
models that we will want to save the results for later use in various contexts (perhaps even
to make predictions in deployment). Additionally, when running a long training process,
the best practice is to periodically save intermediate results (checkpointing) to ensure that
we do not lose several days’ worth of computation if we trip over the power cord of our
server. Thus it is time to learn how to load and store both individual weight vectors and
entire models. This section addresses both issues.

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

6.6.1 Loading and Saving Tensors
For individual tensors, we can directly invoke the load and save functions to read and
write them respectively. Both functions require that we supply a name, and save requires
as input the variable to be saved.

x = np.arange(4)
npx.save('x-file', x)

https://discuss.d2l.ai/t/58
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[21:49:50] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

We can now read the data from the stored file back into memory.

x2 = npx.load('x-file')
x2

[array([0., 1., 2., 3.])]

We can store a list of tensors and read them back into memory.

y = np.zeros(4)
npx.save('x-files', [x, y])
x2, y2 = npx.load('x-files')
(x2, y2)

(array([0., 1., 2., 3.]), array([0., 0., 0., 0.]))

We can even write and read a dictionary that maps from strings to tensors. This is conve-
nient when we want to read or write all the weights in a model.

mydict = {'x': x, 'y': y}
npx.save('mydict', mydict)
mydict2 = npx.load('mydict')
mydict2

{'x': array([0., 1., 2., 3.]), 'y': array([0., 0., 0., 0.])}

6.6.2 Loading and Saving Model Parameters
Saving individual weight vectors (or other tensors) is useful, but it gets very tedious if we
want to save (and later load) an entire model. After all, we might have hundreds of param-
eter groups sprinkled throughout. For this reason the deep learning framework provides
built-in functionalities to load and save entire networks. An important detail to note is that
this saves model parameters and not the entire model. For example, if we have a 3-layer
MLP, we need to specify the architecture separately. The reason for this is that the models
themselves can contain arbitrary code, hence they cannot be serialized as naturally. Thus,
in order to reinstate a model, we need to generate the architecture in code and then load the
parameters from disk. Let’s start with our familiar MLP.

class MLP(nn.Block):
def __init__(self, **kwargs):

super(MLP, self).__init__(**kwargs)

(continues on next page)
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(continued from previous page)

self.hidden = nn.Dense(256, activation='relu')
self.output = nn.Dense(10)

def forward(self, x):
return self.output(self.hidden(x))

net = MLP()
net.initialize()
X = np.random.uniform(size=(2, 20))
Y = net(X)

Next, we store the parameters of the model as a file with the name “mlp.params”.

net.save_parameters('mlp.params')

To recover the model, we instantiate a clone of the original MLP model. Instead of ran-
domly initializing themodel parameters, we read the parameters stored in the file directly.

clone = MLP()
clone.load_parameters('mlp.params')

Since both instances have the same model parameters, the computational result of the same
input X should be the same. Let’s verify this.

Y_clone = clone(X)
Y_clone == Y

array([[ True, True, True, True, True, True, True, True, True,
True],

[ True, True, True, True, True, True, True, True, True,
True]])

6.6.3 Summary
The save and load functions can be used to perform file I/O for tensor objects. We can
save and load the entire sets of parameters for a network via a parameter dictionary. Saving
the architecture has to be done in code rather than in parameters.

6.6.4 Exercises
1. Even if there is no need to deploy trained models to a different device, what are the

practical benefits of storing model parameters?

2. Assume that we want to reuse only parts of a network to be incorporated into a network
having a different architecture. How would you go about using, say the first two layers
from a previous network in a new network?
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3. How would you go about saving the network architecture and parameters? What restric-
tions would you impose on the architecture?

Discussions115 .

6.7 GPUs

In tab_intro_decade, we illustrated the rapid growth of computation over the past two
decades. In a nutshell, GPU performance has increased by a factor of 1000 every decade
since 2000. This offers great opportunities but it also suggests that there was significant
demand for such performance.

In this section, we begin to discuss how to harness this computational performance for your
research. First by using a single GPU and at a later point, how to use multiple GPUs and
multiple servers (with multiple GPUs).

Specifically, we will discuss how to use a single NVIDIA GPU for calculations. First,
make sure you have at least one NVIDIA GPU installed. Then, download the NVIDIA
driver and CUDA116 and follow the prompts to set the appropriate path. Once these prepa-
rations are complete, the nvidia-smi command can be used to view the graphics card
information.

You might have noticed that a MXNet tensor looks almost identical to a NumPy ndarray.
But there are a few crucial differences. One of the key features that distinguishes MXNet
from NumPy is its support for diverse hardware devices.

In MXNet, every array has a context. So far, by default, all variables and associated com-
putation have been assigned to the CPU. Typically, other contexts might be various GPUs.
Things can get even hairier when we deploy jobs across multiple servers. By assigning
arrays to contexts intelligently, we can minimize the time spent transferring data between
devices. For example, when training neural networks on a server with a GPU, we typically
prefer for the model’s parameters to live on the GPU.

Next, we need to confirm that the GPU version of MXNet is installed. If a CPU version of
MXNet is already installed, we need to uninstall it first. For example, use the pip unin-

stall mxnet command, then install the corresponding MXNet version according to your
CUDA version. Assuming you have CUDA 10.0 installed, you can install the MXNet ver-
sion that supports CUDA 10.0 via pip install mxnet-cu100.

To run the programs in this section, you need at least two GPUs. Note that this might
be extravagant for most desktop computers but it is easily available in the cloud, e.g., by
using the AWS EC2multi-GPU instances. Almost all other sections do not require multiple
GPUs, but here we simply wish to illustrate data flow between different devices.

https://discuss.d2l.ai/t/60
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
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from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

6.7.1 Computing Devices
We can specify devices, such as CPUs and GPUs, for storage and calculation. By default,
tensors are created in the main memory and then the CPU is used for calculations.

In MXNet, the CPU and GPU can be indicated by cpu() and gpu(). It should be noted that
cpu() (or any integer in the parentheses) means all physical CPUs andmemory. This means
that MXNet’s calculations will try to use all CPU cores. However, gpu() only represents
one card and the corresponding memory. If there are multiple GPUs, we use gpu(i) to
represent the 𝑖th GPU (𝑖 starts from 0). Also, gpu(0) and gpu() are equivalent.

def cpu(): #@save
"""Get the CPU device."""
return npx.cpu()

def gpu(i=0): #@save
"""Get a GPU device."""
return npx.gpu(i)

cpu(), gpu(), gpu(1)

(cpu(0), gpu(0), gpu(1))

We can query the number of available GPUs.

def num_gpus(): #@save
"""Get the number of available GPUs."""
return npx.num_gpus()

num_gpus()

2

Now we define two convenient functions that allow us to run code even if the requested
GPUs do not exist.

def try_gpu(i=0): #@save
"""Return gpu(i) if exists, otherwise return cpu()."""
if num_gpus() >= i + 1:

return gpu(i)
return cpu()

def try_all_gpus(): #@save
"""Return all available GPUs, or [cpu(),] if no GPU exists."""

(continues on next page)
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return [gpu(i) for i in range(num_gpus())]

try_gpu(), try_gpu(10), try_all_gpus()

(gpu(0), cpu(0), [gpu(0), gpu(1)])

6.7.2 Tensors and GPUs
By default, tensors are created on the CPU. We can query the device where the tensor is
located.

x = np.array([1, 2, 3])
x.ctx

[22:01:52] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

cpu(0)

It is important to note that whenever we want to operate on multiple terms, they need to be
on the same device. For instance, if we sum two tensors, we need to make sure that both
arguments live on the same device—otherwise the framework would not know where to
store the result or even how to decide where to perform the computation.

Storage on the GPU
There are several ways to store a tensor on the GPU. For example, we can specify a stor-
age device when creating a tensor. Next, we create the tensor variable X on the first gpu.
The tensor created on a GPU only consumes the memory of this GPU. We can use the
nvidia-smi command to view GPU memory usage. In general, we need to make sure that
we do not create data that exceeds the GPU memory limit.

X = np.ones((2, 3), ctx=try_gpu())
X

[22:01:53] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

array([[1., 1., 1.],
[1., 1., 1.]], ctx=gpu(0))

Assuming that you have at least two GPUs, the following code will create a random tensor,
Y, on the second GPU.
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Y = np.random.uniform(size=(2, 3), ctx=try_gpu(1))
Y

[22:01:54] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

array([[0.67478997, 0.07540122, 0.9956977 ],
[0.09488854, 0.415456 , 0.11231736]], ctx=gpu(1))

Copying
If we want to compute X + Y, we need to decide where to perform this operation. For
instance, as shown in Fig. 6.7.1, we can transfer X to the second GPU and perform the
operation there. Do not simply add X and Y, since this will result in an exception. The
runtime engine would not know what to do: it cannot find data on the same device and it
fails. Since Y lives on the second GPU, we need to move X there before we can add the
two.

tFig. 6.7.1 Copy data to perform an operation on the same device.

Z = X.copyto(try_gpu(1))
print(X)
print(Z)

[[1. 1. 1.]
[1. 1. 1.]] @gpu(0)
[[1. 1. 1.]
[1. 1. 1.]] @gpu(1)

Now that the data (both Z and Y) are on the same GPU), we can add them up.

Y + Z

array([[1.6747899, 1.0754012, 1.9956977],
[1.0948886, 1.415456 , 1.1123173]], ctx=gpu(1))

Imagine that your variable Z already lives on your second GPU. What happens if we still
call Z.copyto(gpu(1))? It will make a copy and allocate new memory, even though that
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variable already lives on the desired device. There are times where, depending on the
environment our code is running in, two variables may already live on the same device.
So we want to make a copy only if the variables currently live in different devices. In
these cases, we can call as_in_ctx. If the variable already live in the specified device then
this is a no-op. Unless you specifically want to make a copy, as_in_ctx is the method of
choice.

Z.as_in_ctx(try_gpu(1)) is Z

True

Side Notes
People use GPUs to do machine learning because they expect them to be fast. But trans-
ferring variables between devices is slow: much slower than computation. So we want you
to be 100% certain that you want to do something slow before we let you do it. If the deep
learning framework just did the copy automatically without crashing then you might not
realize that you had written some slow code.

Transferring data is not only slow, it also makes parallelization a lot more difficult, since
we have to wait for data to be sent (or rather to be received) before we can proceed with
more operations. This is why copy operations should be taken with great care. As a rule of
thumb, many small operations are much worse than one big operation. Moreover, several
operations at a time are much better than many single operations interspersed in the code
unless you know what you are doing. This is the case since such operations can block if
one device has to wait for the other before it can do something else. It is a bit like ordering
your coffee in a queue rather than pre-ordering it by phone and finding out that it is ready
when you are.

Last, when we print tensors or convert tensors to the NumPy format, if the data is not in the
main memory, the framework will copy it to the main memory first, resulting in additional
transmission overhead. Even worse, it is now subject to the dreaded global interpreter lock
that makes everything wait for Python to complete.

6.7.3 Neural Networks and GPUs
Similarly, a neural network model can specify devices. The following code puts the model
parameters on the GPU.

net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(ctx=try_gpu())

We will see many more examples of how to run models on GPUs in the following chapters,
simply because the models will become somewhat more computationally intensive.
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For example, when the input is a tensor on the GPU, the model will calculate the result on
the same GPU.

net(X)

array([[0.04995865],
[0.04995865]], ctx=gpu(0))

Let’s confirm that the model parameters are stored on the same GPU.

net[0].weight.data().ctx

gpu(0)

Let the trainer support GPU.

@d2l.add_to_class(d2l.Module) #@save
def set_scratch_params_device(self, device):

for attr in dir(self):
a = getattr(self, attr)
if isinstance(a, np.ndarray):

with autograd.record():
setattr(self, attr, a.as_in_ctx(device))

getattr(self, attr).attach_grad()
if isinstance(a, d2l.Module):

a.set_scratch_params_device(device)
if isinstance(a, list):

for elem in a:
elem.set_scratch_params_device(device)

@d2l.add_to_class(d2l.Trainer) #@save
def __init__(self, max_epochs, num_gpus=0, gradient_clip_val=0):

self.save_hyperparameters()
self.gpus = [d2l.gpu(i) for i in range(min(num_gpus, d2l.num_gpus()))]

@d2l.add_to_class(d2l.Trainer) #@save
def prepare_batch(self, batch):

if self.gpus:
batch = [a.as_in_context(self.gpus[0]) for a in batch]

return batch

@d2l.add_to_class(d2l.Trainer) #@save
def prepare_model(self, model):

model.trainer = self
model.board.xlim = [0, self.max_epochs]
if self.gpus:

model.collect_params().reset_ctx(self.gpus[0])
model.set_scratch_params_device(self.gpus[0])

self.model = model



235 GPUs

117

In short, as long as all data and parameters are on the same device, we can learn models
efficiently. In the following chapters we will see several such examples.

6.7.4 Summary
We can specify devices for storage and calculation, such as the CPU or GPU. By default,
data is created in the main memory and then uses the CPU for calculations. The deep
learning framework requires all input data for calculation to be on the same device, be it
CPU or the same GPU. You can lose significant performance by moving data without care.
A typical mistake is as follows: computing the loss for every minibatch on the GPU and
reporting it back to the user on the command line (or logging it in a NumPy ndarray) will
trigger a global interpreter lock which stalls all GPUs. It is much better to allocate memory
for logging inside the GPU and only move larger logs.

6.7.5 Exercises
1. Try a larger computation task, such as the multiplication of large matrices, and see the

difference in speed between the CPU and GPU. What about a task with a small number
of calculations?

2. How should we read and write model parameters on the GPU?

3. Measure the time it takes to compute 1000 matrix–matrix multiplications of 100 × 100
matrices and log the Frobenius norm of the output matrix one result at a time. Compare
it with keeping a log on the GPU and transferring only the final result.

4. Measure how much time it takes to perform two matrix–matrix multiplications on two
GPUs at the same time. Compare it with computing in in sequence on one GPU. Hint:
you should see almost linear scaling.

Discussions117 .
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Image data is represented as a two-dimensional grid of pixels, be the image monochro-
matic or in color. Accordingly each pixel corresponds to one or multiple numerical values
respectively. So far we have ignored this rich structure and treated images as vectors of
numbers by flattening them, irrespective of the spatial relation between pixels. This deeply
unsatisfying approach was necessary in order to feed the resulting one-dimensional vectors
through a fully connected MLP.

Because these networks are invariant to the order of the features, we could get similar
results regardless of whether we preserve an order corresponding to the spatial structure
of the pixels or if we permute the columns of our design matrix before fitting the MLP’s
parameters. Ideally, we would leverage our prior knowledge that nearby pixels are typically
related to each other, to build efficient models for learning from image data.

This chapter introduces convolutional neural networks (CNNs) (LeCun et al., 1995), a
powerful family of neural networks that are designed for precisely this purpose. CNN-
based architectures are now ubiquitous in the field of computer vision. For instance, on the
Imagnet collection (Deng et al., 2009) it was only the use of convolutional neural networks,
in short Convnets, that provided significant performance improvements (Krizhevsky et al.,
2012).

Modern CNNs, as they are called colloquially, owe their design to inspirations from biol-
ogy, group theory, and a healthy dose of experimental tinkering. In addition to their sample
efficiency in achieving accurate models, CNNs tend to be computationally efficient, both
because they require fewer parameters than fully connected architectures and because con-
volutions are easy to parallelize across GPU cores (Chetlur et al., 2014). Consequently,
practitioners often apply CNNs whenever possible, and increasingly they have emerged
as credible competitors even on tasks with a one-dimensional sequence structure, such as
audio (Abdel-Hamid et al., 2014), text (Kalchbrenner et al., 2014), and time series analy-
sis (LeCun et al., 1995), where recurrent neural networks are conventionally used. Some
clever adaptations of CNNs have also brought them to bear on graph-structured data (Kipf
and Welling, 2016) and in recommender systems.

First, we will dive more deeply into the motivation for convolutional neural networks. This
is followed by a walk through the basic operations that comprise the backbone of all con-
volutional networks. These include the convolutional layers themselves, nitty-gritty details
including padding and stride, the pooling layers used to aggregate information across ad-
jacent spatial regions, the use of multiple channels at each layer, and a careful discussion

236
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of the structure of modern architectures. We will conclude the chapter with a full working
example of LeNet, the first convolutional network successfully deployed, long before the
rise of modern deep learning. In the next chapter, we will dive into full implementations of
some popular and comparatively recent CNN architectures whose designs represent most
of the techniques commonly used by modern practitioners.

7.1 From Fully Connected Layers to Convolutions

To this day, the models that we have discussed so far remain appropriate options when we
are dealing with tabular data. By tabular, we mean that the data consist of rows corre-
sponding to examples and columns corresponding to features. With tabular data, we might
anticipate that the patterns we seek could involve interactions among the features, but we
do not assume any structure a priori concerning how the features interact.

Sometimes, we truly lack the knowledge to be able to guide the construction of fancier
architectures. In these cases, an MLP may be the best that we can do. However, for high-
dimensional perceptual data, such structureless networks can grow unwieldy.

For instance, let’s return to our running example of distinguishing cats from dogs. Say that
we do a thorough job in data collection, collecting an annotated dataset of one-megapixel
photographs. This means that each input to the network has one million dimensions. Even
an aggressive reduction to one thousand hidden dimensions would require a fully connected
layer characterized by 106×103 = 109 parameters. Unless we have lots of GPUs, a talent for
distributed optimization, and an extraordinary amount of patience, learning the parameters
of this network may turn out to be infeasible.

A careful reader might object to this argument on the basis that one megapixel resolution
may not be necessary. However, while we might be able to get away with one hundred
thousand pixels, our hidden layer of size 1000 grossly underestimates the number of hid-
den units that it takes to learn good representations of images, so a practical system will
still require billions of parameters. Moreover, learning a classifier by fitting so many pa-
rameters might require collecting an enormous dataset. And yet today both humans and
computers are able to distinguish cats from dogs quite well, seemingly contradicting these
intuitions. That is because images exhibit rich structure that can be exploited by humans
and machine learning models alike. Convolutional neural networks (CNNs) are one cre-
ative way that machine learning has embraced for exploiting some of the known structure
in natural images.

7.1.1 Invariance
Imagine that we want to detect an object in an image. It seems reasonable that whatever
methodwe use to recognize objects should not be overly concernedwith the precise location
of the object in the image. Ideally, our system should exploit this knowledge. Pigs usually
do not fly and planes usually do not swim. Nonetheless, we should still recognize a pig
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were one to appear at the top of the image. We can draw some inspiration here from the
children’s game “Where’s Waldo” (which itself has inspired many real-life imitations, such
as that depicted in Fig. 7.1.1). The game consists of a number of chaotic scenes bursting
with activities. Waldo shows up somewhere in each, typically lurking in some unlikely
location. The reader’s goal is to locate him. Despite his characteristic outfit, this can be
surprisingly difficult, due to the large number of distractions. However, what Waldo looks
like does not depend uponwhereWaldo is located. We could sweep the image with aWaldo
detector that could assign a score to each patch, indicating the likelihood that the patch
contains Waldo. In fact, many object detection and segmentation algorithms are based
on this approach (Long et al., 2015). CNNs systematize this idea of spatial invariance,
exploiting it to learn useful representations with fewer parameters.

tFig. 7.1.1 Can you find Waldo (image courtesy of William Murphy (Infomatique))?

We can now make these intuitions more concrete by enumerating a few desiderata to guide
our design of a neural network architecture suitable for computer vision:

1. In the earliest layers, our network should respond similarly to the same patch, regardless
of where it appears in the image. This principle is called translation invariance (or
translation equivariance).

2. The earliest layers of the network should focus on local regions, without regard for the
contents of the image in distant regions. This is the locality principle. Eventually, these
local representations can be aggregated to make predictions at the whole image level.

3. As we proceed, deeper layers should be able to capture longer-range features of the
image, in a way similar to higher level vision in nature.

Let’s see how this translates into mathematics.

7.1.2 Constraining the MLP
To start off, we can consider anMLPwith two-dimensional imagesX as inputs and their im-
mediate hidden representationsH similarly represented asmatrices (they are two-dimensional
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tensors in code), where both X and H have the same shape. Let that sink in. We now
imagine that not only the inputs but also the hidden representations possess spatial struc-
ture.

Let [X]𝑖, 𝑗 and [H]𝑖, 𝑗 denote the pixel at location (𝑖, 𝑗) in the input image and hidden rep-
resentation, respectively. Consequently, to have each of the hidden units receive input from
each of the input pixels, we would switch from using weight matrices (as we did previously
in MLPs) to representing our parameters as fourth-order weight tensors W. Suppose that
U contains biases, we could formally express the fully connected layer as

[H]𝑖, 𝑗 = [U]𝑖, 𝑗 +
∑
𝑘

∑
𝑙

[W]𝑖, 𝑗 ,𝑘,𝑙 [X]𝑘,𝑙

= [U]𝑖, 𝑗 +
∑
𝑎

∑
𝑏

[V]𝑖, 𝑗 ,𝑎,𝑏 [X]𝑖+𝑎, 𝑗+𝑏 .
(7.1.1)

The switch fromW to V is entirely cosmetic for now since there is a one-to-one correspon-
dence between coefficients in both fourth-order tensors. We simply re-index the subscripts
(𝑘, 𝑙) such that 𝑘 = 𝑖 + 𝑎 and 𝑙 = 𝑗 + 𝑏. In other words, we set [V]𝑖, 𝑗 ,𝑎,𝑏 = [W]𝑖, 𝑗 ,𝑖+𝑎, 𝑗+𝑏.
The indices 𝑎 and 𝑏 run over both positive and negative offsets, covering the entire image.
For any given location (𝑖, 𝑗) in the hidden representation [H]𝑖, 𝑗 , we compute its value by
summing over pixels in 𝑥, centered around (𝑖, 𝑗) and weighted by [V]𝑖, 𝑗 ,𝑎,𝑏. Before we
carry on, let’s consider the total number of parameters required for a single layer in this
parametrization: a 1000 × 1000 image (1 megapixel) is mapped to a 1000 × 1000 hidden
representation. This requires 1012 parameters, far beyond what computers currently can
handle.

Translation Invariance
Now let’s invoke the first principle established above: translation invariance (Zhang et al.,
1988). This implies that a shift in the input X should simply lead to a shift in the hidden
representation H. This is only possible if V and U do not actually depend on (𝑖, 𝑗). As
such, we have [V]𝑖, 𝑗 ,𝑎,𝑏 = [V]𝑎,𝑏 and U is a constant, say 𝑢. As a result, we can simplify
the definition for H:

[H]𝑖, 𝑗 = 𝑢 +
∑
𝑎

∑
𝑏

[V]𝑎,𝑏 [X]𝑖+𝑎, 𝑗+𝑏 . (7.1.2)

This is a convolution! We are effectively weighting pixels at (𝑖 + 𝑎, 𝑗 + 𝑏) in the vicinity of
location (𝑖, 𝑗) with coefficients [V]𝑎,𝑏 to obtain the value [H]𝑖, 𝑗 . Note that [V]𝑎,𝑏 needs
many fewer coefficients than [V]𝑖, 𝑗 ,𝑎,𝑏 since it no longer depends on the location within
the image. Consequently, the number of parameters required is no longer 1012 but a much
more reasonable 4 × 106: we still have the dependency on 𝑎, 𝑏 ∈ (−1000, 1000). In short,
we have made significant progress. Time-delay neural networks (TDNNs) are some of the
first examples to exploit this idea (Waibel et al., 1989).

Locality
Now let’s invoke the second principle: locality. As motivated above, we believe that we
should not have to look very far away from location (𝑖, 𝑗) in order to glean relevant infor-
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mation to assess what is going on at [H]𝑖, 𝑗 . This means that outside some range |𝑎 | > Δ
or |𝑏 | > Δ, we should set [V]𝑎,𝑏 = 0. Equivalently, we can rewrite [H]𝑖, 𝑗 as

[H]𝑖, 𝑗 = 𝑢 +
Δ∑

𝑎=−Δ

Δ∑
𝑏=−Δ
[V]𝑎,𝑏 [X]𝑖+𝑎, 𝑗+𝑏 . (7.1.3)

This reduces the number of parameters from 4×106 to 4Δ2, whereΔ is typically smaller than
10. As such, we reduced the number of parameters by another four orders of magnitude.
Note that (7.1.3), is what is called, in a nutshell, a convolutional layer. Convolutional
neural networks (CNNs) are a special family of neural networks that contain convolutional
layers. In the deep learning research community, V is referred to as a convolution kernel,
a filter, or simply the layer’s weights that are learnable parameters.

While previously, we might have required billions of parameters to represent just a single
layer in an image-processing network, we now typically need just a few hundred, without
altering the dimensionality of either the inputs or the hidden representations. The price
paid for this drastic reduction in parameters is that our features are now translation invariant
and that our layer can only incorporate local information, when determining the value of
each hidden activation. All learning depends on imposing inductive bias. When that bias
agrees with reality, we get sample-efficient models that generalize well to unseen data. But
of course, if those biases do not agree with reality, e.g., if images turned out not to be
translation invariant, our models might struggle even to fit our training data.

This dramatic reduction in parameters brings us to our last desideratum, namely that deeper
layers should represent larger and more complex aspects of an image. This can be achieved
by interleaving nonlinearities and convolutional layers repeatedly.

7.1.3 Convolutions
Let’s briefly review why (7.1.3) is called a convolution. In mathematics, the convolution
between two functions (Rudin, 1973), say 𝑓 , 𝑔 : R𝑑 → R is defined as

( 𝑓 ∗ 𝑔) (x) =
∫

𝑓 (z)𝑔(x − z)𝑑z. (7.1.4)

That is, we measure the overlap between 𝑓 and 𝑔 when one function is “flipped” and shifted
by x. Whenever we have discrete objects, the integral turns into a sum. For instance, for
vectors from the set of square-summable infinite-dimensional vectors with index running
over Z we obtain the following definition:

( 𝑓 ∗ 𝑔)(𝑖) =
∑
𝑎

𝑓 (𝑎)𝑔(𝑖 − 𝑎). (7.1.5)

For two-dimensional tensors, we have a corresponding sum with indices (𝑎, 𝑏) for 𝑓 and
(𝑖 − 𝑎, 𝑗 − 𝑏) for 𝑔, respectively:

( 𝑓 ∗ 𝑔)(𝑖, 𝑗) =
∑
𝑎

∑
𝑏

𝑓 (𝑎, 𝑏)𝑔(𝑖 − 𝑎, 𝑗 − 𝑏). (7.1.6)

This looks similar to (7.1.3), with one major difference. Rather than using (𝑖 + 𝑎, 𝑗 + 𝑏),
we are using the difference instead. Note, though, that this distinction is mostly cosmetic
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since we can alwaysmatch the notation between (7.1.3) and (7.1.6). Our original definition
in (7.1.3) more properly describes a cross-correlation. We will come back to this in the
following section.

7.1.4 Channels
Returning to ourWaldo detector, let’s seewhat this looks like. The convolutional layer picks
windows of a given size and weighs intensities according to the filter V, as demonstrated
in Fig. 7.1.2. We might aim to learn a model so that wherever the “waldoness” is highest,
we should find a peak in the hidden layer representations.

tFig. 7.1.2 Detect Waldo (image courtesy of William Murphy (Infomatique)).

There is just one problem with this approach. So far, we blissfully ignored that images
consist of three channels: red, green, and blue. In sum, images are not two-dimensional
objects but rather third-order tensors, characterized by a height, width, and channel, e.g.,
with shape 1024×1024×3 pixels. While the first two of these axes concern spatial relation-
ships, the third can be regarded as assigning amultidimensional representation to each pixel
location. We thus index X as [X]𝑖, 𝑗 ,𝑘 . The convolutional filter has to adapt accordingly.
Instead of [V]𝑎,𝑏, we now have [V]𝑎,𝑏,𝑐.

Moreover, just as our input consists of a third-order tensor, it turns out to be a good idea
to similarly formulate our hidden representations as third-order tensors H. In other words,
rather than just having a single hidden representation corresponding to each spatial location,
we want an entire vector of hidden representations corresponding to each spatial location.
We could think of the hidden representations as comprising a number of two-dimensional
grids stacked on top of each other. As in the inputs, these are sometimes called channels.
They are also sometimes called feature maps, as each provides a spatialized set of learned
features for the subsequent layer. Intuitively, you might imagine that at lower layers that are
closer to inputs, some channels could become specialized to recognize edges while others
could recognize textures.

To support multiple channels in both inputs (X) and hidden representations (H), we can add
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a fourth coordinate to V: [V]𝑎,𝑏,𝑐,𝑑 . Putting everything together we have:

[H]𝑖, 𝑗 ,𝑑 =
Δ∑

𝑎=−Δ

Δ∑
𝑏=−Δ

∑
𝑐

[V]𝑎,𝑏,𝑐,𝑑 [X]𝑖+𝑎, 𝑗+𝑏,𝑐, (7.1.7)

where 𝑑 indexes the output channels in the hidden representations H. The subsequent con-
volutional layer will go on to take a third-order tensor,H, as input. We take (7.1.7), because
of its generality, as the definition of a convolutional layer for multiple channels, where V

is a kernel or filter of the layer.

There are still many operations that we need to address. For instance, we need to figure out
how to combine all the hidden representations to a single output, e.g., whether there is a
Waldo anywhere in the image. We also need to decide how to compute things efficiently,
how to combine multiple layers, appropriate activation functions, and how to make reason-
able design choices to yield networks that are effective in practice. We turn to these issues
in the remainder of the chapter.

7.1.5 Summary and Discussion
In this section we derived the structure of convolutional neural networks from first prin-
ciples. While it is unclear whether this was the route taken to the invention of CNNs, it
is satisfying to know that they are the right choice when applying reasonable principles
to how image processing and computer vision algorithms should operate, at least at lower
levels. In particular, translation invariance in images implies that all patches of an image
will be treated in the same manner. Locality means that only a small neighborhood of pix-
els will be used to compute the corresponding hidden representations. Some of the earliest
references to CNNs are in the form of the Neocognitron (Fukushima, 1982).

A second principle that we encountered in our reasoning is how to reduce the number of
parameters in a function class without limiting its expressive power, at least, whenever
certain assumptions on the model hold. We saw a dramatic reduction of complexity as a
result of this restriction, turning computationally and statistically infeasible problems into
tractable models.

Adding channels allowed us to bring back some of the complexity that was lost due to the re-
strictions imposed on the convolutional kernel by locality and translation invariance. Note
that it is quite natural to add channels other than just red, green, and blue. Many satellite
images, in particular for agriculture and meteorology, have tens to hundreds of channels,
generating hyperspectral images instead. They report data on many different wavelengths.
In the following we will see how to use convolutions effectively to manipulate the dimen-
sionality of the images they operate on, how to move from location-based to channel-based
representations, and how to deal with large numbers of categories efficiently.

7.1.6 Exercises
1. Assume that the size of the convolution kernel is Δ = 0. Show that in this case the

convolution kernel implements an MLP independently for each set of channels. This
leads to the Network in Network architectures (Lin et al., 2013).
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2. Audio data is often represented as a one-dimensional sequence.

1. When might you want to impose locality and translation invariance for audio?

2. Derive the convolution operations for audio.

3. Can you treat audio using the same tools as computer vision? Hint: use the spectro-
gram.

3. Why might translation invariance not be a good idea after all? Give an example.

4. Do you think that convolutional layers might also be applicable for text data? Which
problems might you encounter with language?

5. What happens with convolutions when an object is at the boundary of an image?

6. Prove that the convolution is symmetric, i.e., 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 .

Discussions118 .

7.2 Convolutions for Images

Now that we understand how convolutional layers work in theory, we are ready to see how
they work in practice. Building on our motivation of convolutional neural networks as
efficient architectures for exploring structure in image data, we stick with images as our
running example.

from mxnet import autograd, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

7.2.1 The Cross-Correlation Operation
Recall that strictly speaking, convolutional layers are a misnomer, since the operations they
express are more accurately described as cross-correlations. Based on our descriptions of
convolutional layers in Section 7.1, in such a layer, an input tensor and a kernel tensor are
combined to produce an output tensor through a cross-correlation operation.

Let’s ignore channels for now and see how this works with two-dimensional data and hidden
representations. In Fig. 7.2.1, the input is a two-dimensional tensor with a height of 3 and
width of 3. We mark the shape of the tensor as 3 × 3 or (3, 3). The height and width of the
kernel are both 2. The shape of the kernel window (or convolution window) is given by the
height and width of the kernel (here it is 2 × 2).

In the two-dimensional cross-correlation operation, we begin with the convolution window
positioned at the upper-left corner of the input tensor and slide it across the input tensor,

https://discuss.d2l.ai/t/64
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tFig. 7.2.1 Two-dimensional cross-correlation operation. The shaded portions are the first output
element as well as the input and kernel tensor elements used for the output computation:
0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19.

both from left to right and top to bottom. When the convolution window slides to a certain
position, the input subtensor contained in that window and the kernel tensor are multiplied
elementwise and the resulting tensor is summed up yielding a single scalar value. This
result gives the value of the output tensor at the corresponding location. Here, the output
tensor has a height of 2 and width of 2 and the four elements are derived from the two-
dimensional cross-correlation operation:

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

(7.2.1)

Note that along each axis, the output size is slightly smaller than the input size. Because
the kernel has width and height greater than 1, we can only properly compute the cross-
correlation for locations where the kernel fits wholly within the image, the output size is
given by the input size 𝑛h × 𝑛w minus the size of the convolution kernel 𝑘h × 𝑘w via

(𝑛h − 𝑘h + 1) × (𝑛w − 𝑘w + 1). (7.2.2)

This is the case since we need enough space to “shift” the convolution kernel across the
image. Later we will see how to keep the size unchanged by padding the image with zeros
around its boundary so that there is enough space to shift the kernel. Next, we implement
this process in the corr2d function, which accepts an input tensor X and a kernel tensor K
and returns an output tensor Y.

def corr2d(X, K): #@save
"""Compute 2D cross-correlation."""
h, w = K.shape
Y = np.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):

for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + h, j:j + w] * K).sum()

return Y

We can construct the input tensor X and the kernel tensor K from Fig. 7.2.1 to validate
the output of the above implementation of the two-dimensional cross-correlation opera-
tion.
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X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = np.array([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

[22:11:22] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([[19., 25.],
[37., 43.]])

7.2.2 Convolutional Layers
A convolutional layer cross-correlates the input and kernel and adds a scalar bias to produce
an output. The two parameters of a convolutional layer are the kernel and the scalar bias.
When training models based on convolutional layers, we typically initialize the kernels
randomly, just as we would with a fully connected layer.

We are now ready to implement a two-dimensional convolutional layer based on the corr2d
function defined above. In the __init__ constructor method, we declare weight and bias
as the two model parameters. The forward propagation method calls the corr2d function
and adds the bias.

class Conv2D(nn.Block):
def __init__(self, kernel_size, **kwargs):

super().__init__(**kwargs)
self.weight = self.params.get('weight', shape=kernel_size)
self.bias = self.params.get('bias', shape=(1,))

def forward(self, x):
return corr2d(x, self.weight.data()) + self.bias.data()

In ℎ×𝑤 convolution or an ℎ×𝑤 convolution kernel, the height and width of the convolution
kernel are ℎ and 𝑤, respectively. We also refer to a convolutional layer with an ℎ × 𝑤
convolution kernel simply as an ℎ × 𝑤 convolutional layer.

7.2.3 Object Edge Detection in Images
Let’s take a moment to parse a simple application of a convolutional layer: detecting the
edge of an object in an image by finding the location of the pixel change. First, we construct
an “image” of 6 × 8 pixels. The middle four columns are black (0) and the rest are white
(1).

X = np.ones((6, 8))
X[:, 2:6] = 0
X



246 Convolutional Neural Networks

array([[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.]])

Next, we construct a kernel K with a height of 1 and a width of 2. When we perform
the cross-correlation operation with the input, if the horizontally adjacent elements are
the same, the output is 0. Otherwise, the output is nonzero. Note that this kernel is a
special case of a finite difference operator. At location (𝑖, 𝑗) it computes 𝑥𝑖, 𝑗 − 𝑥 (𝑖+1) , 𝑗 ,
i.e., it computes the difference between the values of horizontally adjacent pixels. This is
a discrete approximation of the first derivative in the horizontal direction. After all, for
a function 𝑓 (𝑖, 𝑗) its derivative −𝜕𝑖 𝑓 (𝑖, 𝑗) = lim𝜖→0

𝑓 (𝑖, 𝑗 )− 𝑓 (𝑖+𝜖 , 𝑗 )
𝜖 . Let’s see how this

works in practice.

K = np.array([[1.0, -1.0]])

We are ready to perform the cross-correlation operation with arguments X (our input) and
K (our kernel). As you can see, we detect 1 for the edge from white to black and −1 for the
edge from black to white. All other outputs take value 0.

Y = corr2d(X, K)
Y

array([[ 0., 1., 0., 0., 0., -1., 0.],
[ 0., 1., 0., 0., 0., -1., 0.],
[ 0., 1., 0., 0., 0., -1., 0.],
[ 0., 1., 0., 0., 0., -1., 0.],
[ 0., 1., 0., 0., 0., -1., 0.],
[ 0., 1., 0., 0., 0., -1., 0.]])

We can now apply the kernel to the transposed image. As expected, it vanishes. The kernel
K only detects vertical edges.

corr2d(d2l.transpose(X), K)

array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

7.2.4 Learning a Kernel
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Designing an edge detector by finite differences [1, -1] is neat if we know this is precisely
what we are looking for. However, as we look at larger kernels, and consider successive
layers of convolutions, it might be impossible to specify precisely what each filter should
be doing manually.

Now let’s see whether we can learn the kernel that generated Y from X by looking at the
input–output pairs only. We first construct a convolutional layer and initialize its kernel as
a random tensor. Next, in each iteration, we will use the squared error to compare Ywith the
output of the convolutional layer. We can then calculate the gradient to update the kernel.
For the sake of simplicity, in the following we use the built-in class for two-dimensional
convolutional layers and ignore the bias.

# Construct a two-dimensional convolutional layer with 1 output channel and a
# kernel of shape (1, 2). For the sake of simplicity, we ignore the bias here
conv2d = nn.Conv2D(1, kernel_size=(1, 2), use_bias=False)
conv2d.initialize()

# The two-dimensional convolutional layer uses four-dimensional input and
# output in the format of (example, channel, height, width), where the batch
# size (number of examples in the batch) and the number of channels are both 1
X = X.reshape(1, 1, 6, 8)
Y = Y.reshape(1, 1, 6, 7)
lr = 3e-2 # Learning rate

for i in range(10):
with autograd.record():

Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2

l.backward()
# Update the kernel
conv2d.weight.data()[:] -= lr * conv2d.weight.grad()
if (i + 1) % 2 == 0:

print(f'epoch {i + 1}, loss {float(l.sum()):.3f}')

epoch 2, loss 4.949
epoch 4, loss 0.831
epoch 6, loss 0.140
epoch 8, loss 0.024
epoch 10, loss 0.004
[22:11:22] ../src/base.cc:48: GPU context requested, but no GPUs found.

Note that the error has dropped to a small value after 10 iterations. Now we will take a look
at the kernel tensor we learned.

conv2d.weight.data().reshape((1, 2))

array([[ 0.9895 , -0.9873705]])

Indeed, the learned kernel tensor is remarkably close to the kernel tensor K we defined
earlier.
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7.2.5 Cross-Correlation and Convolution
Recall our observation fromSection 7.1 of the correspondence between the cross-correlation
and convolution operations. Here let’s continue to consider two-dimensional convolutional
layers. What if such layers perform strict convolution operations as defined in (7.1.6) in-
stead of cross-correlations? In order to obtain the output of the strict convolution operation,
we only need to flip the two-dimensional kernel tensor both horizontally and vertically, and
then perform the cross-correlation operation with the input tensor.

It is noteworthy that since kernels are learned from data in deep learning, the outputs of
convolutional layers remain unaffected no matter such layers perform either the strict con-
volution operations or the cross-correlation operations.

To illustrate this, suppose that a convolutional layer performs cross-correlation and learns
the kernel in Fig. 7.2.1, which is here denoted as the matrix K. Assuming that other con-
ditions remain unchanged, when this layer instead performs strict convolution, the learned
kernel K′ will be the same as K after K′ is flipped both horizontally and vertically. That
is to say, when the convolutional layer performs strict convolution for the input in Fig.
7.2.1 and K′, the same output in Fig. 7.2.1 (cross-correlation of the input and K) will be
obtained.

In keepingwith standard terminology in deep learning literature, wewill continue to refer to
the cross-correlation operation as a convolution even though, strictly-speaking, it is slightly
different. Furthermore, we use the term element to refer to an entry (or component) of any
tensor representing a layer representation or a convolution kernel.

7.2.6 Feature Map and Receptive Field
As described in Section 7.1.4, the convolutional layer output in Fig. 7.2.1 is sometimes
called a feature map, as it can be regarded as the learned representations (features) in the
spatial dimensions (e.g., width and height) to the subsequent layer. In CNNs, for any el-
ement 𝑥 of some layer, its receptive field refers to all the elements (from all the previous
layers) that may affect the calculation of 𝑥 during the forward propagation. Note that the
receptive field may be larger than the actual size of the input.

Let’s continue to use Fig. 7.2.1 to explain the receptive field. Given the 2 × 2 convolution
kernel, the receptive field of the shaded output element (of value 19) is the four elements
in the shaded portion of the input. Now let’s denote the 2 × 2 output as Y and consider a
deeper CNNwith an additional 2×2 convolutional layer that takesY as its input, outputting
a single element 𝑧. In this case, the receptive field of 𝑧 on Y includes all the four elements
ofY, while the receptive field on the input includes all the nine input elements. Thus, when
any element in a feature map needs a larger receptive field to detect input features over a
broader area, we can build a deeper network.

Receptive fields derive their name from neurophysiology. A series of experiments on a
range of animals using different stimuli (Hubel and Wiesel, 1959, Hubel and Wiesel, 1962,
Hubel and Wiesel, 1968) explored the response of what is called the visual cortex on said
stimuli. By and large they found that lower levels respond to edges and related shapes.
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Later on, Field (1987) illustrated this effect on natural images with, what can only be called,
convolutional kernels. We reprint a key figure in Fig. 7.2.2 to illustrate the striking simi-
larities.

tFig. 7.2.2 Figure and caption taken from Field (1987): An example of coding with six different
channels. (Left) Examples of the six types of sensor associated with each channel. (Right)
Convolution of the image in (Middle) with the six sensors shown in (Left). The response
of the individual sensors is determined by sampling these filtered images at a distance
proportional to the size of the sensor (shown with dots). This diagram shows the response
of only the even symmetric sensors.

As it turns out, this relation even holds for the features computed by deeper layers of net-
works trained on image classification tasks, as demonstrated in, for example, Kuzovkin et
al. (2018). Suffice it to say, convolutions have proven to be an incredibly powerful tool for
computer vision, both in biology and in code. As such, it is not surprising (in hindsight)
that they heralded the recent success in deep learning.

7.2.7 Summary
The core computation required for a convolutional layer is a cross-correlation operation.
We saw that a simple nested for-loop is all that is required to compute its value. If we
have multiple input and multiple output channels, we are performing a matrix–matrix op-
eration between channels. As can be seen, the computation is straightforward and, most
importantly, highly local. This affords significant hardware optimization and many recent
results in computer vision are only possible because of that. After all, it means that chip
designers can invest in fast computation rather than memory when it comes to optimizing
for convolutions. While this may not lead to optimal designs for other applications, it does
open the door to ubiquitous and affordable computer vision.
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In terms of convolutions themselves, they can be used for many purposes, for example
detecting edges and lines, blurring images, or sharpening them. Most importantly, it is
not necessary that the statistician (or engineer) invents suitable filters. Instead, we can
simply learn them from data. This replaces feature engineering heuristics by evidence-
based statistics. Lastly, and quite delightfully, these filters are not just advantageous for
building deep networks but they also correspond to receptive fields and feature maps in the
brain. This gives us confidence that we are on the right track.

7.2.8 Exercises
1. Construct an image X with diagonal edges.

1. What happens if you apply the kernel K in this section to it?

2. What happens if you transpose X?

3. What happens if you transpose K?

2. Design some kernels manually.

1. Given a directional vector v = (𝑣1, 𝑣2), derive an edge-detection kernel that detects
edges orthogonal to v, i.e., edges in the direction (𝑣2,−𝑣1).

2. Derive a finite difference operator for the second derivative. What is the minimum
size of the convolutional kernel associated with it? Which structures in images re-
spond most strongly to it?

3. How would you design a blur kernel? Why might you want to use such a kernel?

4. What is the minimum size of a kernel to obtain a derivative of order 𝑑?

3. When you try to automatically find the gradient for the Conv2D class we created, what
kind of error message do you see?

4. How do you represent a cross-correlation operation as a matrix multiplication by chang-
ing the input and kernel tensors?

Discussions119 .

7.3 Padding and Stride

Recall the example of a convolution in Fig. 7.2.1. The input had both a height and width of
3 and the convolution kernel had both a height and width of 2, yielding an output represen-
tation with dimension 2 × 2. Assuming that the input shape is 𝑛h × 𝑛w and the convolution
kernel shape is 𝑘h × 𝑘w, the output shape will be (𝑛h − 𝑘h + 1) × (𝑛w − 𝑘w + 1): we can
only shift the convolution kernel so far until it runs out of pixels to apply the convolution
to.

https://discuss.d2l.ai/t/65
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In the following we will explore a number of techniques, including padding and strided
convolutions, that offer more control over the size of the output. As motivation, note that
since kernels generally havewidth and height greater than 1, after applyingmany successive
convolutions, we tend to wind up with outputs that are considerably smaller than our input.
If we start with a 240 × 240 pixel image, ten layers of 5 × 5 convolutions reduce the image
to 200 × 200 pixels, slicing off 30% of the image and with it obliterating any interesting
information on the boundaries of the original image. Padding is the most popular tool for
handling this issue. In other cases, we may want to reduce the dimensionality drastically,
e.g., if we find the original input resolution to be unwieldy. Strided convolutions are a
popular technique that can help in these instances.

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

7.3.1 Padding
As described above, one tricky issue when applying convolutional layers is that we tend
to lose pixels on the perimeter of our image. Consider Fig. 7.3.1 that depicts the pixel
utilization as a function of the convolution kernel size and the position within the image.
The pixels in the corners are hardly used at all.

tFig. 7.3.1 Pixel utilization for convolutions of size 1 × 1, 2 × 2, and 3 × 3 respectively.

Since we typically use small kernels, for any given convolution we might only lose a few
pixels but this can add up as we apply many successive convolutional layers. One straight-
forward solution to this problem is to add extra pixels of filler around the boundary of our
input image, thus increasing the effective size of the image. Typically, we set the values of
the extra pixels to zero. In Fig. 7.3.2, we pad a 3× 3 input, increasing its size to 5× 5. The
corresponding output then increases to a 4×4 matrix. The shaded portions are the first out-
put element as well as the input and kernel tensor elements used for the output computation:
0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0.

In general, if we add a total of 𝑝h rows of padding (roughly half on top and half on bottom)
and a total of 𝑝w columns of padding (roughly half on the left and half on the right), the
output shape will be

(𝑛h − 𝑘h + 𝑝h + 1) × (𝑛w − 𝑘w + 𝑝w + 1). (7.3.1)

This means that the height and width of the output will increase by 𝑝h and 𝑝w, respec-
tively.
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tFig. 7.3.2 Two-dimensional cross-correlation with padding.

In many cases, we will want to set 𝑝h = 𝑘h − 1 and 𝑝w = 𝑘w − 1 to give the input and
output the same height and width. This will make it easier to predict the output shape of
each layer when constructing the network. Assuming that 𝑘h is odd here, we will pad 𝑝h/2
rows on both sides of the height. If 𝑘h is even, one possibility is to pad d𝑝h/2e rows on the
top of the input and b𝑝h/2c rows on the bottom. We will pad both sides of the width in the
same way.

CNNs commonly use convolution kernels with odd height and width values, such as 1, 3,
5, or 7. Choosing odd kernel sizes has the benefit that we can preserve the dimensionality
while padding with the same number of rows on top and bottom, and the same number of
columns on left and right.

Moreover, this practice of using odd kernels and padding to precisely preserve dimension-
ality offers a clerical benefit. For any two-dimensional tensor X, when the kernel’s size is
odd and the number of padding rows and columns on all sides are the same, thereby pro-
ducing an output with the same height and width as the input, we know that the output Y[i,
j] is calculated by cross-correlation of the input and convolution kernel with the window
centered on X[i, j].

In the following example, we create a two-dimensional convolutional layer with a height
and width of 3 and apply 1 pixel of padding on all sides. Given an input with a height and
width of 8, we find that the height and width of the output is also 8.

# We define a helper function to calculate convolutions. It initializes
# the convolutional layer weights and performs corresponding dimensionality
# elevations and reductions on the input and output
def comp_conv2d(conv2d, X):

conv2d.initialize()
# (1, 1) indicates that batch size and the number of channels are both 1
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
# Strip the first two dimensions: examples and channels
return Y.reshape(Y.shape[2:])

# 1 row and column is padded on either side, so a total of 2 rows or columns␣
↩→are added
conv2d = nn.Conv2D(1, kernel_size=3, padding=1)
X = np.random.uniform(size=(8, 8))
comp_conv2d(conv2d, X).shape
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(8, 8)

When the height and width of the convolution kernel are different, we can make the output
and input have the same height and width by setting different padding numbers for height
and width.

# We use a convolution kernel with height 5 and width 3. The padding on
# either side of the height and width are 2 and 1, respectively
conv2d = nn.Conv2D(1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

(8, 8)

7.3.2 Stride
When computing the cross-correlation, we start with the convolution window at the upper-
left corner of the input tensor, and then slide it over all locations both down and to the
right. In the previous examples, we defaulted to sliding one element at a time. However,
sometimes, either for computational efficiency or because we wish to downsample, we
move our window more than one element at a time, skipping the intermediate locations.
This is particularly useful if the convolution kernel is large since it captures a large area of
the underlying image.

We refer to the number of rows and columns traversed per slide as stride. So far, we have
used strides of 1, both for height and width. Sometimes, we may want to use a larger stride.
Fig. 7.3.3 shows a two-dimensional cross-correlation operation with a stride of 3 vertically
and 2 horizontally. The shaded portions are the output elements as well as the input and
kernel tensor elements used for the output computation: 0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8,
0×0+6×1+0×2+0×3 = 6. We can see that when the second element of the first column is
generated, the convolution window slides down three rows. The convolution window slides
two columns to the right when the second element of the first row is generated. When the
convolution window continues to slide two columns to the right on the input, there is no
output because the input element cannot fill the window (unless we add another column of
padding).

In general, when the stride for the height is 𝑠h and the stride for the width is 𝑠w, the output
shape is

b(𝑛h − 𝑘h + 𝑝h + 𝑠h)/𝑠hc × b(𝑛w − 𝑘w + 𝑝w + 𝑠w)/𝑠wc . (7.3.2)

If we set 𝑝h = 𝑘h − 1 and 𝑝w = 𝑘w − 1, then the output shape can be simplified to b(𝑛h +
𝑠h − 1)/𝑠hc × b(𝑛w + 𝑠w − 1)/𝑠wc. Going a step further, if the input height and width are
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tFig. 7.3.3 Cross-correlation with strides of 3 and 2 for height and width, respectively.

divisible by the strides on the height and width, then the output shape will be (𝑛h/𝑠h) ×
(𝑛w/𝑠w).

Below, we set the strides on both the height and width to 2, thus halving the input height
and width.

conv2d = nn.Conv2D(1, kernel_size=3, padding=1, strides=2)
comp_conv2d(conv2d, X).shape

(4, 4)

Let’s look at a slightly more complicated example.

conv2d = nn.Conv2D(1, kernel_size=(3, 5), padding=(0, 1), strides=(3, 4))
comp_conv2d(conv2d, X).shape

(2, 2)

7.3.3 Summary and Discussion
Padding can increase the height and width of the output. This is often used to give the
output the same height and width as the input to avoid undesirable shrinkage of the output.
Moreover, it ensures that all pixels are used equally frequently. Typically we pick symmetric
padding on both sides of the input height and width. In this case we refer to (𝑝h, 𝑝w)
padding. Most commonly we set 𝑝h = 𝑝w, in which case we simply state that we choose
padding 𝑝.

A similar convention applies to strides. When horizontal stride 𝑠h and vertical stride 𝑠w
match, we simply talk about stride 𝑠. The stride can reduce the resolution of the output, for
example reducing the height and width of the output to only 1/𝑛 of the height and width of
the input for 𝑛 > 1. By default, the padding is 0 and the stride is 1.

So far all padding that we discussed simply extended images with zeros. This has signif-
icant computational benefit since it is trivial to accomplish. Moreover, operators can be
engineered to take advantage of this padding implicitly without the need to allocate addi-
tional memory. At the same time, it allows CNNs to encode implicit position information
within an image, simply by learning where the “whitespace” is. There are many alternatives
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to zero-padding. Alsallakh et al. (2020) provided an extensive overview of those (albeit
without a clear case for when to use nonzero paddings unless artifacts occur).

7.3.4 Exercises
1. Given the final code example in this section with kernel size (3, 5), padding (0, 1), and

stride (3, 4), calculate the output shape to check if it is consistent with the experimental
result.

2. For audio signals, what does a stride of 2 correspond to?

3. Implement mirror padding, i.e., padding where the border values are simply mirrored
to extend tensors.

4. What are the computational benefits of a stride larger than 1?

5. What might be statistical benefits of a stride larger than 1?

6. How would you implement a stride of 1
2? What does it correspond to? When would this

be useful?

Discussions120 .

7.4 Multiple Input and Multiple Output Channels

While we described the multiple channels that comprise each image (e.g., color images
have the standard RGB channels to indicate the amount of red, green and blue) and con-
volutional layers for multiple channels in Section 7.1.4, until now, we simplified all of our
numerical examples by working with just a single input and a single output channel. This
allowed us to think of our inputs, convolution kernels, and outputs each as two-dimensional
tensors.

When we add channels into the mix, our inputs and hidden representations both become
three-dimensional tensors. For example, each RGB input image has shape 3 × ℎ × 𝑤. We
refer to this axis, with a size of 3, as the channel dimension. The notion of channels is
as old as CNNs themselves: for instance LeNet-5 (LeCun et al., 1995) uses them. In this
section, we will take a deeper look at convolution kernels with multiple input and multiple
output channels.

from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

https://discuss.d2l.ai/t/67
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7.4.1 Multiple Input Channels
When the input data contains multiple channels, we need to construct a convolution kernel
with the same number of input channels as the input data, so that it can perform cross-
correlation with the input data. Assuming that the number of channels for the input data
is 𝑐i, the number of input channels of the convolution kernel also needs to be 𝑐i. If our
convolution kernel’s window shape is 𝑘h × 𝑘w, then, when 𝑐i = 1, we can think of our
convolution kernel as just a two-dimensional tensor of shape 𝑘h × 𝑘w.

However, when 𝑐i > 1, we need a kernel that contains a tensor of shape 𝑘h × 𝑘w for ev-
ery input channel. Concatenating these 𝑐i tensors together yields a convolution kernel of
shape 𝑐i × 𝑘h × 𝑘w. Since the input and convolution kernel each have 𝑐i channels, we can
perform a cross-correlation operation on the two-dimensional tensor of the input and the
two-dimensional tensor of the convolution kernel for each channel, adding the 𝑐i results
together (summing over the channels) to yield a two-dimensional tensor. This is the result
of a two-dimensional cross-correlation between a multi-channel input and a multi-input-
channel convolution kernel.

Fig. 7.4.1 provides an example of a two-dimensional cross-correlation with two input chan-
nels. The shaded portions are the first output element as well as the input and kernel tensor
elements used for the output computation: (1× 1 + 2× 2 + 4× 3 + 5× 4) + (0× 0 + 1× 1 +
3 × 2 + 4 × 3) = 56.

tFig. 7.4.1 Cross-correlation computation with two input channels.

Tomake surewe really understandwhat is going on here, we can implement cross-correlation
operations with multiple input channels ourselves. Notice that all we are doing is perform-
ing a cross-correlation operation per channel and then adding up the results.

def corr2d_multi_in(X, K):
# Iterate through the 0th dimension (channel) of K first, then add them up
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

We can construct the input tensor X and the kernel tensor K corresponding to the values in
Fig. 7.4.1 to validate the output of the cross-correlation operation.

X = np.array([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])

K = np.array([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])

(continues on next page)



257 Multiple Input and Multiple Output Channels

(continued from previous page)

corr2d_multi_in(X, K)
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array([[ 56., 72.],
[104., 120.]])

7.4.2 Multiple Output Channels
Regardless of the number of input channels, so far we always ended up with one output
channel. However, as we discussed in Section 7.1.4, it turns out to be essential to have
multiple channels at each layer. In the most popular neural network architectures, we actu-
ally increase the channel dimension as we go deeper in the neural network, typically down-
sampling to trade off spatial resolution for greater channel depth. Intuitively, you could
think of each channel as responding to a different set of features. The reality is a bit more
complicated than this. A naive interpretation would suggest that representations are learned
independently per pixel or per channel. Instead, channels are optimized to be jointly useful.
This means that rather than mapping a single channel to an edge detector, it may simply
mean that some direction in channel space corresponds to detecting edges.

Denote by 𝑐i and 𝑐o the number of input and output channels, respectively, and by 𝑘h and 𝑘w
the height and width of the kernel. To get an output with multiple channels, we can create
a kernel tensor of shape 𝑐i × 𝑘h × 𝑘w for every output channel. We concatenate them on the
output channel dimension, so that the shape of the convolution kernel is 𝑐o × 𝑐i × 𝑘h × 𝑘w.
In cross-correlation operations, the result on each output channel is calculated from the
convolution kernel corresponding to that output channel and takes input from all channels
in the input tensor.

We implement a cross-correlation function to calculate the output of multiple channels as
shown below.

def corr2d_multi_in_out(X, K):
# Iterate through the 0th dimension of K, and each time, perform
# cross-correlation operations with input X. All of the results are
# stacked together
return np.stack([corr2d_multi_in(X, k) for k in K], 0)

We construct a trivial convolution kernel with three output channels by concatenating the
kernel tensor for K with K+1 and K+2.

K = np.stack((K, K + 1, K + 2), 0)
K.shape
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(3, 2, 2, 2)

Below, we perform cross-correlation operations on the input tensor Xwith the kernel tensor
K. Now the output contains three channels. The result of the first channel is consistent with
the result of the previous input tensor X and the multi-input channel, single-output channel
kernel.

corr2d_multi_in_out(X, K)

array([[[ 56., 72.],
[104., 120.]],

[[ 76., 100.],
[148., 172.]],

[[ 96., 128.],
[192., 224.]]])

7.4.3 1 × 1 Convolutional Layer
At first, a 1 × 1 convolution, i.e., 𝑘h = 𝑘w = 1, does not seem to make much sense.
After all, a convolution correlates adjacent pixels. A 1 × 1 convolution obviously does
not. Nonetheless, they are popular operations that are sometimes included in the designs
of complex deep networks (Lin et al., 2013, Szegedy et al., 2017). Let’s see in some detail
what it actually does.

Because the minimum window is used, the 1×1 convolution loses the ability of larger con-
volutional layers to recognize patterns consisting of interactions among adjacent elements
in the height and width dimensions. The only computation of the 1× 1 convolution occurs
on the channel dimension.

Fig. 7.4.2 shows the cross-correlation computation using the 1×1 convolution kernel with 3
input channels and 2 output channels. Note that the inputs and outputs have the same height
and width. Each element in the output is derived from a linear combination of elements at
the same position in the input image. You could think of the 1 × 1 convolutional layer as
constituting a fully connected layer applied at every single pixel location to transform the
𝑐i corresponding input values into 𝑐o output values. Because this is still a convolutional
layer, the weights are tied across pixel location. Thus the 1× 1 convolutional layer requires
𝑐o × 𝑐i weights (plus the bias). Also note that convolutional layers are typically followed
by nonlinearities. This ensures that 1 × 1 convolutions cannot simply be folded into other
convolutions.

Let’s check whether this works in practice: we implement a 1× 1 convolution using a fully
connected layer. The only thing is that we need to make some adjustments to the data shape
before and after the matrix multiplication.
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tFig. 7.4.2 The cross-correlation computation uses the 1 × 1 convolution kernel with three input
channels and two output channels. The input and output have the same height and width.

def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
# Matrix multiplication in the fully connected layer
Y = np.dot(K, X)
return Y.reshape((c_o, h, w))

When performing 1×1 convolutions, the above function is equivalent to the previously im-
plemented cross-correlation function corr2d_multi_in_out. Let’s check this with some
sample data.

X = np.random.normal(0, 1, (3, 3, 3))
K = np.random.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(np.abs(Y1 - Y2).sum()) < 1e-6

7.4.4 Discussion
Channels allow us to combine the best of both worlds: MLPs that allow for significant
nonlinearities and convolutions that allow for localized analysis of features. In particular,
channels allow the CNN to reason with multiple features, such as edge and shape detec-
tors at the same time. They also offer a practical trade-off between the drastic parameter
reduction arising from translation invariance and locality, and the need for expressive and
diverse models in computer vision.

Note, though, that this flexibility comes at a price. Given an image of size (ℎ×𝑤), the cost
for computing a 𝑘 × 𝑘 convolution is O(ℎ ·𝑤 · 𝑘2). For 𝑐i and 𝑐o input and output channels
respectively this increases to O(ℎ · 𝑤 · 𝑘2 · 𝑐i · 𝑐o). For a 256 × 256 pixel image with a
5× 5 kernel and 128 input and output channels respectively this amounts to over 53 billion
operations (we count multiplications and additions separately). Later on we will encounter
effective strategies to cut down on the cost, e.g., by requiring the channel-wise operations
to be block-diagonal, leading to architectures such as ResNeXt (Xie et al., 2017).

7.4.5 Exercises
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1. Assume that we have two convolution kernels of size 𝑘1 and 𝑘2, respectively (with no
nonlinearity in between).

1. Prove that the result of the operation can be expressed by a single convolution.

2. What is the dimensionality of the equivalent single convolution?

3. Is the converse true, i.e., can you always decompose a convolution into two smaller
ones?

2. Assume an input of shape 𝑐i× ℎ×𝑤 and a convolution kernel of shape 𝑐o× 𝑐i× 𝑘h× 𝑘w,
padding of (𝑝h, 𝑝w), and stride of (𝑠h, 𝑠w).

1. What is the computational cost (multiplications and additions) for the forward prop-
agation?

2. What is the memory footprint?

3. What is the memory footprint for the backward computation?

4. What is the computational cost for the backpropagation?

3. By what factor does the number of calculations increase if we double both the number
of input channels 𝑐i and the number of output channels 𝑐o? What happens if we double
the padding?

4. Are the variables Y1 and Y2 in the final example of this section exactly the same? Why?

5. Express convolutions as a matrix multiplication, even when the convolution window is
not 1 × 1.

6. Your task is to implement fast convolutions with a 𝑘 × 𝑘 kernel. One of the algorithm
candidates is to scan horizontally across the source, reading a 𝑘-wide strip and comput-
ing the 1-wide output strip one value at a time. The alternative is to read a 𝑘 + Δ wide
strip and compute a Δ-wide output strip. Why is the latter preferable? Is there a limit to
how large you should choose Δ?

7. Assume that we have a 𝑐 × 𝑐 matrix.

1. Howmuch faster is it to multiply with a block-diagonal matrix if the matrix is broken
up into 𝑏 blocks?

2. What is the downside of having 𝑏 blocks? How could you fix it, at least partly?

Discussions121 .

7.5 Pooling

In many cases our ultimate task asks some global question about the image, e.g., does it
contain a cat? Consequently, the units of our final layer should be sensitive to the entire

https://discuss.d2l.ai/t/69
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input. By gradually aggregating information, yielding coarser and coarser maps, we ac-
complish this goal of ultimately learning a global representation, while keeping all of the
advantages of convolutional layers at the intermediate layers of processing. The deeper
we go in the network, the larger the receptive field (relative to the input) to which each
hidden node is sensitive. Reducing spatial resolution accelerates this process, since the
convolution kernels cover a larger effective area.

Moreover, when detecting lower-level features, such as edges (as discussed in Section 7.2),
we often want our representations to be somewhat invariant to translation. For instance,
if we take the image X with a sharp delineation between black and white and shift the
whole image by one pixel to the right, i.e., Z[i, j] = X[i, j + 1], then the output
for the new image Z might be vastly different. The edge will have shifted by one pixel. In
reality, objects hardly ever occur exactly at the same place. In fact, even with a tripod and
a stationary object, vibration of the camera due to the movement of the shutter might shift
everything by a pixel or so (high-end cameras are loaded with special features to address
this problem).

This section introduces pooling layers, which serve the dual purposes of mitigating the
sensitivity of convolutional layers to location and of spatially downsampling representa-
tions.

from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

7.5.1 Maximum Pooling and Average Pooling
Like convolutional layers, pooling operators consist of a fixed-shape window that is slid
over all regions in the input according to its stride, computing a single output for each lo-
cation traversed by the fixed-shape window (sometimes known as the pooling window).
However, unlike the cross-correlation computation of the inputs and kernels in the con-
volutional layer, the pooling layer contains no parameters (there is no kernel). Instead,
pooling operators are deterministic, typically calculating either the maximum or the aver-
age value of the elements in the pooling window. These operations are called maximum
pooling (max-pooling for short) and average pooling, respectively.

Average pooling is essentially as old as CNNs. The idea is akin to downsampling an image.
Rather than just taking the value of every second (or third) pixel for the lower resolution
image, we can average over adjacent pixels to obtain an image with better signal-to-noise
ratio since we are combining the information from multiple adjacent pixels. Max-pooling
was introduced in Riesenhuber and Poggio (1999) in the context of cognitive neuroscience
to describe how information aggregationmight be aggregated hierarchically for the purpose
of object recognition; there alreadywas an earlier version in speech recognition (Yamaguchi
et al., 1990). In almost all cases, max-pooling, as it is also referred to, is preferable to
average pooling.
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In both cases, as with the cross-correlation operator, we can think of the pooling window
as starting from the upper-left of the input tensor and sliding across it from left to right and
top to bottom. At each location that the pooling window hits, it computes the maximum or
average value of the input subtensor in the window, depending on whether max or average
pooling is employed.

tFig. 7.5.1 Max-pooling with a pooling window shape of 2 × 2. The shaded portions are the first
output element as well as the input tensor elements used for the output computation:
max(0, 1, 3, 4) = 4.

The output tensor in Fig. 7.5.1 has a height of 2 and a width of 2. The four elements are
derived from the maximum value in each pooling window:

max(0, 1, 3, 4) = 4,
max(1, 2, 4, 5) = 5,
max(3, 4, 6, 7) = 7,
max(4, 5, 7, 8) = 8.

(7.5.1)

More generally, we can define a 𝑝 × 𝑞 pooling layer by aggregating over a region of said
size. Returning to the problem of edge detection, we use the output of the convolutional
layer as input for 2× 2 max-pooling. Denote by X the input of the convolutional layer input
and Y the pooling layer output. Regardless of whether or not the values of X[i, j], X[i,
j + 1], X[i+1, j] and X[i+1, j + 1] are different, the pooling layer always outputs
Y[i, j] = 1. That is to say, using the 2 × 2 max-pooling layer, we can still detect if the
pattern recognized by the convolutional layer moves no more than one element in height or
width.

In the code below, we implement the forward propagation of the pooling layer in the pool2d
function. This function is similar to the corr2d function in Section 7.2. However, no kernel
is needed, computing the output as either the maximum or the average of each region in the
input.

def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = np.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):

for j in range(Y.shape[1]):
if mode == 'max':

Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':

Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
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Wecan construct the input tensor X in Fig. 7.5.1 to validate the output of the two-dimensional
max-pooling layer.

X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))

[22:02:56] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
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array([[4., 5.],
[7., 8.]])

Also, we can experiment with the average pooling layer.

pool2d(X, (2, 2), 'avg')

array([[2., 3.],
[5., 6.]])

7.5.2 Padding and Stride
Aswith convolutional layers, pooling layers change the output shape. And as before, we can
adjust the operation to achieve a desired output shape by padding the input and adjusting the
stride. We can demonstrate the use of padding and strides in pooling layers via the built-in
two-dimensional max-pooling layer from the deep learning framework. We first construct
an input tensor X whose shape has four dimensions, where the number of examples (batch
size) and number of channels are both 1.

X = np.arange(16, dtype=np.float32).reshape((1, 1, 4, 4))
X

array([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]]])

Since pooling aggregates information from an area, deep learning frameworks default to
matching pooling window sizes and stride. For instance, if we use a pooling window of
shape (3, 3) we get a stride shape of (3, 3) by default.

pool2d = nn.MaxPool2D(3)
# Pooling has no model parameters, hence it needs no initialization
pool2d(X)
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array([[[[10.]]]])

Needless to say, the stride and padding can be manually specified to override framework
defaults if required.

pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)

array([[[[ 5., 7.],
[13., 15.]]]])

Of course, we can specify an arbitrary rectangular pooling window with arbitrary height
and width respectively, as the example below shows.

pool2d = nn.MaxPool2D((2, 3), padding=(0, 1), strides=(2, 3))
pool2d(X)

array([[[[ 5., 7.],
[13., 15.]]]])

7.5.3 Multiple Channels
When processing multi-channel input data, the pooling layer pools each input channel sep-
arately, rather than summing the inputs up over channels as in a convolutional layer. This
means that the number of output channels for the pooling layer is the same as the number of
input channels. Below, we will concatenate tensors X and X + 1 on the channel dimension
to construct an input with two channels.

X = np.concatenate((X, X + 1), 1)
X

array([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]],

[[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.],
[13., 14., 15., 16.]]]])

As we can see, the number of output channels is still two after pooling.

pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)
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array([[[[ 5., 7.],
[13., 15.]],

[[ 6., 8.],
[14., 16.]]]])

7.5.4 Summary
Pooling is an exceedingly simple operation. It does exactly what its name indicates, ag-
gregate results over a window of values. All convolution semantics, such as strides and
padding apply in the same way as they did previously. Note that pooling is indifferent to
channels, i.e., it leaves the number of channels unchanged and it applies to each channel
separately. Lastly, of the two popular pooling choices, max-pooling is preferable to average
pooling, as it confers some degree of invariance to output. A popular choice is to pick a
pooling window size of 2 × 2 to quarter the spatial resolution of output.

Note that there are many more ways of reducing resolution beyond pooling. For instance, in
stochastic pooling (Zeiler and Fergus, 2013) and fractional max-pooling (Graham, 2014)
aggregation is combined with randomization. This can slightly improve the accuracy in
some cases. Lastly, as we will see later with the attention mechanism, there are more
refined ways of aggregating over outputs, e.g., by using the alignment between a query and
representation vectors.

7.5.5 Exercises
1. Implement average pooling through a convolution.

2. Prove that max-pooling cannot be implemented through a convolution alone.

3. Max-pooling can be accomplished using ReLU operations, i.e., ReLU(𝑥) = max(0, 𝑥).

1. Express max(𝑎, 𝑏) by using only ReLU operations.

2. Use this to implement max-pooling by means of convolutions and ReLU layers.

3. How many channels and layers do you need for a 2 × 2 convolution? How many for
a 3 × 3 convolution?

4. What is the computational cost of the pooling layer? Assume that the input to the pooling
layer is of size 𝑐 × ℎ ×𝑤, the pooling window has a shape of 𝑝h × 𝑝w with a padding of
(𝑝h, 𝑝w) and a stride of (𝑠h, 𝑠w).

5. Why do you expect max-pooling and average pooling to work differently?

6. Do we need a separate minimum pooling layer? Can you replace it with another opera-
tion?

7. We could use the softmax operation for pooling. Why might it not be so popular?

Discussions122 .
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7.6 Convolutional Neural Networks (LeNet)

We now have all the ingredients required to assemble a fully-functional CNN. In our earlier
encounter with image data, we applied a linear model with softmax regression (Section 4.4)
and an MLP (Section 5.2) to pictures of clothing in the Fashion-MNIST dataset. To make
such data amenable we first flattened each image from a 28 × 28 matrix into a fixed-length
784-dimensional vector, and thereafter processed them in fully connected layers. Now that
we have a handle on convolutional layers, we can retain the spatial structure in our images.
As an additional benefit of replacing fully connected layers with convolutional layers, we
will enjoy more parsimonious models that require far fewer parameters.

In this section, we will introduce LeNet, among the first published CNNs to capture wide
attention for its performance on computer vision tasks. The model was introduced by (and
named for) Yann LeCun, then a researcher at AT&T Bell Labs, for the purpose of rec-
ognizing handwritten digits in images (LeCun et al., 1998). This work represented the
culmination of a decade of research developing the technology; LeCun’s team published
the first study to successfully train CNNs via backpropagation (LeCun et al., 1989).

At the time LeNet achieved outstanding results matching the performance of support vector
machines, then a dominant approach in supervised learning, achieving an error rate of less
than 1% per digit. LeNet was eventually adapted to recognize digits for processing deposits
in ATM machines. To this day, some ATMs still run the code that Yann LeCun and his
colleague Leon Bottou wrote in the 1990s!

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

7.6.1 LeNet
At a high level, LeNet (LeNet-5) consists of two parts: (i) a convolutional encoder consist-
ing of two convolutional layers; and (ii) a dense block consisting of three fully connected
layers. The architecture is summarized in Fig. 7.6.1.

The basic units in each convolutional block are a convolutional layer, a sigmoid activation
function, and a subsequent average pooling operation. Note that while ReLUs and max-
pooling work better, they had not yet been discovered. Each convolutional layer uses a 5×5
kernel and a sigmoid activation function. These layers map spatially arranged inputs to a
number of two-dimensional feature maps, typically increasing the number of channels. The
first convolutional layer has 6 output channels, while the second has 16. Each 2×2 pooling
operation (stride 2) reduces dimensionality by a factor of 4 via spatial downsampling. The
convolutional block emits an output with shape given by (batch size, number of channel,
height, width).
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tFig. 7.6.1 Data flow in LeNet. The input is a handwritten digit, the output is a probability over 10
possible outcomes.

In order to pass output from the convolutional block to the dense block, wemust flatten each
example in theminibatch. In other words, we take this four-dimensional input and transform
it into the two-dimensional input expected by fully connected layers: as a reminder, the two-
dimensional representation that we desire uses the first dimension to index examples in the
minibatch and the second to give the flat vector representation of each example. LeNet’s
dense block has three fully connected layers, with 120, 84, and 10 outputs, respectively.
Because we are still performing classification, the 10-dimensional output layer corresponds
to the number of possible output classes.

While getting to the point where you truly understand what is going on inside LeNet may
have taken a bit of work, we hope that the following code snippet will convince you that
implementing such models with modern deep learning frameworks is remarkably simple.
We need only to instantiate a Sequential block and chain together the appropriate layers,
using Xavier initialization as introduced in Section 5.4.2.

class LeNet(d2l.Classifier): #@save
"""The LeNet-5 model."""
def __init__(self, lr=0.1, num_classes=10):

super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(

nn.Conv2D(channels=6, kernel_size=5, padding=2,
activation='sigmoid'),

nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120, activation='sigmoid'),
nn.Dense(84, activation='sigmoid'),
nn.Dense(num_classes))

self.net.initialize(init.Xavier())

We have taken some liberty in the reproduction of LeNet insofar as we have replaced the
Gaussian activation layer by a softmax layer. This greatly simplifies the implementation,
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not least due to the fact that the Gaussian decoder is rarely used nowadays. Other than that,
this network matches the original LeNet-5 architecture.

Let’s see what happens inside the network. By passing a single-channel (black and white)
28×28 image through the network and printing the output shape at each layer, we can inspect
the model to ensure that its operations line up with what we expect from Fig. 7.6.2.

tFig. 7.6.2 Compressed notation for LeNet-5.

@d2l.add_to_class(d2l.Classifier) #@save
def layer_summary(self, X_shape):

X = np.random.randn(*X_shape)
for layer in self.net:

X = layer(X)
print(layer.__class__.__name__, 'output shape:\t', X.shape)

model = LeNet()
model.layer_summary((1, 1, 28, 28))

Conv2D output shape: (1, 6, 28, 28)
AvgPool2D output shape: (1, 6, 14, 14)
Conv2D output shape: (1, 16, 10, 10)
AvgPool2D output shape: (1, 16, 5, 5)
Dense output shape: (1, 120)
Dense output shape: (1, 84)
Dense output shape: (1, 10)
[22:57:59] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Note that the height and width of the representation at each layer throughout the convolu-
tional block is reduced (compared with the previous layer). The first convolutional layer
uses two pixels of padding to compensate for the reduction in height and width that would
otherwise result from using a 5 × 5 kernel. As an aside, the image size of 28 × 28 pixels in
the original MNIST OCR dataset is a result of trimming two pixel rows (and columns) from
the original scans that measured 32 × 32 pixels. This was done primarily to save space (a
30% reduction) at a time when megabytes mattered.
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In contrast, the second convolutional layer forgoes padding, and thus the height and width
are both reduced by four pixels. As we go up the stack of layers, the number of channels
increases layer-over-layer from 1 in the input to 6 after the first convolutional layer and
16 after the second convolutional layer. However, each pooling layer halves the height and
width. Finally, each fully connected layer reduces dimensionality, finally emitting an output
whose dimension matches the number of classes.

7.6.2 Training
Now that we have implemented the model, let’s run an experiment to see how the LeNet-5
model fares on Fashion-MNIST.

While CNNs have fewer parameters, they can still be more expensive to compute than
similarly deep MLPs because each parameter participates in many more multiplications.
If you have access to a GPU, this might be a good time to put it into action to speed up
training. Note that the d2l.Trainer class takes care of all details. By default, it initializes
the model parameters on the available devices. Just as with MLPs, our loss function is
cross-entropy, and we minimize it via minibatch stochastic gradient descent.

trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128)
model = LeNet(lr=0.1)
trainer.fit(model, data)

7.6.3 Summary
We have made significant progress in this chapter. We moved from the MLPs of the 1980s
to the CNNs of the 1990s and early 2000s. The architectures proposed, e.g., in the form
of LeNet-5 remain meaningful, even to this day. It is worth comparing the error rates on
Fashion-MNIST achievable with LeNet-5 both to the very best possible withMLPs (Section
5.2) and those with significantly more advanced architectures such as ResNet (Section 8.6).
LeNet is much more similar to the latter than to the former. One of the primary differences,
as we shall see, is that greater amounts of computation enabled significantly more complex
architectures.

A second difference is the relative ease with which we were able to implement LeNet. What
used to be an engineering challenge worth months of C++ and assembly code, engineering
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to improve SN, an early Lisp-based deep learning tool (Bottou and Le Cun, 1988), and fi-
nally experimentationwithmodels can now be accomplished inminutes. It is this incredible
productivity boost that has democratized deep learning model development tremendously.
In the next chapter we will journey down this rabbit to hole to see where it takes us.

7.6.4 Exercises
1. Let’s modernize LeNet. Implement and test the following changes:

1. Replace average pooling with max-pooling.

2. Replace the softmax layer with ReLU.

2. Try to change the size of the LeNet style network to improve its accuracy in addition to
max-pooling and ReLU.

1. Adjust the convolution window size.

2. Adjust the number of output channels.

3. Adjust the number of convolution layers.

4. Adjust the number of fully connected layers.

5. Adjust the learning rates and other training details (e.g., initialization and number of
epochs).

3. Try out the improved network on the original MNIST dataset.

4. Display the activations of the first and second layer of LeNet for different inputs (e.g.,
sweaters and coats).

5. What happens to the activations when you feed significantly different images into the
network (e.g., cats, cars, or even random noise)?

Discussions123 .
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8 Modern Convolutional Neural Networks

Now that we understand the basics of wiring together CNNs, let’s take a tour of modern
CNN architectures. This tour is, by necessity, incomplete, thanks to the plethora of excit-
ing new designs being added. Their importance derives from the fact that not only can they
be used directly for vision tasks, but they also serve as basic feature generators for more
advanced tasks such as tracking (Zhang et al., 2021), segmentation (Long et al., 2015), ob-
ject detection (Redmon and Farhadi, 2018), or style transformation (Gatys et al., 2016). In
this chapter, most sections correspond to a significant CNN architecture that was at some
point (or currently) the base model upon which many research projects and deployed sys-
tems were built. Each of these networks was briefly a dominant architecture and many were
winners or runners-up in the ImageNet competition 124 which has served as a barometer
of progress on supervised learning in computer vision since 2010. It is only recently that
Transformers have begun to displace CNNs, starting with Dosovitskiy et al. (2021) and
followed by the Swin Transformer (Liu et al., 2021). We will cover this development later
in Chapter 11.

While the idea of deep neural networks is quite simple (stack together a bunch of layers),
performance can vary wildly across architectures and hyperparameter choices. The neural
networks described in this chapter are the product of intuition, a few mathematical insights,
and a lot of trial and error. We present these models in chronological order, partly to convey
a sense of the history so that you can form your own intuitions about where the field is
heading and perhaps develop your own architectures. For instance, batch normalization and
residual connections described in this chapter have offered two popular ideas for training
and designing deep models, both of which have since also been applied to architectures
beyond computer vision.

We begin our tour of modern CNNs with AlexNet (Krizhevsky et al., 2012), the first large-
scale network deployed to beat conventional computer vision methods on a large-scale vi-
sion challenge; the VGG network (Simonyan and Zisserman, 2014), which makes use of a
number of repeating blocks of elements; the network in network (NiN) that convolves whole
neural networks patch-wise over inputs (Lin et al., 2013); GoogLeNet that uses networks
with multi-branch convolutions (Szegedy et al., 2015); the residual network (ResNet) (He
et al., 2016), which remains one of the most popular off-the-shelf architectures in computer
vision; ResNeXt blocks (Xie et al., 2017) for sparser connections; and DenseNet (Huang
et al., 2017) for a generalization of the residual architecture. Over time many special opti-
mizations for efficient networks have been developed, such as coordinate shifts (ShiftNet)
(Wu et al., 2018). This culminated in the automatic search for efficient architectures such
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as MobileNet v3 (Howard et al., 2019). It also includes the semi-automatic design explo-
ration of Radosavovic et al. (2020) that led to the RegNetX/Y which we will discuss later
in this chapter. The work is instructive insofar as it offers a path for marrying brute force
computation with the ingenuity of an experimenter in the search for efficient design spaces.
Of note is also the work of Liu et al. (2022) as it shows that training techniques (e.g., op-
timizers, data augmentation, and regularization) play a pivotal role in improving accuracy.
It also shows that long-held assumptions, such as the size of a convolution window, may
need to be revisited, given the increase in computation and data. We will cover this and
many more questions in due course throughout this chapter.

8.1 Deep Convolutional Neural Networks (AlexNet)

Although CNNs were well known in the computer vision and machine learning commu-
nities following the introduction of LeNet (LeCun et al., 1995), they did not immediately
dominate the field. Although LeNet achieved good results on early small datasets, the per-
formance and feasibility of training CNNs on larger, more realistic datasets had yet to be
established. In fact, for much of the intervening time between the early 1990s and the wa-
tershed results of 2012 (Krizhevsky et al., 2012), neural networks were often surpassed
by other machine learning methods, such as kernel methods (Schölkopf and Smola, 2002),
ensemble methods (Freund and Schapire, 1996), and structured estimation (Taskar et al.,
2004).

For computer vision, this comparison is perhaps not entirely accurate. That is, although
the inputs to convolutional networks consist of raw or lightly-processed (e.g., by center-
ing) pixel values, practitioners would never feed raw pixels into traditional models. In-
stead, typical computer vision pipelines consisted of manually engineering feature extrac-
tion pipelines, such as SIFT (Lowe, 2004), SURF (Bay et al., 2006), and bags of visual
words (Sivic and Zisserman, 2003). Rather than learning the features, the features were
crafted. Most of the progress came from having more clever ideas for feature extraction on
the one hand and deep insight into geometry (Hartley and Zisserman, 2000) on the other.
The learning algorithm was often considered an afterthought.

Although some neural network accelerators were available in the 1990s, they were not yet
sufficiently powerful to make deep multichannel, multilayer CNNs with a large number
of parameters. For instance, NVIDIA’s GeForce 256 from 1999 was able to process at
most 480 million floating-point operations, such as additions and multiplications, per sec-
ond (MFLOPS), without any meaningful programming framework for operations beyond
games. Today’s accelerators are able to perform in excess of 1000 TFLOPs per device.
Moreover, datasets were still relatively small: OCR on 60,000 low-resolution 28× 28 pixel
images was considered a highly challenging task. Added to these obstacles, key tricks for
training neural networks including parameter initialization heuristics (Glorot and Bengio,
2010), clever variants of stochastic gradient descent (Kingma and Ba, 2014), non-squashing
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activation functions (Nair and Hinton, 2010), and effective regularization techniques (Sri-
vastava et al., 2014) were still missing.

Thus, rather than training end-to-end (pixel to classification) systems, classical pipelines
looked more like this:

1. Obtain an interesting dataset. In the early days, these datasets required expensive sen-
sors. For instance, the Apple QuickTake 100 125 of 1994 sported a whopping 0.3
megapixel (VGA) resolution, capable of storing up to 8 images, all for the price of $1000.

2. Preprocess the dataset with hand-crafted features based on some knowledge of optics,
geometry, other analytic tools, and occasionally on the serendipitous discoveries by
lucky graduate students.

3. Feed the data through a standard set of feature extractors such as the SIFT (scale-
invariant feature transform) (Lowe, 2004), the SURF (speeded up robust features) (Bay
et al., 2006), or any number of other hand-tuned pipelines. OpenCV still provides SIFT
extractors to this day!

4. Dump the resulting representations into your favorite classifier, likely a linear model or
kernel method, to train a classifier.

If you spoke to machine learning researchers, they would reply that machine learning was
both important and beautiful. Elegant theories proved the properties of various classifiers
(Boucheron et al., 2005) and convex optimization (Boyd and Vandenberghe, 2004) had
become the mainstay for obtaining them. The field of machine learning was thriving, rig-
orous, and eminently useful. However, if you spoke to a computer vision researcher, you
would hear a very different story. The dirty truth of image recognition, they would tell
you, is that features, geometry (Hartley and Zisserman, 2000, Hartley and Kahl, 2009),
and engineering, rather than novel learning algorithms, drove progress. Computer vision
researchers justifiably believed that a slightly bigger or cleaner dataset or a slightly im-
proved feature-extraction pipeline mattered far more to the final accuracy than any learning
algorithm.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

8.1.1 Representation Learning
Another way to cast the state of affairs is that the most important part of the pipeline was the
representation. And up until 2012 the representation was calculated mostly mechanically.
In fact, engineering a new set of feature functions, improving results, and writing up the
method all featured prominently in papers. SIFT (Lowe, 2004), SURF (Bay et al., 2006),
HOG (histograms of oriented gradient) (Dalal and Triggs, 2005), bags of visual words
(Sivic and Zisserman, 2003), and similar feature extractors ruled the roost.

https://en.wikipedia.org/wiki/Apple_QuickTake
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Another group of researchers, including Yann LeCun, Geoff Hinton, Yoshua Bengio, An-
drew Ng, Shun-ichi Amari, and Juergen Schmidhuber, had different plans. They believed
that features themselves ought to be learned. Moreover, they believed that to be reasonably
complex, the features ought to be hierarchically composed with multiple jointly learned
layers, each with learnable parameters. In the case of an image, the lowest layers might
come to detect edges, colors, and textures, by analogy with how the visual system in ani-
mals processes its input. In particular, the automatic design of visual features such as those
obtained by sparse coding (Olshausen and Field, 1996) remained an open challenge until
the advent of modern CNNs. It was not until Dean et al. (2012), Le (2013) that the idea of
generating features from image data automatically gained significant traction.

The first modern CNN (Krizhevsky et al., 2012), named AlexNet after one of its inventors,
Alex Krizhevsky, is largely an evolutionary improvement over LeNet. It achieved excellent
performance in the 2012 ImageNet challenge.

tFig. 8.1.1 Image filters learned by the first layer of AlexNet. Reproduction courtesy of Krizhevsky
et al. (2012).

Interestingly, in the lowest layers of the network, the model learned feature extractors that
resembled some traditional filters. Fig. 8.1.1 shows lower-level image descriptors. Higher
layers in the network might build upon these representations to represent larger structures,
like eyes, noses, blades of grass, and so on. Even higher layers might represent whole
objects like people, airplanes, dogs, or frisbees. Ultimately, the final hidden state learns a
compact representation of the image that summarizes its contents such that data belonging
to different categories can be easily separated.

AlexNet (2012) and its precursor LeNet (1995) share many architectural elements. This
begs the question: why did it take so long? A key difference was that, over the previous two
decades, the amount of data and the computing power available had increased significantly.
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As such AlexNet was much larger: it was trained on much more data, and on much faster
GPUs compared to the CPUs available in 1995.

Missing Ingredient: Data
Deep models with many layers require large amounts of data in order to enter the regime
where they significantly outperform traditional methods based on convex optimizations
(e.g., linear and kernel methods). However, given the limited storage capacity of computers,
the relative expense of (imaging) sensors, and the comparatively tighter research budgets
in the 1990s, most research relied on tiny datasets. Numerous papers relied on the UCI
collection of datasets, many of which contained only hundreds or (a few) thousands of
images captured in low resolution and often with an artificially clean background.

In 2009, the ImageNet dataset was released (Deng et al., 2009), challenging researchers
to learn models from 1 million examples, 1000 each from 1000 distinct categories of ob-
jects. The categories themselves were based on the most popular noun nodes in WordNet
(Miller, 1995). The ImageNet team used Google Image Search to prefilter large candidate
sets for each category and employed the Amazon Mechanical Turk crowdsourcing pipeline
to confirm for each imagewhether it belonged to the associated category. This scale was un-
precedented, exceeding others by over an order of magnitude (e.g., CIFAR-100 has 60,000
images). Another aspect was that the images were at relatively high resolution of 224×224
pixels, unlike the 80 million-sized TinyImages dataset (Torralba et al., 2008), consisting
of 32 × 32 pixel thumbnails. This allowed for the formation of higher-level features. The
associated competition, dubbed the ImageNet Large Scale Visual Recognition Challenge
(Russakovsky et al., 2015), pushed computer vision and machine learning research for-
ward, challenging researchers to identify which models performed best at a greater scale
than academics had previously considered. The largest vision datasets, such as LAION-5B
(Schuhmann et al., 2022) contain billions of images with additional metadata.

Missing Ingredient: Hardware
Deep learning models are voracious consumers of compute cycles. Training can take hun-
dreds of epochs, and each iteration requires passing data through many layers of compu-
tationally expensive linear algebra operations. This is one of the main reasons why in the
1990s and early 2000s, simple algorithms based on the more-efficiently optimized convex
objectives were preferred.

Graphical processing units (GPUs) proved to be a game changer in making deep learn-
ing feasible. These chips had earlier been developed for accelerating graphics processing
to benefit computer games. In particular, they were optimized for high throughput 4 × 4
matrix–vector products, which are needed for many computer graphics tasks. Fortunately,
the math is strikingly similar to that required for calculating convolutional layers. Around
that time, NVIDIA and ATI had begun optimizing GPUs for general computing opera-
tions (Fernando, 2004), going as far as to market them as general-purpose GPUs (GPG-
PUs).
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To provide some intuition, consider the cores of a modern microprocessor (CPU). Each
of the cores is fairly powerful running at a high clock frequency and sporting large caches
(up to several megabytes of L3). Each core is well-suited to executing a wide range of in-
structions, with branch predictors, a deep pipeline, specialized execution units, speculative
execution, and many other bells and whistles that enable it to run a large variety of pro-
grams with sophisticated control flow. This apparent strength, however, is also its Achilles
heel: general-purpose cores are very expensive to build. They excel at general-purpose
code with lots of control flow. This requires lots of chip area, not just for the actual ALU
(arithmetic logical unit) where computation happens, but also for all the aforementioned
bells and whistles, plus memory interfaces, caching logic between cores, high-speed in-
terconnects, and so on. CPUs are comparatively bad at any single task when compared
with dedicated hardware. Modern laptops have 4–8 cores, and even high-end servers rarely
exceed 64 cores per socket, simply because it is not cost-effective.

By comparison, GPUs can consist of thousands of small processing elements (NIVIDA’s
latest Ampere chips have up to 6912CUDAcores), often grouped into larger groups (NVIDIA
calls them warps). The details differ somewhat between NVIDIA, AMD, ARM and other
chip vendors. While each core is relatively weak, running at about 1GHz clock frequency,
it is the total number of such cores that makes GPUs orders of magnitude faster than
CPUs. For instance, NVIDIA’s recent Ampere A100 GPU offers over 300 TFLOPs per
chip for specialized 16-bit precision (BFLOAT16) matrix-matrix multiplications, and up
to 20 TFLOPs for more general-purpose floating point operations (FP32). At the same
time, floating point performance of CPUs rarely exceeds 1 TFLOPs. For instance, Ama-
zon’s Graviton 3 reaches 2 TFLOPs peak performance for 16-bit precision operations, a
number similar to the GPU performance of Apple’s M1 processor.

There are many reasons why GPUs are much faster than CPUs in terms of FLOPs. First,
power consumption tends to grow quadraticallywith clock frequency. Hence, for the power
budget of a CPU core that runs four times faster (a typical number), you can use 16 GPU
cores at 1

4 the speed, which yields 16× 1
4 = 4 times the performance. Second, GPU cores are

much simpler (in fact, for a long time they were not even able to execute general-purpose
code), which makes them more energy efficient. For instance, (i) they tend not to support
speculative evaluation, (ii) it typically is not possible to program each processing element
individually, and (iii) the caches per core tend to be much smaller. Last, many operations
in deep learning require high memory bandwidth. Again, GPUs shine here with buses that
are at least 10 times as wide as many CPUs.

Back to 2012. A major breakthrough came when Alex Krizhevsky and Ilya Sutskever im-
plemented a deep CNN that could run on GPUs. They realized that the computational bot-
tlenecks in CNNs, convolutions and matrix multiplications, are all operations that could be
parallelized in hardware. Using two NVIDIA GTX 580s with 3GB of memory, either of
which was capable of 1.5 TFLOPs (still a challenge for most CPUs a decade later), they im-
plemented fast convolutions. The cuda-convnet126 code was good enough that for several
years it was the industry standard and powered the first couple of years of the deep learning
boom.

https://code.google.com/archive/p/cuda-convnet/
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8.1.2 AlexNet
AlexNet, which employed an 8-layer CNN, won the ImageNet Large Scale Visual Recog-
nition Challenge 2012 by a large margin (Russakovsky et al., 2013). This network showed,
for the first time, that the features obtained by learning can transcend manually-designed
features, breaking the previous paradigm in computer vision.

The architectures of AlexNet and LeNet are strikingly similar, as Fig. 8.1.2 illustrates. Note
that we provide a slightly streamlined version of AlexNet removing some of the design
quirks that were needed in 2012 to make the model fit on two small GPUs.

tFig. 8.1.2 From LeNet (left) to AlexNet (right).

There are also significant differences between AlexNet and LeNet. First, AlexNet is much
deeper than the comparatively small LeNet-5. AlexNet consists of eight layers: five con-
volutional layers, two fully connected hidden layers, and one fully connected output layer.
Second, AlexNet used the ReLU instead of the sigmoid as its activation function. Let’s
delve into the details below.

Architecture
In AlexNet’s first layer, the convolution window shape is 11 × 11. Since the images in
ImageNet are eight times taller and wider than the MNIST images, objects in ImageNet
data tend to occupy more pixels with more visual detail. Consequently, a larger convolution
window is needed to capture the object. The convolution window shape in the second
layer is reduced to 5 × 5, followed by 3 × 3. In addition, after the first, second, and fifth
convolutional layers, the network adds max-pooling layers with a window shape of 3 ×
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3 and a stride of 2. Moreover, AlexNet has ten times more convolution channels than
LeNet.

After the final convolutional layer, there are two huge fully connected layers with 4096 out-
puts. These layers require nearly 1GB model parameters. Because of the limited memory
in early GPUs, the original AlexNet used a dual data stream design, so that each of their
two GPUs could be responsible for storing and computing only its half of the model. Fortu-
nately, GPUmemory is comparatively abundant now, so we rarely need to break up models
across GPUs these days (our version of the AlexNet model deviates from the original paper
in this aspect).

Activation Functions
Furthermore, AlexNet changed the sigmoid activation function to a simpler ReLU activa-
tion function. On the one hand, the computation of the ReLU activation function is simpler.
For example, it does not have the exponentiation operation found in the sigmoid activation
function. On the other hand, the ReLU activation function makes model training easier
when using different parameter initialization methods. This is because, when the output
of the sigmoid activation function is very close to 0 or 1, the gradient of these regions is
almost 0, so that backpropagation cannot continue to update some of the model parameters.
By contrast, the gradient of the ReLU activation function in the positive interval is always 1
(Section 5.1.2). Therefore, if the model parameters are not properly initialized, the sigmoid
function may obtain a gradient of almost 0 in the positive interval, meaning that the model
cannot be effectively trained.

Capacity Control and Preprocessing
AlexNet controls the model complexity of the fully connected layer by dropout (Section
5.6), while LeNet only uses weight decay. To augment the data even further, the training
loop of AlexNet added a great deal of image augmentation, such as flipping, clipping, and
color changes. This makes the model more robust and the larger sample size effectively
reduces overfitting. See Buslaev et al. (2020) for an in-depth review of such preprocessing
steps.

class AlexNet(d2l.Classifier):
def __init__(self, lr=0.1, num_classes=10):

super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(

nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),

(continues on next page)
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nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(num_classes))

self.net.initialize(init.Xavier())

We construct a single-channel data example with both height and width of 224 to observe
the output shape of each layer. It matches the AlexNet architecture in Fig. 8.1.2.

AlexNet().layer_summary((1, 1, 224, 224))

Conv2D output shape: (1, 96, 54, 54)
MaxPool2D output shape: (1, 96, 26, 26)
Conv2D output shape: (1, 256, 26, 26)
MaxPool2D output shape: (1, 256, 12, 12)
Conv2D output shape: (1, 384, 12, 12)
Conv2D output shape: (1, 384, 12, 12)
Conv2D output shape: (1, 256, 12, 12)
MaxPool2D output shape: (1, 256, 5, 5)
Dense output shape: (1, 4096)
Dropout output shape: (1, 4096)
Dense output shape: (1, 4096)
Dropout output shape: (1, 4096)
Dense output shape: (1, 10)
[22:28:16] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

8.1.3 Training
Although AlexNet was trained on ImageNet in Krizhevsky et al. (2012), we use Fashion-
MNIST here since training an ImageNet model to convergence could take hours or days
even on a modern GPU. One of the problems with applying AlexNet directly on Fashion-
MNIST is that its images have lower resolution (28× 28 pixels) than ImageNet images. To
make things work, we upsample them to 224×224. This is generally not a smart practice, as
it simply increases the computational complexity without adding information. Nonetheless,
we do it here to be faithful to the AlexNet architecture. We perform this resizing with the
resize argument in the d2l.FashionMNIST constructor.

Now, we can start training AlexNet. Compared to LeNet in Section 7.6, the main change
here is the use of a smaller learning rate and much slower training due to the deeper and
wider network, the higher image resolution, and the more costly convolutions.

model = AlexNet(lr=0.01)
data = d2l.FashionMNIST(batch_size=128, resize=(224, 224))
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
trainer.fit(model, data)

8.1.4 Discussion
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AlexNet’s structure bears a striking resemblance to LeNet, with a number of critical im-
provements, both for accuracy (dropout) and for ease of training (ReLU). What is equally
striking is the amount of progress that has been made in terms of deep learning tooling.
What was several months of work in 2012 can now be accomplished in a dozen lines of
code using any modern framework.

Reviewing the architecture, we see that AlexNet has an Achilles heel when it comes to effi-
ciency: the last two hidden layers require matrices of size 6400×4096 and 4096×4096, re-
spectively. This corresponds to 164 MB of memory and 81 MFLOPs of computation, both
of which are a nontrivial outlay, especially on smaller devices, such as mobile phones. This
is one of the reasons why AlexNet has been surpassed by much more effective architectures
that we will cover in the following sections. Nonetheless, it is a key step from shallow to
deep networks that are used nowadays. Note that even though the number of parameters
exceeds by far the amount of training data in our experiments (the last two layers have more
than 40 million parameters, trained on a datasets of 60 thousand images), there is hardly
any overfitting: training and validation loss are virtually identical throughout training. This
is due to the improved regularization, such as dropout, inherent in modern deep network
designs.

Although it seems that there are only a few more lines in AlexNet’s implementation than
in LeNet’s, it took the academic community many years to embrace this conceptual change
and take advantage of its excellent experimental results. This was also due to the lack of
efficient computational tools. At the time neither DistBelief (Dean et al., 2012) nor Caffe
(Jia et al., 2014) existed, and Theano (Bergstra et al., 2010) still lacked many distinguishing
features. It was the availability of TensorFlow (Abadi et al., 2016) that dramatically changed
the situation.

8.1.5 Exercises
1. Following up on the discussion above, analyze the computational properties of AlexNet.

1. Compute the memory footprint for convolutions and fully connected layers, respec-
tively. Which one dominates?

2. Calculate the computational cost for the convolutions and the fully connected layers.
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3. How does the memory (read and write bandwidth, latency, size) affect computation?
Is there any difference in its effects for training and inference?

2. You are a chip designer and need to trade off computation and memory bandwidth.
For example, a faster chip requires more power and possibly a larger chip area. More
memory bandwidth requires more pins and control logic, thus also more area. How do
you optimize?

3. Why do engineers no longer report performance benchmarks on AlexNet?

4. Try increasing the number of epochs when training AlexNet. Compared with LeNet,
how do the results differ? Why?

5. AlexNet may be too complex for the Fashion-MNIST dataset, in particular due to the
low resolution of the initial images.

1. Try simplifying the model to make the training faster, while ensuring that the accu-
racy does not drop significantly.

2. Design a better model that works directly on 28 × 28 images.

6. Modify the batch size, and observe the changes in throughput (images/s), accuracy, and
GPU memory.

7. Apply dropout and ReLU to LeNet-5. Does it improve? Can you improve things further
by preprocessing to take advantage of the invariances inherent in the images?

8. Can you make AlexNet overfit? Which feature do you need to remove or change to break
training?

Discussions127 .

8.2 Networks Using Blocks (VGG)

While AlexNet offered empirical evidence that deep CNNs can achieve good results, it did
not provide a general template to guide subsequent researchers in designing new networks.
In the following sections, we will introduce several heuristic concepts commonly used to
design deep networks.

Progress in this fieldmirrors that of VLSI (very large scale integration) in chip designwhere
engineers moved from placing transistors to logical elements to logic blocks (Mead, 1980).
Similarly, the design of neural network architectures has grown progressivelymore abstract,
with researchers moving from thinking in terms of individual neurons to whole layers,
and now to blocks, repeating patterns of layers. A decade later, this has now progressed
to researchers using entire trained models to repurpose them for different, albeit related,
tasks. Such large pretrained models are typically called foundation models (Bommasani et
al., 2021).

https://discuss.d2l.ai/t/75
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Back to network design. The idea of using blocks first emerged from the Visual Geometry
Group (VGG) at Oxford University, in their eponymously-named VGG network (Simonyan
and Zisserman, 2014). It is easy to implement these repeated structures in code with any
modern deep learning framework by using loops and subroutines.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

8.2.1 VGG Blocks
The basic building block of CNNs is a sequence of the following: (i) a convolutional layer
with padding to maintain the resolution, (ii) a nonlinearity such as a ReLU, (iii) a pooling
layer such as max-pooling to reduce the resolution. One of the problems with this approach
is that the spatial resolution decreases quite rapidly. In particular, this imposes a hard limit
of log2 𝑑 convolutional layers on the network before all dimensions (𝑑) are used up. For
instance, in the case of ImageNet, it would be impossible to have more than 8 convolutional
layers in this way.

The key idea of Simonyan and Zisserman (2014) was to use multiple convolutions in be-
tween downsampling via max-pooling in the form of a block. They were primarily in-
terested in whether deep or wide networks perform better. For instance, the successive
application of two 3× 3 convolutions touches the same pixels as a single 5× 5 convolution
does. At the same time, the latter uses approximately as many parameters (25 · 𝑐2) as three
3×3 convolutions do (3 ·9 · 𝑐2). In a rather detailed analysis they showed that deep and nar-
row networks significantly outperform their shallow counterparts. This set deep learning
on a quest for ever deeper networks with over 100 layers for typical applications. Stacking
3 × 3 convolutions has become a gold standard in later deep networks (a design decision
only to be revisited recently by Liu et al. (2022)). Consequently, fast implementations for
small convolutions have become a staple on GPUs (Lavin and Gray, 2016).

Back to VGG: a VGG block consists of a sequence of convolutions with 3× 3 kernels with
padding of 1 (keeping height and width) followed by a 2 × 2 max-pooling layer with stride
of 2 (halving height and width after each block). In the code below, we define a function
called vgg_block to implement one VGG block.

The function below takes two arguments, corresponding to the number of convolutional
layers num_convs and the number of output channels num_channels.

def vgg_block(num_convs, num_channels):
blk = nn.Sequential()
for _ in range(num_convs):

blk.add(nn.Conv2D(num_channels, kernel_size=3,
padding=1, activation='relu'))

blk.add(nn.MaxPool2D(pool_size=2, strides=2))
return blk
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8.2.2 VGG Network
Like AlexNet and LeNet, the VGG Network can be partitioned into two parts: the first
consisting mostly of convolutional and pooling layers and the second consisting of fully
connected layers that are identical to those in AlexNet. The key difference is that the con-
volutional layers are grouped in nonlinear transformations that leave the dimensonality un-
changed, followed by a resolution-reduction step, as depicted in Fig. 8.2.1.

tFig. 8.2.1 From AlexNet to VGG. The key difference is that VGG consists of blocks of layers,
whereas AlexNet’s layers are all designed individually.

The convolutional part of the network connects several VGG blocks from Fig. 8.2.1 (also
defined in the vgg_block function) in succession. This grouping of convolutions is a pat-
tern that has remained almost unchanged over the past decade, although the specific choice
of operations has undergone considerable modifications. The variable arch consists of a
list of tuples (one per block), where each contains two values: the number of convolutional
layers and the number of output channels, which are precisely the arguments required to
call the vgg_block function. As such, VGG defines a family of networks rather than just a
specific manifestation. To build a specific network we simply iterate over arch to compose
the blocks.

class VGG(d2l.Classifier):
def __init__(self, arch, lr=0.1, num_classes=10):

super().__init__()
self.save_hyperparameters()

(continues on next page)
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self.net = nn.Sequential()
for (num_convs, num_channels) in arch:

self.net.add(vgg_block(num_convs, num_channels))
self.net.add(nn.Dense(4096, activation='relu'), nn.Dropout(0.5),

nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(num_classes))

self.net.initialize(init.Xavier())

The original VGG network had five convolutional blocks, among which the first two have
one convolutional layer each and the latter three contain two convolutional layers each. The
first block has 64 output channels and each subsequent block doubles the number of output
channels, until that number reaches 512. Since this network uses eight convolutional layers
and three fully connected layers, it is often called VGG-11.

VGG(arch=((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))).layer_summary(
(1, 1, 224, 224))

Sequential output shape: (1, 64, 112, 112)
Sequential output shape: (1, 128, 56, 56)
Sequential output shape: (1, 256, 28, 28)
Sequential output shape: (1, 512, 14, 14)
Sequential output shape: (1, 512, 7, 7)
Dense output shape: (1, 4096)
Dropout output shape: (1, 4096)
Dense output shape: (1, 4096)
Dropout output shape: (1, 4096)
Dense output shape: (1, 10)
[22:40:53] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

As you can see, we halve height and width at each block, finally reaching a height and width
of 7 before flattening the representations for processing by the fully connected part of the
network. Simonyan and Zisserman (2014) described several other variants of VGG. In
fact, it has become the norm to propose families of networks with different speed–accuracy
trade-off when introducing a new architecture.

8.2.3 Training
Since VGG-11 is computationally more demanding than AlexNet we construct a network
with a smaller number of channels. This is more than sufficient for training on Fashion-
MNIST. The model training process is similar to that of AlexNet in Section 8.1. Again ob-
serve the close match between validation and training loss, suggesting only a small amount
of overfitting.

model = VGG(arch=((1, 16), (1, 32), (2, 64), (2, 128), (2, 128)), lr=0.01)
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128, resize=(224, 224))
trainer.fit(model, data)
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8.2.4 Summary
One might argue that VGG is the first truly modern convolutional neural network. While
AlexNet introduced many of the components of what make deep learning effective at scale,
it is VGG that arguably introduced key properties such as blocks of multiple convolutions
and a preference for deep and narrow networks. It is also the first network that is actually
an entire family of similarly parametrized models, giving the practitioner ample trade-off
between complexity and speed. This is also the place where modern deep learning frame-
works shine. It is no longer necessary to generate XML configuration files to specify a
network but rather, to assemble said networks through simple Python code.

More recently ParNet (Goyal et al., 2021) demonstrated that it is possible to achieve com-
petitive performance using a much more shallow architecture through a large number of
parallel computations. This is an exciting development and there is hope that it will influ-
ence architecture designs in the future. For the remainder of the chapter, though, we will
follow the path of scientific progress over the past decade.

8.2.5 Exercises
1. Comparedwith AlexNet, VGG ismuch slower in terms of computation, and it also needs

more GPU memory.

1. Compare the number of parameters needed for AlexNet and VGG.

2. Compare the number of floating point operations used in the convolutional layers
and in the fully connected layers.

3. How could you reduce the computational cost created by the fully connected layers?

2. When displaying the dimensions associated with the various layers of the network, we
only see the information associated with eight blocks (plus some auxiliary transforms),
even though the network has 11 layers. Where did the remaining three layers go?

3. Use Table 1 in the VGG paper (Simonyan and Zisserman, 2014) to construct other com-
mon models, such as VGG-16 or VGG-19.

4. Upsampling the resolution in Fashion-MNIST eight-fold from 28 × 28 to 224 × 224
dimensions is very wasteful. Try modifying the network architecture and resolution
conversion, e.g., to 56 or to 84 dimensions for its input instead. Can you do so without
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reducing the accuracy of the network? Consult the VGG paper (Simonyan and Zisser-
man, 2014) for ideas on adding more nonlinearities prior to downsampling.

Discussions128 .

8.3 Network in Network (NiN)

LeNet, AlexNet, and VGG all share a common design pattern: extract features exploiting
spatial structure via a sequence of convolutions and pooling layers and post-process the
representations via fully connected layers. The improvements upon LeNet by AlexNet and
VGG mainly lie in how these later networks widen and deepen these two modules.

This design poses two major challenges. First, the fully connected layers at the end of
the architecture consume tremendous numbers of parameters. For instance, even a simple
model such as VGG-11 requires a monstrous matrix, occupying almost 400MB of RAM
in single precision (FP32). This is a significant impediment to computation, in particular
on mobile and embedded devices. After all, even high-end mobile phones sport no more
than 8GB of RAM. At the time VGG was invented, this was an order of magnitude less
(the iPhone 4S had 512MB). As such, it would have been difficult to justify spending the
majority of memory on an image classifier.

Second, it is equally impossible to add fully connected layers earlier in the network to
increase the degree of nonlinearity: doing so would destroy the spatial structure and require
potentially even more memory.

The network in network (NiN) blocks (Lin et al., 2013) offer an alternative, capable of
solving both problems in one simple strategy. They were proposed based on a very simple
insight: (i) use 1× 1 convolutions to add local nonlinearities across the channel activations
and (ii) use global average pooling to integrate across all locations in the last representation
layer. Note that global average pooling would not be effective, were it not for the added
nonlinearities. Let’s dive into this in detail.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

8.3.1 NiN Blocks
Recall Section 7.4.3. In it we said that the inputs and outputs of convolutional layers consist
of four-dimensional tensors with axes corresponding to the example, channel, height, and
width. Also recall that the inputs and outputs of fully connected layers are typically two-
dimensional tensors corresponding to the example and feature. The idea behind NiN is
to apply a fully connected layer at each pixel location (for each height and width). The

https://discuss.d2l.ai/t/77
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resulting 1×1 convolution can be thought of as a fully connected layer acting independently
on each pixel location.

Fig. 8.3.1 illustrates themain structural differences betweenVGGandNiN, and their blocks.
Note both the difference in the NiN blocks (the initial convolution is followed by 1×1 con-
volutions, whereas VGG retains 3 × 3 convolutions) and at the end where we no longer
require a giant fully connected layer.

tFig. 8.3.1 Comparing the architectures of VGG and NiN, and of their blocks.

def nin_block(num_channels, kernel_size, strides, padding):
blk = nn.Sequential()
blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding,

activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'))

return blk

8.3.2 NiN Model
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NiN uses the same initial convolution sizes as AlexNet (it was proposed shortly thereafter).
The kernel sizes are 11 × 11, 5 × 5, and 3 × 3, respectively, and the numbers of output
channels match those of AlexNet. Each NiN block is followed by a max-pooling layer with
a stride of 2 and a window shape of 3 × 3.

The second significant difference between NiN and both AlexNet and VGG is that NiN
avoids fully connected layers altogether. Instead, NiN uses a NiN block with a number of
output channels equal to the number of label classes, followed by a global average pooling
layer, yielding a vector of logits. This design significantly reduces the number of required
model parameters, albeit at the expense of a potential increase in training time.

class NiN(d2l.Classifier):
def __init__(self, lr=0.1, num_classes=10):

super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(

nin_block(96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Dropout(0.5),
nin_block(num_classes, kernel_size=3, strides=1, padding=1),
nn.GlobalAvgPool2D(),
nn.Flatten())

self.net.initialize(init.Xavier())

We create a data example to see the output shape of each block.

NiN().layer_summary((1, 1, 224, 224))

Sequential output shape: (1, 96, 54, 54)
MaxPool2D output shape: (1, 96, 26, 26)
Sequential output shape: (1, 256, 26, 26)
MaxPool2D output shape: (1, 256, 12, 12)
Sequential output shape: (1, 384, 12, 12)
MaxPool2D output shape: (1, 384, 5, 5)
Dropout output shape: (1, 384, 5, 5)
Sequential output shape: (1, 10, 5, 5)
GlobalAvgPool2D output shape: (1, 10, 1, 1)
Flatten output shape: (1, 10)
[22:45:22] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

8.3.3 Training
As before we use Fashion-MNIST to train the model using the same optimizer that we used
for AlexNet and VGG.
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model = NiN(lr=0.05)
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128, resize=(224, 224))
trainer.fit(model, data)

8.3.4 Summary
NiN has dramatically fewer parameters than AlexNet and VGG. This stems primarily from
the fact that it needs no giant fully connected layers. Instead, it uses global average pooling
to aggregate across all image locations after the last stage of the network body. This obvi-
ates the need for expensive (learned) reduction operations and replaces them by a simple
average. What surprised researchers at the time was the fact that this averaging operation
did not harm accuracy. Note that averaging across a low-resolution representation (with
many channels) also adds to the amount of translation invariance that the network can han-
dle.

Choosing fewer convolutions with wide kernels and replacing them by 1 × 1 convolutions
aids the quest for fewer parameters further. It can cater for a significant amount of non-
linearity across channels within any given location. Both 1 × 1 convolutions and global
average pooling significantly influenced subsequent CNN designs.

8.3.5 Exercises
1. Why are there two 1 × 1 convolutional layers per NiN block? Increase their number to

three. Reduce their number to one. What changes?

2. What changes if you replace the 1 × 1 convolutions by 3 × 3 convolutions?

3. What happens if you replace the global average pooling by a fully connected layer
(speed, accuracy, number of parameters)?

4. Calculate the resource usage for NiN.

1. What is the number of parameters?

2. What is the amount of computation?

3. What is the amount of memory needed during training?
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4. What is the amount of memory needed during prediction?

5. What are possible problems with reducing the 384× 5× 5 representation to a 10× 5× 5
representation in one step?

6. Use the structural design decisions in VGG that led to VGG-11, VGG-16, and VGG-19
to design a family of NiN-like networks.

Discussions129 .

8.4 Multi-Branch Networks (GoogLeNet)

In 2014, GoogLeNet won the ImageNet Challenge (Szegedy et al., 2015), using a structure
that combined the strengths of NiN (Lin et al., 2013), repeated blocks (Simonyan and Zis-
serman, 2014), and a cocktail of convolution kernels. It was arguably also the first network
that exhibited a clear distinction among the stem (data ingest), body (data processing), and
head (prediction) in a CNN. This design pattern has persisted ever since in the design of
deep networks: the stem is given by the first two or three convolutions that operate on the
image. They extract low-level features from the underlying images. This is followed by a
body of convolutional blocks. Finally, the head maps the features obtained so far to the
required classification, segmentation, detection, or tracking problem at hand.

The key contribution in GoogLeNet was the design of the network body. It solved the prob-
lem of selecting convolution kernels in an ingenious way. While other works tried to iden-
tify which convolution, ranging from 1×1 to 11×11 would be best, it simply concatenated
multi-branch convolutions. In what follows we introduce a slightly simplified version of
GoogLeNet: the original design included a number of tricks for stabilizing training through
intermediate loss functions, applied to multiple layers of the network. They are no longer
necessary due to the availability of improved training algorithms.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

8.4.1 Inception Blocks
The basic convolutional block in GoogLeNet is called an Inception block, stemming from
the meme “we need to go deeper” from the movie Inception.

As depicted in Fig. 8.4.1, the inception block consists of four parallel branches. The first
three branches use convolutional layers with window sizes of 1 × 1, 3 × 3, and 5 × 5 to
extract information from different spatial sizes. The middle two branches also add a 1 × 1

https://discuss.d2l.ai/t/79
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tFig. 8.4.1 Structure of the Inception block.

convolution of the input to reduce the number of channels, reducing the model’s complex-
ity. The fourth branch uses a 3 × 3 max-pooling layer, followed by a 1 × 1 convolutional
layer to change the number of channels. The four branches all use appropriate padding
to give the input and output the same height and width. Finally, the outputs along each
branch are concatenated along the channel dimension and comprise the block’s output. The
commonly-tuned hyperparameters of the Inception block are the number of output channels
per layer, i.e., how to allocate capacity among convolutions of different size.

class Inception(nn.Block):
# c1--c4 are the number of output channels for each branch
def __init__(self, c1, c2, c3, c4, **kwargs):

super(Inception, self).__init__(**kwargs)
# Branch 1
self.b1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
# Branch 2
self.b2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
self.b2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1,

activation='relu')
# Branch 3
self.b3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
self.b3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2,

activation='relu')
# Branch 4
self.b4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
self.b4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')

def forward(self, x):
b1 = self.b1_1(x)
b2 = self.b2_2(self.b2_1(x))
b3 = self.b3_2(self.b3_1(x))
b4 = self.b4_2(self.b4_1(x))
return np.concatenate((b1, b2, b3, b4), axis=1)

To gain some intuition for why this network works so well, consider the combination of
the filters. They explore the image in a variety of filter sizes. This means that details at
different extents can be recognized efficiently by filters of different sizes. At the same time,
we can allocate different amounts of parameters for different filters.

8.4.2 GoogLeNet Model
As shown in Fig. 8.4.2, GoogLeNet uses a stack of a total of 9 inception blocks, arranged
into three groups with max-pooling in between, and global average pooling in its head to
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generate its estimates. Max-pooling between inception blocks reduces the dimensionality.
At its stem, the first module is similar to AlexNet and LeNet.

tFig. 8.4.2 The GoogLeNet architecture.

We can now implement GoogLeNet piece by piece. Let’s begin with the stem. The first
module uses a 64-channel 7 × 7 convolutional layer.

class GoogleNet(d2l.Classifier):
def b1(self):

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3,

activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

return net

The second module uses two convolutional layers: first, a 64-channel 1 × 1 convolutional
layer, followed by a 3 × 3 convolutional layer that triples the number of channels. This
corresponds to the second branch in the Inception block and concludes the design of the
body. At this point we have 192 channels.

@d2l.add_to_class(GoogleNet)
def b2(self):

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=1, activation='relu'),

nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

return net

The third module connects two complete Inception blocks in series. The number of output
channels of the first Inception block is 64+ 128+ 32+ 32 = 256. This amounts to a ratio of
the number of output channels among the four branches of 2 : 4 : 1 : 1. To achieve this, we
first reduce the input dimensions by 1

2 and by 1
12 in the second and third branch respectively

to arrive at 96 = 192/2 and 16 = 192/12 channels respectively.

The number of output channels of the second Inception block is increased to 128 + 192 +
96 + 64 = 480, yielding a ratio of 128 : 192 : 96 : 64 = 4 : 6 : 3 : 2. As before, we need to
reduce the number of intermediate dimensions in the second and third channel. A scale of
1
2 and 1

8 respectively suffices, yielding 128 and 32 channels respectively. This is captured
by the arguments of the following Inception block constructors.

@d2l.add_to_class(GoogleNet)

(continues on next page)
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def b3(self):
net = nn.Sequential()
net.add(Inception(64, (96, 128), (16, 32), 32),

Inception(128, (128, 192), (32, 96), 64),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

return net

The fourth module is more complicated. It connects five Inception blocks in series, and
they have 192+ 208+ 48+ 64 = 512, 160+ 224+ 64+ 64 = 512, 128+ 256+ 64+ 64 = 512,
112 + 288 + 64 + 64 = 528, and 256 + 320 + 128 + 128 = 832 output channels, respectively.
The number of channels assigned to these branches is similar to that in the third module:
the second branch with the 3×3 convolutional layer outputs the largest number of channels,
followed by the first branch with only the 1 × 1 convolutional layer, the third branch with
the 5 × 5 convolutional layer, and the fourth branch with the 3 × 3 max-pooling layer. The
second and third branches will first reduce the number of channels according to the ratio.
These ratios are slightly different in different Inception blocks.

@d2l.add_to_class(GoogleNet)
def b4(self):

net = nn.Sequential()
net.add(Inception(192, (96, 208), (16, 48), 64),

Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

return net

The fifth module has two Inception blocks with 256+320+128+128 = 832 and 384+384+
128 + 128 = 1024 output channels. The number of channels assigned to each branch is the
same as that in the third and fourth modules, but differs in specific values. It should be
noted that the fifth block is followed by the output layer. This block uses the global average
pooling layer to change the height and width of each channel to 1, just as in NiN. Finally,
we turn the output into a two-dimensional array followed by a fully connected layer whose
number of outputs is the number of label classes.

@d2l.add_to_class(GoogleNet)
def b5(self):

net = nn.Sequential()
net.add(Inception(256, (160, 320), (32, 128), 128),

Inception(384, (192, 384), (48, 128), 128),
nn.GlobalAvgPool2D())

return net

Now that we defined all blocks b1 through b5, it is just a matter of assembling them all into
a full network.
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@d2l.add_to_class(GoogleNet)
def __init__(self, lr=0.1, num_classes=10):

super(GoogleNet, self).__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(self.b1(), self.b2(), self.b3(), self.b4(), self.b5(),

nn.Dense(num_classes))
self.net.initialize(init.Xavier())

The GoogLeNet model is computationally complex. Note the large number of relatively
arbitrary hyperparameters in terms of the number of channels chosen, the number of blocks
prior to dimensionality reduction, the relative partitioning of capacity across channels, etc.
Much of it is due to the fact that at the time when GoogLeNet was introduced, automatic
tools for network definition or design exploration were not yet available. For instance, by
now we take it for granted that a competent deep learning framework is capable of inferring
dimensionalities of input tensors automatically. At the time, many such configurations had
to be specified explicitly by the experimenter, thus often slowing down active experimen-
tation. Moreover, the tools needed for automatic exploration were still in flux and initial
experiments largely amounted to costly brute-force exploration, genetic algorithms, and
similar strategies.

For now the only modification we will carry out is to reduce the input height and width
from 224 to 96 to have a reasonable training time on Fashion-MNIST. This simplifies the
computation. Let’s have a look at the changes in the shape of the output between the various
modules.

model = GoogleNet().layer_summary((1, 1, 96, 96))

[22:26:25] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
Sequential output shape: (1, 64, 24, 24)
Sequential output shape: (1, 192, 12, 12)
Sequential output shape: (1, 480, 6, 6)
Sequential output shape: (1, 832, 3, 3)
Sequential output shape: (1, 1024, 1, 1)
Dense output shape: (1, 10)

8.4.3 Training
As before, we train our model using the Fashion-MNIST dataset. We transform it to 96×96
pixel resolution before invoking the training procedure.

model = GoogleNet(lr=0.01)
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128, resize=(96, 96))
trainer.fit(model, data)
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8.4.4 Discussion
A key feature of GoogLeNet is that it is actually cheaper to compute than its predecessors
while simultaneously providing improved accuracy. This marks the beginning of a much
more deliberate network design that trades off the cost of evaluating a network with a reduc-
tion in errors. It also marks the beginning of experimentation at a block level with network
design hyperparameters, even though it was entirely manual at the time. We will revisit this
topic in Section 8.8 when discussing strategies for network structure exploration.

Over the following sections we will encounter a number of design choices (e.g., batch nor-
malization, residual connections, and channel grouping) that allow us to improve networks
significantly. For now, you can be proud to have implemented what is arguably the first
truly modern CNN.

8.4.5 Exercises
1. GoogLeNet was so successful that it went through a number of iterations, progressively

improving speed and accuracy. Try to implement and run some of them. They include
the following:

1. Add a batch normalization layer (Ioffe and Szegedy, 2015), as described later in
Section 8.5.

2. Make adjustments to the Inception block (width, choice and order of convolutions),
as described in Szegedy et al. (2016).

3. Use label smoothing for model regularization, as described in Szegedy et al. (2016).

4. Make further adjustments to the Inception block by adding residual connection (Szegedy
et al., 2017), as described later in Section 8.6.

2. What is the minimum image size needed for GoogLeNet to work?

3. Can you design a variant of GoogLeNet that works on Fashion-MNIST’s native resolu-
tion of 28× 28 pixels? How would you need to change the stem, the body, and the head
of the network, if anything at all?

4. Compare the model parameter sizes of AlexNet, VGG, NiN, and GoogLeNet. How do
the latter two network architectures significantly reduce the model parameter size?
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5. Compare the amount of computation needed in GoogLeNet and AlexNet. How does this
affect the design of an accelerator chip, e.g., in terms of memory size, memory band-
width, cache size, the amount of computation, and the benefit of specialized operations?

Discussions130 .

8.5 Batch Normalization

Training deep neural networks is difficult. Getting them to converge in a reasonable amount
of time can be tricky. In this section, we describe batch normalization, a popular and
effective technique that consistently accelerates the convergence of deep networks (Ioffe
and Szegedy, 2015). Together with residual blocks—covered later in Section 8.6—batch
normalization has made it possible for practitioners to routinely train networks with over
100 layers. A secondary (serendipitous) benefit of batch normalization lies in its inherent
regularization.

from mxnet import autograd, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

8.5.1 Training Deep Networks
When working with data, we often preprocess before training. Choices regarding data pre-
processing often make an enormous difference in the final results. Recall our application of
MLPs to predicting house prices (Section 5.7). Our first step when working with real data
was to standardize our input features to have zeromean 𝝁 = 0 and unit variance𝚺 = 1 across
multiple observations (Friedman, 1987), frequently rescaling the latter so that the diagonal
is unity, i.e., Σ𝑖𝑖 = 1. Yet another strategy is to rescale vectors to unit length, possibly
zero mean per observation. This can work well, e.g., for spatial sensor data. These pre-
processing techniques and many others, are beneficial for keeping the estimation problem
well controlled. For a review of feature selection and extraction see the article of Guyon et
al. (2008), for example. Standardizing vectors also has the nice side-effect of constraining
the function complexity of functions that act upon it. For instance, the celebrated radius-
margin bound (Vapnik, 1995) in support vector machines and the Perceptron Convergence
Theorem (Novikoff, 1962) rely on inputs of bounded norm.

Intuitively, this standardization plays nicely with our optimizers since it puts the parameters
a priori on a similar scale. As such, it is only natural to ask whether a corresponding
normalization step inside a deep network might not be beneficial. While this is not quite
the reasoning that led to the invention of batch normalization (Ioffe and Szegedy, 2015),
it is a useful way of understanding it and its cousin, layer normalization (Ba et al., 2016),
within a unified framework.

https://discuss.d2l.ai/t/81
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Second, for a typical MLP or CNN, as we train, the variables in intermediate layers (e.g.,
affine transformation outputs in MLP) may take values with widely varying magnitudes:
whether along the layers from input to output, across units in the same layer, and over
time due to our updates to the model parameters. The inventors of batch normalization
postulated informally that this drift in the distribution of such variables could hamper the
convergence of the network. Intuitively, we might conjecture that if one layer has variable
activations that are 100 times that of another layer, this might necessitate compensatory
adjustments in the learning rates. Adaptive solvers such as AdaGrad (Duchi et al., 2011),
Adam (Kingma and Ba, 2014), Yogi (Zaheer et al., 2018), or Distributed Shampoo (Anil
et al., 2020) aim to address this from the viewpoint of optimization, e.g., by adding aspects
of second-order methods. The alternative is to prevent the problem from occurring, simply
by adaptive normalization.

Third, deeper networks are complex and tend to be more liable to overfitting. This means
that regularization becomes more critical. A common technique for regularization is noise
injection. This has been known for a long time, e.g., with regard to noise injection for
the inputs (Bishop, 1995). It also forms the basis of dropout in Section 5.6. As it turns
out, quite serendipitously, batch normalization conveys all three benefits: preprocessing,
numerical stability, and regularization.

Batch normalization is applied to individual layers, or optionally, to all of them: In each
training iteration, we first normalize the inputs (of batch normalization) by subtracting their
mean and dividing by their standard deviation, where both are estimated based on the statis-
tics of the current minibatch. Next, we apply a scale coefficient and an offset to recover the
lost degrees of freedom. It is precisely due to this normalization based on batch statistics
that batch normalization derives its name.

Note that if we tried to apply batch normalization with minibatches of size 1, we would not
be able to learn anything. That is because after subtracting the means, each hidden unit
would take value 0. As you might guess, since we are devoting a whole section to batch
normalization, with large enough minibatches the approach proves effective and stable.
One takeaway here is that when applying batch normalization, the choice of batch size is
even more significant than without batch normalization, or at least, suitable calibration is
needed as we might adjust batch size.

Denote by B a minibatch and let x ∈ B be an input to batch normalization (BN). In this
case the batch normalization is defined as follows:

BN(x) = 𝜸 � x − 𝝁̂B
𝝈̂B

+ 𝜷. (8.5.1)

In (8.5.1), 𝝁̂B is the sample mean and 𝝈̂B is the sample standard deviation of the minibatch
B. After applying standardization, the resulting minibatch has zero mean and unit variance.
The choice of unit variance (rather than some other magic number) is arbitrary. We recover
this degree of freedom by including an elementwise scale parameter 𝜸 and shift parameter
𝜷 that have the same shape as x. Both are parameters that need to be learned as part of
model training.

The variable magnitudes for intermediate layers cannot diverge during training since batch
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normalization actively centers and rescales them back to a given mean and size (via 𝝁̂B and
𝝈̂B). Practical experience confirms that, as alluded to when discussing feature rescaling,
batch normalization seems to allow for more aggressive learning rates. We calculate 𝝁̂B
and 𝝈̂B in (8.5.1) as follows:

𝝁̂B =
1
|B|

∑
x∈B

x and 𝝈̂2
B =

1
|B|

∑
x∈B
(x − 𝝁̂B)2 + 𝜖 . (8.5.2)

Note that we add a small constant 𝜖 > 0 to the variance estimate to ensure that we never
attempt division by zero, even in cases where the empirical variance estimate might be
very small or vanish. The estimates 𝝁̂B and 𝝈̂B counteract the scaling issue by using noisy
estimates of mean and variance. You might think that this noisiness should be a problem.
On the contrary, it is actually beneficial.

This turns out to be a recurring theme in deep learning. For reasons that are not yet well-
characterized theoretically, various sources of noise in optimization often lead to faster
training and less overfitting: this variation appears to act as a form of regularization. Teye
et al. (2018) and Luo et al. (2018) related the properties of batch normalization to Bayesian
priors and penalties, respectively. In particular, this sheds some light on the puzzle of why
batch normalization works best for moderate minibatch sizes in the 50–100 range. This
particular size of minibatch seems to inject just the “right amount” of noise per layer, both
in terms of scale via 𝝈̂, and in terms of offset via 𝝁̂: a larger minibatch regularizes less due
to the more stable estimates, whereas tiny minibatches destroy useful signal due to high
variance. Exploring this direction further, considering alternative types of preprocessing
and filtering may yet lead to other effective types of regularization.

Fixing a trained model, you might think that we would prefer using the entire dataset to
estimate the mean and variance. Once training is complete, why would we want the same
image to be classified differently, depending on the batch in which it happens to reside?
During training, such exact calculation is infeasible because the intermediate variables for
all data examples change every time we update our model. However, once the model is
trained, we can calculate the means and variances of each layer’s variables based on the
entire dataset. Indeed this is standard practice for models employing batch normalization;
thus batch normalization layers function differently in training mode (normalizing by mini-
batch statistics) than in predictionmode (normalizing by dataset statistics). In this form they
closely resemble the behavior of dropout regularization of Section 5.6, where noise is only
injected during training.

8.5.2 Batch Normalization Layers
Batch normalization implementations for fully connected layers and convolutional layers
are slightly different. One key difference between batch normalization and other layers is
that because the former operates on a full minibatch at a time, we cannot just ignore the
batch dimension as we did before when introducing other layers.
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Fully Connected Layers
When applying batch normalization to fully connected layers, Ioffe and Szegedy (2015), in
their original paper inserted batch normalization after the affine transformation and before
the nonlinear activation function. Later applications experimented with inserting batch
normalization right after activation functions. Denoting the input to the fully connected
layer by x, the affine transformation by Wx + b (with the weight parameter W and the
bias parameter b), and the activation function by 𝜙, we can express the computation of a
batch-normalization-enabled, fully connected layer output h as follows:

h = 𝜙(BN(Wx + b)). (8.5.3)

Recall that mean and variance are computed on the same minibatch on which the transfor-
mation is applied.

Convolutional Layers
Similarly, with convolutional layers, we can apply batch normalization after the convolution
but before the nonlinear activation function. The key difference from batch normalization
in fully connected layers is that we apply the operation on a per-channel basis across all
locations. This is compatible with our assumption of translation invariance that led to
convolutions: we assumed that the specific location of a pattern within an image was not
critical for the purpose of understanding.

Assume that our minibatches contain 𝑚 examples and that for each channel, the output
of the convolution has height 𝑝 and width 𝑞. For convolutional layers, we carry out each
batch normalization over the 𝑚 · 𝑝 · 𝑞 elements per output channel simultaneously. Thus,
we collect the values over all spatial locations when computing the mean and variance and
consequently apply the same mean and variance within a given channel to normalize the
value at each spatial location. Each channel has its own scale and shift parameters, both of
which are scalars.

Layer Normalization
Note that in the context of convolutions the batch normalization is well defined even for
minibatches of size 1: after all, we have all the locations across an image to average. Con-
sequently, mean and variance are well defined, even if it is just within a single observation.
This consideration led Ba et al. (2016) to introduce the notion of layer normalization. It
works just like a batch norm, only that it is applied to one observation at a time. Conse-
quently both the offset and the scaling factor are scalars. For an 𝑛-dimensional vector x,
layer norms are given by

x→ LN(x) = x − 𝜇̂
𝜎̂

, (8.5.4)

where scaling and offset are applied coefficient-wise and given by

𝜇̂
def
=

1
𝑛

𝑛∑
𝑖=1

𝑥𝑖 and 𝜎̂2 def
=

1
𝑛

𝑛∑
𝑖=1
(𝑥𝑖 − 𝜇̂)2 + 𝜖 . (8.5.5)
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As before we add a small offset 𝜖 > 0 to prevent division by zero. One of the major benefits
of using layer normalization is that it prevents divergence. After all, ignoring 𝜖 , the output
of the layer normalization is scale independent. That is, we have LN(x) ≈ LN(𝛼x) for any
choice of 𝛼 ≠ 0. This becomes an equality for |𝛼 | → ∞ (the approximate equality is due
to the offset 𝜖 for the variance).

Another advantage of the layer normalization is that it does not depend on the minibatch
size. It is also independent of whether we are in training or test regime. In other words, it is
simply a deterministic transformation that standardizes the activations to a given scale. This
can be very beneficial in preventing divergence in optimization. We skip further details and
recommend that interested readers consult the original paper.

Batch Normalization During Prediction
Aswementioned earlier, batch normalization typically behaves differently in training mode
than in predictionmode. First, the noise in the sample mean and the sample variance arising
from estimating each on minibatches is no longer desirable once we have trained the model.
Second, we might not have the luxury of computing per-batch normalization statistics. For
example, we might need to apply our model to make one prediction at a time.

Typically, after training, we use the entire dataset to compute stable estimates of the vari-
able statistics and then fix them at prediction time. Hence, batch normalization behaves
differently during training than at test time. Recall that dropout also exhibits this charac-
teristic.

8.5.3 Implementation from Scratch
To see how batch normalization works in practice, we implement one from scratch be-
low.

def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
# Use autograd to determine whether we are in training mode
if not autograd.is_training():

# In prediction mode, use mean and variance obtained by moving average
X_hat = (X - moving_mean) / np.sqrt(moving_var + eps)

else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:

# When using a fully connected layer, calculate the mean and
# variance on the feature dimension
mean = X.mean(axis=0)
var = ((X - mean) ** 2).mean(axis=0)

else:
# When using a two-dimensional convolutional layer, calculate the
# mean and variance on the channel dimension (axis=1). Here we
# need to maintain the shape of X, so that the broadcasting
# operation can be carried out later
mean = X.mean(axis=(0, 2, 3), keepdims=True)
var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)

# In training mode, the current mean and variance are used

(continues on next page)
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X_hat = (X - mean) / np.sqrt(var + eps)
# Update the mean and variance using moving average
moving_mean = (1.0 - momentum) * moving_mean + momentum * mean
moving_var = (1.0 - momentum) * moving_var + momentum * var

Y = gamma * X_hat + beta # Scale and shift
return Y, moving_mean, moving_var

We can now create a proper BatchNorm layer. Our layer will maintain proper parameters for
scale gamma and shift beta, both of which will be updated in the course of training. Addi-
tionally, our layer will maintain moving averages of the means and variances for subsequent
use during model prediction.

Putting aside the algorithmic details, note the design pattern underlying our implementation
of the layer. Typically, we define the mathematics in a separate function, say batch_norm.
We then integrate this functionality into a custom layer, whose code mostly addresses book-
keeping matters, such as moving data to the right device context, allocating and initializing
any required variables, keeping track of moving averages (here for mean and variance),
and so on. This pattern enables a clean separation of mathematics from boilerplate code.
Also note that for the sake of convenience we did not worry about automatically inferring
the input shape here; thus we need to specify the number of features throughout. By now
all modern deep learning frameworks offer automatic detection of size and shape in the
high-level batch normalization APIs (in practice we will use this instead).

class BatchNorm(nn.Block):
# `num_features`: the number of outputs for a fully connected layer
# or the number of output channels for a convolutional layer. `num_dims`:
# 2 for a fully connected layer and 4 for a convolutional layer
def __init__(self, num_features, num_dims, **kwargs):

super().__init__(**kwargs)
if num_dims == 2:

shape = (1, num_features)
else:

shape = (1, num_features, 1, 1)
# The scale parameter and the shift parameter (model parameters) are
# initialized to 1 and 0, respectively
self.gamma = self.params.get('gamma', shape=shape, init=init.One())
self.beta = self.params.get('beta', shape=shape, init=init.Zero())
# The variables that are not model parameters are initialized to 0 and
# 1
self.moving_mean = np.zeros(shape)
self.moving_var = np.ones(shape)

def forward(self, X):
# If `X` is not on the main memory, copy `moving_mean` and
# `moving_var` to the device where `X` is located
if self.moving_mean.ctx != X.ctx:

self.moving_mean = self.moving_mean.copyto(X.ctx)
self.moving_var = self.moving_var.copyto(X.ctx)

# Save the updated `moving_mean` and `moving_var`
Y, self.moving_mean, self.moving_var = batch_norm(

(continues on next page)
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X, self.gamma.data(), self.beta.data(), self.moving_mean,
self.moving_var, eps=1e-12, momentum=0.1)

return Y

We used momentum to govern the aggregation over past mean and variance estimates. This
is somewhat of a misnomer as it has nothing whatsoever to do with the momentum term of
optimization. Nonetheless, it is the commonly adopted name for this term and in deference
to API naming convention we use the same variable name in our code.

8.5.4 LeNet with Batch Normalization
To see how to apply BatchNorm in context, below we apply it to a traditional LeNet model
(Section 7.6). Recall that batch normalization is applied after the convolutional layers or
fully connected layers but before the corresponding activation functions.

class BNLeNetScratch(d2l.Classifier):
def __init__(self, lr=0.1, num_classes=10):

super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(

nn.Conv2D(6, kernel_size=5), BatchNorm(6, num_dims=4),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5), BatchNorm(16, num_dims=4),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2), nn.Dense(120),
BatchNorm(120, num_dims=2), nn.Activation('sigmoid'),
nn.Dense(84), BatchNorm(84, num_dims=2),
nn.Activation('sigmoid'), nn.Dense(num_classes))

self.initialize()

As before, we will train our network on the Fashion-MNIST dataset. This code is virtually
identical to that when we first trained LeNet.

trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128)
model = BNLeNetScratch(lr=0.1)
trainer.fit(model, data)

Let’s have a look at the scale parameter gamma and the shift parameter beta learned from
the first batch normalization layer.

model.net[1].gamma.data().reshape(-1,), model.net[1].beta.data().reshape(-1,)

(array([2.130113 , 1.560813 , 1.461431 , 1.9807949, 2.2318861, 1.551563 ],␣
↩→ctx=gpu(0)),

(continues on next page)
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array([ 1.2277379 , 1.514598 , -1.014917 , 0.19028394, 0.6355166 ,
0.5642359 ], ctx=gpu(0)))

8.5.5 Concise Implementation
Compared with the BatchNorm class, which we just defined ourselves, we can use the
BatchNorm class defined in high-level APIs from the deep learning framework directly.
The code looks virtually identical to our implementation above, except that we no longer
need to provide additional arguments for it to get the dimensions right.

class BNLeNet(d2l.Classifier):
def __init__(self, lr=0.1, num_classes=10):

super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(

nn.Conv2D(6, kernel_size=5), nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5), nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120), nn.BatchNorm(), nn.Activation('sigmoid'),
nn.Dense(84), nn.BatchNorm(), nn.Activation('sigmoid'),
nn.Dense(num_classes))

self.initialize()

Below, we use the same hyperparameters to train our model. Note that as usual, the high-
level API variant runs much faster because its code has been compiled to C++ or CUDA
while our custom implementation must be interpreted by Python.

trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128)
model = BNLeNet(lr=0.1)
trainer.fit(model, data)

8.5.6 Discussion
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Intuitively, batch normalization is thought to make the optimization landscape smoother.
However, we must be careful to distinguish between speculative intuitions and true expla-
nations for the phenomena that we observe when training deep models. Recall that we do
not even know why simpler deep neural networks (MLPs and conventional CNNs) general-
ize well in the first place. Even with dropout and weight decay, they remain so flexible that
their ability to generalize to unseen data likely needs significantly more refined learning-
theoretic generalization guarantees.

The original paper proposing batch normalization (Ioffe and Szegedy, 2015), in addition to
introducing a powerful and useful tool, offered an explanation for why it works: by reducing
internal covariate shift. Presumably by internal covariate shift they meant something like
the intuition expressed above—the notion that the distribution of variable values changes
over the course of training. However, there were two problemswith this explanation: i) This
drift is very different from covariate shift, rendering the name a misnomer. If anything, it
is closer to concept drift. ii) The explanation offers an under-specified intuition but leaves
the question of why precisely this technique works an open question wanting for a rigorous
explanation. Throughout this book, we aim to convey the intuitions that practitioners use to
guide their development of deep neural networks. However, we believe that it is important
to separate these guiding intuitions from established scientific fact. Eventually, when you
master this material and start writing your own research papers you will want to be clear to
delineate between technical claims and hunches.

Following the success of batch normalization, its explanation in terms of internal covariate
shift has repeatedly surfaced in debates in the technical literature and broader discourse
about how to present machine learning research. In a memorable speech given while ac-
cepting a Test of Time Award at the 2017 NeurIPS conference, Ali Rahimi used internal
covariate shift as a focal point in an argument likening the modern practice of deep learning
to alchemy. Subsequently, the example was revisited in detail in a position paper outlining
troubling trends in machine learning (Lipton and Steinhardt, 2018). Other authors have
proposed alternative explanations for the success of batch normalization, some (Santurkar
et al., 2018) claiming that batch normalization’s success comes despite exhibiting behavior
that is in some ways opposite to those claimed in the original paper.

We note that the internal covariate shift is no more worthy of criticism than any of thou-
sands of similarly vague claimsmade every year in the technicalmachine learning literature.
Likely, its resonance as a focal point of these debates owes to its broad recognizability for
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the target audience. Batch normalization has proven an indispensable method, applied in
nearly all deployed image classifiers, earning the paper that introduced the technique tens of
thousands of citations. We conjecture, though, that the guiding principles of regularization
through noise injection, acceleration through rescaling and lastly preprocessing may well
lead to further inventions of layers and techniques in the future.

On a more practical note, there are a number of aspects worth remembering about batch
normalization:

• During model training, batch normalization continuously adjusts the intermediate output
of the network by utilizing the mean and standard deviation of the minibatch, so that
the values of the intermediate output in each layer throughout the neural network are
more stable.

• Batch normalization is slightly different for fully connected layers than for convolutional
layers. In fact, for convolutional layers, layer normalization can sometimes be used as
an alternative.

• Like a dropout layer, batch normalization layers have different behaviors in trainingmode
than in prediction mode.

• Batch normalization is useful for regularization and improving convergence in optimiza-
tion. By contrast, the original motivation of reducing internal covariate shift seems
not to be a valid explanation.

• For more robust models that are less sensitive to input perturbations, consider removing
batch normalization (Wang et al., 2022).

8.5.7 Exercises
1. Should we remove the bias parameter from the fully connected layer or the convolutional

layer before the batch normalization? Why?

2. Compare the learning rates for LeNet with and without batch normalization.

1. Plot the increase in validation accuracy.

2. How large can you make the learning rate before the optimization fails in both cases?

3. Do we need batch normalization in every layer? Experiment with it.

4. Implement a “lite” version of batch normalization that only removes the mean, or alter-
natively one that only removes the variance. How does it behave?

5. Fix the parameters beta and gamma. Observe and analyze the results.

6. Can you replace dropout by batch normalization? How does the behavior change?

7. Research ideas: think of other normalization transforms that you can apply:

1. Can you apply the probability integral transform?

2. Can you use a full-rank covariance estimate? Why should you probably not do that?
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3. Can you use other compact matrix variants (block-diagonal, low-displacement rank,
Monarch, etc.)?

4. Does a sparsification compression act as a regularizer?

5. Are there other projections (e.g., convex cone, symmetry group-specific transforms)
that you can use?

Discussions131 .

8.6 Residual Networks (ResNet) and ResNeXt

As we design ever deeper networks it becomes imperative to understand how adding layers
can increase the complexity and expressiveness of the network. Even more important is
the ability to design networks where adding layers makes networks strictly more expressive
rather than just different. To make some progress we need a bit of mathematics.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

8.6.1 Function Classes
Consider F , the class of functions that a specific network architecture (together with learn-
ing rates and other hyperparameter settings) can reach. That is, for all 𝑓 ∈ F there exists
some set of parameters (e.g., weights and biases) that can be obtained through training on
a suitable dataset. Let’s assume that 𝑓 ∗ is the “truth” function that we really would like to
find. If it is in F , we are in good shape but typically we will not be quite so lucky. Instead,
we will try to find some 𝑓 ∗F which is our best bet within F . For instance, given a dataset
with featuresX and labels y, we might try finding it by solving the following optimization
problem:

𝑓 ∗F
def
= argmin

𝑓
𝐿 (X,y, 𝑓 ) subject to 𝑓 ∈ F . (8.6.1)

We know that regularization (Morozov, 1984, Tikhonov and Arsenin, 1977) may control
complexity of F and achieve consistency, so a larger size of training data generally leads to
better 𝑓 ∗F . It is only reasonable to assume that if we design a different and more powerful
architecture F ′ we should arrive at a better outcome. In other words, we would expect
that 𝑓 ∗F′ is “better” than 𝑓 ∗F . However, if F ⊈ F ′ there is no guarantee that this should
even happen. In fact, 𝑓 ∗F′ might well be worse. As illustrated by Fig. 8.6.1, for non-nested
function classes, a larger function class does not always move closer to the “truth” function
𝑓 ∗. For instance, on the left of Fig. 8.6.1, though F3 is closer to 𝑓 ∗ than F1, F6 moves away
and there is no guarantee that further increasing the complexity can reduce the distance

https://discuss.d2l.ai/t/83
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from 𝑓 ∗. With nested function classes where F1 ⊆ · · · ⊆ F6 on the right of Fig. 8.6.1, we
can avoid the aforementioned issue from the non-nested function classes.

tFig. 8.6.1 For non-nested function classes, a larger (indicated by area) function class does not
guarantee we will get closer to the “truth” function (f ∗). This does not happen in nested
function classes.

Thus, only if larger function classes contain the smaller ones are we guaranteed that increas-
ing them strictly increases the expressive power of the network. For deep neural networks,
if we can train the newly-added layer into an identity function 𝑓 (x) = x, the new model
will be as effective as the original model. As the new model may get a better solution to fit
the training dataset, the added layer might make it easier to reduce training errors.

This is the question that He et al. (2016) considered when working on very deep com-
puter vision models. At the heart of their proposed residual network (ResNet) is the idea
that every additional layer should more easily contain the identity function as one of its
elements. These considerations are rather profound but they led to a surprisingly simple
solution, a residual block. With it, ResNet won the ImageNet Large Scale Visual Recogni-
tion Challenge in 2015. The design had a profound influence on how to build deep neural
networks. For instance, residual blocks have been added to recurrent networks (Kim et al.,
2017, Prakash et al., 2016). Likewise, Transformers (Vaswani et al., 2017) use them to
stack many layers of networks efficiently. It is also used in graph neural networks (Kipf
and Welling, 2016) and, as a basic concept, it has been used extensively in computer vision
(Redmon and Farhadi, 2018, Ren et al., 2015). Note that residual networks are predated by
highway networks (Srivastava et al., 2015) that share some of the motivation, albeit without
the elegant parametrization around the identity function.

8.6.2 Residual Blocks
Let’s focus on a local part of a neural network, as depicted in Fig. 8.6.2. Denote the input
by x. We assume that 𝑓 (x), the desired underlying mapping we want to obtain by learning,
is to be used as input to the activation function on the top. On the left, the portion within the
dotted-line box must directly learn 𝑓 (x). On the right, the portion within the dotted-line
box needs to learn the residual mapping 𝑔(x) = 𝑓 (x) −x, which is how the residual block
derives its name. If the identity mapping 𝑓 (x) = x is the desired underlying mapping, the
residual mapping amounts to 𝑔(x) = 0 and it is thus easier to learn: we only need to push the
weights and biases of the upper weight layer (e.g., fully connected layer and convolutional
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layer) within the dotted-line box to zero. The right figure illustrates the residual block of
ResNet, where the solid line carrying the layer input x to the addition operator is called
a residual connection (or shortcut connection). With residual blocks, inputs can forward
propagate faster through the residual connections across layers. In fact, the residual block
can be thought of as a special case of the multi-branch Inception block: it has two branches
one of which is the identity mapping.

tFig. 8.6.2 In a regular block (left), the portion within the dotted-line box must directly learn the
mapping f (x). In a residual block (right), the portion within the dotted-line box needs to
learn the residual mapping g (x) = f (x) − x, making the identity mapping f (x) = x easier
to learn.

ResNet has VGG’s full 3 × 3 convolutional layer design. The residual block has two 3 × 3
convolutional layers with the same number of output channels. Each convolutional layer
is followed by a batch normalization layer and a ReLU activation function. Then, we skip
these two convolution operations and add the input directly before the final ReLU activation
function. This kind of design requires that the output of the two convolutional layers has to
be of the same shape as the input, so that they can be added together. If we want to change
the number of channels, we need to introduce an additional 1 × 1 convolutional layer to
transform the input into the desired shape for the addition operation. Let’s have a look at
the code below.

class Residual(nn.Block): #@save
"""The Residual block of ResNet models."""
def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):

super().__init__(**kwargs)
self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,

strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_1x1conv:

self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
strides=strides)

else:
self.conv3 = None

self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()

(continues on next page)
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(continued from previous page)

def forward(self, X):
Y = npx.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:

X = self.conv3(X)
return npx.relu(Y + X)

This code generates two types of networks: one where we add the input to the output before
applying the ReLU nonlinearity whenever use_1x1conv=False; and one where we adjust
channels and resolution by means of a 1×1 convolution before adding. Fig. 8.6.3 illustrates
this.

tFig. 8.6.3 ResNet block with and without 1 × 1 convolution, which transforms the input into the
desired shape for the addition operation.

Now let’s look at a situation where the input and output are of the same shape, where 1× 1
convolution is not needed.

blk = Residual(3)
blk.initialize()
X = np.random.randn(4, 3, 6, 6)
blk(X).shape

[22:49:23] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(4, 3, 6, 6)

We also have the option to halve the output height and width while increasing the number
of output channels. In this case we use 1 × 1 convolutions via use_1x1conv=True. This
comes in handy at the beginning of each ResNet block to reduce the spatial dimensionality
via strides=2.
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blk = Residual(6, use_1x1conv=True, strides=2)
blk.initialize()
blk(X).shape

(4, 6, 3, 3)

8.6.3 ResNet Model
The first two layers of ResNet are the same as those of the GoogLeNet we described before:
the 7 × 7 convolutional layer with 64 output channels and a stride of 2 is followed by the
3 × 3 max-pooling layer with a stride of 2. The difference is the batch normalization layer
added after each convolutional layer in ResNet.

class ResNet(d2l.Classifier):
def b1(self):

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),

nn.BatchNorm(), nn.Activation('relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

return net

GoogLeNet uses four modules made up of Inception blocks. However, ResNet uses four
modules made up of residual blocks, each of which uses several residual blocks with the
same number of output channels. The number of channels in the first module is the same
as the number of input channels. Since a max-pooling layer with a stride of 2 has already
been used, it is not necessary to reduce the height and width. In the first residual block for
each of the subsequent modules, the number of channels is doubled compared with that of
the previous module, and the height and width are halved.

@d2l.add_to_class(ResNet)
def block(self, num_residuals, num_channels, first_block=False):

blk = nn.Sequential()
for i in range(num_residuals):

if i == 0 and not first_block:
blk.add(Residual(num_channels, use_1x1conv=True, strides=2))

else:
blk.add(Residual(num_channels))

return blk

Then, we add all the modules to ResNet. Here, two residual blocks are used for each mod-
ule. Lastly, just like GoogLeNet, we add a global average pooling layer, followed by the
fully connected layer output.

@d2l.add_to_class(ResNet)
def __init__(self, arch, lr=0.1, num_classes=10):

super(ResNet, self).__init__()
self.save_hyperparameters()

(continues on next page)
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(continued from previous page)

self.net = nn.Sequential()
self.net.add(self.b1())
for i, b in enumerate(arch):

self.net.add(self.block(*b, first_block=(i==0)))
self.net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
self.net.initialize(init.Xavier())

There are four convolutional layers in eachmodule (excluding the 1×1 convolutional layer).
Together with the first 7×7 convolutional layer and the final fully connected layer, there are
18 layers in total. Therefore, this model is commonly known as ResNet-18. By configuring
different numbers of channels and residual blocks in the module, we can create different
ResNet models, such as the deeper 152-layer ResNet-152. Although the main architecture
of ResNet is similar to that of GoogLeNet, ResNet’s structure is simpler and easier to mod-
ify. All these factors have resulted in the rapid and widespread use of ResNet. Fig. 8.6.4
depicts the full ResNet-18.

tFig. 8.6.4 The ResNet-18 architecture.

Before training ResNet, let’s observe how the input shape changes across different modules
in ResNet. As in all the previous architectures, the resolution decreases while the number
of channels increases up until the point where a global average pooling layer aggregates all
features.

class ResNet18(ResNet):
def __init__(self, lr=0.1, num_classes=10):

super().__init__(((2, 64), (2, 128), (2, 256), (2, 512)),
lr, num_classes)

ResNet18().layer_summary((1, 1, 96, 96))

Sequential output shape: (1, 64, 24, 24)
Sequential output shape: (1, 64, 24, 24)
Sequential output shape: (1, 128, 12, 12)
Sequential output shape: (1, 256, 6, 6)
Sequential output shape: (1, 512, 3, 3)
GlobalAvgPool2D output shape: (1, 512, 1, 1)
Dense output shape: (1, 10)

8.6.4 Training
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We train ResNet on the Fashion-MNIST dataset, just like before. ResNet is quite a pow-
erful and flexible architecture. The plot capturing training and validation loss illustrates a
significant gap between both graphs, with the training loss being considerably lower. For
a network of this flexibility, more training data would offer distinct benefit in closing the
gap and improving accuracy.

model = ResNet18(lr=0.01)
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128, resize=(96, 96))
trainer.fit(model, data)

8.6.5 ResNeXt
One of the challenges one encounters in the design of ResNet is the trade-off between non-
linearity and dimensionality within a given block. That is, we could add more nonlinearity
by increasing the number of layers, or by increasing the width of the convolutions. An al-
ternative strategy is to increase the number of channels that can carry information between
blocks. Unfortunately, the latter comes with a quadratic penalty since the computational
cost of ingesting 𝑐i channels and emitting 𝑐o channels is proportional to O(𝑐i · 𝑐o) (see our
discussion in Section 7.4).

We can take some inspiration from the Inception block of Fig. 8.4.1 which has informa-
tion flowing through the block in separate groups. Applying the idea of multiple indepen-
dent groups to the ResNet block of Fig. 8.6.3 led to the design of ResNeXt (Xie et al.,
2017). Different from the smorgasbord of transformations in Inception, ResNeXt adopts
the same transformation in all branches, thus minimizing the need for manual tuning of
each branch.

Breaking up a convolution from 𝑐i to 𝑐o channels into one of 𝑔 groups of size 𝑐i/𝑔 gener-
ating 𝑔 outputs of size 𝑐o/𝑔 is called, quite fittingly, a grouped convolution. The computa-
tional cost (proportionally) is reduced fromO(𝑐i ·𝑐o) toO(𝑔 · (𝑐i/𝑔) · (𝑐o/𝑔)) = O(𝑐i ·𝑐o/𝑔),
i.e., it is 𝑔 times faster. Even better, the number of parameters needed to generate the output
is also reduced from a 𝑐i × 𝑐o matrix to 𝑔 smaller matrices of size (𝑐i/𝑔) × (𝑐o/𝑔), again a
𝑔 times reduction. In what follows we assume that both 𝑐i and 𝑐o are divisible by 𝑔.

The only challenge in this design is that no information is exchanged between the 𝑔 groups.
The ResNeXt block of Fig. 8.6.5 amends this in two ways: the grouped convolution with
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tFig. 8.6.5 The ResNeXt block. The use of grouped convolution with g groups is g times faster than
a dense convolution. It is a bottleneck residual block when the number of intermediate
channels b is less than c.

a 3 × 3 kernel is sandwiched in between two 1 × 1 convolutions. The second one serves
double duty in changing the number of channels back. The benefit is that we only pay the
O(𝑐 · 𝑏) cost for 1 × 1 kernels and can make do with an O(𝑏2/𝑔) cost for 3 × 3 kernels.
Similar to the residual block implementation in Section 8.6.2, the residual connection is
replaced (thus generalized) by a 1 × 1 convolution.

The right-hand figure in Fig. 8.6.5 provides a much more concise summary of the resulting
network block. It will also play a major role in the design of generic modern CNNs in
Section 8.8. Note that the idea of grouped convolutions dates back to the implementation
of AlexNet (Krizhevsky et al., 2012). When distributing the network across two GPUs
with limited memory, the implementation treated each GPU as its own channel with no ill
effects.

The following implementation of the ResNeXtBlock class takes as argument groups (𝑔),
with bot_channels (𝑏) intermediate (bottleneck) channels. Lastly, whenwe need to reduce
the height andwidth of the representation, we add a stride of 2 by setting use_1x1conv=True,
strides=2.

class ResNeXtBlock(nn.Block): #@save
"""The ResNeXt block."""
def __init__(self, num_channels, groups, bot_mul,

use_1x1conv=False, strides=1, **kwargs):
super().__init__(**kwargs)
bot_channels = int(round(num_channels * bot_mul))
self.conv1 = nn.Conv2D(bot_channels, kernel_size=1, padding=0,

strides=1)
self.conv2 = nn.Conv2D(bot_channels, kernel_size=3, padding=1,

strides=strides, groups=bot_channels//groups)
self.conv3 = nn.Conv2D(num_channels, kernel_size=1, padding=0,

(continues on next page)
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strides=1)
self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()
self.bn3 = nn.BatchNorm()
if use_1x1conv:

self.conv4 = nn.Conv2D(num_channels, kernel_size=1,
strides=strides)

self.bn4 = nn.BatchNorm()
else:

self.conv4 = None

def forward(self, X):
Y = npx.relu(self.bn1(self.conv1(X)))
Y = npx.relu(self.bn2(self.conv2(Y)))
Y = self.bn3(self.conv3(Y))
if self.conv4:

X = self.bn4(self.conv4(X))
return npx.relu(Y + X)

Its use is entirely analogous to that of the ResNetBlock discussed previously. For instance,
when using (use_1x1conv=False, strides=1), the input and output are of the same
shape. Alternatively, setting use_1x1conv=True, strides=2 halves the output height
and width.

blk = ResNeXtBlock(32, 16, 1)
blk.initialize()
X = np.random.randn(4, 32, 96, 96)
blk(X).shape

(4, 32, 96, 96)

8.6.6 Summary and Discussion
Nested function classes are desirable since they allow us to obtain strictly more power-
ful rather than also subtly different function classes when adding capacity. One way of
accomplishing this is by letting additional layers to simply pass through the input to the
output. Residual connections allow for this. As a consequence, this changes the inductive
bias from simple functions being of the form 𝑓 (x) = 0 to simple functions looking like
𝑓 (x) = x.

The residual mapping can learn the identity function more easily, such as pushing param-
eters in the weight layer to zero. We can train an effective deep neural network by having
residual blocks. Inputs can forward propagate faster through the residual connections across
layers. As a consequence, we can thus train much deeper networks. For instance, the origi-
nal ResNet paper (He et al., 2016) allowed for up to 152 layers. Another benefit of residual
networks is that it allows us to add layers, initialized as the identity function, during the
training process. After all, the default behavior of a layer is to let the data pass through
unchanged. This can accelerate the training of very large networks in some cases.
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Prior to residual connections, bypassing paths with gating units were introduced to effec-
tively train highway networks with over 100 layers (Srivastava et al., 2015). Using identity
functions as bypassing paths, ResNet performed remarkably well on multiple computer vi-
sion tasks. Residual connections had a major influence on the design of subsequent deep
neural networks, of either convolutional or sequential nature. As we will introduce later,
the Transformer architecture (Vaswani et al., 2017) adopts residual connections (together
with other design choices) and is pervasive in areas as diverse as language, vision, speech,
and reinforcement learning.

ResNeXt is an example for how the design of convolutional neural networks has evolved
over time: by being more frugal with computation and trading it off against the size of the
activations (number of channels), it allows for faster and more accurate networks at lower
cost. An alternative way of viewing grouped convolutions is to think of a block-diagonal
matrix for the convolutional weights. Note that there are quite a few such “tricks” that lead
to more efficient networks. For instance, ShiftNet (Wu et al., 2018) mimicks the effects of
a 3×3 convolution, simply by adding shifted activations to the channels, offering increased
function complexity, this time without any computational cost.

A common feature of the designs we have discussed so far is that the network design is
fairly manual, primarily relying on the ingenuity of the designer to find the “right” network
hyperparameters. While clearly feasible, it is also very costly in terms of human time and
there is no guarantee that the outcome is optimal in any sense. In Section 8.8 wewill discuss
a number of strategies for obtaining high quality networks in a more automated fashion. In
particular, we will review the notion of network design spaces that led to the RegNetX/Y
models (Radosavovic et al., 2020).

8.6.7 Exercises
1. What are the major differences between the Inception block in Fig. 8.4.1 and the residual

block? How do they compare in terms of computation, accuracy, and the classes of
functions they can describe?

2. Refer to Table 1 in the ResNet paper (He et al., 2016) to implement different variants of
the network.

3. For deeper networks, ResNet introduces a “bottleneck” architecture to reduce model
complexity. Try to implement it.

4. In subsequent versions of ResNet, the authors changed the “convolution, batch normal-
ization, and activation” structure to the “batch normalization, activation, and convolu-
tion” structure. Make this improvement yourself. See Figure 1 in He et al. (2016) for
details.

5. Why can’t we just increase the complexity of functions without bound, even if the func-
tion classes are nested?

Discussions132 .
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8.7 Densely Connected Networks (DenseNet)

ResNet significantly changed the view of how to parametrize the functions in deep net-
works. DenseNet (dense convolutional network) is to some extent the logical extension of
this (Huang et al., 2017). DenseNet is characterized by both the connectivity pattern where
each layer connects to all the preceding layers and the concatenation operation (rather than
the addition operator in ResNet) to preserve and reuse features from earlier layers. To un-
derstand how to arrive at it, let’s take a small detour to mathematics.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

8.7.1 From ResNet to DenseNet
Recall the Taylor expansion for functions. At the point 𝑥 = 0 it can be written as

𝑓 (𝑥) = 𝑓 (0) + 𝑥 ·
[
𝑓 ′ (0) + 𝑥 ·

[
𝑓 ′′ (0)

2!
+ 𝑥 ·

[
𝑓 ′′′ (0)

3!
+ · · ·

] ] ]
. (8.7.1)

The key point is that it decomposes a function into terms of increasingly higher order. In a
similar vein, ResNet decomposes functions into

𝑓 (x) = x + 𝑔(x). (8.7.2)

That is, ResNet decomposes 𝑓 into a simple linear term and a more complex nonlinear one.
What if we wanted to capture (not necessarily add) information beyond two terms? One
such solution is DenseNet (Huang et al., 2017).

tFig. 8.7.1 The main difference between ResNet (left) and DenseNet (right) in cross-layer
connections: use of addition and use of concatenation.

As shown in Fig. 8.7.1, the key difference between ResNet and DenseNet is that in the
latter case outputs are concatenated (denoted by [, ]) rather than added. As a result, we
perform a mapping from x to its values after applying an increasingly complex sequence
of functions:

x→ [x, 𝑓1 (x), 𝑓2 ( [x, 𝑓1 (x)]) , 𝑓3 ([x, 𝑓1 (x) , 𝑓2 ([x, 𝑓1 (x)])]) , . . .] . (8.7.3)

In the end, all these functions are combined in MLP to reduce the number of features again.
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In terms of implementation this is quite simple: rather than adding terms, we concatenate
them. The nameDenseNet arises from the fact that the dependency graph between variables
becomes quite dense. The final layer of such a chain is densely connected to all previous
layers. The dense connections are shown in Fig. 8.7.2.

tFig. 8.7.2 Dense connections in DenseNet. Note how the dimensionality increases with depth.

Themain components that comprise a DenseNet are dense blocks and transition layers. The
former define how the inputs and outputs are concatenated, while the latter control the num-
ber of channels so that it is not too large, since the expansionx→ [x, 𝑓1 (x), 𝑓2 ([x, 𝑓1 (x)]) , . . .]
can be quite high-dimensional.

8.7.2 Dense Blocks
DenseNet uses the modified “batch normalization, activation, and convolution” structure
of ResNet (see the exercise in Section 8.6). First, we implement this convolution block
structure.

def conv_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(),

nn.Activation('relu'),
nn.Conv2D(num_channels, kernel_size=3, padding=1))

return blk

A dense block consists of multiple convolution blocks, each using the same number of
output channels. In the forward propagation, however, we concatenate the input and output
of each convolution block on the channel dimension. Lazy evaluation allows us to adjust
the dimensionality automatically.

class DenseBlock(nn.Block):
def __init__(self, num_convs, num_channels):

super().__init__()
self.net = nn.Sequential()
for _ in range(num_convs):

self.net.add(conv_block(num_channels))

def forward(self, X):
for blk in self.net:

Y = blk(X)
# Concatenate input and output of each block along the channels
X = np.concatenate((X, Y), axis=1)

return X

In the following example, we define a DenseBlock instance with two convolution blocks of
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10 output channels. When using an input with three channels, we will get an output with
3 + 10 + 10 = 23 channels. The number of convolution block channels controls the growth
in the number of output channels relative to the number of input channels. This is also
referred to as the growth rate.

blk = DenseBlock(2, 10)
X = np.random.uniform(size=(4, 3, 8, 8))
blk.initialize()
Y = blk(X)
Y.shape

[22:30:09] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(4, 23, 8, 8)

8.7.3 Transition Layers
Since each dense block will increase the number of channels, adding too many of them will
lead to an excessively complex model. A transition layer is used to control the complexity
of the model. It reduces the number of channels by using a 1× 1 convolution. Moreover, it
halves the height and width via average pooling with a stride of 2.

def transition_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(), nn.Activation('relu'),

nn.Conv2D(num_channels, kernel_size=1),
nn.AvgPool2D(pool_size=2, strides=2))

return blk

Apply a transition layer with 10 channels to the output of the dense block in the previous
example. This reduces the number of output channels to 10, and halves the height and
width.

blk = transition_block(10)
blk.initialize()
blk(Y).shape

(4, 10, 4, 4)

8.7.4 DenseNet Model
Next, we will construct a DenseNet model. DenseNet first uses the same single convolu-
tional layer and max-pooling layer as in ResNet.
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class DenseNet(d2l.Classifier):
def b1(self):

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),

nn.BatchNorm(), nn.Activation('relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

return net

Then, similar to the four modules made up of residual blocks that ResNet uses, DenseNet
uses four dense blocks. As with ResNet, we can set the number of convolutional layers used
in each dense block. Here, we set it to 4, consistent with the ResNet-18 model in Section
8.6. Furthermore, we set the number of channels (i.e., growth rate) for the convolutional
layers in the dense block to 32, so 128 channels will be added to each dense block.

In ResNet, the height and width are reduced between each module by a residual block with
a stride of 2. Here, we use the transition layer to halve the height and width and halve the
number of channels. Similar to ResNet, a global pooling layer and a fully connected layer
are connected at the end to produce the output.

@d2l.add_to_class(DenseNet)
def __init__(self, num_channels=64, growth_rate=32, arch=(4, 4, 4, 4),

lr=0.1, num_classes=10):
super(DenseNet, self).__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(self.b1())
for i, num_convs in enumerate(arch):

self.net.add(DenseBlock(num_convs, growth_rate))
# The number of output channels in the previous dense block
num_channels += num_convs * growth_rate
# A transition layer that halves the number of channels is added
# between the dense blocks
if i != len(arch) - 1:

num_channels //= 2
self.net.add(transition_block(num_channels))

self.net.add(nn.BatchNorm(), nn.Activation('relu'),
nn.GlobalAvgPool2D(), nn.Dense(num_classes))

self.net.initialize(init.Xavier())

8.7.5 Training
Since we are using a deeper network here, in this section, we will reduce the input height
and width from 224 to 96 to simplify the computation.

model = DenseNet(lr=0.01)
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128, resize=(96, 96))
trainer.fit(model, data)

8.7.6 Summary and Discussion
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The main components that comprise DenseNet are dense blocks and transition layers. For
the latter, we need to keep the dimensionality under control when composing the net-
work by adding transition layers that shrink the number of channels again. In terms of
cross-layer connections, in contrast to ResNet, where inputs and outputs are added to-
gether, DenseNet concatenates inputs and outputs on the channel dimension. Although
these concatenation operations reuse features to achieve computational efficiency, unfortu-
nately they lead to heavy GPU memory consumption. As a result, applying DenseNet may
require more memory-efficient implementations that may increase training time (Pleiss et
al., 2017).

8.7.7 Exercises
1. Why do we use average pooling rather than max-pooling in the transition layer?

2. One of the advantages mentioned in the DenseNet paper is that its model parameters are
smaller than those of ResNet. Why is this the case?

3. One problem for which DenseNet has been criticized is its high memory consumption.

1. Is this really the case? Try to change the input shape to 224 × 224 to compare the
actual GPU memory consumption empirically.

2. Can you think of an alternative means of reducing the memory consumption? How
would you need to change the framework?

4. Implement the various DenseNet versions presented in Table 1 of the DenseNet paper
(Huang et al., 2017).

5. Design an MLP-based model by applying the DenseNet idea. Apply it to the housing
price prediction task in Section 5.7.

Discussions133 .

https://discuss.d2l.ai/t/87
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8.8 Designing Convolution Network Architectures

The previous sections have taken us on a tour of modern network design for computer
vision. Common to all the work we covered was that it greatly relied on the intuition of
scientists. Many of the architectures are heavily informed by human creativity and to a
much lesser extent by systematic exploration of the design space that deep networks offer.
Nonetheless, this network engineering approach has been tremendously successful.

Ever since AlexNet (Section 8.1) beat conventional computer vision models on ImageNet,
it has become popular to construct very deep networks by stacking blocks of convolutions,
all designed according to the same pattern. In particular, 3 × 3 convolutions were popular-
ized by VGG networks (Section 8.2). NiN (Section 8.3) showed that even 1 × 1 convolu-
tions could be beneficial by adding local nonlinearities. Moreover, NiN solved the problem
of aggregating information at the head of a network by aggregating across all locations.
GoogLeNet (Section 8.4) added multiple branches of different convolution width, combin-
ing the advantages of VGG and NiN in its Inception block. ResNets (Section 8.6) changed
the inductive bias towards the identity mapping (from 𝑓 (𝑥) = 0). This allowed for very
deep networks. Almost a decade later, the ResNet design is still popular, a testament to
its design. Lastly, ResNeXt (Section 8.6.5) added grouped convolutions, offering a better
trade-off between parameters and computation. A precursor to Transformers for vision,
the Squeeze-and-Excitation Networks (SENets) allow for efficient information transfer be-
tween locations (Hu et al., 2018). This was accomplished by computing a per-channel
global attention function.

Up to now we have omitted networks obtained via neural architecture search (NAS) (Liu
et al., 2018, Zoph and Le, 2016). We chose to do so since their cost is usually enormous,
relying on brute-force search, genetic algorithms, reinforcement learning, or some other
form of hyperparameter optimization. Given a fixed search space, NAS uses a search strat-
egy to automatically select an architecture based on the returned performance estimation.
The outcome of NAS is a single network instance. EfficientNets are a notable outcome of
this search (Tan and Le, 2019).

In the following we discuss an idea that is quite different to the quest for the single best
network. It is computationally relatively inexpensive, it leads to scientific insights on the
way, and it is quite effective in terms of the quality of outcomes. Let’s review the strategy
by Radosavovic et al. (2020) to design network design spaces. The strategy combines the
strength of manual design and NAS. It accomplishes this by operating on distributions of
networks and optimizing the distributions in a way to obtain good performance for entire
families of networks. The outcome of it are RegNets, specifically RegNetX and RegNetY,
plus a range of guiding principles for the design of performant CNNs.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

(continues on next page)
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(continued from previous page)

npx.set_np()

8.8.1 The AnyNet Design Space
The description below closely follows the reasoning in Radosavovic et al. (2020) with some
abbreviations to make it fit in the scope of the book. To begin, we need a template for the
family of networks to explore. One of the commonalities of the designs in this chapter is
that the networks consist of a stem, a body and a head. The stem performs initial image
processing, often through convolutions with a larger window size. The body consists of
multiple blocks, carrying out the bulk of the transformations needed to go from raw images
to object representations. Lastly, the head converts this into the desired outputs, such as
via a softmax regressor for multiclass classification. The body, in turn, consists of multiple
stages, operating on the image at decreasing resolutions. In fact, both the stem and each
subsequent stage quarter the spatial resolution. Lastly, each stage consists of one or more
blocks. This pattern is common to all networks, from VGG to ResNeXt. Indeed, for the
design of generic AnyNet networks, Radosavovic et al. (2020) used the ResNeXt block of
Fig. 8.6.5.

tFig. 8.8.1 The AnyNet design space. The numbers (c, r ) along each arrow indicate the number of
channels c and the resolution r × r of the images at that point. From left to right: generic
network structure composed of stem, body, and head; body composed of four stages;
detailed structure of a stage; two alternative structures for blocks, one without
downsampling and one that halves the resolution in each dimension. Design choices
include depth di , the number of output channels ci , the number of groups gi , and
bottleneck ratio ki for any stage i .

Let’s review the structure outlined in Fig. 8.8.1 in detail. As mentioned, an AnyNet consists
of a stem, body, and head. The stem takes as its input RGB images (3 channels), using a
3× 3 convolution with a stride of 2, followed by a batch norm, to halve the resolution from
𝑟×𝑟 to 𝑟/2×𝑟/2. Moreover, it generates 𝑐0 channels that serve as input to the body.
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Since the network is designed to work well with ImageNet images of shape 224 × 224 × 3,
the body serves to reduce this to 7 × 7 × 𝑐4 through 4 stages (recall that 224/21+4 = 7),
each with an eventual stride of 2. Lastly, the head employs an entirely standard design via
global average pooling, similar to NiN (Section 8.3), followed by a fully connected layer to
emit an 𝑛-dimensional vector for 𝑛-class classification.

Most of the relevant design decisions are inherent to the body of the network. It proceeds in
stages, where each stage is composed of the same type of ResNeXt blocks as we discussed
in Section 8.6.5. The design there is again entirely generic: we begin with a block that
halves the resolution by using a stride of 2 (the rightmost in Fig. 8.8.1). To match this, the
residual branch of the ResNeXt block needs to pass through a 1×1 convolution. This block
is followed by a variable number of additional ResNeXt blocks that leave both resolution
and the number of channels unchanged. Note that a common design practice is to add
a slight bottleneck in the design of convolutional blocks. As such, with bottleneck ratio
𝑘𝑖 ≥ 1 we afford some number of channels, 𝑐𝑖/𝑘𝑖 , within each block for stage 𝑖 (as the
experiments show, this is not really effective and should be skipped). Lastly, since we are
dealing with ResNeXt blocks, we also need to pick the number of groups 𝑔𝑖 for grouped
convolutions at stage 𝑖.

This seemingly generic design space provides us nonetheless with many parameters: we
can set the block width (number of channels) 𝑐0, . . . 𝑐4, the depth (number of blocks) per
stage 𝑑1, . . . 𝑑4, the bottleneck ratios 𝑘1, . . . 𝑘4, and the group widths (numbers of groups)
𝑔1, . . . 𝑔4. In total this adds up to 17 parameters, resulting in an unreasonably large number
of configurations that would warrant exploring. We need some tools to reduce this huge
design space effectively. This is where the conceptual beauty of design spaces comes in.
Before we do so, let’s implement the generic design first.

class AnyNet(d2l.Classifier):
def stem(self, num_channels):

net = nn.Sequential()
net.add(nn.Conv2D(num_channels, kernel_size=3, padding=1, strides=2),

nn.BatchNorm(), nn.Activation('relu'))
return net

Each stage consists of depth ResNeXt blocks, where num_channels specifies the block
width. Note that the first block halves the height and width of input images.

@d2l.add_to_class(AnyNet)
def stage(self, depth, num_channels, groups, bot_mul):

net = nn.Sequential()
for i in range(depth):

if i == 0:
net.add(d2l.ResNeXtBlock(

num_channels, groups, bot_mul, use_1x1conv=True, strides=2))
else:

net.add(d2l.ResNeXtBlock(
num_channels, num_channels, groups, bot_mul))

return net
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Putting the network stem, body, and head together, we complete the implementation of
AnyNet.

@d2l.add_to_class(AnyNet)
def __init__(self, arch, stem_channels, lr=0.1, num_classes=10):

super(AnyNet, self).__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(self.stem(stem_channels))
for i, s in enumerate(arch):

self.net.add(self.stage(*s))
self.net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
self.net.initialize(init.Xavier())

8.8.2 Distributions and Parameters of Design Spaces
As just discussed in Section 8.8.1, parameters of a design space are hyperparameters of
networks in that design space. Consider the problem of identifying good parameters in the
AnyNet design space. We could try finding the single best parameter choice for a given
amount of computation (e.g., FLOPs and compute time). If we allowed for even only two
possible choices for each parameter, we would have to explore 217 = 131072 combinations
to find the best solution. This is clearly infeasible because of its exorbitant cost. Even
worse, we do not really learn anything from this exercise in terms of how one should design
a network. Next time we add, say, an X-stage, or a shift operation, or similar, we would need
to start from scratch. Even worse, due to the stochasticity in training (rounding, shuffling,
bit errors), no two runs are likely to produce exactly the same results. A better strategy
would be to try to determine general guidelines of how the choices of parameters should
be related. For instance, the bottleneck ratio, the number of channels, blocks, groups, or
their change between layers should ideally be governed by a collection of simple rules. The
approach in Radosavovic et al. (2019) relies on the following four assumptions:

1. We assume that general design principles actually exist, so that many networks satis-
fying these requirements should offer good performance. Consequently, identifying a
distribution over networks can be a sensible strategy. In other words, we assume that
there are many good needles in the haystack.

2. We need not train networks to convergence before we can assess whether a network is
good. Instead, it is sufficient to use the intermediate results as reliable guidance for
final accuracy. Using (approximate) proxies to optimize an objective is referred to as
multi-fidelity optimization (Forrester et al., 2007). Consequently, design optimization is
carried out, based on the accuracy achieved after only a few passes through the dataset,
reducing the cost significantly.

3. Results obtained at a smaller scale (for smaller networks) generalize to larger ones. Con-
sequently, optimization is carried out for networks that are structurally similar, but with
a smaller number of blocks, fewer channels, etc. Only in the end will we need to verify
that the so-found networks also offer good performance at scale.

4. Aspects of the design can be approximately factorized so that it is possible to infer



325 Designing Convolution Network Architectures

their effect on the quality of the outcome somewhat independently. In other words, the
optimization problem is moderately easy.

These assumptions allow us to test many networks cheaply. In particular, we can sample
uniformly from the space of configurations and evaluate their performance. Subsequently,
we can evaluate the quality of the choice of parameters by reviewing the distribution of
error/accuracy that can be achieved with said networks. Denote by 𝐹 (𝑒) the cumulative
distribution function (CDF) for errors committed by networks of a given design space,
drawn using probability disribution 𝑝. That is,

𝐹 (𝑒, 𝑝) def= 𝑃net∼𝑝{𝑒(net) ≤ 𝑒}. (8.8.1)

Our goal is now to find a distribution 𝑝 over networks such that most networks have a very
low error rate and where the support of 𝑝 is concise. Of course, this is computationally
infeasible to perform accurately. We resort to a sample of networks Z def

= {net1, . . . net𝑛}
(with errors 𝑒1, . . . , 𝑒𝑛, respectively) from 𝑝 and use the empirical CDF 𝐹̂ (𝑒,Z) instead:

𝐹̂ (𝑒,Z) = 1
𝑛

𝑛∑
𝑖=1

1(𝑒𝑖 ≤ 𝑒). (8.8.2)

Whenever the CDF for one set of choices majorizes (or matches) another CDF it follows
that its choice of parameters is superior (or indifferent). Accordingly Radosavovic et al.
(2020) experimented with a shared network bottleneck ratio 𝑘𝑖 = 𝑘 for all stages 𝑖 of the
network. This gets rid of three of the four parameters governing the bottleneck ratio. To
assess whether this (negatively) affects the performance one can draw networks from the
constrained and from the unconstrained distribution and compare the corresonding CDFs.
It turns out that this constraint does not affect the accuracy of the distribution of networks
at all, as can be seen in the first panel of Fig. 8.8.2. Likewise, we could choose to pick
the same group width 𝑔𝑖 = 𝑔 occurring at the various stages of the network. Again, this
does not affect performance, as can be seen in the second panel of Fig. 8.8.2. Both steps
combined reduce the number of free parameters by six.

tFig. 8.8.2 Comparing error empirical distribution functions of design spaces. AnyNetA is the
original design space; AnyNetB ties the bottleneck ratios, AnyNetC also ties group
widths, AnyNetD increases the network depth across stages. From left to right: (i) tying
bottleneck ratios has no effect on performance; (ii) tying group widths has no effect on
performance; (iii) increasing network widths (channels) across stages improves
performance; (iv) increasing network depths across stages improves performance. Figure
courtesy of Radosavovic et al. (2020).

Next we look for ways to reduce themultitude of potential choices for width and depth of the
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stages. It is a reasonable assumption that, as we go deeper, the number of channels should
increase, i.e., 𝑐𝑖 ≥ 𝑐𝑖−1 (𝑤𝑖+1 ≥ 𝑤𝑖 per their notation in Fig. 8.8.2), yielding AnyNetX𝐷 .
Likewise, it is equally reasonable to assume that as the stages progress, they should become
deeper, i.e., 𝑑𝑖 ≥ 𝑑𝑖−1, yielding AnyNetX𝐸 . This can be experimentally verified in the third
and fourth panel of Fig. 8.8.2, respectively.

8.8.3 RegNet
The resultingAnyNetX𝐸 design space consists of simple networks following easy-to-interpret
design principles:

• Share the bottleneck ratio 𝑘𝑖 = 𝑘 for all stages 𝑖;

• Share the group width 𝑔𝑖 = 𝑔 for all stages 𝑖;

• Increase network width across stages: 𝑐𝑖 ≤ 𝑐𝑖+1;

• Increase network depth across stages: 𝑑𝑖 ≤ 𝑑𝑖+1.

This leaves us with a final set of choices: how to pick the specific values for the above
parameters of the eventual AnyNetX𝐸 design space. By studying the best-performing
networks from the distribution in AnyNetX𝐸 one can observe the following: the width
of the network ideally increases linearly with the block index across the network, i.e.,
𝑐 𝑗 ≈ 𝑐0 + 𝑐𝑎 𝑗 , where 𝑗 is the block index and slope 𝑐𝑎 > 0. Given that we get to choose a
different block width only per stage, we arrive at a piecewise constant function, engineered
to match this dependence. Furthermore, experiments also show that a bottleneck ratio of
𝑘 = 1 performs best, i.e., we are advised not to use bottlenecks at all.

We recommend the interested reader reviews further details in the design of specific net-
works for different amounts of computation by perusing Radosavovic et al. (2020). For
instance, an effective 32-layer RegNetX variant is given by 𝑘 = 1 (no bottleneck), 𝑔 = 16
(group width is 16), 𝑐1 = 32 and 𝑐2 = 80 channels for the first and second stage, respec-
tively, chosen to be 𝑑1 = 4 and 𝑑2 = 6 blocks deep. The astonishing insight from the
design is that it still applies, even when investigating networks at a larger scale. Even bet-
ter, it even holds for Squeeze-and-Excitation (SE) network designs (RegNetY) that have a
global channel activation (Hu et al., 2018).

class RegNetX32(AnyNet):
def __init__(self, lr=0.1, num_classes=10):

stem_channels, groups, bot_mul = 32, 16, 1
depths, channels = (4, 6), (32, 80)
super().__init__(

((depths[0], channels[0], groups, bot_mul),
(depths[1], channels[1], groups, bot_mul)),
stem_channels, lr, num_classes)

We can see that each RegNetX stage progressively reduces resolution and increases output
channels.



327 Designing Convolution Network Architectures

RegNetX32().layer_summary((1, 1, 96, 96))

[22:33:30] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
Sequential output shape: (1, 32, 48, 48)
Sequential output shape: (1, 32, 24, 24)
Sequential output shape: (1, 80, 12, 12)
GlobalAvgPool2D output shape: (1, 80, 1, 1)
Dense output shape: (1, 10)

8.8.4 Training
Training the 32-layer RegNetX on the Fashion-MNIST dataset is just like before.

model = RegNetX32(lr=0.05)
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128, resize=(96, 96))
trainer.fit(model, data)

8.8.5 Discussion
With desirable inductive biases (assumptions or preferences) like locality and translation
invariance (Section 7.1) for vision, CNNs have been the dominant architectures in this area.
This remained the case from LeNet up until Transformers (Section 11.7) (Dosovitskiy et
al., 2021, Touvron et al., 2021) started surpassing CNNs in terms of accuracy. While much
of the recent progress in terms of vision Transformers can be backported into CNNs (Liu
et al., 2022), it is only possible at a higher computational cost. Just as importantly, recent
hardware optimizations (NVIDIA Ampere and Hopper) have only widened the gap in favor
of Transformers.

It is worth noting that Transformers have a significantly lower degree of inductive bias to-
wards locality and translation invariance than CNNs. That learned structures prevailed is
due, not least, to the availability of large image collections, such as LAION-400m and
LAION-5B (Schuhmann et al., 2022) with up to 5 billion images. Quite surprisingly,
some of the more relevant work in this context even includes MLPs (Tolstikhin et al.,
2021).
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In sum, vision Transformers (sec_vision-transformer) by now lead in terms of state-
of-the-art performance in large-scale image classification, showing that scalability trumps
inductive biases (Dosovitskiy et al., 2021). This includes pretraining large-scale Trans-
formers (Section 11.8) with multi-head self-attention (Section 11.5). We invite the readers
to dive into these chapters for a much more detailed discussion.

8.8.6 Exercises
1. Increase the number of stages to four. Can you design a deeper RegNetX that performs

better?

2. De-ResNeXt-ify RegNets by replacing the ResNeXt block with the ResNet block. How
does your new model perform?

3. Implement multiple instances of a “VioNet” family by violating the design principles of
RegNetX. How do they perform? Which of (𝑑𝑖 , 𝑐𝑖 , 𝑔𝑖 , 𝑏𝑖) is the most important factor?

4. Your goal is to design the “perfect” MLP. Can you use the design principles introduced
above to find good architectures? Is it possible to extrapolate from small to large net-
works?

Discussions134 .
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Up until now, we have focused primarily on fixed-length data. When introducing linear and
logistic regression in Chapter 3 and Chapter 4 and multilayer perceptrons in Chapter 5, we
were happy to assume that each feature vector x𝑖 consisted of a fixed number of components
𝑥1, . . . , 𝑥𝑑 , where each numerical feature 𝑥 𝑗 corresponded to a particular attribute. These
datasets are sometimes called tabular, because they can be arranged in tables, where each
example 𝑖 gets its own row, and each attribute gets its own column. Crucially, with tabular
data, we seldom assume any particular structure over the columns.

Subsequently, in Chapter 7, we moved on to image data, where inputs consist of the raw
pixel values at each coordinate in an image. Image data hardly fitted the bill of a protypical
tabular dataset. There, we needed to call upon convolutional neural networks (CNNs) to
handle the hierarchical structure and invariances. However, our data were still of fixed
length. Every Fashion-MNIST image is represented as a 28 × 28 grid of pixel values.
Moreover, our goal was to develop a model that looked at just one image and then outputted
a single prediction. But what should we do when faced with a sequence of images, as in a
video, or when tasked with producing a sequentially structured prediction, as in the case of
image captioning?

A great many learning tasks require dealing with sequential data. Image captioning, speech
synthesis, and music generation all require that models produce outputs consisting of se-
quences. In other domains, such as time series prediction, video analysis, and musical
information retrieval, a model must learn from inputs that are sequences. These demands
often arise simultaneously: tasks such as translating passages of text from one natural lan-
guage to another, engaging in dialogue, or controlling a robot, demand that models both
ingest and output sequentially structured data.

Recurrent neural networks (RNNs) are deep learning models that capture the dynamics of
sequences via recurrent connections, which can be thought of as cycles in the network of
nodes. This might seem counterintuitive at first. After all, it is the feedforward nature of
neural networks that makes the order of computation unambiguous. However, recurrent
edges are defined in a precise way that ensures that no such ambiguity can arise. Recurrent
neural networks are unrolled across time steps (or sequence steps), with the same under-
lying parameters applied at each step. While the standard connections are applied syn-
chronously to propagate each layer’s activations to the subsequent layer at the same time
step, the recurrent connections are dynamic, passing information across adjacent time steps.
As the unfolded view in Fig. 9.1 reveals, RNNs can be thought of as feedforward neural
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330 Recurrent Neural Networks

networks where each layer’s parameters (both conventional and recurrent) are shared across
time steps.

tFig. 9.1 On the left recurrent connections are depicted via cyclic edges. On the right, we unfold
the RNN over time steps. Here, recurrent edges span adjacent time steps, while
conventional connections are computed synchronously.

Like neural networks more broadly, RNNs have a long discipline-spanning history, origi-
nating as models of the brain popularized by cognitive scientists and subsequently adopted
as practical modeling tools employed by the machine learning community. As we do for
deep learning more broadly, in this book we adopt the machine learning perspective, focus-
ing on RNNs as practical tools that rose to popularity in the 2010s owing to breakthrough
results on such diverse tasks as handwriting recognition (Graves et al., 2008), machine
translation (Sutskever et al., 2014), and recognizingmedical diagnoses (Lipton et al., 2016).
We point the reader interested in more background material to a publicly available compre-
hensive review (Lipton et al., 2015). We also note that sequentiality is not unique to RNNs.
For example, the CNNs that we already introduced can be adapted to handle data of varying
length, e.g., images of varying resolution. Moreover, RNNs have recently ceded consider-
able market share to Transformer models, which will be covered in Chapter 11. However,
RNNs rose to prominence as the default models for handling complex sequential structure
in deep learning, and remain staple models for sequential modeling to this day. The stories
of RNNs and of sequence modeling are inextricably linked, and this is as much a chapter
about the ABCs of sequence modeling problems as it is a chapter about RNNs.

One key insight paved the way for a revolution in sequence modeling. While the inputs
and targets for many fundamental tasks in machine learning cannot easily be represented
as fixed-length vectors, they can often nevertheless be represented as varying-length se-
quences of fixed-length vectors. For example, documents can be represented as sequences
of words; medical records can often be represented as sequences of events (encounters,
medications, procedures, lab tests, diagnoses); videos can be represented as varying-length
sequences of still images.

While sequencemodels have popped up in numerous application areas, basic research in the
area has been driven predominantly by advances on core tasks in natural language process-
ing. Thus, throughout this chapter, we will focus our exposition and examples on text data.
If you get the hang of these examples, then applying the models to other data modalities
should be relatively straightforward. In the next few sections, we introduce basic notation
for sequences and some evaluation measures for assessing the quality of sequentially struc-
tured model outputs. After that, we discuss basic concepts of a language model and use this
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discussion to motivate our first RNN models. Finally, we describe the method for calculat-
ing gradients when backpropagating through RNNs and explore some challenges that are
often encountered when training such networks, motivating the modern RNN architectures
that will follow in Chapter 10.

9.1 Working with Sequences

Up until now, we have focused on models whose inputs consisted of a single feature vector
x ∈ R𝑑 . The main change of perspective when developing models capable of processing
sequences is that we now focus on inputs that consist of an ordered list of feature vec-
tors x1, . . . ,x𝑇 , where each feature vector x𝑡 is indexed by a time step 𝑡 ∈ Z+ lying in
R𝑑 .

Some datasets consist of a single massive sequence. Consider, for example, the extremely
long streams of sensor readings that might be available to climate scientists. In such cases,
we might create training datasets by randomly sampling subsequences of some predeter-
mined length. More often, our data arrives as a collection of sequences. Consider the
following examples: (i) a collection of documents, each represented as its own sequence of
words, and each having its own length 𝑇𝑖; (ii) sequence representation of patient stays in the
hospital, where each stay consists of a number of events and the sequence length depends
roughly on the length of the stay.

Previously, when dealing with individual inputs, we assumed that they were sampled inde-
pendently from the same underlying distribution 𝑃(𝑋). While we still assume that entire
sequences (e.g., entire documents or patient trajectories) are sampled independently, we
cannot assume that the data arriving at each time step are independent of each other. For
example, the words that likely to appear later in a document depend heavily on words oc-
curring earlier in the document. The medicine a patient is likely to receive on the 10th day
of a hospital visit depends heavily on what transpired in the previous nine days.

This should come as no surprise. If we did not believe that the elements in a sequence
were related, we would not have bothered to model them as a sequence in the first place.
Consider the usefulness of the auto-fill features that are popular on search tools and modern
email clients. They are useful precisely because it is often possible to predict (imperfectly,
but better than random guessing) what the likely continuations of a sequence might be,
given some initial prefix. For most sequence models, we do not require independence, or
even stationarity, of our sequences. Instead, we require only that the sequences themselves
are sampled from some fixed underlying distribution over entire sequences.

This flexible approach allows for such phenomena as (i) documents looking significantly
different at the beginning than at the end; or (ii) patient status evolving either towards recov-
ery or towards death over the course of a hospital stay; or (iii) customer taste evolving in pre-
dictable ways over the course of continued interaction with a recommender system.
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We sometimes wish to predict a fixed target 𝑦 given sequentially structured input (e.g., sen-
timent classification based on a movie review). At other times, we wish to predict a sequen-
tially structured target (𝑦1, . . . , 𝑦𝑇 ) given a fixed input (e.g., image captioning). Still other
times, our goal is to predict sequentially structured targets based on sequentially structured
inputs (e.g., machine translation or video captioning). Such sequence-to-sequence tasks
take two forms: (i) aligned: where the input at each time step aligns with a correspond-
ing target (e.g., part of speech tagging); (ii) unaligned: where the input and target do not
necessarily exhibit a step-for-step correspondence (e.g., machine translation).

Before we worry about handling targets of any kind, we can tackle the most straightforward
problem: unsupervised density modeling (also called sequence modeling). Here, given a
collection of sequences, our goal is to estimate the probability mass function that tells us
how likely we are to see any given sequence, i.e., 𝑝(x1, . . . ,x𝑇 ).

%matplotlib inline
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

9.1.1 Autoregressive Models
Before introducing specialized neural networks designed to handle sequentially structured
data, let’s take a look at some actual sequence data and build up some basic intuitions
and statistical tools. In particular, we will focus on stock price data from the FTSE 100
index (Fig. 9.1.1). At each time step 𝑡 ∈ Z+, we observe the price, 𝑥𝑡 , of the index at that
time.

tFig. 9.1.1 FTSE 100 index over about 30 years.

Now suppose that a trader would like to make short-term trades, strategically getting into
or out of the index, depending on whether they believe that it will rise or decline in the
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subsequent time step. Absent any other features (news, financial reporting data, etc.), the
only available signal for predicting the subsequent value is the history of prices to date.
The trader is thus interested in knowing the probability distribution

𝑃(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1) (9.1.1)

over prices that the indexmight take in the subsequent time step. While estimating the entire
distribution over a continuously valued random variable can be difficult, the trader would
be happy to focus on a few key statistics of the distribution, particularly the expected value
and the variance. One simple strategy for estimating the conditional expectation

E[(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1)], (9.1.2)

would be to apply a linear regression model (recall Section 3.1). Such models that regress
the value of a signal on the previous values of that same signal are naturally called au-
toregressive models. There is just one major problem: the number of inputs, 𝑥𝑡−1, . . . , 𝑥1
varies, depending on 𝑡. In other words, the number of inputs increases with the amount of
data that we encounter. Thus if we want to treat our historical data as a training set, we
are left with the problem that each example has a different number of features. Much of
what follows in this chapter will revolve around techniques for overcoming these challenges
when engaging in such autoregressive modeling problems where the object of interest is
𝑃(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1) or some statistic(s) of this distribution.

A few strategies recur frequently. First of all, wemight believe that although long sequences
𝑥𝑡−1, . . . , 𝑥1 are available, it may not be necessary to look back so far in the history when
predicting the near future. In this case we might content ourselves to condition on some
window of length 𝜏 and only use 𝑥𝑡−1, . . . , 𝑥𝑡−𝜏 observations. The immediate benefit is
that now the number of arguments is always the same, at least for 𝑡 > 𝜏. This allows us to
train any linear model or deep network that requires fixed-length vectors as inputs. Second,
we might develop models that maintain some summary ℎ𝑡 of the past observations (see
Fig. 9.1.2) and at the same time update ℎ𝑡 in addition to the prediction 𝑥𝑡 . This leads to
models that estimate not only 𝑥𝑡 with 𝑥𝑡 = 𝑃(𝑥𝑡 | ℎ𝑡 ) but also updates of the form ℎ𝑡 =
𝑔(ℎ𝑡−1, 𝑥𝑡−1). Since ℎ𝑡 is never observed, these models are also called latent autoregressive
models.

tFig. 9.1.2 A latent autoregressive model.

To construct training data from historical data, one typically creates examples by sampling
windows randomly. In general, we do not expect time to stand still. However, we often
assume that while the specific values of 𝑥𝑡 might change, the dynamics according to which
each subsequent observation is generated given the previous observations do not. Statisti-
cians call dynamics that do not change stationary.
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9.1.2 Sequence Models
Sometimes, especially when working with language, we wish to estimate the joint probabil-
ity of an entire sequence. This is a common task when working with sequences composed
of discrete tokens, such as words. Generally, these estimated functions are called sequence
models and for natural language data, they are called language models. The field of se-
quence modeling has been driven so much by natural language processing, that we often
describe sequence models as “language models”, even when dealing with non-language
data. Language models prove useful for all sorts of reasons. Sometimes we want to evalu-
ate the likelihood of sentences. For example, we might wish to compare the naturalness of
two candidate outputs generated by a machine translation system or by a speech recognition
system. But language modeling gives us not only the capacity to evaluate likelihood, but
the ability to sample sequences, and even to optimize for the most likely sequences.

While language modeling might not, at first glance, look like an autoregressive problem,
we can reduce language modeling to autoregressive prediction by decomposing the joint
density of a sequence 𝑝(𝑥1, . . . , 𝑥𝑇 ) into the product of conditional densities in a left-to-
right fashion by applying the chain rule of probability:

𝑃(𝑥1, . . . , 𝑥𝑇 ) = 𝑃(𝑥1)
𝑇∏
𝑡=2

𝑃(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1). (9.1.3)

Note that if we are working with discrete signals such as words, then the autoregressive
model must be a probabilistic classifier, outputting a full probability distribution over the
vocabulary for whatever word will come next, given the leftwards context.

Markov Models
Now suppose that we wish to employ the strategy mentioned above, where we condition
only on the 𝜏 previous time steps, i.e., 𝑥𝑡−1, . . . , 𝑥𝑡−𝜏 , rather than the entire sequence history
𝑥𝑡−1, . . . , 𝑥1. Whenever we can throw away the history beyond the previous 𝜏 steps without
any loss in predictive power, we say that the sequence satisfies aMarkov condition, i.e., that
the future is conditionally independent of the past, given the recent history. When 𝜏 = 1,
we say that the data is characterized by a first-order Markov model, and when 𝜏 = 𝑘 , we
say that the data is characterized by a 𝑘 th-order Markov model. For when the first-order
Markov condition holds (𝜏 = 1) the factorization of our joint probability becomes a product
of probabilities of each word given the previous word:

𝑃(𝑥1, . . . , 𝑥𝑇 ) = 𝑃(𝑥1)
𝑇∏
𝑡=2

𝑃(𝑥𝑡 | 𝑥𝑡−1). (9.1.4)

We often find it useful to work with models that proceed as though aMarkov condition were
satisfied, even when we know that this is only approximately true. With real text documents
we continue to gain information as we include more and more leftwards context. But these
gains diminish rapidly. Thus, sometimes we compromise, obviating computational and
statistical difficulties by training models whose validity depends on a 𝑘 th-order Markov
condition. Even today’s massive RNN- and Transformer-based language models seldom
incorporate more than thousands of words of context.
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With discrete data, a true Markov model simply counts the number of times that each word
has occurred in each context, producing the relative frequency estimate of 𝑃(𝑥𝑡 | 𝑥𝑡−1).
Whenever the data assumes only discrete values (as in language), the most likely sequence
of words can be computed efficiently using dynamic programming.

The Order of Decoding
Youmay bewonderingwhywe represented the factorization of a text sequence 𝑃(𝑥1, . . . , 𝑥𝑇 )
as a left-to-right chain of conditional probabilities. Why not right-to-left or some other,
seemingly random order? In principle, there is nothingwrongwith unfolding 𝑃(𝑥1, . . . , 𝑥𝑇 )
in reverse order. The result is a valid factorization:

𝑃(𝑥1, . . . , 𝑥𝑇 ) = 𝑃(𝑥𝑇 )
1∏

𝑡=𝑇−1
𝑃(𝑥𝑡 | 𝑥𝑡+1, . . . , 𝑥𝑇 ). (9.1.5)

However, there are many reasons why factorizing text in the same direction in which we
read it (left-to-right formost languages, but right-to-left for Arabic andHebrew) is preferred
for the task of language modeling. First, this is just a more natural direction for us to think
about. After all we all read text every day, and this process is guided by our ability to
anticipate which words and phrases are likely to come next. Just think of how many times
you have completed someone else’s sentence. Thus, even if we had no other reason to prefer
such in-order decodings, they would be useful if only because we have better intuitions for
what should be likely when predicting in this order.

Second, by factorizing in order, we can assign probabilities to arbitrarily long sequences
using the same language model. To convert a probability over steps 1 through 𝑡 into one that
extends to word 𝑡 +1 we simply multiply by the conditional probability of the additional to-
ken given the previous ones: 𝑃(𝑥𝑡+1, . . . , 𝑥1) = 𝑃(𝑥𝑡 , . . . , 𝑥1) · 𝑃(𝑥𝑡+1 | 𝑥𝑡 , . . . , 𝑥1).

Third, we have stronger predictive models for predicting adjacent words than words at ar-
bitrary other locations. While all orders of factorization are valid, they do not necessarily
all represent equally easy predictive modeling problems. This is true not only for language,
but for other kinds of data as well, e.g., when the data is causally structured. For example,
we believe that future events cannot influence the past. Hence, if we change 𝑥𝑡 , we may be
able to influence what happens for 𝑥𝑡+1 going forward but not the converse. That is, if we
change 𝑥𝑡 , the distribution over past events will not change. In some contexts, this makes
it easier to predict 𝑃(𝑥𝑡+1 | 𝑥𝑡 ) than to predict 𝑃(𝑥𝑡 | 𝑥𝑡+1). For instance, in some cases,
we can find 𝑥𝑡+1 = 𝑓 (𝑥𝑡 ) + 𝜖 for some additive noise 𝜖 , whereas the converse is not true
(Hoyer et al., 2009). This is great news, since it is typically the forward direction that we
are interested in estimating. The book by Peters et al. (2017) contains more on this topic.
We barely scratch the surface of it.

9.1.3 Training
Before we focus our attention on text data, let’s first try this out with some continuous-
valued synthetic data.

Here, our 1000 synthetic data will follow the trigonometric sin function, applied to 0.01
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times the time step. To make the problem a little more interesting, we corrupt each sample
with additive noise. From this sequence we extract training examples, each consisting of
features and a label.

class Data(d2l.DataModule):
def __init__(self, batch_size=16, T=1000, num_train=600, tau=4):

self.save_hyperparameters()
self.time = np.arange(1, T + 1, dtype=np.float32)
self.x = np.sin(0.01 * self.time) + np.random.randn(T) * 0.2

data = Data()
d2l.plot(data.time, data.x, 'time', 'x', xlim=[1, 1000], figsize=(6, 3))

[22:06:39] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

To begin, we try a model that acts as if the data satisfied a 𝜏th-order Markov condition,
and thus predicts 𝑥𝑡 using only the past 𝜏 observations. Thus for each time step we have an
example with label 𝑦 = 𝑥𝑡 and features x𝑡 = [𝑥𝑡−𝜏 , . . . , 𝑥𝑡−1]. The astute reader might have
noticed that this results in 1000−𝜏 examples, since we lack sufficient history for 𝑦1, . . . , 𝑦𝜏 .
While we could pad the first 𝜏 sequences with zeros, to keep things simple, we drop them
for now. The resulting dataset contains 𝑇 − 𝜏 examples, where each input to the model has
sequence length 𝜏. We create a data iterator on the first 600 examples, covering a period of
the sin function.

@d2l.add_to_class(Data)
def get_dataloader(self, train):

features = [self.x[i : self.T-self.tau+i] for i in range(self.tau)]
self.features = np.stack(features, 1)
self.labels = self.x[self.tau:].reshape((-1, 1))
i = slice(0, self.num_train) if train else slice(self.num_train, None)
return self.get_tensorloader([self.features, self.labels], train, i)

In this example our model will be a standard linear regression.
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model = d2l.LinearRegression(lr=0.01)
trainer = d2l.Trainer(max_epochs=5)
trainer.fit(model, data)

9.1.4 Prediction
To evaluate ourmodel, we first check howwell it performs at one-step-ahead prediction.

onestep_preds = model(data.features).asnumpy()
d2l.plot(data.time[data.tau:], [data.labels, onestep_preds], 'time', 'x',

legend=['labels', '1-step preds'], figsize=(6, 3))

These predictions look good, even near the end at 𝑡 = 1000.

But what if we only observed sequence data up until time step 604 (n_train + tau) and
wished to make predictions several steps into the future? Unfortunately, we cannot directly
compute the one-step-ahead prediction for time step 609, because we do not know the cor-
responding inputs, having seen only up to 𝑥604. We can address this problem by plugging in
our earlier predictions as inputs to our model for making subsequent predictions, projecting
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forward, one step at a time, until reaching the desired time step:

𝑥605 = 𝑓 (𝑥601, 𝑥602, 𝑥603, 𝑥604),
𝑥606 = 𝑓 (𝑥602, 𝑥603, 𝑥604, 𝑥605),
𝑥607 = 𝑓 (𝑥603, 𝑥604, 𝑥605, 𝑥606),
𝑥608 = 𝑓 (𝑥604, 𝑥605, 𝑥606, 𝑥607),
𝑥609 = 𝑓 (𝑥605, 𝑥606, 𝑥607, 𝑥608),

...

(9.1.6)

Generally, for an observed sequence 𝑥1, . . . , 𝑥𝑡 , its predicted output 𝑥𝑡+𝑘 at time step 𝑡 + 𝑘
is called the 𝑘-step-ahead prediction. Since we have observed up to 𝑥604, its 𝑘-step-ahead
prediction is 𝑥604+𝑘 . In other words, we will have to keep on using our own predictions to
make multistep-ahead predictions. Let’s see how well this goes.

multistep_preds = np.zeros(data.T)
multistep_preds[:] = data.x
for i in range(data.num_train + data.tau, data.T):

multistep_preds[i] = model(
multistep_preds[i - data.tau:i].reshape((1, -1)))

multistep_preds = multistep_preds.asnumpy()

d2l.plot([data.time[data.tau:], data.time[data.num_train+data.tau:]],
[onestep_preds, multistep_preds[data.num_train+data.tau:]], 'time',
'x', legend=['1-step preds', 'multistep preds'], figsize=(6, 3))

Unfortunately, in this case we fail spectacularly. The predictions decay to a constant pretty
quickly after a few steps. Why did the algorithm perform so much worse when predicting
further into the future? Ultimately, this is down to the fact that errors build up. Let’s say
that after step 1 we have some error 𝜖1 = 𝜖 . Now the input for step 2 is perturbed by 𝜖1,
hence we suffer some error in the order of 𝜖2 = 𝜖 + 𝑐𝜖1 for some constant 𝑐, and so on. The
predictions can diverge rapidly from the true observations. You may already be familiar
with this common phenomenon. For instance, weather forecasts for the next 24 hours tend
to be pretty accurate but beyond that, accuracy declines rapidly. We will discuss methods
for improving this throughout this chapter and beyond.
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Let’s take a closer look at the difficulties in 𝑘-step-ahead predictions by computing predic-
tions on the entire sequence for 𝑘 = 1, 4, 16, 64.

def k_step_pred(k):
features = []
for i in range(data.tau):

features.append(data.x[i : i+data.T-data.tau-k+1])
# The (i+tau)-th element stores the (i+1)-step-ahead predictions
for i in range(k):

preds = model(np.stack(features[i : i+data.tau], 1))
features.append(preds.reshape(-1))

return features[data.tau:]

steps = (1, 4, 16, 64)
preds = k_step_pred(steps[-1])
d2l.plot(data.time[data.tau+steps[-1]-1:],

[preds[k - 1].asnumpy() for k in steps], 'time', 'x',
legend=[f'{k}-step preds' for k in steps], figsize=(6, 3))

This clearly illustrates how the quality of the prediction changes as we try to predict further
into the future. While the 4-step-ahead predictions still look good, anything beyond that is
almost useless.

9.1.5 Summary
There is quite a difference in difficulty between interpolation and extrapolation. Conse-
quently, if you have a sequence, always respect the temporal order of the data when training,
i.e., never train on future data. Given this kind of data, sequence models require specialized
statistical tools for estimation. Two popular choices are autoregressive models and latent-
variable autoregressive models. For causal models (e.g., time going forward), estimating
the forward direction is typically a lot easier than the reverse direction. For an observed
sequence up to time step 𝑡, its predicted output at time step 𝑡 + 𝑘 is the 𝑘-step-ahead predic-
tion. As we predict further in time by increasing 𝑘 , the errors accumulate and the quality
of the prediction degrades, often dramatically.

9.1.6 Exercises



340 Recurrent Neural Networks

135

1. Improve the model in the experiment of this section.

1. Incorporate more than the past four observations? How many do you really need?

2. How many past observations would you need if there was no noise? Hint: you can
write sin and cos as a differential equation.

3. Can you incorporate older observations while keeping the total number of features
constant? Does this improve accuracy? Why?

4. Change the neural network architecture and evaluate the performance. Youmay train
the new model with more epochs. What do you observe?

2. An investor wants to find a good security to buy. They look at past returns to decide
which one is likely to do well. What could possibly go wrong with this strategy?

3. Does causality also apply to text? To which extent?

4. Give an example for when a latent autoregressive model might be needed to capture the
dynamic of the data.

Discussions135 .

9.2 Converting Raw Text into Sequence Data

Throughout this book, we will often work with text data represented as sequences of words,
characters, or word pieces. To get going, we will need some basic tools for converting raw
text into sequences of the appropriate form. Typical preprocessing pipelines execute the
following steps:

1. Load text as strings into memory.

2. Split the strings into tokens (e.g., words or characters).

3. Build a vocabulary dictionary to associate each vocabulary element with a numerical
index.

4. Convert the text into sequences of numerical indices.

import collections
import random
import re
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

https://discuss.d2l.ai/t/113
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136

9.2.1 Reading the Dataset
Here, we will work with H. G. Wells’ The Time Machine136 , a book containing just over
30,000 words. While real applications will typically involve significantly larger datasets,
this is sufficient to demonstrate the preprocessing pipeline. The following _download

method reads the raw text into a string.

class TimeMachine(d2l.DataModule): #@save
"""The Time Machine dataset."""
def _download(self):

fname = d2l.download(d2l.DATA_URL + 'timemachine.txt', self.root,
'090b5e7e70c295757f55df93cb0a180b9691891a')

with open(fname) as f:
return f.read()

data = TimeMachine()
raw_text = data._download()
raw_text[:60]

Downloading ../data/timemachine.txt from http://d2l-data.s3-accelerate.
↩→amazonaws.com/timemachine.txt...

'The Time Machine, by H. G. Wells [1898]nnnnnInnnThe Time Tra'

For simplicity, we ignore punctuation and capitalizationwhen preprocessing the raw text.

@d2l.add_to_class(TimeMachine) #@save
def _preprocess(self, text):

return re.sub('[^A-Za-z]+', ' ', text).lower()

text = data._preprocess(raw_text)
text[:60]

'the time machine by h g wells i the time traveller for so it'

9.2.2 Tokenization
Tokens are the atomic (indivisible) units of text. Each time step corresponds to 1 token,
but what precisely constitutes a token is a design choice. For example, we could represent
the sentence “Baby needs a new pair of shoes” as a sequence of 7 words, where the set of
all words comprise a large vocabulary (typically tens or hundreds of thousands of words).
Or we would represent the same sentence as a much longer sequence of 30 characters,
using a much smaller vocabulary (there are only 256 distinct ASCII characters). Below, we
tokenize our preprocessed text into a sequence of characters.

@d2l.add_to_class(TimeMachine) #@save
def _tokenize(self, text):

return list(text)

(continues on next page)

http://www.gutenberg.org/ebooks/35
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(continued from previous page)

tokens = data._tokenize(text)
','.join(tokens[:30])

't,h,e, ,t,i,m,e, ,m,a,c,h,i,n,e, ,b,y, ,h, ,g, ,w,e,l,l,s, '

9.2.3 Vocabulary
These tokens are still strings. However, the inputs to our models must ultimately consist of
numerical inputs. Next, we introduce a class for constructing vocabularies, i.e., objects that
associate each distinct token valuewith a unique index. First, we determine the set of unique
tokens in our training corpus. We then assign a numerical index to each unique token. Rare
vocabulary elements are often dropped for convenience. Whenever we encounter a token at
training or test time that had not been previously seen or was dropped from the vocabulary,
we represent it by a special “<unk>” token, signifying that this is an unknown value.

class Vocab: #@save
"""Vocabulary for text."""
def __init__(self, tokens=[], min_freq=0, reserved_tokens=[]):

# Flatten a 2D list if needed
if tokens and isinstance(tokens[0], list):

tokens = [token for line in tokens for token in line]
# Count token frequencies
counter = collections.Counter(tokens)
self.token_freqs = sorted(counter.items(), key=lambda x: x[1],

reverse=True)
# The list of unique tokens
self.idx_to_token = list(sorted(set(['<unk>'] + reserved_tokens + [

token for token, freq in self.token_freqs if freq >= min_freq])))
self.token_to_idx = {token: idx

for idx, token in enumerate(self.idx_to_token)}

def __len__(self):
return len(self.idx_to_token)

def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)):

return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens]

def to_tokens(self, indices):
if hasattr(indices, '__len__') and len(indices) > 1:

return [self.idx_to_token[int(index)] for index in indices]
return self.idx_to_token[indices]

@property
def unk(self): # Index for the unknown token

return self.token_to_idx['<unk>']

We now construct a vocabulary for our dataset, converting the sequence of strings into a
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list of numerical indices. Note that we have not lost any information and can easily convert
our dataset back to its original (string) representation.

vocab = Vocab(tokens)
indices = vocab[tokens[:10]]
print('indices:', indices)
print('words:', vocab.to_tokens(indices))

indices: [21, 9, 6, 0, 21, 10, 14, 6, 0, 14]
words: ['t', 'h', 'e', ' ', 't', 'i', 'm', 'e', ' ', 'm']

9.2.4 Putting It All Together
Using the above classes and methods, we package everything into the following build

method of the TimeMachine class, which returns corpus, a list of token indices, and vocab,
the vocabulary of The Time Machine corpus. The modifications we did here are: (i) we
tokenize text into characters, not words, to simplify the training in later sections; (ii) corpus
is a single list, not a list of token lists, since each text line in The Time Machine dataset is
not necessarily a sentence or paragraph.

@d2l.add_to_class(TimeMachine) #@save
def build(self, raw_text, vocab=None):

tokens = self._tokenize(self._preprocess(raw_text))
if vocab is None: vocab = Vocab(tokens)
corpus = [vocab[token] for token in tokens]
return corpus, vocab

corpus, vocab = data.build(raw_text)
len(corpus), len(vocab)

(173428, 28)

9.2.5 Exploratory Language Statistics
Using the real corpus and the Vocab class defined over words, we can inspect basic statistics
concerning word use in our corpus. Below, we construct a vocabulary from words used in
The Time Machine and print the ten most frequently occurring of them.

words = text.split()
vocab = Vocab(words)
vocab.token_freqs[:10]

[('the', 2261),
('i', 1267),
('and', 1245),
('of', 1155),

(continues on next page)
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(continued from previous page)

('a', 816),
('to', 695),
('was', 552),
('in', 541),
('that', 443),
('my', 440)]

Note that the ten most frequent words are not all that descriptive. You might even imagine
that we might see a very similar list if we had chosen any book at random. Articles like
“the” and “a”, pronouns like “i” and “my”, and prepositions like “of”, “to”, and “in” occur
often because they serve common syntactic roles. Such words that are common but not
particularly descriptive are often called stop words and, in previous generations of text
classifiers based on so-called bag-of-words representations, they were most often filtered
out. However, they carry meaning and it is not necessary to filter them out when working
with modern RNN- and Transformer-based neural models. If you look further down the
list, you will notice that word frequency decays quickly. The 10th most frequent word is
less than 1/5 as common as the most popular. Word frequency tends to follow a power law
distribution (specifically the Zipfian) as we go down the ranks. To get a better idea, we plot
the figure of the word frequency.

freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',

xscale='log', yscale='log')

After dealing with the first few words as exceptions, all the remaining words roughly follow
a straight line on a log–log plot. This phenomenon is captured by Zipf’s law, which states
that the frequency 𝑛𝑖 of the 𝑖th most frequent word is:

𝑛𝑖 ∝
1
𝑖𝛼
, (9.2.1)

which is equivalent to

log 𝑛𝑖 = −𝛼 log 𝑖 + 𝑐, (9.2.2)

where 𝛼 is the exponent that characterizes the distribution and 𝑐 is a constant. This should
already give us pause for thought if we want to model words by counting statistics. After
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all, we will significantly overestimate the frequency of the tail, also known as the infre-
quent words. But what about the other word combinations, such as two consecutive words
(bigrams), three consecutive words (trigrams), and beyond? Let’s see whether the bigram
frequency behaves in the same manner as the single word (unigram) frequency.

bigram_tokens = ['--'.join(pair) for pair in zip(words[:-1], words[1:])]
bigram_vocab = Vocab(bigram_tokens)
bigram_vocab.token_freqs[:10]

[('of--the', 309),
('in--the', 169),
('i--had', 130),
('i--was', 112),
('and--the', 109),
('the--time', 102),
('it--was', 99),
('to--the', 85),
('as--i', 78),
('of--a', 73)]

One thing is notable here. Out of the ten most frequent word pairs, nine are composed of
both stop words and only one is relevant to the actual book—“the time”. Furthermore, let’s
see whether the trigram frequency behaves in the same manner.

trigram_tokens = ['--'.join(triple) for triple in zip(
words[:-2], words[1:-1], words[2:])]

trigram_vocab = Vocab(trigram_tokens)
trigram_vocab.token_freqs[:10]

[('the--time--traveller', 59),
('the--time--machine', 30),
('the--medical--man', 24),
('it--seemed--to', 16),
('it--was--a', 15),
('here--and--there', 15),
('seemed--to--me', 14),
('i--did--not', 14),
('i--saw--the', 13),
('i--began--to', 13)]

Now, let’s visualize the token frequency among these three models: unigrams, bigrams,
and trigrams.

bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x',

ylabel='frequency: n(x)', xscale='log', yscale='log',
legend=['unigram', 'bigram', 'trigram'])

This figure is quite exciting. First, beyond unigram words, sequences of words also appear
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to be following Zipf’s law, albeit with a smaller exponent 𝛼 in (9.2.1), depending on the
sequence length. Second, the number of distinct 𝑛-grams is not that large. This gives us
hope that there is quite a lot of structure in language. Third, many 𝑛-grams occur very
rarely. This makes certain methods unsuitable for language modeling and motivates the
use of deep learning models. We will discuss this in the next section.

9.2.6 Summary
Text is among the most common forms of sequence data encountered in deep learning.
Common choices for what constitutes a token are characters, words, and word pieces. To
preprocess text, we usually (i) split text into tokens; (ii) build a vocabulary to map token
strings to numerical indices; and (iii) convert text data into token indices for models to
manipulate. In practice, the frequency of words tends to follow Zipf’s law. This is true not
just for individual words (unigrams), but also for 𝑛-grams.

9.2.7 Exercises
1. In the experiment of this section, tokenize text into words and vary the min_freq argu-

ment value of the Vocab instance. Qualitatively characterize how changes in min_freq

impact the size of the resulting vocabulary.

2. Estimate the exponent of Zipfian distribution for unigrams, bigrams, and trigrams in this
corpus.

3. Find some other sources of data (download a standard machine learning dataset, pick
another public domain book, scrape a website, etc). For each, tokenize the data at both
the word and character levels. How do the vocabulary sizes compare with The Time
Machine corpus at equivalent values of min_freq. Estimate the exponent of the Zipfian
distribution corresponding to the unigram and bigram distributions for these corpora.
How do they compare with the values that you observed for The Time Machine corpus?

Discussions137 .
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9.3 Language Models

In Section 9.2, we saw how to map text sequences into tokens, where these tokens can be
viewed as a sequence of discrete observations such as words or characters. Assume that
the tokens in a text sequence of length 𝑇 are in turn 𝑥1, 𝑥2, . . . , 𝑥𝑇 . The goal of language
models is to estimate the joint probability of the whole sequence:

𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑇 ), (9.3.1)

where statistical tools in Section 9.1 can be applied.

Language models are incredibly useful. For instance, an ideal language model should
generate natural text on its own, simply by drawing one token at a time 𝑥𝑡 ∼ 𝑃(𝑥𝑡 |
𝑥𝑡−1, . . . , 𝑥1). Quite unlike the monkey using a typewriter, all text emerging from such
a model would pass as natural language, e.g., English text. Furthermore, it would be suffi-
cient for generating a meaningful dialog, simply by conditioning the text on previous dialog
fragments. Clearly we are still very far from designing such a system, since it would need
to understand the text rather than just generate grammatically sensible content.

Nonetheless, language models are of great service even in their limited form. For instance,
the phrases “to recognize speech” and “to wreck a nice beach” sound very similar. This can
cause ambiguity in speech recognition, which is easily resolved through a language model
that rejects the second translation as outlandish. Likewise, in a document summarization
algorithm it is worthwhile knowing that “dog bites man” is much more frequent than “man
bites dog”, or that “I want to eat grandma” is a rather disturbing statement, whereas “I want
to eat, grandma” is much more benign.

from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

9.3.1 Learning Language Models
The obvious question is how we should model a document, or even a sequence of tokens.
Suppose that we tokenize text data at theword level. Let’s start by applying basic probability
rules:

𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑇 ) =
𝑇∏
𝑡=1

𝑃(𝑥𝑡 | 𝑥1, . . . , 𝑥𝑡−1). (9.3.2)

For example, the probability of a text sequence containing four words would be given
as:

𝑃(deep, learning, is, fun)
=𝑃(deep)𝑃(learning | deep)𝑃(is | deep, learning)𝑃(fun | deep, learning, is).

(9.3.3)
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Markov Models and 𝑛-grams
Among those sequence model analyses in Section 9.1, let’s apply Markov models to lan-
guage modeling. A distribution over sequences satisfies the Markov property of first order
if 𝑃(𝑥𝑡+1 | 𝑥𝑡 , . . . , 𝑥1) = 𝑃(𝑥𝑡+1 | 𝑥𝑡 ). Higher orders correspond to longer dependencies.
This leads to a number of approximations that we could apply to model a sequence:

𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑃(𝑥1)𝑃(𝑥2)𝑃(𝑥3)𝑃(𝑥4),
𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑃(𝑥1)𝑃(𝑥2 | 𝑥1)𝑃(𝑥3 | 𝑥2)𝑃(𝑥4 | 𝑥3),
𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑃(𝑥1)𝑃(𝑥2 | 𝑥1)𝑃(𝑥3 | 𝑥1, 𝑥2)𝑃(𝑥4 | 𝑥2, 𝑥3).

(9.3.4)

The probability formulae that involve one, two, and three variables are typically referred
to as unigram, bigram, and trigrammodels, respectively. In order to compute the language
model, we need to calculate the probability of words and the conditional probability of
a word given the previous few words. Note that such probabilities are language model
parameters.

Word Frequency
Here, we assume that the training dataset is a large text corpus, such as allWikipedia entries,
Project Gutenberg 138 , and all text posted on the web. The probability of words can be
calculated from the relative word frequency of a given word in the training dataset. For
example, the estimate 𝑃̂(deep) can be calculated as the probability of any sentence starting
with the word “deep”. A slightly less accurate approach would be to count all occurrences
of the word “deep” and divide it by the total number of words in the corpus. This works
fairly well, particularly for frequent words. Moving on, we could attempt to estimate

𝑃̂(learning | deep) = 𝑛(deep, learning)
𝑛(deep) , (9.3.5)

where 𝑛(𝑥) and 𝑛(𝑥, 𝑥′) are the number of occurrences of singletons and consecutive word
pairs, respectively. Unfortunately, estimating the probability of a word pair is somewhat
more difficult, since the occurrences of “deep learning” are a lot less frequent. In particular,
for some unusual word combinations it may be tricky to find enough occurrences to get
accurate estimates. As suggested by the empirical results in Section 9.2.5, things take a
turn for the worse for three-word combinations and beyond. There will be many plausible
three-word combinations that we likely will not see in our dataset. Unless we provide some
solution to assign such word combinations a nonzero count, we will not be able to use them
in a language model. If the dataset is small or if the words are very rare, we might not find
even a single one of them.

Laplace Smoothing
A common strategy is to perform some form of Laplace smoothing. The solution is to add
a small constant to all counts. Denote by 𝑛 the total number of words in the training set and

https://en.wikipedia.org/wiki/Project_Gutenberg
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𝑚 the number of unique words. This solution helps with singletons, e.g., via

𝑃̂(𝑥) = 𝑛(𝑥) + 𝜖1/𝑚
𝑛 + 𝜖1

,

𝑃̂(𝑥′ | 𝑥) = 𝑛(𝑥, 𝑥′) + 𝜖2𝑃̂(𝑥′)
𝑛(𝑥) + 𝜖2

,

𝑃̂(𝑥′′ | 𝑥, 𝑥′) = 𝑛(𝑥, 𝑥′, 𝑥′′) + 𝜖3𝑃̂(𝑥′′)
𝑛(𝑥, 𝑥′) + 𝜖3

.

(9.3.6)

Here 𝜖1, 𝜖2, and 𝜖3 are hyperparameters. Take 𝜖1 as an example: when 𝜖1 = 0, no smoothing
is applied; when 𝜖1 approaches positive infinity, 𝑃̂(𝑥) approaches the uniform probability
1/𝑚. The above is a rather primitive variant of what other techniques can accomplish
(Wood et al., 2011).

Unfortunately, models like this get unwieldy rather quickly for the following reasons. First,
as discussed in Section 9.2.5, many 𝑛-grams occur very rarely, making Laplace smoothing
rather unsuitable for language modeling. Second, we need to store all counts. Third, this
entirely ignores the meaning of the words. For instance, “cat” and “feline” should occur in
related contexts. It is quite difficult to adjust such models to additional contexts, whereas,
deep learning based language models are well suited to take this into account. Last, long
word sequences are almost certain to be novel, hence a model that simply counts the fre-
quency of previously seen word sequences is bound to perform poorly there. Therefore, we
focus on using neural networks for language modeling in the rest of the chapter.

9.3.2 Perplexity
Next, let’s discuss about how to measure the quality of the language model, which we
will then use to evaluate our models in the subsequent sections. One way is to check how
surprising the text is. A good language model is able to predict, with high accuracy, the
tokens that come next. Consider the following continuations of the phrase “It is raining”,
as proposed by different language models:

1. “It is raining outside”

2. “It is raining banana tree”

3. “It is raining piouw;kcj pwepoiut”

In terms of quality, Example 1 is clearly the best. The words are sensible and logically co-
herent. While it might not quite accurately reflect which word follows semantically (“in San
Francisco” and “in winter” would have been perfectly reasonable extensions), the model is
able to capture which kind of word follows. Example 2 is considerably worse by producing
a nonsensical extension. Nonetheless, at least the model has learned how to spell words
and some degree of correlation between words. Last, Example 3 indicates a poorly trained
model that does not fit data properly.

We might measure the quality of the model by computing the likelihood of the sequence.
Unfortunately this is a number that is hard to understand and difficult to compare. After all,
shorter sequences are much more likely to occur than the longer ones, hence evaluating the
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model on Tolstoy’s magnum opus War and Peace will inevitably produce a much smaller
likelihood than, say, on Saint-Exupery’s novella The Little Prince. What is missing is the
equivalent of an average.

Information theory comes handy here. We defined entropy, surprisal, and cross-entropy
when we introduced the softmax regression (Section 4.1.3). If we want to compress text,
we can ask about predicting the next token given the current set of tokens. A better language
model should allow us to predict the next token more accurately. Thus, it should allow us to
spend fewer bits in compressing the sequence. So we can measure it by the cross-entropy
loss averaged over all the 𝑛 tokens of a sequence:

1
𝑛

𝑛∑
𝑡=1
− log 𝑃(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1), (9.3.7)

where 𝑃 is given by a language model and 𝑥𝑡 is the actual token observed at time step 𝑡 from
the sequence. This makes the performance on documents of different lengths comparable.
For historical reasons, scientists in natural language processing prefer to use a quantity
called perplexity. In a nutshell, it is the exponential of (9.3.7):

exp

(
−1
𝑛

𝑛∑
𝑡=1

log 𝑃(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1)
)
. (9.3.8)

Perplexity can be best understood as the reciprocal of the geometric mean of the number of
real choices that we have when deciding which token to pick next. Let’s look at a number
of cases:

• In the best case scenario, the model always perfectly estimates the probability of the
target token as 1. In this case the perplexity of the model is 1.

• In the worst case scenario, the model always predicts the probability of the target token
as 0. In this situation, the perplexity is positive infinity.

• At the baseline, the model predicts a uniform distribution over all the available tokens of
the vocabulary. In this case, the perplexity equals the number of unique tokens of the
vocabulary. In fact, if we were to store the sequence without any compression, this
would be the best we could do for encoding it. Hence, this provides a nontrivial upper
bound that any useful model must beat.

9.3.3 Partitioning Sequences
We will design language models using neural networks and use perplexity to evaluate how
good the model is at predicting the next token given the current set of tokens in text se-
quences. Before introducing the model, let’s assume that it processes a minibatch of se-
quences with predefined length at a time. Now the question is how to read minibatches of
input sequences and target sequences at random.

Suppose that the dataset takes the form of a sequence of 𝑇 token indices in corpus. We
will partition it into subsequences, where each subsequence has 𝑛 tokens (time steps). To
iterate over (almost) all the tokens of the entire dataset for each epoch and obtain all possible
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length-𝑛 subsequences, we can introduce randomness. More concretely, at the beginning
of each epoch, discard the first 𝑑 tokens, where 𝑑 ∈ [0, 𝑛) is uniformly sampled at random.
The rest of the sequence is then partitioned into 𝑚 = b(𝑇 − 𝑑)/𝑛c subsequences. Denote by
x𝑡 = [𝑥𝑡 , . . . , 𝑥𝑡+𝑛−1] the length-𝑛 subsequence starting from token 𝑥𝑡 at time step 𝑡. The
resulting 𝑚 partitioned subsequences are x𝑑 ,x𝑑+𝑛, . . . ,x𝑑+𝑛(𝑚−1) . Each subsequence will
be used as an input sequence into the language model.

For language modeling, the goal is to predict the next token based on the tokens we have
seen so far; hence the targets (labels) are the original sequence, shifted by one token. The
target sequence for any input sequence x𝑡 is x𝑡+1 with length 𝑛.

tFig. 9.3.1 Obtaining five pairs of input sequences and target sequences from partitioned length-5
subsequences.

Fig. 9.3.1 shows an example of obtaining five pairs of input sequences and target sequences
with 𝑛 = 5 and 𝑑 = 2.

@d2l.add_to_class(d2l.TimeMachine) #@save
def __init__(self, batch_size, num_steps, num_train=10000, num_val=5000):

super(d2l.TimeMachine, self).__init__()
self.save_hyperparameters()
corpus, self.vocab = self.build(self._download())
array = np.array([corpus[i:i+num_steps+1]

for i in range(len(corpus)-num_steps)])
self.X, self.Y = array[:,:-1], array[:,1:]

To train language models, we will randomly sample pairs of input sequences and target
sequences in minibatches. The following data loader randomly generates a minibatch from
the dataset each time. The argument batch_size specifies the number of subsequence
examples in each minibatch and num_steps is the subsequence length in tokens.

@d2l.add_to_class(d2l.TimeMachine) #@save
def get_dataloader(self, train):

idx = slice(0, self.num_train) if train else slice(
self.num_train, self.num_train + self.num_val)

return self.get_tensorloader([self.X, self.Y], train, idx)

As we can see in the following, a minibatch of target sequences can be obtained by shifting
the input sequences by one token.

data = d2l.TimeMachine(batch_size=2, num_steps=10)
for X, Y in data.train_dataloader():

print('X:', X, '\nY:', Y)
break
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X: [[ 7. 7. 6. 19. 6. 15. 4. 6. 0. 3.]
[ 6. 19. 0. 4. 2. 22. 8. 9. 21. 0.]]
Y: [[ 7. 6. 19. 6. 15. 4. 6. 0. 3. 6.]
[19. 0. 4. 2. 22. 8. 9. 21. 0. 21.]]
[22:08:04] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

9.3.4 Summary and Discussion
Language models estimate the joint probability of a text sequence. For long sequences,
𝑛-grams provide a convenient model by truncating the dependence. However, there is a lot
of structure but not enough frequency to deal efficiently with infrequent word combinations
via Laplace smoothing. Thus, we will focus on neural language modeling in subsequent
sections. To train language models, we can randomly sample pairs of input sequences
and target sequences in minibatches. After training, we will use perplexity to measure the
language model quality.

Language models can be scaled up with increased data size, model size, and amount in
training compute. Large language models can perform desired tasks by predicting output
text given input text instructions. As we will discuss later (e.g., Section 11.8), at the present
moment large language models form the basis of state-of-the-art systems across diverse
tasks.

9.3.5 Exercises
1. Suppose there are 100,000 words in the training dataset. How much word frequency

and multi-word adjacent frequency does a four-gram need to store?

2. How would you model a dialogue?

3. What other methods can you think of for reading long sequence data?

4. Consider our method for discarding a uniformly random number of the first few tokens
at the beginning of each epoch.

1. Does it really lead to a perfectly uniform distribution over the sequences on the docu-
ment?

2. What would you have to do to make things even more uniform?

5. If we want a sequence example to be a complete sentence, what kind of problem does
this introduce in minibatch sampling? How can we fix it?

Discussions139 .
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9.4 Recurrent Neural Networks

In Section 9.3 we described Markov models and 𝑛-grams for language modeling, where
the conditional probability of token 𝑥𝑡 at time step 𝑡 only depends on the 𝑛 − 1 previous
tokens. If we want to incorporate the possible effect of tokens earlier than time step 𝑡 −
(𝑛−1) on 𝑥𝑡 , we need to increase 𝑛. However, the number of model parameters would also
increase exponentially with it, as we need to store |V|𝑛 numbers for a vocabulary set V.
Hence, rather than modeling 𝑃(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥𝑡−𝑛+1) it is preferable to use a latent variable
model,

𝑃(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1) ≈ 𝑃(𝑥𝑡 | ℎ𝑡−1), (9.4.1)

where ℎ𝑡−1 is a hidden state that stores the sequence information up to time step 𝑡 − 1. In
general, the hidden state at any time step 𝑡 could be computed based on both the current
input 𝑥𝑡 and the previous hidden state ℎ𝑡−1:

ℎ𝑡 = 𝑓 (𝑥𝑡 , ℎ𝑡−1). (9.4.2)

For a sufficiently powerful function 𝑓 in (9.4.2), the latent variable model is not an approx-
imation. After all, ℎ𝑡 may simply store all the data it has observed so far. However, it could
potentially make both computation and storage expensive.

Recall that we have discussed hidden layers with hidden units in Chapter 5. It is noteworthy
that hidden layers and hidden states refer to two very different concepts. Hidden layers are,
as explained, layers that are hidden from view on the path from input to output. Hidden
states are technically speaking inputs to whatever we do at a given step, and they can only
be computed by looking at data at previous time steps.

Recurrent neural networks (RNNs) are neural networks with hidden states. Before intro-
ducing the RNN model, we first revisit the MLP model introduced in Section 5.1.

from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

9.4.1 Neural Networks without Hidden States
Let’s take a look at an MLP with a single hidden layer. Let the hidden layer’s activation
function be 𝜙. Given a minibatch of examples X ∈ R𝑛×𝑑 with batch size 𝑛 and 𝑑 inputs,
the hidden layer output H ∈ R𝑛×ℎ is calculated as

H = 𝜙(XWxh + bh). (9.4.3)

In (9.4.3), we have the weight parameterWxh ∈ R𝑑×ℎ, the bias parameter bh ∈ R1×ℎ, and
the number of hidden units ℎ, for the hidden layer. So armed, we apply broadcasting (see
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Section 2.1.4) during the summation. Next, the hidden layer output H is used as input of
the output layer, which is given by

O = HWhq + bq, (9.4.4)

where O ∈ R𝑛×𝑞 is the output variable, Whq ∈ Rℎ×𝑞 is the weight parameter, and bq ∈
R1×𝑞 is the bias parameter of the output layer. If it is a classification problem, we can use
softmax(O) to compute the probability distribution of the output categories.

This is entirely analogous to the regression problem we solved previously in Section 9.1,
hence we omit details. Suffice it to say that we can pick feature-label pairs at random and
learn the parameters of our network via automatic differentiation and stochastic gradient
descent.

9.4.2 Recurrent Neural Networks with Hidden States
Matters are entirely different when we have hidden states. Let’s look at the structure in
some more detail.

Assume that we have a minibatch of inputs X𝑡 ∈ R𝑛×𝑑 at time step 𝑡. In other words, for
a minibatch of 𝑛 sequence examples, each row of X𝑡 corresponds to one example at time
step 𝑡 from the sequence. Next, denote by H𝑡 ∈ R𝑛×ℎ the hidden layer output of time step
𝑡. Unlike with MLP, here we save the hidden layer outputH𝑡−1 from the previous time step
and introduce a new weight parameterWhh ∈ Rℎ×ℎ to describe how to use the hidden layer
output of the previous time step in the current time step. Specifically, the calculation of the
hidden layer output of the current time step is determined by the input of the current time
step together with the hidden layer output of the previous time step:

H𝑡 = 𝜙(X𝑡Wxh +H𝑡−1Whh + bh). (9.4.5)

Comparedwith (9.4.3), (9.4.5) adds onemore termH𝑡−1Whh and thus instantiates (9.4.2).
From the relationship between hidden layer outputs H𝑡 and H𝑡−1 of adjacent time steps,
we know that these variables captured and retained the sequence’s historical information
up to their current time step, just like the state or memory of the neural network’s current
time step. Therefore, such a hidden layer output is called a hidden state. Since the hidden
state uses the same definition of the previous time step in the current time step, the compu-
tation of (9.4.5) is recurrent. Hence, as we said, neural networks with hidden states based
on recurrent computation are named recurrent neural networks. Layers that perform the
computation of (9.4.5) in RNNs are called recurrent layers.

There are many different ways for constructing RNNs. Those with a hidden state defined
by (9.4.5) are very common. For time step 𝑡, the output of the output layer is similar to the
computation in the MLP:

O𝑡 = H𝑡Whq + bq. (9.4.6)

Parameters of the RNN include the weights Wxh ∈ R𝑑×ℎ,Whh ∈ Rℎ×ℎ, and the bias bh ∈
R1×ℎ of the hidden layer, together with the weights Whq ∈ Rℎ×𝑞 and the bias bq ∈ R1×𝑞

of the output layer. It is worth mentioning that even at different time steps, RNNs always
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use these model parameters. Therefore, the parametrization cost of an RNN does not grow
as the number of time steps increases.

Fig. 9.4.1 illustrates the computational logic of an RNN at three adjacent time steps. At
any time step 𝑡, the computation of the hidden state can be treated as: (i) concatenating the
inputX𝑡 at the current time step 𝑡 and the hidden stateH𝑡−1 at the previous time step 𝑡 −1;
(ii) feeding the concatenation result into a fully connected layer with the activation function
𝜙. The output of such a fully connected layer is the hidden stateH𝑡 of the current time step
𝑡. In this case, the model parameters are the concatenation of Wxh and Whh, and a bias
of bh, all from (9.4.5). The hidden state of the current time step 𝑡, H𝑡 , will participate in
computing the hidden state H𝑡+1 of the next time step 𝑡 + 1. What is more, H𝑡 will also be
fed into the fully connected output layer to compute the output O𝑡 of the current time step
𝑡.

tFig. 9.4.1 An RNN with a hidden state.

We just mentioned that the calculation ofX𝑡Wxh +H𝑡−1Whh for the hidden state is equiv-
alent to matrix multiplication of the concatenation of X𝑡 and H𝑡−1 and the concatenation
of Wxh and Whh. Though this can be proven mathematically, in the following we just use
a simple code snippet as a demonstration. To begin with, we define matrices X, W_xh, H,
and W_hh, whose shapes are (3, 1), (1, 4), (3, 4), and (4, 4), respectively. Multiplying X by
W_xh, and H by W_hh, and then adding these two products, we obtain a matrix of shape (3,
4).

X, W_xh = np.random.randn(3, 1), np.random.randn(1, 4)
H, W_hh = np.random.randn(3, 4), np.random.randn(4, 4)
np.dot(X, W_xh) + np.dot(H, W_hh)

[22:07:37] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([[-0.21952915, 4.256434 , 4.5812645 , -5.344988 ],
[ 3.447858 , -3.0177274 , -1.6777471 , 7.535347 ],
[ 2.2390068 , 1.4199957 , 4.744728 , -8.421293 ]])

Now we concatenate the matrices X and H along columns (axis 1), and the matrices W_xh
and W_hh along rows (axis 0). These two concatenations result in matrices of shape (3, 5)
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and of shape (5, 4), respectively. Multiplying these two concatenated matrices, we obtain
the same output matrix of shape (3, 4) as above.

np.dot(np.concatenate((X, H), 1), np.concatenate((W_xh, W_hh), 0))

array([[-0.21952918, 4.256434 , 4.5812645 , -5.344988 ],
[ 3.4478583 , -3.0177271 , -1.677747 , 7.535347 ],
[ 2.2390068 , 1.4199957 , 4.744728 , -8.421294 ]])

9.4.3 RNN-Based Character-Level Language Models
Recall that for language modeling in Section 9.3, we aim to predict the next token based on
the current and past tokens; thus we shift the original sequence by one token as the targets
(labels). Bengio et al. (2003) first proposed to use a neural network for language modeling.
In the following we illustrate how RNNs can be used to build a language model. Let the
minibatch size be one, and the sequence of the text be “machine”. To simplify training
in subsequent sections, we tokenize text into characters rather than words and consider a
character-level language model. Fig. 9.4.2 demonstrates how to predict the next charac-
ter based on the current and previous characters via an RNN for character-level language
modeling.

tFig. 9.4.2 A character-level language model based on the RNN. The input and target sequences are
“machin” and “achine”, respectively.

During the training process, we run a softmax operation on the output from the output layer
for each time step, and then use the cross-entropy loss to compute the error between the
model output and the target. Because of the recurrent computation of the hidden state in the
hidden layer, the output,O3, of time step 3 in Fig. 9.4.2 is determined by the text sequence
“m”, “a”, and “c”. Since the next character of the sequence in the training data is “h”, the
loss of time step 3 will depend on the probability distribution of the next character generated
based on the feature sequence “m”, “a”, “c” and the target “h” of this time step.

In practice, each token is represented by a 𝑑-dimensional vector, and we use a batch size
𝑛 > 1. Therefore, the input X𝑡 at time step 𝑡 will be an 𝑛 × 𝑑 matrix, which is identical to
what we discussed in Section 9.4.2.

In the following sections, we will implement RNNs for character-level language mod-
els.
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9.4.4 Summary
A neural network that uses recurrent computation for hidden states is called a recurrent
neural network (RNN). The hidden state of an RNN can capture historical information of
the sequence up to the current time step. With recurrent computation, the number of RNN
model parameters does not grow as the number of time steps increases. As for applications,
an RNN can be used to create character-level language models.

9.4.5 Exercises
1. If we use an RNN to predict the next character in a text sequence, what is the required

dimension for any output?

2. Why can RNNs express the conditional probability of a token at some time step based
on all the previous tokens in the text sequence?

3. What happens to the gradient if you backpropagate through a long sequence?

4. What are some of the problems associated with the language model described in this
section?

Discussions140 .

9.5 Recurrent Neural Network Implementation
from Scratch

We are now ready to implement an RNN from scratch. In particular, we will train this
RNN to function as a character-level language model (see Section 9.4) and train it on a
corpus consisting of the entire text of H. G. Wells’ The Time Machine, following the data
processing steps outlined in Section 9.2. We start by loading the dataset.

%matplotlib inline
import math
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

9.5.1 RNN Model
We begin by defining a class to implement the RNN model (Section 9.4.2). Note that the
number of hidden units num_hiddens is a tunable hyperparameter.

https://discuss.d2l.ai/t/337
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class RNNScratch(d2l.Module): #@save
"""The RNN model implemented from scratch."""
def __init__(self, num_inputs, num_hiddens, sigma=0.01):

super().__init__()
self.save_hyperparameters()
self.W_xh = np.random.randn(num_inputs, num_hiddens) * sigma
self.W_hh = np.random.randn(

num_hiddens, num_hiddens) * sigma
self.b_h = np.zeros(num_hiddens)

The forwardmethod below defines how to compute the output and hidden state at any time
step, given the current input and the state of the model at the previous time step. Note that
the RNN model loops through the outermost dimension of inputs, updating the hidden
state one time step at a time. The model here uses a tanh activation function (Section
5.1.2).

@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):

if state is None:
# Initial state with shape: (batch_size, num_hiddens)
state = np.zeros((inputs.shape[1], self.num_hiddens),

ctx=inputs.ctx)
else:

state, = state
outputs = []
for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)

state = np.tanh(np.dot(X, self.W_xh) +
np.dot(state, self.W_hh) + self.b_h)

outputs.append(state)
return outputs, state

We can feed a minibatch of input sequences into an RNN model as follows.

batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = np.ones((num_steps, batch_size, num_inputs))
outputs, state = rnn(X)

[22:31:16] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Let’s check whether the RNN model produces results of the correct shapes to ensure that
the dimensionality of the hidden state remains unchanged.

def check_len(a, n): #@save
"""Check the length of a list."""
assert len(a) == n, f'list\'s length {len(a)} != expected length {n}'

def check_shape(a, shape): #@save
"""Check the shape of a tensor."""

(continues on next page)
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(continued from previous page)

assert a.shape == shape, \
f'tensor\'s shape {a.shape} != expected shape {shape}'

check_len(outputs, num_steps)
check_shape(outputs[0], (batch_size, num_hiddens))
check_shape(state, (batch_size, num_hiddens))

9.5.2 RNN-Based Language Model
The following RNNLMScratch class defines an RNN-based language model, where we pass
in our RNN via the rnn argument of the __init__ method. When training language mod-
els, the inputs and outputs are from the same vocabulary. Hence, they have the same di-
mension, which is equal to the vocabulary size. Note that we use perplexity to evaluate the
model. As discussed in Section 9.3.2, this ensures that sequences of different length are
comparable.

class RNNLMScratch(d2l.Classifier): #@save
"""The RNN-based language model implemented from scratch."""
def __init__(self, rnn, vocab_size, lr=0.01):

super().__init__()
self.save_hyperparameters()
self.init_params()

def init_params(self):
self.W_hq = np.random.randn(

self.rnn.num_hiddens, self.vocab_size) * self.rnn.sigma
self.b_q = np.zeros(self.vocab_size)
for param in self.get_scratch_params():

param.attach_grad()
def training_step(self, batch):

l = self.loss(self(*batch[:-1]), batch[-1])
self.plot('ppl', np.exp(l), train=True)
return l

def validation_step(self, batch):
l = self.loss(self(*batch[:-1]), batch[-1])
self.plot('ppl', np.exp(l), train=False)

One-Hot Encoding
Recall that each token is represented by a numerical index indicating the position in the
vocabulary of the corresponding word/character/word piece. Youmight be tempted to build
a neural network with a single input node (at each time step), where the index could be fed
in as a scalar value. This works when we are dealing with numerical inputs like price or
temperature, where any two values sufficiently close together should be treated similarly.
But this does not quite make sense. The 45th and 46th words in our vocabulary happen to
be “their” and “said”, whose meanings are not remotely similar.

When dealing with such categorical data, the most common strategy is to represent each
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item by a one-hot encoding (recall from Section 4.1.1). A one-hot encoding is a vector
whose length is given by the size of the vocabulary 𝑁 , where all entries are set to 0, except
for the entry corresponding to our token, which is set to 1. For example, if the vocabulary
had five elements, then the one-hot vectors corresponding to indices 0 and 2 would be the
following.

npx.one_hot(np.array([0, 2]), 5)

array([[1., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.]])

The minibatches that we sample at each iteration will take the shape (batch size, number
of time steps). Once representing each input as a one-hot vector, we can think of each
minibatch as a three-dimensional tensor, where the length along the third axis is given by
the vocabulary size (len(vocab)). We often transpose the input so that we will obtain an
output of shape (number of time steps, batch size, vocabulary size). This will allow us to
loop more conveniently through the outermost dimension for updating hidden states of a
minibatch, time step by time step (e.g., in the above forward method).

@d2l.add_to_class(RNNLMScratch) #@save
def one_hot(self, X):

# Output shape: (num_steps, batch_size, vocab_size)
return npx.one_hot(X.T, self.vocab_size)

Transforming RNN Outputs
The language model uses a fully connected output layer to transform RNN outputs into
token predictions at each time step.

@d2l.add_to_class(RNNLMScratch) #@save
def output_layer(self, rnn_outputs):

outputs = [np.dot(H, self.W_hq) + self.b_q for H in rnn_outputs]
return np.stack(outputs, 1)

@d2l.add_to_class(RNNLMScratch) #@save
def forward(self, X, state=None):

embs = self.one_hot(X)
rnn_outputs, _ = self.rnn(embs, state)
return self.output_layer(rnn_outputs)

Let’s checkwhether the forward computation produces outputs with the correct shape.

model = RNNLMScratch(rnn, num_inputs)
outputs = model(np.ones((batch_size, num_steps), dtype=np.int64))
check_shape(outputs, (batch_size, num_steps, num_inputs))

9.5.3 Gradient Clipping
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While you are already used to thinking of neural networks as “deep” in the sense that many
layers separate the input and output even within a single time step, the length of the se-
quence introduces a new notion of depth. In addition to the passing through the network
in the input-to-output direction, inputs at the first time step must pass through a chain of 𝑇
layers along the time steps in order to influence the output of the model at the final time
step. Taking the backwards view, in each iteration, we backpropagate gradients through
time, resulting in a chain of matrix-products of length O(𝑇). As mentioned in Section 5.4,
this can result in numerical instability, causing the gradients either to explode or vanish,
depending on the properties of the weight matrices.

Dealing with vanishing and exploding gradients is a fundamental problem when designing
RNNs and has inspired some of the biggest advances in modern neural network architec-
tures. In the next chapter, we will talk about specialized architectures that were designed in
hopes of mitigating the vanishing gradient problem. However, even modern RNNs often
suffer from exploding gradients. One inelegant but ubiquitous solution is to simply clip the
gradients forcing the resulting “clipped” gradients to take smaller values.

Generally speaking, when optimizing some objective by gradient descent, we iteratively
update the parameter of interest, say a vectorx, but pushing it in the direction of the negative
gradient g (in stochastic gradient descent, we calculate this gradient on a randomly sampled
minibatch). For example, with learning rate 𝜂 > 0, each update takes the form x← x−𝜂g.
Let’s further assume that the objective function 𝑓 is sufficiently smooth. Formally, we say
that the objective is Lipschitz continuous with constant 𝐿, meaning that for any x and y,
we have

| 𝑓 (x) − 𝑓 (y) | ≤ 𝐿‖x − y‖. (9.5.1)

As you can see, when we update the parameter vector by subtracting 𝜂g, the change in
the value of the objective depends on the learning rate, the norm of the gradient and 𝐿 as
follows:

| 𝑓 (x) − 𝑓 (x − 𝜂g) | ≤ 𝐿𝜂‖g‖. (9.5.2)

In other words, the objective cannot change by more than 𝐿𝜂‖g‖. Having a small value for
this upper bound might be viewed as good or bad. On the downside, we are limiting the
speed at which we can reduce the value of the objective. On the bright side, this limits by
just how much we can go wrong in any one gradient step.

When we say that gradients explode, we mean that ‖g‖ becomes excessively large. In this
worst case, we might do so much damage in a single gradient step that we could undo all
of the progress made over the course of thousands of training iterations. When gradients
can be so large, neural network training often diverges, failing to reduce the value of the
objective. At other times, training eventually converges but is unstable owing to massive
spikes in the loss.

One way to limit the size of 𝐿𝜂‖g‖ is to shrink the learning rate 𝜂 to tiny values. This
has the advantage that we do not bias the updates. But what if we only rarely get large
gradients? This drastic move slows down our progress at all steps, just to deal with the rare
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exploding gradient events. A popular alternative is to adopt a gradient clipping heuristic
projecting the gradients g onto a ball of some given radius 𝜃 as follows:

g← min
(
1,

𝜃

‖g‖

)
g. (9.5.3)

This ensures that the gradient norm never exceeds 𝜃 and that the updated gradient is entirely
aligned with the original direction of g. It also has the desirable side-effect of limiting the
influence any given minibatch (and within it any given sample) can exert on the parameter
vector. This bestows a certain degree of robustness to the model. To be clear, it is a hack.
Gradient clipping means that we are not always following the true gradient and it is hard to
reason analytically about the possible side effects. However, it is a very useful hack, and is
widely adopted in RNN implementations in most deep learning frameworks.

Below we define a method to clip gradients, which is invoked by the fit_epoch method
of the d2l.Trainer class (see Section 3.4). Note that when computing the gradient norm,
we are concatenating all model parameters, treating them as a single giant parameter vec-
tor.

@d2l.add_to_class(d2l.Trainer) #@save
def clip_gradients(self, grad_clip_val, model):

params = model.parameters()
if not isinstance(params, list):

params = [p.data() for p in params.values()]
norm = math.sqrt(sum((p.grad ** 2).sum() for p in params))
if norm > grad_clip_val:

for param in params:
param.grad[:] *= grad_clip_val / norm

9.5.4 Training
Using The TimeMachine dataset (data), we train a character-level language model (model)
based on the RNN (rnn) implemented from scratch. Note that we first calculate the gra-
dients, then clip them, and finally update the model parameters using the clipped gradi-
ents.

data = d2l.TimeMachine(batch_size=1024, num_steps=32)
rnn = RNNScratch(num_inputs=len(data.vocab), num_hiddens=32)
model = RNNLMScratch(rnn, vocab_size=len(data.vocab), lr=1)
trainer = d2l.Trainer(max_epochs=100, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

9.5.5 Decoding
Once a language model has been learned, we can use it not only to predict the next token
but to continue predicting each subsequent one, treating the previously predicted token as
though it were the next in the input. Sometimes we will just want to generate text as though
we were starting at the beginning of a document. However, it is often useful to condition the
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language model on a user-supplied prefix. For example, if we were developing an autocom-
plete feature for a search engine or to assist users in writing emails, we would want to feed
in what they had written so far (the prefix), and then generate a likely continuation.

The following predict method generates a continuation, one character at a time, after
ingesting a user-provided prefix. When looping through the characters in prefix, we
keep passing the hidden state to the next time step but do not generate any output. This is
called the warm-up period. After ingesting the prefix, we are now ready to begin emitting
the subsequent characters, each of which will be fed back into the model as the input at the
next time step.

@d2l.add_to_class(RNNLMScratch) #@save
def predict(self, prefix, num_preds, vocab, device=None):

state, outputs = None, [vocab[prefix[0]]]
for i in range(len(prefix) + num_preds - 1):

X = np.array([[outputs[-1]]], ctx=device)
embs = self.one_hot(X)
rnn_outputs, state = self.rnn(embs, state)
if i < len(prefix) - 1: # Warm-up period

outputs.append(vocab[prefix[i + 1]])
else: # Predict num_preds steps

Y = self.output_layer(rnn_outputs)
outputs.append(int(Y.argmax(axis=2).reshape(1)))

return ''.join([vocab.idx_to_token[i] for i in outputs])

In the following, we specify the prefix and have it generate 20 additional characters.

model.predict('it has', 20, data.vocab, d2l.try_gpu())

'it has in the the prace th'

While implementing the above RNNmodel from scratch is instructive, it is not convenient.
In the next section, we will see how to leverage deep learning frameworks to whip up RNNs
using standard architectures, and to reap performance gains by relying on highly optimized
library functions.

9.5.6 Summary
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We can train RNN-based language models to generate text following the user-provided text
prefix. A simple RNN language model consists of input encoding, RNN modeling, and
output generation. During training, gradient clipping can mitigate the problem of explod-
ing gradients but does not address the problem of vanishing gradients. In the experiment,
we implemented a simple RNN language model and trained it with gradient clipping on se-
quences of text, tokenized at the character level. By conditioning on a prefix, we can use a
language model to generate likely continuations, which proves useful in many applications,
e.g., autocomplete features.

9.5.7 Exercises
1. Does the implemented languagemodel predict the next token based on all the past tokens

up to the very first token in The Time Machine?

2. Which hyperparameter controls the length of history used for prediction?

3. Show that one-hot encoding is equivalent to picking a different embedding for each
object.

4. Adjust the hyperparameters (e.g., number of epochs, number of hidden units, number
of time steps in a minibatch, and learning rate) to improve the perplexity. How low can
you go while sticking with this simple architecture?

5. Replace one-hot encoding with learnable embeddings. Does this lead to better perfor-
mance?

6. Conduct an experiment to determine how well this language model trained on The Time
Machine works on other books by H. G. Wells, e.g., The War of the Worlds.

7. Conduct another experiment to evaluate the perplexity of this model on books written
by other authors.

8. Modify the prediction method so as to use sampling rather than picking the most likely
next character.

• What happens?

• Bias themodel towardsmore likely outputs, e.g., by sampling from 𝑞(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1) ∝
𝑃(𝑥𝑡 | 𝑥𝑡−1, . . . , 𝑥1)𝛼 for 𝛼 > 1.

9. Run the code in this section without clipping the gradient. What happens?

10. Replace the activation function used in this section with ReLU and repeat the experi-
ments in this section. Do we still need gradient clipping? Why?

Discussions141 .
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9.6 Concise Implementation of Recurrent Neural
Networks

Like most of our from-scratch implementations, Section 9.5 was designed to provide in-
sight into how each component works. But when you are using RNNs every day or writing
production code, you will want to rely more on libraries that cut down on both implemen-
tation time (by supplying library code for common models and functions) and computation
time (by optimizing the heck out of these library implementations). This section will show
you how to implement the same language model more efficiently using the high-level API
provided by your deep learning framework. We begin, as before, by loading The Time
Machine dataset.

from mxnet import np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2l

npx.set_np()

9.6.1 Defining the Model
We define the following class using the RNN implemented by high-level APIs.

Specifically, to initialize the hidden state, we invoke the member method begin_state.
This returns a list that contains an initial hidden state for each example in the minibatch,
whose shape is (number of hidden layers, batch size, number of hidden units). For some
models to be introduced later (e.g., long short-term memory), this list will also contain
other information.

class RNN(d2l.Module): #@save
"""The RNN model implemented with high-level APIs."""
def __init__(self, num_hiddens):

super().__init__()
self.save_hyperparameters()
self.rnn = rnn.RNN(num_hiddens)

def forward(self, inputs, H=None):
if H is None:

H, = self.rnn.begin_state(inputs.shape[1], ctx=inputs.ctx)
outputs, (H, ) = self.rnn(inputs, (H, ))
return outputs, H

Inheriting from the RNNLMScratch class in Section 9.5, the following RNNLM class defines
a complete RNN-based language model. Note that we need to create a separate fully con-
nected output layer.
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class RNNLM(d2l.RNNLMScratch): #@save
"""The RNN-based language model implemented with high-level APIs."""
def init_params(self):

self.linear = nn.Dense(self.vocab_size, flatten=False)
self.initialize()

def output_layer(self, hiddens):
return self.linear(hiddens).swapaxes(0, 1)

9.6.2 Training and Predicting
Before training the model, let’s make a prediction with a model initialized with random
weights. Given that we have not trained the network, it will generate nonsensical predic-
tions.

data = d2l.TimeMachine(batch_size=1024, num_steps=32)
rnn = RNN(num_hiddens=32)
model = RNNLM(rnn, vocab_size=len(data.vocab), lr=1)
model.predict('it has', 20, data.vocab)

[22:52:51] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

'it hasxlxlxlxlxlxlxlxlxlxl'

Next, we train our model, leveraging the high-level API.

trainer = d2l.Trainer(max_epochs=100, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

Compared with Section 9.5, this model achieves comparable perplexity, but runs faster due
to the optimized implementations. As before, we can generate predicted tokens following
the specified prefix string.

model.predict('it has', 20, data.vocab, d2l.try_gpu())
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'it has and the time the ti'

9.6.3 Summary
High-level APIs in deep learning frameworks provide implementations of standard RNNs.
These libraries help you to avoid wasting time reimplementing standard models. Moreover,
framework implementations are often highly optimized, leading to significant (computa-
tional) performance gains when compared with implementations from scratch.

9.6.4 Exercises
1. Can you make the RNN model overfit using the high-level APIs?

2. Implement the autoregressive model of Section 9.1 using an RNN.

Discussions142 .

9.7 Backpropagation Through Time

If you completed the exercises in Section 9.5, you would have seen that gradient clipping is
vital for preventing the occasional massive gradients from destabilizing training. We hinted
that the exploding gradients stem from backpropagating across long sequences. Before in-
troducing a slew of modern RNN architectures, let’s take a closer look at how backprop-
agation works in sequence models in mathematical detail. Hopefully, this discussion will
bring some precision to the notion of vanishing and exploding gradients. If you recall our
discussion of forward and backward propagation through computational graphs when we
introduced MLPs in Section 5.3, then forward propagation in RNNs should be relatively
straightforward. Applying backpropagation in RNNs is called backpropagation through
time (Werbos, 1990). This procedure requires us to expand (or unroll) the computational
graph of an RNN one time step at a time. The unrolled RNN is essentially a feedforward
neural network with the special property that the same parameters are repeated throughout
the unrolled network, appearing at each time step. Then, just as in any feedforward neural
network, we can apply the chain rule, backpropagating gradients through the unrolled net.
The gradient with respect to each parameter must be summed across all places that the pa-
rameter occurs in the unrolled net. Handling such weight tying should be familiar from our
chapters on convolutional neural networks.

Complications arise because sequences can be rather long. It is not unusual to work with
text sequences consisting of over a thousand tokens. Note that this poses problems both
from a computational (too much memory) and optimization (numerical instability) stand-
point. Input from the first step passes through over 1000 matrix products before arriving
at the output, and another 1000 matrix products are required to compute the gradient. We
now analyze what can go wrong and how to address it in practice.

https://discuss.d2l.ai/t/335
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9.7.1 Analysis of Gradients in RNNs
We start with a simplified model of how an RNN works. This model ignores details about
the specifics of the hidden state and how it is updated. The mathematical notation here does
not explicitly distinguish scalars, vectors, and matrices. We are just trying to develop some
intuition. In this simplified model, we denote ℎ𝑡 as the hidden state, 𝑥𝑡 as input, and 𝑜𝑡 as
output at time step 𝑡. Recall our discussions in Section 9.4.2 that the input and the hidden
state can be concatenated before beingmultiplied by one weight variable in the hidden layer.
Thus, we use 𝑤h and 𝑤o to indicate the weights of the hidden layer and the output layer,
respectively. As a result, the hidden states and outputs at each time step are

ℎ𝑡 = 𝑓 (𝑥𝑡 , ℎ𝑡−1, 𝑤h),
𝑜𝑡 = 𝑔(ℎ𝑡 , 𝑤o),

(9.7.1)

where 𝑓 and 𝑔 are transformations of the hidden layer and the output layer, respectively.
Hence, we have a chain of values {. . . , (𝑥𝑡−1, ℎ𝑡−1, 𝑜𝑡−1), (𝑥𝑡 , ℎ𝑡 , 𝑜𝑡 ), . . .} that depend on
each other via recurrent computation. The forward propagation is fairly straightforward.
All we need is to loop through the (𝑥𝑡 , ℎ𝑡 , 𝑜𝑡 ) triples one time step at a time. The discrep-
ancy between output 𝑜𝑡 and the desired target 𝑦𝑡 is then evaluated by an objective function
across all the 𝑇 time steps as

𝐿 (𝑥1, . . . , 𝑥𝑇 , 𝑦1, . . . , 𝑦𝑇 , 𝑤h, 𝑤o) =
1
𝑇

𝑇∑
𝑡=1

𝑙 (𝑦𝑡 , 𝑜𝑡 ). (9.7.2)

For backpropagation, matters are a bit trickier, especially when we compute the gradients
with regard to the parameters 𝑤h of the objective function 𝐿. To be specific, by the chain
rule,

𝜕𝐿

𝜕𝑤h
=

1
𝑇

𝑇∑
𝑡=1

𝜕𝑙 (𝑦𝑡 , 𝑜𝑡 )
𝜕𝑤h

=
1
𝑇

𝑇∑
𝑡=1

𝜕𝑙 (𝑦𝑡 , 𝑜𝑡 )
𝜕𝑜𝑡

𝜕𝑔(ℎ𝑡 , 𝑤o)
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕𝑤h

.

(9.7.3)

The first and the second factors of the product in (9.7.3) are easy to compute. The third
factor 𝜕ℎ𝑡/𝜕𝑤h is where things get tricky, since we need to recurrently compute the effect
of the parameter 𝑤h on ℎ𝑡 . According to the recurrent computation in (9.7.1), ℎ𝑡 depends
on both ℎ𝑡−1 and 𝑤h, where computation of ℎ𝑡−1 also depends on 𝑤h. Thus, evaluating the
total derivate of ℎ𝑡 with respect to 𝑤h using the chain rule yields

𝜕ℎ𝑡
𝜕𝑤h

=
𝜕 𝑓 (𝑥𝑡 , ℎ𝑡−1, 𝑤h)

𝜕𝑤h
+ 𝜕 𝑓 (𝑥𝑡 , ℎ𝑡−1, 𝑤h)

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕𝑤h
. (9.7.4)

To derive the above gradient, assume that we have three sequences {𝑎𝑡 }, {𝑏𝑡 }, {𝑐𝑡 } satisfy-
ing 𝑎0 = 0 and 𝑎𝑡 = 𝑏𝑡 + 𝑐𝑡𝑎𝑡−1 for 𝑡 = 1, 2, . . .. Then for 𝑡 ≥ 1, it is easy to show

𝑎𝑡 = 𝑏𝑡 +
𝑡−1∑
𝑖=1

©­«
𝑡∏

𝑗=𝑖+1
𝑐 𝑗

ª®¬ 𝑏𝑖 . (9.7.5)
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By substituting 𝑎𝑡 , 𝑏𝑡 , and 𝑐𝑡 according to

𝑎𝑡 =
𝜕ℎ𝑡
𝜕𝑤h

,

𝑏𝑡 =
𝜕 𝑓 (𝑥𝑡 , ℎ𝑡−1, 𝑤h)

𝜕𝑤h
,

𝑐𝑡 =
𝜕 𝑓 (𝑥𝑡 , ℎ𝑡−1, 𝑤h)

𝜕ℎ𝑡−1
,

(9.7.6)

the gradient computation in (9.7.4) satisfies 𝑎𝑡 = 𝑏𝑡 + 𝑐𝑡𝑎𝑡−1. Thus, per (9.7.5), we can
remove the recurrent computation in (9.7.4) with

𝜕ℎ𝑡
𝜕𝑤h

=
𝜕 𝑓 (𝑥𝑡 , ℎ𝑡−1, 𝑤h)

𝜕𝑤h
+
𝑡−1∑
𝑖=1

©­«
𝑡∏

𝑗=𝑖+1

𝜕 𝑓 (𝑥 𝑗 , ℎ 𝑗−1, 𝑤h)
𝜕ℎ 𝑗−1

ª®¬ 𝜕 𝑓 (𝑥𝑖 , ℎ𝑖−1, 𝑤h)
𝜕𝑤h

. (9.7.7)

While we can use the chain rule to compute 𝜕ℎ𝑡/𝜕𝑤h recursively, this chain can get very
long whenever 𝑡 is large. Let’s discuss a number of strategies for dealing with this prob-
lem.

Full Computation
One idea might be to compute the full sum in (9.7.7). However, this is very slow and
gradients can blow up, since subtle changes in the initial conditions can potentially affect
the outcome a lot. That is, we could see things similar to the butterfly effect, where minimal
changes in the initial conditions lead to disproportionate changes in the outcome. This is
generally undesirable. After all, we are looking for robust estimators that generalize well.
Hence this strategy is almost never used in practice.

Truncating Time Steps
Alternatively, we can truncate the sum in (9.7.7) after 𝜏 steps. This is what we have been
discussing so far. This leads to an approximation of the true gradient, simply by terminating
the sum at 𝜕ℎ𝑡−𝜏/𝜕𝑤h. In practice this works quite well. It is what is commonly referred
to as truncated backpropgation through time (Jaeger, 2002). One of the consequences of
this is that the model focuses primarily on short-term influence rather than long-term con-
sequences. This is actually desirable, since it biases the estimate towards simpler and more
stable models.

Randomized Truncation
Last, we can replace 𝜕ℎ𝑡/𝜕𝑤h by a random variable which is correct in expectation but
truncates the sequence. This is achieved by using a sequence of 𝜉𝑡 with predefined 0 ≤
𝜋𝑡 ≤ 1, where 𝑃(𝜉𝑡 = 0) = 1 − 𝜋𝑡 and 𝑃(𝜉𝑡 = 𝜋−1

𝑡 ) = 𝜋𝑡 , thus 𝐸 [𝜉𝑡 ] = 1. We use this to
replace the gradient 𝜕ℎ𝑡/𝜕𝑤h in (9.7.4) with

𝑧𝑡 =
𝜕 𝑓 (𝑥𝑡 , ℎ𝑡−1, 𝑤h)

𝜕𝑤h
+ 𝜉𝑡

𝜕 𝑓 (𝑥𝑡 , ℎ𝑡−1, 𝑤h)
𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕𝑤h
. (9.7.8)
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It follows from the definition of 𝜉𝑡 that 𝐸 [𝑧𝑡 ] = 𝜕ℎ𝑡/𝜕𝑤h. Whenever 𝜉𝑡 = 0 the recurrent
computation terminates at that time step 𝑡. This leads to a weighted sum of sequences of
varying lengths, where long sequences are rare but appropriately overweighted. This idea
was proposed by Tallec and Ollivier (2017).

Comparing Strategies

tFig. 9.7.1 Comparing strategies for computing gradients in RNNs. From top to bottom: randomized
truncation, regular truncation, and full computation.

Fig. 9.7.1 illustrates the three strategies when analyzing the first few characters of The Time
Machine using backpropagation through time for RNNs:

• The first row is the randomized truncation that partitions the text into segments of varying
lengths.

• The second row is the regular truncation that breaks the text into subsequences of the
same length. This is what we have been doing in RNN experiments.

• The third row is the full backpropagation through time that leads to a computationally
infeasible expression.

Unfortunately, while appealing in theory, randomized truncation does not work much bet-
ter than regular truncation, most likely due to a number of factors. First, the effect of an
observation after a number of backpropagation steps into the past is quite sufficient to cap-
ture dependencies in practice. Second, the increased variance counteracts the fact that the
gradient is more accurate with more steps. Third, we actually want models that have only
a short range of interactions. Hence, regularly truncated backpropagation through time has
a slight regularizing effect that can be desirable.

9.7.2 Backpropagation Through Time in Detail
After discussing the general principle, let’s discuss backpropagation through time in detail.
In contrast to the analysis in Section 9.7.1, in the followingwewill show how to compute the
gradients of the objective function with respect to all the decomposed model parameters.
To keep things simple, we consider an RNN without bias parameters, whose activation
function in the hidden layer uses the identity mapping (𝜙(𝑥) = 𝑥). For time step 𝑡, let
the single example input and the target be x𝑡 ∈ R𝑑 and 𝑦𝑡 , respectively. The hidden state
h𝑡 ∈ Rℎ and the output o𝑡 ∈ R𝑞 are computed as

h𝑡 = Whxx𝑡 +Whhh𝑡−1,

o𝑡 = Wqhh𝑡 ,
(9.7.9)
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where Whx ∈ Rℎ×𝑑 , Whh ∈ Rℎ×ℎ, and Wqh ∈ R𝑞×ℎ are the weight parameters. Denote
by 𝑙 (o𝑡 , 𝑦𝑡 ) the loss at time step 𝑡. Our objective function, the loss over 𝑇 time steps from
the beginning of the sequence is thus

𝐿 =
1
𝑇

𝑇∑
𝑡=1

𝑙 (o𝑡 , 𝑦𝑡 ). (9.7.10)

In order to visualize the dependencies among model variables and parameters during com-
putation of the RNN, we can draw a computational graph for the model, as shown in Fig.
9.7.2. For example, the computation of the hidden states of time step 3, h3, depends on
the model parametersWhx andWhh, the hidden state of the previous time step h2, and the
input of the current time step x3.

tFig. 9.7.2 Computational graph showing dependencies for an RNN model with three time steps.
Boxes represent variables (not shaded) or parameters (shaded) and circles represent
operators.

As just mentioned, the model parameters in Fig. 9.7.2 are Whx, Whh, and Wqh. Gen-
erally, training this model requires gradient computation with respect to these parameters
𝜕𝐿/𝜕Whx, 𝜕𝐿/𝜕Whh, and 𝜕𝐿/𝜕Wqh. According to the dependencies in Fig. 9.7.2, we can
traverse in the opposite direction of the arrows to calculate and store the gradients in turn.
To flexibly express the multiplication of matrices, vectors, and scalars of different shapes
in the chain rule, we continue to use the prod operator as described in Section 5.3.

First of all, differentiating the objective function with respect to the model output at any
time step 𝑡 is fairly straightforward:

𝜕𝐿

𝜕o𝑡
=
𝜕𝑙 (o𝑡 , 𝑦𝑡 )
𝑇 · 𝜕o𝑡

∈ R𝑞 . (9.7.11)

Now we can calculate the gradient of the objective with respect to the parameter Wqh in
the output layer: 𝜕𝐿/𝜕Wqh ∈ R𝑞×ℎ. Based on Fig. 9.7.2, the objective 𝐿 depends onWqh
via o1, . . . , o𝑇 . Using the chain rule yields

𝜕𝐿

𝜕Wqh
=

𝑇∑
𝑡=1

prod
(
𝜕𝐿

𝜕o𝑡
,
𝜕o𝑡
𝜕Wqh

)
=

𝑇∑
𝑡=1

𝜕𝐿

𝜕o𝑡
h>𝑡 , (9.7.12)

where 𝜕𝐿/𝜕o𝑡 is given by (9.7.11).

Next, as shown in Fig. 9.7.2, at the final time step 𝑇 , the objective function 𝐿 depends on
the hidden state h𝑇 only via o𝑇 . Therefore, we can easily find the gradient 𝜕𝐿/𝜕h𝑇 ∈ Rℎ
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using the chain rule:

𝜕𝐿

𝜕h𝑇
= prod

(
𝜕𝐿

𝜕o𝑇
,
𝜕o𝑇
𝜕h𝑇

)
= W>

qh
𝜕𝐿

𝜕o𝑇
. (9.7.13)

It gets trickier for any time step 𝑡 < 𝑇 , where the objective function 𝐿 depends on h𝑡 via
h𝑡+1 and o𝑡 . According to the chain rule, the gradient of the hidden state 𝜕𝐿/𝜕h𝑡 ∈ Rℎ at
any time step 𝑡 < 𝑇 can be recurrently computed as:

𝜕𝐿

𝜕h𝑡
= prod

(
𝜕𝐿

𝜕h𝑡+1
,
𝜕h𝑡+1
𝜕h𝑡

)
+ prod

(
𝜕𝐿

𝜕o𝑡
,
𝜕o𝑡
𝜕h𝑡

)
= W>

hh
𝜕𝐿

𝜕h𝑡+1
+W>

qh
𝜕𝐿

𝜕o𝑡
. (9.7.14)

For analysis, expanding the recurrent computation for any time step 1 ≤ 𝑡 ≤ 𝑇 gives

𝜕𝐿

𝜕h𝑡
=

𝑇∑
𝑖=𝑡

(
W>

hh
)𝑇−𝑖

W>
qh

𝜕𝐿

𝜕o𝑇+𝑡−𝑖
. (9.7.15)

We can see from (9.7.15) that this simple linear example already exhibits some key prob-
lems of long sequence models: it involves potentially very large powers of W>

hh. In it,
eigenvalues smaller than 1 vanish and eigenvalues larger than 1 diverge. This is numer-
ically unstable, which manifests itself in the form of vanishing and exploding gradients.
One way to address this is to truncate the time steps at a computationally convenient size as
discussed in Section 9.7.1. In practice, this truncation can also be effected by detaching the
gradient after a given number of time steps. Later on, we will see how more sophisticated
sequence models such as long short-term memory can alleviate this further.

Finally, Fig. 9.7.2 shows that the objective function 𝐿 depends on model parameters Whx
and Whh in the hidden layer via hidden states h1, . . . ,h𝑇 . To compute gradients with
respect to such parameters 𝜕𝐿/𝜕Whx ∈ Rℎ×𝑑 and 𝜕𝐿/𝜕Whh ∈ Rℎ×ℎ, we apply the chain
rule giving

𝜕𝐿

𝜕Whx
=

𝑇∑
𝑡=1

prod
(
𝜕𝐿

𝜕h𝑡
,
𝜕h𝑡
𝜕Whx

)
=

𝑇∑
𝑡=1

𝜕𝐿

𝜕h𝑡
x>𝑡 ,

𝜕𝐿

𝜕Whh
=

𝑇∑
𝑡=1

prod
(
𝜕𝐿

𝜕h𝑡
,
𝜕h𝑡
𝜕Whh

)
=

𝑇∑
𝑡=1

𝜕𝐿

𝜕h𝑡
h>𝑡−1,

(9.7.16)

where 𝜕𝐿/𝜕h𝑡 which is recurrently computed by (9.7.13) and (9.7.14) is the key quantity
that affects the numerical stability.

Since backpropagation through time is the application of backpropagation in RNNs, as we
have explained in Section 5.3, training RNNs alternates forward propagation with back-
propagation through time. Moreover, backpropagation through time computes and stores
the above gradients in turn. Specifically, stored intermediate values are reused to avoid du-
plicate calculations, such as storing 𝜕𝐿/𝜕h𝑡 to be used in computation of both 𝜕𝐿/𝜕Whx
and 𝜕𝐿/𝜕Whh.

9.7.3 Summary
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Backpropagation through time is merely an application of backpropagation to sequence
models with a hidden state. Truncation, such as regular or randomized, is needed for com-
putational convenience and numerical stability. High powers of matrices can lead to diver-
gent or vanishing eigenvalues. This manifests itself in the form of exploding or vanishing
gradients. For efficient computation, intermediate values are cached during backpropaga-
tion through time.

9.7.4 Exercises
1. Assume that we have a symmetric matrix M ∈ R𝑛×𝑛 with eigenvalues 𝜆𝑖 whose cor-

responding eigenvectors are v𝑖 (𝑖 = 1, . . . , 𝑛). Without loss of generality, assume that
they are ordered in the order |𝜆𝑖 | ≥ |𝜆𝑖+1 |.

1. Show that M𝑘 has eigenvalues 𝜆𝑘𝑖 .

2. Prove that for a random vector x ∈ R𝑛, with high probabilityM𝑘xwill be very much
aligned with the eigenvector v1 of M. Formalize this statement.

3. What does the above result mean for gradients in RNNs?

2. Besides gradient clipping, can you think of any other methods to cope with gradient
explosion in recurrent neural networks?

Discussions143 .
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The previous chapter introduced the key ideas behind recurrent neural networks (RNNs).
However, just as with convolutional neural networks, there has been a tremendous amount
of innovation in RNN architectures, culminating in several complex designs that have
proven successful in practice. In particular, the most popular designs feature mechanisms
for mitigating the notorious numerical instability faced by RNNs, as typified by vanishing
and exploding gradients. Recall that in Chapter 9 we dealt with exploding gradients by ap-
plying a blunt gradient clipping heuristic. Despite the efficacy of this hack, it leaves open
the problem of vanishing gradients.

In this chapter, we introduce the key ideas behind the most successful RNN architectures for
sequences, which stem from two papers. The first, Long Short-Term Memory (Hochreiter
and Schmidhuber, 1997), introduces the memory cell, a unit of computation that replaces
traditional nodes in the hidden layer of a network. With these memory cells, networks
are able to overcome difficulties with training encountered by earlier recurrent networks.
Intuitively, the memory cell avoids the vanishing gradient problem by keeping values in
each memory cell’s internal state cascading along a recurrent edge with weight 1 across
many successive time steps. A set of multiplicative gates help the network to determine not
only the inputs to allow into the memory state, but when the content of the memory state
should influence the model’s output.

The second paper, Bidirectional Recurrent Neural Networks (Schuster and Paliwal, 1997),
introduces an architecture inwhich information from both the future (subsequent time steps)
and the past (preceding time steps) are used to determine the output at any point in the se-
quence. This is in contrast to previous networks, in which only past input can affect the
output. Bidirectional RNNs have become a mainstay for sequence labeling tasks in natu-
ral language processing, among a myriad of other tasks. Fortunately, the two innovations
are not mutually exclusive, and have been successfully combined for phoneme classification
(Graves and Schmidhuber, 2005) and handwriting recognition (Graves et al., 2008).

The first sections in this chapter will explain the LSTMarchitecture, a lighter-weight version
called the gated recurrent unit (GRU), the key ideas behind bidirectional RNNs and a brief
explanation of how RNN layers are stacked together to form deep RNNs. Subsequently,
we will explore the application of RNNs in sequence-to-sequence tasks, introducing ma-
chine translation along with key ideas such as encoder–decoder architectures and beam
search.

374
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10.1 Long Short-Term Memory (LSTM)

Shortly after the first Elman-style RNNswere trained using backpropagation (Elman, 1990),
the problems of learning long-term dependencies (owing to vanishing and exploding gra-
dients) became salient, with Bengio and Hochreiter discussing the problem (Bengio et al.,
1994, Hochreiter et al., 2001). Hochreiter had articulated this problem as early as 1991 in
his Master’s thesis, although the results were not widely known because the thesis was writ-
ten in German. While gradient clipping helps with exploding gradients, handling vanishing
gradients appears to require a more elaborate solution. One of the first and most successful
techniques for addressing vanishing gradients came in the form of the long short-termmem-
ory (LSTM) model due to Hochreiter and Schmidhuber (1997). LSTMs resemble standard
recurrent neural networks but here each ordinary recurrent node is replaced by a memory
cell. Each memory cell contains an internal state, i.e., a node with a self-connected re-
current edge of fixed weight 1, ensuring that the gradient can pass across many time steps
without vanishing or exploding.

The term “long short-term memory” comes from the following intuition. Simple recurrent
neural networks have long-term memory in the form of weights. The weights change slowly
during training, encoding general knowledge about the data. They also have short-term
memory in the form of ephemeral activations, which pass from each node to successive
nodes. The LSTM model introduces an intermediate type of storage via the memory cell.
A memory cell is a composite unit, built from simpler nodes in a specific connectivity
pattern, with the novel inclusion of multiplicative nodes.

from mxnet import np, npx
from mxnet.gluon import rnn
from d2l import mxnet as d2l

npx.set_np()

10.1.1 Gated Memory Cell
Each memory cell is equipped with an internal state and a number of multiplicative gates
that determine whether (i) a given input should impact the internal state (the input gate),
(ii) the internal state should be flushed to 0 (the forget gate), and (iii) the internal state of a
given neuron should be allowed to impact the cell’s output (the output gate).

Gated Hidden State
The key distinction between vanilla RNNs and LSTMs is that the latter support gating of
the hidden state. This means that we have dedicated mechanisms for when a hidden state
should be updated and also for when it should be reset. These mechanisms are learned and
they address the concerns listed above. For instance, if the first token is of great importance
we will learn not to update the hidden state after the first observation. Likewise, we will
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learn to skip irrelevant temporary observations. Last, we will learn to reset the latent state
whenever needed. We discuss this in detail below.

Input Gate, Forget Gate, and Output Gate
The data feeding into the LSTM gates are the input at the current time step and the hidden
state of the previous time step, as illustrated in Fig. 10.1.1. Three fully connected layers
with sigmoid activation functions compute the values of the input, forget, and output gates.
As a result of the sigmoid activation, all values of the three gates are in the range of (0, 1).
Additionally, we require an input node, typically computed with a tanh activation func-
tion. Intuitively, the input gate determines how much of the input node’s value should be
added to the current memory cell internal state. The forget gate determines whether to keep
the current value of the memory or flush it. And the output gate determines whether the
memory cell should influence the output at the current time step.

tFig. 10.1.1 Computing the input gate, the forget gate, and the output gate in an LSTM model.

Mathematically, suppose that there are ℎ hidden units, the batch size is 𝑛, and the number
of inputs is 𝑑. Thus, the input is X𝑡 ∈ R𝑛×𝑑 and the hidden state of the previous time step
is H𝑡−1 ∈ R𝑛×ℎ. Correspondingly, the gates at time step 𝑡 are defined as follows: the input
gate is I𝑡 ∈ R𝑛×ℎ, the forget gate is F𝑡 ∈ R𝑛×ℎ, and the output gate is O𝑡 ∈ R𝑛×ℎ. They
are calculated as follows:

I𝑡 = 𝜎(X𝑡Wxi +H𝑡−1Whi + bi),
F𝑡 = 𝜎(X𝑡Wxf +H𝑡−1Whf + bf),
O𝑡 = 𝜎(X𝑡Wxo +H𝑡−1Who + bo),

(10.1.1)

where Wxi,Wxf,Wxo ∈ R𝑑×ℎ and Whi,Whf,Who ∈ Rℎ×ℎ are weight parameters and
bi,bf,bo ∈ R1×ℎ are bias parameters. Note that broadcasting (see Section 2.1.4) is trig-
gered during the summation. We use sigmoid functions (as introduced in Section 5.1) to
map the input values to the interval (0, 1).

Input Node
Next we design the memory cell. Since we have not specified the action of the various gates
yet, we first introduce the input node C̃𝑡 ∈ R𝑛×ℎ. Its computation is similar to that of the
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three gates described above, but uses a tanh function with a value range for (−1, 1) as the
activation function. This leads to the following equation at time step 𝑡:

C̃𝑡 = tanh(X𝑡Wxc +H𝑡−1Whc + bc), (10.1.2)

where Wxc ∈ R𝑑×ℎ and Whc ∈ Rℎ×ℎ are weight parameters and bc ∈ R1×ℎ is a bias
parameter.

A quick illustration of the input node is shown in Fig. 10.1.2.

tFig. 10.1.2 Computing the input node in an LSTM model.

Memory Cell Internal State
In LSTMs, the input gate I𝑡 governs how much we take new data into account via C̃𝑡 and
the forget gate F𝑡 addresses how much of the old cell internal stateC𝑡−1 ∈ R𝑛×ℎ we retain.
Using the Hadamard (elementwise) product operator � we arrive at the following update
equation:

C𝑡 = F𝑡 � C𝑡−1 + I𝑡 � C̃𝑡 . (10.1.3)

If the forget gate is always 1 and the input gate is always 0, the memory cell internal state
C𝑡−1 will remain constant forever, passing unchanged to each subsequent time step. How-
ever, input gates and forget gates give the model the flexibility of being able to learn when
to keep this value unchanged and when to perturb it in response to subsequent inputs. In
practice, this design alleviates the vanishing gradient problem, resulting in models that are
much easier to train, especially when facing datasets with long sequence lengths.

We thus arrive at the flow diagram in Fig. 10.1.3.

Hidden State
Last, we need to define how to compute the output of the memory cell, i.e., the hidden state
H𝑡 ∈ R𝑛×ℎ, as seen by other layers. This is where the output gate comes into play. In
LSTMs, we first apply tanh to the memory cell internal state and then apply another point-
wise multiplication, this time with the output gate. This ensures that the values of H𝑡 are
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tFig. 10.1.3 Computing the memory cell internal state in an LSTM model.

always in the interval (−1, 1):

H𝑡 = O𝑡 � tanh(C𝑡 ). (10.1.4)

Whenever the output gate is close to 1, we allow the memory cell internal state to impact
the subsequent layers uninhibited, whereas for output gate values close to 0, we prevent the
current memory from impacting other layers of the network at the current time step. Note
that a memory cell can accrue information across many time steps without impacting the
rest of the network (as long as the output gate takes values close to 0), and then suddenly
impact the network at a subsequent time step as soon as the output gate flips from values
close to 0 to values close to 1. Fig. 10.1.4 has a graphical illustration of the data flow.

tFig. 10.1.4 Computing the hidden state in an LSTM model.

10.1.2 Implementation from Scratch
Now let’s implement an LSTM from scratch. As same as the experiments in Section 9.5,
we first load The Time Machine dataset.
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Initializing Model Parameters
Next, we need to define and initialize the model parameters. As previously, the hyperpa-
rameter num_hiddens dictates the number of hidden units. We initialize weights following
a Gaussian distribution with 0.01 standard deviation, and we set the biases to 0.

class LSTMScratch(d2l.Module):
def __init__(self, num_inputs, num_hiddens, sigma=0.01):

super().__init__()
self.save_hyperparameters()

init_weight = lambda *shape: np.random.randn(*shape) * sigma
triple = lambda: (init_weight(num_inputs, num_hiddens),

init_weight(num_hiddens, num_hiddens),
np.zeros(num_hiddens))

self.W_xi, self.W_hi, self.b_i = triple() # Input gate
self.W_xf, self.W_hf, self.b_f = triple() # Forget gate
self.W_xo, self.W_ho, self.b_o = triple() # Output gate
self.W_xc, self.W_hc, self.b_c = triple() # Input node

The actual model is defined as described above, consisting of three gates and an input node.
Note that only the hidden state is passed to the output layer.

@d2l.add_to_class(LSTMScratch)
def forward(self, inputs, H_C=None):

if H_C is None:
# Initial state with shape: (batch_size, num_hiddens)
H = np.zeros((inputs.shape[1], self.num_hiddens),

ctx=inputs.ctx)
C = np.zeros((inputs.shape[1], self.num_hiddens),

ctx=inputs.ctx)
else:

H, C = H_C
outputs = []
for X in inputs:

I = npx.sigmoid(np.dot(X, self.W_xi) +
np.dot(H, self.W_hi) + self.b_i)

F = npx.sigmoid(np.dot(X, self.W_xf) +
np.dot(H, self.W_hf) + self.b_f)

O = npx.sigmoid(np.dot(X, self.W_xo) +
np.dot(H, self.W_ho) + self.b_o)

C_tilde = np.tanh(np.dot(X, self.W_xc) +
np.dot(H, self.W_hc) + self.b_c)

C = F * C + I * C_tilde
H = O * np.tanh(C)
outputs.append(H)

return outputs, (H, C)

Training and Prediction
Let’s train an LSTMmodel by instantiating the RNNLMScratch class fromSection 9.5.
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data = d2l.TimeMachine(batch_size=1024, num_steps=32)
lstm = LSTMScratch(num_inputs=len(data.vocab), num_hiddens=32)
model = d2l.RNNLMScratch(lstm, vocab_size=len(data.vocab), lr=4)
trainer = d2l.Trainer(max_epochs=50, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

10.1.3 Concise Implementation
Using high-level APIs, we can directly instantiate an LSTM model. This encapsulates
all the configuration details that we made explicit above. The code is significantly faster
as it uses compiled operators rather than Python for many details that we spelled out be-
fore.

class LSTM(d2l.RNN):
def __init__(self, num_hiddens):

d2l.Module.__init__(self)
self.save_hyperparameters()
self.rnn = rnn.LSTM(num_hiddens)

def forward(self, inputs, H_C=None):
if H_C is None: H_C = self.rnn.begin_state(

inputs.shape[1], ctx=inputs.ctx)
return self.rnn(inputs, H_C)

lstm = LSTM(num_hiddens=32)
model = d2l.RNNLM(lstm, vocab_size=len(data.vocab), lr=4)
trainer.fit(model, data)
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model.predict('it has', 20, data.vocab, d2l.try_gpu())

'it has all the time travel'

LSTMs are the prototypical latent variable autoregressive model with nontrivial state con-
trol. Many variants thereof have been proposed over the years, e.g., multiple layers, resid-
ual connections, different types of regularization. However, training LSTMs and other
sequence models (such as GRUs) is quite costly because of the long range dependency of
the sequence. Later we will encounter alternative models such as Transformers that can be
used in some cases.

10.1.4 Summary
While LSTMswere published in 1997, they rose to great prominence with some victories in
prediction competitions in the mid-2000s, and became the dominant models for sequence
learning from 2011 until the rise of Transformer models, starting in 2017. Even Tran-
formers owe some of their key ideas to architecture design innovations introduced by the
LSTM.

LSTMs have three types of gates: input gates, forget gates, and output gates that control the
flow of information. The hidden layer output of LSTM includes the hidden state and the
memory cell internal state. Only the hidden state is passed into the output layer while the
memory cell internal state remains entirely internal. LSTMs can alleviate vanishing and
exploding gradients.

10.1.5 Exercises
1. Adjust the hyperparameters and analyze their influence on running time, perplexity, and

the output sequence.

2. How would you need to change the model to generate proper words rather than just
sequences of characters?

3. Compare the computational cost for GRUs, LSTMs, and regular RNNs for a given hid-
den dimension. Pay special attention to the training and inference cost.

4. Since the candidate memory cell ensures that the value range is between −1 and 1 by
using the tanh function, why does the hidden state need to use the tanh function again
to ensure that the output value range is between −1 and 1?

5. Implement an LSTM model for time series prediction rather than character sequence
prediction.

Discussions144 .
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10.2 Gated Recurrent Units (GRU)

As RNNs and particularly the LSTM architecture (Section 10.1) rapidly gained popularity
during the 2010s, a number of researchers began to experiment with simplified architec-
tures in hopes of retaining the key idea of incorporating an internal state and multiplicative
gating mechanisms but with the aim of speeding up computation. The gated recurrent unit
(GRU) (Cho et al., 2014) offered a streamlined version of the LSTM memory cell that of-
ten achieves comparable performance but with the advantage of being faster to compute
(Chung et al., 2014).

from mxnet import np, npx
from mxnet.gluon import rnn
from d2l import mxnet as d2l

npx.set_np()

10.2.1 Reset Gate and Update Gate
Here, the LSTM’s three gates are replaced by two: the reset gate and the update gate. As
with LSTMs, these gates are given sigmoid activations, forcing their values to lie in the
interval (0, 1). Intuitively, the reset gate controls how much of the previous state we might
still want to remember. Likewise, an update gate would allow us to control how much of
the new state is just a copy of the old one. Fig. 10.2.1 illustrates the inputs for both the reset
and update gates in a GRU, given the input of the current time step and the hidden state
of the previous time step. The outputs of the gates are given by two fully connected layers
with a sigmoid activation function.

tFig. 10.2.1 Computing the reset gate and the update gate in a GRU model.

Mathematically, for a given time step 𝑡, suppose that the input is a minibatch X𝑡 ∈ R𝑛×𝑑
(number of examples = 𝑛; number of inputs = 𝑑) and the hidden state of the previous time
step is H𝑡−1 ∈ R𝑛×ℎ (number of hidden units = ℎ). Then the reset gate R𝑡 ∈ R𝑛×ℎ and
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update gate Z𝑡 ∈ R𝑛×ℎ are computed as follows:

R𝑡 = 𝜎(X𝑡Wxr +H𝑡−1Whr + br),
Z𝑡 = 𝜎(X𝑡Wxz +H𝑡−1Whz + bz),

(10.2.1)

whereWxr,Wxz ∈ R𝑑×ℎ andWhr,Whz ∈ Rℎ×ℎ are weight parameters and br,bz ∈ R1×ℎ

are bias parameters.

10.2.2 Candidate Hidden State
Next, we integrate the reset gateR𝑡 with the regular updatingmechanism in (9.4.5), leading
to the following candidate hidden state H̃𝑡 ∈ R𝑛×ℎ at time step 𝑡:

H̃𝑡 = tanh(X𝑡Wxh + (R𝑡 �H𝑡−1)Whh + bh), (10.2.2)

whereWxh ∈ R𝑑×ℎ andWhh ∈ Rℎ×ℎ are weight parameters, bh ∈ R1×ℎ is the bias, and the
symbol � is the Hadamard (elementwise) product operator. Here we use a tanh activation
function.

The result is a candidate, since we still need to incorporate the action of the update gate.
Comparing with (9.4.5), the influence of the previous states can now be reduced with the
elementwise multiplication of R𝑡 and H𝑡−1 in (10.2.2). Whenever the entries in the reset
gate R𝑡 are close to 1, we recover a vanilla RNN such as that in (9.4.5). For all entries of
the reset gateR𝑡 that are close to 0, the candidate hidden state is the result of an MLP with
X𝑡 as input. Any pre-existing hidden state is thus reset to defaults.

Fig. 10.2.2 illustrates the computational flow after applying the reset gate.

tFig. 10.2.2 Computing the candidate hidden state in a GRU model.

10.2.3 Hidden State
Finally, we need to incorporate the effect of the update gate Z𝑡 . This determines the extent
to which the new hidden state H𝑡 ∈ R𝑛×ℎ matches the old state H𝑡−1 compared with how
much it resembles the new candidate state H̃𝑡 . The update gate Z𝑡 can be used for this
purpose, simply by taking elementwise convex combinations of H𝑡−1 and H̃𝑡 . This leads
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to the final update equation for the GRU:

H𝑡 = Z𝑡 �H𝑡−1 + (1 − Z𝑡 ) � H̃𝑡 . (10.2.3)

Whenever the update gate Z𝑡 is close to 1, we simply retain the old state. In this case
the information from X𝑡 is ignored, effectively skipping time step 𝑡 in the dependency
chain. By contrast, whenever Z𝑡 is close to 0, the new latent state H𝑡 approaches the
candidate latent state H̃𝑡 . Fig. 10.2.3 shows the computational flow after the update gate is
in action.

tFig. 10.2.3 Computing the hidden state in a GRU model.

In summary, GRUs have the following two distinguishing features:

• Reset gates help capture short-term dependencies in sequences.

• Update gates help capture long-term dependencies in sequences.

10.2.4 Implementation from Scratch
To gain a better understanding of the GRU model, let’s implement it from scratch.

Initializing Model Parameters
The first step is to initialize the model parameters. We draw the weights from a Gaussian
distribution with standard deviation to be sigma and set the bias to 0. The hyperparameter
num_hiddens defines the number of hidden units. We instantiate all weights and biases
relating to the update gate, the reset gate, and the candidate hidden state.

class GRUScratch(d2l.Module):
def __init__(self, num_inputs, num_hiddens, sigma=0.01):

super().__init__()
self.save_hyperparameters()

init_weight = lambda *shape: np.random.randn(*shape) * sigma
triple = lambda: (init_weight(num_inputs, num_hiddens),

init_weight(num_hiddens, num_hiddens),
np.zeros(num_hiddens))

(continues on next page)
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(continued from previous page)

self.W_xz, self.W_hz, self.b_z = triple() # Update gate
self.W_xr, self.W_hr, self.b_r = triple() # Reset gate
self.W_xh, self.W_hh, self.b_h = triple() # Candidate hidden state

Defining the Model
Now we are ready to define the GRU forward computation. Its structure is the same as that
of the basic RNN cell, except that the update equations are more complex.

@d2l.add_to_class(GRUScratch)
def forward(self, inputs, H=None):

if H is None:
# Initial state with shape: (batch_size, num_hiddens)
H = np.zeros((inputs.shape[1], self.num_hiddens),

ctx=inputs.ctx)
outputs = []
for X in inputs:

Z = npx.sigmoid(np.dot(X, self.W_xz) +
np.dot(H, self.W_hz) + self.b_z)

R = npx.sigmoid(np.dot(X, self.W_xr) +
np.dot(H, self.W_hr) + self.b_r)

H_tilde = np.tanh(np.dot(X, self.W_xh) +
np.dot(R * H, self.W_hh) + self.b_h)

H = Z * H + (1 - Z) * H_tilde
outputs.append(H)

return outputs, H

Training
Training a language model on The Time Machine dataset works in exactly the same manner
as in Section 9.5.

data = d2l.TimeMachine(batch_size=1024, num_steps=32)
gru = GRUScratch(num_inputs=len(data.vocab), num_hiddens=32)
model = d2l.RNNLMScratch(gru, vocab_size=len(data.vocab), lr=4)
trainer = d2l.Trainer(max_epochs=50, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)
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10.2.5 Concise Implementation
In high-level APIs, we can directly instantiate a GRU model. This encapsulates all the
configuration detail that we made explicit above.

class GRU(d2l.RNN):
def __init__(self, num_inputs, num_hiddens):

d2l.Module.__init__(self)
self.save_hyperparameters()
self.rnn = rnn.GRU(num_hiddens)

The code is significantly faster in training as it uses compiled operators rather than Python.

gru = GRU(num_inputs=len(data.vocab), num_hiddens=32)
model = d2l.RNNLM(gru, vocab_size=len(data.vocab), lr=4)
trainer.fit(model, data)

After training, we print out the perplexity on the training set and the predicted sequence
following the provided prefix.

model.predict('it has', 20, data.vocab, d2l.try_gpu())

'it has i have the time tra'

10.2.6 Summary
Compared with LSTMs, GRUs achieve similar performance but tend to be lighter com-
putationally. Generally, compared with simple RNNs, gated RNNS, just like LSTMs and
GRUs, can better capture dependencies for sequences with large time step distances. GRUs
contain basic RNNs as their extreme case whenever the reset gate is switched on. They can
also skip subsequences by turning on the update gate.

10.2.7 Exercises
1. Assume that we only want to use the input at time step 𝑡′ to predict the output at time

step 𝑡 > 𝑡′. What are the best values for the reset and update gates for each time step?
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2. Adjust the hyperparameters and analyze their influence on running time, perplexity, and
the output sequence.

3. Compare runtime, perplexity, and the output strings for rnn.RNN and rnn.GRU imple-
mentations with each other.

4. What happens if you implement only parts of a GRU, e.g., with only a reset gate or only
an update gate?

Discussions145 .

10.3 Deep Recurrent Neural Networks

Up until now, we have focused on defining networks consisting of a sequence input, a single
hidden RNN layer, and an output layer. Despite having just one hidden layer between the
input at any time step and the corresponding output, there is a sense in which these networks
are deep. Inputs from the first time step can influence the outputs at the final time step
𝑇 (often 100s or 1000s of steps later). These inputs pass through 𝑇 applications of the
recurrent layer before reaching the final output. However, we often also wish to retain the
ability to express complex relationships between the inputs at a given time step and the
outputs at that same time step. Thus we often construct RNNs that are deep not only in the
time direction but also in the input-to-output direction. This is precisely the notion of depth
that we have already encountered in our development of MLPs and deep CNNs.

The standard method for building this sort of deep RNN is strikingly simple: we stack
the RNNs on top of each other. Given a sequence of length 𝑇 , the first RNN produces a
sequence of outputs, also of length 𝑇 . These, in turn, constitute the inputs to the next RNN
layer. In this short section, we illustrate this design pattern and present a simple example for
how to code up such stacked RNNs. Below, in Fig. 10.3.1, we illustrate a deep RNNwith 𝐿
hidden layers. Each hidden state operates on a sequential input and produces a sequential
output. Moreover, any RNN cell (white box in Fig. 10.3.1) at each time step depends on
both the same layer’s value at the previous time step and the previous layer’s value at the
same time step.

Formally, suppose that we have a minibatch input X𝑡 ∈ R𝑛×𝑑 (number of examples = 𝑛;
number of inputs in each example = 𝑑) at time step 𝑡. At the same time step, let the hidden
state of the 𝑙 th hidden layer (𝑙 = 1, . . . , 𝐿) be H(𝑙)𝑡 ∈ R𝑛×ℎ (number of hidden units = ℎ)
and the output layer variable be O𝑡 ∈ R𝑛×𝑞 (number of outputs: 𝑞). Setting H(0)𝑡 = X𝑡 ,
the hidden state of the 𝑙 th hidden layer that uses the activation function 𝜙𝑙 is calculated as
follows:

H(𝑙)𝑡 = 𝜙𝑙 (H(𝑙−1)
𝑡 W (𝑙)

xh +H
(𝑙)
𝑡−1W

(𝑙)
hh + b

(𝑙)
h ), (10.3.1)

where the weightsW (𝑙)
xh ∈ R

ℎ×ℎ andW (𝑙)
hh ∈ R

ℎ×ℎ, together with the bias b(𝑙)h ∈ R
1×ℎ, are

the model parameters of the 𝑙 th hidden layer.

https://discuss.d2l.ai/t/342
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tFig. 10.3.1 Architecture of a deep RNN.

At the end, the calculation of the output layer is only based on the hidden state of the final
𝐿th hidden layer:

O𝑡 = H(𝐿)𝑡 Whq + bq, (10.3.2)

where the weight Whq ∈ Rℎ×𝑞 and the bias bq ∈ R1×𝑞 are the model parameters of the
output layer.

Just as with MLPs, the number of hidden layers 𝐿 and the number of hidden units ℎ are hy-
perparameters that we can tune. CommonRNN layer widths (ℎ) are in the range (64, 2056),
and common depths (𝐿) are in the range (1, 8). In addition, we can easily get a deep-gated
RNN by replacing the hidden state computation in (10.3.1) with that from an LSTM or a
GRU.

from mxnet import np, npx
from mxnet.gluon import rnn
from d2l import mxnet as d2l

npx.set_np()

10.3.1 Implementation from Scratch
To implement a multilayer RNN from scratch, we can treat each layer as an RNNScratch

instance with its own learnable parameters.

class StackedRNNScratch(d2l.Module):
def __init__(self, num_inputs, num_hiddens, num_layers, sigma=0.01):

super().__init__()
self.save_hyperparameters()
self.rnns = [d2l.RNNScratch(num_inputs if i==0 else num_hiddens,

num_hiddens, sigma)
for i in range(num_layers)]

Themultilayer forward computation simply performs forward computation layer by layer.
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@d2l.add_to_class(StackedRNNScratch)
def forward(self, inputs, Hs=None):

outputs = inputs
if Hs is None: Hs = [None] * self.num_layers
for i in range(self.num_layers):

outputs, Hs[i] = self.rnns[i](outputs, Hs[i])
outputs = np.stack(outputs, 0)

return outputs, Hs

As an example, we train a deep GRU model on The Time Machine dataset (same as in
Section 9.5). To keep things simple we set the number of layers to 2.

data = d2l.TimeMachine(batch_size=1024, num_steps=32)
rnn_block = StackedRNNScratch(num_inputs=len(data.vocab),

num_hiddens=32, num_layers=2)
model = d2l.RNNLMScratch(rnn_block, vocab_size=len(data.vocab), lr=2)
trainer = d2l.Trainer(max_epochs=100, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

10.3.2 Concise Implementation
Fortunately many of the logistical details required to implement multiple layers of an RNN
are readily available in high-level APIs. Our concise implementation will use such built-
in functionalities. The code generalizes the one we used previously in Section 10.2, let-
ting us specify the number of layers explicitly rather than picking the default of only one
layer.

class GRU(d2l.RNN): #@save
"""The multilayer GRU model."""
def __init__(self, num_hiddens, num_layers, dropout=0):

d2l.Module.__init__(self)
self.save_hyperparameters()
self.rnn = rnn.GRU(num_hiddens, num_layers, dropout=dropout)

The architectural decisions such as choosing hyperparameters are very similar to those of
Section 10.2. We pick the same number of inputs and outputs as we have distinct tokens,
i.e., vocab_size. The number of hidden units is still 32. The only difference is that we now
select a nontrivial number of hidden layers by specifying the value of num_layers.
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gru = GRU(num_hiddens=32, num_layers=2)
model = d2l.RNNLM(gru, vocab_size=len(data.vocab), lr=2)

# Running takes > 1h (pending fix from MXNet)
# trainer.fit(model, data)
# model.predict('it has', 20, data.vocab, d2l.try_gpu())

10.3.3 Summary
In deep RNNs, the hidden state information is passed to the next time step of the current
layer and the current time step of the next layer. There exist many different flavors of
deep RNNs, such as LSTMs, GRUs, or vanilla RNNs. Conveniently, these models are
all available as parts of the high-level APIs of deep learning frameworks. Initialization of
models requires care. Overall, deep RNNs require considerable amount of work (such as
learning rate and clipping) to ensure proper convergence.

10.3.4 Exercises
1. Replace the GRU by an LSTM and compare the accuracy and training speed.

2. Increase the training data to include multiple books. How low can you go on the per-
plexity scale?

3. Would you want to combine sources of different authors when modeling text? Why is
this a good idea? What could go wrong?

Discussions146 .

10.4 Bidirectional Recurrent Neural Networks

So far, our working example of a sequence learning task has been languagemodeling, where
we aim to predict the next token given all previous tokens in a sequence. In this scenario,
we wish only to condition upon the leftward context, and thus the unidirectional chaining of
a standard RNN seems appropriate. However, there are many other sequence learning tasks
contexts where it is perfectly fine to condition the prediction at every time step on both the
leftward and the rightward context. Consider, for example, part of speech detection. Why
shouldn’t we take the context in both directions into account when assessing the part of
speech associated with a given word?

Another common task—often useful as a pretraining exercise prior to fine-tuning a model
on an actual task of interest—is to mask out random tokens in a text document and then
to train a sequence model to predict the values of the missing tokens. Note that depend-
ing on what comes after the blank, the likely value of the missing token changes dramati-
cally:

https://discuss.d2l.ai/t/340
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• I am ___.

• I am ___ hungry.

• I am ___ hungry, and I can eat half a pig.

In the first sentence “happy” seems to be a likely candidate. The words “not” and “very”
seem plausible in the second sentence, but “not” seems incompatible with the third sen-
tences.

Fortunately, a simple technique transforms any unidirectional RNN into a bidirectional
RNN (Schuster and Paliwal, 1997). We simply implement two unidirectional RNN layers
chained together in opposite directions and acting on the same input (Fig. 10.4.1). For
the first RNN layer, the first input is x1 and the last input is x𝑇 , but for the second RNN
layer, the first input is x𝑇 and the last input is x1. To produce the output of this bidirectional
RNN layer, we simply concatenate together the corresponding outputs of the two underlying
unidirectional RNN layers.

tFig. 10.4.1 Architecture of a bidirectional RNN.

Formally for any time step 𝑡, we consider a minibatch input X𝑡 ∈ R𝑛×𝑑 (number of exam-
ples = 𝑛; number of inputs in each example = 𝑑) and let the hidden layer activation function
be 𝜙. In the bidirectional architecture, the forward and backward hidden states for this time
step are

−→
H𝑡 ∈ R𝑛×ℎ and

←−
H𝑡 ∈ R𝑛×ℎ, respectively, where ℎ is the number of hidden units.

The forward and backward hidden state updates are as follows:
−→
H𝑡 = 𝜙(X𝑡W

( 𝑓 )
xh +

−→
H𝑡−1W

( 𝑓 )
hh + b

( 𝑓 )
h ),

←−
H𝑡 = 𝜙(X𝑡W

(𝑏)
xh +

←−
H𝑡+1W

(𝑏)
hh + b

(𝑏)
h ),

(10.4.1)

where the weights W ( 𝑓 )
xh ∈ R

𝑑×ℎ,W ( 𝑓 )
hh ∈ R

ℎ×ℎ,W (𝑏)
xh ∈ R

𝑑×ℎ, and W (𝑏)
hh ∈ R

ℎ×ℎ, and
the biases b( 𝑓 )h ∈ R1×ℎ and b(𝑏)h ∈ R1×ℎ are all the model parameters.

Next, we concatenate the forward and backward hidden states
−→
H𝑡 and

←−
H𝑡 to obtain the

hidden stateH𝑡 ∈ R𝑛×2ℎ for feeding into the output layer. In deep bidirectional RNNs with
multiple hidden layers, such information is passed on as input to the next bidirectional layer.
Last, the output layer computes the output O𝑡 ∈ R𝑛×𝑞 (number of outputs = 𝑞):

O𝑡 = H𝑡Whq + bq. (10.4.2)

Here, the weight matrix Whq ∈ R2ℎ×𝑞 and the bias bq ∈ R1×𝑞 are the model parameters
of the output layer. While technically, the two directions can have different numbers of
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hidden units, this design choice is seldom made in practice. We now demonstrate a simple
implementation of a bidirectional RNN.

from mxnet import np, npx
from mxnet.gluon import rnn
from d2l import mxnet as d2l

npx.set_np()

10.4.1 Implementation from Scratch
To implement a bidirectional RNN from scratch, we can include two unidirectional RNNScratch
instances with separate learnable parameters.

class BiRNNScratch(d2l.Module):
def __init__(self, num_inputs, num_hiddens, sigma=0.01):

super().__init__()
self.save_hyperparameters()
self.f_rnn = d2l.RNNScratch(num_inputs, num_hiddens, sigma)
self.b_rnn = d2l.RNNScratch(num_inputs, num_hiddens, sigma)
self.num_hiddens *= 2 # The output dimension will be doubled

States of forward and backward RNNs are updated separately, while outputs of these two
RNNs are concatenated.

@d2l.add_to_class(BiRNNScratch)
def forward(self, inputs, Hs=None):

f_H, b_H = Hs if Hs is not None else (None, None)
f_outputs, f_H = self.f_rnn(inputs, f_H)
b_outputs, b_H = self.b_rnn(reversed(inputs), b_H)
outputs = [np.concatenate((f, b), -1) for f, b in zip(

f_outputs, reversed(b_outputs))]
return outputs, (f_H, b_H)

10.4.2 Concise Implementation
Using the high-level APIs, we can implement bidirectional RNNs more concisely. Here we
take a GRU model as an example.

class BiGRU(d2l.RNN):
def __init__(self, num_inputs, num_hiddens):

d2l.Module.__init__(self)
self.save_hyperparameters()
self.rnn = rnn.GRU(num_hiddens, bidirectional=True)
self.num_hiddens *= 2

10.4.3 Summary
In bidirectional RNNs, the hidden state for each time step is simultaneously determined
by the data prior to and after the current time step. Bidirectional RNNs are mostly use-
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ful for sequence encoding and the estimation of observations given bidirectional context.
Bidirectional RNNs are very costly to train due to long gradient chains.

10.4.4 Exercises
1. If the different directions use a different number of hidden units, how will the shape of

H𝑡 change?

2. Design a bidirectional RNN with multiple hidden layers.

3. Polysemy is common in natural languages. For example, the word “bank” has different
meanings in contexts “i went to the bank to deposit cash” and “i went to the bank to sit
down”. How can we design a neural network model such that given a context sequence
and a word, a vector representation of the word in the correct context will be returned?
What type of neural architectures is preferred for handling polysemy?

Discussions147 .

10.5 Machine Translation and the Dataset

Among the major breakthroughs that prompted widespread interest in modern RNNs was
a major advance in the applied field of statistical machine translation. Here, the model is
presented with a sentence in one language and must predict the corresponding sentence in
another. Note that here the sentences may be of different lengths, and that corresponding
words in the two sentences may not occur in the same order, owing to differences in the
two language’s grammatical structure.

Many problems have this flavor of mapping between two such “unaligned” sequences.
Examples include mapping from dialog prompts to replies or from questions to answers.
Broadly, such problems are called sequence-to-sequence (seq2seq) problems and they are
our focus for both the remainder of this chapter and much of Chapter 11.

In this section, we introduce the machine translation problem and an example dataset that
we will use in the subsequent examples. For decades, statistical formulations of translation
between languages had been popular (Brown et al., 1990, Brown et al., 1988), even before
researchers got neural network approaches working (methods were often lumped together
under the term neural machine translation).

First we will need some new code to process our data. Unlike the language modeling that
we saw in Section 9.3, here each example consists of two separate text sequences, one in the
source language and another (the translation) in the target language. The following code
snippets will show how to load the preprocessed data into minibatches for training.

https://discuss.d2l.ai/t/339
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import os
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

10.5.1 Downloading and Preprocessing the Dataset
To begin, we download an English–French dataset that consists of bilingual sentence pairs
from the Tatoeba Project 148 . Each line in the dataset is a tab-delimited pair consisting
of an English text sequence (the source) and the translated French text sequence (the tar-
get). Note that each text sequence can be just one sentence, or a paragraph of multiple
sentences.

class MTFraEng(d2l.DataModule): #@save
"""The English-French dataset."""
def _download(self):

d2l.extract(d2l.download(
d2l.DATA_URL+'fra-eng.zip', self.root,
'94646ad1522d915e7b0f9296181140edcf86a4f5'))

with open(self.root + '/fra-eng/fra.txt', encoding='utf-8') as f:
return f.read()

data = MTFraEng()
raw_text = data._download()
print(raw_text[:75])

Downloading ../data/fra-eng.zip from http://d2l-data.s3-accelerate.amazonaws.
↩→com/fra-eng.zip...
Go. Va !
Hi. Salut !
Run! Cours !
Run! Courez !
Who? Qui ?
Wow! Ça alors !

After downloading the dataset, we proceed with several preprocessing steps for the raw text
data. For instance, we replace non-breaking space with space, convert uppercase letters to
lowercase ones, and insert space between words and punctuation marks.

@d2l.add_to_class(MTFraEng) #@save
def _preprocess(self, text):

# Replace non-breaking space with space
text = text.replace('\u202f', ' ').replace('\xa0', ' ')
# Insert space between words and punctuation marks
no_space = lambda char, prev_char: char in ',.!?' and prev_char != ' '
out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char

for i, char in enumerate(text.lower())]
return ''.join(out)

http://www.manythings.org/anki/
http://www.manythings.org/anki/
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text = data._preprocess(raw_text)
print(text[:80])

go . va !
hi . salut !
run ! cours !
run ! courez !
who ? qui ?
wow ! ça alors !

10.5.2 Tokenization
Unlike the character-level tokenization in Section 9.3, for machine translation we prefer
word-level tokenization here (today’s state-of-the-art models use more complex tokeniza-
tion techniques). The following _tokenize method tokenizes the first max_examples text
sequence pairs, where each token is either a word or a punctuation mark. We append the
special “<eos>” token to the end of every sequence to indicate the end of the sequence.
When a model is predicting by generating a sequence token after token, the generation of
the “<eos>” token can suggest that the output sequence is complete. In the end, the method
below returns two lists of token lists: src and tgt. Specifically, src[i] is a list of tokens
from the 𝑖th text sequence in the source language (English here) and tgt[i] is that in the
target language (French here).

@d2l.add_to_class(MTFraEng) #@save
def _tokenize(self, text, max_examples=None):

src, tgt = [], []
for i, line in enumerate(text.split('\n')):

if max_examples and i > max_examples: break
parts = line.split('\t')
if len(parts) == 2:

# Skip empty tokens
src.append([t for t in f'{parts[0]} <eos>'.split(' ') if t])
tgt.append([t for t in f'{parts[1]} <eos>'.split(' ') if t])

return src, tgt

src, tgt = data._tokenize(text)
src[:6], tgt[:6]

([['go', '.', '<eos>'],
['hi', '.', '<eos>'],
['run', '!', '<eos>'],
['run', '!', '<eos>'],
['who', '?', '<eos>'],
['wow', '!', '<eos>']],
[['va', '!', '<eos>'],
['salut', '!', '<eos>'],
['cours', '!', '<eos>'],
['courez', '!', '<eos>'],

(continues on next page)
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(continued from previous page)

['qui', '?', '<eos>'],
['ça', 'alors', '!', '<eos>']])

Let’s plot the histogram of the number of tokens per text sequence. In this simple English–
French dataset, most of the text sequences have fewer than 20 tokens.

#@save
def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):

"""Plot the histogram for list length pairs."""
d2l.set_figsize()
_, _, patches = d2l.plt.hist(

[[len(l) for l in xlist], [len(l) for l in ylist]])
d2l.plt.xlabel(xlabel)
d2l.plt.ylabel(ylabel)
for patch in patches[1].patches:

patch.set_hatch('/')
d2l.plt.legend(legend)

show_list_len_pair_hist(['source', 'target'], '# tokens per sequence',
'count', src, tgt);

10.5.3 Loading Sequences of Fixed Length
Recall that in language modeling each example sequence, either a segment of one sentence
or a span over multiple sentences, had a fixed length. This was specified by the num_steps
(number of time steps or tokens) argument from Section 9.3. In machine translation, each
example is a pair of source and target text sequences, where the two text sequences may
have different lengths.

For computational efficiency, we can still process a minibatch of text sequences at one time
by truncation and padding. Suppose that every sequence in the sameminibatch should have
the same length num_steps. If a text sequence has fewer than num_steps tokens, we will
keep appending the special “<pad>” token to its end until its length reaches num_steps.
Otherwise, we will truncate the text sequence by only taking its first num_steps tokens and
discarding the remaining. In this way, every text sequence will have the same length to be
loaded in minibatches of the same shape. Furthermore, we also record length of the source
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sequence excluding padding tokens. This information will be needed by some models that
we will cover later.

Since the machine translation dataset consists of pairs of languages, we can build two vo-
cabularies for both the source language and the target language separately. With word-level
tokenization, the vocabulary size will be significantly larger than that using character-level
tokenization. To alleviate this, here we treat infrequent tokens that appear less than twice
as the same unknown (“<unk>”) token. As we will explain later (Fig. 10.7.1), when train-
ing with target sequences, the decoder output (label tokens) can be the same decoder input
(target tokens), shifted by one token; and the special beginning-of-sequence “<bos>” token
will be used as the first input token for predicting the target sequence (Fig. 10.7.3).

@d2l.add_to_class(MTFraEng) #@save
def __init__(self, batch_size, num_steps=9, num_train=512, num_val=128):

super(MTFraEng, self).__init__()
self.save_hyperparameters()
self.arrays, self.src_vocab, self.tgt_vocab = self._build_arrays(

self._download())

@d2l.add_to_class(MTFraEng) #@save
def _build_arrays(self, raw_text, src_vocab=None, tgt_vocab=None):

def _build_array(sentences, vocab, is_tgt=False):
pad_or_trim = lambda seq, t: (

seq[:t] if len(seq) > t else seq + ['<pad>'] * (t - len(seq)))
sentences = [pad_or_trim(s, self.num_steps) for s in sentences]
if is_tgt:

sentences = [['<bos>'] + s for s in sentences]
if vocab is None:

vocab = d2l.Vocab(sentences, min_freq=2)
array = np.array([vocab[s] for s in sentences])
valid_len = (array != vocab['<pad>']).astype(np.int32).sum(1)
return array, vocab, valid_len

src, tgt = self._tokenize(self._preprocess(raw_text),
self.num_train + self.num_val)

src_array, src_vocab, src_valid_len = _build_array(src, src_vocab)
tgt_array, tgt_vocab, _ = _build_array(tgt, tgt_vocab, True)
return ((src_array, tgt_array[:,:-1], src_valid_len, tgt_array[:,1:]),

src_vocab, tgt_vocab)

10.5.4 Reading the Dataset
Finally, we define the get_dataloader method to return the data iterator.

@d2l.add_to_class(MTFraEng) #@save
def get_dataloader(self, train):

idx = slice(0, self.num_train) if train else slice(self.num_train, None)
return self.get_tensorloader(self.arrays, train, idx)

Let’s read the first minibatch from the English–French dataset.
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data = MTFraEng(batch_size=3)
src, tgt, src_valid_len, label = next(iter(data.train_dataloader()))
print('source:', src.astype(np.int32))
print('decoder input:', tgt.astype(np.int32))
print('source len excluding pad:', src_valid_len.astype(np.int32))
print('label:', label.astype(np.int32))

[21:56:41] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
source: [[ 69 175 2 3 4 4 4 4 4]
[142 136 2 3 4 4 4 4 4]
[ 14 119 2 3 4 4 4 4 4]]
decoder input: [[ 3 6 0 4 5 5 5 5 5]
[ 3 69 56 2 4 5 5 5 5]
[ 3 165 0 4 5 5 5 5 5]]
source len excluding pad: [4 4 4]
label: [[ 6 0 4 5 5 5 5 5 5]
[ 69 56 2 4 5 5 5 5 5]
[165 0 4 5 5 5 5 5 5]]

We show a pair of source and target sequences processed by the above _build_arrays

method (in the string format).

@d2l.add_to_class(MTFraEng) #@save
def build(self, src_sentences, tgt_sentences):

raw_text = '\n'.join([src + '\t' + tgt for src, tgt in zip(
src_sentences, tgt_sentences)])

arrays, _, _ = self._build_arrays(
raw_text, self.src_vocab, self.tgt_vocab)

return arrays

src, tgt, _, _ = data.build(['hi .'], ['salut .'])
print('source:', data.src_vocab.to_tokens(src[0].astype(np.int32)))
print('target:', data.tgt_vocab.to_tokens(tgt[0].astype(np.int32)))

source: ['hi', '.', '<eos>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '
↩→<pad>']
target: ['<bos>', 'salut', '.', '<eos>', '<pad>', '<pad>', '<pad>', '<pad>', '
↩→<pad>']

10.5.5 Summary
In natural language processing,machine translation refers to the task of automatically map-
ping from a sequence representing a string of text in a source language to a string represent-
ing a plausible translation in a target language. Using word-level tokenization, the vocab-
ulary size will be significantly larger than that using character-level tokenization, but the
sequence lengths will be much shorter. To mitigate the large vocabulary size, we can treat
infrequent tokens as some “unknown” token. We can truncate and pad text sequences so
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that all of them will have the same length to be loaded in minibatches. Modern implemen-
tations often bucket sequences with similar lengths to avoid wasting excessive computation
on padding.

10.5.6 Exercises
1. Try different values of the max_examples argument in the _tokenize method. How

does this affect the vocabulary sizes of the source language and the target language?

2. Text in some languages such as Chinese and Japanese does not have word boundary
indicators (e.g., space). Is word-level tokenization still a good idea for such cases? Why
or why not?

Discussions149 .

10.6 The Encoder−Decoder Architecture

In general sequence-to-sequence problems like machine translation (Section 10.5), inputs
and outputs are of varying lengths that are unaligned. The standard approach to handling
this sort of data is to design an encoder–decoder architecture (Fig. 10.6.1) consisting of
two major components: an encoder that takes a variable-length sequence as input, and a
decoder that acts as a conditional language model, taking in the encoded input and the
leftwards context of the target sequence and predicting the subsequent token in the target
sequence.

tFig. 10.6.1 The encoder–decoder architecture.

Let’s take machine translation from English to French as an example. Given an input
sequence in English: “They”, “are”, “watching”, “.”, this encoder–decoder architecture
first encodes the variable-length input into a state, then decodes the state to generate the
translated sequence, token by token, as output: “Ils”, “regardent”, “.”. Since the encoder–
decoder architecture forms the basis of different sequence-to-sequence models in subse-
quent sections, this section will convert this architecture into an interface that will be im-
plemented later.

from mxnet.gluon import nn
from d2l import mxnet as d2l

10.6.1 Encoder

https://discuss.d2l.ai/t/344
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In the encoder interface, we just specify that the encoder takes variable-length sequences as
input X. The implementation will be provided by any model that inherits this base Encoder
class.

class Encoder(nn.Block): #@save
"""The base encoder interface for the encoder--decoder architecture."""
def __init__(self):

super().__init__()

# Later there can be additional arguments (e.g., length excluding padding)
def forward(self, X, *args):

raise NotImplementedError

10.6.2 Decoder
In the following decoder interface, we add an additional init_statemethod to convert the
encoder output (enc_all_outputs) into the encoded state. Note that this step may require
extra inputs, such as the valid length of the input, which was explained in Section 10.5.
To generate a variable-length sequence token by token, every time the decoder may map
an input (e.g., the generated token at the previous time step) and the encoded state into an
output token at the current time step.

class Decoder(nn.Block): #@save
"""The base decoder interface for the encoder--decoder architecture."""
def __init__(self):

super().__init__()

# Later there can be additional arguments (e.g., length excluding padding)
def init_state(self, enc_all_outputs, *args):

raise NotImplementedError

def forward(self, X, state):
raise NotImplementedError

10.6.3 Putting the Encoder and Decoder Together
In the forward propagation, the output of the encoder is used to produce the encoded state,
and this state will be further used by the decoder as one of its input.

class EncoderDecoder(d2l.Classifier): #@save
"""The base class for the encoder--decoder architecture."""
def __init__(self, encoder, decoder):

super().__init__()
self.encoder = encoder
self.decoder = decoder

def forward(self, enc_X, dec_X, *args):
enc_all_outputs = self.encoder(enc_X, *args)
dec_state = self.decoder.init_state(enc_all_outputs, *args)

(continues on next page)
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# Return decoder output only
return self.decoder(dec_X, dec_state)[0]

In the next section, we will see how to apply RNNs to design sequence-to-sequence models
based on this encoder–decoder architecture.

10.6.4 Summary
Encoder-decoder architectures can handle inputs and outputs that both consist of variable-
length sequences and thus are suitable for sequence-to-sequence problems such as machine
translation. The encoder takes a variable-length sequence as input and transforms it into a
state with a fixed shape. The decoder maps the encoded state of a fixed shape to a variable-
length sequence.

10.6.5 Exercises
1. Suppose that we use neural networks to implement the encoder–decoder architecture.

Do the encoder and the decoder have to be the same type of neural network?

2. Besides machine translation, can you think of another application where the encoder–
decoder architecture can be applied?

Discussions150 .

10.7 Sequence-to-Sequence Learning for Machine
Translation

In so-called sequence-to-sequence problems such as machine translation (as discussed in
Section 10.5), where inputs and outputs each consist of variable-length unaligned sequences,
we generally rely on encoder–decoder architectures (Section 10.6). In this section, we will
demonstrate the application of an encoder–decoder architecture, where both the encoder
and decoder are implemented as RNNs, to the task of machine translation (Cho et al.,
2014, Sutskever et al., 2014).

Here, the encoder RNN will take a variable-length sequence as input and transform it into
a fixed-shape hidden state. Later, in Chapter 11, we will introduce attention mechanisms,
which allow us to access encoded inputs without having to compress the entire input into a
single fixed-length representation.

Then to generate the output sequence, one token at a time, the decoder model, consisting
of a separate RNN, will predict each successive target token given both the input sequence
and the preceding tokens in the output. During training, the decoder will typically be con-
ditioned upon the preceding tokens in the official “ground truth” label. However, at test

https://discuss.d2l.ai/t/341


402 Modern Recurrent Neural Networks

time, we will want to condition each output of the decoder on the tokens already predicted.
Note that if we ignore the encoder, the decoder in a sequence-to-sequence architecture be-
haves just like a normal language model. Fig. 10.7.1 illustrates how to use two RNNs for
sequence-to-sequence learning in machine translation.

tFig. 10.7.1 Sequence-to-sequence learning with an RNN encoder and an RNN decoder.

In Fig. 10.7.1, the special “<eos>” token marks the end of the sequence. Our model can
stop making predictions once this token is generated. At the initial time step of the RNN
decoder, there are two special design decisions to be aware of: First, we begin every input
with a special beginning-of-sequence “<bos>” token. Second, we may feed the final hidden
state of the encoder into the decoder at every single decoding time step (Cho et al., 2014).
In some other designs, such as that of Sutskever et al. (2014), the final hidden state of the
RNN encoder is used to initiate the hidden state of the decoder only at the first decoding
step.

import collections
import math
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2l

npx.set_np()

10.7.1 Teacher Forcing
While running the encoder on the input sequence is relatively straightforward, handling
the input and output of the decoder requires more care. The most common approach is
sometimes called teacher forcing. Here, the original target sequence (token labels) is fed
into the decoder as input. More concretely, the special beginning-of-sequence token and
the original target sequence, excluding the final token, are concatenated as input to the
decoder, while the decoder output (labels for training) is the original target sequence, shifted
by one token: “<bos>”, “Ils”, “regardent”, “.” → “Ils”, “regardent”, “.”, “<eos>” (Fig.
10.7.1).

Our implementation in Section 10.5.3 prepared training data for teacher forcing, where
shifting tokens for self-supervised learning is similar to the training of language models in
Section 9.3. An alternative approach is to feed the predicted token from the previous time
step as the current input to the decoder.

In the following, we explain the design depicted in Fig. 10.7.1 in greater detail. We will
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train this model for machine translation on the English–French dataset as introduced in
Section 10.5.

10.7.2 Encoder
Recall that the encoder transforms an input sequence of variable length into a fixed-shape
context variable c (see Fig. 10.7.1).

Consider a single sequence example (batch size 1). Suppose the input sequence is 𝑥1, . . . , 𝑥𝑇 ,
such that 𝑥𝑡 is the 𝑡th token. At time step 𝑡, the RNN transforms the input feature vector x𝑡
for 𝑥𝑡 and the hidden state h𝑡−1 from the previous time step into the current hidden state h𝑡 .
We can use a function 𝑓 to express the transformation of the RNN’s recurrent layer:

h𝑡 = 𝑓 (x𝑡 ,h𝑡−1). (10.7.1)

In general, the encoder transforms the hidden states at all time steps into a context variable
through a customized function 𝑞:

c = 𝑞(h1, . . . ,h𝑇 ). (10.7.2)

For example, in Fig. 10.7.1, the context variable is just the hidden state h𝑇 correspond-
ing to the encoder RNN’s representation after processing the final token of the input se-
quence.

In this example, we have used a unidirectional RNN to design the encoder, where the hidden
state only depends on the input subsequence at and before the time step of the hidden state.
We can also construct encoders using bidirectional RNNs. In this case, a hidden state
depends on the subsequence before and after the time step (including the input at the current
time step), which encodes the information of the entire sequence.

Now let’s implement the RNN encoder. Note that we use an embedding layer to obtain
the feature vector for each token in the input sequence. The weight of an embedding
layer is a matrix, where the number of rows corresponds to the size of the input vocab-
ulary (vocab_size) and number of columns corresponds to the feature vector’s dimension
(embed_size). For any input token index 𝑖, the embedding layer fetches the 𝑖th row (starting
from 0) of the weight matrix to return its feature vector. Here we implement the encoder
with a multilayer GRU.

class Seq2SeqEncoder(d2l.Encoder): #@save
"""The RNN encoder for sequence-to-sequence learning."""
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,

dropout=0):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = d2l.GRU(num_hiddens, num_layers, dropout)
self.initialize(init.Xavier())

def forward(self, X, *args):
# X shape: (batch_size, num_steps)
embs = self.embedding(d2l.transpose(X))

(continues on next page)
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# embs shape: (num_steps, batch_size, embed_size)
outputs, state = self.rnn(embs)
# outputs shape: (num_steps, batch_size, num_hiddens)
# state shape: (num_layers, batch_size, num_hiddens)
return outputs, state

Let’s use a concrete example to illustrate the above encoder implementation. Below, we
instantiate a two-layer GRU encoder whose number of hidden units is 16. Given aminibatch
of sequence inputs X (batch size = 4; number of time steps = 9), the hidden states of the
final layer at all the time steps (enc_outputs returned by the encoder’s recurrent layers)
are a tensor of shape (number of time steps, batch size, number of hidden units).

vocab_size, embed_size, num_hiddens, num_layers = 10, 8, 16, 2
batch_size, num_steps = 4, 9
encoder = Seq2SeqEncoder(vocab_size, embed_size, num_hiddens, num_layers)
X = np.zeros((batch_size, num_steps))
enc_outputs, enc_state = encoder(X)
d2l.check_shape(enc_outputs, (num_steps, batch_size, num_hiddens))

[22:59:16] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Since we are using a GRU here, the shape of the multilayer hidden states at the final time
step is (number of hidden layers, batch size, number of hidden units).

d2l.check_shape(enc_state, (num_layers, batch_size, num_hiddens))

10.7.3 Decoder
Given a target output sequence 𝑦1, 𝑦2, . . . , 𝑦𝑇 ′ for each time step 𝑡′ (we use 𝑡′ to differentiate
from the input sequence time steps), the decoder assigns a predicted probability to each
possible token occurring at step 𝑦𝑡 ′+1 conditioned upon the previous tokens in the target
𝑦1, . . . , 𝑦𝑡 ′ and the context variable c, i.e., 𝑃(𝑦𝑡 ′+1 | 𝑦1, . . . , 𝑦𝑡 ′ , c).

To predict the subsequent token 𝑡′ + 1 in the target sequence, the RNN decoder takes the
previous step’s target token 𝑦𝑡 ′ , the hidden RNN state from the previous time step s𝑡 ′−1,
and the context variable c as its input, and transforms them into the hidden state s𝑡 ′ at the
current time step. We can use a function 𝑔 to express the transformation of the decoder’s
hidden layer:

s𝑡 ′ = 𝑔(𝑦𝑡 ′−1, c, s𝑡 ′−1). (10.7.3)

After obtaining the hidden state of the decoder, we can use an output layer and the softmax
operation to compute the predictive distribution 𝑝(𝑦𝑡 ′+1 | 𝑦1, . . . , 𝑦𝑡 ′ , c) over the subse-
quent output token 𝑡′ + 1.
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Following Fig. 10.7.1, when implementing the decoder as follows, we directly use the hid-
den state at the final time step of the encoder to initialize the hidden state of the decoder.
This requires that the RNN encoder and the RNN decoder have the same number of lay-
ers and hidden units. To further incorporate the encoded input sequence information, the
context variable is concatenated with the decoder input at all the time steps. To predict the
probability distribution of the output token, we use a fully connected layer to transform the
hidden state at the final layer of the RNN decoder.

class Seq2SeqDecoder(d2l.Decoder):
"""The RNN decoder for sequence to sequence learning."""
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,

dropout=0):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = d2l.GRU(num_hiddens, num_layers, dropout)
self.dense = nn.Dense(vocab_size, flatten=False)
self.initialize(init.Xavier())

def init_state(self, enc_all_outputs, *args):
return enc_all_outputs

def forward(self, X, state):
# X shape: (batch_size, num_steps)
# embs shape: (num_steps, batch_size, embed_size)
embs = self.embedding(d2l.transpose(X))
enc_output, hidden_state = state
# context shape: (batch_size, num_hiddens)
context = enc_output[-1]
# Broadcast context to (num_steps, batch_size, num_hiddens)
context = np.tile(context, (embs.shape[0], 1, 1))
# Concat at the feature dimension
embs_and_context = np.concatenate((embs, context), -1)
outputs, hidden_state = self.rnn(embs_and_context, hidden_state)
outputs = self.dense(outputs).swapaxes(0, 1)
# outputs shape: (batch_size, num_steps, vocab_size)
# hidden_state shape: (num_layers, batch_size, num_hiddens)
return outputs, [enc_output, hidden_state]

To illustrate the implemented decoder, below we instantiate it with the same hyperparam-
eters from the aforementioned encoder. As we can see, the output shape of the decoder
becomes (batch size, number of time steps, vocabulary size), where the final dimension of
the tensor stores the predicted token distribution.

decoder = Seq2SeqDecoder(vocab_size, embed_size, num_hiddens, num_layers)
state = decoder.init_state(encoder(X))
dec_outputs, state = decoder(X, state)
d2l.check_shape(dec_outputs, (batch_size, num_steps, vocab_size))
d2l.check_shape(state[1], (num_layers, batch_size, num_hiddens))

The layers in the aboveRNN encoder–decodermodel are summarized in Fig. 10.7.2.

10.7.4 Encoder–Decoder for Sequence-to-Sequence Learning
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tFig. 10.7.2 Layers in an RNN encoder–decoder model.

Putting it all together in code yields the following:

class Seq2Seq(d2l.EncoderDecoder): #@save
"""The RNN encoder--decoder for sequence to sequence learning."""
def __init__(self, encoder, decoder, tgt_pad, lr):

super().__init__(encoder, decoder)
self.save_hyperparameters()

def validation_step(self, batch):
Y_hat = self(*batch[:-1])
self.plot('loss', self.loss(Y_hat, batch[-1]), train=False)

def configure_optimizers(self):
# Adam optimizer is used here
return gluon.Trainer(self.parameters(), 'adam',

{'learning_rate': self.lr})

10.7.5 Loss Function with Masking
At each time step, the decoder predicts a probability distribution for the output tokens.
As with language modeling, we can apply softmax to obtain the distribution and calculate
the cross-entropy loss for optimization. Recall from Section 10.5 that the special padding
tokens are appended to the end of sequences and so sequences of varying lengths can be
efficiently loaded in minibatches of the same shape. However, prediction of padding tokens
should be excluded from loss calculations. To this end, we can mask irrelevant entries
with zero values so that multiplication of any irrelevant prediction with zero equates to
zero.

@d2l.add_to_class(Seq2Seq)
def loss(self, Y_hat, Y):

l = super(Seq2Seq, self).loss(Y_hat, Y, averaged=False)
mask = (Y.reshape(-1) != self.tgt_pad).astype(np.float32)
return (l * mask).sum() / mask.sum()

10.7.6 Training
Now we can create and train an RNN encoder–decoder model for sequence-to-sequence
learning on the machine translation dataset.
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data = d2l.MTFraEng(batch_size=128)
embed_size, num_hiddens, num_layers, dropout = 256, 256, 2, 0.2
encoder = Seq2SeqEncoder(

len(data.src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqDecoder(

len(data.tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
model = Seq2Seq(encoder, decoder, tgt_pad=data.tgt_vocab['<pad>'],

lr=0.005)
trainer = d2l.Trainer(max_epochs=30, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

10.7.7 Prediction
To predict the output sequence at each step, the predicted token from the previous time step
is fed into the decoder as an input. One simple strategy is to sample whichever token that
has been assigned by the decoder the highest probability when predicting at each step. As
in training, at the initial time step the beginning-of-sequence (“<bos>”) token is fed into the
decoder. This prediction process is illustrated in Fig. 10.7.3. When the end-of-sequence
(“<eos>”) token is predicted, the prediction of the output sequence is complete.

tFig. 10.7.3 Predicting the output sequence token by token using an RNN encoder–decoder.

In the next section, we will introduce more sophisticated strategies based on beam search
(Section 10.8).

@d2l.add_to_class(d2l.EncoderDecoder) #@save
def predict_step(self, batch, device, num_steps,

save_attention_weights=False):
batch = [a.as_in_context(device) for a in batch]
src, tgt, src_valid_len, _ = batch
enc_all_outputs = self.encoder(src, src_valid_len)

(continues on next page)
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dec_state = self.decoder.init_state(enc_all_outputs, src_valid_len)
outputs, attention_weights = [np.expand_dims(tgt[:, 0], 1), ], []
for _ in range(num_steps):

Y, dec_state = self.decoder(outputs[-1], dec_state)
outputs.append(Y.argmax(2))
# Save attention weights (to be covered later)
if save_attention_weights:

attention_weights.append(self.decoder.attention_weights)
return np.concatenate(outputs[1:], 1), attention_weights

10.7.8 Evaluation of Predicted Sequences
We can evaluate a predicted sequence by comparing it with the target sequence (the ground
truth). But what precisely is the appropriate measure for comparing similarity between two
sequences?

Bilingual Evaluation Understudy (BLEU), though originally proposed for evaluating ma-
chine translation results (Papineni et al., 2002), has been extensively used in measuring the
quality of output sequences for different applications. In principle, for any 𝑛-gram (Section
9.3.1) in the predicted sequence, BLEU evaluates whether this 𝑛-gram appears in the target
sequence.

Denote by 𝑝𝑛 the precision of an 𝑛-gram, defined as the ratio of the number of matched
𝑛-grams in the predicted and target sequences to the number of 𝑛-grams in the predicted
sequence. To explain, given a target sequence 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 , 𝐹, and a predicted sequence
𝐴, 𝐵, 𝐵, 𝐶, 𝐷, we have 𝑝1 = 4/5, 𝑝2 = 3/4, 𝑝3 = 1/3, and 𝑝4 = 0. Now let lenlabel
and lenpred be the numbers of tokens in the target sequence and the predicted sequence,
respectively. Then, BLEU is defined as

exp
(
min

(
0, 1 − lenlabel

lenpred

)) 𝑘∏
𝑛=1

𝑝1/2𝑛
𝑛 , (10.7.4)

where 𝑘 is the longest 𝑛-gram for matching.

Based on the definition of BLEU in (10.7.4), whenever the predicted sequence is the same
as the target sequence, BLEU is 1. Moreover, since matching longer 𝑛-grams is more diffi-
cult, BLEU assigns a greater weight when a longer 𝑛-gram has high precision. Specifically,
when 𝑝𝑛 is fixed, 𝑝1/2𝑛

𝑛 increases as 𝑛 grows (the original paper uses 𝑝1/𝑛
𝑛 ). Furthermore,

since predicting shorter sequences tends to yield a higher 𝑝𝑛 value, the coefficient before
the multiplication term in (10.7.4) penalizes shorter predicted sequences. For example,
when 𝑘 = 2, given the target sequence 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 , 𝐹 and the predicted sequence 𝐴, 𝐵,
although 𝑝1 = 𝑝2 = 1, the penalty factor exp(1 − 6/2) ≈ 0.14 lowers the BLEU.

We implement the BLEU measure as follows.

def bleu(pred_seq, label_seq, k): #@save
"""Compute the BLEU."""

(continues on next page)
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pred_tokens, label_tokens = pred_seq.split(' '), label_seq.split(' ')
len_pred, len_label = len(pred_tokens), len(label_tokens)
score = math.exp(min(0, 1 - len_label / len_pred))
for n in range(1, min(k, len_pred) + 1):

num_matches, label_subs = 0, collections.defaultdict(int)
for i in range(len_label - n + 1):

label_subs[' '.join(label_tokens[i: i + n])] += 1
for i in range(len_pred - n + 1):

if label_subs[' '.join(pred_tokens[i: i + n])] > 0:
num_matches += 1
label_subs[' '.join(pred_tokens[i: i + n])] -= 1

score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
return score

In the end, we use the trained RNN encoder–decoder to translate a few English sentences
into French and compute the BLEU of the results.

engs = ['go .', 'i lost .', 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
preds, _ = model.predict_step(

data.build(engs, fras), d2l.try_gpu(), data.num_steps)
for en, fr, p in zip(engs, fras, preds):

translation = []
for token in data.tgt_vocab.to_tokens(p):

if token == '<eos>':
break

translation.append(token)
print(f'{en} => {translation}, bleu,'

f'{bleu(" ".join(translation), fr, k=2):.3f}')

go . => ['va', '!'], bleu,1.000
i lost . => ["j'ai", 'perdu', '.'], bleu,1.000
he's calm . => ['il', 'est', 'mouillé', '.'], bleu,0.658
i'm home . => ['je', 'suis', 'chez', 'moi', '.'], bleu,1.000

10.7.9 Summary
Following the design of the encoder–decoder architecture, we can use two RNNs to design
a model for sequence-to-sequence learning. In encoder–decoder training, the teacher forc-
ing approach feeds original output sequences (in contrast to predictions) into the decoder.
When implementing the encoder and the decoder, we can use multilayer RNNs. We can
use masks to filter out irrelevant computations, such as when calculating the loss. For eval-
uating output sequences, BLEU is a popular measure that matches 𝑛-grams between the
predicted sequence and the target sequence.

10.7.10 Exercises
1. Can you adjust the hyperparameters to improve the translation results?
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2. Rerun the experiment without using masks in the loss calculation. What results do you
observe? Why?

3. If the encoder and the decoder differ in the number of layers or the number of hidden
units, how can we initialize the hidden state of the decoder?

4. In training, replace teacher forcing with feeding the prediction at the previous time step
into the decoder. How does this influence the performance?

5. Rerun the experiment by replacing GRU with LSTM.

6. Are there any other ways to design the output layer of the decoder?

Discussions151 .

10.8 Beam Search

In Section 10.7, we introduced the encoder–decoder architecture, and the standard tech-
niques for training them end-to-end. However, when it came to test-time prediction, we
mentioned only the greedy strategy, where we select at each time step the token given the
highest predicted probability of coming next, until, at some time step, we find that we have
predicted the special end-of-sequence “<eos>” token. In this section, we will begin by for-
malizing this greedy search strategy and identifying some problems that practitioners tend
to run into. Subsequently, we compare this strategywith two alternatives: exhaustive search
(illustrative but not practical) and beam search (the standard method in practice).

Let’s begin by setting up our mathematical notation, borrowing conventions from Section
10.7. At any time step 𝑡′, the decoder outputs predictions representing the probability of
each token in the vocabulary coming next in the sequence (the likely value of 𝑦𝑡 ′+1), con-
ditioned on the previous tokens 𝑦1, . . . , 𝑦𝑡 ′ and the context variable c, produced by the
encoder to represent the input sequence. To quantify computational cost, denote by Y the
output vocabulary (including the special end-of-sequence token “<eos>”). Let’s also spec-
ify the maximum number of tokens of an output sequence as 𝑇 ′. Our goal is to search for
an ideal output from all O(|Y|𝑇 ′ ) possible output sequences. Note that this slightly over-
estimates the number of distinct outputs because there are no subsequent tokens once the
“<eos>” token occurs. However, for our purposes, this number roughly captures the size
of the search space.

10.8.1 Greedy Search
Consider the simple greedy search strategy from Section 10.7. Here, at any time step 𝑡′,
we simply select the token with the highest conditional probability from Y, i.e.,

𝑦𝑡 ′ = argmax
𝑦∈Y

𝑃(𝑦 | 𝑦1, . . . , 𝑦𝑡 ′−1, c). (10.8.1)

https://discuss.d2l.ai/t/345
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Once our model outputs “<eos>” (or we reach the maximum length𝑇 ′) the output sequence
is completed.

This strategy might look reasonable, and in fact it is not so bad! Considering how computa-
tionally undemanding it is, you’d be hard pressed to get more bang for your buck. However,
if we put aside efficiency for a minute, it might seemmore reasonable to search for themost
likely sequence, not the sequence of (greedily selected) most likely tokens. It turns out that
these two objects can be quite different. The most likely sequence is the one that maximizes
the expression

∏𝑇 ′
𝑡 ′=1 𝑃(𝑦𝑡 ′ | 𝑦1, . . . , 𝑦𝑡 ′−1, c). In our machine translation example, if the

decoder truly recovered the probabilities of the underlying generative process, then this
would give us the most likely translation. Unfortunately, there is no guarantee that greedy
search will give us this sequence.

Let’s illustrate it with an example. Suppose that there are four tokens “A”, “B”, “C”, and
“<eos>” in the output dictionary. In Fig. 10.8.1, the four numbers under each time step rep-
resent the conditional probabilities of generating “A”, “B”, “C”, and “<eos>” respectively,
at that time step.

tFig. 10.8.1 At each time step, greedy search selects the token with the highest conditional probability.

At each time step, greedy search selects the token with the highest conditional probability.
Therefore, the output sequence “A”, “B”, “C”, and “<eos>” will be predicted (Fig. 10.8.1).
The conditional probability of this output sequence is 0.5×0.4×0.4×0.6 = 0.048.

Next, let’s look at another example in Fig. 10.8.2. Unlike in Fig. 10.8.1, at time step 2 we
select the token “C”, which has the second highest conditional probability.

tFig. 10.8.2 The four numbers under each time step represent the conditional probabilities of
generating “A”, “B”, “C”, and “<eos>” at that time step. At time step 2, the token “C”,
which has the second highest conditional probability, is selected.

Since the output subsequences at time steps 1 and 2, on which time step 3 is based, have
changed from “A” and “B” in Fig. 10.8.1 to “A” and “C” in Fig. 10.8.2, the conditional
probability of each token at time step 3 has also changed in Fig. 10.8.2. Suppose that
we choose the token “B” at time step 3. Now time step 4 is conditional on the output
subsequence at the first three time steps “A”, “C”, and “B”, which has changed from “A”,
“B”, and “C” in Fig. 10.8.1. Therefore, the conditional probability of generating each token
at time step 4 in Fig. 10.8.2 is also different from that in Fig. 10.8.1. As a result, the
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conditional probability of the output sequence “A”, “C”, “B”, and “<eos>” in Fig. 10.8.2
is 0.5 × 0.3 × 0.6 × 0.6 = 0.054, which is greater than that of greedy search in Fig. 10.8.1.
In this example, the output sequence “A”, “B”, “C”, and “<eos>” obtained by the greedy
search is not optimal.

10.8.2 Exhaustive Search
If the goal is to obtain the most likely sequence, we may consider using exhaustive search:
enumerate all the possible output sequences with their conditional probabilities, and then
output the one that scores the highest predicted probability.

While this would certainly give us what we desire, it would come at a prohibitive com-
putational cost of O(|Y|𝑇 ′ ), exponential in the sequence length and with an enormous
base given by the vocabulary size. For example, when |Y| = 10000 and 𝑇 ′ = 10, both
small numbers when compared with ones in real applications, we will need to evaluate
1000010 = 1040 sequences, which is already beyond the capabilities of any foreseeable
computers. On the other hand, the computational cost of greedy search isO(|Y| 𝑇 ′): mirac-
ulously cheap but far from optimal. For example, when |Y| = 10000 and 𝑇 ′ = 10, we only
need to evaluate 10000 × 10 = 105 sequences.

10.8.3 Beam Search
You could view sequence decoding strategies as lying on a spectrum, with beam search
striking a compromise between the efficiency of greedy search and the optimality of ex-
haustive search. The most straightforward version of beam search is characterized by a
single hyperparameter, the beam size, 𝑘 . Let’s explain this terminology. At time step 1,
we select the 𝑘 tokens with the highest predicted probabilities. Each of them will be the
first token of 𝑘 candidate output sequences, respectively. At each subsequent time step,
based on the 𝑘 candidate output sequences at the previous time step, we continue to select
𝑘 candidate output sequences with the highest predicted probabilities from 𝑘 |Y| possible
choices.

tFig. 10.8.3 The process of beam search (beam size = 2; maximum length of an output sequence = 3).
The candidate output sequences are A, C , AB , CE , ABD , and CED .
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Fig. 10.8.3 demonstrates the process of beam search with an example. Suppose that the
output vocabulary contains only five elements: Y = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, where one of them is
“<eos>”. Let the beam size be two and the maximum length of an output sequence be three.
At time step 1, suppose that the tokens with the highest conditional probabilities 𝑃(𝑦1 | c)
are 𝐴 and 𝐶. At time step 2, for all 𝑦2 ∈ Y, we compute

𝑃(𝐴, 𝑦2 | c) = 𝑃(𝐴 | c)𝑃(𝑦2 | 𝐴, c),
𝑃(𝐶, 𝑦2 | c) = 𝑃(𝐶 | c)𝑃(𝑦2 | 𝐶, c),

(10.8.2)

and pick the largest two among these ten values, say 𝑃(𝐴, 𝐵 | c) and 𝑃(𝐶, 𝐸 | c). Then at
time step 3, for all 𝑦3 ∈ Y, we compute

𝑃(𝐴, 𝐵, 𝑦3 | c) = 𝑃(𝐴, 𝐵 | c)𝑃(𝑦3 | 𝐴, 𝐵, c),
𝑃(𝐶, 𝐸, 𝑦3 | c) = 𝑃(𝐶, 𝐸 | c)𝑃(𝑦3 | 𝐶, 𝐸, c),

(10.8.3)

and pick the largest two among these ten values, say 𝑃(𝐴, 𝐵, 𝐷 | c) and 𝑃(𝐶, 𝐸, 𝐷 | c).
As a result, we get six candidates output sequences: (i) 𝐴; (ii) 𝐶; (iii) 𝐴, 𝐵; (iv) 𝐶, 𝐸 ; (v)
𝐴, 𝐵, 𝐷; and (vi) 𝐶, 𝐸 , 𝐷.

In the end, we obtain the set of final candidate output sequences based on these six se-
quences (e.g., discard portions including and after “<eos>”). Then we choose the output
sequence which maximizes the following score:

1
𝐿𝛼

log 𝑃(𝑦1, . . . , 𝑦𝐿 | c) =
1
𝐿𝛼

𝐿∑
𝑡 ′=1

log 𝑃(𝑦𝑡 ′ | 𝑦1, . . . , 𝑦𝑡 ′−1, c); (10.8.4)

here 𝐿 is the length of the final candidate sequence and 𝛼 is usually set to 0.75. Since a
longer sequence has more logarithmic terms in the summation of (10.8.4), the term 𝐿𝛼 in
the denominator penalizes long sequences.

The computational cost of beam search is O(𝑘 |Y| 𝑇 ′). This result is in between that of
greedy search and that of exhaustive search. Greedy search can be treated as a special case
of beam search arising when the beam size is set to 1.

10.8.4 Summary
Sequence searching strategies include greedy search, exhaustive search, and beam search.
Beam search provides a trade-off between accuracy and computational cost via the flexible
choice of the beam size.

10.8.5 Exercises
1. Can we treat exhaustive search as a special type of beam search? Why or why not?

2. Apply beam search in the machine translation problem in Section 10.7. How does the
beam size affect the translation results and the prediction speed?

3. We used language modeling for generating text following user-provided prefixes in Sec-
tion 9.5. Which kind of search strategy does it use? Can you improve it?

Discussions152 .
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The earliest years of the deep learning boom were driven primarily by results produced us-
ing the multilayer perceptron, convolutional network, and recurrent network architectures.
Remarkably, the model architectures that underpinned many of deep learning’s break-
throughs in the 2010s had changed remarkably little relative to their antecedents despite the
lapse of nearly 30 years. While plenty of new methodological innovations made their way
into most practitioner’s toolkits—ReLU activations, residual layers, batch normalization,
dropout, and adaptive learning rate schedules come to mind—the core underlying archi-
tectures were clearly recognizable as scaled-up implementations of classic ideas. Despite
thousands of papers proposing alternative ideas, models resembling classical convolutional
neural networks (Chapter 7) retained state-of-the-art status in computer vision and models
resembling Sepp Hochreiter’s original design for the LSTM recurrent neural network (Sec-
tion 10.1), dominated most applications in natural language processing. Arguably, to that
point, the rapid emergence of deep learning appeared to be primarily attributable to shifts
in the available computational resources (thanks to innovations in parallel computing with
GPUs) and the availability of massive data resources (thanks to cheap storage and Internet
services). While these factors may indeed remain the primary drivers behind this technol-
ogy’s increasing power we are also witnessing, at long last, a sea change in the landscape
of dominant architectures.

At the present moment, the dominant models for nearly all natural language processing
tasks are based on the Transformer architecture. Given any new task in natural language
processing, the default first-pass approach is to grab a large Transformer-based pretrained
model, (e.g., BERT (Devlin et al., 2018), ELECTRA (Clark et al., 2020), RoBERTa (Liu
et al., 2019), or Longformer (Beltagy et al., 2020)) adapting the output layers as neces-
sary, and fine-tuning the model on the available data for the downstream task. If you have
been paying attention to the last few years of breathless news coverage centered on Ope-
nAI’s large language models, then you have been tracking a conversation centered on the
GPT-2 and GPT-3 Transformer-based models (Brown et al., 2020, Radford et al., 2019).
Meanwhile, the vision Transformer has emerged as a default model for diverse vision tasks,
including image recognition, object detection, semantic segmentation, and superresolution
(Dosovitskiy et al., 2021, Liu et al., 2021). Transformers also showed up as competitive
methods for speech recognition (Gulati et al., 2020), reinforcement learning (Chen et al.,
2021), and graph neural networks (Dwivedi and Bresson, 2020).

The core idea behind the Transformer model is the attention mechanism, an innovation
that was originally envisioned as an enhancement for encoder–decoder RNNs applied to
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sequence-to-sequence applications, such as machine translations (Bahdanau et al., 2014).
You might recall that in the first sequence-to-sequence models for machine translation
(Sutskever et al., 2014), the entire input was compressed by the encoder into a single fixed-
length vector to be fed into the decoder. The intuition behind attention is that rather than
compressing the input, it might be better for the decoder to revisit the input sequence at
every step. Moreover, rather than always seeing the same representation of the input, one
might imagine that the decoder should selectively focus on particular parts of the input se-
quence at particular decoding steps. Bahdanau’s attention mechanism provided a simple
means by which the decoder could dynamically attend to different parts of the input at each
decoding step. The high-level idea is that the encoder could produce a representation of
length equal to the original input sequence. Then, at decoding time, the decoder can (via
some control mechanism) receive as input a context vector consisting of a weighted sum
of the representations on the input at each time step. Intuitively, the weights determine the
extent to which each step’s context “focuses” on each input token, and the key is to make
this process for assigning the weights differentiable so that it can be learned along with all
of the other neural network parameters.

Initially, the idea was a remarkably successful enhancement to the recurrent neural net-
works that already dominated machine translation applications. The models performed
better than the original encoder–decoder sequence-to-sequence architectures. Furthermore,
researchers noted that some nice qualitative insights sometimes emerged from inspecting
the pattern of attention weights. In translation tasks, attention models often assigned high
attention weights to cross-lingual synonyms when generating the corresponding words in
the target language. For example, when translating the sentence “my feet hurt” to “j’ai mal
au pieds”, the neural network might assign high attention weights to the representation of
“feet” when generating the corresponding French word “pieds”. These insights spurred
claims that attention models confer “interpretability” although what precisely the atten-
tion weights mean—i.e., how, if at all, they should be interpreted remains a hazy research
topic.

However, attention mechanisms soon emerged as more significant concerns, beyond their
usefulness as an enhancement for encoder–decoder recurrent neural networks and their pu-
tative usefulness for picking out salient inputs. Vaswani et al. (2017) proposed the Trans-
former architecture for machine translation, dispensing with recurrent connections alto-
gether, and instead relying on cleverly arranged attention mechanisms to capture all rela-
tionships among input and output tokens. The architecture performed remarkably well, and
by 2018 the Transformer began showing up in the majority of state-of-the-art natural lan-
guage processing systems. Moreover, at the same time, the dominant practice in natural lan-
guage processing became to pretrain large-scale models on enormous generic background
corpora to optimize some self-supervised pretraining objective, and then to fine-tune these
models using the available downstream data. The gap between Transformers and traditional
architectures grew especially wide when applied in this pretraining paradigm, and thus the
ascendance of Transformers coincided with the ascendence of such large-scale pretrained
models, now sometimes called foundation models (Bommasani et al., 2021).

In this chapter, we introduce attention models, starting with the most basic intuitions and
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the simplest instantiations of the idea. We then work our way up to the Transformer archi-
tecture, the vision Transformer, and the landscape of modern Transformer-based pretrained
models.

11.1 Queries, Keys, and Values

So far all the networks we have reviewed crucially relied on the input being of a well-
defined size. For instance, the images in ImageNet are of size 224 × 224 pixels and CNNs
are specifically tuned to this size. Even in natural language processing the input size for
RNNs is well defined and fixed. Variable size is addressed by sequentially processing one
token at a time, or by specially designed convolution kernels (Kalchbrenner et al., 2014).
This approach can lead to significant problems when the input is truly of varying size with
varying information content, such as in Section 10.7 in the transformation of text (Sutskever
et al., 2014). In particular, for long sequences it becomes quite difficult to keep track of
everything that has already been generated or even viewed by the network. Even explicit
tracking heuristics such as proposed by Yang et al. (2016) only offer limited benefit.

Compare this to databases. In their simplest form they are collections of keys (𝑘) and values
(𝑣). For instance, our database D might consist of tuples {(“Zhang”, “Aston”), (“Lipton”,
“Zachary”), (“Li”, “Mu”), (“Smola”, “Alex”), (“Hu”, “Rachel”), (“Werness”, “Brent”)}
with the last name being the key and the first name being the value. We can operate on
D, for instance with the exact query (𝑞) for “Li” which would return the value “Mu”. If
(“Li”, “Mu”) was not a record inD, there would be no valid answer. If we also allowed for
approximate matches, we would retrieve (“Lipton”, “Zachary”) instead. This quite simple
and trivial example nonetheless teaches us a number of useful things:

• We can design queries 𝑞 that operate on (𝑘 ,𝑣) pairs in such a manner as to be valid
regardless of the database size.

• The same query can receive different answers, according to the contents of the database.

• The “code” being executed for operating on a large state space (the database) can be quite
simple (e.g., exact match, approximate match, top-𝑘).

• There is no need to compress or simplify the database to make the operations effective.

Clearly we would not have introduced a simple database here if it wasn’t for the purpose of
explaining deep learning. Indeed, this leads to one of the most exciting concepts introduced
in deep learning in the past decade: the attention mechanism (Bahdanau et al., 2014). We
will cover the specifics of its application to machine translation later. For now, simply
consider the following: denote byD def

= {(k1,v1), . . . (k𝑚,v𝑚)} a database of 𝑚 tuples of
keys and values. Moreover, denote by q a query. Then we can define the attention over D
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as

Attention(q,D) def=
𝑚∑
𝑖=1

𝛼(q,k𝑖)v𝑖 , (11.1.1)

where 𝛼(q,k𝑖) ∈ R (𝑖 = 1, . . . , 𝑚) are scalar attention weights. The operation itself is
typically referred to as attention pooling. The name attention derives from the fact that the
operation pays particular attention to the terms for which the weight 𝛼 is significant (i.e.,
large). As such, the attention overD generates a linear combination of values contained in
the database. In fact, this contains the above example as a special case where all but one
weight is zero. We have a number of special cases:

• The weights 𝛼(q,k𝑖) are nonnegative. In this case the output of the attention mechanism
is contained in the convex cone spanned by the values v𝑖 .

• The weights 𝛼(q,k𝑖) form a convex combination, i.e.,
∑
𝑖 𝛼(q,k𝑖) = 1 and 𝛼(q,k𝑖) ≥ 0

for all 𝑖. This is the most common setting in deep learning.

• Exactly one of the weights 𝛼(q,k𝑖) is 1, while all others are 0. This is akin to a traditional
database query.

• All weights are equal, i.e., 𝛼(q,k𝑖) = 1
𝑚 for all 𝑖. This amounts to averaging across the

entire database, also called average pooling in deep learning.

A common strategy for ensuring that theweights sumup to 1 is to normalize them via

𝛼(q,k𝑖) =
𝛼(q,k𝑖)∑
𝑗𝛼(q,k 𝑗 )

. (11.1.2)

In particular, to ensure that the weights are also nonnegative, one can resort to exponenti-
ation. This means that we can now pick any function 𝑎(q,k) and then apply the softmax
operation used for multinomial models to it via

𝛼(q,k𝑖) =
exp(𝑎(q,k𝑖))∑
𝑗 exp(𝑎(q,k 𝑗 ))

. (11.1.3)

This operation is readily available in all deep learning frameworks. It is differentiable and
its gradient never vanishes, all of which are desirable properties in a model. Note though,
the attention mechanism introduced above is not the only option. For instance, we can
design a non-differentiable attention model that can be trained using reinforcement learning
methods (Mnih et al., 2014). As one would expect, training such a model is quite complex.
Consequently the bulk of modern attention research follows the framework outlined in Fig.
11.1.1. We thus focus our exposition on this family of differentiable mechanisms.

What is quite remarkable is that the actual “code” for executing on the set of keys and values,
namely the query, can be quite concise, even though the space to operate on is significant.
This is a desirable property for a network layer as it does not require too many parameters to
learn. Just as convenient is the fact that attention can operate on arbitrarily large databases
without the need to change the way the attention pooling operation is performed.
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tFig. 11.1.1 The attention mechanism computes a linear combination over values vi via attention
pooling, where weights are derived according to the compatibility between a query q and
keys ki .

from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

11.1.1 Visualization
One of the benefits of the attention mechanism is that it can be quite intuitive, particularly
when the weights are nonnegative and sum to 1. In this case we might interpret large
weights as a way for the model to select components of relevance. While this is a good
intuition, it is important to remember that it is just that, an intuition. Regardless, we may
want to visualize its effect on the given set of keys when applying a variety of different
queries. This function will come in handy later.

We thus define the show_heatmaps function. Note that it does not take amatrix (of attention
weights) as its input but rather a tensor with four axes, allowing for an array of different
queries and weights. Consequently the input matrices has the shape (number of rows
for display, number of columns for display, number of queries, number of keys). This
will come in handy later on when we want to visualize the workings that are to design
Transformers.

#@save
def show_heatmaps(matrices, xlabel, ylabel, titles=None, figsize=(2.5, 2.5),

cmap='Reds'):
"""Show heatmaps of matrices."""
d2l.use_svg_display()
num_rows, num_cols, _, _ = matrices.shape
fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize,

sharex=True, sharey=True, squeeze=False)
for i, (row_axes, row_matrices) in enumerate(zip(axes, matrices)):

for j, (ax, matrix) in enumerate(zip(row_axes, row_matrices)):
pcm = ax.imshow(matrix.asnumpy(), cmap=cmap)
if i == num_rows - 1:

ax.set_xlabel(xlabel)
if j == 0:

(continues on next page)



419 Queries, Keys, and Values

(continued from previous page)

ax.set_ylabel(ylabel)
if titles:

ax.set_title(titles[j])
fig.colorbar(pcm, ax=axes, shrink=0.6);

As a quick sanity check let’s visualize the identity matrix, representing a case where the
attention weight is 1 only when the query and the key are the same.

attention_weights = np.eye(10).reshape((1, 1, 10, 10))
show_heatmaps(attention_weights, xlabel='Keys', ylabel='Queries')

[21:50:08] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

11.1.2 Summary
The attention mechanism allows us to aggregate data from many (key, value) pairs. So
far our discussion was quite abstract, simply describing a way to pool data. We have not
explained yet where those mysterious queries, keys, and values might arise from. Some
intuition might help here: for instance, in a regression setting, the query might correspond
to the location where the regression should be carried out. The keys are the locations
where past data was observed and the values are the (regression) values themselves. This
is the so-called Nadaraya–Watson estimator (Nadaraya, 1964, Watson, 1964) that we will
be studying in the next section.

By design, the attention mechanism provides a differentiable means of control by which a
neural network can select elements from a set and to construct an associated weighted sum
over representations.

11.1.3 Exercises
1. Suppose that you wanted to reimplement approximate (key, query) matches as used in

classical databases, which attention function would you pick?

2. Suppose that the attention function is given by 𝑎(q,k𝑖) = q>k𝑖 and that k𝑖 = v𝑖 for
𝑖 = 1, . . . , 𝑚. Denote by 𝑝(k𝑖;q) the probability distribution over keys when using the
softmax normalization in (11.1.3). Prove that ∇q Attention(q,D) = Cov𝑝 (k𝑖 ;q) [k𝑖].
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3. Design a differentiable search engine using the attention mechanism.

4. Review the design of the Squeeze and ExcitationNetworks (Hu et al., 2018) and interpret
them through the lens of the attention mechanism.

Discussions153 .

11.2 Attention Pooling by Similarity

Now that we have introduced the primary components of the attention mechanism, let’s
use them in a rather classical setting, namely regression and classification via kernel den-
sity estimation (Nadaraya, 1964, Watson, 1964). This detour simply provides additional
background: it is entirely optional and can be skipped if needed. At their core, Nadaraya–
Watson estimators rely on some similarity kernel 𝛼(q,k) relating queriesq to keysk. Some
common kernels are

𝛼(q,k) = exp
(
−1

2
‖q − k‖2

)
Gaussian;

𝛼(q,k) = 1 if ‖q − k‖ ≤ 1 Boxcar;
𝛼(q,k) = max (0, 1 − ‖q − k‖) Epanechikov.

(11.2.1)

There are many more choices that we could pick. See a Wikipedia article 154 for a more
extensive review and how the choice of kernels is related to kernel density estimation, some-
times also called Parzen Windows (Parzen, 1957). All of the kernels are heuristic and can
be tuned. For instance, we can adjust the width, not only on a global basis but even on a
per-coordinate basis. Regardless, all of them lead to the following equation for regression
and classification alike:

𝑓 (q) =
∑
𝑖

v𝑖
𝛼(q,k𝑖)∑
𝑗 𝛼(q,k 𝑗 )

. (11.2.2)

In the case of a (scalar) regression with observations (x𝑖 , 𝑦𝑖) for features and labels respec-
tively, v𝑖 = 𝑦𝑖 are scalars, k𝑖 = x𝑖 are vectors, and the query q denotes the new location
where 𝑓 should be evaluated. In the case of (multiclass) classification, we use one-hot-
encoding of 𝑦𝑖 to obtain v𝑖 . One of the convenient properties of this estimator is that it re-
quires no training. Even more so, if we suitably narrow the kernel with increasing amounts
of data, the approach is consistent (Mack and Silverman, 1982), i.e., it will converge to
some statistically optimal solution. Let’s start by inspecting some kernels.

from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()
d2l.use_svg_display()

https://discuss.d2l.ai/t/1596
https://en.wikipedia.org/wiki/Kernel_(statistics)
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11.2.1 Kernels and Data
All the kernels 𝛼(k,q) defined in this section are translation and rotation invariant; that
is, if we shift and rotate k and q in the same manner, the value of 𝛼 remains unchanged.
For simplicity we thus pick scalar arguments 𝑘, 𝑞 ∈ R and pick the key 𝑘 = 0 as the origin.
This yields:

# Define some kernels
def gaussian(x):

return np.exp(-x**2 / 2)

def boxcar(x):
return np.abs(x) < 1.0

def constant(x):
return 1.0 + 0 * x

def epanechikov(x):
return np.maximum(1 - np.abs(x), 0)

fig, axes = d2l.plt.subplots(1, 4, sharey=True, figsize=(12, 3))

kernels = (gaussian, boxcar, constant, epanechikov)
names = ('Gaussian', 'Boxcar', 'Constant', 'Epanechikov')
x = np.arange(-2.5, 2.5, 0.1)
for kernel, name, ax in zip(kernels, names, axes):

ax.plot(x.asnumpy(), kernel(x).asnumpy())
ax.set_xlabel(name)

d2l.plt.show()

[22:04:09] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Different kernels correspond to different notions of range and smoothness. For instance,
the boxcar kernel only attends to observations within a distance of 1 (or some otherwise
defined hyperparameter) and does so indiscriminately.

To see Nadaraya–Watson estimation in action, let’s define some training data. In the fol-
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lowing we use the dependency

𝑦𝑖 = 2 sin(𝑥𝑖) + 𝑥𝑖 + 𝜖, (11.2.3)

where 𝜖 is drawn from a normal distribution with zero mean and unit variance. We draw
40 training examples.

def f(x):
return 2 * np.sin(x) + x

n = 40
x_train = np.sort(np.random.rand(n) * 5, axis=None)
y_train = f(x_train) + np.random.randn(n)
x_val = np.arange(0, 5, 0.1)
y_val = f(x_val)

11.2.2 Attention Pooling via Nadaraya–Watson Regression
Now that we have data and kernels, all we need is a function that computes the kernel
regression estimates. Note that we also want to obtain the relative kernel weights in order
to perform some minor diagnostics. Hence we first compute the kernel between all training
features (covariates) x_train and all validation features x_val. This yields a matrix, which
we subsequently normalize. When multiplied with the training labels y_train we obtain
the estimates.

Recall attention pooling in (11.1.1). Let each validation feature be a query, and each
training feature–label pair be a key–value pair. As a result, the normalized relative ker-
nel weights (attention_w below) are the attention weights.

def nadaraya_watson(x_train, y_train, x_val, kernel):
dists = x_train.reshape((-1, 1)) - x_val.reshape((1, -1))
# Each column/row corresponds to each query/key
k = kernel(dists).astype(np.float32)
# Normalization over keys for each query
attention_w = k / k.sum(0)
y_hat = np.dot(y_train, attention_w)
return y_hat, attention_w

Let’s have a look at the kind of estimates that the different kernels produce.

def plot(x_train, y_train, x_val, y_val, kernels, names, attention=False):
fig, axes = d2l.plt.subplots(1, 4, sharey=True, figsize=(12, 3))
for kernel, name, ax in zip(kernels, names, axes):

y_hat, attention_w = nadaraya_watson(x_train, y_train, x_val, kernel)
if attention:

pcm = ax.imshow(attention_w.asnumpy(), cmap='Reds')
else:

ax.plot(x_val, y_hat)
ax.plot(x_val, y_val, 'm--')
ax.plot(x_train, y_train, 'o', alpha=0.5);

ax.set_xlabel(name)

(continues on next page)
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(continued from previous page)

if not attention:
ax.legend(['y_hat', 'y'])

if attention:
fig.colorbar(pcm, ax=axes, shrink=0.7)

plot(x_train, y_train, x_val, y_val, kernels, names)

The first thing that stands out is that all three nontrivial kernels (Gaussian, Boxcar, and
Epanechikov) produce fairly workable estimates that are not too far from the true function.
Only the constant kernel that leads to the trivial estimate 𝑓 (𝑥) = 1

𝑛

∑
𝑖 𝑦𝑖 produces a rather

unrealistic result. Let’s inspect the attention weighting a bit more closely:

plot(x_train, y_train, x_val, y_val, kernels, names, attention=True)

The visualization clearly shows why the estimates for Gaussian, Boxcar, and Epanechikov
are very similar: after all, they are derived from very similar attention weights, despite the
different functional form of the kernel. This raises the question as to whether this is always
the case.

11.2.3 Adapting Attention Pooling
We could replace the Gaussian kernel with one of a different width. That is, we could use
𝛼(q,k) = exp

(
− 1

2𝜎2 ‖q − k‖2
)
where 𝜎2 determines the width of the kernel. Let’s see

whether this affects the outcomes.
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sigmas = (0.1, 0.2, 0.5, 1)
names = ['Sigma ' + str(sigma) for sigma in sigmas]

def gaussian_with_width(sigma):
return (lambda x: np.exp(-x**2 / (2*sigma**2)))

kernels = [gaussian_with_width(sigma) for sigma in sigmas]
plot(x_train, y_train, x_val, y_val, kernels, names)

Clearly, the narrower the kernel, the less smooth the estimate. At the same time, it adapts
better to the local variations. Let’s look at the corresponding attention weights.

plot(x_train, y_train, x_val, y_val, kernels, names, attention=True)

As we would expect, the narrower the kernel, the narrower the range of large attention
weights. It is also clear that picking the same width might not be ideal. In fact, Silverman
(1986) proposed a heuristic that depends on the local density. Many more such “tricks”
have been proposed. For instance, Norelli et al. (2022) used a similar nearest-neighbor
interpolation technique for designing cross-modal image and text representations.

The astute readermight wonderwhywe are providing this deep dive for amethod that is over
half a century old. First, it is one of the earliest precursors of modern attention mechanisms.
Second, it is great for visualization. Third, and just as importantly, it demonstrates the limits
of hand-crafted attention mechanisms. A much better strategy is to learn the mechanism,
by learning the representations for queries and keys. This is what we will embark on in the
following sections.

11.2.4 Summary
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Nadaraya–Watson kernel regression is an early precursor of the current attention mecha-
nisms. It can be used directly with little to no training or tuning, either for classification or
regression. The attention weight is assigned according to the similarity (or distance) be-
tween query and key, and according to howmany similar observations are available.

11.2.5 Exercises
1. Parzen windows density estimates are given by 𝑝(x) = 1

𝑛

∑
𝑖 𝑘 (x,x𝑖). Prove that for

binary classification the function 𝑝(x, 𝑦 = 1) − 𝑝(x, 𝑦 = −1), as obtained by Parzen
windows is equivalent to Nadaraya–Watson classification.

2. Implement stochastic gradient descent to learn a good value for kernel widths inNadaraya–
Watson regression.

1. What happens if you just use the above estimates to minimize ( 𝑓 (xi) − 𝑦𝑖)2 directly?
Hint: 𝑦𝑖 is part of the terms used to compute 𝑓 .

2. Remove (x𝑖 , 𝑦𝑖) from the estimate for 𝑓 (x𝑖) and optimize over the kernel widths.
Do you still observe overfitting?

3. Assume that all x lie on the unit sphere, i.e., all satisfy ‖x‖ = 1. Can you simplify the
‖x−x𝑖 ‖2 term in the exponential? Hint: we will later see that this is very closely related
to dot product attention.

4. Recall that Mack and Silverman (1982) proved that Nadaraya–Watson estimation is con-
sistent. How quickly should you reduce the scale for the attention mechanism as you get
more data? Provide some intuition for your answer. Does it depend on the dimension-
ality of the data? How?

Discussions155 .

11.3 Attention Scoring Functions

In Section 11.2, we used a number of different distance-based kernels, including a Gaussian
kernel to model interactions between queries and keys. As it turns out, distance functions
are slightly more expensive to compute than dot products. As such, with the softmax op-
eration to ensure nonnegative attention weights, much of the work has gone into attention
scoring functions 𝑎 in (11.1.3) and Fig. 11.3.1 that are simpler to compute.

import math
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

https://discuss.d2l.ai/t/1598
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tFig. 11.3.1 Computing the output of attention pooling as a weighted average of values, where weights
are computed with the attention scoring function a and the softmax operation.

11.3.1 Dot Product Attention
Let’s review the attention function (without exponentiation) from the Gaussian kernel for
a moment:

𝑎(q,k𝑖) = −
1
2
‖q − k𝑖 ‖2 = q>k𝑖 −

1
2
‖k𝑖 ‖2 −

1
2
‖q‖2. (11.3.1)

First, note that the final term depends on q only. As such it is identical for all (q,k𝑖)
pairs. Normalizing the attention weights to 1, as is done in (11.1.3), ensures that this term
disappears entirely. Second, note that both batch and layer normalization (to be discussed
later) lead to activations that have well-bounded, and often constant, norms ‖k𝑖 ‖. This is
the case, for instance, whenever the keys k𝑖 were generated by a layer norm. As such, we
can drop it from the definition of 𝑎 without any major change in the outcome.

Last, we need to keep the order of magnitude of the arguments in the exponential function
under control. Assume that all the elements of the query q ∈ R𝑑 and the key k𝑖 ∈ R𝑑
are independent and identically drawn random variables with zero mean and unit variance.
The dot product between both vectors has zero mean and a variance of 𝑑. To ensure that
the variance of the dot product still remains 1 regardless of vector length, we use the scaled
dot product attention scoring function. That is, we rescale the dot product by 1/

√
𝑑. We

thus arrive at the first commonly used attention function that is used, e.g., in Transformers
(Vaswani et al., 2017):

𝑎(q,k𝑖) = q>k𝑖/
√
𝑑. (11.3.2)

Note that attention weights 𝛼 still need normalizing. We can simplify this further via
(11.1.3) by using the softmax operation:

𝛼(q,k𝑖) = softmax(𝑎(q,k𝑖)) =
exp(q>k𝑖/

√
𝑑)∑

𝑗=1 exp(q>k 𝑗/
√
𝑑)
. (11.3.3)

As it turns out, all popular attention mechanisms use the softmax, hence we will limit
ourselves to that in the remainder of this chapter.

11.3.2 Convenience Functions
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We need a few functions to make the attention mechanism efficient to deploy. This includes
tools for dealing with strings of variable lengths (common for natural language processing)
and tools for efficient evaluation on minibatches (batch matrix multiplication).

Masked Softmax Operation
One of the most popular applications of the attention mechanism is to sequence models.
Hence we need to be able to deal with sequences of different lengths. In some cases, such
sequences may end up in the same minibatch, necessitating padding with dummy tokens
for shorter sequences (see Section 10.5 for an example). These special tokens do not carry
meaning. For instance, assume that we have the following three sentences:

Dive into Deep Learning
Learn to code <blank>
Hello world <blank> <blank>

Since we do not want blanks in our attention model we simply need to limit
∑𝑛
𝑖=1 𝛼(q,k𝑖)v𝑖

to
∑𝑙
𝑖=1 𝛼(q,k𝑖)v𝑖 for however long, 𝑙 ≤ 𝑛, the actual sentence is. Since it is such a common

problem, it has a name: the masked softmax operation.

Let’s implement it. Actually, the implementation cheats ever so slightly by setting the values
of v𝑖 , for 𝑖 > 𝑙, to zero. Moreover, it sets the attention weights to a large negative number,
such as −106, in order to make their contribution to gradients and values vanish in practice.
This is done since linear algebra kernels and operators are heavily optimized for GPUs and
it is faster to be slightly wasteful in computation rather than to have code with conditional
(if then else) statements.

def masked_softmax(X, valid_lens): #@save
"""Perform softmax operation by masking elements on the last axis."""
# X: 3D tensor, valid_lens: 1D or 2D tensor
if valid_lens is None:

return npx.softmax(X)
else:

shape = X.shape
if valid_lens.ndim == 1:

valid_lens = valid_lens.repeat(shape[1])
else:

valid_lens = valid_lens.reshape(-1)
# On the last axis, replace masked elements with a very large negative
# value, whose exponentiation outputs 0
X = npx.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, True,

value=-1e6, axis=1)
return npx.softmax(X).reshape(shape)

To illustrate how this function works, consider a minibatch of two examples of size 2 × 4,
where their valid lengths are 2 and 3, respectively. As a result of the masked softmax oper-
ation, values beyond the valid lengths for each pair of vectors are all masked as zero.
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masked_softmax(np.random.uniform(size=(2, 2, 4)), np.array([2, 3]))

[22:05:24] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([[[0.488994 , 0.511006 , 0. , 0. ],
[0.43654838, 0.56345165, 0. , 0. ]],

[[0.28817102, 0.3519408 , 0.3598882 , 0. ],
[0.29034293, 0.25239873, 0.45725834, 0. ]]])

If we need more fine-grained control to specify the valid length for each of the two vec-
tors of every example, we simply use a two-dimensional tensor of valid lengths. This
yields:

masked_softmax(np.random.uniform(size=(2, 2, 4)),
np.array([[1, 3], [2, 4]]))

array([[[1. , 0. , 0. , 0. ],
[0.35848376, 0.36588794, 0.2756283 , 0. ]],

[[0.54370314, 0.45629686, 0. , 0. ],
[0.19598779, 0.25580424, 0.19916737, 0.34904057]]])

Batch Matrix Multiplication
Another commonly used operation is to multiply batches of matrices by one another. This
comes in handy when we have minibatches of queries, keys, and values. More specifically,
assume that

Q = [Q1,Q2, . . . ,Q𝑛] ∈ R𝑛×𝑎×𝑏,
K = [K1,K2, . . . ,K𝑛] ∈ R𝑛×𝑏×𝑐 .

(11.3.4)

Then the batch matrix multiplication (BMM) computes the elementwise product

BMM(Q,K) = [Q1K1,Q2K2, . . . ,Q𝑛K𝑛] ∈ R𝑛×𝑎×𝑐 . (11.3.5)

Let’s see this in action in a deep learning framework.

Q = np.ones((2, 3, 4))
K = np.ones((2, 4, 6))
d2l.check_shape(npx.batch_dot(Q, K), (2, 3, 6))

11.3.3 Scaled Dot Product Attention
Let’s return to the dot product attention introduced in (11.3.2). In general, it requires that
both the query and the key have the same vector length, say 𝑑, even though this can be
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addressed easily by replacing q>k with q>Mk where M is a matrix suitably chosen for
translating between both spaces. For now assume that the dimensions match.

In practice, we often think of minibatches for efficiency, such as computing attention for
𝑛 queries and 𝑚 key-value pairs, where queries and keys are of length 𝑑 and values are of
length 𝑣. The scaled dot product attention of queries Q ∈ R𝑛×𝑑 , keys K ∈ R𝑚×𝑑 , and
values V ∈ R𝑚×𝑣 thus can be written as

softmax
(
QK>
√
𝑑

)
V ∈ R𝑛×𝑣 . (11.3.6)

Note that when applying this to a minibatch, we need the batch matrix multiplication intro-
duced in (11.3.5). In the following implementation of the scaled dot product attention, we
use dropout for model regularization.

class DotProductAttention(nn.Block): #@save
"""Scaled dot product attention."""
def __init__(self, dropout):

super().__init__()
self.dropout = nn.Dropout(dropout)

# Shape of queries: (batch_size, no. of queries, d)
# Shape of keys: (batch_size, no. of key-value pairs, d)
# Shape of values: (batch_size, no. of key-value pairs, value dimension)
# Shape of valid_lens: (batch_size,) or (batch_size, no. of queries)
def forward(self, queries, keys, values, valid_lens=None):

d = queries.shape[-1]
# Set transpose_b=True to swap the last two dimensions of keys
scores = npx.batch_dot(queries, keys, transpose_b=True) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return npx.batch_dot(self.dropout(self.attention_weights), values)

To illustrate how the DotProductAttention class works, we use the same keys, values,
and valid lengths from the earlier toy example for additive attention. For the purpose of
our example we assume that we have a minibatch size of 2, a total of 10 keys and values,
and that the dimensionality of the values is 4. Lastly, we assume that the valid length per
observation is 2 and 6 respectively. Given that, we expect the output to be a 2×1×4 tensor,
i.e., one row per example of the minibatch.

queries = np.random.normal(0, 1, (2, 1, 2))
keys = np.random.normal(0, 1, (2, 10, 2))
values = np.random.normal(0, 1, (2, 10, 4))
valid_lens = np.array([2, 6])

attention = DotProductAttention(dropout=0.5)
attention.initialize()
d2l.check_shape(attention(queries, keys, values, valid_lens), (2, 1, 4))

Let’s check whether the attention weights actually vanish for anything beyond the second
and sixth column respectively (because of setting the valid length to 2 and 6).
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d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')

11.3.4 Additive Attention
When queries q and keys k are vectors of different dimension, we can either use a matrix to
address the mismatch via q>Mk, or we can use additive attention as the scoring function.
Another benefit is that, as its name indicates, the attention is additive. This can lead to
some minor computational savings. Given a query q ∈ R𝑞 and a key k ∈ R𝑘 , the additive
attention scoring function (Bahdanau et al., 2014) is given by

𝑎(q,k) = w>𝑣 tanh(W𝑞q +W𝑘k) ∈ R, (11.3.7)

where W𝑞 ∈ Rℎ×𝑞 , W𝑘 ∈ Rℎ×𝑘 , and w𝑣 ∈ Rℎ are the learnable parameters. This term
is then fed into a softmax to ensure both nonnegativity and normalization. An equivalent
interpretation of (11.3.7) is that the query and key are concatenated and fed into an MLP
with a single hidden layer. Using tanh as the activation function and disabling bias terms,
we implement additive attention as follows:

class AdditiveAttention(nn.Block): #@save
"""Additive attention."""
def __init__(self, num_hiddens, dropout, **kwargs):

super(AdditiveAttention, self).__init__(**kwargs)
# Use flatten=False to only transform the last axis so that the
# shapes for the other axes are kept the same
self.W_k = nn.Dense(num_hiddens, use_bias=False, flatten=False)
self.W_q = nn.Dense(num_hiddens, use_bias=False, flatten=False)
self.w_v = nn.Dense(1, use_bias=False, flatten=False)
self.dropout = nn.Dropout(dropout)

def forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_q(queries), self.W_k(keys)
# After dimension expansion, shape of queries: (batch_size, no. of
# queries, 1, num_hiddens) and shape of keys: (batch_size, 1,
# no. of key-value pairs, num_hiddens). Sum them up with
# broadcasting
features = np.expand_dims(queries, axis=2) + np.expand_dims(

keys, axis=1)
features = np.tanh(features)
# There is only one output of self.w_v, so we remove the last
# one-dimensional entry from the shape. Shape of scores:
# (batch_size, no. of queries, no. of key-value pairs)
scores = np.squeeze(self.w_v(features), axis=-1)

(continues on next page)
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(continued from previous page)

self.attention_weights = masked_softmax(scores, valid_lens)
# Shape of values: (batch_size, no. of key-value pairs, value
# dimension)
return npx.batch_dot(self.dropout(self.attention_weights), values)

Let’s see how AdditiveAttention works. In our toy example we pick queries, keys and
values of size (2, 1, 20), (2, 10, 2) and (2, 10, 4), respectively. This is identical to our choice
for DotProductAttention, except that now the queries are 20-dimensional. Likewise, we
pick (2, 6) as the valid lengths for the sequences in the minibatch.

queries = np.random.normal(0, 1, (2, 1, 20))

attention = AdditiveAttention(num_hiddens=8, dropout=0.1)
attention.initialize()
d2l.check_shape(attention(queries, keys, values, valid_lens), (2, 1, 4))

When reviewing the attention function we see a behavior that is qualitatively quite similar
to that of DotProductAttention. That is, only terms within the chosen valid length (2, 6)
are nonzero.

d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')

11.3.5 Summary
In this section we introduced the two key attention scoring functions: dot product and addi-
tive attention. They are effective tools for aggregating across sequences of variable length.
In particular, the dot product attention is the mainstay of modern Transformer architectures.
When queries and keys are vectors of different lengths, we can use the additive attention
scoring function instead. Optimizing these layers is one of the key areas of advance in re-
cent years. For instance, NVIDIA’s Transformer Library156 and Megatron (Shoeybi et al.,
2019) crucially rely on efficient variants of the attention mechanism. We will dive into this
in quite a bit more detail as we review Transformers in later sections.

11.3.6 Exercises
1. Implement distance-based attention bymodifying the DotProductAttention code. Note

that you only need the squared norms of the keys ‖k𝑖 ‖2 for an efficient implementation.

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/index.html
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2. Modify the dot product attention to allow for queries and keys of different dimension-
alities by employing a matrix to adjust dimensions.

3. How does the computational cost scale with the dimensionality of the keys, queries,
values, and their number? What about the memory bandwidth requirements?

Discussions157 .

11.4 The Bahdanau Attention Mechanism

Whenwe encounteredmachine translation in Section 10.7, we designed an encoder–decoder
architecture for sequence-to-sequence learning based on two RNNs (Sutskever et al., 2014).
Specifically, the RNN encoder transforms a variable-length sequence into a fixed-shape
context variable. Then, the RNN decoder generates the output (target) sequence token by
token based on the generated tokens and the context variable.

Recall Fig. 10.7.2 which we repeat (Fig. 11.4.1) with some additional detail. Convention-
ally, in an RNN all relevant information about a source sequence is translated into some
internal fixed-dimensional state representation by the encoder. It is this very state that is
used by the decoder as the complete and exclusive source of information for generating the
translated sequence. In other words, the sequence-to-sequence mechanism treats the inter-
mediate state as a sufficient statistic of whatever string might have served as input.

tFig. 11.4.1 Sequence-to-sequence model. The state, as generated by the encoder, is the only piece of
information shared between the encoder and the decoder.

While this is quite reasonable for short sequences, it is clear that it is infeasible for long ones,
such as a book chapter or even just a very long sentence. After all, before too long there will
simply not be enough “space” in the intermediate representation to store all that is important
in the source sequence. Consequently the decoder will fail to translate long and complex
sentences. One of the first to encounter this was Graves (2013) who tried to design an
RNN to generate handwritten text. Since the source text has arbitrary length they designed a
differentiable attention model to align text characters with the much longer pen trace, where
the alignment moves only in one direction. This, in turn, draws on decoding algorithms in
speech recognition, e.g., hidden Markov models (Rabiner and Juang, 1993).

Inspired by the idea of learning to align, Bahdanau et al. (2014) proposed a differentiable

https://discuss.d2l.ai/t/346


433 The Bahdanau Attention Mechanism

attention model without the unidirectional alignment limitation. When predicting a token,
if not all the input tokens are relevant, the model aligns (or attends) only to parts of the input
sequence that are deemed relevant to the current prediction. This is then used to update the
current state before generating the next token. While quite innocuous in its description, this
Bahdanau attention mechanism has arguably turned into one of the most influential ideas
of the past decade in deep learning, giving rise to Transformers (Vaswani et al., 2017) and
many related new architectures.

from mxnet import init, np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2l

npx.set_np()

11.4.1 Model
We follow the notation introduced by the sequence-to-sequence architecture of Section
10.7, in particular (10.7.3). The key idea is that instead of keeping the state, i.e., the con-
text variable c summarizing the source sentence, as fixed, we dynamically update it, as a
function of both the original text (encoder hidden states h𝑡 ) and the text that was already
generated (decoder hidden states s𝑡 ′−1). This yields c𝑡 ′ , which is updated after any decod-
ing time step 𝑡′. Suppose that the input sequence is of length 𝑇 . In this case the context
variable is the output of attention pooling:

c𝑡 ′ =
𝑇∑
𝑡=1

𝛼(s𝑡 ′−1,h𝑡 )h𝑡 . (11.4.1)

We used s𝑡 ′−1 as the query, and h𝑡 as both the key and the value. Note that c𝑡 ′ is then
used to generate the state s𝑡 ′ and to generate a new token: see (10.7.3). In particular, the
attention weight 𝛼 is computed as in (11.3.3) using the additive attention scoring function
defined by (11.3.7). This RNN encoder–decoder architecture using attention is depicted in
Fig. 11.4.2. Note that later this model was modified so as to include the already generated
tokens in the decoder as further context (i.e., the attention sum does not stop at 𝑇 but rather
it proceeds up to 𝑡′ − 1). For instance, see Chan et al. (2015) for a description of this
strategy, as applied to speech recognition.

tFig. 11.4.2 Layers in an RNN encoder–decoder model with the Bahdanau attention mechanism.
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11.4.2 Defining the Decoder with Attention
To implement the RNN encoder–decoder with attention, we only need to redefine the de-
coder (omitting the generated symbols from the attention function simplifies the design).
Let’s begin with the base interface for decoders with attention by defining the quite unsur-
prisingly named AttentionDecoder class.

class AttentionDecoder(d2l.Decoder): #@save
"""The base attention-based decoder interface."""
def __init__(self):

super().__init__()

@property
def attention_weights(self):

raise NotImplementedError

We need to implement the RNN decoder in the Seq2SeqAttentionDecoder class. The
state of the decoder is initialized with (i) the hidden states of the last layer of the encoder
at all time steps, used as keys and values for attention; (ii) the hidden state of the encoder
at all layers at the final time step, which serves to initialize the hidden state of the decoder;
and (iii) the valid length of the encoder, to exclude the padding tokens in attention pooling.
At each decoding time step, the hidden state of the final layer of the decoder, obtained at
the previous time step, is used as the query of the attention mechanism. Both the output of
the attention mechanism and the input embedding are concatenated to serve as the input of
the RNN decoder.

class Seq2SeqAttentionDecoder(AttentionDecoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,

dropout=0):
super().__init__()
self.attention = d2l.AdditiveAttention(num_hiddens, dropout)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = rnn.GRU(num_hiddens, num_layers, dropout=dropout)
self.dense = nn.Dense(vocab_size, flatten=False)
self.initialize(init.Xavier())

def init_state(self, enc_outputs, enc_valid_lens):
# Shape of outputs: (num_steps, batch_size, num_hiddens).
# Shape of hidden_state: (num_layers, batch_size, num_hiddens)
outputs, hidden_state = enc_outputs
return (outputs.swapaxes(0, 1), hidden_state, enc_valid_lens)

def forward(self, X, state):
# Shape of enc_outputs: (batch_size, num_steps, num_hiddens).
# Shape of hidden_state: (num_layers, batch_size, num_hiddens)
enc_outputs, hidden_state, enc_valid_lens = state
# Shape of the output X: (num_steps, batch_size, embed_size)
X = self.embedding(X).swapaxes(0, 1)
outputs, self._attention_weights = [], []
for x in X:

# Shape of query: (batch_size, 1, num_hiddens)
query = np.expand_dims(hidden_state[-1], axis=1)

(continues on next page)
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(continued from previous page)

# Shape of context: (batch_size, 1, num_hiddens)
context = self.attention(

query, enc_outputs, enc_outputs, enc_valid_lens)
# Concatenate on the feature dimension
x = np.concatenate((context, np.expand_dims(x, axis=1)), axis=-1)
# Reshape x as (1, batch_size, embed_size + num_hiddens)
out, hidden_state = self.rnn(x.swapaxes(0, 1), hidden_state)
hidden_state = hidden_state[0]
outputs.append(out)
self._attention_weights.append(self.attention.attention_weights)

# After fully connected layer transformation, shape of outputs:
# (num_steps, batch_size, vocab_size)
outputs = self.dense(np.concatenate(outputs, axis=0))
return outputs.swapaxes(0, 1), [enc_outputs, hidden_state,

enc_valid_lens]

@property
def attention_weights(self):

return self._attention_weights

In the following, we test the implemented decoder with attention using a minibatch of four
sequences, each of which are seven time steps long.

vocab_size, embed_size, num_hiddens, num_layers = 10, 8, 16, 2
batch_size, num_steps = 4, 7
encoder = d2l.Seq2SeqEncoder(vocab_size, embed_size, num_hiddens, num_layers)
decoder = Seq2SeqAttentionDecoder(vocab_size, embed_size, num_hiddens,

num_layers)
X = np.zeros((batch_size, num_steps))
state = decoder.init_state(encoder(X), None)
output, state = decoder(X, state)
d2l.check_shape(output, (batch_size, num_steps, vocab_size))
d2l.check_shape(state[0], (batch_size, num_steps, num_hiddens))
d2l.check_shape(state[1][0], (batch_size, num_hiddens))

[22:45:30] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

11.4.3 Training
Now that we specified the new decoder we can proceed analogously to Section 10.7.6:
specify the hyperparameters, instantiate a regular encoder and a decoder with attention,
and train this model for machine translation.

data = d2l.MTFraEng(batch_size=128)
embed_size, num_hiddens, num_layers, dropout = 256, 256, 2, 0.2
encoder = d2l.Seq2SeqEncoder(

len(data.src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqAttentionDecoder(

len(data.tgt_vocab), embed_size, num_hiddens, num_layers, dropout)

(continues on next page)
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(continued from previous page)

model = d2l.Seq2Seq(encoder, decoder, tgt_pad=data.tgt_vocab['<pad>'],
lr=0.005)

trainer = d2l.Trainer(max_epochs=30, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

After the model is trained, we use it to translate a few English sentences into French and
compute their BLEU scores.

engs = ['go .', 'i lost .', 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
preds, _ = model.predict_step(

data.build(engs, fras), d2l.try_gpu(), data.num_steps)
for en, fr, p in zip(engs, fras, preds):

translation = []
for token in data.tgt_vocab.to_tokens(p):

if token == '<eos>':
break

translation.append(token)
print(f'{en} => {translation}, bleu,'

f'{d2l.bleu(" ".join(translation), fr, k=2):.3f}')

go . => ['<unk>', '!'], bleu,0.000
i lost . => ["j'ai", 'perdu', '.'], bleu,1.000
he's calm . => ['il', 'court', '.'], bleu,0.000
i'm home . => ['je', 'suis', 'certain', '.'], bleu,0.512

Let’s visualize the attention weights when translating the last English sentence. We see that
each query assigns non-uniform weights over key–value pairs. It shows that at each decod-
ing step, different parts of the input sequences are selectively aggregated in the attention
pooling.

_, dec_attention_weights = model.predict_step(
data.build([engs[-1]], [fras[-1]]), d2l.try_gpu(), data.num_steps, True)

attention_weights = np.concatenate(
[step[0][0][0] for step in dec_attention_weights], 0)

attention_weights = attention_weights.reshape((1, 1, -1, data.num_steps))
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# Plus one to include the end-of-sequence token
d2l.show_heatmaps(

attention_weights[:, :, :, :len(engs[-1].split()) + 1],
xlabel='Key positions', ylabel='Query positions')

11.4.4 Summary
When predicting a token, if not all the input tokens are relevant, the RNN encoder–decoder
with the Bahdanau attention mechanism selectively aggregates different parts of the input
sequence. This is achieved by treating the state (context variable) as an output of additive
attention pooling. In the RNN encoder–decoder, the Bahdanau attention mechanism treats
the decoder hidden state at the previous time step as the query, and the encoder hidden
states at all the time steps as both the keys and values.

11.4.5 Exercises
1. Replace GRU with LSTM in the experiment.

2. Modify the experiment to replace the additive attention scoring function with the scaled
dot-product. How does it influence the training efficiency?

Discussions158 .

11.5 Multi-Head Attention

In practice, given the same set of queries, keys, and values we may want our model to
combine knowledge from different behaviors of the same attention mechanism, such as
capturing dependencies of various ranges (e.g., shorter-range vs. longer-range) within a se-
quence. Thus, it may be beneficial to allow our attention mechanism to jointly use different
representation subspaces of queries, keys, and values.

To this end, instead of performing a single attention pooling, queries, keys, and values can
be transformed with ℎ independently learned linear projections. Then these ℎ projected

https://discuss.d2l.ai/t/347
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queries, keys, and values are fed into attention pooling in parallel. In the end, ℎ attention-
pooling outputs are concatenated and transformed with another learned linear projection to
produce the final output. This design is called multi-head attention, where each of the ℎ
attention pooling outputs is a head (Vaswani et al., 2017). Using fully connected layers to
perform learnable linear transformations, Fig. 11.5.1 describesmulti-head attention.

tFig. 11.5.1 Multi-head attention, where multiple heads are concatenated then linearly transformed.

import math
from mxnet import autograd, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

11.5.1 Model
Before providing the implementation of multi-head attention, let’s formalize this model
mathematically. Given a query q ∈ R𝑑𝑞 , a key k ∈ R𝑑𝑘 , and a value v ∈ R𝑑𝑣 , each
attention head h𝑖 (𝑖 = 1, . . . , ℎ) is computed as

h𝑖 = 𝑓 (W (𝑞)
𝑖 q,W (𝑘 )

𝑖 k,W (𝑣)
𝑖 v) ∈ R𝑝𝑣 , (11.5.1)

where W (𝑞)
𝑖 ∈ R𝑝𝑞×𝑑𝑞 , W (𝑘 )

𝑖 ∈ R𝑝𝑘×𝑑𝑘 , and W (𝑣)
𝑖 ∈ R𝑝𝑣×𝑑𝑣 are learnable parameters

and 𝑓 is attention pooling, such as additive attention and scaled dot product attention in
Section 11.3. The multi-head attention output is another linear transformation via learnable
parameters W𝑜 ∈ R𝑝𝑜×ℎ𝑝𝑣 of the concatenation of ℎ heads:

W𝑜


h1
...

hℎ

 ∈ R
𝑝𝑜 . (11.5.2)

Based on this design, each head may attend to different parts of the input. More sophisti-
cated functions than the simple weighted average can be expressed.

11.5.2 Implementation
In our implementation, we choose the scaled dot product attention for each head of the
multi-head attention. To avoid significant growth of computational cost and parametriza-
tion cost, we set 𝑝𝑞 = 𝑝𝑘 = 𝑝𝑣 = 𝑝𝑜/ℎ. Note that ℎ heads can be computed in parallel
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if we set the number of outputs of linear transformations for the query, key, and value to
𝑝𝑞ℎ = 𝑝𝑘ℎ = 𝑝𝑣ℎ = 𝑝𝑜. In the following implementation, 𝑝𝑜 is specified via the argument
num_hiddens.

class MultiHeadAttention(d2l.Module): #@save
"""Multi-head attention."""
def __init__(self, num_hiddens, num_heads, dropout, use_bias=False,

**kwargs):
super().__init__()
self.num_heads = num_heads
self.attention = d2l.DotProductAttention(dropout)
self.W_q = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
self.W_k = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
self.W_v = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
self.W_o = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)

def forward(self, queries, keys, values, valid_lens):
# Shape of queries, keys, or values:
# (batch_size, no. of queries or key-value pairs, num_hiddens)
# Shape of valid_lens: (batch_size,) or (batch_size, no. of queries)
# After transposing, shape of output queries, keys, or values:
# (batch_size * num_heads, no. of queries or key-value pairs,
# num_hiddens / num_heads)
queries = self.transpose_qkv(self.W_q(queries))
keys = self.transpose_qkv(self.W_k(keys))
values = self.transpose_qkv(self.W_v(values))

if valid_lens is not None:
# On axis 0, copy the first item (scalar or vector) for num_heads
# times, then copy the next item, and so on
valid_lens = valid_lens.repeat(self.num_heads, axis=0)

# Shape of output: (batch_size * num_heads, no. of queries,
# num_hiddens / num_heads)
output = self.attention(queries, keys, values, valid_lens)

# Shape of output_concat: (batch_size, no. of queries, num_hiddens)
output_concat = self.transpose_output(output)
return self.W_o(output_concat)

To allow for parallel computation of multiple heads, the above MultiHeadAttention class
uses two transposition methods as defined below. Specifically, the transpose_output

method reverses the operation of the transpose_qkv method.

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_qkv(self, X):

"""Transposition for parallel computation of multiple attention heads."""
# Shape of input X: (batch_size, no. of queries or key-value pairs,
# num_hiddens). Shape of output X: (batch_size, no. of queries or
# key-value pairs, num_heads, num_hiddens / num_heads)
X = X.reshape(X.shape[0], X.shape[1], self.num_heads, -1)
# Shape of output X: (batch_size, num_heads, no. of queries or key-value
# pairs, num_hiddens / num_heads)
X = X.transpose(0, 2, 1, 3)

(continues on next page)
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# Shape of output: (batch_size * num_heads, no. of queries or key-value
# pairs, num_hiddens / num_heads)
return X.reshape(-1, X.shape[2], X.shape[3])

@d2l.add_to_class(MultiHeadAttention) #@save
def transpose_output(self, X):

"""Reverse the operation of transpose_qkv."""
X = X.reshape(-1, self.num_heads, X.shape[1], X.shape[2])
X = X.transpose(0, 2, 1, 3)
return X.reshape(X.shape[0], X.shape[1], -1)

Let’s test our implemented MultiHeadAttention class using a toy example where keys
and values are the same. As a result, the shape of the multi-head attention output is
(batch_size, num_queries, num_hiddens).

num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_heads, 0.5)
attention.initialize()

batch_size, num_queries, num_kvpairs = 2, 4, 6
valid_lens = np.array([3, 2])
X = np.ones((batch_size, num_queries, num_hiddens))
Y = np.ones((batch_size, num_kvpairs, num_hiddens))
d2l.check_shape(attention(X, Y, Y, valid_lens),

(batch_size, num_queries, num_hiddens))

[22:06:01] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

11.5.3 Summary
Multi-head attention combines knowledge of the same attention pooling via different repre-
sentation subspaces of queries, keys, and values. To compute multiple heads of multi-head
attention in parallel, proper tensor manipulation is needed.

11.5.4 Exercises
1. Visualize attention weights of multiple heads in this experiment.

2. Suppose that we have a trained model based on multi-head attention and we want to
prune less important attention heads to increase the prediction speed. How can we de-
sign experiments to measure the importance of an attention head?

Discussions159 .

https://discuss.d2l.ai/t/1634
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11.6 Self-Attention and Positional Encoding

In deep learning, we often use CNNs or RNNs to encode sequences. Now with attention
mechanisms in mind, imagine feeding a sequence of tokens into an attention mechanism
such that at every step, each token has its own query, keys, and values. Here, when comput-
ing the value of a token’s representation at the next layer, the token can attend (via its query
vector) to any other’s token (matching based on their key vectors). Using the full set of
query-key compatibility scores, we can compute, for each token, a representation by build-
ing the appropriate weighted sum over the other tokens. Because every token is attending
to each other token (unlike the case where decoder steps attend to encoder steps), such
architectures are typically described as self-attention models (Lin et al., 2017, Vaswani et
al., 2017), and elsewhere described as intra-attention model (Cheng et al., 2016, Parikh
et al., 2016, Paulus et al., 2017). In this section, we will discuss sequence encoding using
self-attention, including using additional information for the sequence order.

import math
from mxnet import autograd, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

11.6.1 Self-Attention
Given a sequence of input tokens x1, . . . ,x𝑛 where any x𝑖 ∈ R𝑑 (1 ≤ 𝑖 ≤ 𝑛), its self-
attention outputs a sequence of the same length y1, . . . ,y𝑛, where

y𝑖 = 𝑓 (x𝑖 , (x1,x1), . . . , (x𝑛,x𝑛)) ∈ R𝑑 (11.6.1)

according to the definition of attention pooling in (11.1.1). Using multi-head attention,
the following code snippet computes the self-attention of a tensor with shape (batch size,
number of time steps or sequence length in tokens, 𝑑). The output tensor has the same
shape.

num_hiddens, num_heads = 100, 5
attention = d2l.MultiHeadAttention(num_hiddens, num_heads, 0.5)
attention.initialize()

batch_size, num_queries, valid_lens = 2, 4, np.array([3, 2])
X = np.ones((batch_size, num_queries, num_hiddens))
d2l.check_shape(attention(X, X, X, valid_lens),

(batch_size, num_queries, num_hiddens))

[22:10:14] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
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11.6.2 Comparing CNNs, RNNs, and Self-Attention
Let’s compare architectures for mapping a sequence of 𝑛 tokens to another one of equal
length, where each input or output token is represented by a 𝑑-dimensional vector. Specif-
ically, we will consider CNNs, RNNs, and self-attention. We will compare their computa-
tional complexity, sequential operations, and maximum path lengths. Note that sequential
operations prevent parallel computation, while a shorter path between any combination of
sequence positions makes it easier to learn long-range dependencies within the sequence
(Hochreiter et al., 2001).

tFig. 11.6.1 Comparing CNN (padding tokens are omitted), RNN, and self-attention architectures.

Let’s regard any text sequence as a “one-dimensional image”. Similarly, one-dimensional
CNNs can process local features such as 𝑛-grams in text. Given a sequence of length 𝑛, con-
sider a convolutional layer whose kernel size is 𝑘 , and whose numbers of input and output
channels are both 𝑑. The computational complexity of the convolutional layer is O(𝑘𝑛𝑑2).
As Fig. 11.6.1 shows, CNNs are hierarchical, so there are O(1) sequential operations and
the maximum path length is O(𝑛/𝑘). For example, x1 and x5 are within the receptive field
of a two-layer CNN with kernel size 3 in Fig. 11.6.1.

When updating the hidden state of RNNs, multiplication of the 𝑑×𝑑 weight matrix and the
𝑑-dimensional hidden state has a computational complexity of O(𝑑2). Since the sequence
length is 𝑛, the computational complexity of the recurrent layer is O(𝑛𝑑2). According
to Fig. 11.6.1, there are O(𝑛) sequential operations that cannot be parallelized and the
maximum path length is also O(𝑛).

In self-attention, the queries, keys, and values are all 𝑛 × 𝑑 matrices. Consider the scaled
dot product attention in (11.3.6), where an 𝑛×𝑑 matrix is multiplied by a 𝑑×𝑛matrix, then
the output 𝑛×𝑛 matrix is multiplied by an 𝑛× 𝑑 matrix. As a result, the self-attention has a
O(𝑛2𝑑) computational complexity. As we can see from Fig. 11.6.1, each token is directly
connected to any other token via self-attention. Therefore, computation can be parallel with
O(1) sequential operations and the maximum path length is also O(1).

All in all, both CNNs and self-attention enjoy parallel computation and self-attention has
the shortest maximum path length. However, the quadratic computational complexity with
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respect to the sequence length makes self-attention prohibitively slow for very long se-
quences.

11.6.3 Positional Encoding
Unlike RNNs, which recurrently process tokens of a sequence one-by-one, self-attention
ditches sequential operations in favor of parallel computation. Note that self-attention by
itself does not preserve the order of the sequence. What do we do if it really matters that
the model knows in which order the input sequence arrived?

The dominant approach for preserving information about the order of tokens is to represent
this to the model as an additional input associated with each token. These inputs are called
positional encodings, and they can either be learned or fixed a priori. We now describe a
simple scheme for fixed positional encodings based on sine and cosine functions (Vaswani
et al., 2017).

Suppose that the input representation X ∈ R𝑛×𝑑 contains the 𝑑-dimensional embeddings
for 𝑛 tokens of a sequence. The positional encoding outputs X + P using a positional
embedding matrix P ∈ R𝑛×𝑑 of the same shape, whose element on the 𝑖th row and the
(2 𝑗)th or the (2 𝑗 + 1)th column is

𝑝𝑖,2 𝑗 = sin
(

𝑖

100002 𝑗/𝑑

)
,

𝑝𝑖,2 𝑗+1 = cos
(

𝑖

100002 𝑗/𝑑

)
.

(11.6.2)

At first glance, this trigonometric function design looks weird. Before we give explanations
of this design, let’s first implement it in the following PositionalEncoding class.

class PositionalEncoding(nn.Block): #@save
"""Positional encoding."""
def __init__(self, num_hiddens, dropout, max_len=1000):

super().__init__()
self.dropout = nn.Dropout(dropout)
# Create a long enough P
self.P = np.zeros((1, max_len, num_hiddens))
X = np.arange(max_len).reshape(-1, 1) / np.power(

10000, np.arange(0, num_hiddens, 2) / num_hiddens)
self.P[:, :, 0::2] = np.sin(X)
self.P[:, :, 1::2] = np.cos(X)

def forward(self, X):
X = X + self.P[:, :X.shape[1], :].as_in_ctx(X.ctx)
return self.dropout(X)

In the positional embedding matrixP, rows correspond to positions within a sequence and
columns represent different positional encoding dimensions. In the example below, we
can see that the 6th and the 7th columns of the positional embedding matrix have a higher
frequency than the 8th and the 9th columns. The offset between the 6th and the 7th (same for
the 8th and the 9th) columns is due to the alternation of sine and cosine functions.
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encoding_dim, num_steps = 32, 60
pos_encoding = PositionalEncoding(encoding_dim, 0)
pos_encoding.initialize()
X = pos_encoding(np.zeros((1, num_steps, encoding_dim)))
P = pos_encoding.P[:, :X.shape[1], :]
d2l.plot(np.arange(num_steps), P[0, :, 6:10].T, xlabel='Row (position)',

figsize=(6, 2.5), legend=["Col %d" % d for d in np.arange(6, 10)])

Absolute Positional Information
To see how the monotonically decreased frequency along the encoding dimension relates
to absolute positional information, let’s print out the binary representations of 0, 1, . . . , 7.
As we can see, the lowest bit, the second-lowest bit, and the third-lowest bit alternate on
every number, every two numbers, and every four numbers, respectively.

for i in range(8):
print(f'{i} in binary is {i:>03b}')

0 in binary is 000
1 in binary is 001
2 in binary is 010
3 in binary is 011
4 in binary is 100
5 in binary is 101
6 in binary is 110
7 in binary is 111

In binary representations, a higher bit has a lower frequency than a lower bit. Similarly,
as demonstrated in the heat map below, the positional encoding decreases frequencies
along the encoding dimension by using trigonometric functions. Since the outputs are float
numbers, such continuous representations are more space-efficient than binary representa-
tions.

P = np.expand_dims(np.expand_dims(P[0, :, :], 0), 0)
d2l.show_heatmaps(P, xlabel='Column (encoding dimension)',

ylabel='Row (position)', figsize=(3.5, 4), cmap='Blues')
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Relative Positional Information
Besides capturing absolute positional information, the above positional encoding also al-
lows a model to easily learn to attend by relative positions. This is because for any fixed
position offset 𝛿, the positional encoding at position 𝑖 + 𝛿 can be represented by a linear
projection of that at position 𝑖.

This projection can be explained mathematically. Denoting 𝜔 𝑗 = 1/100002 𝑗/𝑑 , any pair
of (𝑝𝑖,2 𝑗 , 𝑝𝑖,2 𝑗+1) in (11.6.2) can be linearly projected to (𝑝𝑖+𝛿,2 𝑗 , 𝑝𝑖+𝛿,2 𝑗+1) for any fixed
offset 𝛿:[

cos(𝛿𝜔 𝑗 ) sin(𝛿𝜔 𝑗 )
− sin(𝛿𝜔 𝑗 ) cos(𝛿𝜔 𝑗 )

] [
𝑝𝑖,2 𝑗
𝑝𝑖,2 𝑗+1

]
=

[
cos(𝛿𝜔 𝑗 ) sin(𝑖𝜔 𝑗 ) + sin(𝛿𝜔 𝑗 ) cos(𝑖𝜔 𝑗 )
− sin(𝛿𝜔 𝑗 ) sin(𝑖𝜔 𝑗 ) + cos(𝛿𝜔 𝑗 ) cos(𝑖𝜔 𝑗 )

]
=

[
sin

(
(𝑖 + 𝛿)𝜔 𝑗

)
cos

(
(𝑖 + 𝛿)𝜔 𝑗

) ]
=

[
𝑝𝑖+𝛿,2 𝑗
𝑝𝑖+𝛿,2 𝑗+1

]
,

(11.6.3)

where the 2 × 2 projection matrix does not depend on any position index 𝑖.

11.6.4 Summary
In self-attention, the queries, keys, and values all come from the same place. Both CNNs
and self-attention enjoy parallel computation and self-attention has the shortest maximum
path length. However, the quadratic computational complexity with respect to the sequence
length makes self-attention prohibitively slow for very long sequences. To use the sequence
order information, we can inject absolute or relative positional information by adding po-
sitional encoding to the input representations.

11.6.5 Exercises
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1. Suppose that we design a deep architecture to represent a sequence by stacking self-
attention layers with positional encoding. What could the possible issues be?

2. Can you design a learnable positional encoding method?

3. Canwe assign different learned embeddings according to different offsets between queries
and keys that are compared in self-attention? Hint: you may refer to relative position
embeddings (Huang et al., 2018, Shaw et al., 2018).

Discussions160 .

11.7 The Transformer Architecture

We have compared CNNs, RNNs, and self-attention in Section 11.6.2. Notably, self-
attention enjoys both parallel computation and the shortest maximum path length. There-
fore, it is appealing to design deep architectures by using self-attention. Unlike earlier
self-attention models that still rely on RNNs for input representations (Cheng et al., 2016,
Lin et al., 2017, Paulus et al., 2017), the Transformer model is solely based on attention
mechanisms without any convolutional or recurrent layer (Vaswani et al., 2017). Though
originally proposed for sequence-to-sequence learning on text data, Transformers have been
pervasive in a wide range of modern deep learning applications, such as in areas to do with
language, vision, speech, and reinforcement learning.

import math
import pandas as pd
from mxnet import autograd, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

11.7.1 Model
As an instance of the encoder–decoder architecture, the overall architecture of the Trans-
former is presented in Fig. 11.7.1. As we can see, the Transformer is composed of an en-
coder and a decoder. In contrast to Bahdanau attention for sequence-to-sequence learning
in Fig. 11.4.2, the input (source) and output (target) sequence embeddings are added with
positional encoding before being fed into the encoder and the decoder that stack modules
based on self-attention.

Now we provide an overview of the Transformer architecture in Fig. 11.7.1. At a high level,
the Transformer encoder is a stack of multiple identical layers, where each layer has two
sublayers (either is denoted as sublayer). The first is a multi-head self-attention pooling
and the second is a positionwise feed-forward network. Specifically, in the encoder self-
attention, queries, keys, and values are all from the outputs of the previous encoder layer.

https://discuss.d2l.ai/t/1651
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tFig. 11.7.1 The Transformer architecture.

Inspired by the ResNet design of Section 8.6, a residual connection is employed around
both sublayers. In the Transformer, for any input x ∈ R𝑑 at any position of the sequence,
we require that sublayer(x) ∈ R𝑑 so that the residual connection x + sublayer(x) ∈ R𝑑 is
feasible. This addition from the residual connection is immediately followed by layer nor-
malization (Ba et al., 2016). As a result, the Transformer encoder outputs a 𝑑-dimensional
vector representation for each position of the input sequence.

The Transformer decoder is also a stack of multiple identical layers with residual connec-
tions and layer normalizations. As well as the two sublayers described in the encoder, the
decoder inserts a third sublayer, known as the encoder–decoder attention, between these
two. In the encoder–decoder attention, queries are from the outputs of the decoder’s self-
attention sublayer, and the keys and values are from the Transformer encoder outputs. In
the decoder self-attention, queries, keys, and values are all from the outputs of the previous
decoder layer. However, each position in the decoder is allowed only to attend to all posi-
tions in the decoder up to that position. This masked attention preserves the autoregressive
property, ensuring that the prediction only depends on those output tokens that have been
generated.

We have already described and implemented multi-head attention based on scaled dot prod-
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ucts in Section 11.5 and positional encoding in Section 11.6.3. In the following, we will
implement the rest of the Transformer model.

11.7.2 Positionwise Feed-Forward Networks
The positionwise feed-forward network transforms the representation at all the sequence
positions using the same MLP. This is why we call it positionwise. In the implementation
below, the input Xwith shape (batch size, number of time steps or sequence length in tokens,
number of hidden units or feature dimension) will be transformed by a two-layer MLP into
an output tensor of shape (batch size, number of time steps, ffn_num_outputs).

class PositionWiseFFN(nn.Block): #@save
"""The positionwise feed-forward network."""
def __init__(self, ffn_num_hiddens, ffn_num_outputs):

super().__init__()
self.dense1 = nn.Dense(ffn_num_hiddens, flatten=False,

activation='relu')
self.dense2 = nn.Dense(ffn_num_outputs, flatten=False)

def forward(self, X):
return self.dense2(self.dense1(X))

The following example shows that the innermost dimension of a tensor changes to the num-
ber of outputs in the positionwise feed-forward network. Since the same MLP transforms
at all the positions, when the inputs at all these positions are the same, their outputs are also
identical.

ffn = PositionWiseFFN(4, 8)
ffn.initialize()
ffn(np.ones((2, 3, 4)))[0]

[22:58:52] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([[ 0.00239431, 0.00927085, -0.00021069, -0.00923989, -0.0082903 ,
-0.00162741, 0.00659031, 0.00023905],
[ 0.00239431, 0.00927085, -0.00021069, -0.00923989, -0.0082903 ,
-0.00162741, 0.00659031, 0.00023905],
[ 0.00239431, 0.00927085, -0.00021069, -0.00923989, -0.0082903 ,
-0.00162741, 0.00659031, 0.00023905]])

11.7.3 Residual Connection and Layer Normalization
Now let’s focus on the “add & norm” component in Fig. 11.7.1. As we described at the
beginning of this section, this is a residual connection immediately followed by layer nor-
malization. Both are key to effective deep architectures.

In Section 8.5, we explained how batch normalization recenters and rescales across the
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examples within a minibatch. As discussed in Section 8.5.2, layer normalization is the same
as batch normalization except that the former normalizes across the feature dimension, thus
enjoying benefits of scale independence and batch size independence. Despite its pervasive
applications in computer vision, batch normalization is usually empirically less effective
than layer normalization in natural language processing tasks, where the inputs are often
variable-length sequences.

The following code snippet compares the normalization across different dimensions by
layer normalization and batch normalization.

ln = nn.LayerNorm()
ln.initialize()
bn = nn.BatchNorm()
bn.initialize()
X = np.array([[1, 2], [2, 3]])
# Compute mean and variance from X in the training mode
with autograd.record():

print('layer norm:', ln(X), '\nbatch norm:', bn(X))

layer norm: [[-0.99998 0.99998]
[-0.99998 0.99998]]
batch norm: [[-0.99998 -0.99998]
[ 0.99998 0.99998]]

Now we can implement the AddNorm class using a residual connection followed by layer
normalization. Dropout is also applied for regularization.

class AddNorm(nn.Block): #@save
"""The residual connection followed by layer normalization."""
def __init__(self, dropout):

super().__init__()
self.dropout = nn.Dropout(dropout)
self.ln = nn.LayerNorm()

def forward(self, X, Y):
return self.ln(self.dropout(Y) + X)

The residual connection requires that the two inputs are of the same shape so that the output
tensor also has the same shape after the addition operation.

add_norm = AddNorm(0.5)
add_norm.initialize()
shape = (2, 3, 4)
d2l.check_shape(add_norm(np.ones(shape), np.ones(shape)), shape)

11.7.4 Encoder
With all the essential components to assemble the Transformer encoder, let’s start by im-
plementing a single layer within the encoder. The following TransformerEncoderBlock
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class contains two sublayers: multi-head self-attention and positionwise feed-forward net-
works, where a residual connection followed by layer normalization is employed around
both sublayers.

class TransformerEncoderBlock(nn.Block): #@save
"""The Transformer encoder block."""
def __init__(self, num_hiddens, ffn_num_hiddens, num_heads, dropout,

use_bias=False):
super().__init__()
self.attention = d2l.MultiHeadAttention(

num_hiddens, num_heads, dropout, use_bias)
self.addnorm1 = AddNorm(dropout)
self.ffn = PositionWiseFFN(ffn_num_hiddens, num_hiddens)
self.addnorm2 = AddNorm(dropout)

def forward(self, X, valid_lens):
Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
return self.addnorm2(Y, self.ffn(Y))

As we can see, no layer in the Transformer encoder changes the shape of its input.

X = np.ones((2, 100, 24))
valid_lens = np.array([3, 2])
encoder_blk = TransformerEncoderBlock(24, 48, 8, 0.5)
encoder_blk.initialize()
d2l.check_shape(encoder_blk(X, valid_lens), X.shape)

In the following Transformer encoder implementation, we stack num_blks instances of the
above TransformerEncoderBlock classes. Since we use the fixed positional encoding
whose values are always between −1 and 1, we multiply values of the learnable input em-
beddings by the square root of the embedding dimension to rescale before summing up the
input embedding and the positional encoding.

class TransformerEncoder(d2l.Encoder): #@save
"""The Transformer encoder."""
def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens,

num_heads, num_blks, dropout, use_bias=False):
super().__init__()
self.num_hiddens = num_hiddens
self.embedding = nn.Embedding(vocab_size, num_hiddens)
self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
self.blks = nn.Sequential()
for _ in range(num_blks):

self.blks.add(TransformerEncoderBlock(
num_hiddens, ffn_num_hiddens, num_heads, dropout, use_bias))

self.initialize()

def forward(self, X, valid_lens):
# Since positional encoding values are between -1 and 1, the embedding
# values are multiplied by the square root of the embedding dimension
# to rescale before they are summed up
X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))

(continues on next page)
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(continued from previous page)

self.attention_weights = [None] * len(self.blks)
for i, blk in enumerate(self.blks):

X = blk(X, valid_lens)
self.attention_weights[

i] = blk.attention.attention.attention_weights
return X

Belowwe specify hyperparameters to create a two-layer Transformer encoder. The shape of
the Transformer encoder output is (batch size, number of time steps, num_hiddens).

encoder = TransformerEncoder(200, 24, 48, 8, 2, 0.5)
d2l.check_shape(encoder(np.ones((2, 100)), valid_lens), (2, 100, 24))

11.7.5 Decoder
As shown in Fig. 11.7.1, the Transformer decoder is composed of multiple identical lay-
ers. Each layer is implemented in the following TransformerDecoderBlock class, which
contains three sublayers: decoder self-attention, encoder–decoder attention, and position-
wise feed-forward networks. These sublayers employ a residual connection around them
followed by layer normalization.

As we described earlier in this section, in the masked multi-head decoder self-attention
(the first sublayer), queries, keys, and values all come from the outputs of the previous
decoder layer. When training sequence-to-sequence models, tokens at all the positions
(time steps) of the output sequence are known. However, during prediction the output
sequence is generated token by token; thus, at any decoder time step only the generated
tokens can be used in the decoder self-attention. To preserve autoregression in the decoder,
its masked self-attention specifies dec_valid_lens so that any query only attends to all
positions in the decoder up to the query position.

class TransformerDecoderBlock(nn.Block):
# The i-th block in the Transformer decoder
def __init__(self, num_hiddens, ffn_num_hiddens, num_heads, dropout, i):

super().__init__()
self.i = i
self.attention1 = d2l.MultiHeadAttention(num_hiddens, num_heads,

dropout)
self.addnorm1 = AddNorm(dropout)
self.attention2 = d2l.MultiHeadAttention(num_hiddens, num_heads,

dropout)
self.addnorm2 = AddNorm(dropout)
self.ffn = PositionWiseFFN(ffn_num_hiddens, num_hiddens)
self.addnorm3 = AddNorm(dropout)

def forward(self, X, state):
enc_outputs, enc_valid_lens = state[0], state[1]
# During training, all the tokens of any output sequence are processed
# at the same time, so state[2][self.i] is None as initialized. When

(continues on next page)
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(continued from previous page)

# decoding any output sequence token by token during prediction,
# state[2][self.i] contains representations of the decoded output at
# the i-th block up to the current time step
if state[2][self.i] is None:

key_values = X
else:

key_values = np.concatenate((state[2][self.i], X), axis=1)
state[2][self.i] = key_values

if autograd.is_training():
batch_size, num_steps, _ = X.shape
# Shape of dec_valid_lens: (batch_size, num_steps), where every
# row is [1, 2, ..., num_steps]
dec_valid_lens = np.tile(np.arange(1, num_steps + 1, ctx=X.ctx),

(batch_size, 1))
else:

dec_valid_lens = None
# Self-attention
X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
Y = self.addnorm1(X, X2)
# Encoder-decoder attention. Shape of enc_outputs:
# (batch_size, num_steps, num_hiddens)
Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
Z = self.addnorm2(Y, Y2)
return self.addnorm3(Z, self.ffn(Z)), state

To facilitate scaled dot product operations in the encoder–decoder attention and addition
operations in the residual connections, the feature dimension (num_hiddens) of the decoder
is the same as that of the encoder.

decoder_blk = TransformerDecoderBlock(24, 48, 8, 0.5, 0)
decoder_blk.initialize()
X = np.ones((2, 100, 24))
state = [encoder_blk(X, valid_lens), valid_lens, [None]]
d2l.check_shape(decoder_blk(X, state)[0], X.shape)

Now we construct the entire Transformer decoder composed of num_blks instances of
TransformerDecoderBlock. In the end, a fully connected layer computes the prediction
for all the vocab_size possible output tokens. Both of the decoder self-attention weights
and the encoder–decoder attention weights are stored for later visualization.

class TransformerDecoder(d2l.AttentionDecoder):
def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens, num_heads,

num_blks, dropout):
super().__init__()
self.num_hiddens = num_hiddens
self.num_blks = num_blks
self.embedding = nn.Embedding(vocab_size, num_hiddens)
self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
self.blks = nn.Sequential()
for i in range(num_blks):

(continues on next page)
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self.blks.add(TransformerDecoderBlock(
num_hiddens, ffn_num_hiddens, num_heads, dropout, i))

self.dense = nn.Dense(vocab_size, flatten=False)
self.initialize()

def init_state(self, enc_outputs, enc_valid_lens):
return [enc_outputs, enc_valid_lens, [None] * self.num_blks]

def forward(self, X, state):
X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
for i, blk in enumerate(self.blks):

X, state = blk(X, state)
# Decoder self-attention weights
self._attention_weights[0][

i] = blk.attention1.attention.attention_weights
# Encoder-decoder attention weights
self._attention_weights[1][

i] = blk.attention2.attention.attention_weights
return self.dense(X), state

@property
def attention_weights(self):

return self._attention_weights

11.7.6 Training
Let’s instantiate an encoder–decoder model by following the Transformer architecture.
Here we specify that both the Transformer encoder and the Transformer decoder have two
layers using 4-head attention. As in Section 10.7.6, we train the Transformer model for
sequence-to-sequence learning on the English–French machine translation dataset.

data = d2l.MTFraEng(batch_size=128)
num_hiddens, num_blks, dropout = 256, 2, 0.2
ffn_num_hiddens, num_heads = 64, 4
encoder = TransformerEncoder(

len(data.src_vocab), num_hiddens, ffn_num_hiddens, num_heads,
num_blks, dropout)

decoder = TransformerDecoder(
len(data.tgt_vocab), num_hiddens, ffn_num_hiddens, num_heads,
num_blks, dropout)

model = d2l.Seq2Seq(encoder, decoder, tgt_pad=data.tgt_vocab['<pad>'],
lr=0.001)

trainer = d2l.Trainer(max_epochs=30, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

After training, we use the Transformer model to translate a few English sentences into
French and compute their BLEU scores.

engs = ['go .', 'i lost .', 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']

(continues on next page)
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preds, _ = model.predict_step(
data.build(engs, fras), d2l.try_gpu(), data.num_steps)

for en, fr, p in zip(engs, fras, preds):
translation = []
for token in data.tgt_vocab.to_tokens(p):

if token == '<eos>':
break

translation.append(token)
print(f'{en} => {translation}, bleu,'

f'{d2l.bleu(" ".join(translation), fr, k=2):.3f}')

go . => ['va', '!'], bleu,1.000
i lost . => ["j'ai", 'perdu', '.'], bleu,1.000
he's calm . => ['il', 'est', 'calme', 'calme', '!'], bleu,0.651
i'm home . => ['je', 'suis', 'chez', 'moi', 'je', 'suis', 'chez', 'moi', 'je'],
↩→ bleu,0.522

Let’s visualize the Transformer attention weights when translating the final English sen-
tence into French. The shape of the encoder self-attention weights is (number of encoder
layers, number of attention heads, num_steps or number of queries, num_steps or number
of key-value pairs).

_, dec_attention_weights = model.predict_step(
data.build([engs[-1]], [fras[-1]]), d2l.try_gpu(), data.num_steps, True)

enc_attention_weights = np.concatenate(model.encoder.attention_weights, 0)
shape = (num_blks, num_heads, -1, data.num_steps)
enc_attention_weights = enc_attention_weights.reshape(shape)
d2l.check_shape(enc_attention_weights,

(num_blks, num_heads, data.num_steps, data.num_steps))

In the encoder self-attention, both queries and keys come from the same input sequence.
Since padding tokens do not carry meaning, with specified valid length of the input se-
quence no query attends to positions of padding tokens. In the following, two layers of
multi-head attention weights are presented row by row. Each head independently attends
based on a separate representation subspace of queries, keys, and values.
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d2l.show_heatmaps(
enc_attention_weights, xlabel='Key positions', ylabel='Query positions',
titles=['Head %d' % i for i in range(1, 5)], figsize=(7, 3.5))

To visualize the decoder self-attention weights and the encoder–decoder attention weights,
we need more data manipulations. For example, we fill the masked attention weights
with zero. Note that the decoder self-attention weights and the encoder–decoder atten-
tion weights both have the same queries: the beginning-of-sequence token followed by the
output tokens and possibly end-of-sequence tokens.

dec_attention_weights_2d = [np.array(head[0]).tolist()
for step in dec_attention_weights
for attn in step for blk in attn for head in blk]

dec_attention_weights_filled = np.array(
pd.DataFrame(dec_attention_weights_2d).fillna(0.0).values)

dec_attention_weights = dec_attention_weights_filled.reshape((-1, 2, num_blks,␣
↩→num_heads, data.

num_steps))
dec_self_attention_weights, dec_inter_attention_weights = \

dec_attention_weights.transpose(1, 2, 3, 0, 4)

d2l.check_shape(dec_self_attention_weights,
(num_blks, num_heads, data.num_steps, data.num_steps))

d2l.check_shape(dec_inter_attention_weights,
(num_blks, num_heads, data.num_steps, data.num_steps))

Because of the autoregressive property of the decoder self-attention, no query attends to
key–value pairs after the query position.

d2l.show_heatmaps(
dec_self_attention_weights[:, :, :, :],
xlabel='Key positions', ylabel='Query positions',
titles=['Head %d' % i for i in range(1, 5)], figsize=(7, 3.5))

Similar to the case in the encoder self-attention, via the specified valid length of the input
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sequence, no query from the output sequence attends to those padding tokens from the input
sequence.

d2l.show_heatmaps(
dec_inter_attention_weights, xlabel='Key positions',
ylabel='Query positions', titles=['Head %d' % i for i in range(1, 5)],
figsize=(7, 3.5))

Although the Transformer architecture was originally proposed for sequence-to-sequence
learning, as we will discover later in the book, either the Transformer encoder or the Trans-
former decoder is often individually used for different deep learning tasks.

11.7.7 Summary
The Transformer is an instance of the encoder–decoder architecture, though either the en-
coder or the decoder can be used individually in practice. In the Transformer architec-
ture, multi-head self-attention is used for representing the input sequence and the output
sequence, though the decoder has to preserve the autoregressive property via a masked
version. Both the residual connections and the layer normalization in the Transformer are
important for training a very deep model. The positionwise feed-forward network in the
Transformer model transforms the representation at all the sequence positions using the
same MLP.
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11.7.8 Exercises
1. Train a deeper Transformer in the experiments. How does it affect the training speed

and the translation performance?

2. Is it a good idea to replace scaled dot product attention with additive attention in the
Transformer? Why?

3. For language modeling, should we use the Transformer encoder, decoder, or both? How
would you design this method?

4. What challenges can Transformers face if input sequences are very long? Why?

5. How would you improve the computational and memory efficiency of Transformers?
Hint: you may refer to the survey paper by Tay et al. (2020).

Discussions161 .

11.8 Large-Scale Pretraining with Transformers

So far in our image classification and machine translation experiments, models have been
trained on datasets with input–output examples from scratch to perform specific tasks. For
example, a Transformer was trained with English–French pairs (Section 11.7) so that this
model can translate input English text into French. As a result, each model becomes a
specific expert that is sensitive to even a slight shift in data distribution (Section 4.7). For
better generalized models, or even more competent generalists that can perform multiple
tasks with or without adaptation, pretraining models on large data has been increasingly
common.

Given larger data for pretraining, the Transformer architecture performs better with an in-
creased model size and training compute, demonstrating superior scaling behavior. Specif-
ically, performance of Transformer-based language models scales as a power law with the
amount of model parameters, training tokens, and training compute (Kaplan et al., 2020).
The scalability of Transformers is also evidenced by the significantly boosted performance
from larger vision Transformers trained on larger data (discussed in sec_vision-transformer).
More recent success stories include Gato, a generalist model that can play Atari, caption
images, chat, and act as a robot (Reed et al., 2022). Gato is a single Transformer that
scales well when pretrained on diverse modalities, including text, images, joint torques,
and button presses. Notably, all such multimodal data is serialized into a flat sequence
of tokens, which can be processed akin to text tokens (Section 11.7) or image patches
(sec_vision-transformer) by Transformers.

Prior to the compelling success of pretraining Transformers for multimodal data, Trans-
formers were extensively pretrained with a wealth of text. Originally proposed for machine
translation, the Transformer architecture in Fig. 11.7.1 consists of an encoder for represent-
ing input sequences and a decoder for generating target sequences. Primarily, Transformers

https://discuss.d2l.ai/t/348
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can be used in three different modes: encoder-only, encoder–decoder, and decoder-only.
To conclude this chapter, we will review these three modes and explain the scalability in
pretraining Transformers.

11.8.1 Encoder-Only
When only the Transformer encoder is used, a sequence of input tokens is converted into
the same number of representations that can be further projected into output (e.g., classi-
fication). A Transformer encoder consists of self-attention layers, where all input tokens
attend to each other. For example, vision Transformers depicted in fig_vit are encoder-
only, converting a sequence of input image patches into the representation of a special
“<cls>” token. Since this representation depends on all input tokens, it is further projected
into classification labels. This design was inspired by an earlier encoder-only Transformer
pretrained on text: BERT (Bidirectional Encoder Representations from Transformers) (De-
vlin et al., 2018).

Pretraining BERT

tFig. 11.8.1 Left: Pretraining BERT with masked language modeling. Prediction of the masked “love”
token depends on all input tokens before and after “love”. Right: Attention pattern in the
Transformer encoder. Each token along the vertical axis attends to all input tokens along
the horizontal axis.

BERT is pretrained on text sequences using masked language modeling: input text with
randomly masked tokens is fed into a Transformer encoder to predict the masked tokens.
As illustrated in Fig. 11.8.1, an original text sequence “I”, “love”, “this”, “red”, “car” is
prepended with the “<cls>” token, and the “<mask>” token randomly replaces “love”;
then the cross-entropy loss between the masked token “love” and its prediction is to be
minimized during pretraining. Note that there is no constraint in the attention pattern of
Transformer encoders (right of Fig. 11.8.1) so all tokens can attend to each other. Thus,
prediction of “love” depends on input tokens before and after it in the sequence. This is
why BERT is a “bidirectional encoder”. Without need for manual labeling, large-scale text
data from books and Wikipedia can be used for pretraining BERT.
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Fine-Tuning BERT
The pretrained BERT can be fine-tuned to downstream encoding tasks involving single text
or text pairs. During fine-tuning, additional layers can be added to BERT with randomized
parameters: these parameters and those pretrained BERT parameters will be updated to fit
training data of downstream tasks.

tFig. 11.8.2 Fine-tuning BERT for sentiment analysis.

Fig. 11.8.2 illustrates fine-tuning of BERT for sentiment analysis. The Transformer encoder
is a pretrained BERT, which takes a text sequence as input and feeds the “<cls>” represen-
tation (global representation of the input) into an additional fully connected layer to predict
the sentiment. During fine-tuning, the cross-entropy loss between the prediction and the
label on sentiment analysis data is minimized via gradient-based algorithms, where the
additional layer is trained from scratch while pretrained parameters of BERT are updated.
BERT does more than sentiment analysis. The general language representations learned
by the 350-million-parameter BERT from 250 billion training tokens advanced the state of
the art for natural language tasks such as single text classification, text pair classification or
regression, text tagging, and question answering.

You may note that these downstream tasks include text pair understanding. BERT pretrain-
ing has another loss for predicting whether one sentence immediately follows the other.
However, this loss was later found to be less useful when pretraining RoBERTa, a BERT
variant of the same size, on 2000 billion tokens (Liu et al., 2019). Other derivatives of
BERT improved model architectures or pretraining objectives, such as ALBERT (enforc-
ing parameter sharing) (Lan et al., 2019), SpanBERT (representing and predicting spans of
text) (Joshi et al., 2020), DistilBERT (lightweight via knowledge distillation) (Sanh et al.,
2019), and ELECTRA (replaced token detection) (Clark et al., 2020). Moreover, BERT in-
spired Transformer pretraining in computer vision, such as with vision Transformers (Doso-
vitskiy et al., 2021), Swin Transformers (Liu et al., 2021), andMAE (masked autoencoders)
(He et al., 2022).

11.8.2 Encoder–Decoder
Since a Transformer encoder converts a sequence of input tokens into the same number
of output representations, the encoder-only mode cannot generate a sequence of arbitrary
length as in machine translation. As originally proposed for machine translation, the Trans-
former architecture can be outfitted with a decoder that autoregressively predicts the tar-
get sequence of arbitrary length, token by token, conditional on both encoder output and
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decoder output: (i) for conditioning on encoder output, encoder–decoder cross-attention
(multi-head attention of decoder in Fig. 11.7.1) allows target tokens to attend to all input
tokens; (ii) conditioning on decoder output is achieved by a so-called causal attention (this
name is common in the literature but is misleading as it has little connection to the proper
study of causality) pattern (masked multi-head attention of decoder in Fig. 11.7.1), where
any target token can only attend to past and present tokens in the target sequence.

To pretrain encoder–decoder Transformers beyond human-labeledmachine translation data,
BART (Lewis et al., 2019) and T5 (Raffel et al., 2020) are two concurrently proposed
encoder–decoder Transformers pretrained on large-scale text corpora. Both attempt to re-
construct original text in their pretraining objectives, while the former emphasizes noising
input (e.g., masking, deletion, permutation, and rotation) and the latter highlights multitask
unification with comprehensive ablation studies.

Pretraining T5
As an example of the pretrained Transformer encoder–decoder, T5 (Text-to-Text Transfer
Transformer) unifies many tasks as the same text-to-text problem: for any task, the input
of the encoder is a task description (e.g., “Summarize”, “:”) followed by task input (e.g.,
a sequence of tokens from an article), and the decoder predicts the task output (e.g., a
sequence of tokens summarizing the input article). To perform as text-to-text, T5 is trained
to generate some target text conditional on input text.

tFig. 11.8.3 Left: Pretraining T5 by predicting consecutive spans. The original sentence is “I”, “love”,
“this”, “red”, “car”, where “love” is replaced by a special “<X>” token, and consecutive
“red”, “car” are replaced by a special “<Y>” token. The target sequence ends with a
special “<Z>” token. Right: Attention pattern in the Transformer encoder–decoder. In the
encoder self-attention (lower square), all input tokens attend to each other; In the
encoder–decoder cross-attention (upper rectangle), each target token attends to all input
tokens; In the decoder self-attention (upper triangle), each target token attends to present
and past target tokens only (causal).

To obtain input and output from any original text, T5 is pretrained to predict consecu-
tive spans. Specifically, tokens from text are randomly replaced by special tokens where
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each consecutive span is replaced by the same special token. Consider the example in Fig.
11.8.3, where the original text is “I”, “love”, “this”, “red”, “car”. Tokens “love”, “red”,
“car” are randomly replaced by special tokens. Since “red” and “car” are a consecutive
span, they are replaced by the same special token. As a result, the input sequence is “I”,
“<X>”, “this”, “<Y>”, and the target sequence is “<X>”, “love”, “<Y>”, “red”, “car”,
“<Z>”, where “<Z>” is another special token marking the end. As shown in Fig. 11.8.3,
the decoder has a causal attention pattern to prevent itself from attending to future tokens
during sequence prediction.

In T5, predicting consecutive span is also referred to as reconstructing corrupted text.
With this objective, T5 is pretrained with 1000 billion tokens from the C4 (Colossal Clean
Crawled Corpus) data, which consists of clean English text from the web (Raffel et al.,
2020).

Fine-Tuning T5
Similar to BERT, T5 needs to be fine-tuned (updating T5 parameters) on task-specific train-
ing data to perform this task. Major differences from BERT fine-tuning include: (i) T5
input includes task descriptions; (ii) T5 can generate sequences with arbitrary length with
its Transformer decoder; (iii) No additional layers are required.

tFig. 11.8.4 Fine-tuning T5 for text summarization. Both the task description and article tokens are
fed into the Transformer encoder for predicting the summary.

Fig. 11.8.4 explains fine-tuning T5 using text summarization as an example. In this down-
stream task, the task description tokens “Summarize”, “:” followed by the article tokens
are input to the encoder.

After fine-tuning, the 11-billion-parameter T5 (T5-11B) achieved state-of-the-art results on
multiple encoding (e.g., classification) and generation (e.g., summarization) benchmarks.
Since released, T5 has been extensively used in later research. For example, switch Trans-
formers are designed based on T5 to activate a subset of the parameters for better computa-
tional efficiency (Fedus et al., 2022). In a text-to-image model called Imagen, text is input
to a frozen T5 encoder (T5-XXL) with 4.6 billion parameters (Saharia et al., 2022). The
photorealistic text-to-image examples in Fig. 11.8.5 suggest that the T5 encoder alone may
effectively represent text even without fine-tuning.
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tFig. 11.8.5 Text-to-image examples by the Imagen model, whose text encoder is from T5 (figures
taken from Saharia et al. (2022)).

11.8.3 Decoder-Only
Wehave reviewed encoder-only and encoder–decoder Transformers. Alternatively, decoder-
only Transformers remove the entire encoder and the decoder sublayer with the encoder–
decoder cross-attention from the original encoder–decoder architecture depicted in Fig.
11.7.1. Nowadays, decoder-only Transformers have been the de facto architecture in large-
scale languagemodeling (Section 9.3), which leverages the world’s abundant unlabeled text
corpora via self-supervised learning.

GPT and GPT-2
Using languagemodeling as the training objective, the GPT (generative pre-training) model
chooses a Transformer decoder as its backbone (Radford et al., 2018).

tFig. 11.8.6 Left: Pretraining GPT with language modeling. The target sequence is the input sequence
shifted by one token. Both “<bos>” and “<eos>” are special tokens marking the
beginning and end of sequences, respectively. Right: Attention pattern in the Transformer
decoder. Each token along the vertical axis attends to only its past tokens along the
horizontal axis (causal).

Following the autoregressive language model training as described in Section 9.3.3, Fig.
11.8.6 illustrates GPT pretraining with a Transformer encoder, where the target sequence is
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the input sequence shifted by one token. Note that the attention pattern in the Transformer
decoder enforces that each token can only attend to its past tokens (future tokens cannot be
attended to because they have not yet been chosen).

GPT has 100 million parameters and needs to be fine-tuned for individual downstream
tasks. A much larger Transformer-decoder language model, GPT-2, was introduced one
year later (Radford et al., 2019). Compared with the original Transformer decoder in
GPT, pre-normalization (discussed in subsec_vit-encoder) and improved initialization
and weight-scaling were adopted in GPT-2. Pretrained on 40 GB of text, the 1.5-billion-
parameter GPT-2 obtained the state-of-the-art results on language modeling benchmarks
and promising results on multiple other tasks without updating the parameters or architec-
ture.

GPT-3 and Beyond
GPT-2 demonstrated potential of using the same language model for multiple tasks without
updating the model. This is more computationally efficient than fine-tuning, which requires
model updates via gradient computation.

tFig. 11.8.7 Zero-shot, one-shot, few-shot in-context learning with language models (Transformer
decoders). No parameter update is needed.

Before explaining the more computationally efficient use of language models without pa-
rameter update, recall Section 9.5 that a language model can be trained to generate a text
sequence conditional on some prefix text sequence. Thus, a pretrained language model may
generate the task output as a sequence without parameter update, conditional on an input
sequence with the task description, task-specific input–output examples, and a prompt (task
input). This learning paradigm is called in-context learning (Brown et al., 2020), which
can be further categorized into zero-shot, one-shot, and few-shot, when there is no, one,
and a few task-specific input–output examples (Fig. 11.8.7).

These three settings were tested in GPT-3 (Brown et al., 2020), whose largest version uses
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tFig. 11.8.8 Aggregate performance of GPT-3 for all 42 accuracy-denominated benchmarks (caption
adapted and figure taken from Brown et al. (2020)).

data and model size about two orders of magnitude larger than those in GPT-2. GPT-3
uses the same Transformer decoder architecture as its direct predecessor GPT-2 except that
attention patterns (at the right in Fig. 11.8.6) are sparser at alternating layers. Pretrained
with 300 billion tokens, GPT-3 performs better with larger model size, where few-shot
performance increases most rapidly (Fig. 11.8.8).

The subsequent GPT-4 model did not fully disclose technical details in its report (OpenAI,
2023). By contrast with its predecessors, GPT-4 is a large-scale, multimodal model that
can take both text and images as input and generate text output.

11.8.4 Scalability
Fig. 11.8.8 empirically demonstrates scalability of Transformers in the GPT-3 language
model. For language modeling, more comprehensive empirical studies on the scalability
of Transformers have led researchers to see promise in training larger Transformers with
more data and compute (Kaplan et al., 2020).

As shown in Fig. 11.8.9, power-law scaling can be observed in the performance with re-
spect to the model size (number of parameters, excluding embedding layers), dataset size
(number of training tokens), and amount of training compute (PetaFLOP/s-days, excluding
embedding layers). In general, increasing all these three factors in tandem leads to better
performance. However, how to increase them in tandem still remains a matter of debate
(Hoffmann et al., 2022).

As well as increased performance, large models also enjoy better sample efficiency than
small models. Fig. 11.8.10 shows that large models need fewer training samples (tokens
processed) to perform at the same level achieved by small models, and performance is
scaled smoothly with compute.
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tFig. 11.8.9 Transformer language model performance improves smoothly as we increase the model
size, dataset size, and amount of compute used for training. For optimal performance all
three factors must be scaled up in tandem. Empirical performance has a power-law
relationship with each individual factor when not bottlenecked by the other two (caption
adapted and figure taken from Kaplan et al. (2020)).

tFig. 11.8.10 Transformer language model training runs (figure taken from Kaplan et al. (2020)).

tFig. 11.8.11 GPT-3 performance (cross-entropy validation loss) follows a power-law trend with the
amount of compute used for training. The power-law behavior observed in Kaplan et al.
(2020) continues for an additional two orders of magnitude with only small deviations
from the predicted curve. Embedding parameters are excluded from compute and
parameter counts (caption adapted and figure taken from Brown et al. (2020)).
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The empirical scaling behaviors in Kaplan et al. (2020) have been tested in subsequent
large Transformer models. For example, GPT-3 supported this hypothesis with two more
orders of magnitude in Fig. 11.8.11.

11.8.5 Large Language Models
The scalability of Transformers in the GPT series has inspired subsequent large language
models. The GPT-2 Transformer decoder was used for training the 530-billion-parameter
Megatron-Turing NLG (Smith et al., 2022) with 270 billion training tokens. Following
the GPT-2 design, the 280-billion-parameter Gopher (Rae et al., 2021) pretrained with 300
billion tokens, performed competitively across diverse tasks. Inheriting the same architec-
ture and using the same compute budget of Gopher, Chinchilla (Hoffmann et al., 2022)
is a substantially smaller (70 billion parameters) model that trains for much longer (1.4
trillion training tokens), outperforming Gopher on many tasks and with more emphasis on
the number of tokens than on the number of parameters. To continue the scaling line of
language modeling, PaLM (Pathway Language Model) (Chowdhery et al., 2022), a 540-
billion-parameter Transformer decoder with modified designs pretrained on 780 billion to-
kens, outperformed average human performance on the BIG-Bench benchmark (Srivastava
et al., 2022). Its later version, PaLM2 (Anil et al., 2023), scaled data andmodel roughly 1:1
and improved multilingual and reasoning capabilities. Other large language models, such
as Minerva (Lewkowycz et al., 2022) that further trains a generalist (PaLM) and Galac-
tica (Taylor et al., 2022) that is not trained on a general corpus, have shown promising
quantitative and scientific reasoning capabilities.

Open-sourced releases, such as OPT (Open Pretrained Transformers) (Zhang et al., 2022),
BLOOM (Scao et al., 2022), and FALCON (Penedo et al., 2023), democratized research
and use of large language models. Focusing on computational efficiency at inference time,
the open-sourced Llama 1 (Touvron et al., 2023a) outperformed much larger models by
training on more tokens than had been typically used. The updated Llama 2 (Touvron et
al., 2023b) further increased the pretraining corpus by 40%, leading to product models that
may match the performance of competitive close-sourced models.

Wei et al. (2022) discussed emergent abilities of large language models that are present in
larger models, but not in smaller models. However, simply increasing model size does not
inherently make models follow human instructions better. Sanh et al. (2021), Wei et al.
(2021) have found that fine-tuning large language models on a range of datasets described
via instructions can improve zero-shot performance on held-out tasks. Using reinforcement
learning from human feedback, Ouyang et al. (2022) fine-tuned GPT-3 to follow a diverse
set of instructions. Following the resultant InstructGPT which aligns language models with
human intent via fine-tuning (Ouyang et al., 2022), ChatGPT162 can generate human-like
responses (e.g., code debugging and creative writing) based on conversations with humans
and can performmany natural language processing tasks zero-shot (Qin et al., 2023). Bai et
al. (2022) replaced human inputs (e.g., human-labeled data) with model outputs to partially
automate the instruction tuning process, which is also known as reinforcement learning
from AI feedback.

Large languagemodels offer an exciting prospect of formulating text input to inducemodels

https://chat.openai.com/
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to perform desired tasks via in-context learning, which is also known as prompting. No-
tably, chain-of-thought prompting (Wei et al., 2022), an in-context learning method with
few-shot “question, intermediate reasoning steps, answer” demonstrations, elicits the com-
plex reasoning capabilities of large language models in order to solve mathematical, com-
monsense, and symbolic reasoning tasks. Sampling multiple reasoning paths (Wang et al.,
2023), diversifying few-shot demonstrations (Zhang et al., 2023), and reducing complex
problems to sub-problems (Zhou et al., 2023) can all improve the reasoning accuracy. In
fact, with simple prompts like “Let’s think step by step” just before each answer, large lan-
guage models can even perform zero-shot chain-of-thought reasoning with decent accuracy
(Kojima et al., 2022). Even for multimodal inputs consisting of both text and images, lan-
guage models can perform multimodal chain-of-thought reasoning with higher accuracy
than using text input only (Zhang et al., 2023).

11.8.6 Summary and Discussion
Transformers have been pretrained as encoder-only (e.g., BERT), encoder–decoder (e.g.,
T5), and decoder-only (e.g., GPT series). Pretrained models may be adapted to perform
different tasks with model update (e.g., fine-tuning) or not (e.g., few-shot). Scalability of
Transformers suggests that better performance benefits from larger models, more training
data, and more training compute. Since Transformers were first designed and pretrained
for text data, this section leans slightly towards natural language processing. Nonetheless,
those models discussed above can be often found in more recent models across multiple
modalities. For example, (i) Chinchilla (Hoffmann et al., 2022) was further extended to
Flamingo (Alayrac et al., 2022), a visual language model for few-shot learning; (ii) GPT-2
(Radford et al., 2019) and the vision Transformer encode text and images in CLIP (Con-
trastive Language-Image Pre-training) (Radford et al., 2021), whose image and text em-
beddings were later adopted in the DALL-E 2 text-to-image system (Ramesh et al., 2022).
Although there have been no systematic studies on Transformer scalability in multimodal
pretraining yet, an all-Transformer text-to-image model called Parti (Yu et al., 2022) shows
potential of scalability across modalities: a larger Parti is more capable of high-fidelity
image generation and content-rich text understanding (Fig. 11.8.12).

tFig. 11.8.12 Image examples generated from the same text by the Parti model of increasing sizes
(350M, 750M, 3B, 20B) (examples taken from Yu et al. (2022)).
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11.8.7 Exercises
1. Is it possible to fine-tune T5 using a minibatch consisting of different tasks? Why or

why not? How about for GPT-2?

2. Given a powerful language model, what applications can you think of?

3. Say that you are asked to fine-tune a language model to perform text classification by
adding additional layers. Where will you add them? Why?

4. Consider sequence-to-sequence problems (e.g., machine translation) where the input
sequence is always available throughout the target sequence prediction. What could be
limitations of modeling with decoder-only Transformers? Why?

Discussions163 .

https://discuss.d2l.ai/t/9232


12 Optimization Algorithms

If you read the book in sequence up to this point you already used a number of optimization
algorithms to train deep learning models. They were the tools that allowed us to continue
updating model parameters and to minimize the value of the loss function, as evaluated on
the training set. Indeed, anyone content with treating optimization as a black box device
to minimize objective functions in a simple setting might well content oneself with the
knowledge that there exists an array of incantations of such a procedure (with names such
as “SGD” and “Adam”).

To do well, however, some deeper knowledge is required. Optimization algorithms are
important for deep learning. On the one hand, training a complex deep learning model can
take hours, days, or even weeks. The performance of the optimization algorithm directly
affects the model’s training efficiency. On the other hand, understanding the principles
of different optimization algorithms and the role of their hyperparameters will enable us to
tune the hyperparameters in a targeted manner to improve the performance of deep learning
models.

In this chapter, we explore common deep learning optimization algorithms in depth. Al-
most all optimization problems arising in deep learning are nonconvex. Nonetheless, the
design and analysis of algorithms in the context of convex problems have proven to be very
instructive. It is for that reason that this chapter includes a primer on convex optimization
and the proof for a very simple stochastic gradient descent algorithm on a convex objective
function.

12.1 Optimization and Deep Learning

In this section, we will discuss the relationship between optimization and deep learning as
well as the challenges of using optimization in deep learning. For a deep learning problem,
we will usually define a loss function first. Once we have the loss function, we can use an
optimization algorithm in attempt to minimize the loss. In optimization, a loss function is
often referred to as the objective function of the optimization problem. By tradition and con-
vention most optimization algorithms are concerned with minimization. If we ever need to
maximize an objective there is a simple solution: just flip the sign on the objective.

469



470 Optimization Algorithms

12.1.1 Goal of Optimization
Although optimization provides a way to minimize the loss function for deep learning,
in essence, the goals of optimization and deep learning are fundamentally different. The
former is primarily concerned with minimizing an objective whereas the latter is concerned
with finding a suitable model, given a finite amount of data. In Section 3.6, we discussed the
difference between these two goals in detail. For instance, training error and generalization
error generally differ: since the objective function of the optimization algorithm is usually a
loss function based on the training dataset, the goal of optimization is to reduce the training
error. However, the goal of deep learning (or more broadly, statistical inference) is to reduce
the generalization error. To accomplish the latter we need to pay attention to overfitting in
addition to using the optimization algorithm to reduce the training error.

%matplotlib inline
from mpl_toolkits import mplot3d
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

To illustrate the aforementioned different goals, let’s consider the empirical risk and the
risk. As described in Section 4.7.3, the empirical risk is an average loss on the training
dataset while the risk is the expected loss on the entire population of data. Below we define
two functions: the risk function f and the empirical risk function g. Suppose that we have
only a finite amount of training data. As a result, here g is less smooth than f.

def f(x):
return x * np.cos(np.pi * x)

def g(x):
return f(x) + 0.2 * np.cos(5 * np.pi * x)

The graph below illustrates that the minimum of the empirical risk on a training dataset
may be at a different location from the minimum of the risk (generalization error).

def annotate(text, xy, xytext): #@save
d2l.plt.gca().annotate(text, xy=xy, xytext=xytext,

arrowprops=dict(arrowstyle='->'))

x = np.arange(0.5, 1.5, 0.01)
d2l.set_figsize((4.5, 2.5))
d2l.plot(x, [f(x), g(x)], 'x', 'risk')
annotate('min of\nempirical risk', (1.0, -1.2), (0.5, -1.1))
annotate('min of risk', (1.1, -1.05), (0.95, -0.5))

[22:08:11] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
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12.1.2 Optimization Challenges in Deep Learning
In this chapter, we are going to focus specifically on the performance of optimization algo-
rithms in minimizing the objective function, rather than a model’s generalization error. In
Section 3.1 we distinguished between analytical solutions and numerical solutions in opti-
mization problems. In deep learning, most objective functions are complicated and do not
have analytical solutions. Instead, we must use numerical optimization algorithms. The
optimization algorithms in this chapter all fall into this category.

There are many challenges in deep learning optimization. Some of the most vexing ones
are local minima, saddle points, and vanishing gradients. Let’s have a look at them.

Local Minima
For any objective function 𝑓 (𝑥), if the value of 𝑓 (𝑥) at 𝑥 is smaller than the values of 𝑓 (𝑥)
at any other points in the vicinity of 𝑥, then 𝑓 (𝑥) could be a local minimum. If the value
of 𝑓 (𝑥) at 𝑥 is the minimum of the objective function over the entire domain, then 𝑓 (𝑥) is
the global minimum.

For example, given the function

𝑓 (𝑥) = 𝑥 · cos(𝜋𝑥) for − 1.0 ≤ 𝑥 ≤ 2.0, (12.1.1)

we can approximate the local minimum and global minimum of this function.

x = np.arange(-1.0, 2.0, 0.01)
d2l.plot(x, [f(x), ], 'x', 'f(x)')
annotate('local minimum', (-0.3, -0.25), (-0.77, -1.0))
annotate('global minimum', (1.1, -0.95), (0.6, 0.8))

The objective function of deep learning models usually has many local optima. When the
numerical solution of an optimization problem is near the local optimum, the numerical
solution obtained by the final iteration may only minimize the objective function locally,
rather than globally, as the gradient of the objective function’s solutions approaches or
becomes zero. Only some degree of noise might knock the parameter out of the local
minimum. In fact, this is one of the beneficial properties of minibatch stochastic gradient
descent where the natural variation of gradients over minibatches is able to dislodge the
parameters from local minima.
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Saddle Points
Besides local minima, saddle points are another reason for gradients to vanish. A saddle
point is any location where all gradients of a function vanish but which is neither a global
nor a local minimum. Consider the function 𝑓 (𝑥) = 𝑥3. Its first and second derivative van-
ish for 𝑥 = 0. Optimizationmight stall at this point, even though it is not aminimum.

x = np.arange(-2.0, 2.0, 0.01)
d2l.plot(x, [x**3], 'x', 'f(x)')
annotate('saddle point', (0, -0.2), (-0.52, -5.0))

Saddle points in higher dimensions are even more insidious, as the example below shows.
Consider the function 𝑓 (𝑥, 𝑦) = 𝑥2− 𝑦2. It has its saddle point at (0, 0). This is a maximum
with respect to 𝑦 and a minimum with respect to 𝑥. Moreover, it looks like a saddle, which
is where this mathematical property got its name.

x, y = np.meshgrid(
np.linspace(-1.0, 1.0, 101), np.linspace(-1.0, 1.0, 101))

z = x**2 - y**2

ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x.asnumpy(), y.asnumpy(), z.asnumpy(),

**{'rstride': 10, 'cstride': 10})
ax.plot([0], [0], [0], 'rx')
ticks = [-1, 0, 1]
d2l.plt.xticks(ticks)
d2l.plt.yticks(ticks)
ax.set_zticks(ticks)

(continues on next page)
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(continued from previous page)

d2l.plt.xlabel('x')
d2l.plt.ylabel('y');

We assume that the input of a function is a 𝑘-dimensional vector and its output is a scalar,
so its Hessian matrix will have 𝑘 eigenvalues. The solution of the function could be a local
minimum, a local maximum, or a saddle point at a position where the function gradient is
zero:

• When the eigenvalues of the function’s Hessian matrix at the zero-gradient position are
all positive, we have a local minimum for the function.

• When the eigenvalues of the function’s Hessian matrix at the zero-gradient position are
all negative, we have a local maximum for the function.

• When the eigenvalues of the function’s Hessian matrix at the zero-gradient position are
negative and positive, we have a saddle point for the function.

For high-dimensional problems the likelihood that at least some of the eigenvalues are neg-
ative is quite high. This makes saddle points more likely than local minima. Wewill discuss
some exceptions to this situation in the next section when introducing convexity. In short,
convex functions are those where the eigenvalues of the Hessian are never negative. Sadly,
though, most deep learning problems do not fall into this category. Nonetheless it is a great
tool to study optimization algorithms.

Vanishing Gradients
Probably the most insidious problem to encounter is the vanishing gradient. Recall our
commonly-used activation functions and their derivatives in Section 5.1.2. For instance,
assume that we want to minimize the function 𝑓 (𝑥) = tanh(𝑥) and we happen to get started
at 𝑥 = 4. As we can see, the gradient of 𝑓 is close to nil. More specifically, 𝑓 ′ (𝑥) =
1 − tanh2 (𝑥) and thus 𝑓 ′ (4) = 0.0013. Consequently, optimization will get stuck for a
long time before we make progress. This turns out to be one of the reasons that training
deep learning models was quite tricky prior to the introduction of the ReLU activation
function.
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x = np.arange(-2.0, 5.0, 0.01)
d2l.plot(x, [np.tanh(x)], 'x', 'f(x)')
annotate('vanishing gradient', (4, 1), (2, 0.0))

As we saw, optimization for deep learning is full of challenges. Fortunately there exists a
robust range of algorithms that perform well and that are easy to use even for beginners.
Furthermore, it is not really necessary to find the best solution. Local optima or even ap-
proximate solutions thereof are still very useful.

12.1.3 Summary
• Minimizing the training error does not guarantee that we find the best set of parameters

to minimize the generalization error.

• The optimization problems may have many local minima.

• The problemmay have evenmore saddle points, as generally the problems are not convex.

• Vanishing gradients can cause optimization to stall. Often a reparametrization of the
problem helps. Good initialization of the parameters can be beneficial, too.

12.1.4 Exercises
1. Consider a simple MLP with a single hidden layer of, say, 𝑑 dimensions in the hid-

den layer and a single output. Show that for any local minimum there are at least 𝑑!
equivalent solutions that behave identically.

2. Assume that we have a symmetric random matrix M where the entries 𝑀𝑖 𝑗 = 𝑀 𝑗𝑖 are
each drawn from some probability distribution 𝑝𝑖 𝑗 . Furthermore assume that 𝑝𝑖 𝑗 (𝑥) =
𝑝𝑖 𝑗 (−𝑥), i.e., that the distribution is symmetric (see e.g., Wigner (1958) for details).

1. Prove that the distribution over eigenvalues is also symmetric. That is, for any eigen-
vector v the probability that the associated eigenvalue 𝜆 satisfies 𝑃(𝜆 > 0) = 𝑃(𝜆 <
0).

2. Why does the above not imply 𝑃(𝜆 > 0) = 0.5?

3. What other challenges involved in deep learning optimization can you think of?
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4. Assume that you want to balance a (real) ball on a (real) saddle.

1. Why is this hard?

2. Can you exploit this effect also for optimization algorithms?

Discussions164 .

12.2 Convexity

Convexity plays a vital role in the design of optimization algorithms. This is largely due
to the fact that it is much easier to analyze and test algorithms in such a context. In other
words, if the algorithm performs poorly even in the convex setting, typically we should not
hope to see great results otherwise. Furthermore, even though the optimization problems in
deep learning are generally nonconvex, they often exhibit some properties of convex ones
near local minima. This can lead to exciting new optimization variants such as (Izmailov
et al., 2018).

%matplotlib inline
from mpl_toolkits import mplot3d
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

12.2.1 Definitions
Before convex analysis, we need to define convex sets and convex functions. They lead to
mathematical tools that are commonly applied to machine learning.

Convex Sets
Sets are the basis of convexity. Simply put, a set X in a vector space is convex if for any
𝑎, 𝑏 ∈ X the line segment connecting 𝑎 and 𝑏 is also in X. In mathematical terms this
means that for all 𝜆 ∈ [0, 1] we have

𝜆𝑎 + (1 − 𝜆)𝑏 ∈ X whenever 𝑎, 𝑏 ∈ X. (12.2.1)

This sounds a bit abstract. Consider Fig. 12.2.1. The first set is not convex since there exist
line segments that are not contained in it. The other two sets suffer no such problem.

Definitions on their own are not particularly useful unless you can do something with them.
In this case we can look at intersections as shown in Fig. 12.2.2. Assume that X andY are
convex sets. Then X ∩ Y is also convex. To see this, consider any 𝑎, 𝑏 ∈ X ∩ Y. Since X
and Y are convex, the line segments connecting 𝑎 and 𝑏 are contained in both X and Y.
Given that, they also need to be contained in X ∩Y, thus proving our theorem.

https://discuss.d2l.ai/t/349
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tFig. 12.2.1 The first set is nonconvex and the other two are convex.

tFig. 12.2.2 The intersection between two convex sets is convex.

We can strengthen this result with little effort: given convex setsX𝑖 , their intersection ∩𝑖X𝑖
is convex. To see that the converse is not true, consider two disjoint sets X ∩ Y = ∅. Now
pick 𝑎 ∈ X and 𝑏 ∈ Y. The line segment in Fig. 12.2.3 connecting 𝑎 and 𝑏 needs to contain
some part that is neither in X nor in Y, since we assumed that X ∩ Y = ∅. Hence the line
segment is not in X ∪Y either, thus proving that in general unions of convex sets need not
be convex.

tFig. 12.2.3 The union of two convex sets need not be convex.

Typically the problems in deep learning are defined on convex sets. For instance, R𝑑 , the
set of 𝑑-dimensional vectors of real numbers, is a convex set (after all, the line between any
two points in R𝑑 remains in R𝑑). In some cases we work with variables of bounded length,
such as balls of radius 𝑟 as defined by {x|x ∈ R𝑑 and ‖x‖ ≤ 𝑟}.

Convex Functions
Now that we have convex sets we can introduce convex functions 𝑓 . Given a convex set X,
a function 𝑓 : X → R is convex if for all 𝑥, 𝑥′ ∈ X and for all 𝜆 ∈ [0, 1] we have

𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑥′) ≥ 𝑓 (𝜆𝑥 + (1 − 𝜆)𝑥′). (12.2.2)

To illustrate this let’s plot a few functions and check which ones satisfy the requirement.
Below we define a few functions, both convex and nonconvex.
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f = lambda x: 0.5 * x**2 # Convex
g = lambda x: np.cos(np.pi * x) # Nonconvex
h = lambda x: np.exp(0.5 * x) # Convex

x, segment = np.arange(-2, 2, 0.01), np.array([-1.5, 1])
d2l.use_svg_display()
_, axes = d2l.plt.subplots(1, 3, figsize=(9, 3))
for ax, func in zip(axes, [f, g, h]):

d2l.plot([x, segment], [func(x), func(segment)], axes=ax)

[21:56:20] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

As expected, the cosine function is nonconvex, whereas the parabola and the exponential
function are. Note that the requirement that X is a convex set is necessary for the condition
tomake sense. Otherwise the outcome of 𝑓 (𝜆𝑥+(1−𝜆)𝑥′)might not bewell defined.

Jensen’s Inequality
Given a convex function 𝑓 , one of the most useful mathematical tools is Jensen’s inequality.
It amounts to a generalization of the definition of convexity:∑

𝑖

𝛼𝑖 𝑓 (𝑥𝑖) ≥ 𝑓

(∑
𝑖

𝛼𝑖𝑥𝑖

)
and 𝐸𝑋 [ 𝑓 (𝑋)] ≥ 𝑓 (𝐸𝑋 [𝑋]) , (12.2.3)

where 𝛼𝑖 are nonnegative real numbers such that
∑
𝑖 𝛼𝑖 = 1 and 𝑋 is a random variable. In

other words, the expectation of a convex function is no less than the convex function of an
expectation, where the latter is usually a simpler expression. To prove the first inequality
we repeatedly apply the definition of convexity to one term in the sum at a time.

One of the common applications of Jensen’s inequality is to bound a more complicated
expression by a simpler one. For example, its application can be with regard to the log-
likelihood of partially observed random variables. That is, we use

𝐸𝑌∼𝑃 (𝑌 ) [− log 𝑃(𝑋 | 𝑌 )] ≥ − log 𝑃(𝑋), (12.2.4)

since
∫
𝑃(𝑌 )𝑃(𝑋 | 𝑌 )𝑑𝑌 = 𝑃(𝑋). This can be used in variational methods. Here 𝑌
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is typically the unobserved random variable, 𝑃(𝑌 ) is the best guess of how it might be
distributed, and 𝑃(𝑋) is the distribution with 𝑌 integrated out. For instance, in clustering
𝑌 might be the cluster labels and 𝑃(𝑋 | 𝑌 ) is the generative model when applying cluster
labels.

12.2.2 Properties
Convex functions have many useful properties. We describe a few commonly-used ones
below.

Local Minima Are Global Minima
First and foremost, the local minima of convex functions are also the global minima. We
can prove it by contradiction as follows.

Consider a convex function 𝑓 defined on a convex set X. Suppose that 𝑥∗ ∈ X is a local
minimum: there exists a small positive value 𝑝 so that for 𝑥 ∈ X that satisfies 0 < |𝑥−𝑥∗ | ≤
𝑝 we have 𝑓 (𝑥∗) < 𝑓 (𝑥).

Assume that the local minimum 𝑥∗ is not the global minimum of 𝑓 : there exists 𝑥′ ∈ X
for which 𝑓 (𝑥′) < 𝑓 (𝑥∗). There also exists 𝜆 ∈ [0, 1) such as 𝜆 = 1 − 𝑝

|𝑥∗−𝑥′ | so that
0 < |𝜆𝑥∗ + (1 − 𝜆)𝑥′ − 𝑥∗ | ≤ 𝑝.

However, according to the definition of convex functions, we have

𝑓 (𝜆𝑥∗ + (1 − 𝜆)𝑥′) ≤ 𝜆 𝑓 (𝑥∗) + (1 − 𝜆) 𝑓 (𝑥′)
< 𝜆 𝑓 (𝑥∗) + (1 − 𝜆) 𝑓 (𝑥∗)
= 𝑓 (𝑥∗),

(12.2.5)

which contradicts with our statement that 𝑥∗ is a local minimum. Therefore, there does
not exist 𝑥′ ∈ X for which 𝑓 (𝑥′) < 𝑓 (𝑥∗). The local minimum 𝑥∗ is also the global
minimum.

For instance, the convex function 𝑓 (𝑥) = (𝑥 − 1)2 has a local minimum at 𝑥 = 1, which is
also the global minimum.

f = lambda x: (x - 1) ** 2
d2l.set_figsize()
d2l.plot([x, segment], [f(x), f(segment)], 'x', 'f(x)')

The fact that the local minima for convex functions are also the global minima is very
convenient. It means that if we minimize functions we cannot “get stuck”. Note, though,
that this does not mean that there cannot be more than one global minimum or that there
might even exist one. For instance, the function 𝑓 (𝑥) = max( |𝑥 | −1, 0) attains its minimum
value over the interval [−1, 1]. Conversely, the function 𝑓 (𝑥) = exp(𝑥) does not attain a
minimum value on R: for 𝑥 → −∞ it asymptotes to 0, but there is no 𝑥 for which 𝑓 (𝑥) =
0.
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Below Sets of Convex Functions Are Convex
We can conveniently define convex sets via below sets of convex functions. Concretely,
given a convex function 𝑓 defined on a convex set X, any below set

S𝑏
def
= {𝑥 |𝑥 ∈ X and 𝑓 (𝑥) ≤ 𝑏} (12.2.6)

is convex.

Let’s prove this quickly. Recall that for any 𝑥, 𝑥′ ∈ S𝑏 we need to show that 𝜆𝑥+ (1−𝜆)𝑥′ ∈
S𝑏 as long as 𝜆 ∈ [0, 1]. Since 𝑓 (𝑥) ≤ 𝑏 and 𝑓 (𝑥′) ≤ 𝑏, by the definition of convexity we
have

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑥′) ≤ 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑥′) ≤ 𝑏. (12.2.7)

Convexity and Second Derivatives
Whenever the second derivative of a function 𝑓 : R𝑛 → R exists it is very easy to check
whether 𝑓 is convex. All we need to do is check whether the Hessian of 𝑓 is positive
semidefinite: ∇2 𝑓 � 0, i.e., denoting the Hessian matrix ∇2 𝑓 by H, x>Hx ≥ 0 for all
x ∈ R𝑛. For instance, the function 𝑓 (x) = 1

2 ‖x‖2 is convex since ∇2 𝑓 = 1, i.e., its Hessian
is an identity matrix.

Formally, a twice-differentiable one-dimensional function 𝑓 : R→ R is convex if and only
if its second derivative 𝑓 ′′ ≥ 0. For any twice-differentiable multidimensional function
𝑓 : R𝑛 → R, it is convex if and only if its Hessian ∇2 𝑓 � 0.

First, we need to prove the one-dimensional case. To see that convexity of 𝑓 implies 𝑓 ′′ ≥ 0
we use the fact that

1
2
𝑓 (𝑥 + 𝜖) + 1

2
𝑓 (𝑥 − 𝜖) ≥ 𝑓

( 𝑥 + 𝜖
2
+ 𝑥 − 𝜖

2

)
= 𝑓 (𝑥). (12.2.8)

Since the second derivative is given by the limit over finite differences it follows that

𝑓 ′′ (𝑥) = lim
𝜖→0

𝑓 (𝑥 + 𝜖) + 𝑓 (𝑥 − 𝜖) − 2 𝑓 (𝑥)
𝜖2 ≥ 0. (12.2.9)

To see that 𝑓 ′′ ≥ 0 implies that 𝑓 is convex we use the fact that 𝑓 ′′ ≥ 0 implies that 𝑓 ′
is a monotonically nondecreasing function. Let 𝑎 < 𝑥 < 𝑏 be three points in R, where
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𝑥 = (1 − 𝜆)𝑎 + 𝜆𝑏 and 𝜆 ∈ (0, 1). According to the mean value theorem, there exist
𝛼 ∈ [𝑎, 𝑥] and 𝛽 ∈ [𝑥, 𝑏] such that

𝑓 ′ (𝛼) = 𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 and 𝑓 ′ (𝛽) = 𝑓 (𝑏) − 𝑓 (𝑥)

𝑏 − 𝑥 . (12.2.10)

By monotonicity 𝑓 ′ (𝛽) ≥ 𝑓 ′ (𝛼), hence

𝑥 − 𝑎
𝑏 − 𝑎 𝑓 (𝑏) +

𝑏 − 𝑥
𝑏 − 𝑎 𝑓 (𝑎) ≥ 𝑓 (𝑥). (12.2.11)

Since 𝑥 = (1 − 𝜆)𝑎 + 𝜆𝑏, we have

𝜆 𝑓 (𝑏) + (1 − 𝜆) 𝑓 (𝑎) ≥ 𝑓 ((1 − 𝜆)𝑎 + 𝜆𝑏), (12.2.12)

thus proving convexity.

Second, we need a lemma before proving the multidimensional case: 𝑓 : R𝑛 → R is convex
if and only if for all x,y ∈ R𝑛

𝑔(𝑧) def= 𝑓 (𝑧x + (1 − 𝑧)y) where 𝑧 ∈ [0, 1] (12.2.13)

is convex.

To prove that convexity of 𝑓 implies that 𝑔 is convex, we can show that for all 𝑎, 𝑏, 𝜆 ∈ [0, 1]
(thus 0 ≤ 𝜆𝑎 + (1 − 𝜆)𝑏 ≤ 1)

𝑔(𝜆𝑎 + (1 − 𝜆)𝑏)
= 𝑓 ((𝜆𝑎 + (1 − 𝜆)𝑏) x + (1 − 𝜆𝑎 − (1 − 𝜆)𝑏) y)
= 𝑓 (𝜆 (𝑎x + (1 − 𝑎)y) + (1 − 𝜆) (𝑏x + (1 − 𝑏)y))
≤𝜆 𝑓 (𝑎x + (1 − 𝑎)y) + (1 − 𝜆) 𝑓 (𝑏x + (1 − 𝑏)y)
=𝜆𝑔(𝑎) + (1 − 𝜆)𝑔(𝑏).

(12.2.14)

To prove the converse, we can show that for all 𝜆 ∈ [0, 1]

𝑓 (𝜆x + (1 − 𝜆)y)
=𝑔(𝜆 · 1 + (1 − 𝜆) · 0)
≤𝜆𝑔(1) + (1 − 𝜆)𝑔(0)
=𝜆 𝑓 (x) + (1 − 𝜆) 𝑓 (y).

(12.2.15)

Finally, using the lemma above and the result of the one-dimensional case, the multidimen-
sional case can be proven as follows. A multidimensional function 𝑓 : R𝑛 → R is convex
if and only if for all x,y ∈ R𝑛 𝑔(𝑧) def

= 𝑓 (𝑧x + (1 − 𝑧)y), where 𝑧 ∈ [0, 1], is convex. Ac-
cording to the one-dimensional case, this holds if and only if 𝑔′′ = (x− y)>H(x− y) ≥ 0
(H def

= ∇2 𝑓 ) for all x,y ∈ R𝑛, which is equivalent to H � 0 per the definition of positive
semidefinite matrices.

12.2.3 Constraints
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One of the nice properties of convex optimization is that it allows us to handle constraints ef-
ficiently. That is, it allows us to solve constrained optimization problems of the form:

minimize
x

𝑓 (x)

subject to 𝑐𝑖 (x) ≤ 0 for all 𝑖 ∈ {1, . . . , 𝑛},
(12.2.16)

where 𝑓 is the objective and the functions 𝑐𝑖 are constraint functions. To see what this does
consider the case where 𝑐1 (x) = ‖x‖2 − 1. In this case the parameters x are constrained to
the unit ball. If a second constraint is 𝑐2 (x) = v>x+ 𝑏, then this corresponds to all x lying
on a half-space. Satisfying both constraints simultaneously amounts to selecting a slice of
a ball.

Lagrangian
In general, solving a constrained optimization problem is difficult. One way of addressing
it stems from physics with a rather simple intuition. Imagine a ball inside a box. The ball
will roll to the place that is lowest and the forces of gravity will be balanced out with the
forces that the sides of the box can impose on the ball. In short, the gradient of the objective
function (i.e., gravity) will be offset by the gradient of the constraint function (the ball need
to remain inside the box by virtue of the walls “pushing back”). Note that some constraints
may not be active: the walls that are not touched by the ball will not be able to exert any
force on the ball.

Skipping over the derivation of the Lagrangian 𝐿, the above reasoning can be expressed
via the following saddle point optimization problem:

𝐿 (x, 𝛼1, . . . , 𝛼𝑛) = 𝑓 (x) +
𝑛∑
𝑖=1

𝛼𝑖𝑐𝑖 (x) where 𝛼𝑖 ≥ 0. (12.2.17)

Here the variables 𝛼𝑖 (𝑖 = 1, . . . , 𝑛) are the so-called Lagrange multipliers that ensure that
constraints are properly enforced. They are chosen just large enough to ensure that 𝑐𝑖 (x) ≤
0 for all 𝑖. For instance, for any x where 𝑐𝑖 (x) < 0 naturally, we’d end up picking 𝛼𝑖 = 0.
Moreover, this is a saddle point optimization problem where one wants to maximize 𝐿 with
respect to all 𝛼𝑖 and simultaneously minimize it with respect to x. There is a rich body of
literature explaining how to arrive at the function 𝐿 (x, 𝛼1, . . . , 𝛼𝑛). For our purposes it is
sufficient to know that the saddle point of 𝐿 is where the original constrained optimization
problem is solved optimally.

Penalties
One way of satisfying constrained optimization problems at least approximately is to adapt
the Lagrangian 𝐿. Rather than satisfying 𝑐𝑖 (x) ≤ 0 we simply add 𝛼𝑖𝑐𝑖 (x) to the objective
function 𝑓 (𝑥). This ensures that the constraints will not be violated too badly.

In fact, we have been using this trick all along. Consider weight decay in Section 3.7. In it
we add 𝜆

2 ‖w‖2 to the objective function to ensure thatw does not grow too large. From the



482 Optimization Algorithms

constrained optimization point of view we can see that this will ensure that ‖w‖2 − 𝑟2 ≤ 0
for some radius 𝑟 . Adjusting the value of 𝜆 allows us to vary the size of w.

In general, adding penalties is a good way of ensuring approximate constraint satisfaction.
In practice this turns out to be much more robust than exact satisfaction. Furthermore, for
nonconvex problems many of the properties that make the exact approach so appealing in
the convex case (e.g., optimality) no longer hold.

Projections
An alternative strategy for satisfying constraints is projections. Again, we encountered
them before, e.g., when dealing with gradient clipping in Section 9.5. There we ensured
that a gradient has length bounded by 𝜃 via

g← g ·min(1, 𝜃/‖g‖). (12.2.18)

This turns out to be a projection of g onto the ball of radius 𝜃. More generally, a projection
on a convex set X is defined as

ProjX (x) = argmin
x′∈X

‖x − x′‖, (12.2.19)

which is the closest point in X to x.

tFig. 12.2.4 Convex Projections.

The mathematical definition of projections may sound a bit abstract. Fig. 12.2.4 explains it
somewhat more clearly. In it we have two convex sets, a circle and a diamond. Points inside
both sets (yellow) remain unchanged during projections. Points outside both sets (black)
are projected to the points inside the sets (red) that are closet to the original points (black).
While for ℓ2 balls this leaves the direction unchanged, this need not be the case in general,
as can be seen in the case of the diamond.

One of the uses for convex projections is to compute sparse weight vectors. In this case we
project weight vectors onto an ℓ1 ball, which is a generalized version of the diamond case
in Fig. 12.2.4.

12.2.4 Summary
In the context of deep learning the main purpose of convex functions is to motivate opti-
mization algorithms and help us understand them in detail. In the following we will see
how gradient descent and stochastic gradient descent can be derived accordingly.

• Intersections of convex sets are convex. Unions are not.
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• The expectation of a convex function is no less than the convex function of an expectation
(Jensen’s inequality).

• A twice-differentiable function is convex if and only if its Hessian (a matrix of second
derivatives) is positive semidefinite.

• Convex constraints can be added via the Lagrangian. In practice we may simply add
them with a penalty to the objective function.

• Projections map to points in the convex set closest to the original points.

12.2.5 Exercises
1. Assume that we want to verify convexity of a set by drawing all lines between points

within the set and checking whether the lines are contained.

1. Prove that it is sufficient to check only the points on the boundary.

2. Prove that it is sufficient to check only the vertices of the set.

2. Denote by B𝑝 [𝑟]
def
= {x|x ∈ R𝑑 and ‖x‖ 𝑝 ≤ 𝑟} the ball of radius 𝑟 using the 𝑝-norm.

Prove that B𝑝 [𝑟] is convex for all 𝑝 ≥ 1.

3. Given convex functions 𝑓 and 𝑔, show thatmax( 𝑓 , 𝑔) is convex, too. Prove thatmin( 𝑓 , 𝑔)
is not convex.

4. Prove that the normalization of the softmax function is convex. More specifically prove
the convexity of 𝑓 (𝑥) = log

∑
𝑖 exp(𝑥𝑖).

5. Prove that linear subspaces, i.e., X = {x|Wx = b}, are convex sets.

6. Prove that in the case of linear subspaces with b = 0 the projection ProjX can be written
as Mx for some matrix M.

7. Show that for twice-differentiable convex functions 𝑓 we can write 𝑓 (𝑥 + 𝜖) = 𝑓 (𝑥) +
𝜖 𝑓 ′ (𝑥) + 1

2 𝜖
2 𝑓 ′′ (𝑥 + 𝜉) for some 𝜉 ∈ [0, 𝜖].

8. Given a convex set X and two vectors x and y, prove that projections never increase
distances, i.e., ‖x − y‖ ≥ ‖ProjX (x) − ProjX (y)‖.

Discussions165 .

12.3 Gradient Descent

In this section we are going to introduce the basic concepts underlying gradient descent.
Although it is rarely used directly in deep learning, an understanding of gradient descent is
key to understanding stochastic gradient descent algorithms. For instance, the optimization
problem might diverge due to an overly large learning rate. This phenomenon can already

https://discuss.d2l.ai/t/350
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be seen in gradient descent. Likewise, preconditioning is a common technique in gradient
descent and carries over to more advanced algorithms. Let’s start with a simple special
case.

12.3.1 One-Dimensional Gradient Descent
Gradient descent in one dimension is an excellent example to explain why the gradient
descent algorithm may reduce the value of the objective function. Consider some con-
tinuously differentiable real-valued function 𝑓 : R → R. Using a Taylor expansion we
obtain

𝑓 (𝑥 + 𝜖) = 𝑓 (𝑥) + 𝜖 𝑓 ′ (𝑥) + O(𝜖2). (12.3.1)

That is, in first-order approximation 𝑓 (𝑥 + 𝜖) is given by the function value 𝑓 (𝑥) and the
first derivative 𝑓 ′ (𝑥) at 𝑥. It is not unreasonable to assume that for small 𝜖 moving in the
direction of the negative gradient will decrease 𝑓 . To keep things simple we pick a fixed
step size 𝜂 > 0 and choose 𝜖 = −𝜂 𝑓 ′ (𝑥). Plugging this into the Taylor expansion above we
get

𝑓 (𝑥 − 𝜂 𝑓 ′ (𝑥)) = 𝑓 (𝑥) − 𝜂 𝑓 ′2 (𝑥) + O(𝜂2 𝑓 ′2 (𝑥)). (12.3.2)

If the derivative 𝑓 ′ (𝑥) ≠ 0 does not vanish we make progress since 𝜂 𝑓 ′2 (𝑥) > 0. Moreover,
we can always choose 𝜂 small enough for the higher-order terms to become irrelevant.
Hence we arrive at

𝑓 (𝑥 − 𝜂 𝑓 ′ (𝑥)) ⪅ 𝑓 (𝑥). (12.3.3)

This means that, if we use

𝑥 ← 𝑥 − 𝜂 𝑓 ′ (𝑥) (12.3.4)

to iterate 𝑥, the value of function 𝑓 (𝑥) might decline. Therefore, in gradient descent we first
choose an initial value 𝑥 and a constant 𝜂 > 0 and then use them to continuously iterate 𝑥
until the stop condition is reached, for example, when the magnitude of the gradient | 𝑓 ′ (𝑥) |
is small enough or the number of iterations has reached a certain value.

For simplicity we choose the objective function 𝑓 (𝑥) = 𝑥2 to illustrate how to implement
gradient descent. Although we know that 𝑥 = 0 is the solution to minimize 𝑓 (𝑥), we still
use this simple function to observe how 𝑥 changes.

%matplotlib inline
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

def f(x): # Objective function
return x ** 2

(continues on next page)
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(continued from previous page)

def f_grad(x): # Gradient (derivative) of the objective function
return 2 * x

Next, we use 𝑥 = 10 as the initial value and assume 𝜂 = 0.2. Using gradient descent to
iterate 𝑥 for 10 times we can see that, eventually, the value of 𝑥 approaches the optimal
solution.

def gd(eta, f_grad):
x = 10.0
results = [x]
for i in range(10):

x -= eta * f_grad(x)
results.append(float(x))

print(f'epoch 10, x: {x:f}')
return results

results = gd(0.2, f_grad)

epoch 10, x: 0.060466

The progress of optimizing over 𝑥 can be plotted as follows.

def show_trace(results, f):
n = max(abs(min(results)), abs(max(results)))
f_line = np.arange(-n, n, 0.01)
d2l.set_figsize()
d2l.plot([f_line, results], [[f(x) for x in f_line], [

f(x) for x in results]], 'x', 'f(x)', fmts=['-', '-o'])

show_trace(results, f)

[22:06:08] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
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Learning Rate
The learning rate 𝜂 can be set by the algorithm designer. If we use a learning rate that is too
small, it will cause 𝑥 to update very slowly, requiring more iterations to get a better solu-
tion. To show what happens in such a case, consider the progress in the same optimization
problem for 𝜂 = 0.05. As we can see, even after 10 steps we are still very far from the
optimal solution.

show_trace(gd(0.05, f_grad), f)

epoch 10, x: 3.486784

Conversely, if we use an excessively high learning rate, |𝜂 𝑓 ′ (𝑥) | might be too large for
the first-order Taylor expansion formula. That is, the term O(𝜂2 𝑓 ′2 (𝑥)) in (12.3.2) might
become significant. In this case, we cannot guarantee that the iteration of 𝑥 will be able to
lower the value of 𝑓 (𝑥). For example, when we set the learning rate to 𝜂 = 1.1, 𝑥 overshoots
the optimal solution 𝑥 = 0 and gradually diverges.

show_trace(gd(1.1, f_grad), f)

epoch 10, x: 61.917364
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Local Minima
To illustrate what happens for nonconvex functions consider the case of 𝑓 (𝑥) = 𝑥 · cos(𝑐𝑥)
for some constant 𝑐. This function has infinitely many local minima. Depending on our
choice of the learning rate and depending on how well conditioned the problem is, we may
end up with one of many solutions. The example below illustrates how an (unrealistically)
high learning rate will lead to a poor local minimum.

c = np.array(0.15 * np.pi)

def f(x): # Objective function
return x * np.cos(c * x)

def f_grad(x): # Gradient of the objective function
return np.cos(c * x) - c * x * np.sin(c * x)

show_trace(gd(2, f_grad), f)

epoch 10, x: -1.528165

12.3.2 Multivariate Gradient Descent
Now that we have a better intuition of the univariate case, let’s consider the situation where
x = [𝑥1, 𝑥2, . . . , 𝑥𝑑]>. That is, the objective function 𝑓 : R𝑑 → R maps vectors into
scalars. Correspondingly its gradient is multivariate, too. It is a vector consisting of 𝑑
partial derivatives:

∇ 𝑓 (x) =
[
𝜕 𝑓 (x)
𝜕𝑥1

,
𝜕 𝑓 (x)
𝜕𝑥2

, . . . ,
𝜕 𝑓 (x)
𝜕𝑥𝑑

]>
. (12.3.5)

Each partial derivative element 𝜕 𝑓 (x)/𝜕𝑥𝑖 in the gradient indicates the rate of change of
𝑓 at x with respect to the input 𝑥𝑖 . As before in the univariate case we can use the cor-
responding Taylor approximation for multivariate functions to get some idea of what we
should do. In particular, we have that

𝑓 (x + 𝝐) = 𝑓 (x) + 𝝐>∇ 𝑓 (x) + O(‖𝝐 ‖2). (12.3.6)

In other words, up to second-order terms in 𝝐 the direction of steepest descent is given by the
negative gradient −∇ 𝑓 (x). Choosing a suitable learning rate 𝜂 > 0 yields the prototypical
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gradient descent algorithm:

x← x − 𝜂∇ 𝑓 (x). (12.3.7)

To see how the algorithm behaves in practice let’s construct an objective function 𝑓 (x) =
𝑥2

1 + 2𝑥2
2 with a two-dimensional vector x = [𝑥1, 𝑥2]> as input and a scalar as output. The

gradient is given by ∇ 𝑓 (x) = [2𝑥1, 4𝑥2]>. We will observe the trajectory of x by gradient
descent from the initial position [−5,−2].

To begin with, we need twomore helper functions. The first uses an update function and ap-
plies it 20 times to the initial value. The second helper visualizes the trajectory of x.

def train_2d(trainer, steps=20, f_grad=None): #@save
"""Optimize a 2D objective function with a customized trainer."""
# `s1` and `s2` are internal state variables that will be used in Momentum,

↩→ adagrad, RMSProp
x1, x2, s1, s2 = -5, -2, 0, 0
results = [(x1, x2)]
for i in range(steps):

if f_grad:
x1, x2, s1, s2 = trainer(x1, x2, s1, s2, f_grad)

else:
x1, x2, s1, s2 = trainer(x1, x2, s1, s2)

results.append((x1, x2))
print(f'epoch {i + 1}, x1: {float(x1):f}, x2: {float(x2):f}')
return results

def show_trace_2d(f, results): #@save
"""Show the trace of 2D variables during optimization."""
d2l.set_figsize()
d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
x1, x2 = np.meshgrid(np.arange(-55, 1, 1),

np.arange(-30, 1, 1))
x1, x2 = x1.asnumpy()*0.1, x2.asnumpy()*0.1
d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
d2l.plt.xlabel('x1')
d2l.plt.ylabel('x2')

Next, we observe the trajectory of the optimization variable x for learning rate 𝜂 = 0.1.
We can see that after 20 steps the value of x approaches its minimum at [0, 0]. Progress is
fairly well-behaved albeit rather slow.

def f_2d(x1, x2): # Objective function
return x1 ** 2 + 2 * x2 ** 2

def f_2d_grad(x1, x2): # Gradient of the objective function
return (2 * x1, 4 * x2)

def gd_2d(x1, x2, s1, s2, f_grad):
g1, g2 = f_grad(x1, x2)
return (x1 - eta * g1, x2 - eta * g2, 0, 0)

(continues on next page)
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(continued from previous page)

eta = 0.1
show_trace_2d(f_2d, train_2d(gd_2d, f_grad=f_2d_grad))

epoch 20, x1: -0.057646, x2: -0.000073

12.3.3 Adaptive Methods
As we could see in Section 12.3.1, getting the learning rate 𝜂 “just right” is tricky. If we
pick it too small, we make little progress. If we pick it too large, the solution oscillates and
in the worst case it might even diverge. What if we could determine 𝜂 automatically or get
rid of having to select a learning rate at all? Second-order methods that look not only at the
value and gradient of the objective function but also at its curvature can help in this case.
While these methods cannot be applied to deep learning directly due to the computational
cost, they provide useful intuition into how to design advanced optimization algorithms
that mimic many of the desirable properties of the algorithms outlined below.

Newton’s Method
Reviewing the Taylor expansion of some function 𝑓 : R𝑑 → R there is no need to stop after
the first term. In fact, we can write it as

𝑓 (x + 𝝐) = 𝑓 (x) + 𝝐>∇ 𝑓 (x) + 1
2
𝝐>∇2 𝑓 (x)𝝐 + O(‖𝝐 ‖3). (12.3.8)

To avoid cumbersome notation we define H
def
= ∇2 𝑓 (x) to be the Hessian of 𝑓 , which is

a 𝑑 × 𝑑 matrix. For small 𝑑 and simple problems H is easy to compute. For deep neural
networks, on the other hand,Hmay be prohibitively large, due to the cost of storing O(𝑑2)
entries. Furthermore it may be too expensive to compute via backpropagation. For now
let’s ignore such considerations and look at what algorithm we would get.

After all, the minimum of 𝑓 satisfies ∇ 𝑓 = 0. Following calculus rules in Section 2.4.3, by
taking derivatives of (12.3.8) with regard to 𝝐 and ignoring higher-order terms we arrive
at

∇ 𝑓 (x) +H𝝐 = 0 and hence 𝝐 = −H−1∇ 𝑓 (x). (12.3.9)
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That is, we need to invert the Hessian H as part of the optimization problem.

As a simple example, for 𝑓 (𝑥) = 1
2𝑥

2 we have ∇ 𝑓 (𝑥) = 𝑥 and H = 1. Hence for any 𝑥
we obtain 𝜖 = −𝑥. In other words, a single step is sufficient to converge perfectly without
the need for any adjustment! Alas, we got a bit lucky here: the Taylor expansion was exact
since 𝑓 (𝑥 + 𝜖) = 1

2𝑥
2 + 𝜖𝑥 + 1

2 𝜖
2.

Let’s see what happens in other problems. Given a convex hyperbolic cosine function
𝑓 (𝑥) = cosh(𝑐𝑥) for some constant 𝑐, we can see that the global minimum at 𝑥 = 0 is
reached after a few iterations.

c = np.array(0.5)

def f(x): # Objective function
return np.cosh(c * x)

def f_grad(x): # Gradient of the objective function
return c * np.sinh(c * x)

def f_hess(x): # Hessian of the objective function
return c**2 * np.cosh(c * x)

def newton(eta=1):
x = 10.0
results = [x]
for i in range(10):

x -= eta * f_grad(x) / f_hess(x)
results.append(float(x))

print('epoch 10, x:', x)
return results

show_trace(newton(), f)

epoch 10, x: 0.0

Now let’s consider a nonconvex function, such as 𝑓 (𝑥) = 𝑥 cos(𝑐𝑥) for some constant 𝑐.
After all, note that in Newton’s method we end up dividing by the Hessian. This means that
if the second derivative is negative we may walk into the direction of increasing the value
of 𝑓 . That is a fatal flaw of the algorithm. Let’s see what happens in practice.
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c = np.array(0.15 * np.pi)

def f(x): # Objective function
return x * np.cos(c * x)

def f_grad(x): # Gradient of the objective function
return np.cos(c * x) - c * x * np.sin(c * x)

def f_hess(x): # Hessian of the objective function
return - 2 * c * np.sin(c * x) - x * c**2 * np.cos(c * x)

show_trace(newton(), f)

epoch 10, x: 26.834133

This went spectacularly wrong. How can we fix it? One way would be to “fix” the Hessian
by taking its absolute value instead. Another strategy is to bring back the learning rate.
This seems to defeat the purpose, but not quite. Having second-order information allows
us to be cautious whenever the curvature is large and to take longer steps whenever the
objective function is flatter. Let’s see how this works with a slightly smaller learning rate,
say 𝜂 = 0.5. As we can see, we have quite an efficient algorithm.

show_trace(newton(0.5), f)

epoch 10, x: 7.26986



492 Optimization Algorithms

Convergence Analysis
We only analyze the convergence rate of Newton’s method for some convex and three times
differentiable objective function 𝑓 , where the second derivative is nonzero, i.e., 𝑓 ′′ > 0.
The multivariate proof is a straightforward extension of the one-dimensional argument be-
low and omitted since it does not help us much in terms of intuition.

Denote by 𝑥 (𝑘 ) the value of 𝑥 at the 𝑘 th iteration and let 𝑒 (𝑘 ) def
= 𝑥 (𝑘 )−𝑥∗ be the distance from

optimality at the 𝑘 th iteration. By Taylor expansion we have that the condition 𝑓 ′ (𝑥∗) = 0
can be written as

0 = 𝑓 ′ (𝑥 (𝑘 ) − 𝑒 (𝑘 ) ) = 𝑓 ′ (𝑥 (𝑘 ) ) − 𝑒 (𝑘 ) 𝑓 ′′ (𝑥 (𝑘 ) ) + 1
2
(𝑒 (𝑘 ) )2 𝑓 ′′′ (𝜉 (𝑘 ) ), (12.3.10)

which holds for some 𝜉 (𝑘 ) ∈ [𝑥 (𝑘 ) −𝑒 (𝑘 ) , 𝑥 (𝑘 ) ]. Dividing the above expansion by 𝑓 ′′ (𝑥 (𝑘 ) )
yields

𝑒 (𝑘 ) − 𝑓 ′ (𝑥 (𝑘 ) )
𝑓 ′′ (𝑥 (𝑘 ) )

=
1
2
(𝑒 (𝑘 ) )2 𝑓

′′′ (𝜉 (𝑘 ) )
𝑓 ′′ (𝑥 (𝑘 ) )

. (12.3.11)

Recall that we have the update 𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝑓 ′ (𝑥 (𝑘 ) )/ 𝑓 ′′ (𝑥 (𝑘 ) ). Plugging in this update
equation and taking the absolute value of both sides, we have���𝑒 (𝑘+1) ��� = 1

2
(𝑒 (𝑘 ) )2

�� 𝑓 ′′′ (𝜉 (𝑘 ) )��
𝑓 ′′ (𝑥 (𝑘 ) )

. (12.3.12)

Consequently, whenever we are in a region of bounded
�� 𝑓 ′′′ (𝜉 (𝑘 ) )�� /(2 𝑓 ′′ (𝑥 (𝑘 ) )) ≤ 𝑐, we

have a quadratically decreasing error���𝑒 (𝑘+1) ��� ≤ 𝑐(𝑒 (𝑘 ) )2. (12.3.13)

As an aside, optimization researchers call this linear convergence, whereas a condition such
as

��𝑒 (𝑘+1) �� ≤ 𝛼 ��𝑒 (𝑘 ) �� would be called a constant rate of convergence. Note that this analysis
comes with a number of caveats. First, we do not really have much of a guarantee when we
will reach the region of rapid convergence. Instead, we only know that once we reach it,
convergence will be very quick. Second, this analysis requires that 𝑓 is well-behaved up to
higher-order derivatives. It comes down to ensuring that 𝑓 does not have any “surprising”
properties in terms of how it might change its values.

Preconditioning
Quite unsurprisingly computing and storing the full Hessian is very expensive. It is thus
desirable to find alternatives. One way to improve matters is preconditioning. It avoids
computing the Hessian in its entirety but only computes the diagonal entries. This leads to
update algorithms of the form

x← x − 𝜂diag(H)−1∇ 𝑓 (x). (12.3.14)

While this is not quite as good as the full Newton’s method, it is still much better than not
using it. To see why this might be a good idea consider a situation where one variable
denotes height in millimeters and the other one denotes height in kilometers. Assuming
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that for both the natural scale is in meters, we have a terrible mismatch in parametrizations.
Fortunately, using preconditioning removes this. Effectively preconditioning with gradient
descent amounts to selecting a different learning rate for each variable (coordinate of vector
x). Aswewill see later, preconditioning drives some of the innovation in stochastic gradient
descent optimization algorithms.

Gradient Descent with Line Search
One of the key problems in gradient descent is that we might overshoot the goal or make
insufficient progress. A simple fix for the problem is to use line search in conjunction with
gradient descent. That is, we use the direction given by ∇ 𝑓 (x) and then perform binary
search as to which learning rate 𝜂 minimizes 𝑓 (x − 𝜂∇ 𝑓 (x)).

This algorithm converges rapidly (for an analysis and proof see e.g., Boyd and Vanden-
berghe (2004)). However, for the purpose of deep learning this is not quite so feasible,
since each step of the line search would require us to evaluate the objective function on the
entire dataset. This is way too costly to accomplish.

12.3.4 Summary
• Learning rates matter. Too large and we diverge, too small and we do not make progress.

• Gradient descent can get stuck in local minima.

• In high dimensions adjusting the learning rate is complicated.

• Preconditioning can help with scale adjustment.

• Newton’s method is a lot faster once it has started working properly in convex problems.

• Beware of using Newton’s method without any adjustments for nonconvex problems.

12.3.5 Exercises
1. Experiment with different learning rates and objective functions for gradient descent.

2. Implement line search to minimize a convex function in the interval [𝑎, 𝑏].

1. Do you need derivatives for binary search, i.e., to decide whether to pick [𝑎, (𝑎 +
𝑏)/2] or [(𝑎 + 𝑏)/2, 𝑏].

2. How rapid is the rate of convergence for the algorithm?

3. Implement the algorithm and apply it to minimizing log(exp(𝑥) + exp(−2𝑥 − 3)).

3. Design an objective function defined on R2 where gradient descent is exceedingly slow.
Hint: scale different coordinates differently.

4. Implement the lightweight version of Newton’s method using preconditioning:

1. Use diagonal Hessian as preconditioner.

2. Use the absolute values of that rather than the actual (possibly signed) values.
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3. Apply this to the problem above.

5. Apply the algorithm above to a number of objective functions (convex or not). What
happens if you rotate coordinates by 45 degrees?

Discussions166 .

12.4 Stochastic Gradient Descent

In earlier chapters we kept using stochastic gradient descent in our training procedure, how-
ever, without explaining why it works. To shed some light on it, we just described the basic
principles of gradient descent in Section 12.3. In this section, we go on to discuss stochastic
gradient descent in greater detail.

%matplotlib inline
import math
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

12.4.1 Stochastic Gradient Updates
In deep learning, the objective function is usually the average of the loss functions for each
example in the training dataset. Given a training dataset of 𝑛 examples, we assume that
𝑓𝑖 (x) is the loss function with respect to the training example of index 𝑖, where x is the
parameter vector. Then we arrive at the objective function

𝑓 (x) = 1
𝑛

𝑛∑
𝑖=1

𝑓𝑖 (x). (12.4.1)

The gradient of the objective function at x is computed as

∇ 𝑓 (x) = 1
𝑛

𝑛∑
𝑖=1
∇ 𝑓𝑖 (x). (12.4.2)

If gradient descent is used, the computational cost for each independent variable iteration
is O(𝑛), which grows linearly with 𝑛. Therefore, when the training dataset is larger, the
cost of gradient descent for each iteration will be higher.

Stochastic gradient descent (SGD) reduces computational cost at each iteration. At each
iteration of stochastic gradient descent, we uniformly sample an index 𝑖 ∈ {1, . . . , 𝑛} for
data examples at random, and compute the gradient ∇ 𝑓𝑖 (x) to update x:

x← x − 𝜂∇ 𝑓𝑖 (x), (12.4.3)

where 𝜂 is the learning rate. We can see that the computational cost for each iteration drops

https://discuss.d2l.ai/t/351
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from O(𝑛) of the gradient descent to the constant O(1). Moreover, we want to empha-
size that the stochastic gradient ∇ 𝑓𝑖 (x) is an unbiased estimate of the full gradient ∇ 𝑓 (x)
because

E𝑖∇ 𝑓𝑖 (x) =
1
𝑛

𝑛∑
𝑖=1
∇ 𝑓𝑖 (x) = ∇ 𝑓 (x). (12.4.4)

Thismeans that, on average, the stochastic gradient is a good estimate of the gradient.

Now, we will compare it with gradient descent by adding random noise with a mean of 0
and a variance of 1 to the gradient to simulate a stochastic gradient descent.

def f(x1, x2): # Objective function
return x1 ** 2 + 2 * x2 ** 2

def f_grad(x1, x2): # Gradient of the objective function
return 2 * x1, 4 * x2

def sgd(x1, x2, s1, s2, f_grad):
g1, g2 = f_grad(x1, x2)
# Simulate noisy gradient
g1 += np.random.normal(0.0, 1, (1,))
g2 += np.random.normal(0.0, 1, (1,))
eta_t = eta * lr()
return (x1 - eta_t * g1, x2 - eta_t * g2, 0, 0)

def constant_lr():
return 1

eta = 0.1
lr = constant_lr # Constant learning rate
d2l.show_trace_2d(f, d2l.train_2d(sgd, steps=50, f_grad=f_grad))

[22:10:25] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
epoch 50, x1: -0.472513, x2: 0.110780

As we can see, the trajectory of the variables in the stochastic gradient descent is much
more noisy than the one we observed in gradient descent in Section 12.3. This is due to
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the stochastic nature of the gradient. That is, even when we arrive near the minimum,
we are still subject to the uncertainty injected by the instantaneous gradient via 𝜂∇ 𝑓𝑖 (x).
Even after 50 steps the quality is still not so good. Even worse, it will not improve after
additional steps (we encourage you to experiment with a larger number of steps to confirm
this). This leaves us with the only alternative: change the learning rate 𝜂. However, if we
pick this too small, we will not make any meaningful progress initially. On the other hand,
if we pick it too large, we will not get a good solution, as seen above. The only way to
resolve these conflicting goals is to reduce the learning rate dynamically as optimization
progresses.

This is also the reason for adding a learning rate function lr into the sgd step function. In
the example above any functionality for learning rate scheduling lies dormant as we set the
associated lr function to be constant.

12.4.2 Dynamic Learning Rate
Replacing 𝜂 with a time-dependent learning rate 𝜂(𝑡) adds to the complexity of controlling
convergence of an optimization algorithm. In particular, we need to figure out how rapidly
𝜂 should decay. If it is too quick, we will stop optimizing prematurely. If we decrease
it too slowly, we waste too much time on optimization. The following are a few basic
strategies that are used in adjusting 𝜂 over time (we will discuss more advanced strategies
later):

𝜂(𝑡) = 𝜂𝑖 if 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 piecewise constant
𝜂(𝑡) = 𝜂0 · 𝑒−𝜆𝑡 exponential decay
𝜂(𝑡) = 𝜂0 · (𝛽𝑡 + 1)−𝛼 polynomial decay

(12.4.5)

In the first piecewise constant scenariowe decrease the learning rate, e.g., whenever progress
in optimization stalls. This is a common strategy for training deep networks. Alternatively
we could decrease it much more aggressively by an exponential decay. Unfortunately this
often leads to premature stopping before the algorithm has converged. A popular choice is
polynomial decay with 𝛼 = 0.5. In the case of convex optimization there are a number of
proofs that show that this rate is well behaved.

Let’s see what the exponential decay looks like in practice.

def exponential_lr():
# Global variable that is defined outside this function and updated inside
global t
t += 1
return math.exp(-0.1 * t)

t = 1
lr = exponential_lr
d2l.show_trace_2d(f, d2l.train_2d(sgd, steps=1000, f_grad=f_grad))

epoch 1000, x1: -0.820458, x2: 0.004701
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As expected, the variance in the parameters is significantly reduced. However, this comes
at the expense of failing to converge to the optimal solution x = (0, 0). Even after 1000
iteration steps are we are still very far away from the optimal solution. Indeed, the algorithm
fails to converge at all. On the other hand, if we use a polynomial decay where the learning
rate decays with the inverse square root of the number of steps, convergence gets better
after only 50 steps.

def polynomial_lr():
# Global variable that is defined outside this function and updated inside
global t
t += 1
return (1 + 0.1 * t) ** (-0.5)

t = 1
lr = polynomial_lr
d2l.show_trace_2d(f, d2l.train_2d(sgd, steps=50, f_grad=f_grad))

epoch 50, x1: 0.025029, x2: 0.115820

There exist many more choices for how to set the learning rate. For instance, we could start
with a small rate, then rapidly ramp up and then decrease it again, albeit more slowly. We
could even alternate between smaller and larger learning rates. There exists a large variety
of such schedules. For now let’s focus on learning rate schedules for which a comprehen-
sive theoretical analysis is possible, i.e., on learning rates in a convex setting. For general
nonconvex problems it is very difficult to obtain meaningful convergence guarantees, since



498 Optimization Algorithms

167

in general minimizing nonlinear nonconvex problems is NP hard. For a survey see e.g., the
excellent lecture notes167 of Tibshirani 2015.

12.4.3 Convergence Analysis for Convex Objectives
The following convergence analysis of stochastic gradient descent for convex objective
functions is optional and primarily serves to convey more intuition about the problem. We
limit ourselves to one of the simplest proofs (Nesterov and Vial, 2000). Significantly more
advanced proof techniques exist, e.g., whenever the objective function is particularly well
behaved.

Suppose that the objective function 𝑓 (𝝃,x) is convex in x for all 𝝃. More concretely, we
consider the stochastic gradient descent update:

x𝑡+1 = x𝑡 − 𝜂𝑡𝜕x 𝑓 (𝝃 𝑡 ,x), (12.4.6)

where 𝑓 (𝝃 𝑡 ,x) is the objective function with respect to the training example 𝝃 𝑡 drawn from
some distribution at step 𝑡 and x is the model parameter. Denote by

𝑅(x) = 𝐸𝝃 [ 𝑓 (𝝃,x)] (12.4.7)

the expected risk and by 𝑅∗ its minimum with regard to x. Last let x∗ be the minimizer
(we assume that it exists within the domain where x is defined). In this case we can track
the distance between the current parameter x𝑡 at time 𝑡 and the risk minimizer x∗ and see
whether it improves over time:

‖x𝑡+1 − x∗‖2

=‖x𝑡 − 𝜂𝑡𝜕x 𝑓 (𝝃 𝑡 ,x) − x∗‖2

=‖x𝑡 − x∗‖2 + 𝜂2
𝑡 ‖𝜕x 𝑓 (𝝃 𝑡 ,x)‖2 − 2𝜂𝑡

〈
x𝑡 − x∗, 𝜕x 𝑓 (𝝃 𝑡 ,x)

〉
.

(12.4.8)

We assume that the ℓ2 norm of stochastic gradient 𝜕x 𝑓 (𝝃 𝑡 ,x) is bounded by some constant
𝐿, hence we have that

𝜂2
𝑡 ‖𝜕x 𝑓 (𝝃 𝑡 ,x)‖2 ≤ 𝜂2

𝑡 𝐿
2. (12.4.9)

We are mostly interested in how the distance between x𝑡 and x∗ changes in expectation.
In fact, for any specific sequence of steps the distance might well increase, depending on
whichever 𝝃 𝑡 we encounter. Hence we need to bound the dot product. Since for any convex
function 𝑓 it holds that 𝑓 (y) ≥ 𝑓 (x) + 〈 𝑓 ′ (x),y − x〉 for all x and y, by convexity we
have

𝑓 (𝝃 𝑡 ,x∗) ≥ 𝑓 (𝝃 𝑡 ,x𝑡 ) +
〈
x∗ − x𝑡 , 𝜕x 𝑓 (𝝃 𝑡 ,x𝑡 )

〉
. (12.4.10)

Plugging both inequalities (12.4.9) and (12.4.10) into (12.4.8) we obtain a bound on the
distance between parameters at time 𝑡 + 1 as follows:

‖x𝑡 − x∗‖2 − ‖x𝑡+1 − x∗‖2 ≥ 2𝜂𝑡 ( 𝑓 (𝝃 𝑡 ,x𝑡 ) − 𝑓 (𝝃 𝑡 ,x∗)) − 𝜂2
𝑡 𝐿

2. (12.4.11)

This means that we make progress as long as the difference between current loss and the

https://www.stat.cmu.edu/%7Eryantibs/convexopt-F15/lectures/26-nonconvex.pdf


499 Stochastic Gradient Descent

optimal loss outweighs 𝜂𝑡𝐿2/2. Since this difference is bound to converge to zero it follows
that the learning rate 𝜂𝑡 also needs to vanish.

Next we take expectations over (12.4.11). This yields

𝐸
[
‖x𝑡 − x∗‖2

]
− 𝐸

[
‖x𝑡+1 − x∗‖2

]
≥ 2𝜂𝑡 [𝐸 [𝑅(x𝑡 )] − 𝑅∗] − 𝜂2

𝑡 𝐿
2. (12.4.12)

The last step involves summing over the inequalities for 𝑡 ∈ {1, . . . , 𝑇}. Since the sum
telescopes and by dropping the lower term we obtain

‖x1 − x∗‖2 ≥ 2

(
𝑇∑
𝑡=1

𝜂𝑡

)
[𝐸 [𝑅(x𝑡 )] − 𝑅∗] − 𝐿2

𝑇∑
𝑡=1

𝜂2
𝑡 . (12.4.13)

Note that we exploited that x1 is given and thus the expectation can be dropped. Last
define

x̄
def
=

∑𝑇
𝑡=1 𝜂𝑡x𝑡∑𝑇
𝑡=1 𝜂𝑡

. (12.4.14)

Since

𝐸

(∑𝑇
𝑡=1 𝜂𝑡𝑅(x𝑡 )∑𝑇

𝑡=1 𝜂𝑡

)
=

∑𝑇
𝑡=1 𝜂𝑡𝐸 [𝑅(x𝑡 )]∑𝑇

𝑡=1 𝜂𝑡
= 𝐸 [𝑅(x𝑡 )], (12.4.15)

by Jensen’s inequality (setting 𝑖 = 𝑡, 𝛼𝑖 = 𝜂𝑡/
∑𝑇
𝑡=1 𝜂𝑡 in (12.2.3)) and convexity of 𝑅 it

follows that 𝐸 [𝑅(x𝑡 )] ≥ 𝐸 [𝑅(x̄)], thus
𝑇∑
𝑡=1

𝜂𝑡𝐸 [𝑅(x𝑡 )] ≥
𝑇∑
𝑡=1

𝜂𝑡𝐸 [𝑅(x̄)] . (12.4.16)

Plugging this into the inequality (12.4.13) yields the bound

[𝐸 [x̄]] − 𝑅∗ ≤
𝑟2 + 𝐿2 ∑𝑇

𝑡=1 𝜂
2
𝑡

2
∑𝑇
𝑡=1 𝜂𝑡

, (12.4.17)

where 𝑟2 def
= ‖x1 −x∗‖2 is a bound on the distance between the initial choice of parameters

and the final outcome. In short, the speed of convergence depends on how the norm of
stochastic gradient is bounded (𝐿) and how far away from optimality the initial parameter
value is (𝑟). Note that the bound is in terms of x̄ rather than x𝑇 . This is the case since x̄ is
a smoothed version of the optimization path. Whenever 𝑟, 𝐿, and 𝑇 are known we can pick
the learning rate 𝜂 = 𝑟/(𝐿

√
𝑇). This yields as upper bound 𝑟𝐿/

√
𝑇 . That is, we converge

with rate O(1/
√
𝑇) to the optimal solution.

12.4.4 Stochastic Gradients and Finite Samples
So far we have played a bit fast and loose when it comes to talking about stochastic gra-
dient descent. We posited that we draw instances 𝑥𝑖 , typically with labels 𝑦𝑖 from some
distribution 𝑝(𝑥, 𝑦) and that we use this to update the model parameters in some man-
ner. In particular, for a finite sample size we simply argued that the discrete distribution
𝑝(𝑥, 𝑦) = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑥𝑖 (𝑥)𝛿𝑦𝑖 (𝑦) for some functions 𝛿𝑥𝑖 and 𝛿𝑦𝑖 allows us to perform stochas-

tic gradient descent over it.
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However, this is not really what we did. In the toy examples in the current section we
simply added noise to an otherwise non-stochastic gradient, i.e., we pretended to have pairs
(𝑥𝑖 , 𝑦𝑖). It turns out that this is justified here (see the exercises for a detailed discussion).
More troubling is that in all previous discussions we clearly did not do this. Instead we
iterated over all instances exactly once. To see why this is preferable consider the converse,
namely that we are sampling 𝑛 observations from the discrete distributionwith replacement.
The probability of choosing an element 𝑖 at random is 1/𝑛. Thus to choose it at least once
is

𝑃(choose 𝑖) = 1 − 𝑃(omit 𝑖) = 1 − (1 − 1/𝑛)𝑛 ≈ 1 − 𝑒−1 ≈ 0.63. (12.4.18)

A similar reasoning shows that the probability of picking some sample (i.e., training exam-
ple) exactly once is given by(

𝑛

1

)
1
𝑛

(
1 − 1

𝑛

)𝑛−1
=

𝑛

𝑛 − 1

(
1 − 1

𝑛

)𝑛
≈ 𝑒−1 ≈ 0.37. (12.4.19)

Sampling with replacement leads to an increased variance and decreased data efficiency
relative to sampling without replacement. Hence, in practice we perform the latter (and
this is the default choice throughout this book). Last note that repeated passes through the
training dataset traverse it in a different random order.

12.4.5 Summary
• For convex problems we can prove that for a wide choice of learning rates stochastic

gradient descent will converge to the optimal solution.

• For deep learning this is generally not the case. However, the analysis of convex prob-
lems gives us useful insight into how to approach optimization, namely to reduce the
learning rate progressively, albeit not too quickly.

• Problems occur when the learning rate is too small or too large. In practice a suitable
learning rate is often found only after multiple experiments.

• When there are more examples in the training dataset, it costs more to compute each
iteration for gradient descent, so stochastic gradient descent is preferred in these cases.

• Optimality guarantees for stochastic gradient descent are in general not available in non-
convex cases since the number of local minima that require checking might well be
exponential.

12.4.6 Exercises
1. Experiment with different learning rate schedules for stochastic gradient descent and

with different numbers of iterations. In particular, plot the distance from the optimal
solution (0, 0) as a function of the number of iterations.

2. Prove that for the function 𝑓 (𝑥1, 𝑥2) = 𝑥2
1 + 2𝑥2

2 adding normal noise to the gradient is
equivalent to minimizing a loss function 𝑓 (x,w) = (𝑥1 − 𝑤1)2 + 2(𝑥2 − 𝑤2)2 where x
is drawn from a normal distribution.
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3. Compare convergence of stochastic gradient descent when you sample from {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}
with replacement and when you sample without replacement.

4. How would you change the stochastic gradient descent solver if some gradient (or rather
some coordinate associated with it) was consistently larger than all the other gradients?

5. Assume that 𝑓 (𝑥) = 𝑥2 (1 + sin 𝑥). How many local minima does 𝑓 have? Can you
change 𝑓 in such a way that to minimize it one needs to evaluate all the local minima?

Discussions168 .

12.5 Minibatch Stochastic Gradient Descent

So far we encountered two extremes in the approach to gradient-based learning: Section
12.3 uses the full dataset to compute gradients and to update parameters, one pass at a time.
Conversely Section 12.4 processes one training example at a time to make progress. Either
of them has its own drawbacks. Gradient descent is not particularly data efficient whenever
data is very similar. Stochastic gradient descent is not particularly computationally efficient
since CPUs and GPUs cannot exploit the full power of vectorization. This suggests that
there might be something in between, and in fact, that is what we have been using so far in
the examples we discussed.

12.5.1 Vectorization and Caches
At the heart of the decision to use minibatches is computational efficiency. This is most
easily understood when considering parallelization to multiple GPUs and multiple servers.
In this case we need to send at least one image to each GPU. With 8 GPUs per server and
16 servers we already arrive at a minibatch size no smaller than 128.

Things are a bit more subtle when it comes to single GPUs or even CPUs. These devices
have multiple types of memory, often multiple types of computational units and different
bandwidth constraints between them. For instance, a CPU has a small number of registers
and then the L1, L2, and in some cases even L3 cache (which is shared among different
processor cores). These caches are of increasing size and latency (and at the same time
they are of decreasing bandwidth). Suffice to say, the processor is capable of performing
many more operations than what the main memory interface is able to provide.

First, a 2GHz CPU with 16 cores and AVX-512 vectorization can process up to 2 · 109 ·
16 · 32 = 1012 bytes per second. The capability of GPUs easily exceeds this number by a
factor of 100. On the other hand, a midrange server processor might not have much more
than 100 GB/s bandwidth, i.e., less than one tenth of what would be required to keep the
processor fed. To make matters worse, not all memory access is created equal: memory
interfaces are typically 64 bit wide or wider (e.g., on GPUs up to 384 bit), hence reading a
single byte incurs the cost of a much wider access.

https://discuss.d2l.ai/t/352
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Second, there is significant overhead for the first access whereas sequential access is rela-
tively cheap (this is often called a burst read). There are many more things to keep in mind,
such as caching when we have multiple sockets, chiplets, and other structures. See this
Wikipedia article169 for a more in-depth discussion.

The way to alleviate these constraints is to use a hierarchy of CPU caches that are actu-
ally fast enough to supply the processor with data. This is the driving force behind batch-
ing in deep learning. To keep matters simple, consider matrix-matrix multiplication, say
A = BC. We have a number of options for calculating A. For instance, we could try the
following:

1. We could compute A𝑖 𝑗 = B𝑖,:C:, 𝑗 , i.e., we could compute it elementwise by means of
dot products.

2. We could compute A:, 𝑗 = BC:, 𝑗 , i.e., we could compute it one column at a time.
Likewise we could compute A one row A𝑖,: at a time.

3. We could simply compute A = BC.

4. We could break B and C into smaller block matrices and compute A one block at a
time.

If we follow the first option, we will need to copy one row and one column vector into the
CPU each time we want to compute an elementA𝑖 𝑗 . Even worse, due to the fact that matrix
elements are aligned sequentially we are thus required to access many disjoint locations
for one of the two vectors as we read them from memory. The second option is much
more favorable. In it, we are able to keep the column vector C:, 𝑗 in the CPU cache while
we keep on traversing through B. This halves the memory bandwidth requirement with
correspondingly faster access. Of course, option 3 is most desirable. Unfortunately, most
matrices might not entirely fit into cache (this is what we are discussing after all). However,
option 4 offers a practically useful alternative: we can move blocks of the matrix into cache
and multiply them locally. Optimized libraries take care of this for us. Let’s have a look at
how efficient these operations are in practice.

Beyond computational efficiency, the overhead introduced by Python and by the deep learn-
ing framework itself is considerable. Recall that each time we execute a command the
Python interpreter sends a command to the MXNet engine which needs to insert it into
the computational graph and deal with it during scheduling. Such overhead can be quite
detrimental. In short, it is highly advisable to use vectorization (and matrices) whenever
possible.

%matplotlib inline
import time
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

(continues on next page)

https://en.wikipedia.org/wiki/Cache_hierarchy
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(continued from previous page)

A = np.zeros((256, 256))
B = np.random.normal(0, 1, (256, 256))
C = np.random.normal(0, 1, (256, 256))

[22:02:54] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Since we will benchmark the running time frequently in the rest of the book, let’s define a
timer.

class Timer: #@save
"""Record multiple running times."""
def __init__(self):

self.times = []
self.start()

def start(self):
"""Start the timer."""
self.tik = time.time()

def stop(self):
"""Stop the timer and record the time in a list."""
self.times.append(time.time() - self.tik)
return self.times[-1]

def avg(self):
"""Return the average time."""
return sum(self.times) / len(self.times)

def sum(self):
"""Return the sum of time."""
return sum(self.times)

def cumsum(self):
"""Return the accumulated time."""
return np.array(self.times).cumsum().tolist()

timer = Timer()

Element-wise assignment simply iterates over all rows and columns ofB andC respectively
to assign the value to A.

# Compute A = BC one element at a time
timer.start()
for i in range(256):

for j in range(256):
A[i, j] = np.dot(B[i, :], C[:, j])

A.wait_to_read()
timer.stop()
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70.24642848968506

A faster strategy is to perform column-wise assignment.

# Compute A = BC one column at a time
timer.start()
for j in range(256):

A[:, j] = np.dot(B, C[:, j])
A.wait_to_read()
timer.stop()

0.19795489311218262

Last, the most effective manner is to perform the entire operation in one block. Note that
multiplying any twomatricesB ∈ R𝑚×𝑛 andC ∈ R𝑛×𝑝 takes approximately 2𝑚𝑛𝑝 floating
point operations, when scalar multiplication and addition are counted as separate operations
(fused in practice). Thus, multiplying two 256 × 256 matrices takes 0.03 billion floating
point operations. Let’s see what the respective speed of the operations is.

# Compute A = BC in one go
timer.start()
A = np.dot(B, C)
A.wait_to_read()
timer.stop()

gigaflops = [0.03 / i for i in timer.times]
print(f'performance in Gigaflops: element {gigaflops[0]:.3f}, '

f'column {gigaflops[1]:.3f}, full {gigaflops[2]:.3f}')

performance in Gigaflops: element 0.000, column 0.152, full 3.219

12.5.2 Minibatches
In the past we took it for granted that we would read minibatches of data rather than single
observations to update parameters. We now give a brief justification for it. Processing sin-
gle observations requires us to perform many single matrix-vector (or even vector-vector)
multiplications, which is quite expensive and which incurs a significant overhead on behalf
of the underlying deep learning framework. This applies both to evaluating a network when
applied to data (often referred to as inference) and when computing gradients to update pa-
rameters. That is, this applies whenever we perform w← w − 𝜂𝑡g𝑡 where

g𝑡 = 𝜕w 𝑓 (x𝑡 ,w) (12.5.1)

We can increase the computational efficiency of this operation by applying it to a minibatch
of observations at a time. That is, we replace the gradient g𝑡 over a single observation by
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one over a small batch

g𝑡 = 𝜕w
1
|B𝑡 |

∑
𝑖∈B𝑡

𝑓 (x𝑖 ,w) (12.5.2)

Let’s see what this does to the statistical properties of g𝑡 : since both x𝑡 and also all elements
of the minibatch B𝑡 are drawn uniformly at random from the training set, the expectation of
the gradient remains unchanged. The variance, on the other hand, is reduced significantly.
Since the minibatch gradient is composed of 𝑏 def

= |B𝑡 | independent gradients which are
being averaged, its standard deviation is reduced by a factor of 𝑏− 1

2 . This, by itself, is a good
thing, since it means that the updates aremore reliably alignedwith the full gradient.

Naively this would indicate that choosing a large minibatch B𝑡 would be universally desir-
able. Alas, after some point, the additional reduction in standard deviation is minimal when
compared to the linear increase in computational cost. In practice we pick a minibatch that
is large enough to offer good computational efficiency while still fitting into the memory of
a GPU. To illustrate the savings let’s have a look at some code. In it we perform the same
matrix-matrix multiplication, but this time broken up into “minibatches” of 64 columns at
a time.

timer.start()
for j in range(0, 256, 64):

A[:, j:j+64] = np.dot(B, C[:, j:j+64])
timer.stop()
print(f'performance in Gigaflops: block {0.03 / timer.times[3]:.3f}')

performance in Gigaflops: block 2.768

As we can see, the computation on the minibatch is essentially as efficient as on the full
matrix. A word of caution is in order. In Section 8.5 we used a type of regularization that
was heavily dependent on the amount of variance in a minibatch. As we increase the latter,
the variance decreases and with it the benefit of the noise-injection due to batch normal-
ization. See e.g., Ioffe (2017) for details on how to rescale and compute the appropriate
terms.

12.5.3 Reading the Dataset
Let’s have a look at how minibatches are efficiently generated from data. In the following
we use a dataset developed by NASA to test the wing noise from different aircraft 170

to compare these optimization algorithms. For convenience we only use the first 1, 500
examples. The data is whitened for preprocessing, i.e., we remove the mean and rescale the
variance to 1 per coordinate.

#@save
d2l.DATA_HUB['airfoil'] = (d2l.DATA_URL + 'airfoil_self_noise.dat',

'76e5be1548fd8222e5074cf0faae75edff8cf93f')

(continues on next page)

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
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(continued from previous page)

#@save
def get_data_ch11(batch_size=10, n=1500):

data = np.genfromtxt(d2l.download('airfoil'),
dtype=np.float32, delimiter='\t')

data = (data - data.mean(axis=0)) / data.std(axis=0)
data_iter = d2l.load_array(

(data[:n, :-1], data[:n, -1]), batch_size, is_train=True)
return data_iter, data.shape[1]-1

12.5.4 Implementation from Scratch
Recall the minibatch stochastic gradient descent implementation from Section 3.4. In the
following we provide a slightly more general implementation. For convenience it has the
same call signature as the other optimization algorithms introduced later in this chapter.
Specifically, we add the status input states and place the hyperparameter in dictionary
hyperparams. In addition, we will average the loss of each minibatch example in the train-
ing function, so the gradient in the optimization algorithm does not need to be divided by
the batch size.

def sgd(params, states, hyperparams):
for p in params:

p[:] -= hyperparams['lr'] * p.grad

Next, we implement a generic training function to facilitate the use of the other optimization
algorithms introduced later in this chapter. It initializes a linear regression model and can
be used to train the model with minibatch stochastic gradient descent and other algorithms
introduced subsequently.

#@save
def train_ch11(trainer_fn, states, hyperparams, data_iter,

feature_dim, num_epochs=2):
# Initialization
w = np.random.normal(scale=0.01, size=(feature_dim, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
# Train
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[0, num_epochs], ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):

for X, y in data_iter:
with autograd.record():

l = loss(net(X), y).mean()
l.backward()
trainer_fn([w, b], states, hyperparams)
n += X.shape[0]
if n % 200 == 0:

(continues on next page)
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timer.stop()
animator.add(n/X.shape[0]/len(data_iter),

(d2l.evaluate_loss(net, data_iter, loss),))
timer.start()

print(f'loss: {animator.Y[0][-1]:.3f}, {timer.sum()/num_epochs:.3f} sec/
↩→epoch')

return timer.cumsum(), animator.Y[0]

Let’s see how optimization proceeds for batch gradient descent. This can be achieved by
setting the minibatch size to 1500 (i.e., to the total number of examples). As a result the
model parameters are updated only once per epoch. There is little progress. In fact, after 6
steps progress stalls.

def train_sgd(lr, batch_size, num_epochs=2):
data_iter, feature_dim = get_data_ch11(batch_size)
return train_ch11(

sgd, None, {'lr': lr}, data_iter, feature_dim, num_epochs)

gd_res = train_sgd(1, 1500, 10)

loss: 0.254, 0.034 sec/epoch

When the batch size equals 1, we use stochastic gradient descent for optimization. For
simplicity of implementation we picked a constant (albeit small) learning rate. In stochastic
gradient descent, the model parameters are updated whenever an example is processed. In
our case this amounts to 1500 updates per epoch. As we can see, the decline in the value of
the objective function slows down after one epoch. Although both the procedures processed
1500 examples within one epoch, stochastic gradient descent consumes more time than
gradient descent in our experiment. This is because stochastic gradient descent updated
the parameters more frequently and since it is less efficient to process single observations
one at a time.

sgd_res = train_sgd(0.005, 1)
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loss: 0.243, 3.216 sec/epoch

Finally, when the batch size equals 100, we use minibatch stochastic gradient descent for
optimization. The time required per epoch is shorter than the time needed for stochastic
gradient descent and the time for batch gradient descent.

mini1_res = train_sgd(.4, 100)

loss: 0.248, 0.064 sec/epoch

Reducing the batch size to 10, the time for each epoch increases because the workload for
each batch is less efficient to execute.

mini2_res = train_sgd(.05, 10)

loss: 0.243, 0.374 sec/epoch

Now we can compare the time vs. loss for the previous four experiments. As can be seen,
although stochastic gradient descent converges faster than GD in terms of number of ex-
amples processed, it uses more time to reach the same loss than GD because computing the
gradient example by example is not as efficient. Minibatch stochastic gradient descent is
able to trade-off convergence speed and computation efficiency. A minibatch size of 10 is
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more efficient than stochastic gradient descent; a minibatch size of 100 even outperforms
GD in terms of runtime.

d2l.set_figsize([6, 3])
d2l.plot(*list(map(list, zip(gd_res, sgd_res, mini1_res, mini2_res))),

'time (sec)', 'loss', xlim=[1e-2, 10],
legend=['gd', 'sgd', 'batch size=100', 'batch size=10'])

d2l.plt.gca().set_xscale('log')

12.5.5 Concise Implementation
In Gluon, we can use the Trainer class to call optimization algorithms. This is used to im-
plement a generic training function. Wewill use this throughout the current chapter.

#@save
def train_concise_ch11(tr_name, hyperparams, data_iter, num_epochs=2):

# Initialization
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=0.01))
trainer = gluon.Trainer(net.collect_params(), tr_name, hyperparams)
loss = gluon.loss.L2Loss()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[0, num_epochs], ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):

for X, y in data_iter:
with autograd.record():

(continues on next page)
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l = loss(net(X), y)
l.backward()
trainer.step(X.shape[0])
n += X.shape[0]
if n % 200 == 0:

timer.stop()
animator.add(n/X.shape[0]/len(data_iter),

(d2l.evaluate_loss(net, data_iter, loss),))
timer.start()

print(f'loss: {animator.Y[0][-1]:.3f}, {timer.sum()/num_epochs:.3f} sec/
↩→epoch')

Using Gluon to repeat the last experiment shows identical behavior.

data_iter, _ = get_data_ch11(10)
train_concise_ch11('sgd', {'learning_rate': 0.05}, data_iter)

loss: 0.243, 0.393 sec/epoch

12.5.6 Summary
• Vectorization makes code more efficient due to reduced overhead arising from the deep

learning framework and due to better memory locality and caching on CPUs and
GPUs.

• There is a trade-off between statistical efficiency arising from stochastic gradient descent
and computational efficiency arising from processing large batches of data at a time.

• Minibatch stochastic gradient descent offers the best of both worlds: computational and
statistical efficiency.

• In minibatch stochastic gradient descent we process batches of data obtained by a random
permutation of the training data (i.e., each observation is processed only once per
epoch, albeit in random order).

• It is advisable to decay the learning rates during training.

• In general, minibatch stochastic gradient descent is faster than stochastic gradient descent
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and gradient descent for convergence to a smaller risk, when measured in terms of
clock time.

12.5.7 Exercises
1. Modify the batch size and learning rate and observe the rate of decline for the value of

the objective function and the time consumed in each epoch.

2. Read the MXNet documentation and use the Trainer class set_learning_rate func-
tion to reduce the learning rate of the minibatch stochastic gradient descent to 1/10 of
its previous value after each epoch.

3. Compare minibatch stochastic gradient descent with a variant that actually samples with
replacement from the training set. What happens?

4. An evil genie replicates your dataset without telling you (i.e., each observation occurs
twice and your dataset grows to twice its original size, but nobody told you). How does
the behavior of stochastic gradient descent, minibatch stochastic gradient descent and
that of gradient descent change?

Discussions171 .

12.6 Momentum

In Section 12.4 we reviewed what happens when performing stochastic gradient descent,
i.e., when performing optimization where only a noisy variant of the gradient is available.
In particular, we noticed that for noisy gradients we need to be extra cautious when it comes
to choosing the learning rate in the face of noise. If we decrease it too rapidly, convergence
stalls. If we are too lenient, we fail to converge to a good enough solution since noise keeps
on driving us away from optimality.

12.6.1 Basics
In this section, we will explore more effective optimization algorithms, especially for cer-
tain types of optimization problems that are common in practice.

Leaky Averages
The previous section saw us discussing minibatch SGD as a means for accelerating com-
putation. It also had the nice side-effect that averaging gradients reduced the amount of
variance. The minibatch stochastic gradient descent can be calculated by:

g𝑡 ,𝑡−1 = 𝜕w
1
|B𝑡 |

∑
𝑖∈B𝑡

𝑓 (x𝑖 ,w𝑡−1) =
1
|B𝑡 |

∑
𝑖∈B𝑡

h𝑖,𝑡−1. (12.6.1)

https://discuss.d2l.ai/t/353
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To keep the notation simple, here we used h𝑖,𝑡−1 = 𝜕w 𝑓 (x𝑖 ,w𝑡−1) as the stochastic gra-
dient descent for sample 𝑖 using the weights updated at time 𝑡 − 1. It would be nice if we
could benefit from the effect of variance reduction even beyond averaging gradients on a
minibatch. One option to accomplish this task is to replace the gradient computation by a
“leaky average”:

v𝑡 = 𝛽v𝑡−1 + g𝑡 ,𝑡−1 (12.6.2)

for some 𝛽 ∈ (0, 1). This effectively replaces the instantaneous gradient by one that is been
averaged over multiple past gradients. v is called velocity. It accumulates past gradients
similar to how a heavy ball rolling down the objective function landscape integrates over
past forces. To see what is happening in more detail let’s expand v𝑡 recursively into

v𝑡 = 𝛽
2v𝑡−2 + 𝛽g𝑡−1,𝑡−2 + g𝑡 ,𝑡−1 = . . . , =

𝑡−1∑
𝜏=0

𝛽𝜏g𝑡−𝜏,𝑡−𝜏−1. (12.6.3)

Large 𝛽 amounts to a long-range average, whereas small 𝛽 amounts to only a slight correc-
tion relative to a gradient method. The new gradient replacement no longer points into the
direction of steepest descent on a particular instance any longer but rather in the direction
of a weighted average of past gradients. This allows us to realize most of the benefits of
averaging over a batch without the cost of actually computing the gradients on it. We will
revisit this averaging procedure in more detail later.

The above reasoning formed the basis for what is now known as accelerated gradient meth-
ods, such as gradients with momentum. They enjoy the additional benefit of being much
more effective in cases where the optimization problem is ill-conditioned (i.e., where there
are some directions where progress is much slower than in others, resembling a narrow
canyon). Furthermore, they allow us to average over subsequent gradients to obtain more
stable directions of descent. Indeed, the aspect of acceleration even for noise-free convex
problems is one of the key reasons why momentum works and why it works so well.

As one would expect, due to its efficacymomentum is a well-studied subject in optimization
for deep learning and beyond. See e.g., the beautiful expository article172 by Goh (2017)
for an in-depth analysis and interactive animation. It was proposed by Polyak (1964). Nes-
terov (2018) has a detailed theoretical discussion in the context of convex optimization.
Momentum in deep learning has been known to be beneficial for a long time. See e.g., the
discussion by Sutskever et al. (2013) for details.

An Ill-conditioned Problem
To get a better understanding of the geometric properties of the momentum method we
revisit gradient descent, albeit with a significantly less pleasant objective function. Recall
that in Section 12.3 we used 𝑓 (x) = 𝑥2

1+2𝑥2
2, i.e., a moderately distorted ellipsoid objective.

We distort this function further by stretching it out in the 𝑥1 direction via

𝑓 (x) = 0.1𝑥2
1 + 2𝑥2

2 . (12.6.4)

https://distill.pub/2017/momentum/
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As before 𝑓 has its minimum at (0, 0). This function is very flat in the direction of 𝑥1. Let’s
see what happens when we perform gradient descent as before on this new function. We
pick a learning rate of 0.4.

%matplotlib inline
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

eta = 0.4
def f_2d(x1, x2):

return 0.1 * x1 ** 2 + 2 * x2 ** 2
def gd_2d(x1, x2, s1, s2):

return (x1 - eta * 0.2 * x1, x2 - eta * 4 * x2, 0, 0)

d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))

epoch 20, x1: -0.943467, x2: -0.000073
[21:56:51] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

By construction, the gradient in the 𝑥2 direction is much higher and changes much more
rapidly than in the horizontal 𝑥1 direction. Thus we are stuck between two undesirable
choices: if we pick a small learning rate we ensure that the solution does not diverge in
the 𝑥2 direction but we are saddled with slow convergence in the 𝑥1 direction. Conversely,
with a large learning rate we progress rapidly in the 𝑥1 direction but diverge in 𝑥2. The
example below illustrates what happens even after a slight increase in learning rate from
0.4 to 0.6. Convergence in the 𝑥1 direction improves but the overall solution quality is much
worse.

eta = 0.6
d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))

epoch 20, x1: -0.387814, x2: -1673.365109
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The Momentum Method
The momentum method allows us to solve the gradient descent problem described above.
Looking at the optimization trace above we might intuit that averaging gradients over the
past would work well. After all, in the 𝑥1 direction this will aggregate well-aligned gradi-
ents, thus increasing the distance we cover with every step. Conversely, in the 𝑥2 direction
where gradients oscillate, an aggregate gradient will reduce step size due to oscillations
that cancel each other out. Using v𝑡 instead of the gradient g𝑡 yields the following update
equations:

v𝑡 ← 𝛽v𝑡−1 + g𝑡 ,𝑡−1,

x𝑡 ← x𝑡−1 − 𝜂𝑡v𝑡 .
(12.6.5)

Note that for 𝛽 = 0 we recover regular gradient descent. Before delving deeper into the
mathematical properties let’s have a quick look at how the algorithm behaves in prac-
tice.

def momentum_2d(x1, x2, v1, v2):
v1 = beta * v1 + 0.2 * x1
v2 = beta * v2 + 4 * x2
return x1 - eta * v1, x2 - eta * v2, v1, v2

eta, beta = 0.6, 0.5
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))

epoch 20, x1: 0.007188, x2: 0.002553

As we can see, even with the same learning rate that we used before, momentum still con-
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verges well. Let’s see what happens when we decrease the momentum parameter. Halving
it to 𝛽 = 0.25 leads to a trajectory that barely converges at all. Nonetheless, it is a lot better
than without momentum (when the solution diverges).

eta, beta = 0.6, 0.25
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))

epoch 20, x1: -0.126340, x2: -0.186632

Note that we can combine momentum with stochastic gradient descent and in particular,
minibatch stochastic gradient descent. The only change is that in that case we replace the
gradients g𝑡 ,𝑡−1 with g𝑡 . Last, for convenience we initialize v0 = 0 at time 𝑡 = 0. Let’s
look at what leaky averaging actually does to the updates.

Effective Sample Weight

Recall that v𝑡 =
∑𝑡−1
𝜏=0 𝛽

𝜏g𝑡−𝜏,𝑡−𝜏−1. In the limit the terms add up to
∑∞
𝜏=0 𝛽

𝜏 = 1
1−𝛽 . In

other words, rather than taking a step of size 𝜂 in gradient descent or stochastic gradient
descent we take a step of size 𝜂

1−𝛽 while at the same time, dealing with a potentially much
better behaved descent direction. These are two benefits in one. To illustrate howweighting
behaves for different choices of 𝛽 consider the diagram below.

d2l.set_figsize()
betas = [0.95, 0.9, 0.6, 0]
for beta in betas:

x = np.arange(40).asnumpy()
d2l.plt.plot(x, beta ** x, label=f'beta = {beta:.2f}')

d2l.plt.xlabel('time')
d2l.plt.legend();

12.6.2 Practical Experiments
Let’s see how momentum works in practice, i.e., when used within the context of a proper
optimizer. For this we need a somewhat more scalable implementation.
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Implementation from Scratch
Compared with (minibatch) stochastic gradient descent the momentum method needs to
maintain a set of auxiliary variables, i.e., velocity. It has the same shape as the gradients
(and variables of the optimization problem). In the implementation below we call these
variables states.

def init_momentum_states(feature_dim):
v_w = np.zeros((feature_dim, 1))
v_b = np.zeros(1)
return (v_w, v_b)

def sgd_momentum(params, states, hyperparams):
for p, v in zip(params, states):

v[:] = hyperparams['momentum'] * v + p.grad
p[:] -= hyperparams['lr'] * v

Let’s see how this works in practice.

def train_momentum(lr, momentum, num_epochs=2):
d2l.train_ch11(sgd_momentum, init_momentum_states(feature_dim),

{'lr': lr, 'momentum': momentum}, data_iter,
feature_dim, num_epochs)

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
train_momentum(0.02, 0.5)

loss: 0.244, 1.186 sec/epoch

When we increase the momentum hyperparameter momentum to 0.9, it amounts to a signif-
icantly larger effective sample size of 1

1−0.9 = 10. We reduce the learning rate slightly to
0.01 to keep matters under control.

train_momentum(0.01, 0.9)

loss: 0.250, 1.011 sec/epoch
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Reducing the learning rate further addresses any issue of non-smooth optimization prob-
lems. Setting it to 0.005 yields good convergence properties.

train_momentum(0.005, 0.9)

loss: 0.247, 1.103 sec/epoch

Concise Implementation
There is very little to do in Gluon since the standard sgd solver already had momentum
built in. Setting matching parameters yields a very similar trajectory.

d2l.train_concise_ch11('sgd', {'learning_rate': 0.005, 'momentum': 0.9},
data_iter)
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loss: 0.242, 0.835 sec/epoch

12.6.3 Theoretical Analysis
So far the 2D example of 𝑓 (𝑥) = 0.1𝑥2

1 +2𝑥2
2 seemed rather contrived. We will now see that

this is actually quite representative of the types of problem one might encounter, at least in
the case of minimizing convex quadratic objective functions.

Quadratic Convex Functions
Consider the function

ℎ(x) = 1
2
x>Qx + x>c + 𝑏. (12.6.6)

This is a general quadratic function. For positive definite matricesQ � 0, i.e., for matrices
with positive eigenvalues this has a minimizer at x∗ = −Q−1c with minimum value 𝑏 −
1
2c
>Q−1c. Hence we can rewrite ℎ as

ℎ(x) = 1
2
(x −Q−1c)>Q(x −Q−1c) + 𝑏 − 1

2
c>Q−1c. (12.6.7)

The gradient is given by 𝜕xℎ(x) = Q(x − Q−1c). That is, it is given by the distance
between x and the minimizer, multiplied by Q. Consequently also the velocity is a linear
combination of terms Q(x𝑡 −Q−1c).

Since Q is positive definite it can be decomposed into its eigensystem via Q = O>𝚲O for
an orthogonal (rotation) matrix O and a diagonal matrix 𝚲 of positive eigenvalues. This
allows us to perform a change of variables from x to z

def
= O(x −Q−1c) to obtain a much

simplified expression:

ℎ(z) = 1
2
z>𝚲z + 𝑏′. (12.6.8)

Here 𝑏′ = 𝑏 − 1
2c
>Q−1c. Since O is only an orthogonal matrix this does not perturb the

gradients in a meaningful way. Expressed in terms of z gradient descent becomes

z𝑡 = z𝑡−1 − 𝚲z𝑡−1 = (I − 𝚲)z𝑡−1. (12.6.9)
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The important fact in this expression is that gradient descent does not mix between different
eigenspaces. That is, when expressed in terms of the eigensystem of Q the optimization
problem proceeds in a coordinate-wise manner. This also holds for

v𝑡 = 𝛽v𝑡−1 + 𝚲z𝑡−1

z𝑡 = z𝑡−1 − 𝜂 (𝛽v𝑡−1 + 𝚲z𝑡−1)
= (I − 𝜂𝚲)z𝑡−1 − 𝜂𝛽v𝑡−1.

(12.6.10)

In doing this we just proved the following theorem: gradient descent with and without
momentum for a convex quadratic function decomposes into coordinate-wise optimization
in the direction of the eigenvectors of the quadratic matrix.

Scalar Functions
Given the above result let’s see what happens when we minimize the function 𝑓 (𝑥) = 𝜆

2 𝑥
2.

For gradient descent we have

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝜆𝑥𝑡 = (1 − 𝜂𝜆)𝑥𝑡 . (12.6.11)

Whenever |1−𝜂𝜆 | < 1 this optimization converges at an exponential rate since after 𝑡 steps
we have 𝑥𝑡 = (1 − 𝜂𝜆)𝑡𝑥0. This shows how the rate of convergence improves initially as
we increase the learning rate 𝜂 until 𝜂𝜆 = 1. Beyond that things diverge and for 𝜂𝜆 > 2 the
optimization problem diverges.

lambdas = [0.1, 1, 10, 19]
eta = 0.1
d2l.set_figsize((6, 4))
for lam in lambdas:

t = np.arange(20).asnumpy()
d2l.plt.plot(t, (1 - eta * lam) ** t, label=f'lambda = {lam:.2f}')

d2l.plt.xlabel('time')
d2l.plt.legend();

To analyze convergence in the case of momentum we begin by rewriting the update equa-
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173

174

tions in terms of two scalars: one for 𝑥 and one for velocity 𝑣. This yields:[
𝑣𝑡+1
𝑥𝑡+1

]
=

[
𝛽 𝜆

−𝜂𝛽 (1 − 𝜂𝜆)

] [
𝑣𝑡
𝑥𝑡

]
= R(𝛽, 𝜂, 𝜆)

[
𝑣𝑡
𝑥𝑡

]
. (12.6.12)

We used R to denote the 2 × 2 governing convergence behavior. After 𝑡 steps the initial
choice [𝑣0, 𝑥0] becomes R(𝛽, 𝜂, 𝜆)𝑡 [𝑣0, 𝑥0]. Hence, it is up to the eigenvalues of R to
determine the speed of convergence. See the Distill post 173 of Goh (2017) for a great
animation and Flammarion and Bach (2015) for a detailed analysis. One can show that
0 < 𝜂𝜆 < 2 + 2𝛽 velocity converges. This is a larger range of feasible parameters when
compared to 0 < 𝜂𝜆 < 2 for gradient descent. It also suggests that in general large values
of 𝛽 are desirable. Further details require a fair amount of technical detail and we suggest
that the interested reader consult the original publications.

12.6.4 Summary
• Momentum replaces gradients with a leaky average over past gradients. This accelerates

convergence significantly.

• It is desirable for both noise-free gradient descent and (noisy) stochastic gradient descent.

• Momentum prevents stalling of the optimization process that is much more likely to
occur for stochastic gradient descent.

• The effective number of gradients is given by 1
1−𝛽 due to exponentiated downweighting

of past data.

• In the case of convex quadratic problems this can be analyzed explicitly in detail.

• Implementation is quite straightforward but it requires us to store an additional state
vector (velocity v).

12.6.5 Exercises
1. Use other combinations of momentum hyperparameters and learning rates and observe

and analyze the different experimental results.

2. Try out gradient descent and momentum for a quadratic problem where you have multi-
ple eigenvalues, i.e., 𝑓 (𝑥) = 1

2
∑
𝑖 𝜆𝑖𝑥

2
𝑖 , e.g., 𝜆𝑖 = 2−𝑖 . Plot how the values of 𝑥 decrease

for the initialization 𝑥𝑖 = 1.

3. Derive minimum value and minimizer for ℎ(x) = 1
2x
>Qx + x>c + 𝑏.

4. What changes when we perform stochastic gradient descent with momentum? What
happens when we use minibatch stochastic gradient descent with momentum? Experi-
ment with the parameters?

Discussions174 .

https://distill.pub/2017/momentum/
https://discuss.d2l.ai/t/354
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12.7 Adagrad

Let’s begin by considering learning problems with features that occur infrequently.

12.7.1 Sparse Features and Learning Rates
Imagine that we are training a language model. To get good accuracy we typically want
to decrease the learning rate as we keep on training, usually at a rate of O(𝑡− 1

2 ) or slower.
Now consider a model training on sparse features, i.e., features that occur only infrequently.
This is common for natural language, e.g., it is a lot less likely that we will see the word
preconditioning than learning. However, it is also common in other areas such as computa-
tional advertising and personalized collaborative filtering. After all, there are many things
that are of interest only for a small number of people.

Parameters associated with infrequent features only receive meaningful updates whenever
these features occur. Given a decreasing learning rate we might end up in a situation
where the parameters for common features converge rather quickly to their optimal values,
whereas for infrequent features we are still short of observing them sufficiently frequently
before their optimal values can be determined. In other words, the learning rate either
decreases too slowly for frequent features or too quickly for infrequent ones.

A possible hack to redress this issue would be to count the number of times we see a par-
ticular feature and to use this as a clock for adjusting learning rates. That is, rather than
choosing a learning rate of the form 𝜂 = 𝜂0√

𝑡+𝑐 we could use 𝜂𝑖 = 𝜂0√
𝑠 (𝑖,𝑡 )+𝑐

. Here 𝑠(𝑖, 𝑡)
counts the number of nonzeros for feature 𝑖 that we have observed up to time 𝑡. This is ac-
tually quite easy to implement at no meaningful overhead. However, it fails whenever we
do not quite have sparsity but rather just data where the gradients are often very small and
only rarely large. After all, it is unclear where one would draw the line between something
that qualifies as an observed feature or not.

Adagrad by Duchi et al. (2011) addresses this by replacing the rather crude counter 𝑠(𝑖, 𝑡)
by an aggregate of the squares of previously observed gradients. In particular, it uses
𝑠(𝑖, 𝑡 +1) = 𝑠(𝑖, 𝑡) + (𝜕𝑖 𝑓 (x))2 as a means to adjust the learning rate. This has two benefits:
first, we no longer need to decide just when a gradient is large enough. Second, it scales
automatically with the magnitude of the gradients. Coordinates that routinely correspond
to large gradients are scaled down significantly, whereas others with small gradients re-
ceive a much more gentle treatment. In practice this leads to a very effective optimization
procedure for computational advertising and related problems. But this hides some of the
additional benefits inherent in Adagrad that are best understood in the context of precondi-
tioning.

12.7.2 Preconditioning
Convex optimization problems are good for analyzing the characteristics of algorithms.
After all, for most nonconvex problems it is difficult to derive meaningful theoretical guar-



522 Optimization Algorithms

antees, but intuition and insight often carry over. Let’s look at the problem of minimizing
𝑓 (x) = 1

2x
>Qx + c>x + 𝑏.

As we saw in Section 12.6, it is possible to rewrite this problem in terms of its eigendecom-
positionQ = U>𝚲U to arrive at a much simplified problem where each coordinate can be
solved individually:

𝑓 (x) = 𝑓 (x̄) = 1
2
x̄>𝚲x̄ + c̄>x̄ + 𝑏. (12.7.1)

Here we used x̄ = Ux and consequently c̄ = Uc. The modified problem has as its min-
imizer x̄ = −𝚲−1c̄ and minimum value − 1

2 c̄
>𝚲−1c̄ + 𝑏. This is much easier to compute

since 𝚲 is a diagonal matrix containing the eigenvalues of Q.

If we perturb c slightly we would hope to find only slight changes in the minimizer of 𝑓 .
Unfortunately this is not the case. While slight changes in c lead to equally slight changes
in c̄, this is not the case for the minimizer of 𝑓 (and of 𝑓 respectively). Whenever the
eigenvalues 𝚲𝑖 are large we will see only small changes in 𝑥𝑖 and in the minimum of 𝑓 .
Conversely, for small 𝚲𝑖 changes in 𝑥𝑖 can be dramatic. The ratio between the largest and
the smallest eigenvalue is called the condition number of an optimization problem.

𝜅 =
𝚲1

𝚲𝑑
. (12.7.2)

If the condition number 𝜅 is large, it is difficult to solve the optimization problem accurately.
We need to ensure that we are careful in getting a large dynamic range of values right. Our
analysis leads to an obvious, albeit somewhat naive question: couldn’t we simply “fix” the
problem by distorting the space such that all eigenvalues are 1. In theory this is quite easy:
we only need the eigenvalues and eigenvectors of Q to rescale the problem from x to one
in z def

= 𝚲
1
2 Ux. In the new coordinate system x>Qx could be simplified to ‖z‖2. Alas, this

is a rather impractical suggestion. Computing eigenvalues and eigenvectors is in general
much more expensive than solving the actual problem.

While computing eigenvalues exactly might be expensive, guessing them and computing
them even somewhat approximately may already be a lot better than not doing anything at
all. In particular, we could use the diagonal entries ofQ and rescale it accordingly. This is
much cheaper than computing eigenvalues.

Q̃ = diag−
1
2 (Q)Qdiag−

1
2 (Q). (12.7.3)

In this case we have Q̃𝑖 𝑗 = Q𝑖 𝑗/
√
Q𝑖𝑖Q 𝑗 𝑗 and specifically Q̃𝑖𝑖 = 1 for all 𝑖. In most cases

this simplifies the condition number considerably. For instance, the cases we discussed
previously, this would entirely eliminate the problem at hand since the problem is axis
aligned.

Unfortunately we face yet another problem: in deep learning we typically do not even have
access to the second derivative of the objective function: for x ∈ R𝑑 the second derivative
even on a minibatch may require O(𝑑2) space and work to compute, thus making it practi-
cally infeasible. The ingenious idea of Adagrad is to use a proxy for that elusive diagonal
of the Hessian that is both relatively cheap to compute and effective—the magnitude of the
gradient itself.
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In order to see why this works, let’s look at 𝑓 (x̄). We have that

𝜕x̄ 𝑓 (x̄) = 𝚲x̄ + c̄ = 𝚲 (x̄ − x̄0) , (12.7.4)

where x̄0 is the minimizer of 𝑓 . Hence the magnitude of the gradient depends both on 𝚲
and the distance from optimality. If x̄− x̄0 did not change, this would be all that is needed.
After all, in this case the magnitude of the gradient 𝜕x̄ 𝑓 (x̄) suffices. Since AdaGrad is a
stochastic gradient descent algorithm, we will see gradients with nonzero variance even at
optimality. As a result we can safely use the variance of the gradients as a cheap proxy for
the scale of the Hessian. A thorough analysis is beyond the scope of this section (it would
be several pages). We refer the reader to (Duchi et al., 2011) for details.

12.7.3 The Algorithm
Let’s formalize the discussion from above. We use the variable s𝑡 to accumulate past gra-
dient variance as follows.

g𝑡 = 𝜕w𝑙 (𝑦𝑡 , 𝑓 (x𝑡 ,w)),
s𝑡 = s𝑡−1 + g2

𝑡 ,

w𝑡 = w𝑡−1 −
𝜂

√
s𝑡 + 𝜖

· g𝑡 .
(12.7.5)

Here the operation are applied coordinate wise. That is, v2 has entries 𝑣2
𝑖 . Likewise 1√

𝑣
has

entries 1√
𝑣𝑖

and u · v has entries 𝑢𝑖𝑣𝑖 . As before 𝜂 is the learning rate and 𝜖 is an additive
constant that ensures that we do not divide by 0. Last, we initialize s0 = 0.

Just like in the case of momentum we need to keep track of an auxiliary variable, in this
case to allow for an individual learning rate per coordinate. This does not increase the cost
of Adagrad significantly relative to SGD, simply since the main cost is typically to compute
𝑙 (𝑦𝑡 , 𝑓 (x𝑡 ,w)) and its derivative.

Note that accumulating squared gradients in s𝑡 means that s𝑡 grows essentially at linear rate
(somewhat slower than linearly in practice, since the gradients initially diminish). This
leads to an O(𝑡− 1

2 ) learning rate, albeit adjusted on a per coordinate basis. For convex
problems this is perfectly adequate. In deep learning, though, we might want to decrease
the learning rate rather more slowly. This led to a number of Adagrad variants that we will
discuss in the subsequent chapters. For now let’s see how it behaves in a quadratic convex
problem. We use the same problem as before:

𝑓 (x) = 0.1𝑥2
1 + 2𝑥2

2 . (12.7.6)

We are going to implement Adagrad using the same learning rate previously, i.e., 𝜂 = 0.4.
As we can see, the iterative trajectory of the independent variable is smoother. However,
due to the cumulative effect of 𝒔𝑡 , the learning rate continuously decays, so the independent
variable does not move as much during later stages of iteration.
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%matplotlib inline
import math
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

def adagrad_2d(x1, x2, s1, s2):
eps = 1e-6
g1, g2 = 0.2 * x1, 4 * x2
s1 += g1 ** 2
s2 += g2 ** 2
x1 -= eta / math.sqrt(s1 + eps) * g1
x2 -= eta / math.sqrt(s2 + eps) * g2
return x1, x2, s1, s2

def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2

eta = 0.4
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad_2d))

epoch 20, x1: -2.382563, x2: -0.158591
[22:07:35] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

As we increase the learning rate to 2 we see much better behavior. This already indicates
that the decrease in learning rate might be rather aggressive, even in the noise-free case and
we need to ensure that parameters converge appropriately.

eta = 2
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad_2d))

epoch 20, x1: -0.002295, x2: -0.000000

12.7.4 Implementation from Scratch
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Just like the momentum method, Adagrad needs to maintain a state variable of the same
shape as the parameters.

def init_adagrad_states(feature_dim):
s_w = np.zeros((feature_dim, 1))
s_b = np.zeros(1)
return (s_w, s_b)

def adagrad(params, states, hyperparams):
eps = 1e-6
for p, s in zip(params, states):

s[:] += np.square(p.grad)
p[:] -= hyperparams['lr'] * p.grad / np.sqrt(s + eps)

Compared to the experiment in Section 12.5 we use a larger learning rate to train the
model.

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adagrad, init_adagrad_states(feature_dim),

{'lr': 0.1}, data_iter, feature_dim);

loss: 0.243, 0.495 sec/epoch

12.7.5 Concise Implementation
Using the Trainer instance of the algorithm adagrad, we can invoke the Adagrad algo-
rithm in Gluon.
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d2l.train_concise_ch11('adagrad', {'learning_rate': 0.1}, data_iter)

loss: 0.242, 0.583 sec/epoch

12.7.6 Summary
• Adagrad decreases the learning rate dynamically on a per-coordinate basis.

• It uses the magnitude of the gradient as a means of adjusting how quickly progress is
achieved - coordinates with large gradients are compensated with a smaller learning
rate.

• Computing the exact second derivative is typically infeasible in deep learning problems
due to memory and computational constraints. The gradient can be a useful proxy.

• If the optimization problem has a rather uneven structure Adagrad can help mitigate the
distortion.

• Adagrad is particularly effective for sparse features where the learning rate needs to de-
crease more slowly for infrequently occurring terms.

• On deep learning problems Adagrad can sometimes be too aggressive in reducing learn-
ing rates. We will discuss strategies for mitigating this in the context of Section 12.10.

12.7.7 Exercises
1. Prove that for an orthogonal matrix U and a vector c the following holds: ‖c −ffi‖2 =
‖Uc−Uffi‖2. Why does this mean that the magnitude of perturbations does not change
after an orthogonal change of variables?

2. Try out Adagrad for 𝑓 (x) = 0.1𝑥2
1 + 2𝑥2

2 and also for the objective function was rotated
by 45 degrees, i.e., 𝑓 (x) = 0.1(𝑥1 + 𝑥2)2 + 2(𝑥1 − 𝑥2)2. Does it behave differently?

3. Prove Gerschgorin’s circle theorem175 which states that eigenvalues 𝜆𝑖 of a matrix M

satisfy |𝜆𝑖 −M 𝑗 𝑗 | ≤
∑
𝑘≠ 𝑗 |M 𝑗𝑘 | for at least one choice of 𝑗 .

4. What does Gerschgorin’s theorem tell us about the eigenvalues of the diagonally pre-
conditioned matrix diag−

1
2 (M)Mdiag−

1
2 (M)?

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem


527 RMSProp

176

5. Try out Adagrad for a proper deep network, such as Section 7.6 when applied to Fashion-
MNIST.

6. How would you need to modify Adagrad to achieve a less aggressive decay in learning
rate?

Discussions176 .

12.8 RMSProp

One of the key issues in Section 12.7 is that the learning rate decreases at a predefined
schedule of effectively O(𝑡− 1

2 ). While this is generally appropriate for convex problems,
it might not be ideal for nonconvex ones, such as those encountered in deep learning. Yet,
the coordinate-wise adaptivity of Adagrad is highly desirable as a preconditioner.

Tieleman and Hinton (2012) proposed the RMSProp algorithm as a simple fix to decouple
rate scheduling from coordinate-adaptive learning rates. The issue is that Adagrad accu-
mulates the squares of the gradient g𝑡 into a state vector s𝑡 = s𝑡−1 + g2

𝑡 . As a result s𝑡
keeps on growing without bound due to the lack of normalization, essentially linearly as
the algorithm converges.

One way of fixing this problem would be to use s𝑡/𝑡. For reasonable distributions of g𝑡
this will converge. Unfortunately it might take a very long time until the limit behavior
starts to matter since the procedure remembers the full trajectory of values. An alternative
is to use a leaky average in the same way we used in the momentum method, i.e., s𝑡 ←
𝛾s𝑡−1 + (1 − 𝛾)g2

𝑡 for some parameter 𝛾 > 0. Keeping all other parts unchanged yields
RMSProp.

12.8.1 The Algorithm
Let’s write out the equations in detail.

s𝑡 ← 𝛾s𝑡−1 + (1 − 𝛾)g2
𝑡 ,

x𝑡 ← x𝑡−1 −
𝜂

√
s𝑡 + 𝜖

� g𝑡 .
(12.8.1)

The constant 𝜖 > 0 is typically set to 10−6 to ensure that we do not suffer from division by
zero or overly large step sizes. Given this expansion we are now free to control the learning
rate 𝜂 independently of the scaling that is applied on a per-coordinate basis. In terms of
leaky averages we can apply the same reasoning as previously applied in the case of the
momentum method. Expanding the definition of s𝑡 yields

s𝑡 = (1 − 𝛾)g2
𝑡 + 𝛾s𝑡−1

= (1 − 𝛾)
(
g2
𝑡 + 𝛾g2

𝑡−1 + 𝛾2g𝑡−2 + . . . ,
)
.

(12.8.2)

https://discuss.d2l.ai/t/355
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As before in Section 12.6 we use 1 + 𝛾 + 𝛾2 + . . . , = 1
1−𝛾 . Hence the sum of weights is

normalized to 1 with a half-life time of an observation of 𝛾−1. Let’s visualize the weights
for the past 40 time steps for various choices of 𝛾.

%matplotlib inline
import math
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

d2l.set_figsize()
gammas = [0.95, 0.9, 0.8, 0.7]
for gamma in gammas:

x = np.arange(40).asnumpy()
d2l.plt.plot(x, (1-gamma) * gamma ** x, label=f'gamma = {gamma:.2f}')

d2l.plt.xlabel('time');

[22:04:19] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

12.8.2 Implementation from Scratch
As before we use the quadratic function 𝑓 (x) = 0.1𝑥2

1 + 2𝑥2
2 to observe the trajectory of

RMSProp. Recall that in Section 12.7, when we used Adagrad with a learning rate of
0.4, the variables moved only very slowly in the later stages of the algorithm since the
learning rate decreased too quickly. Since 𝜂 is controlled separately this does not happen
with RMSProp.

def rmsprop_2d(x1, x2, s1, s2):
g1, g2, eps = 0.2 * x1, 4 * x2, 1e-6
s1 = gamma * s1 + (1 - gamma) * g1 ** 2
s2 = gamma * s2 + (1 - gamma) * g2 ** 2
x1 -= eta / math.sqrt(s1 + eps) * g1
x2 -= eta / math.sqrt(s2 + eps) * g2
return x1, x2, s1, s2

(continues on next page)



529 RMSProp

(continued from previous page)

def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2

eta, gamma = 0.4, 0.9
d2l.show_trace_2d(f_2d, d2l.train_2d(rmsprop_2d))

epoch 20, x1: -0.010599, x2: 0.000000

Next, we implement RMSProp to be used in a deep network. This is equally straightfor-
ward.

def init_rmsprop_states(feature_dim):
s_w = np.zeros((feature_dim, 1))
s_b = np.zeros(1)
return (s_w, s_b)

def rmsprop(params, states, hyperparams):
gamma, eps = hyperparams['gamma'], 1e-6
for p, s in zip(params, states):

s[:] = gamma * s + (1 - gamma) * np.square(p.grad)
p[:] -= hyperparams['lr'] * p.grad / np.sqrt(s + eps)

We set the initial learning rate to 0.01 and the weighting term 𝛾 to 0.9. That is, s aggregates
on average over the past 1/(1 − 𝛾) = 10 observations of the square gradient.

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(rmsprop, init_rmsprop_states(feature_dim),

{'lr': 0.01, 'gamma': 0.9}, data_iter, feature_dim);

loss: 0.242, 0.659 sec/epoch

12.8.3 Concise Implementation
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Since RMSProp is a rather popular algorithm it is also available in the Trainer instance.
All we need to do is instantiate it using an algorithm named rmsprop, assigning 𝛾 to the
parameter gamma1.

d2l.train_concise_ch11('rmsprop', {'learning_rate': 0.01, 'gamma1': 0.9},
data_iter)

loss: 0.245, 0.381 sec/epoch

12.8.4 Summary
• RMSProp is very similar to Adagrad insofar as both use the square of the gradient to

scale coefficients.

• RMSProp shares with momentum the leaky averaging. However, RMSProp uses the
technique to adjust the coefficient-wise preconditioner.

• The learning rate needs to be scheduled by the experimenter in practice.

• The coefficient 𝛾 determines how long the history is when adjusting the per-coordinate
scale.

12.8.5 Exercises
1. What happens experimentally if we set 𝛾 = 1? Why?
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2. Rotate the optimization problem to minimize 𝑓 (x) = 0.1(𝑥1 + 𝑥2)2 + 2(𝑥1 − 𝑥2)2. What
happens to the convergence?

3. Try out what happens to RMSProp on a real machine learning problem, such as training
on Fashion-MNIST. Experiment with different choices for adjusting the learning rate.

4. Would you want to adjust 𝛾 as optimization progresses? How sensitive is RMSProp to
this?

Discussions177 .

12.9 Adadelta

Adadelta is yet another variant of AdaGrad (Section 12.7). The main difference lies in
the fact that it decreases the amount by which the learning rate is adaptive to coordinates.
Moreover, traditionally it referred to as not having a learning rate since it uses the amount of
change itself as calibration for future change. The algorithm was proposed in Zeiler (2012).
It is fairly straightforward, given the discussion of previous algorithms so far.

12.9.1 The Algorithm
In a nutshell, Adadelta uses two state variables, s𝑡 to store a leaky average of the second
moment of the gradient andΔx𝑡 to store a leaky average of the secondmoment of the change
of parameters in the model itself. Note that we use the original notation and naming of the
authors for compatibility with other publications and implementations (there is no other
real reason why one should use different Greek variables to indicate a parameter serving
the same purpose in momentum, Adagrad, RMSProp, and Adadelta).

Here are the technical details of Adadelta. Given the parameter du jour is 𝜌, we obtain the
following leaky updates similarly to Section 12.8:

s𝑡 = 𝜌s𝑡−1 + (1 − 𝜌)g2
𝑡 . (12.9.1)

The difference to Section 12.8 is that we perform updates with the rescaled gradient g′𝑡 ,
i.e.,

x𝑡 = x𝑡−1 − g′𝑡 . (12.9.2)

So what is the rescaled gradient g′𝑡? We can calculate it as follows:

g′𝑡 =

√
Δx𝑡−1 + 𝜖√
s𝑡 + 𝜖

� g𝑡 , (12.9.3)

where Δx𝑡−1 is the leaky average of the squared rescaled gradients g′𝑡 . We initialize Δx0
to be 0 and update it at each step with g′𝑡 , i.e.,

Δx𝑡 = 𝜌Δx𝑡−1 + (1 − 𝜌)g′𝑡 2, (12.9.4)

https://discuss.d2l.ai/t/356
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and 𝜖 (a small value such as 10−5) is added to maintain numerical stability.

12.9.2 Implementation
Adadelta needs to maintain two state variables for each variable, s𝑡 and Δx𝑡 . This yields
the following implementation.

%matplotlib inline
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

def init_adadelta_states(feature_dim):
s_w, s_b = np.zeros((feature_dim, 1)), np.zeros(1)
delta_w, delta_b = np.zeros((feature_dim, 1)), np.zeros(1)
return ((s_w, delta_w), (s_b, delta_b))

def adadelta(params, states, hyperparams):
rho, eps = hyperparams['rho'], 1e-5
for p, (s, delta) in zip(params, states):

# In-place updates via [:]
s[:] = rho * s + (1 - rho) * np.square(p.grad)
g = (np.sqrt(delta + eps) / np.sqrt(s + eps)) * p.grad
p[:] -= g
delta[:] = rho * delta + (1 - rho) * g * g

Choosing 𝜌 = 0.9 amounts to a half-life time of 10 for each parameter update. This tends
to work quite well. We get the following behavior.

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adadelta, init_adadelta_states(feature_dim),

{'rho': 0.9}, data_iter, feature_dim);

loss: 0.243, 0.813 sec/epoch

For a concise implementation we simply use the Adadelta algorithm from high-level APIs.
This yields the following one-liner for a much more compact invocation.
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d2l.train_concise_ch11('adadelta', {'rho': 0.9}, data_iter)

loss: 0.248, 0.886 sec/epoch

12.9.3 Summary
• Adadelta has no learning rate parameter. Instead, it uses the rate of change in the param-

eters itself to adapt the learning rate.

• Adadelta requires two state variables to store the second moments of gradient and the
change in parameters.

• Adadelta uses leaky averages to keep a running estimate of the appropriate statistics.

12.9.4 Exercises
1. Adjust the value of 𝜌. What happens?

2. Show how to implement the algorithm without the use of g′𝑡 . Why might this be a good
idea?

3. Is Adadelta really learning rate free? Could you find optimization problems that break
Adadelta?

4. Compare Adadelta to Adagrad and RMS prop to discuss their convergence behavior.

Discussions178 .

12.10 Adam

In the discussions leading up to this section we encountered a number of techniques for
efficient optimization. Let’s recap them in detail here:

https://discuss.d2l.ai/t/357
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• We saw that Section 12.4 is more effective than Gradient Descent when solving opti-
mization problems, e.g., due to its inherent resilience to redundant data.

• We saw that Section 12.5 affords significant additional efficiency arising from vector-
ization, using larger sets of observations in one minibatch. This is the key to efficient
multi-machine, multi-GPU and overall parallel processing.

• Section 12.6 added a mechanism for aggregating a history of past gradients to accelerate
convergence.

• Section 12.7 used per-coordinate scaling to allow for a computationally efficient precon-
ditioner.

• Section 12.8 decoupled per-coordinate scaling from a learning rate adjustment.

Adam (Kingma and Ba, 2014) combines all these techniques into one efficient learning
algorithm. As expected, this is an algorithm that has become rather popular as one of the
more robust and effective optimization algorithms to use in deep learning. It is not without
issues, though. In particular, (Reddi et al., 2019) show that there are situations where Adam
can diverge due to poor variance control. In a follow-up work Zaheer et al. (2018) proposed
a hotfix to Adam, called Yogi which addresses these issues. More on this later. For now
let’s review the Adam algorithm.

12.10.1 The Algorithm
One of the key components of Adam is that it uses exponential weighted moving averages
(also known as leaky averaging) to obtain an estimate of both the momentum and also the
second moment of the gradient. That is, it uses the state variables

v𝑡 ← 𝛽1v𝑡−1 + (1 − 𝛽1)g𝑡 ,
s𝑡 ← 𝛽2s𝑡−1 + (1 − 𝛽2)g2

𝑡 .
(12.10.1)

Here 𝛽1 and 𝛽2 are nonnegative weighting parameters. Common choices for them are
𝛽1 = 0.9 and 𝛽2 = 0.999. That is, the variance estimate moves much more slowly than the
momentum term. Note that if we initialize v0 = s0 = 0 we have a significant amount of bias
initially towards smaller values. This can be addressed by using the fact that

∑𝑡−1
𝑖=0 𝛽

𝑖 = 1−𝛽𝑡
1−𝛽

to re-normalize terms. Correspondingly the normalized state variables are given by

v̂𝑡 =
v𝑡

1 − 𝛽𝑡1
and ŝ𝑡 =

s𝑡
1 − 𝛽𝑡2

. (12.10.2)

Armed with the proper estimates we can now write out the update equations. First, we
rescale the gradient in a manner very much akin to that of RMSProp to obtain

g′𝑡 =
𝜂v̂𝑡√
ŝ𝑡 + 𝜖

. (12.10.3)

Unlike RMSProp our update uses the momentum v̂𝑡 rather than the gradient itself. More-
over, there is a slight cosmetic difference as the rescaling happens using 1√

ŝ𝑡+𝜖
instead of
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1√
ŝ𝑡+𝜖

. The former works arguably slightly better in practice, hence the deviation from RM-
SProp. Typically we pick 𝜖 = 10−6 for a good trade-off between numerical stability and
fidelity.

Now we have all the pieces in place to compute updates. This is slightly anticlimactic and
we have a simple update of the form

x𝑡 ← x𝑡−1 − g′𝑡 . (12.10.4)

Reviewing the design of Adam its inspiration is clear. Momentum and scale are clearly
visible in the state variables. Their rather peculiar definition forces us to debias terms
(this could be fixed by a slightly different initialization and update condition). Second, the
combination of both terms is pretty straightforward, given RMSProp. Last, the explicit
learning rate 𝜂 allows us to control the step length to address issues of convergence.

12.10.2 Implementation
Implementing Adam from scratch is not very daunting. For convenience we store the time
step counter 𝑡 in the hyperparams dictionary. Beyond that all is straightforward.

%matplotlib inline
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

def init_adam_states(feature_dim):
v_w, v_b = np.zeros((feature_dim, 1)), np.zeros(1)
s_w, s_b = np.zeros((feature_dim, 1)), np.zeros(1)
return ((v_w, s_w), (v_b, s_b))

def adam(params, states, hyperparams):
beta1, beta2, eps = 0.9, 0.999, 1e-6
for p, (v, s) in zip(params, states):

v[:] = beta1 * v + (1 - beta1) * p.grad
s[:] = beta2 * s + (1 - beta2) * np.square(p.grad)
v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
p[:] -= hyperparams['lr'] * v_bias_corr / (np.sqrt(s_bias_corr) + eps)

hyperparams['t'] += 1

We are ready to use Adam to train the model. We use a learning rate of 𝜂 = 0.01.

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adam, init_adam_states(feature_dim),

{'lr': 0.01, 't': 1}, data_iter, feature_dim);

loss: 0.243, 1.878 sec/epoch

Amore concise implementation is straightforward since adam is one of the algorithms pro-
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vided as part of the Gluon trainer optimization library. Hence we only need to pass
configuration parameters for an implementation in Gluon.

d2l.train_concise_ch11('adam', {'learning_rate': 0.01}, data_iter)

loss: 0.244, 0.816 sec/epoch

12.10.3 Yogi
One of the problems of Adam is that it can fail to converge even in convex settings when the
second moment estimate in s𝑡 blows up. As a fix Zaheer et al. (2018) proposed a refined
update (and initialization) for s𝑡 . To understand what’s going on, let’s rewrite the Adam
update as follows:

s𝑡 ← s𝑡−1 + (1 − 𝛽2)
(
g2
𝑡 − s𝑡−1

)
. (12.10.5)

Wheneverg2
𝑡 has high variance or updates are sparse, s𝑡 might forget past values too quickly.

A possible fix for this is to replaceg2
𝑡 −s𝑡−1 byg2

𝑡 �sgn(g2
𝑡 −s𝑡−1). Now themagnitude of the

update no longer depends on the amount of deviation. This yields the Yogi updates

s𝑡 ← s𝑡−1 + (1 − 𝛽2)g2
𝑡 � sgn(g2

𝑡 − s𝑡−1). (12.10.6)

The authors furthermore advise to initialize the momentum on a larger initial batch rather
than just initial pointwise estimate. We omit the details since they are not material to the
discussion and since even without this convergence remains pretty good.
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def yogi(params, states, hyperparams):
beta1, beta2, eps = 0.9, 0.999, 1e-3
for p, (v, s) in zip(params, states):

v[:] = beta1 * v + (1 - beta1) * p.grad
s[:] = s + (1 - beta2) * np.sign(

np.square(p.grad) - s) * np.square(p.grad)
v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
p[:] -= hyperparams['lr'] * v_bias_corr / (np.sqrt(s_bias_corr) + eps)

hyperparams['t'] += 1

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(yogi, init_adam_states(feature_dim),

{'lr': 0.01, 't': 1}, data_iter, feature_dim);

loss: 0.248, 1.783 sec/epoch

12.10.4 Summary
• Adam combines features of many optimization algorithms into a fairly robust update

rule.

• Created on the basis of RMSProp, Adam also uses EWMA on the minibatch stochastic
gradient.

• Adam uses bias correction to adjust for a slow startup when estimating momentum and
a second moment.

• For gradients with significant variance we may encounter issues with convergence. They
can be amended by using larger minibatches or by switching to an improved estimate
for s𝑡 . Yogi offers such an alternative.

12.10.5 Exercises
1. Adjust the learning rate and observe and analyze the experimental results.

2. Can you rewrite momentum and second moment updates such that it does not require
bias correction?
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3. Why do you need to reduce the learning rate 𝜂 as we converge?

4. Try to construct a case for which Adam diverges and Yogi converges?

Discussions179 .

12.11 Learning Rate Scheduling

So far we primarily focused on optimization algorithms for how to update theweight vectors
rather than on the rate at which they are being updated. Nonetheless, adjusting the learning
rate is often just as important as the actual algorithm. There are a number of aspects to
consider:

• Most obviously themagnitude of the learning rate matters. If it is too large, optimization
diverges, if it is too small, it takes too long to train or we end up with a suboptimal
result. We saw previously that the condition number of the problem matters (see e.g.,
Section 12.6 for details). Intuitively it is the ratio of the amount of change in the least
sensitive direction vs. the most sensitive one.

• Secondly, the rate of decay is just as important. If the learning rate remains large we may
simply end up bouncing around the minimum and thus not reach optimality. Section
12.5 discussed this in some detail and we analyzed performance guarantees in Section
12.4. In short, we want the rate to decay, but probably more slowly than O(𝑡− 1

2 ) which
would be a good choice for convex problems.

• Another aspect that is equally important is initialization. This pertains both to how the
parameters are set initially (review Section 5.4 for details) and also how they evolve
initially. This goes under the moniker of warmup, i.e., how rapidly we start moving
towards the solution initially. Large steps in the beginning might not be beneficial, in
particular since the initial set of parameters is random. The initial update directions
might be quite meaningless, too.

• Lastly, there are a number of optimization variants that perform cyclical learning rate
adjustment. This is beyond the scope of the current chapter. We recommend the
reader to review details in Izmailov et al. (2018), e.g., how to obtain better solutions
by averaging over an entire path of parameters.

Given the fact that there is a lot of detail needed to manage learning rates, most deep learn-
ing frameworks have tools to deal with this automatically. In the current chapter we will
review the effects that different schedules have on accuracy and also show how this can be
managed efficiently via a learning rate scheduler.

12.11.1 Toy Problem
We begin with a toy problem that is cheap enough to compute easily, yet sufficiently non-
trivial to illustrate some of the key aspects. For that we pick a slightly modernized version

https://discuss.d2l.ai/t/358
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of LeNet (relu instead of sigmoid activation, MaxPooling rather than AveragePooling),
as applied to Fashion-MNIST. Moreover, we hybridize the network for performance. Since
most of the code is standard we just introduce the basics without further detailed discussion.
See Chapter 7 for a refresher as needed.

%matplotlib inline
from mxnet import autograd, gluon, init, lr_scheduler, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

net = nn.HybridSequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, padding=2, activation='relu'),

nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=5, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Dense(120, activation='relu'),
nn.Dense(84, activation='relu'),
nn.Dense(10))

net.hybridize()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
device = d2l.try_gpu()

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

# The code is almost identical to `d2l.train_ch6` defined in the
# lenet section of chapter convolutional neural networks
def train(net, train_iter, test_iter, num_epochs, loss, trainer, device):

net.initialize(force_reinit=True, ctx=device, init=init.Xavier())
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],

legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):

metric = d2l.Accumulator(3) # train_loss, train_acc, num_examples
for i, (X, y) in enumerate(train_iter):

X, y = X.as_in_ctx(device), y.as_in_ctx(device)
with autograd.record():

y_hat = net(X)
l = loss(y_hat, y)

l.backward()
trainer.step(X.shape[0])
metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])
train_loss = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % 50 == 0:

animator.add(epoch + i / len(train_iter),
(train_loss, train_acc, None))

test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))

print(f'train loss {train_loss:.3f}, train acc {train_acc:.3f}, '
f'test acc {test_acc:.3f}')

[22:48:45] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU



540 Optimization Algorithms

Let’s have a look at what happens if we invoke this algorithm with default settings, such as
a learning rate of 0.3 and train for 30 iterations. Note how the training accuracy keeps on
increasing while progress in terms of test accuracy stalls beyond a point. The gap between
both curves indicates overfitting.

lr, num_epochs = 0.3, 30
net.initialize(force_reinit=True, ctx=device, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train(net, train_iter, test_iter, num_epochs, loss, trainer, device)

train loss 0.160, train acc 0.939, test acc 0.884

12.11.2 Schedulers
One way of adjusting the learning rate is to set it explicitly at each step. This is conve-
niently achieved by the set_learning_rate method. We could adjust it downward after
every epoch (or even after every minibatch), e.g., in a dynamic manner in response to how
optimization is progressing.

trainer.set_learning_rate(0.1)
print(f'learning rate is now {trainer.learning_rate:.2f}')

learning rate is now 0.10

More generally we want to define a scheduler. When invoked with the number of updates
it returns the appropriate value of the learning rate. Let’s define a simple one that sets the
learning rate to 𝜂 = 𝜂0 (𝑡 + 1)− 1

2 .

class SquareRootScheduler:
def __init__(self, lr=0.1):

self.lr = lr

def __call__(self, num_update):
return self.lr * pow(num_update + 1.0, -0.5)

Let’s plot its behavior over a range of values.
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scheduler = SquareRootScheduler(lr=0.1)
d2l.plot(np.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])

Now let’s see how this plays out for training on Fashion-MNIST. We simply provide the
scheduler as an additional argument to the training algorithm.

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})

train(net, train_iter, test_iter, num_epochs, loss, trainer, device)

train loss 0.523, train acc 0.810, test acc 0.815

This worked quite a bit better than previously. Two things stand out: the curve was rather
more smooth than previously. Secondly, there was less overfitting. Unfortunately it is not a
well-resolved question as to why certain strategies lead to less overfitting in theory. There
is some argument that a smaller stepsize will lead to parameters that are closer to zero and
thus simpler. However, this does not explain the phenomenon entirely since we do not really
stop early but simply reduce the learning rate gently.

12.11.3 Policies
While we cannot possibly cover the entire variety of learning rate schedulers, we attempt
to give a brief overview of popular policies below. Common choices are polynomial decay
and piecewise constant schedules. Beyond that, cosine learning rate schedules have been
found to work well empirically on some problems. Lastly, on some problems it is beneficial
to warm up the optimizer prior to using large learning rates.
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Factor Scheduler
One alternative to a polynomial decay would be a multiplicative one, that is 𝜂𝑡+1 ← 𝜂𝑡 · 𝛼
for 𝛼 ∈ (0, 1). To prevent the learning rate from decaying beyond a reasonable lower bound
the update equation is often modified to 𝜂𝑡+1 ← max(𝜂min, 𝜂𝑡 · 𝛼).

class FactorScheduler:
def __init__(self, factor=1, stop_factor_lr=1e-7, base_lr=0.1):

self.factor = factor
self.stop_factor_lr = stop_factor_lr
self.base_lr = base_lr

def __call__(self, num_update):
self.base_lr = max(self.stop_factor_lr, self.base_lr * self.factor)
return self.base_lr

scheduler = FactorScheduler(factor=0.9, stop_factor_lr=1e-2, base_lr=2.0)
d2l.plot(np.arange(50), [scheduler(t) for t in range(50)])

This can also be accomplished by a built-in scheduler in MXNet via the lr_scheduler.
FactorScheduler object. It takes a fewmore parameters, such as warmup period, warmup
mode (linear or constant), the maximum number of desired updates, etc.; Going forward
we will use the built-in schedulers as appropriate and only explain their functionality here.
As illustrated, it is fairly straightforward to build your own scheduler if needed.

Multi Factor Scheduler
A common strategy for training deep networks is to keep the learning rate piecewise con-
stant and to decrease it by a given amount every so often. That is, given a set of times
when to decrease the rate, such as 𝑠 = {5, 10, 20} decrease 𝜂𝑡+1 ← 𝜂𝑡 · 𝛼 whenever 𝑡 ∈ 𝑠.
Assuming that the values are halved at each step we can implement this as follows.

scheduler = lr_scheduler.MultiFactorScheduler(step=[15, 30], factor=0.5,
base_lr=0.5)

d2l.plot(np.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])

The intuition behind this piecewise constant learning rate schedule is that one lets opti-
mization proceed until a stationary point has been reached in terms of the distribution of
weight vectors. Then (and only then) do we decrease the rate such as to obtain a higher
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quality proxy to a good local minimum. The example below shows how this can produce
ever slightly better solutions.

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})

train(net, train_iter, test_iter, num_epochs, loss, trainer, device)

train loss 0.194, train acc 0.927, test acc 0.887

Cosine Scheduler
A rather perplexing heuristic was proposed by Loshchilov and Hutter (2016). It relies on
the observation that we might not want to decrease the learning rate too drastically in the
beginning and moreover, that we might want to “refine” the solution in the end using a very
small learning rate. This results in a cosine-like schedule with the following functional
form for learning rates in the range 𝑡 ∈ [0, 𝑇].

𝜂𝑡 = 𝜂𝑇 +
𝜂0 − 𝜂𝑇

2
(1 + cos(𝜋𝑡/𝑇)) (12.11.1)

Here 𝜂0 is the initial learning rate, 𝜂𝑇 is the target rate at time 𝑇 . Furthermore, for 𝑡 > 𝑇
we simply pin the value to 𝜂𝑇 without increasing it again. In the following example, we set
the max update step 𝑇 = 20.

scheduler = lr_scheduler.CosineScheduler(max_update=20, base_lr=0.3,
final_lr=0.01)

d2l.plot(np.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])
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In the context of computer vision this schedule can lead to improved results. Note, though,
that such improvements are not guaranteed (as can be seen below).

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})

train(net, train_iter, test_iter, num_epochs, loss, trainer, device)

train loss 0.343, train acc 0.878, test acc 0.859

Warmup
In some cases initializing the parameters is not sufficient to guarantee a good solution. This
is particularly a problem for some advanced network designs that may lead to unstable
optimization problems. We could address this by choosing a sufficiently small learning
rate to prevent divergence in the beginning. Unfortunately this means that progress is slow.
Conversely, a large learning rate initially leads to divergence.

A rather simple fix for this dilemma is to use awarmup period duringwhich the learning rate
increases to its initial maximum and to cool down the rate until the end of the optimization
process. For simplicity one typically uses a linear increase for this purpose. This leads to
a schedule of the form indicated below.

scheduler = lr_scheduler.CosineScheduler(20, warmup_steps=5, base_lr=0.3,
final_lr=0.01)

d2l.plot(np.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])
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Note that the network converges better initially (in particular observe the performance dur-
ing the first 5 epochs).

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})

train(net, train_iter, test_iter, num_epochs, loss, trainer, device)

train loss 0.348, train acc 0.874, test acc 0.871

Warmup can be applied to any scheduler (not just cosine). For a more detailed discussion
of learning rate schedules and many more experiments see also (Gotmare et al., 2018). In
particular they find that a warmup phase limits the amount of divergence of parameters
in very deep networks. This makes intuitively sense since we would expect significant
divergence due to random initialization in those parts of the network that take the most
time to make progress in the beginning.

12.11.4 Summary
• Decreasing the learning rate during training can lead to improved accuracy and (most

perplexingly) reduced overfitting of the model.

• A piecewise decrease of the learning rate whenever progress has plateaued is effective
in practice. Essentially this ensures that we converge efficiently to a suitable solution
and only then reduce the inherent variance of the parameters by reducing the learning
rate.
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• Cosine schedulers are popular for some computer vision problems. See e.g., GluonCV
180 for details of such a scheduler.

• A warmup period before optimization can prevent divergence.

• Optimization serves multiple purposes in deep learning. Besides minimizing the training
objective, different choices of optimization algorithms and learning rate scheduling
can lead to rather different amounts of generalization and overfitting on the test set
(for the same amount of training error).

12.11.5 Exercises
1. Experiment with the optimization behavior for a given fixed learning rate. What is the

best model you can obtain this way?

2. How does convergence change if you change the exponent of the decrease in the learning
rate? Use PolyScheduler for your convenience in the experiments.

3. Apply the cosine scheduler to large computer vision problems, e.g., training ImageNet.
How does it affect performance relative to other schedulers?

4. How long should warmup last?

5. Can you connect optimization and sampling? Start by using results from Welling and
Teh (2011) on Stochastic Gradient Langevin Dynamics.

Discussions181 .

http://gluon-cv.mxnet.io
https://discuss.d2l.ai/t/359


13 Computational Performance

In deep learning, datasets and models are usually large, which involves heavy computa-
tion. Therefore, computational performance matters a lot. This chapter will focus on the
major factors that affect computational performance: imperative programming, symbolic
programming, asynchronous computing, automatic parallelism, and multi-GPU computa-
tion. By studying this chapter, you may further improve computational performance of
those models implemented in the previous chapters, for example, by reducing training time
without affecting accuracy.

13.1 Compilers and Interpreters

So far, this book has focused on imperative programming, which makes use of statements
such as print, +, and if to change a program’s state. Consider the following example of a
simple imperative program.

def add(a, b):
return a + b

def fancy_func(a, b, c, d):
e = add(a, b)
f = add(c, d)
g = add(e, f)
return g

print(fancy_func(1, 2, 3, 4))

10

Python is an interpreted language. When evaluating the above fancy_func function it
performs the operations making up the function’s body in sequence. That is, it will evaluate
e = add(a, b) and store the results as variable e, thereby changing the program’s state.
The next two statements f = add(c, d) and g = add(e, f) will be executed similarly,
performing additions and storing the results as variables. Fig. 13.1.1 illustrates the flow of
data.

547
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tFig. 13.1.1 Data flow in an imperative program.

Although imperative programming is convenient, it may be inefficient. On the one hand,
even if the add function is repeatedly called throughout fancy_func, Python will execute
the three function calls individually. If these are executed, say, on a GPU (or even on mul-
tiple GPUs), the overhead arising from the Python interpreter can become overwhelming.
Moreover, it will need to save the variable values of e and f until all the statements in
fancy_func have been executed. This is because we do not know whether the variables e
and f will be used by other parts of the program after the statements e = add(a, b) and
f = add(c, d) are executed.

13.1.1 Symbolic Programming
Consider the alternative, symbolic programming, where computation is usually performed
only once the process has been fully defined. This strategy is used bymultiple deep learning
frameworks, including Theano and TensorFlow (the latter has acquired imperative exten-
sions). It usually involves the following steps:

1. Define the operations to be executed.

2. Compile the operations into an executable program.

3. Provide the required inputs and call the compiled program for execution.

This allows for a significant amount of optimization. First, we can skip the Python inter-
preter in many cases, thus removing a performance bottleneck that can become significant
on multiple fast GPUs paired with a single Python thread on a CPU. Second, a compiler
might optimize and rewrite the above code into print((1 + 2) + (3 + 4)) or even
print(10). This is possible since a compiler gets to see the full code before turning it into
machine instructions. For instance, it can release memory (or never allocate it) whenever a
variable is no longer needed. Or it can transform the code entirely into an equivalent piece.
To get a better idea, consider the following simulation of imperative programming (it is
Python after all) below.

def add_():
return '''

def add(a, b):
return a + b

'''

def fancy_func_():
return '''

(continues on next page)
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(continued from previous page)

def fancy_func(a, b, c, d):
e = add(a, b)
f = add(c, d)
g = add(e, f)
return g

'''

def evoke_():
return add_() + fancy_func_() + 'print(fancy_func(1, 2, 3, 4))'

prog = evoke_()
print(prog)
y = compile(prog, '', 'exec')
exec(y)

def add(a, b):
return a + b

def fancy_func(a, b, c, d):
e = add(a, b)
f = add(c, d)
g = add(e, f)
return g

print(fancy_func(1, 2, 3, 4))
10

The differences between imperative (interpreted) programming and symbolic programming
are as follows:

• Imperative programming is easier. When imperative programming is used in Python,
the majority of the code is straightforward and easy to write. It is also easier to de-
bug imperative programming code. This is because it is easier to obtain and print all
relevant intermediate variable values, or use Python’s built-in debugging tools.

• Symbolic programming is more efficient and easier to port. Symbolic programming
makes it easier to optimize the code during compilation, while also having the ability
to port the program into a format independent of Python. This allows the program to
be run in a non-Python environment, thus avoiding any potential performance issues
related to the Python interpreter.

13.1.2 Hybrid Programming
Historically most deep learning frameworks choose between an imperative or a symbolic
approach. For example, Theano, TensorFlow (inspired by the former), Keras, and CNTK
formulate models symbolically. Conversely, Chainer and PyTorch take an imperative ap-
proach. An imperativemodewas added to TensorFlow 2.0 andKeras in later revisions.

When designing Gluon, developers considered whether it would be possible to combine the
benefits of both programming paradigms. This led to a hybrid model that lets users develop
and debug with pure imperative programming, while having the ability to convert most
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programs into symbolic programs to be run when product-level computing performance
and deployment are required.

In practice this means that we build models using the HybridBlock or HybridSequential
class. By default, either of them is executed in the same way the Block or Sequential
class is executed in imperative programming. The HybridSequential class is a subclass
of HybridBlock (just like Sequential subclasses Block). When the hybridize function
is called, Gluon compiles the model into the form used in symbolic programming. This al-
lows one to optimize the computation-intensive components without sacrifices in the way a
model is implemented. We will illustrate the benefits below, focusing on sequential models
and blocks.

13.1.3 Hybridizing the Sequential Class
The easiest way to get a feel for how hybridization works is to consider deep networks with
multiple layers. Conventionally the Python interpreter will need to execute the code for all
layers to generate an instruction that can then be forwarded to a CPU or a GPU. For a single
(fast) computing device this does not cause any major issues. On the other hand, if we use
an advanced 8-GPU server such as an AWS P3dn.24xlarge instance Python will struggle to
keep all GPUs busy. The single-threaded Python interpreter becomes the bottleneck here.
Let’s see how we can address this for significant parts of the code by replacing Sequential
with HybridSequential. We begin by defining a simple MLP.

from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

# Factory for networks
def get_net():

net = nn.HybridSequential()
net.add(nn.Dense(256, activation='relu'),

nn.Dense(128, activation='relu'),
nn.Dense(2))

net.initialize()
return net

x = np.random.normal(size=(1, 512))
net = get_net()
net(x)

[22:07:10] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([[ 0.16526175, -0.14005634]])

By calling the hybridize function, we are able to compile and optimize the computation
in the MLP. The model’s computation result remains unchanged.
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net.hybridize()
net(x)

array([[ 0.16526175, -0.14005634]])

This seems almost too good to be true: simply designate a block to be HybridSequential,
write the same code as before and invoke hybridize. Once this happens the network is
optimized (we will benchmark the performance below). Unfortunately this does not work
magically for every layer. That said, a layer will not be optimized if it inherits from the
Block class instead of the HybridBlock class.

Acceleration by Hybridization
To demonstrate the performance improvement gained by compilation we compare the time
needed to evaluate net(x) before and after hybridization. Let’s define a class to measure
this time first. It will come handy throughout the chapter as we set out to measure (and
improve) performance.

#@save
class Benchmark:

"""For measuring running time."""
def __init__(self, description='Done'):

self.description = description

def __enter__(self):
self.timer = d2l.Timer()
return self

def __exit__(self, *args):
print(f'{self.description}: {self.timer.stop():.4f} sec')

Now we can invoke the network twice, once with and once without hybridization.

net = get_net()
with Benchmark('Without hybridization'):

for i in range(1000): net(x)
npx.waitall()

net.hybridize()
with Benchmark('With hybridization'):

for i in range(1000): net(x)
npx.waitall()

Without hybridization: 0.7242 sec
With hybridization: 0.4670 sec

As is observed in the above results, after a HybridSequential instance calls the hy-
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bridize function, computing performance is improved through the use of symbolic pro-
gramming.

Serialization
One of the benefits of compiling the models is that we can serialize (save) the model and
its parameters to disk. This allows us to store a model in a manner that is independent of
the front-end language of choice. This allows us to deploy trained models to other devices
and easily use other front-end programming languages. At the same time the code is often
faster than what can be achieved in imperative programming. Let’s see the export function
in action.

net.export('my_mlp')
!ls -lh my_mlp*

-rw-r--r-- 1 ci ci 643K Aug 18 22:07 my_mlp-0000.params
-rw-r--r-- 1 ci ci 3.2K Aug 18 22:07 my_mlp-symbol.json

The model is decomposed into a (large binary) parameter file and a JSON description of the
program required to execute the model computation. The files can be read by other front-
end languages supported by Python or MXNet, such as C++, R, Scala, and Perl. Let’s have
a look at the first few lines in the model description.

!head my_mlp-symbol.json

{
"nodes": [

{
"op": "null",
"name": "data",
"inputs": []

},
{

"op": "null",
"name": "dense3_weight",

Earlier, we demonstrated that, after calling the hybridize function, the model is able to
achieve superior computing performance and portability. Note, though that hybridization
can affect model flexibility, in particular in terms of control flow.

Besides, contrary to the Block instance, which needs to use the forward function, for a
HybridBlock instance we need to use the hybrid_forward function.

class HybridNet(nn.HybridBlock):
def __init__(self, **kwargs):

super(HybridNet, self).__init__(**kwargs)
self.hidden = nn.Dense(4)

(continues on next page)
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(continued from previous page)

self.output = nn.Dense(2)

def hybrid_forward(self, F, x):
print('module F: ', F)
print('value x: ', x)
x = F.npx.relu(self.hidden(x))
print('result : ', x)
return self.output(x)

The code above implements a simple network with 4 hidden units and 2 outputs. The hy-
brid_forward function takes an additional argument F. This is needed since, depending on
whether the code has been hybridized or not, it will use a slightly different library (ndarray
or symbol) for processing. Both classes perform very similar functions and MXNet auto-
matically determines the argument. To understand what is going on we print the arguments
as part of the function invocation.

net = HybridNet()
net.initialize()
x = np.random.normal(size=(1, 3))
net(x)

module F: <module 'mxnet.ndarray' from '/opt/mxnet/python/mxnet/ndarray/__
↩→init__.py'>
value x: [[-0.6338663 0.40156594 0.46456942]]
result : [[0.01641375 0. 0. 0. ]]

array([[0.00097611, 0.00019453]])

Repeating the forward computation will lead to the same output (we omit details). Now
let’s see what happens if we invoke the hybridize function.

net.hybridize()
net(x)

module F: <module 'mxnet.symbol' from '/opt/mxnet/python/mxnet/symbol/__init__
↩→.py'>
value x: <_Symbol data>
result : <_Symbol hybridnet0_relu0>

array([[0.00097611, 0.00019453]])

Instead of using ndarray we now use the symbolmodule for F. Moreover, even though the
input is of ndarray type, the data flowing through the network is now converted to symbol
type as part of the compilation process. Repeating the function call leads to a surprising
outcome:
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net(x)

array([[0.00097611, 0.00019453]])

This is quite different from what we saw previously. All print statements, as defined in
hybrid_forward, are omitted. Indeed, after hybridization the execution of net(x) does
not involve the Python interpreter any longer. This means that any spurious Python code
is omitted (such as print statements) in favor of a much more streamlined execution and
better performance. Instead, MXNet directly calls the C++ backend. Also note that some
functions are not supported in the symbol module (e.g., asnumpy) and operations in-place
such as a += b and a[:] = a + b must be rewritten as a = a + b. Nonetheless,
compilation of models is worth the effort whenever speed matters. The benefit can range
from small percentage points to more than twice the speed, depending on the complexity
of the model, the speed of the CPU, and the speed and number of GPUs.

13.1.4 Summary
• Imperative programming makes it easy to design new models since it is possible to write

code with control flow and the ability to use a large amount of the Python software
ecosystem.

• Symbolic programming requires that we specify the program and compile it before exe-
cuting it. The benefit is improved performance.

• MXNet is able to combine the advantages of both approaches as needed.

• Models constructed by the HybridSequential and HybridBlock classes are able to con-
vert imperative programs into symbolic programs by calling the hybridize function.

13.1.5 Exercises
1. Add x.asnumpy() to the first line of the hybrid_forward function of the HybridNet

class in this section. Execute the code and observe the errors you encounter. Why do
they happen?

2. What happens if we add control flow, i.e., the Python statements if and for in the
hybrid_forward function?

3. Review the models that interest you in the previous chapters. Can you improve their
computational performance by reimplementing them?

Discussions182 .
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13.2 Asynchronous Computation

Today’s computers are highly parallel systems, consisting of multiple CPU cores (often
multiple threads per core), multiple processing elements per GPU, and oftenmultiple GPUs
per device. In short, we can process many different things at the same time, often on differ-
ent devices. Unfortunately Python is not a great way of writing parallel and asynchronous
code, at least not without some extra help. After all, Python is single-threaded and this is
unlikely to change in the future. Deep learning frameworks such as MXNet and Tensor-
Flow adopt an asynchronous programming model to improve performance, while PyTorch
uses Python’s own scheduler leading to a different performance trade-off. For PyTorch, by
default, GPU operations are asynchronous. When you call a function that uses the GPU, the
operations are enqueued to the particular device, but not necessarily executed until later.
This allows us to execute more computations in parallel, including operations on the CPU
or other GPUs.

Hence, understanding how asynchronous programming works helps us to develop more
efficient programs, by proactively reducing computational requirements and mutual de-
pendencies. This allows us to reduce memory overhead and increase processor utiliza-
tion.

import os
import subprocess
import numpy
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

13.2.1 Asynchrony via Backend
For a warmup consider the following toy problem: we want to generate a random matrix
and multiply it. Let’s do that both in NumPy and in mxnet.np to see the difference.

with d2l.Benchmark('numpy'):
for _ in range(10):

a = numpy.random.normal(size=(1000, 1000))
b = numpy.dot(a, a)

with d2l.Benchmark('mxnet.np'):
for _ in range(10):

a = np.random.normal(size=(1000, 1000))
b = np.dot(a, a)

numpy: 0.8850 sec

(continues on next page)



556 Computational Performance

(continued from previous page)

mxnet.np: 0.0164 sec
[21:49:14] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

The benchmark output via MXNet is orders of magnitude faster. Since both are executed
on the same processor something else must be going on. Forcing MXNet to finish all the
backend computation prior to returning shows what happened previously: computation is
executed by the backend while the frontend returns control to Python.

with d2l.Benchmark():
for _ in range(10):

a = np.random.normal(size=(1000, 1000))
b = np.dot(a, a)

npx.waitall()

Done: 1.4073 sec

Broadly speaking, MXNet has a frontend for direct interactions with users, e.g., via Python,
as well as a backend used by the system to perform the computation. As shown in Fig.
13.2.1, users can write MXNet programs in various frontend languages, such as Python,
R, Scala, and C++. Regardless of the frontend programming language used, the execution
of MXNet programs occurs primarily in the backend of C++ implementations. Operations
issued by the frontend language are passed on to the backend for execution. The backend
manages its own threads that continuously collect and execute queued tasks. Note that for
this to work the backend must be able to keep track of the dependencies between various
steps in the computational graph. Hence, it is not possible to parallelize operations that
depend on each other.

tFig. 13.2.1 Programming language frontends and deep learning framework backends.

Let’s look at another toy example to understand the dependency graph a bit better.

x = np.ones((1, 2))
y = np.ones((1, 2))

(continues on next page)
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(continued from previous page)

z = x * y + 2
z

array([[3., 3.]])

tFig. 13.2.2 The backend tracks dependencies between various steps in the computational graph.

The code snippet above is also illustrated in Fig. 13.2.2. Whenever the Python frontend
thread executes one of the first three statements, it simply returns the task to the backend
queue. When the last statement’s results need to be printed, the Python frontend thread
will wait for the C++ backend thread to finish computing the result of the variable z. One
benefit of this design is that the Python frontend thread does not need to perform actual
computations. Thus, there is little impact on the program’s overall performance, regardless
of Python’s performance. Fig. 13.2.3 illustrates how frontend and backend interact.

tFig. 13.2.3 Interactions of the frontend and backend.

13.2.2 Barriers and Blockers
There are a number of operations that will force Python to wait for completion:

• Most obviously npx.waitall() waits until all computation has completed, regardless
of when the compute instructions were issued. In practice it is a bad idea to use this
operator unless absolutely necessary since it can lead to poor performance.

• If we just want towait until a specific variable is availablewe can call z.wait_to_read().
In this case MXNet blocks return to Python until the variable z has been computed.
Other computation may well continue afterwards.

Let’s see how this works in practice.
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with d2l.Benchmark('waitall'):
b = np.dot(a, a)
npx.waitall()

with d2l.Benchmark('wait_to_read'):
b = np.dot(a, a)
b.wait_to_read()

waitall: 0.0180 sec
wait_to_read: 0.0189 sec

Both operations take approximately the same time to complete. Besides the obvious block-
ing operations we recommend that you are aware of implicit blockers. Printing a vari-
able clearly requires the variable to be available and is thus a blocker. Last, conversions
to NumPy via z.asnumpy() and conversions to scalars via z.item() are blocking, since
NumPy has no notion of asynchrony. It needs access to the values just like the print

function.

Copying small amounts of data frequently from MXNet’s scope to NumPy and back can
destroy performance of an otherwise efficient code, since each such operation requires the
computational graph to evaluate all intermediate results needed to get the relevant term
before anything else can be done.

with d2l.Benchmark('numpy conversion'):
b = np.dot(a, a)
b.asnumpy()

with d2l.Benchmark('scalar conversion'):
b = np.dot(a, a)
b.sum().item()

numpy conversion: 0.0340 sec
scalar conversion: 0.0445 sec

13.2.3 Improving Computation
On a heavily multithreaded system (even regular laptops have 4 threads or more and on
multi-socket servers this number can exceed 256) the overhead of scheduling operations can
become significant. This is why it is highly desirable to have computation and scheduling
occur asynchronously and in parallel. To illustrate the benefit of doing so let’s see what
happens if we increment a variable by 1multiple times, both in sequence or asynchronously.
We simulate synchronous execution by inserting a wait_to_read barrier in between each
addition.

with d2l.Benchmark('synchronous'):
for _ in range(10000):

(continues on next page)
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(continued from previous page)

y = x + 1
y.wait_to_read()

with d2l.Benchmark('asynchronous'):
for _ in range(10000):

y = x + 1
npx.waitall()

synchronous: 3.1623 sec
asynchronous: 0.9288 sec

A slightly simplified interaction between the Python frontend thread and the C++ backend
thread can be summarized as follows: 1. The frontend orders the backend to insert the
computation task y = x + 1 into the queue. 1. The backend then receives the computation
tasks from the queue and performs the actual computations. 1. The backend then returns
the computation results to the frontend. Assume that the durations of these three stages
are 𝑡1, 𝑡2 and 𝑡3, respectively. If we do not use asynchronous programming, the total time
taken to perform 10000 computations is approximately 10000(𝑡1 + 𝑡2 + 𝑡3). If asynchronous
programming is used, the total time taken to perform 10000 computations can be reduced
to 𝑡1 + 10000𝑡2 + 𝑡3 (assuming 10000𝑡2 > 9999𝑡1), since the frontend does not have to wait
for the backend to return computation results for each loop.

13.2.4 Summary
• Deep learning frameworks may decouple the Python frontend from an execution back-

end. This allows for fast asynchronous insertion of commands into the backend and
associated parallelism.

• Asynchrony leads to a rather responsive frontend. However, use caution not to overfill
the task queue since it may lead to excessive memory consumption. It is recommended
to synchronize for each minibatch to keep frontend and backend approximately syn-
chronized.

• Chip vendors offer sophisticated performance analysis tools to obtain a much more fine-
grained insight into the efficiency of deep learning.

• Be aware of the fact that conversions from MXNet’s memory management to Python
will force the backend to wait until the specific variable is ready. Functions such as
print, asnumpy and item all have this effect. This can be desirable but a careless use
of synchronization can ruin performance.

13.2.5 Exercises
1. We mentioned above that using asynchronous computation can reduce the total amount

of time needed to perform 10000 computations to 𝑡1 + 10000𝑡2 + 𝑡3. Why do we have to
assume 10000𝑡2 > 9999𝑡1 here?
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2. Measure the difference between waitall and wait_to_read. Hint: perform a number
of instructions and synchronize for an intermediate result.

Discussions183 .

13.3 Automatic Parallelism

Deep learning frameworks (e.g., MXNet and PyTorch) automatically construct computa-
tional graphs at the backend. Using a computational graph, the system is aware of all the
dependencies, and can selectively execute multiple non-interdependent tasks in parallel to
improve speed. For instance, Fig. 13.2.2 in Section 13.2 initializes two variables indepen-
dently. Consequently the system can choose to execute them in parallel.

Typically, a single operator will use all the computational resources on all CPUs or on a sin-
gle GPU. For example, the dot operator will use all cores (and threads) on all CPUs, even if
there are multiple CPU processors on a single machine. The same applies to a single GPU.
Hence parallelization is not quite so useful for single-device computers. With multiple de-
vices things matter more. While parallelization is typically most relevant between multiple
GPUs, adding the local CPU will increase performance slightly. For example, see Hadjis et
al. (2016) that focuses on training computer vision models combining a GPU and a CPU.
With the convenience of an automatically parallelizing framework we can accomplish the
same goal in a few lines of Python code. More broadly, our discussion of automatic parallel
computation focuses on parallel computation using both CPUs and GPUs, as well as the
parallelization of computation and communication.

Note that we need at least two GPUs to run the experiments in this section.

from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

13.3.1 Parallel Computation on GPUs
Let’s start by defining a reference workload to test: the run function below performs 10
matrix-matrix multiplications on the device of our choice using data allocated into two
variables: x_gpu1 and x_gpu2.

devices = d2l.try_all_gpus()
def run(x):

return [x.dot(x) for _ in range(50)]

x_gpu1 = np.random.uniform(size=(4000, 4000), ctx=devices[0])
x_gpu2 = np.random.uniform(size=(4000, 4000), ctx=devices[1])

https://discuss.d2l.ai/t/361
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[22:23:34] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[22:23:34] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

Now we apply the function to the data. To ensure that caching does not play a role in
the results we warm up the devices by performing a single pass on either of them prior to
measuring.

run(x_gpu1) # Warm-up both devices
run(x_gpu2)
npx.waitall()

with d2l.Benchmark('GPU1 time'):
run(x_gpu1)
npx.waitall()

with d2l.Benchmark('GPU2 time'):
run(x_gpu2)
npx.waitall()

GPU1 time: 0.4465 sec
GPU2 time: 0.4519 sec

If we remove the waitall statement between both tasks the system is free to parallelize
computation on both devices automatically.

with d2l.Benchmark('GPU1 & GPU2'):
run(x_gpu1)
run(x_gpu2)
npx.waitall()

GPU1 & GPU2: 0.4535 sec

In the above case the total execution time is less than the sum of its parts, since the deep
learning framework automatically schedules computation on both GPU devices without the
need for sophisticated code on behalf of the user.

13.3.2 Parallel Computation and Communication
In many cases we need to move data between different devices, say between the CPU and
GPU, or between different GPUs. For instance, this occurs when we want to perform dis-
tributed optimization where we need to aggregate the gradients over multiple accelerator
cards. Let’s simulate this by computing on the GPU and then copying the results back to
the CPU.
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def copy_to_cpu(x):
return [y.copyto(npx.cpu()) for y in x]

with d2l.Benchmark('Run on GPU1'):
y = run(x_gpu1)
npx.waitall()

with d2l.Benchmark('Copy to CPU'):
y_cpu = copy_to_cpu(y)
npx.waitall()

Run on GPU1: 0.4788 sec
[22:23:37] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
Copy to CPU: 2.4304 sec

This is somewhat inefficient. Note that we could already start copying parts of y to the
CPU while the remainder of the list is still being computed. This situation occurs, e.g.,
when we compute the gradient on a minibatch. The gradients of some of the parameters
will be available earlier than that of others. Hence it works to our advantage to start using
PCI-Express bus bandwidth while the GPU is still running. Removing waitall between
both parts allows us to simulate this scenario.

with d2l.Benchmark('Run on GPU1 and copy to CPU'):
y = run(x_gpu1)
y_cpu = copy_to_cpu(y)
npx.waitall()

Run on GPU1 and copy to CPU: 0.4530 sec

The total time required for both operations is (as expected) less than the sum of their parts.
Note that this task is different from parallel computation as it uses a different resource: the
bus between the CPU and GPUs. In fact, we could compute on both devices and communi-
cate, all at the same time. As noted above, there is a dependency between computation and
communication: y[i] must be computed before it can be copied to the CPU. Fortunately,
the system can copy y[i-1]while computing y[i] to reduce the total running time.

We conclude with an illustration of the computational graph and its dependencies for a
simple two-layer MLP when training on a CPU and two GPUs, as depicted in Fig. 13.3.1. It
would be quite painful to schedule the parallel program resulting from this manually. This is
where it is advantageous to have a graph-based computing backend for optimization.

13.3.3 Summary
• Modern systems have a variety of devices, such as multiple GPUs and CPUs. They can

be used in parallel, asynchronously.

• Modern systems also have a variety of resources for communication, such as PCI Ex-
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tFig. 13.3.1 The computational graph and its dependencies of a two-layer MLP on a CPU and two
GPUs.

184

185

press, storage (typically solid-state drives or via networks), and network bandwidth.
They can be used in parallel for peak efficiency.

• The backend can improve performance through automatic parallel computation and com-
munication.

13.3.4 Exercises
1. Eight operations were performed in the run function defined in this section. There

are no dependencies between them. Design an experiment to see if the deep learning
framework will automatically execute them in parallel.

2. When the workload of an individual operator is sufficiently small, parallelization can
help even on a single CPU or GPU. Design an experiment to verify this.

3. Design an experiment that uses parallel computation on CPUs, GPUs, and communica-
tion between both devices.

4. Use a debugger such as NVIDIA’s Nsight184 to verify that your code is efficient.

5. Designing computation tasks that include more complex data dependencies, and run
experiments to see if you can obtain the correct results while improving performance.

Discussions185 .

https://developer.nvidia.com/nsight-compute-2019_5
https://discuss.d2l.ai/t/362
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13.4 Hardware

Building systems with great performance requires a good understanding of the algorithms
and models to capture the statistical aspects of the problem. At the same time it is also
indispensable to have at least a modicum of knowledge of the underlying hardware. The
current section is no substitute for a proper course on hardware and system design. Instead,
it might serve as a starting point for understanding why some algorithms are more efficient
than others and how to achieve good throughput. A good design can easily make a differ-
ence of an order of magnitude and, in turn, this can make the difference between being able
to train a network (e.g., in a week) and not at all (in 3 months, thus missing the deadline).
We will start by looking at computers. Then we will zoom in to look more carefully at
CPUs and GPUs. Lastly we zoom out to review how multiple computers are connected in
a server center or in the cloud.

tFig. 13.4.1 Latency Numbers that every programmer should know.

Impatient readers may be able to get by with Fig. 13.4.1. It is taken from Colin Scott’s inter-
active post186 that gives a good overview of the progress over the past decade. The original
numbers are due to Jeff Dean’s Stanford talk from 2010187 . The discussion below explains
some of the rationale for these numbers and how they can guide us in designing algorithms.
The discussion below is very high level and cursory. It is clearly no substitute for a proper
course but rather just meant to provide enough information for a statistical modeler to make
suitable design decisions. For an in-depth overview of computer architecture we refer the
reader to (Hennessy and Patterson, 2011) or a recent course on the subject, such as the one
by Arste Asanovic188 .

13.4.1 Computers
Most deep learning researchers and practitioners have access to a computer with a fair
amount of memory, computation, some form of an accelerator such as a GPU, or multiples
thereof. A computer consists of the following key components:

• A processor (also referred to as a CPU) that is able to execute the programs we give it (in

https://people.eecs.berkeley.edu/%7Ercs/research/interactive_latency.html
https://people.eecs.berkeley.edu/%7Ercs/research/interactive_latency.html
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf
http://inst.eecs.berkeley.edu/%7Ecs152/sp19/
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addition to running an operating system and many other things), typically consisting
of 8 or more cores.

• Memory (RAM) to store and retrieve the results from computation, such as weight vec-
tors and activations, and training data.

• An Ethernet network connection (sometimes multiple) with speeds ranging from 1 GB/s
to 100 GB/s. On high end servers more advanced interconnects can be found.

• A high speed expansion bus (PCIe) to connect the system to one or more GPUs. Servers
have up to 8 accelerators, often connected in an advanced topology, while desktop
systems have 1 or 2, depending on the budget of the user and the size of the power
supply.

• Durable storage, such as a magnetic hard disk drive, a solid state drive, in many cases
connected using the PCIe bus. It provides efficient transfer of training data to the
system and storage of intermediate checkpoints as needed.

tFig. 13.4.2 Connectivity of components of a computer.

As Fig. 13.4.2 indicates, most components (network, GPU, and storage) are connected to
the CPU across the PCIe bus. It consists of multiple lanes that are directly attached to the
CPU. For instance AMD’s Threadripper 3 has 64 PCIe 4.0 lanes, each of which is capable
16 Gbit/s data transfer in both directions. The memory is directly attached to the CPU with
a total bandwidth of up to 100 GB/s.

Whenwe run code on a computer we need to shuffle data to the processors (CPUs or GPUs),
perform computation, and then move the results off the processor back to RAM and durable
storage. Hence, in order to get good performance we need to make sure that this works
seamlessly without any one of the systems becoming a major bottleneck. For instance, if
we cannot load images quickly enough the processorwill not have anywork to do. Likewise,
if we cannot move matrices quickly enough to the CPU (or GPU), its processing elements
will starve. Finally, if we want to synchronize multiple computers across the network, the
latter should not slow down computation. One option is to interleave communication and
computation. Let’s have a look at the various components in more detail.

13.4.2 Memory
At its most basic memory is used to store data that needs to be readily accessible. At
present CPU RAM is typically of the DDR4 189 variety, offering 20–25 GB/s bandwidth
per module. Each module has a 64-bit-wide bus. Typically pairs of memory modules are
used to allow for multiple channels. CPUs have between 2 and 4 memory channels, i.e.,
they have between 4 0GB/s and 100 GB/s peak memory bandwidth. Often there are two
banks per channel. For instance AMD’s Zen 3 Threadripper has 8 slots.

https://en.wikipedia.org/wiki/DDR4_SDRAM
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While these numbers are impressive, indeed, they only tell part of the story. When we
want to read a portion from memory we first need to tell the memory module where the
information can be found. That is, we first need to send the address to RAM. Once this
is accomplished we can choose to read just a single 64 bit record or a long sequence of
records. The latter is called burst read. In a nutshell, sending an address to memory and
setting up the transfer takes approximately 100 ns (details depend on the specific timing
coefficients of the memory chips used), every subsequent transfer takes only 0.2 ns. In
short, the first read is 500 times as expensive as subsequent ones! Note that we could
perform up to 10,000,000 random reads per second. This suggests that we avoid random
memory access as far as possible and use burst reads (and writes) instead.

Matters are a bit more complex when we take into account that we have multiple banks.
Each bank can read memory largely independently. This means two things. On the one
hand, the effective number of random reads is up to 4 times higher, provided that they are
spread evenly across memory. It also means that it is still a bad idea to perform random
reads since burst reads are 4 times faster, too. On the other hand, due to memory alignment
to 64 bit boundaries it is a good idea to align any data structures with the same boundaries.
Compilers do this pretty much automatically190 when the appropriate flags are set. Curious
readers are encouraged to review a lecture on DRAMs such as the one by Zeshan Chishti
191 .

GPUmemory is subject to even higher bandwidth requirements since they have many more
processing elements than CPUs. By and large there are two options to address them. The
first is to make the memory bus significantly wider. For instance, NVIDIA’s RTX 2080
Ti has a 352-bit-wide bus. This allows for much more information to be transferred at
the same time. Second, GPUs use specific high-performance memory. Consumer-grade
devices, such as NVIDIA’s RTX and Titan series typically use GDDR6192 chips with over
500 GB/s aggregate bandwidth. An alternative is to use HBM (high bandwidth memory)
modules. They use a very different interface and connect directly with GPUs on a dedicated
silicon wafer. This makes them very expensive and their use is typically limited to high-end
server chips, such as the NVIDIA Volta V100 series of accelerators. Quite unsurprisingly,
GPU memory is generally much smaller than CPU memory due to the higher cost of the
former. For our purposes, by and large their performance characteristics are similar, just a
lot faster. We can safely ignore the details for the purpose of this book. They only matter
when tuning GPU kernels for high throughput.

13.4.3 Storage
We saw that some of the key characteristics of RAM are bandwidth and latency. The same
is true for storage devices, just that the differences can be even more extreme.

Hard Disk Drives
Hard disk drives (HDDs) have been in use for over half a century. In a nutshell they contain
a number of spinning platters with heads that can be positioned to read or write at any given
track. High-end disks hold up to 16 TB on 9 platters. One of the key benefits of HDDs

https://en.wikipedia.org/wiki/Data_structure_alignment
http://web.cecs.pdx.edu/%7Ezeshan/ece585_lec5.pdf
https://en.wikipedia.org/wiki/GDDR6_SDRAM
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is that they are relatively inexpensive. One of their many downsides are their typically
catastrophic failure modes and their relatively high read latency.

To understand the latter, consider the fact that HDDs spin at around 7,200 RPM (revolutions
per minute). If they were much faster they would shatter due to the centrifugal force exerted
on the platters. This has a major downside when it comes to accessing a specific sector
on the disk: we need to wait until the platter has rotated in position (we can move the
heads but not accelerate the actual disks). Hence it can take over 8 ms until the requested
data is available. A common way this is expressed is to say that HDDs can operate at
approximately 100 IOPs (input/output operations per second). This number has essentially
remained unchanged for the past two decades. Worse still, it is equally difficult to increase
bandwidth (it is in the order of 100–200 MB/s). After all, each head reads a track of bits,
hence the bit rate only scales with the square root of the information density. As a result,
HDDs are quickly becoming relegated to archival storage and low-grade storage for very
large datasets.

Solid State Drives
Solid state drives (SSDs) use flash memory to store information persistently. This allows
for much faster access to stored records. Modern SSDs can operate at 100,000 to 500,000
IOPs, i.e., up to 3 orders of magnitude faster than HDDs. Furthermore, their bandwidth
can reach 1–3GB/s, i.e., one order of magnitude faster than HDDs. These improvements
sound almost too good to be true. Indeed, they come with the following caveats, due to the
way SSDs are designed.

• SSDs store information in blocks (256KBor larger). They can only bewritten as awhole,
which takes significant time. Consequently bit-wise random writes on SSD have very
poor performance. Likewise, writing data in general takes significant time since the
block has to be read, erased and then rewritten with new information. By now SSD
controllers and firmware have developed algorithms to mitigate this. Nonetheless,
writes can be much slower, in particular for QLC (quad level cell) SSDs. The key
for improved performance is to maintain a queue of operations, to prefer reads and to
write in large blocks if possible.

• Thememory cells in SSDs wear out relatively quickly (often already after a few thousand
writes). Wear-level protection algorithms are able to spread the degradation over many
cells. That said, it is not recommended to use SSDs for swapping files or for large
aggregations of log-files.

• Lastly, the massive increase in bandwidth has forced computer designers to attach SSDs
directly to the PCIe bus. The drives capable of handling this, referred to as NVMe
(Non Volatile Memory enhanced), can use up to 4 PCIe lanes. This amounts to up to
8GB/s on PCIe 4.0.
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Cloud Storage
Cloud storage provides a configurable range of performance. That is, the assignment of
storage to virtual machines is dynamic, both in terms of quantity and in terms of speed,
as chosen by users. We recommend that users increase the provisioned number of IOPs
whenever latency is too high, e.g., during training with many small records.

13.4.4 CPUs
Central processing units (CPUs) are the centerpiece of any computer. They consist of a
number of key components: processor cores that are able to execute machine code, a bus
connecting them (the specific topology differs significantly between processor models, gen-
erations, and vendors), and caches to allow for higher bandwidth and lower latencymemory
access than what is possible by reads from main memory. Lastly, almost all modern CPUs
contain vector processing units to aid with high performance linear algebra and convolu-
tions, as they are common in media processing and machine learning.

tFig. 13.4.3 Intel Skylake consumer quad-core CPU.

Fig. 13.4.3 depicts an Intel Skylake consumer-grade quad-core CPU. It has an integrated
GPU, caches, and a ringbus connecting the four cores. Peripherals, such as Ethernet, WiFi,
Bluetooth, SSD controller, and USB, are either part of the chipset or directly attached
(PCIe) to the CPU.

Microarchitecture
Each of the processor cores consists of a rather sophisticated set of components. While
details differ between generations and vendors, the basic functionality is pretty much stan-
dard. The front-end loads instructions and tries to predict which path will be taken (e.g.,
for control flow). Instructions are then decoded from assembly code to microinstructions.
Assembly code is often not the lowest level code that a processor executes. Instead, com-
plex instructions may be decoded into a set of more lower level operations. These are then
processed by the actual execution core. Often the latter is capable of performing many op-
erations simultaneously. For instance, the ARM Cortex A77 core of Fig. 13.4.4 is able to
perform up to 8 operations simultaneously.
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tFig. 13.4.4 ARM Cortex A77 Microarchitecture.
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This means that efficient programs might be able to perform more than one instruction per
clock cycle, provided that they can be carried out independently. Not all units are created
equal. Some specialize in integer instructions whereas others are optimized for floating
point performance. To increase throughput, the processor might also follow multiple code
paths simultaneously in a branching instruction and then discard the results of the branches
not taken. This is why branch prediction units matter (on the front-end) such that only the
most promising paths are pursued.

Vectorization
Deep learning is extremely compute-hungry. Hence, to make CPUs suitable for machine
learning, one needs to perform many operations in one clock cycle. This is achieved via
vector units. They have different names: on ARM they are called NEON, on x86 they (a
recent generation) are referred to as AVX2193 units. A common aspect is that they are able
to perform SIMD (single instruction multiple data) operations. Fig. 13.4.5 shows how 8
short integers can be added in one clock cycle on ARM.

tFig. 13.4.5 128 bit NEON vectorization.

Depending on architecture choices, such registers are up to 512 bits long, allowing for the
combination of up to 64 pairs of numbers. For instance, we might be multiplying two
numbers and adding them to a third, which is also known as a fused multiply-add. Intel’s
OpenVino 194 uses these to achieve respectable throughput for deep learning on server-
grade CPUs. Note, though, that this number is entirely dwarfed by what GPUs are capable

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://01.org/openvinotoolkit
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of achieving. For instance, NVIDIA’s RTX 2080 Ti has 4,352 CUDA cores, each of which
is capable of processing such an operation at any time.

Cache
Consider the following situation: we have a modest CPU core with 4 cores as depicted in
Fig. 13.4.3 above, running at 2 GHz frequency. Moreover, let’s assume that we have an IPC
(instructions per clock) count of 1 and that the units have AVX2with 256-bit width enabled.
Let’s furthermore assume that at least one of the registers used for AVX2 operations needs
to be retrieved from memory. This means that the CPU consumes 4 × 256 bit = 128 bytes
of data per clock cycle. Unless we are able to transfer 2 × 109 × 128 = 256 × 109 bytes
to the processor per second the processing elements are going to starve. Unfortunately the
memory interface of such a chip only supports 20–40 GB/s data transfer, i.e., one order of
magnitude less. The fix is to avoid loading new data from memory as far as possible and
rather to cache it locally on the CPU. This is where caches come in handy. Commonly the
following names or concepts are used:

• Registers are strictly speaking not part of the cache. They help stage instructions. That
said, CPU registers are memory locations that a CPU can access at clock speed with-
out any delay penalty. CPUs have tens of registers. It is up to the compiler (or pro-
grammer) to use registers efficiently. For instance the C programming language has a
register keyword.

• L1 caches are the first line of defense against high memory bandwidth requirements.
L1 caches are tiny (typical sizes might be 32–64 KB) and often split into data and
instructions caches. When data is found in the L1 cache, access is very fast. If they
cannot be found there, the search progresses down the cache hierarchy.

• L2 caches are the next stop. Depending on architecture design and processor size they
might be exclusive. They might be accessible only by a given core or shared among
multiple cores. L2 caches are larger (typically 256–512 KB per core) and slower than
L1. Furthermore, to access something in L2 we first need to check to realize that the
data is not in L1, which adds a small amount of extra latency.

• L3 caches are shared among multiple cores and can be quite large. AMD’s Epyc 3 server
CPUs have a whopping 256MB of cache spread across multiple chiplets. More typical
numbers are in the 4–8 MB range.

Predicting which memory elements will be needed next is one of the key optimization pa-
rameters in chip design. For instance, it is advisable to traverse memory in a forward direc-
tion since most caching algorithms will try to read ahead rather than backwards. Likewise,
keeping memory access patterns local is a good way of improving performance.

Adding caches is a double-edge sword. On the one hand they ensure that the processor
cores do not starve of data. At the same time they increase chip size, using up area that
otherwise could have been spent on increasing processing power. Moreover, cache misses
can be expensive. Consider theworst case scenario, false sharing, as depicted in Fig. 13.4.6.
A memory location is cached on processor 0 when a thread on processor 1 requests the
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data. To obtain it, processor 0 needs to stop what it is doing, write the information back
to main memory and then let processor 1 read it from memory. During this operation both
processors wait. Quite potentially such code runsmore slowly on multiple processors when
compared with an efficient single-processor implementation. This is one more reason for
why there is a practical limit to cache sizes (besides their physical size).

tFig. 13.4.6 False sharing (image courtesy of Intel).

13.4.5 GPUs and other Accelerators
It is not an exaggeration to claim that deep learning would not have been successful without
GPUs. By the same token, it is quite reasonable to argue that GPU manufacturers’ fortunes
have increased significantly due to deep learning. This co-evolution of hardware and al-
gorithms has led to a situation where for better or worse deep learning is the preferable
statistical modeling paradigm. Hence it pays to understand the specific benefits that GPUs
and related accelerators such as the TPU (Jouppi et al., 2017).

Of note is a distinction that is often made in practice: accelerators are optimized either for
training or inference. For the latter we only need to compute the forward propagation in
a network. No storage of intermediate data is needed for backpropagation. Moreover, we
may not need very precise computation (FP16 or INT8 typically suffice). On the other hand,
during training all intermediate results need storage to compute gradients. Moreover, ac-
cumulating gradients requires higher precision to avoid numerical underflow (or overflow).
This means that FP16 (or mixed precision with FP32) is the minimum requirement. All
of this necessitates faster and larger memory (HBM2 vs. GDDR6) and more processing
power. For instance, NVIDIA’s Turing 195 T4 GPUs are optimized for inference whereas
the V100 GPUs are preferable for training.

Recall vectorization as illustrated in Fig. 13.4.5. Adding vector units to a processor core
allowed us to increase throughput significantly. For example, in the example in Fig. 13.4.5
we were able to perform 16 operations simultaneously. First, what if we added operations
that optimized not just operations between vectors but also betweenmatrices? This strategy
led to tensor cores (to be covered shortly). Second, what if we added many more cores?
In a nutshell, these two strategies summarize the design decisions in GPUs. Fig. 13.4.7
gives an overview of a basic processing block. It contains 16 integer and 16 floating point
units. In addition to that, two tensor cores accelerate a narrow subset of additional op-
erations relevant for deep learning. Each streaming multiprocessor consists of four such
blocks.

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
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tFig. 13.4.7 NVIDIA Turing processing block (image courtesy of NVIDIA).

Next, 12 streaming multiprocessors are grouped into graphics processing clusters which
make up the high-end TU102 processors. Ample memory channels and an L2 cache com-
plement the setup. Fig. 13.4.8 has the relevant details. One of the reasons for designing
such a device is that individual blocks can be added or removed as needed to allow for more
compact chips and to deal with yield issues (faulty modules might not be activated). Fortu-
nately programming such devices is well hidden from the casual deep learning researcher
beneath layers of CUDA and framework code. In particular, more than one of the programs
might well be executed simultaneously on the GPU, provided that there are available re-
sources. Nonetheless it pays to be aware of the limitations of the devices to avoid picking
models that do not fit into device memory.

tFig. 13.4.8 NVIDIA Turing architecture (image courtesy of NVIDIA)

A last aspect that is worth mentioning in more detail are tensor cores. They are an example
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of a recent trend of adding more optimized circuits that are specifically effective for deep
learning. For instance, the TPU added a systolic array (Kung, 1988) for fast matrix multipli-
cation. There the design was to support a very small number (one for the first generation of
TPUs) of large operations. Tensor cores are at the other end. They are optimized for small
operations involving between 4 × 4 and 16 × 16 matrices, depending on their numerical
precision. Fig. 13.4.9 gives an overview of the optimizations.

tFig. 13.4.9 NVIDIA tensor cores in Turing (image courtesy of NVIDIA).

Obviously when optimizing for computation we end up making certain compromises. One
of them is that GPUs are not very good at handling interrupts and sparse data. While there
are notable exceptions, such as Gunrock196 (Wang et al., 2016), the access pattern of sparse
matrices and vectors do not go well with the high bandwidth burst read operations where
GPUs excel. Matching both goals is an area of active research. See e.g., DGL197 , a library
tuned for deep learning on graphs.

13.4.6 Networks and Buses
Whenever a single device is insufficient for optimization we need to transfer data to and
from it to synchronize processing. This is where networks and buses come in handy. We
have a number of design parameters: bandwidth, cost, distance, and flexibility. On one end
we haveWiFi that has a pretty good range, is very easy to use (no wires, after all), cheap but
it offers comparatively mediocre bandwidth and latency. No machine learning researcher
within their right mind would use it to build a cluster of servers. In what follows we focus
on interconnects that are suitable for deep learning.

• PCIe is a dedicated bus for very high bandwidth point-to-point connections (up to 32
GB/s on PCIe 4.0 in a 16-lane slot) per lane. Latency is in the order of single-digit
microseconds (5 μs). PCIe links are precious. Processors only have a limited number
of them: AMD’s EPYC 3 has 128 lanes, Intel’s Xeon has up to 48 lanes per chip;
on desktop-grade CPUs the numbers are 20 (Ryzen 9) and 16 (Core i9) respectively.
Since GPUs have typically 16 lanes, this limits the number of GPUs that can connect

https://github.com/gunrock/gunrock
http://dgl.ai
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to the CPU at full bandwidth. After all, they need to share the links with other high
bandwidth peripherals such as storage and Ethernet. Just like with RAM access, large
bulk transfers are preferable due to reduced packet overhead.

• Ethernet is the most commonly used way of connecting computers. While it is signifi-
cantly slower than PCIe, it is very cheap and resilient to install and covers much longer
distances. Typical bandwidth for low-grade servers is 1 GBit/s. Higher-end devices
(e.g., C5 instances198 in the cloud) offer between 10 and 100 GBit/s bandwidth. As
in all previous cases data transmission has significant overheads. Note that we al-
most never use raw Ethernet directly but rather a protocol that is executed on top of
the physical interconnect (such as UDP or TCP/IP). This adds further overhead. Like
PCIe, Ethernet is designed to connect two devices, e.g., a computer and a switch.

• Switches allow us to connect multiple devices in a manner where any pair of them can
carry out a (typically full bandwidth) point-to-point connection simultaneously. For
instance, Ethernet switches might connect 40 servers at high cross-sectional band-
width. Note that switches are not unique to traditional computer networks. Even PCIe
lanes can be switched199 . This occurs, e.g., to connect a large number of GPUs to a
host processor, as is the case for the P2 instances200 .

• NVLink is an alternative to PCIe when it comes to very high bandwidth interconnects.
It offers up to 300 Gbit/s data transfer rate per link. Server GPUs (Volta V100) have
six links whereas consumer-grade GPUs (RTX 2080 Ti) have only one link, operating
at a reduced 100 Gbit/s rate. We recommend to use NCCL 201 to achieve high data
transfer between GPUs.

13.4.7 More Latency Numbers
The summary in Table 13.4.1 and Table 13.4.2 are from Eliot Eshelman202 who maintains
an updated version of the numbers as a GitHub gist203 .

Table 13.4.1: Common Latency Numbers.

Action Time Notes
L1 cache reference/hit 1.5 ns 4 cycles
Floating-point add/mult/FMA 1.5 ns 4 cycles
L2 cache reference/hit 5 ns 12 ~ 17 cycles
Branch mispredict 6 ns 15 ~ 20 cycles
L3 cache hit (unshared cache) 16 ns 42 cycles
L3 cache hit (shared in another core) 25 ns 65 cycles
Mutex lock/unlock 25 ns
L3 cache hit (modified in another core) 29 ns 75 cycles
L3 cache hit (on a remote CPU socket) 40 ns 100 ~ 300 cycles (40 ~ 116 ns)
QPI hop to a another CPU (per hop) 40 ns
64MB memory ref. (local CPU) 46 ns TinyMemBench on Broadwell E5-2690v4

continues on next page

https://aws.amazon.com/ec2/instance-types/c5/
https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches
https://aws.amazon.com/ec2/instance-types/p2/
https://github.com/NVIDIA/nccl
https://gist.github.com/eshelman
https://gist.github.com/eshelman/343a1c46cb3fba142c1afdcdeec17646
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Table 13.4.1 – continued from previous page
Action Time Notes
64MB memory ref. (remote CPU) 70 ns TinyMemBench on Broadwell E5-2690v4
256MB memory ref. (local CPU) 75 ns TinyMemBench on Broadwell E5-2690v4
Intel Optane random write 94 ns UCSD Non-Volatile Systems Lab
256MB memory ref. (remote CPU) 120 ns TinyMemBench on Broadwell E5-2690v4
Intel Optane random read 305 ns UCSD Non-Volatile Systems Lab
Send 4KB over 100 Gbps HPC fabric 1 μs MVAPICH2 over Intel Omni-Path
Compress 1KB with Google Snappy 3 μs
Send 4KB over 10 Gbps ethernet 10 μs
Write 4KB randomly to NVMe SSD 30 μs DC P3608 NVMe SSD (QOS 99% is 500μs)
Transfer 1MB to/from NVLink GPU 30 μs ~33GB/s on NVIDIA 40GB NVLink
Transfer 1MB to/from PCI-E GPU 80 μs ~12GB/s on PCIe 3.0 x16 link
Read 4KB randomly from NVMe SSD 120 μs DC P3608 NVMe SSD (QOS 99%)
Read 1MB sequentially from NVMe SSD 208 μs ~4.8GB/s DC P3608 NVMe SSD
Write 4KB randomly to SATA SSD 500 μs DC S3510 SATA SSD (QOS 99.9%)
Read 4KB randomly from SATA SSD 500 μs DC S3510 SATA SSD (QOS 99.9%)
Round trip within same data center 500 μs One-way ping is ~250μs
Read 1MB sequentially from SATA SSD 2 ms ~550MB/s DC S3510 SATA SSD
Read 1MB sequentially from disk 5 ms ~200MB/s server HDD
Random Disk Access (seek+rotation) 10 ms
Send packet CA->Netherlands->CA 150 ms

Table 13.4.2: Latency Numbers for NVIDIA Tesla GPUs.
Action Time Notes
GPU Shared Memory access 30 ns 30~90 cycles (bank conflicts add la-

tency)
GPU Global Memory access 200

ns
200~800 cycles

Launch CUDA kernel on GPU 10 μs Host CPU instructs GPU to start kernel
Transfer 1MB to/from NVLink
GPU

30 μs ~33GB/s on NVIDIA 40GB NVLink

Transfer 1MB to/from PCI-E GPU 80 μs ~12GB/s on PCI-Express x16 link

13.4.8 Summary
• Devices have overheads for operations. Hence it is important to aim for a small number

of large transfers rather than many small ones. This applies to RAM, SSDs, networks
and GPUs.

• Vectorization is key for performance. Make sure you are aware of the specific abilities
of your accelerator. E.g., some Intel Xeon CPUs are particularly good for INT8 op-
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erations, NVIDIA Volta GPUs excel at FP16 matrix-matrix operations and NVIDIA
Turing shines at FP16, INT8, and INT4 operations.

• Numerical overflow due to small data types can be a problem during training (and to a
lesser extent during inference).

• Aliasing can significantly degrade performance. For instance, memory alignment on 64
bit CPUs should be done with respect to 64 bit boundaries. On GPUs it is a good idea
to keep convolution sizes aligned, e.g., to tensor cores.

• Match your algorithms to the hardware (e.g., memory footprint, and bandwidth). Great
speedup (orders ofmagnitude) can be achievedwhen fitting the parameters into caches.

• We recommend that you sketch out the performance of a novel algorithm on paper before
verifying the experimental results. Discrepancies of an order-of-magnitude or more
are reasons for concern.

• Use profilers to debug performance bottlenecks.

• Training and inference hardware have different sweet spots in terms of price and perfor-
mance.

13.4.9 Exercises
1. Write C code to test whether there is any difference in speed between accessing memory

aligned or misaligned relative to the external memory interface. Hint: be careful of
caching effects.

2. Test the difference in speed between accessing memory in sequence or with a given
stride.

3. How could you measure the cache sizes on a CPU?

4. Howwould you lay out data across multiple memory channels for maximum bandwidth?
How would you lay it out if you had many small threads?

5. An enterprise-class HDD is spinning at 10,000 rpm. What is the absolutely minimum
time an HDD needs to spend worst case before it can read data (you can assume that
heads move almost instantaneously)? Why are 2.5” HDDs becoming popular for com-
mercial servers (relative to 3.5” and 5.25” drives)?

6. Assume that an HDD manufacturer increases the storage density from 1 Tbit per square
inch to 5 Tbit per square inch. How much information can you store on a ring on a 2.5”
HDD? Is there a difference between the inner and outer tracks?

7. Going from 8 bit to 16 bit data types increases the amount of silicon approximately by
four times. Why? Why might NVIDIA have added INT4 operations to their Turing
GPUs?

8. How much faster is it to read forward through memory vs. reading backwards? Does
this number differ between different computers and CPU vendors? Why? Write C code
and experiment with it.
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9. Can you measure the cache size of your disk? What is it for a typical HDD? Do SSDs
need a cache?

10. Measure the packet overhead when sending messages across the Ethernet. Look up the
difference between UDP and TCP/IP connections.

11. Direct memory access allows devices other than the CPU to write (and read) directly to
(from) memory. Why is this a good idea?

12. Look at the performance numbers for the Turing T4 GPU. Why does the performance
“only” double as you go from FP16 to INT8 and INT4?

13. What is the shortest time it should take for a packet on a round trip between San Fran-
cisco and Amsterdam? Hint: you can assume that the distance is 10,000 km.

Discussions204 .

13.5 Training on Multiple GPUs

So far we discussed how to train models efficiently on CPUs and GPUs. We even showed
how deep learning frameworks allow one to parallelize computation and communication
automatically between them in Section 13.3. We also showed in Section 6.7 how to list
all the available GPUs on a computer using the nvidia-smi command. What we did not
discuss is how to actually parallelize deep learning training. Instead, we implied in pass-
ing that one would somehow split the data across multiple devices and make it work. The
present section fills in the details and shows how to train a network in parallel when starting
from scratch. Details on how to take advantage of functionality in high-level APIs is rele-
gated to Section 13.6. We assume that you are familiar with minibatch stochastic gradient
descent algorithms such as the ones described in Section 12.5.

13.5.1 Splitting the Problem
Let’s start with a simple computer vision problem and a slightly archaic network, e.g., with
multiple layers of convolutions, pooling, and possibly a few fully connected layers in the
end. That is, let’s start with a network that looks quite similar to LeNet (LeCun et al.,
1998) or AlexNet (Krizhevsky et al., 2012). Given multiple GPUs (2 if it is a desktop
server, 4 on an AWS g4dn.12xlarge instance, 8 on a p3.16xlarge, or 16 on a p2.16xlarge),
we want to partition training in a manner as to achieve good speedup while simultaneously
benefitting from simple and reproducible design choices. Multiple GPUs, after all, increase
both memory and computation ability. In a nutshell, we have the following choices, given
a minibatch of training data that we want to classify.

First, we could partition the network across multiple GPUs. That is, each GPU takes as
input the data flowing into a particular layer, processes data across a number of subsequent
layers and then sends the data to the next GPU. This allows us to process data with larger

https://discuss.d2l.ai/t/363
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networks when comparedwith what a single GPU could handle. Besides, memory footprint
per GPU can be well controlled (it is a fraction of the total network footprint).

However, the interface between layers (and thus GPUs) requires tight synchronization. This
can be tricky, in particular if the computational workloads are not properly matched be-
tween layers. The problem is exacerbated for large numbers of GPUs. The interface be-
tween layers also requires large amounts of data transfer, such as activations and gradients.
This may overwhelm the bandwidth of the GPU buses. Moreover, compute-intensive, yet
sequential operations are nontrivial to partition. See e.g., Mirhoseini et al. (2017) for a best
effort in this regard. It remains a difficult problem and it is unclear whether it is possible
to achieve good (linear) scaling on nontrivial problems. We do not recommend it unless
there is excellent framework or operating system support for chaining together multiple
GPUs.

Second, we could split the work layerwise. For instance, rather than computing 64 channels
on a single GPUwe could split up the problem across 4 GPUs, each of which generates data
for 16 channels. Likewise, for a fully connected layer we could split the number of output
units. Fig. 13.5.1 (taken from Krizhevsky et al. (2012)) illustrates this design, where this
strategy was used to deal with GPUs that had a very small memory footprint (2 GB at the
time). This allows for good scaling in terms of computation, provided that the number of
channels (or units) is not too small. Besides, multiple GPUs can process increasingly larger
networks since the available memory scales linearly.

tFig. 13.5.1 Model parallelism in the original AlexNet design due to limited GPU memory.

However, we need a very large number of synchronization or barrier operations since each
layer depends on the results from all the other layers. Moreover, the amount of data that
needs to be transferred is potentially even larger than when distributing layers across GPUs.
Thus, we do not recommend this approach due to its bandwidth cost and complexity.

Last, we could partition data across multiple GPUs. This way all GPUs perform the same
type of work, albeit on different observations. Gradients are aggregated across GPUs after
each minibatch of training data. This is the simplest approach and it can be applied in any
situation. We only need to synchronize after eachminibatch. That said, it is highly desirable
to start exchanging gradients parameters already while others are still being computed.
Moreover, larger numbers of GPUs lead to larger minibatch sizes, thus increasing training
efficiency. However, adding more GPUs does not allow us to train larger models.
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tFig. 13.5.2 Parallelization on multiple GPUs. From left to right: original problem, network
partitioning, layerwise partitioning, data parallelism.

A comparison of different ways of parallelization on multiple GPUs is depicted in Fig.
13.5.2. By and large, data parallelism is the most convenient way to proceed, provided
that we have access to GPUs with sufficiently large memory. See also (Li et al., 2014) for
a detailed description of partitioning for distributed training. GPU memory used to be a
problem in the early days of deep learning. By now this issue has been resolved for all but
the most unusual cases. We focus on data parallelism in what follows.

13.5.2 Data Parallelism
Assume that there are 𝑘 GPUs on a machine. Given the model to be trained, each GPU will
maintain a complete set of model parameters independently though parameter values across
the GPUs are identical and synchronized. As an example, Fig. 13.5.3 illustrates training
with data parallelism when 𝑘 = 2.

tFig. 13.5.3 Calculation of minibatch stochastic gradient descent using data parallelism on two GPUs.

In general, the training proceeds as follows:

• In any iteration of training, given a random minibatch, we split the examples in the batch
into 𝑘 portions and distribute them evenly across the GPUs.
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• Each GPU calculates loss and gradient of the model parameters based on the minibatch
subset it was assigned.

• The local gradients of each of the 𝑘 GPUs are aggregated to obtain the current minibatch
stochastic gradient.

• The aggregate gradient is re-distributed to each GPU.

• Each GPU uses this minibatch stochastic gradient to update the complete set of model
parameters that it maintains.

Note that in practice we increase the minibatch size 𝑘-fold when training on 𝑘 GPUs such
that each GPU has the same amount of work to do as if we were training on a single GPU
only. On a 16-GPU server this can increase the minibatch size considerably and we may
have to increase the learning rate accordingly. Also note that batch normalization in Section
8.5 needs to be adjusted, e.g., by keeping a separate batch normalization coefficient per
GPU. In what follows we will use a toy network to illustrate multi-GPU training.

%matplotlib inline
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

13.5.3 A Toy Network
We use LeNet as introduced in Section 7.6 (with slight modifications). We define it from
scratch to illustrate parameter exchange and synchronization in detail.

# Initialize model parameters
scale = 0.01
W1 = np.random.normal(scale=scale, size=(20, 1, 3, 3))
b1 = np.zeros(20)
W2 = np.random.normal(scale=scale, size=(50, 20, 5, 5))
b2 = np.zeros(50)
W3 = np.random.normal(scale=scale, size=(800, 128))
b3 = np.zeros(128)
W4 = np.random.normal(scale=scale, size=(128, 10))
b4 = np.zeros(10)
params = [W1, b1, W2, b2, W3, b3, W4, b4]

# Define the model
def lenet(X, params):

h1_conv = npx.convolution(data=X, weight=params[0], bias=params[1],
kernel=(3, 3), num_filter=20)

h1_activation = npx.relu(h1_conv)
h1 = npx.pooling(data=h1_activation, pool_type='avg', kernel=(2, 2),

stride=(2, 2))
h2_conv = npx.convolution(data=h1, weight=params[2], bias=params[3],

kernel=(5, 5), num_filter=50)
h2_activation = npx.relu(h2_conv)
h2 = npx.pooling(data=h2_activation, pool_type='avg', kernel=(2, 2),

(continues on next page)
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(continued from previous page)

stride=(2, 2))
h2 = h2.reshape(h2.shape[0], -1)
h3_linear = np.dot(h2, params[4]) + params[5]
h3 = npx.relu(h3_linear)
y_hat = np.dot(h3, params[6]) + params[7]
return y_hat

# Cross-entropy loss function
loss = gluon.loss.SoftmaxCrossEntropyLoss()

[22:00:38] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

13.5.4 Data Synchronization
For efficient multi-GPU training we need two basic operations. First we need to have
the ability to distribute a list of parameters to multiple devices and to attach gradients
(get_params). Without parameters it is impossible to evaluate the network on a GPU.
Second, we need the ability to sum parameters across multiple devices, i.e., we need an
allreduce function.

def get_params(params, device):
new_params = [p.copyto(device) for p in params]
for p in new_params:

p.attach_grad()
return new_params

Let’s try it out by copying the model parameters to one GPU.

new_params = get_params(params, d2l.try_gpu(0))
print('b1 weight:', new_params[1])
print('b1 grad:', new_params[1].grad)

b1 weight: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]␣
↩→@gpu(0)
b1 grad: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] @gpu(0)
[22:00:39] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

Since we did not perform any computation yet, the gradient with regard to the bias param-
eter is still zero. Now let’s assume that we have a vector distributed across multiple GPUs.
The following allreduce function adds up all vectors and broadcasts the result back to all
GPUs. Note that for this to work we need to copy the data to the device accumulating the
results.
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def allreduce(data):
for i in range(1, len(data)):

data[0][:] += data[i].copyto(data[0].ctx)
for i in range(1, len(data)):

data[0].copyto(data[i])

Let’s test this by creating vectors with different values on different devices and aggregate
them.

data = [np.ones((1, 2), ctx=d2l.try_gpu(i)) * (i + 1) for i in range(2)]
print('before allreduce:\n', data[0], '\n', data[1])
allreduce(data)
print('after allreduce:\n', data[0], '\n', data[1])

before allreduce:
[[1. 1.]] @gpu(0)
[[2. 2.]] @gpu(1)
after allreduce:
[22:00:40] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[[3. 3.]] @gpu(0)
[[3. 3.]] @gpu(1)

13.5.5 Distributing Data
We need a simple utility function to distribute a minibatch evenly across multiple GPUs.
For instance, on two GPUs we would like to have half of the data to be copied to either of
the GPUs. Since it is more convenient and more concise, we use the built-in function from
the deep learning framework to try it out on a 4 × 5 matrix.

data = np.arange(20).reshape(4, 5)
devices = [npx.gpu(0), npx.gpu(1)]
split = gluon.utils.split_and_load(data, devices)
print('input :', data)
print('load into', devices)
print('output:', split)

input : [[ 0. 1. 2. 3. 4.]
[ 5. 6. 7. 8. 9.]
[10. 11. 12. 13. 14.]
[15. 16. 17. 18. 19.]]
load into [gpu(0), gpu(1)]
output: [array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]], ctx=gpu(0)), array([[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.]], ctx=gpu(1))]

For later reuse we define a split_batch function that splits both data and labels.
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#@save
def split_batch(X, y, devices):

"""Split `X` and `y` into multiple devices."""
assert X.shape[0] == y.shape[0]
return (gluon.utils.split_and_load(X, devices),

gluon.utils.split_and_load(y, devices))

13.5.6 Training
Now we can implement multi-GPU training on a single minibatch. Its implementation is
primarily based on the data parallelism approach described in this section. We will use the
auxiliary functions we just discussed, allreduce and split_and_load, to synchronize the
data among multiple GPUs. Note that we do not need to write any specific code to achieve
parallelism. Since the computational graph does not have any dependencies across devices
within a minibatch, it is executed in parallel automatically.

def train_batch(X, y, device_params, devices, lr):
X_shards, y_shards = split_batch(X, y, devices)
with autograd.record(): # Loss is calculated separately on each GPU

ls = [loss(lenet(X_shard, device_W), y_shard)
for X_shard, y_shard, device_W in zip(

X_shards, y_shards, device_params)]
for l in ls: # Backpropagation is performed separately on each GPU

l.backward()
# Sum all gradients from each GPU and broadcast them to all GPUs
for i in range(len(device_params[0])):

allreduce([device_params[c][i].grad for c in range(len(devices))])
# The model parameters are updated separately on each GPU
for param in device_params:

d2l.sgd(param, lr, X.shape[0]) # Here, we use a full-size batch

Now, we can define the training function. It is slightly different from the ones used in the
previous chapters: we need to allocate the GPUs and copy all the model parameters to all
the devices. Obviously each batch is processed using the train_batch function to deal
with multiple GPUs. For convenience (and conciseness of code) we compute the accuracy
on a single GPU, though this is inefficient since the other GPUs are idle.

def train(num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
devices = [d2l.try_gpu(i) for i in range(num_gpus)]
# Copy model parameters to `num_gpus` GPUs
device_params = [get_params(params, d) for d in devices]
num_epochs = 10
animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
timer = d2l.Timer()
for epoch in range(num_epochs):

timer.start()
for X, y in train_iter:

# Perform multi-GPU training for a single minibatch
train_batch(X, y, device_params, devices, lr)

(continues on next page)
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npx.waitall()
timer.stop()
# Evaluate the model on GPU 0
animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(

lambda x: lenet(x, device_params[0]), test_iter, devices[0]),))
print(f'test acc: {animator.Y[0][-1]:.2f}, {timer.avg():.1f} sec/epoch '

f'on {str(devices)}')

Let’s see how well this works on a single GPU. We first use a batch size of 256 and a
learning rate of 0.2.

train(num_gpus=1, batch_size=256, lr=0.2)

test acc: 0.83, 5.5 sec/epoch on [gpu(0)]

By keeping the batch size and learning rate unchanged and increasing the number of GPUs
to 2, we can see that the test accuracy roughly stays the same compared with the previous
experiment. In terms of the optimization algorithms, they are identical. Unfortunately there
is no meaningful speedup to be gained here: the model is simply too small; moreover we
only have a small dataset, where our slightly unsophisticated approach to implementing
multi-GPU training suffered from significant Python overhead. We will encounter more
complex models and more sophisticated ways of parallelization going forward. Let’s see
what happens nonetheless for Fashion-MNIST.

train(num_gpus=2, batch_size=256, lr=0.2)

test acc: 0.85, 6.9 sec/epoch on [gpu(0), gpu(1)]

13.5.7 Summary
• There are multiple ways to split deep network training over multiple GPUs. We could

split them between layers, across layers, or across data. The former two require tightly
choreographed data transfers. Data parallelism is the simplest strategy.
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• Data parallel training is straightforward. However, it increases the effective minibatch
size to be efficient.

• In data parallelism, data is split across multiple GPUs, where each GPU executes its
own forward and backward operation and subsequently gradients are aggregated and
results are broadcast back to the GPUs.

• We may use slightly increased learning rates for larger minibatches.

13.5.8 Exercises
1. When training on 𝑘 GPUs, change the minibatch size from 𝑏 to 𝑘 · 𝑏, i.e., scale it up by

the number of GPUs.

2. Compare accuracy for different learning rates. How does it scale with the number of
GPUs?

3. Implement a more efficient allreduce function that aggregates different parameters on
different GPUs? Why is it more efficient?

4. Implement multi-GPU test accuracy computation.

Discussions205 .

13.6 Concise Implementation for Multiple GPUs

Implementing parallelism from scratch for every new model is no fun. Moreover, there is
significant benefit in optimizing synchronization tools for high performance. In the follow-
ing we will show how to do this using high-level APIs of deep learning frameworks. The
mathematics and the algorithms are the same as in Section 13.5. Quite unsurprisingly you
will need at least two GPUs to run code of this section.

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

(continues on next page)

https://discuss.d2l.ai/t/364
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npx.set_np()

13.6.1 A Toy Network
Let’s use a slightly more meaningful network than LeNet from Section 13.5 that is still
sufficiently easy and quick to train. We pick a ResNet-18 variant (He et al., 2016). Since
the input images are tiny wemodify it slightly. In particular, the difference from Section 8.6
is that we use a smaller convolution kernel, stride, and padding at the beginning. Moreover,
we remove the max-pooling layer.

#@save
def resnet18(num_classes):

"""A slightly modified ResNet-18 model."""
def resnet_block(num_channels, num_residuals, first_block=False):

blk = nn.Sequential()
for i in range(num_residuals):

if i == 0 and not first_block:
blk.add(d2l.Residual(

num_channels, use_1x1conv=True, strides=2))
else:

blk.add(d2l.Residual(num_channels))
return blk

net = nn.Sequential()
# This model uses a smaller convolution kernel, stride, and padding and
# removes the max-pooling layer
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),

nn.BatchNorm(), nn.Activation('relu'))
net.add(resnet_block(64, 2, first_block=True),

resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))

net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net

13.6.2 Network Initialization
The initialize function allows us to initialize parameters on a device of our choice. For
a refresher on initialization methods see Section 5.4. What is particularly convenient is that
it also allows us to initialize the network on multiple devices simultaneously. Let’s try how
this works in practice.

net = resnet18(10)
# Get a list of GPUs
devices = d2l.try_all_gpus()
# Initialize all the parameters of the network
net.initialize(init=init.Normal(sigma=0.01), ctx=devices)
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[22:06:27] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
[22:06:27] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[22:06:27] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

Using the split_and_load function introduced in Section 13.5 we can divide a minibatch
of data and copy portions to the list of devices provided by the devices variable. The net-
work instance automatically uses the appropriate GPU to compute the value of the forward
propagation. Here we generate 4 observations and split them over the GPUs.

x = np.random.uniform(size=(4, 1, 28, 28))
x_shards = gluon.utils.split_and_load(x, devices)
net(x_shards[0]), net(x_shards[1])

[22:06:28] ../src/operator/cudnn_ops.cc:318: Auto-tuning cuDNN op, set MXNET_
↩→CUDNN_AUTOTUNE_DEFAULT to 0 to disable
[22:06:28] ../src/operator/cudnn_ops.cc:318: Auto-tuning cuDNN op, set MXNET_
↩→CUDNN_AUTOTUNE_DEFAULT to 0 to disable
[22:06:28] ../src/operator/cudnn_ops.cc:318: Auto-tuning cuDNN op, set MXNET_
↩→CUDNN_AUTOTUNE_DEFAULT to 0 to disable
[22:06:28] ../src/operator/cudnn_ops.cc:318: Auto-tuning cuDNN op, set MXNET_
↩→CUDNN_AUTOTUNE_DEFAULT to 0 to disable

(array([[ 2.2610207e-06, 2.2045981e-06, -5.4046786e-06, 1.2869955e-06,
5.1373163e-06, -3.8297967e-06, 1.4339059e-07, 5.4683451e-06,
-2.8279192e-06, -3.9651104e-06],
[ 2.0698672e-06, 2.0084667e-06, -5.6382510e-06, 1.0498458e-06,

5.5506434e-06, -4.1065491e-06, 6.0830087e-07, 5.4521784e-06,
-3.7365021e-06, -4.1891640e-06]], ctx=gpu(0)),

array([[ 2.4629783e-06, 2.6015525e-06, -5.4362617e-06, 1.2938218e-06,
5.6387889e-06, -4.1360108e-06, 3.5758853e-07, 5.5125256e-06,
-3.1957325e-06, -4.2976326e-06],
[ 1.9431673e-06, 2.2600434e-06, -5.2698201e-06, 1.4807417e-06,

5.4830934e-06, -3.9678889e-06, 7.5751018e-08, 5.6764356e-06,
-3.2530229e-06, -4.0943951e-06]], ctx=gpu(1)))

Once data passes through the network, the corresponding parameters are initialized on the
device the data passed through. This means that initialization happens on a per-device
basis. Since we picked GPU 0 and GPU 1 for initialization, the network is initialized only
there, and not on the CPU. In fact, the parameters do not even exist on the CPU. We can
verify this by printing out the parameters and observing any errors that might arise.

weight = net[0].params.get('weight')

try:
weight.data()

except RuntimeError:

(continues on next page)
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print('not initialized on cpu')
weight.data(devices[0])[0], weight.data(devices[1])[0]

not initialized on cpu

(array([[[ 0.01382882, -0.01183044, 0.01417865],
[-0.00319718, 0.00439528, 0.02562625],
[-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(0)),

array([[[ 0.01382882, -0.01183044, 0.01417865],
[-0.00319718, 0.00439528, 0.02562625],
[-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(1)))

Next, let’s replace the code to evaluate the accuracy by one that works in parallel across
multiple devices. This serves as a replacement of the evaluate_accuracy_gpu function
from Section 7.6. The main difference is that we split a minibatch before invoking the
network. All else is essentially identical.

#@save
def evaluate_accuracy_gpus(net, data_iter, split_f=d2l.split_batch):

"""Compute the accuracy for a model on a dataset using multiple GPUs."""
# Query the list of devices
devices = list(net.collect_params().values())[0].list_ctx()
# No. of correct predictions, no. of predictions
metric = d2l.Accumulator(2)
for features, labels in data_iter:

X_shards, y_shards = split_f(features, labels, devices)
# Run in parallel
pred_shards = [net(X_shard) for X_shard in X_shards]
metric.add(sum(float(d2l.accuracy(pred_shard, y_shard)) for

pred_shard, y_shard in zip(
pred_shards, y_shards)), labels.size)

return metric[0] / metric[1]

13.6.3 Training
As before, the training code needs to perform several basic functions for efficient paral-
lelism:

• Network parameters need to be initialized across all devices.

• While iterating over the dataset minibatches are to be divided across all devices.

• We compute the loss and its gradient in parallel across devices.

• Gradients are aggregated and parameters are updated accordingly.

In the end we compute the accuracy (again in parallel) to report the final performance of
the network. The training routine is quite similar to implementations in previous chapters,
except that we need to split and aggregate data.
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def train(num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
ctx = [d2l.try_gpu(i) for i in range(num_gpus)]
net.initialize(init=init.Normal(sigma=0.01), ctx=ctx, force_reinit=True)
trainer = gluon.Trainer(net.collect_params(), 'sgd',

{'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
timer, num_epochs = d2l.Timer(), 10
animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
for epoch in range(num_epochs):

timer.start()
for features, labels in train_iter:

X_shards, y_shards = d2l.split_batch(features, labels, ctx)
with autograd.record():

ls = [loss(net(X_shard), y_shard) for X_shard, y_shard
in zip(X_shards, y_shards)]

for l in ls:
l.backward()

trainer.step(batch_size)
npx.waitall()
timer.stop()
animator.add(epoch + 1, (evaluate_accuracy_gpus(net, test_iter),))

print(f'test acc: {animator.Y[0][-1]:.2f}, {timer.avg():.1f} sec/epoch '
f'on {str(ctx)}')

Let’s see how this works in practice. As a warm-up we train the network on a single
GPU.

train(num_gpus=1, batch_size=256, lr=0.1)

test acc: 0.93, 14.0 sec/epoch on [gpu(0)]

Next we use 2 GPUs for training. Compared with LeNet evaluated in Section 13.5, the
model for ResNet-18 is considerably more complex. This is where parallelization shows
its advantage. The time for computation is meaningfully larger than the time for synchro-
nizing parameters. This improves scalability since the overhead for parallelization is less
relevant.
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train(num_gpus=2, batch_size=512, lr=0.2)

test acc: 0.92, 11.1 sec/epoch on [gpu(0), gpu(1)]

13.6.4 Summary
• Gluon provides primitives for model initialization across multiple devices by providing

a context list.

• Data is automatically evaluated on the devices where the data can be found.

• Take care to initialize the networks on each device before trying to access the parameters
on that device. Otherwise you will encounter an error.

• The optimization algorithms automatically aggregate over multiple GPUs.

13.6.5 Exercises
1. This section uses ResNet-18. Try different epochs, batch sizes, and learning rates. Use

more GPUs for computation. What happens if you try this with 16 GPUs (e.g., on an
AWS p2.16xlarge instance)?

2. Sometimes, different devices provide different computing power. We could use the
GPUs and the CPU at the same time. How should we divide the work? Is it worth the
effort? Why? Why not?

3. What happens if we drop npx.waitall()? How would you modify training such that
you have an overlap of up to two steps for parallelism?

Discussions206 .

https://discuss.d2l.ai/t/365
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13.7 Parameter Servers

As we move from a single GPU to multiple GPUs and then to multiple servers containing
multiple GPUs, possibly all spread out across multiple racks and network switches, our
algorithms for distributed and parallel training need to become much more sophisticated.
Details matter since different interconnects have very different bandwidth (e.g., NVLink
can offer up to 100 GB/s across 6 links in an appropriate setting, PCIe 4.0 (16-lane) offers
32 GB/s, while even high speed 100GbE Ethernet only amounts to 10 GB/s). At the same
time it is unreasonable to expect that a statistical modeler be an expert in networking and
systems.

The core idea of the parameter server was introduced in Smola and Narayanamurthy (2010)
in the context of distributed latent variable models. A description of the push and pull
semantics then followed in Ahmed et al. (2012) and a description of the system and an
open source library followed in Li et al. (2014). In the following we will motivate the
components needed for efficiency.

13.7.1 Data-Parallel Training
Let’s review the data parallel training approach to distributed training. We will use this
to the exclusion of all others in this section since it is significantly simpler to implement
in practice. There are virtually no use cases (besides deep learning on graphs) where any
other strategy for parallelism is preferred since GPUs have plenty of memory nowadays.
Fig. 13.7.1 describes the variant of data parallelism that we implemented in Section 13.5.
The key aspect in it is that the aggregation of gradients occurs on one single GPU (GPU 0)
before the updated parameters are rebroadcast to all GPUs.

In retrospect, the decision to aggregate on GPU 0 seems rather ad-hoc. After all, we might
just as well aggregate on the CPU. In fact, we could even decide to aggregate some of
the parameters on one GPU and some others on another. Provided that the optimization
algorithm supports this, there is no real reason for why we could not. For instance, if we
have four parameter vectors with associated gradients g1, . . . , g4 we could aggregate the
gradients on one GPU for each g𝑖 (𝑖 = 1, . . . , 4).

This reasoning seems arbitrary and frivolous. After all, themathematics is the same through-
out. However, we are dealing with real physical hardware where different buses have differ-
ent bandwidth as discussed in Section 13.4. Consider a real 4-way GPU server as described
in Fig. 13.7.2. If it is particularly well connected, it might have a 100 GbE network card.
More typical numbers are in the 1–10 GbE range with an effective bandwidth of 100 MB/s
to 1 GB/s. Since the CPUs have too few PCIe lanes to connect to all GPUs directly (e.g.,
consumer-grade Intel CPUs have 24 lanes) we need a multiplexer207 . The bandwidth from
the CPU on a 16x Gen3 link is 16 GB/s. This is also the speed at which each of the GPUs
is connected to the switch. This means that it is more effective to communicate between
the devices.

https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches
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tFig. 13.7.1 Left: single GPU training. Right: a variant of multi-GPU training: (1) we compute loss
and gradient, (2) all gradients are aggregated on one GPU, (3) parameter update happens
and the parameters are re-distributed to all GPUs.

tFig. 13.7.2 A 4-way GPU server.

For the sake of the argument let’s assume that the gradients are of 160 MB. In this case
it takes 30 ms to send the gradients from all 3 remaining GPUs to the fourth one (each
transfer takes 10 ms = 160 MB / 16 GB/s). Adding another 30 ms to transmit the weight
vectors back we arrive at a total of 60 ms. If we send all data to the CPU we incur a penalty
of 40 ms since each of the four GPUs needs to send the data to the CPU, yielding a total
of 80 ms. Lastly assume that we are able to split the gradients into 4 parts of 40 MB each.
Now we can aggregate each of the parts on a different GPU simultaneously since the PCIe
switch offers a full-bandwidth operation between all links. Instead of 30 ms this takes 7.5
ms, yielding a total of 15 ms for a synchronization operation. In short, depending on how
we synchronize parameters the same operation can take anywhere from 15 ms to 80 ms.
Fig. 13.7.3 depicts the different strategies for exchanging parameters.
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tFig. 13.7.3 Parameter synchronization strategies.
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Note that we have yet another tool at our disposal when it comes to improving performance:
in a deep network it takes some time to compute all gradients from the top to the bottom.
We can begin synchronizing gradients for some parameter groups even while we are still
busy computing them for others. See e.g., Sergeev and Del Balso (2018) for details on how
to do this in Horovod208 .

13.7.2 Ring Synchronization
When it comes to synchronization on modern deep learning hardware we often encounter
significantly bespoke network connectivity. For instance, theAWSp3.16xlarge andNVIDIA
DGX-2 instances share the connectivity structure of Fig. 13.7.4. Each GPU connects to a
host CPU via a PCIe link which operates at best at 16 GB/s. Additionally each GPU also
has 6 NVLink connections, each of which is capable of transferring 300 Gbit/s bidirec-
tionally. This amounts to around 18 GB/s per link per direction. In short, the aggregate
NVLink bandwidth is significantly higher than the PCIe bandwidth. The question is how
to use it most efficiently.

tFig. 13.7.4 NVLink connectivity on 8 V100 GPU servers (image courtesy of NVIDIA).

https://github.com/horovod/horovod
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It turns out that the optimal synchronization strategy is to decompose the network into two
rings and to use them to synchronize data directly (Wang et al., 2018). Fig. 13.7.5 illustrates
that the network can be decomposed into one ring (1-2-3-4-5-6-7-8-1) with double NVLink
bandwidth and into one (1-4-6-3-5-8-2-7-1) with regular bandwidth. Designing an efficient
synchronization protocol in this case is nontrivial.

tFig. 13.7.5 Decomposition of the NVLink network into two rings.

Consider the following thought experiment: given a ring of 𝑛 computing nodes (or GPUs)
we can send gradients from the first to the second node. There it is added to the local
gradient and sent on to the third node, and so on. After 𝑛 − 1 steps the aggregate gradient
can be found in the last-visited node. That is, the time to aggregate gradients grows linearly
with the number of nodes. But if we do this the algorithm is quite inefficient. After all,
at any time there is only one of the nodes communicating. What if we broke the gradients
into 𝑛 chunks and started synchronizing chunk 𝑖 starting at node 𝑖? Since each chunk is of
size 1/𝑛 the total time is now (𝑛 − 1)/𝑛 ≈ 1. In other words, the time spent to aggregate
gradients does not grow as we increase the size of the ring. This is quite an astonishing
result. Fig. 13.7.6 illustrates the sequence of steps on 𝑛 = 4 nodes.

If we use the same example of synchronizing 160 MB across 8 V100 GPUs we arrive
at approximately 2 · 160MB/(3 · 18GB/s) ≈ 6ms. This is better than using the PCIe
bus, even though we are now using 8 GPUs. Note that in practice these numbers are a
bit worse, since deep learning frameworks often fail to assemble communication into large
burst transfers.

Note that there is a common misconception that ring synchronization is fundamentally
different from other synchronization algorithms. The only difference is that the synchro-
nization path is somewhat more elaborate when compared with a simple tree.
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tFig. 13.7.6 Ring synchronization across 4 nodes. Each node starts transmitting parts of gradients to
its left neighbor until the assembled gradient can be found in its right neighbor.

13.7.3 Multi-Machine Training
Distributed training on multiple machines adds a further challenge: we need to communi-
cate with servers that are only connected across a comparatively lower bandwidth fabric that
can be over an order of magnitude slower in some cases. Synchronization across devices is
tricky. After all, different machines running training code will have subtly different speed.
Hence we need to synchronize them if we want to use synchronous distributed optimization.
Fig. 13.7.7 illustrates how distributed parallel training occurs.

1. A (different) batch of data is read on each machine, split across multiple GPUs and
transferred to GPU memory. There predictions and gradients are computed on each
GPU batch separately.

2. The gradients from all local GPUs are aggregated on one GPU (or parts of it are aggre-
gated over different GPUs).

3. The gradients are sent to the CPUs.

4. The CPUs send the gradients to a central parameter server which aggregates all the
gradients.

5. The aggregate gradients are then used to update the parameters and the updated param-
eters are broadcast back to the individual CPUs.

6. The information is sent to one (or multiple) GPUs.

7. The updated parameters are spread across all GPUs.

Each of these operations seems rather straightforward. And, indeed, they can be carried
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tFig. 13.7.7 Multi-machine multi-GPU distributed parallel training.

out efficiently within a single machine. Once we look at multiple machines, though, we
can see that the central parameter server becomes the bottleneck. After all, the bandwidth
per server is limited, hence for 𝑚 workers the time it takes to send all gradients to the
server is O(𝑚). We can break through this barrier by increasing the number of servers
to 𝑛. At this point each server only needs to store O(1/𝑛) of the parameters, hence the
total time for updates and optimization becomes O(𝑚/𝑛). Matching both numbers yields
constant scaling regardless of howmanyworkers we are dealing with. In practice we use the
same machines both as workers and as servers. Fig. 13.7.8 illustrates the design (see also
(Li et al., 2014) for details). In particular, ensuring that multiple machines work without
unreasonable delays is nontrivial.

13.7.4 Key–Value Stores
Implementing the steps required for distributed multi-GPU training in practice is nontrivial.
This is why it pays to use a common abstraction, namely that of a key–value store with
redefined update semantics.

Acrossmanyworkers andmanyGPUs the computation for gradient 𝑖 can be defined as

g𝑖 =
∑

𝑘∈workers

∑
𝑗∈GPUs

g𝑖 𝑗𝑘 , (13.7.1)

where g𝑖 𝑗𝑘 is part of gradient 𝑖 split on GPU 𝑗 of worker 𝑘 . The key aspect in this operation
is that it is a commutative reduction, that is, it turns many vectors into one and the order in
which the operation is applied does not matter. This is great for our purposes since we do
not (need to) have fine grained control over when which gradient is received. Besides, note
that this operation is independent among different 𝑖.



597 Parameter Servers

tFig. 13.7.8 Top: a single parameter server is a bottleneck since its bandwidth is finite. Bottom:
multiple parameter servers store parts of the parameters with aggregate bandwidth.

This allows us to define the following two operations: push, which accumulates gradients,
and pull, which retrieves aggregate gradients. Since we have many different sets of gra-
dients (after all, we have many layers), we need to index the gradients with a key 𝑖. This
similarity to key–value stores, such as the one introduced in Dynamo (DeCandia et al.,
2007) is not by coincidence. They, too, satisfy many similar characteristics, in particular
when it comes to distributing the parameters across multiple servers.

The push and pull operations for key-value stores are described as follows:

• push(key, value) sends a particular gradient (the value) from a worker to a common
storage. There the value is aggregated, e.g., by summing it up.

• pull(key, value) retrieves an aggregate value from common storage, e.g., after combining
the gradients from all workers.

By hiding all the complexity about synchronization behind a simple push and pull operation
we can decouple the concerns of statistical modelers who want to be able to express opti-
mization in simple terms and the system engineers who need to deal with the complexity
inherent in distributed synchronization.

13.7.5 Summary
• Synchronization needs to be highly adaptive to specific network infrastructure and con-

nectivity within a server. This can make a significant difference to the time it takes to
synchronize.
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• Ring-synchronization can be optimal for p3 and DGX-2 servers. For others possibly not
so much.

• A hierarchical synchronization strategy works well when adding multiple parameter
servers for increased bandwidth.

13.7.6 Exercises
1. Can you increase the ring synchronization even further? Hint: you can send messages

in both directions.

2. Is it possible to allow asynchronous communication (while computation is still ongo-
ing)? How does it affect performance?

3. What if we lost a server during a long-running computation? How can we design a fault
tolerance mechanism to avoid restarting the computation fully?

Discussions209 .
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Whether it is medical diagnosis, self-driving vehicles, camera monitoring, or smart filters,
many applications in the field of computer vision are closely related to our current and fu-
ture lives. In recent years, deep learning has been the transformative power for advancing
the performance of computer vision systems. It can be said that the most advanced com-
puter vision applications are almost inseparable from deep learning. In view of this, this
chapter will focus on the field of computer vision, and investigate methods and applications
that have recently been influential in academia and industry.

In Chapter 7 and Chapter 8, we studied various convolutional neural networks that are
commonly used in computer vision, and applied them to simple image classification tasks.
At the beginning of this chapter, we will describe two methods that may improve model
generalization, namely image augmentation and fine-tuning, and apply them to image clas-
sification. Since deep neural networks can effectively represent images in multiple lev-
els, such layerwise representations have been successfully used in various computer vision
tasks such as object detection, semantic segmentation, and style transfer. Following the key
idea of leveraging layerwise representations in computer vision, we will begin with major
components and techniques for object detection. Next, we will show how to use fully con-
volutional networks for semantic segmentation of images. Then we will explain how to use
style transfer techniques to generate images like the cover of this book. In the end, we con-
clude this chapter by applying the materials of this chapter and several previous chapters
on two popular computer vision benchmark datasets.

14.1 Image Augmentation

In Section 8.1, we mentioned that large datasets are a prerequisite for the success of deep
neural networks in various applications. Image augmentation generates similar but distinct
training examples after a series of random changes to the training images, thereby expand-
ing the size of the training set. Alternatively, image augmentation can be motivated by the
fact that random tweaks of training examples allowmodels to rely less on certain attributes,
thereby improving their generalization ability. For example, we can crop an image in dif-
ferent ways to make the object of interest appear in different positions, thereby reducing
the dependence of a model on the position of the object. We can also adjust factors such as
brightness and color to reduce a model’s sensitivity to color. It is probably true that image
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augmentation was indispensable for the success of AlexNet at that time. In this section we
will discuss this widely used technique in computer vision.

%matplotlib inline
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

14.1.1 Common Image Augmentation Methods
In our investigation of common image augmentation methods, we will use the following
400 × 500 image an example.

d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

[22:03:19] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Most image augmentation methods have a certain degree of randomness. To make it easier
for us to observe the effect of image augmentation, next we define an auxiliary function
apply. This function runs the image augmentation method augmultiple times on the input
image img and shows all the results.

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
Y = [aug(img) for _ in range(num_rows * num_cols)]
d2l.show_images(Y, num_rows, num_cols, scale=scale)

Flipping and Cropping
Flipping the image left and right usually does not change the category of the object. This is
one of the earliest and most widely used methods of image augmentation. Next, we use the
transforms module to create the RandomFlipLeftRight instance, which flips an image
left and right with a 50% chance.
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apply(img, gluon.data.vision.transforms.RandomFlipLeftRight())

Flipping up and down is not as common as flipping left and right. But at least for this
example image, flipping up and down does not hinder recognition. Next, we create a Ran-
domFlipTopBottom instance to flip an image up and down with a 50% chance.

apply(img, gluon.data.vision.transforms.RandomFlipTopBottom())

In the example image we used, the cat is in the middle of the image, but this may not be the
case in general. In Section 7.5, we explained that the pooling layer can reduce the sensitivity
of a convolutional layer to the target position. In addition, we can also randomly crop the
image to make objects appear in different positions in the image at different scales, which
can also reduce the sensitivity of a model to the target position.

In the code below, we randomly crop an area with an area of 10% ∼ 100% of the original
area each time, and the ratio of width to height of this area is randomly selected from 0.5 ∼
2. Then, the width and height of the region are both scaled to 200 pixels. Unless otherwise
specified, the random number between 𝑎 and 𝑏 in this section refers to a continuous value
obtained by random and uniform sampling from the interval [𝑎, 𝑏].

shape_aug = gluon.data.vision.transforms.RandomResizedCrop(
(200, 200), scale=(0.1, 1), ratio=(0.5, 2))

apply(img, shape_aug)
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Changing Colors
Another augmentation method is changing colors. We can change four aspects of the image
color: brightness, contrast, saturation, and hue. In the example below, we randomly change
the brightness of the image to a value between 50% (1 − 0.5) and 150% (1 + 0.5) of the
original image.

apply(img, gluon.data.vision.transforms.RandomBrightness(0.5))

Similarly, we can randomly change the hue of the image.

apply(img, gluon.data.vision.transforms.RandomHue(0.5))

We can also create a RandomColorJitter instance and set how to randomly change the
brightness, contrast, saturation, and hue of the image at the same time.



603 Image Augmentation

color_aug = gluon.data.vision.transforms.RandomColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)

apply(img, color_aug)

Combining Multiple Image Augmentation Methods
In practice, we will combine multiple image augmentation methods. For example, we can
combine the different image augmentation methods defined above and apply them to each
image via a Compose instance.

augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(), color_aug, shape_aug])

apply(img, augs)

14.1.2 Training with Image Augmentation
Let’s train a model with image augmentation. Here we use the CIFAR-10 dataset instead
of the Fashion-MNIST dataset that we used before. This is because the position and size
of the objects in the Fashion-MNIST dataset have been normalized, while the color and
size of the objects in the CIFAR-10 dataset have more significant differences. The first 32
training images in the CIFAR-10 dataset are shown below.

d2l.show_images(gluon.data.vision.CIFAR10(
train=True)[:32][0], 4, 8, scale=0.8);
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Downloading /opt/mxnet/datasets/cifar10/cifar-10-binary.tar.gz from https://
↩→apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar10/
↩→cifar-10-binary.tar.gz...

In order to obtain definitive results during prediction, we usually only apply image aug-
mentation to training examples, and do not use image augmentation with random opera-
tions during prediction. Here we only use the simplest random left-right flipping method.
In addition, we use a ToTensor instance to convert a minibatch of images into the format
required by the deep learning framework, i.e., 32-bit floating point numbers between 0 and
1 with the shape of (batch size, number of channels, height, width).

train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor()])

test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor()])

Next, we define an auxiliary function to facilitate reading the image and applying image
augmentation. The transform_first function provided byGluon’s datasets applies image
augmentation to the first element of each training example (image and label), i.e., the image.
For a detailed introduction to DataLoader, please refer to Section 4.2.

def load_cifar10(is_train, augs, batch_size):
return gluon.data.DataLoader(

gluon.data.vision.CIFAR10(train=is_train).transform_first(augs),
batch_size=batch_size, shuffle=is_train,
num_workers=d2l.get_dataloader_workers())

Multi-GPU Training
We train the ResNet-18 model from Section 8.6 on the CIFAR-10 dataset. Recall the in-
troduction to multi-GPU training in Section 13.6. In the following, we define a function to
train and evaluate the model using multiple GPUs.
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#@save
def train_batch_ch13(net, features, labels, loss, trainer, devices,

split_f=d2l.split_batch):
"""Train for a minibatch with multiple GPUs (defined in Chapter 13)."""
X_shards, y_shards = split_f(features, labels, devices)
with autograd.record():

pred_shards = [net(X_shard) for X_shard in X_shards]
ls = [loss(pred_shard, y_shard) for pred_shard, y_shard

in zip(pred_shards, y_shards)]
for l in ls:

l.backward()
# The `True` flag allows parameters with stale gradients, which is useful
# later (e.g., in fine-tuning BERT)
trainer.step(labels.shape[0], ignore_stale_grad=True)
train_loss_sum = sum([float(l.sum()) for l in ls])
train_acc_sum = sum(d2l.accuracy(pred_shard, y_shard)

for pred_shard, y_shard in zip(pred_shards, y_shards))
return train_loss_sum, train_acc_sum

#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,

devices=d2l.try_all_gpus(), split_f=d2l.split_batch):
"""Train a model with multiple GPUs (defined in Chapter 13)."""
timer, num_batches = d2l.Timer(), len(train_iter)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],

legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):

# Sum of training loss, sum of training accuracy, no. of examples,
# no. of predictions
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):

timer.start()
l, acc = train_batch_ch13(

net, features, labels, loss, trainer, devices, split_f)
metric.add(l, acc, labels.shape[0], labels.size)
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:

animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))

test_acc = d2l.evaluate_accuracy_gpus(net, test_iter, split_f)
animator.add(epoch + 1, (None, None, test_acc))

print(f'loss {metric[0] / metric[2]:.3f}, train acc '
f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')

print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
f'{str(devices)}')

Now we can define the train_with_data_aug function to train the model with image
augmentation. This function gets all available GPUs, uses Adam as the optimization algo-
rithm, applies image augmentation to the training dataset, and finally calls the train_ch13
function just defined to train and evaluate the model.
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batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10)
net.initialize(init=init.Xavier(), ctx=devices)

def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'adam',

{'learning_rate': lr})
train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)

[22:03:30] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[22:03:31] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

Let’s train the model using image augmentation based on random left-right flipping.

train_with_data_aug(train_augs, test_augs, net)

loss 0.175, train acc 0.940, test acc 0.848
4046.3 examples/sec on [gpu(0), gpu(1)]

14.1.3 Summary
• Image augmentation generates random images based on existing training data to improve

the generalization ability of models.

• In order to obtain definitive results during prediction, we usually only apply image aug-
mentation to training examples, and do not use image augmentation with random op-
erations during prediction.

• Deep learning frameworks provide many different image augmentation methods, which
can be applied simultaneously.

14.1.4 Exercises
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1. Train themodel without using image augmentation: train_with_data_aug(test_augs,
test_augs). Compare training and testing accuracy when using and not using image
augmentation. Can this comparative experiment support the argument that image aug-
mentation can mitigate overfitting? Why?

2. Combinemultiple different image augmentationmethods inmodel training on the CIFAR-
10 dataset. Does it improve test accuracy?

3. Refer to the online documentation of the deep learning framework. What other image
augmentation methods does it also provide?

Discussions210 .

14.2 Fine-Tuning

In earlier chapters, we discussed how to train models on the Fashion-MNIST training
dataset with only 60000 images. We also described ImageNet, the most widely used large-
scale image dataset in academia, which has more than 10 million images and 1000 objects.
However, the size of the dataset that we usually encounter is between those of the two
datasets.

Suppose that we want to recognize different types of chairs from images, and then recom-
mend purchase links to users. One possible method is to first identify 100 common chairs,
take 1000 images of different angles for each chair, and then train a classification model
on the collected image dataset. Although this chair dataset may be larger than the Fashion-
MNIST dataset, the number of examples is still less than one-tenth of that in ImageNet.
This may lead to overfitting of complicated models that are suitable for ImageNet on this
chair dataset. Besides, due to the limited amount of training examples, the accuracy of the
trained model may not meet practical requirements.

In order to address the above problems, an obvious solution is to collect more data. How-
ever, collecting and labeling data can take a lot of time and money. For example, in order
to collect the ImageNet dataset, researchers have spent millions of dollars from research
funding. Although the current data collection cost has been significantly reduced, this cost
still cannot be ignored.

Another solution is to apply transfer learning to transfer the knowledge learned from the
source dataset to the target dataset. For example, although most of the images in the Ima-
geNet dataset have nothing to do with chairs, the model trained on this dataset may extract
more general image features, which can help identify edges, textures, shapes, and object
composition. These similar features may also be effective for recognizing chairs.

14.2.1 Steps

https://discuss.d2l.ai/t/367
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In this section, we will introduce a common technique in transfer learning: fine-tuning. As
shown in Fig. 14.2.1, fine-tuning consists of the following four steps:

1. Pretrain a neural network model, i.e., the source model, on a source dataset (e.g., the
ImageNet dataset).

2. Create a new neural network model, i.e., the target model. This copies all model de-
signs and their parameters on the source model except the output layer. We assume that
these model parameters contain the knowledge learned from the source dataset and this
knowledge will also be applicable to the target dataset. We also assume that the output
layer of the source model is closely related to the labels of the source dataset; thus it is
not used in the target model.

3. Add an output layer to the target model, whose number of outputs is the number of
categories in the target dataset. Then randomly initialize the model parameters of this
layer.

4. Train the target model on the target dataset, such as a chair dataset. The output layer
will be trained from scratch, while the parameters of all the other layers are fine-tuned
based on the parameters of the source model.

tFig. 14.2.1 Fine tuning.

When target datasets are much smaller than source datasets, fine-tuning helps to improve
models’ generalization ability.

14.2.2 Hot Dog Recognition
Let’s demonstrate fine-tuning via a concrete case: hot dog recognition. We will fine-tune
a ResNet model on a small dataset, which was pretrained on the ImageNet dataset. This
small dataset consists of thousands of images with and without hot dogs. We will use the
fine-tuned model to recognize hot dogs from images.

%matplotlib inline
import os
from mxnet import gluon, init, np, npx

(continues on next page)
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(continued from previous page)

from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

Reading the Dataset
The hot dog dataset we use was taken from online images. This dataset consists of 1400
positive-class images containing hot dogs, and as many negative-class images containing
other foods. 1000 images of both classes are used for training and the rest are for test-
ing.

After unzipping the downloaded dataset, we obtain two folders hotdog/train and hotdog/
test. Both folders have hotdog and not-hotdog subfolders, either of which contains
images of the corresponding class.

#@save
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip',

'fba480ffa8aa7e0febbb511d181409f899b9baa5')

data_dir = d2l.download_extract('hotdog')

Downloading ../data/hotdog.zip from http://d2l-data.s3-accelerate.amazonaws.
↩→com/hotdog.zip...

We create two instances to read all the image files in the training and testing datasets, re-
spectively.

train_imgs = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'train'))

test_imgs = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'test'))

The first 8 positive examples and the last 8 negative images are shown below. As you can
see, the images vary in size and aspect ratio.

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4);

[22:08:09] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

During training, we first crop a random area of random size and random aspect ratio from
the image, and then scale this area to a 224×224 input image. During testing, we scale both
the height and width of an image to 256 pixels, and then crop a central 224 × 224 area as
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input. In addition, for the three RGB (red, green, and blue) color channels we standardize
their values channel by channel. Concretely, the mean value of a channel is subtracted from
each value of that channel and then the result is divided by the standard deviation of that
channel.

# Specify the means and standard deviations of the three RGB channels to
# standardize each channel
normalize = gluon.data.vision.transforms.Normalize(

[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomResizedCrop(224),
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor(),
normalize])

test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(256),
gluon.data.vision.transforms.CenterCrop(224),
gluon.data.vision.transforms.ToTensor(),
normalize])

Defining and Initializing the Model
We use ResNet-18, which was pretrained on the ImageNet dataset, as the source model.
Here, we specify pretrained=True to automatically download the pretrained model pa-
rameters. If this model is used for the first time, Internet connection is required for down-
load.

pretrained_net = gluon.model_zoo.vision.resnet18_v2(pretrained=True)

Downloading /opt/mxnet/models/resnet18_v2-a81db45f.zip2fac831f-e7e6-40bb-987f-
↩→e037f3e8e5d3 from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/
↩→gluon/models/resnet18_v2-a81db45f.zip...

The pretrained source model instance contains two member variables: features and out-
put. The former contains all layers of the model except the output layer, and the latter is the
output layer of the model. The main purpose of this division is to facilitate the fine-tuning
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of model parameters of all layers but the output layer. The member variable output of
source model is shown below.

pretrained_net.output

Dense(512 -> 1000, linear)

As a fully connected layer, it transforms ResNet’s final global average pooling outputs into
1000 class outputs of the ImageNet dataset. We then construct a new neural network as
the target model. It is defined in the same way as the pretrained source model except that
its number of outputs in the final layer is set to the number of classes in the target dataset
(rather than 1000).

In the code below, the model parameters before the output layer of the target model in-
stance finetune_net are initialized to model parameters of the corresponding layers from
the source model. Since these model parameters were obtained via pretraining on Ima-
geNet, they are effective. Therefore, we can only use a small learning rate to fine-tune such
pretrained parameters. In contrast, model parameters in the output layer are randomly ini-
tialized and generally require a larger learning rate to be learned from scratch. Letting the
base learning rate be 𝜂, a learning rate of 10𝜂 will be used to iterate the model parameters
in the output layer.

finetune_net = gluon.model_zoo.vision.resnet18_v2(classes=2)
finetune_net.features = pretrained_net.features
finetune_net.output.initialize(init.Xavier())
# The model parameters in the output layer will be iterated using a learning
# rate ten times greater
finetune_net.output.collect_params().setattr('lr_mult', 10)

Fine-Tuning the Model
First, we define a training function train_fine_tuning that uses fine-tuning so it can be
called multiple times.

def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5):
train_iter = gluon.data.DataLoader(

train_imgs.transform_first(train_augs), batch_size, shuffle=True)
test_iter = gluon.data.DataLoader(

test_imgs.transform_first(test_augs), batch_size)
devices = d2l.try_all_gpus()
net.collect_params().reset_ctx(devices)
net.hybridize()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {

'learning_rate': learning_rate, 'wd': 0.001})
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,

devices)
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We set the base learning rate to a small value in order to fine-tune the model parameters
obtained via pretraining. Based on the previous settings, we will train the output layer
parameters of the target model from scratch using a learning rate ten times greater.

train_fine_tuning(finetune_net, 0.01)

loss 0.255, train acc 0.923, test acc 0.944
368.7 examples/sec on [gpu(0), gpu(1)]

For comparison, we define an identical model, but initialize all of its model parameters to
random values. Since the entire model needs to be trained from scratch, we can use a larger
learning rate.

scratch_net = gluon.model_zoo.vision.resnet18_v2(classes=2)
scratch_net.initialize(init=init.Xavier())
train_fine_tuning(scratch_net, 0.1)

loss 0.356, train acc 0.842, test acc 0.860
574.1 examples/sec on [gpu(0), gpu(1)]

As we can see, the fine-tuned model tends to perform better for the same epoch because its
initial parameter values are more effective.

14.2.3 Summary
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• Transfer learning transfers knowledge learned from the source dataset to the target dataset.
Fine-tuning is a common technique for transfer learning.

• The target model copies all model designs with their parameters from the source model
except the output layer, and fine-tunes these parameters based on the target dataset. In
contrast, the output layer of the target model needs to be trained from scratch.

• Generally, fine-tuning parameters uses a smaller learning rate, while training the output
layer from scratch can use a larger learning rate.

14.2.4 Exercises
1. Keep increasing the learning rate of finetune_net. How does the accuracy of the

model change?

2. Further adjust hyperparameters of finetune_net and scratch_net in the comparative
experiment. Do they still differ in accuracy?

3. Set the parameters before the output layer of finetune_net to those of the source model
and do not update them during training. How does the accuracy of the model change?
You can use the following code.

finetune_net.features.collect_params().setattr('grad_req', 'null')

4. In fact, there is a “hotdog” class in the ImageNet dataset. Its corresponding weight
parameter in the output layer can be obtained via the following code. How can we
leverage this weight parameter?

weight = pretrained_net.output.weight
hotdog_w = np.split(weight.data(), 1000, axis=0)[713]
hotdog_w.shape

(1, 512)

Discussions211 .

14.3 Object Detection and Bounding Boxes

In earlier sections (e.g., Section 8.1–Section 8.4), we introduced various models for image
classification. In image classification tasks, we assume that there is only one major object
in the image and we only focus on how to recognize its category. However, there are often
multiple objects in the image of interest. We not only want to know their categories, but
also their specific positions in the image. In computer vision, we refer to such tasks as
object detection (or object recognition).

https://discuss.d2l.ai/t/368


614 Computer Vision

Object detection has been widely applied in many fields. For example, self-driving needs to
plan traveling routes by detecting the positions of vehicles, pedestrians, roads, and obstacles
in the captured video images. Besides, robots may use this technique to detect and localize
objects of interest throughout its navigation of an environment. Moreover, security systems
may need to detect abnormal objects, such as intruders or bombs.

In the next few sections, we will introduce several deep learning methods for object detec-
tion. We will begin with an introduction to positions (or locations) of objects.

%matplotlib inline
from mxnet import image, np, npx
from d2l import mxnet as d2l

npx.set_np()

We will load the sample image to be used in this section. We can see that there is a dog
on the left side of the image and a cat on the right. They are the two major objects in this
image.

d2l.set_figsize()
img = image.imread('../img/catdog.jpg').asnumpy()
d2l.plt.imshow(img);

[21:49:41] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

14.3.1 Bounding Boxes
In object detection, we usually use a bounding box to describe the spatial location of an
object. The bounding box is rectangular, which is determined by the 𝑥 and 𝑦 coordinates
of the upper-left corner of the rectangle and the such coordinates of the lower-right corner.
Another commonly used bounding box representation is the (𝑥, 𝑦)-axis coordinates of the
bounding box center, and the width and height of the box.

Herewe define functions to convert between these two representations: box_corner_to_center
converts from the two-corner representation to the center-width-height presentation, and
box_center_to_corner vice versa. The input argument boxes should be a two-dimensional
tensor of shape (𝑛, 4), where 𝑛 is the number of bounding boxes.
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#@save
def box_corner_to_center(boxes):

"""Convert from (upper-left, lower-right) to (center, width, height)."""
x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
w = x2 - x1
h = y2 - y1
boxes = np.stack((cx, cy, w, h), axis=-1)
return boxes

#@save
def box_center_to_corner(boxes):

"""Convert from (center, width, height) to (upper-left, lower-right)."""
cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
x1 = cx - 0.5 * w
y1 = cy - 0.5 * h
x2 = cx + 0.5 * w
y2 = cy + 0.5 * h
boxes = np.stack((x1, y1, x2, y2), axis=-1)
return boxes

We will define the bounding boxes of the dog and the cat in the image based on the co-
ordinate information. The origin of the coordinates in the image is the upper-left corner
of the image, and to the right and down are the positive directions of the 𝑥 and 𝑦 axes,
respectively.

# Here `bbox` is the abbreviation for bounding box
dog_bbox, cat_bbox = [60.0, 45.0, 378.0, 516.0], [400.0, 112.0, 655.0, 493.0]

We can verify the correctness of the two bounding box conversion functions by converting
twice.

boxes = np.array((dog_bbox, cat_bbox))
box_center_to_corner(box_corner_to_center(boxes)) == boxes

array([[ True, True, True, True],
[ True, True, True, True]])

Let’s draw the bounding boxes in the image to check if they are accurate. Before drawing,
we will define a helper function bbox_to_rect. It represents the bounding box in the
bounding box format of the matplotlib package.

#@save
def bbox_to_rect(bbox, color):

"""Convert bounding box to matplotlib format."""
# Convert the bounding box (upper-left x, upper-left y, lower-right x,
# lower-right y) format to the matplotlib format: ((upper-left x,
# upper-left y), width, height)

(continues on next page)
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return d2l.plt.Rectangle(
xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
fill=False, edgecolor=color, linewidth=2)

After adding the bounding boxes on the image, we can see that the main outline of the two
objects are basically inside the two boxes.

fig = d2l.plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'));

14.3.2 Summary
• Object detection not only recognizes all the objects of interest in the image, but also their

positions. The position is generally represented by a rectangular bounding box.

• We can convert between two commonly used bounding box representations.

14.3.3 Exercises
1. Find another image and try to label a bounding box that contains the object. Compare

labeling bounding boxes and categories: which usually takes longer?

2. Why is the innermost dimension of the input argument boxes of box_corner_to_center
and box_center_to_corner always 4?

Discussions212 .

14.4 Anchor Boxes

Object detection algorithms usually sample a large number of regions in the input image,
determine whether these regions contain objects of interest, and adjust the boundaries of
the regions so as to predict the ground-truth bounding boxes of the objects more accurately.
Different models may adopt different region sampling schemes. Here we introduce one of

https://discuss.d2l.ai/t/369
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such methods: it generates multiple bounding boxes with varying scales and aspect ratios
centered on each pixel. These bounding boxes are called anchor boxes. We will design an
object detection model based on anchor boxes in Section 14.7.

First, let’s modify the printing accuracy just for more concise outputs.

%matplotlib inline
from mxnet import gluon, image, np, npx
from d2l import mxnet as d2l

np.set_printoptions(2) # Simplify printing accuracy
npx.set_np()

14.4.1 Generating Multiple Anchor Boxes
Suppose that the input image has a height of ℎ and width of 𝑤. We generate anchor boxes
with different shapes centered on each pixel of the image. Let the scale be 𝑠 ∈ (0, 1] and the
aspect ratio (ratio of width to height) is 𝑟 > 0. Then the width and height of the anchor box
are 𝑤𝑠

√
𝑟 and ℎ𝑠/

√
𝑟 , respectively. Note that when the center position is given, an anchor

box with known width and height is determined.

To generatemultiple anchor boxeswith different shapes, let’s set a series of scales 𝑠1, . . . , 𝑠𝑛
and a series of aspect ratios 𝑟1, . . . , 𝑟𝑚. When using all the combinations of these scales
and aspect ratios with each pixel as the center, the input image will have a total of 𝑤ℎ𝑛𝑚
anchor boxes. Although these anchor boxes may cover all the ground-truth bounding boxes,
the computational complexity is easily too high. In practice, we can only consider those
combinations containing 𝑠1 or 𝑟1:

(𝑠1, 𝑟1), (𝑠1, 𝑟2), . . . , (𝑠1, 𝑟𝑚), (𝑠2, 𝑟1), (𝑠3, 𝑟1), . . . , (𝑠𝑛, 𝑟1). (14.4.1)

That is to say, the number of anchor boxes centered on the same pixel is 𝑛 +𝑚 − 1. For the
entire input image, we will generate a total of 𝑤ℎ(𝑛 + 𝑚 − 1) anchor boxes.

The above method of generating anchor boxes is implemented in the following multi-

box_prior function. We specify the input image, a list of scales, and a list of aspect ratios,
then this function will return all the anchor boxes.

#@save
def multibox_prior(data, sizes, ratios):

"""Generate anchor boxes with different shapes centered on each pixel."""
in_height, in_width = data.shape[-2:]
device, num_sizes, num_ratios = data.ctx, len(sizes), len(ratios)
boxes_per_pixel = (num_sizes + num_ratios - 1)
size_tensor = np.array(sizes, ctx=device)
ratio_tensor = np.array(ratios, ctx=device)
# Offsets are required to move the anchor to the center of a pixel. Since
# a pixel has height=1 and width=1, we choose to offset our centers by 0.5
offset_h, offset_w = 0.5, 0.5
steps_h = 1.0 / in_height # Scaled steps in y-axis
steps_w = 1.0 / in_width # Scaled steps in x-axis

(continues on next page)
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# Generate all center points for the anchor boxes
center_h = (np.arange(in_height, ctx=device) + offset_h) * steps_h
center_w = (np.arange(in_width, ctx=device) + offset_w) * steps_w
shift_x, shift_y = np.meshgrid(center_w, center_h)
shift_x, shift_y = shift_x.reshape(-1), shift_y.reshape(-1)

# Generate `boxes_per_pixel` number of heights and widths that are later
# used to create anchor box corner coordinates (xmin, xmax, ymin, ymax)
w = np.concatenate((size_tensor * np.sqrt(ratio_tensor[0]),

sizes[0] * np.sqrt(ratio_tensor[1:]))) \
* in_height / in_width # Handle rectangular inputs

h = np.concatenate((size_tensor / np.sqrt(ratio_tensor[0]),
sizes[0] / np.sqrt(ratio_tensor[1:])))

# Divide by 2 to get half height and half width
anchor_manipulations = np.tile(np.stack((-w, -h, w, h)).T,

(in_height * in_width, 1)) / 2

# Each center point will have `boxes_per_pixel` number of anchor boxes, so
# generate a grid of all anchor box centers with `boxes_per_pixel` repeats
out_grid = np.stack([shift_x, shift_y, shift_x, shift_y],

axis=1).repeat(boxes_per_pixel, axis=0)
output = out_grid + anchor_manipulations
return np.expand_dims(output, axis=0)

We can see that the shape of the returned anchor box variable Y is (batch size, number of
anchor boxes, 4).

img = image.imread('../img/catdog.jpg').asnumpy()
h, w = img.shape[:2]

print(h, w)
X = np.random.uniform(size=(1, 3, h, w)) # Construct input data
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape

561 728
[22:09:19] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(1, 2042040, 4)

After changing the shape of the anchor box variable Y to (image height, image width, num-
ber of anchor boxes centered on the same pixel, 4), we can obtain all the anchor boxes
centered on a specified pixel position. In the following, we access the first anchor box cen-
tered on (250, 250). It has four elements: the (𝑥, 𝑦)-axis coordinates at the upper-left corner
and the (𝑥, 𝑦)-axis coordinates at the lower-right corner of the anchor box. The coordinate
values of both axes are divided by the width and height of the image, respectively.
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boxes = Y.reshape(h, w, 5, 4)
boxes[250, 250, 0, :]

array([0.06, 0.07, 0.63, 0.82])

In order to show all the anchor boxes centered on one pixel in the image, we define the
following show_bboxes function to draw multiple bounding boxes on the image.

#@save
def show_bboxes(axes, bboxes, labels=None, colors=None):

"""Show bounding boxes."""

def make_list(obj, default_values=None):
if obj is None:

obj = default_values
elif not isinstance(obj, (list, tuple)):

obj = [obj]
return obj

labels = make_list(labels)
colors = make_list(colors, ['b', 'g', 'r', 'm', 'c'])
for i, bbox in enumerate(bboxes):

color = colors[i % len(colors)]
rect = d2l.bbox_to_rect(bbox.asnumpy(), color)
axes.add_patch(rect)
if labels and len(labels) > i:

text_color = 'k' if color == 'w' else 'w'
axes.text(rect.xy[0], rect.xy[1], labels[i],

va='center', ha='center', fontsize=9, color=text_color,
bbox=dict(facecolor=color, lw=0))

As we just saw, the coordinate values of the 𝑥 and 𝑦 axes in the variable boxes have been
divided by the width and height of the image, respectively. When drawing anchor boxes,
we need to restore their original coordinate values; thus, we define variable bbox_scale

below. Now, we can draw all the anchor boxes centered on (250, 250) in the image. As you
can see, the blue anchor box with a scale of 0.75 and an aspect ratio of 1 well surrounds
the dog in the image.

d2l.set_figsize()
bbox_scale = np.array((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,

['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
's=0.75, r=0.5'])

14.4.2 Intersection over Union (IoU)
We just mentioned that an anchor box “well” surrounds the dog in the image. If the ground-
truth bounding box of the object is known, how can “well” here be quantified? Intuitively,
we can measure the similarity between the anchor box and the ground-truth bounding box.
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We know that the Jaccard index can measure the similarity between two sets. Given sets
A and B, their Jaccard index is the size of their intersection divided by the size of their
union:

𝐽 (A,B) = |A ∩ B||A ∪ B| . (14.4.2)

In fact, we can consider the pixel area of any bounding box as a set of pixels. In this way,
we can measure the similarity of the two bounding boxes by the Jaccard index of their pixel
sets. For two bounding boxes, we usually refer their Jaccard index as intersection over
union (IoU), which is the ratio of their intersection area to their union area, as shown in
Fig. 14.4.1. The range of an IoU is between 0 and 1: 0 means that two bounding boxes do
not overlap at all, while 1 indicates that the two bounding boxes are equal.

tFig. 14.4.1 IoU is the ratio of the intersection area to the union area of two bounding boxes.

For the remainder of this section, we will use IoU to measure the similarity between anchor
boxes and ground-truth bounding boxes, and between different anchor boxes. Given two
lists of anchor or bounding boxes, the following box_iou computes their pairwise IoU
across these two lists.

#@save
def box_iou(boxes1, boxes2):

"""Compute pairwise IoU across two lists of anchor or bounding boxes."""
box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *

(boxes[:, 3] - boxes[:, 1]))
# Shape of `boxes1`, `boxes2`, `areas1`, `areas2`: (no. of boxes1, 4),
# (no. of boxes2, 4), (no. of boxes1,), (no. of boxes2,)
areas1 = box_area(boxes1)
areas2 = box_area(boxes2)
# Shape of `inter_upperlefts`, `inter_lowerrights`, `inters`: (no. of
# boxes1, no. of boxes2, 2)
inter_upperlefts = np.maximum(boxes1[:, None, :2], boxes2[:, :2])

(continues on next page)
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inter_lowerrights = np.minimum(boxes1[:, None, 2:], boxes2[:, 2:])
inters = (inter_lowerrights - inter_upperlefts).clip(min=0)
# Shape of `inter_areas` and `union_areas`: (no. of boxes1, no. of boxes2)
inter_areas = inters[:, :, 0] * inters[:, :, 1]
union_areas = areas1[:, None] + areas2 - inter_areas
return inter_areas / union_areas

14.4.3 Labeling Anchor Boxes in Training Data
In a training dataset, we consider each anchor box as a training example. In order to train
an object detection model, we need class and offset labels for each anchor box, where the
former is the class of the object relevant to the anchor box and the latter is the offset of the
ground-truth bounding box relative to the anchor box. During the prediction, for each im-
age we generate multiple anchor boxes, predict classes and offsets for all the anchor boxes,
adjust their positions according to the predicted offsets to obtain the predicted bounding
boxes, and finally only output those predicted bounding boxes that satisfy certain crite-
ria.

As we know, an object detection training set comes with labels for locations of ground-truth
bounding boxes and classes of their surrounded objects. To label any generated anchor box,
we refer to the labeled location and class of its assigned ground-truth bounding box that is
closest to the anchor box. In the following, we describe an algorithm for assigning closest
ground-truth bounding boxes to anchor boxes.

Assigning Ground-Truth Bounding Boxes to Anchor Boxes
Given an image, suppose that the anchor boxes are 𝐴1, 𝐴2, . . . , 𝐴𝑛𝑎 and the ground-truth
bounding boxes are 𝐵1, 𝐵2, . . . , 𝐵𝑛𝑏 , where 𝑛𝑎 ≥ 𝑛𝑏. Let’s define a matrix X ∈ R𝑛𝑎×𝑛𝑏 ,
whose element 𝑥𝑖 𝑗 in the 𝑖th row and 𝑗 th column is the IoU of the anchor box 𝐴𝑖 and the
ground-truth bounding box 𝐵 𝑗 . The algorithm consists of the following steps:

1. Find the largest element in matrix X and denote its row and column indices as 𝑖1 and
𝑗1, respectively. Then the ground-truth bounding box 𝐵 𝑗1 is assigned to the anchor box
𝐴𝑖1 . This is quite intuitive because 𝐴𝑖1 and 𝐵 𝑗1 are the closest among all the pairs of
anchor boxes and ground-truth bounding boxes. After the first assignment, discard all
the elements in the 𝑖1th row and the 𝑗1th column in matrix X.

2. Find the largest of the remaining elements in matrix X and denote its row and column
indices as 𝑖2 and 𝑗2, respectively. We assign ground-truth bounding box 𝐵 𝑗2 to anchor
box 𝐴𝑖2 and discard all the elements in the 𝑖2th row and the 𝑗2th column in matrix X.

3. At this point, elements in two rows and two columns in matrix X have been discarded.
We proceed until all elements in 𝑛𝑏 columns in matrix X are discarded. At this time,
we have assigned a ground-truth bounding box to each of 𝑛𝑏 anchor boxes.

4. Only traverse through the remaining 𝑛𝑎 − 𝑛𝑏 anchor boxes. For example, given any
anchor box 𝐴𝑖 , find the ground-truth bounding box 𝐵 𝑗 with the largest IoU with 𝐴𝑖
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throughout the 𝑖th row of matrix X, and assign 𝐵 𝑗 to 𝐴𝑖 only if this IoU is greater than
a predefined threshold.

Let’s illustrate the above algorithm using a concrete example. As shown in Fig. 14.4.2 (left),
assuming that the maximum value in matrixX is 𝑥23, we assign the ground-truth bounding
box 𝐵3 to the anchor box 𝐴2. Then, we discard all the elements in row 2 and column 3 of the
matrix, find the largest 𝑥71 in the remaining elements (shaded area), and assign the ground-
truth bounding box 𝐵1 to the anchor box 𝐴7. Next, as shown in Fig. 14.4.2 (middle), discard
all the elements in row 7 and column 1 of the matrix, find the largest 𝑥54 in the remaining
elements (shaded area), and assign the ground-truth bounding box 𝐵4 to the anchor box
𝐴5. Finally, as shown in Fig. 14.4.2 (right), discard all the elements in row 5 and column 4
of the matrix, find the largest 𝑥92 in the remaining elements (shaded area), and assign the
ground-truth bounding box 𝐵2 to the anchor box 𝐴9. After that, we only need to traverse
through the remaining anchor boxes 𝐴1, 𝐴3, 𝐴4, 𝐴6, 𝐴8 and determine whether to assign
them ground-truth bounding boxes according to the threshold.

tFig. 14.4.2 Assigning ground-truth bounding boxes to anchor boxes.

This algorithm is implemented in the following assign_anchor_to_bbox function.

#@save
def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):

"""Assign closest ground-truth bounding boxes to anchor boxes."""
num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]
# Element x_ij in the i-th row and j-th column is the IoU of the anchor
# box i and the ground-truth bounding box j
jaccard = box_iou(anchors, ground_truth)
# Initialize the tensor to hold the assigned ground-truth bounding box for
# each anchor
anchors_bbox_map = np.full((num_anchors,), -1, dtype=np.int32, ctx=device)
# Assign ground-truth bounding boxes according to the threshold
max_ious, indices = np.max(jaccard, axis=1), np.argmax(jaccard, axis=1)
anc_i = np.nonzero(max_ious >= iou_threshold)[0]
box_j = indices[max_ious >= iou_threshold]
anchors_bbox_map[anc_i] = box_j
col_discard = np.full((num_anchors,), -1)
row_discard = np.full((num_gt_boxes,), -1)

(continues on next page)
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for _ in range(num_gt_boxes):
max_idx = np.argmax(jaccard) # Find the largest IoU
box_idx = (max_idx % num_gt_boxes).astype('int32')
anc_idx = (max_idx / num_gt_boxes).astype('int32')
anchors_bbox_map[anc_idx] = box_idx
jaccard[:, box_idx] = col_discard
jaccard[anc_idx, :] = row_discard

return anchors_bbox_map

Labeling Classes and Offsets
Now we can label the class and offset for each anchor box. Suppose that an anchor box
𝐴 is assigned a ground-truth bounding box 𝐵. On the one hand, the class of the anchor
box 𝐴 will be labeled as that of 𝐵. On the other hand, the offset of the anchor box 𝐴 will
be labeled according to the relative position between the central coordinates of 𝐵 and 𝐴
together with the relative size between these two boxes. Given varying positions and sizes
of different boxes in the dataset, we can apply transformations to those relative positions
and sizes that may lead to more uniformly distributed offsets that are easier to fit. Here we
describe a common transformation. Given the central coordinates of 𝐴 and 𝐵 as (𝑥𝑎, 𝑦𝑎)
and (𝑥𝑏, 𝑦𝑏), their widths as 𝑤𝑎 and 𝑤𝑏, and their heights as ℎ𝑎 and ℎ𝑏, respectively. We
may label the offset of 𝐴 as( 𝑥𝑏−𝑥𝑎

𝑤𝑎
− 𝜇𝑥

𝜎𝑥
,

𝑦𝑏−𝑦𝑎
ℎ𝑎
− 𝜇𝑦

𝜎𝑦
,
log 𝑤𝑏

𝑤𝑎
− 𝜇𝑤

𝜎𝑤
,
log ℎ𝑏

ℎ𝑎
− 𝜇ℎ

𝜎ℎ

)
, (14.4.3)

where default values of the constants are 𝜇𝑥 = 𝜇𝑦 = 𝜇𝑤 = 𝜇ℎ = 0, 𝜎𝑥 = 𝜎𝑦 = 0.1,
and 𝜎𝑤 = 𝜎ℎ = 0.2. This transformation is implemented below in the offset_boxes

function.

#@save
def offset_boxes(anchors, assigned_bb, eps=1e-6):

"""Transform for anchor box offsets."""
c_anc = d2l.box_corner_to_center(anchors)
c_assigned_bb = d2l.box_corner_to_center(assigned_bb)
offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
offset_wh = 5 * np.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])
offset = np.concatenate([offset_xy, offset_wh], axis=1)
return offset

If an anchor box is not assigned a ground-truth bounding box, we just label the class of
the anchor box as “background”. Anchor boxes whose classes are background are often
referred to as negative anchor boxes, and the rest are called positive anchor boxes. We
implement the following multibox_target function to label classes and offsets for anchor
boxes (the anchors argument) using ground-truth bounding boxes (the labels argument).
This function sets the background class to zero and increments the integer index of a new
class by one.
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#@save
def multibox_target(anchors, labels):

"""Label anchor boxes using ground-truth bounding boxes."""
batch_size, anchors = labels.shape[0], anchors.squeeze(0)
batch_offset, batch_mask, batch_class_labels = [], [], []
device, num_anchors = anchors.ctx, anchors.shape[0]
for i in range(batch_size):

label = labels[i, :, :]
anchors_bbox_map = assign_anchor_to_bbox(

label[:, 1:], anchors, device)
bbox_mask = np.tile((np.expand_dims((anchors_bbox_map >= 0),

axis=-1)), (1, 4)).astype('int32')
# Initialize class labels and assigned bounding box coordinates with
# zeros
class_labels = np.zeros(num_anchors, dtype=np.int32, ctx=device)
assigned_bb = np.zeros((num_anchors, 4), dtype=np.float32,

ctx=device)
# Label classes of anchor boxes using their assigned ground-truth
# bounding boxes. If an anchor box is not assigned any, we label its
# class as background (the value remains zero)
indices_true = np.nonzero(anchors_bbox_map >= 0)[0]
bb_idx = anchors_bbox_map[indices_true]
class_labels[indices_true] = label[bb_idx, 0].astype('int32') + 1
assigned_bb[indices_true] = label[bb_idx, 1:]
# Offset transformation
offset = offset_boxes(anchors, assigned_bb) * bbox_mask
batch_offset.append(offset.reshape(-1))
batch_mask.append(bbox_mask.reshape(-1))
batch_class_labels.append(class_labels)

bbox_offset = np.stack(batch_offset)
bbox_mask = np.stack(batch_mask)
class_labels = np.stack(batch_class_labels)
return (bbox_offset, bbox_mask, class_labels)

An Example
Let’s illustrate anchor box labeling via a concrete example. We define ground-truth bound-
ing boxes for the dog and cat in the loaded image, where the first element is the class (0
for dog and 1 for cat) and the remaining four elements are the (𝑥, 𝑦)-axis coordinates at
the upper-left corner and the lower-right corner (range is between 0 and 1). We also con-
struct five anchor boxes to be labeled using the coordinates of the upper-left corner and the
lower-right corner: 𝐴0, . . . , 𝐴4 (the index starts from 0). Then we plot these ground-truth
bounding boxes and anchor boxes in the image.

ground_truth = np.array([[0, 0.1, 0.08, 0.52, 0.92],
[1, 0.55, 0.2, 0.9, 0.88]])

anchors = np.array([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
[0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
[0.57, 0.3, 0.92, 0.9]])

fig = d2l.plt.imshow(img)

(continues on next page)
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show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);

Using the multibox_target function defined above, we can label classes and offsets of
these anchor boxes based on the ground-truth bounding boxes for the dog and cat. In this
example, indices of the background, dog, and cat classes are 0, 1, and 2, respectively.
Below we add an dimension for examples of anchor boxes and ground-truth bounding
boxes.

labels = multibox_target(np.expand_dims(anchors, axis=0),
np.expand_dims(ground_truth, axis=0))

There are three items in the returned result, all of which are in the tensor format. The third
item contains the labeled classes of the input anchor boxes.

Let’s analyze the returned class labels below based on anchor box and ground-truth bound-
ing box positions in the image. First, among all the pairs of anchor boxes and ground-truth
bounding boxes, the IoU of the anchor box 𝐴4 and the ground-truth bounding box of the
cat is the largest. Thus, the class of 𝐴4 is labeled as the cat. Taking out pairs containing
𝐴4 or the ground-truth bounding box of the cat, among the rest the pair of the anchor box
𝐴1 and the ground-truth bounding box of the dog has the largest IoU. So the class of 𝐴1 is
labeled as the dog. Next, we need to traverse through the remaining three unlabeled anchor
boxes: 𝐴0, 𝐴2, and 𝐴3. For 𝐴0, the class of the ground-truth bounding box with the largest
IoU is the dog, but the IoU is below the predefined threshold (0.5), so the class is labeled
as background; for 𝐴2, the class of the ground-truth bounding box with the largest IoU is
the cat and the IoU exceeds the threshold, so the class is labeled as the cat; for 𝐴3, the class
of the ground-truth bounding box with the largest IoU is the cat, but the value is below the
threshold, so the class is labeled as background.

labels[2]

array([[0, 1, 2, 0, 2]], dtype=int32)

The second returned item is a mask variable of the shape (batch size, four times the number
of anchor boxes). Every four elements in the mask variable correspond to the four offset



626 Computer Vision

values of each anchor box. Since we do not care about background detection, offsets of this
negative class should not affect the objective function. Through elementwise multiplica-
tions, zeros in the mask variable will filter out negative class offsets before calculating the
objective function.

labels[1]

array([[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]],
dtype=int32)

The first returned item contains the four offset values labeled for each anchor box. Note
that the offsets of negative-class anchor boxes are labeled as zeros.

labels[0]

array([[-0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00, 1.40e+00, 1.00e+01,
2.59e+00, 7.18e+00, -1.20e+00, 2.69e-01, 1.68e+00, -1.57e+00,
-0.00e+00, -0.00e+00, -0.00e+00, -0.00e+00, -5.71e-01, -1.00e+00,
4.17e-06, 6.26e-01]])

14.4.4 Predicting Bounding Boxes with Non-Maximum Suppression
During prediction, we generate multiple anchor boxes for the image and predict classes and
offsets for each of them. A predicted bounding box is thus obtained according to an anchor
box with its predicted offset. Belowwe implement the offset_inverse function that takes
in anchors and offset predictions as inputs and applies inverse offset transformations to
return the predicted bounding box coordinates.

#@save
def offset_inverse(anchors, offset_preds):

"""Predict bounding boxes based on anchor boxes with predicted offsets."""
anc = d2l.box_corner_to_center(anchors)
pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2]
pred_bbox_wh = np.exp(offset_preds[:, 2:] / 5) * anc[:, 2:]
pred_bbox = np.concatenate((pred_bbox_xy, pred_bbox_wh), axis=1)
predicted_bbox = d2l.box_center_to_corner(pred_bbox)
return predicted_bbox

When there aremany anchor boxes, many similar (with significant overlap) predicted bound-
ing boxes can be potentially output for surrounding the same object. To simplify the output,
we can merge similar predicted bounding boxes that belong to the same object by using
non-maximum suppression (NMS).

Here is how non-maximum suppression works. For a predicted bounding box 𝐵, the object
detection model calculates the predicted likelihood for each class. Denoting by 𝑝 the largest
predicted likelihood, the class corresponding to this probability is the predicted class for 𝐵.
Specifically, we refer to 𝑝 as the confidence (score) of the predicted bounding box 𝐵. On the
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same image, all the predicted non-background bounding boxes are sorted by confidence in
descending order to generate a list 𝐿. Then we manipulate the sorted list 𝐿 in the following
steps:

1. Select the predicted bounding box 𝐵1 with the highest confidence from 𝐿 as a basis and
remove all non-basis predicted bounding boxes whose IoU with 𝐵1 exceeds a predefined
threshold 𝜖 from 𝐿. At this point, 𝐿 keeps the predicted bounding box with the highest
confidence but drops others that are too similar to it. In a nutshell, those with non-
maximum confidence scores are suppressed.

2. Select the predicted bounding box 𝐵2 with the second highest confidence from 𝐿 as
another basis and remove all non-basis predicted bounding boxes whose IoU with 𝐵2
exceeds 𝜖 from 𝐿.

3. Repeat the above process until all the predicted bounding boxes in 𝐿 have been used as
a basis. At this time, the IoU of any pair of predicted bounding boxes in 𝐿 is below the
threshold 𝜖 ; thus, no pair is too similar with each other.

4. Output all the predicted bounding boxes in the list 𝐿.

The following nms function sorts confidence scores in descending order and returns their
indices.

#@save
def nms(boxes, scores, iou_threshold):

"""Sort confidence scores of predicted bounding boxes."""
B = scores.argsort()[::-1]
keep = [] # Indices of predicted bounding boxes that will be kept
while B.size > 0:

i = B[0]
keep.append(i)
if B.size == 1: break
iou = box_iou(boxes[i, :].reshape(-1, 4),

boxes[B[1:], :].reshape(-1, 4)).reshape(-1)
inds = np.nonzero(iou <= iou_threshold)[0]
B = B[inds + 1]

return np.array(keep, dtype=np.int32, ctx=boxes.ctx)

We define the following multibox_detection to apply non-maximum suppression to pre-
dicting bounding boxes. Do not worry if you find the implementation a bit complicated:
we will show how it works with a concrete example right after the implementation.

#@save
def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5,

pos_threshold=0.009999999):
"""Predict bounding boxes using non-maximum suppression."""
device, batch_size = cls_probs.ctx, cls_probs.shape[0]
anchors = np.squeeze(anchors, axis=0)
num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2]
out = []
for i in range(batch_size):

cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4)

(continues on next page)
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conf, class_id = np.max(cls_prob[1:], 0), np.argmax(cls_prob[1:], 0)
predicted_bb = offset_inverse(anchors, offset_pred)
keep = nms(predicted_bb, conf, nms_threshold)
# Find all non-`keep` indices and set the class to background
all_idx = np.arange(num_anchors, dtype=np.int32, ctx=device)
combined = np.concatenate((keep, all_idx))
unique, counts = np.unique(combined, return_counts=True)
non_keep = unique[counts == 1]
all_id_sorted = np.concatenate((keep, non_keep))
class_id[non_keep] = -1
class_id = class_id[all_id_sorted].astype('float32')
conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted]
# Here `pos_threshold` is a threshold for positive (non-background)
# predictions
below_min_idx = (conf < pos_threshold)
class_id[below_min_idx] = -1
conf[below_min_idx] = 1 - conf[below_min_idx]
pred_info = np.concatenate((np.expand_dims(class_id, axis=1),

np.expand_dims(conf, axis=1),
predicted_bb), axis=1)

out.append(pred_info)
return np.stack(out)

Now let’s apply the above implementations to a concrete example with four anchor boxes.
For simplicity, we assume that the predicted offsets are all zeros. This means that the
predicted bounding boxes are anchor boxes. For each class among the background, dog,
and cat, we also define its predicted likelihood.

anchors = np.array([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],
[0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])

offset_preds = np.array([0] * d2l.size(anchors))
cls_probs = np.array([[0] * 4, # Predicted background likelihood

[0.9, 0.8, 0.7, 0.1], # Predicted dog likelihood
[0.1, 0.2, 0.3, 0.9]]) # Predicted cat likelihood

We can plot these predicted bounding boxes with their confidence on the image.

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,

['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])
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Nowwe can invoke the multibox_detection function to perform non-maximum suppres-
sion, where the threshold is set to 0.5. Note that we add a dimension for examples in the
tensor input.

We can see that the shape of the returned result is (batch size, number of anchor boxes,
6). The six elements in the innermost dimension gives the output information for the same
predicted bounding box. The first element is the predicted class index, which starts from
0 (0 is dog and 1 is cat). The value -1 indicates background or removal in non-maximum
suppression. The second element is the confidence of the predicted bounding box. The
remaining four elements are the (𝑥, 𝑦)-axis coordinates of the upper-left corner and the
lower-right corner of the predicted bounding box, respectively (range is between 0 and
1).

output = multibox_detection(np.expand_dims(cls_probs, axis=0),
np.expand_dims(offset_preds, axis=0),
np.expand_dims(anchors, axis=0),
nms_threshold=0.5)

output

array([[[ 1. , 0.9 , 0.55, 0.2 , 0.9 , 0.88],
[ 0. , 0.9 , 0.1 , 0.08, 0.52, 0.92],
[-1. , 0.8 , 0.08, 0.2 , 0.56, 0.95],
[-1. , 0.7 , 0.15, 0.3 , 0.62, 0.91]]])

After removing those predicted bounding boxes of class -1, we can output the final predicted
bounding box kept by non-maximum suppression.

fig = d2l.plt.imshow(img)
for i in output[0].asnumpy():

if i[0] == -1:
continue

label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
show_bboxes(fig.axes, [np.array(i[2:]) * bbox_scale], label)

In practice, we can remove predicted bounding boxes with lower confidence even before
performing non-maximum suppression, thereby reducing computation in this algorithm.
We may also post-process the output of non-maximum suppression, for example, by only
keeping results with higher confidence in the final output.
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14.4.5 Summary
• We generate anchor boxes with different shapes centered on each pixel of the image.

• Intersection over union (IoU), also known as Jaccard index, measures the similarity of
two bounding boxes. It is the ratio of their intersection area to their union area.

• In a training set, we need two types of labels for each anchor box. One is the class of
the object relevant to the anchor box and the other is the offset of the ground-truth
bounding box relative to the anchor box.

• During prediction, we can use non-maximum suppression (NMS) to remove similar pre-
dicted bounding boxes, thereby simplifying the output.

14.4.6 Exercises
1. Change values of sizes and ratios in the multibox_prior function. What are the

changes to the generated anchor boxes?

2. Construct and visualize two bounding boxes with an IoU of 0.5. How do they overlap
with each other?

3. Modify the variable anchors in Section 14.4.3 and Section 14.4.4. How do the results
change?

4. Non-maximum suppression is a greedy algorithm that suppresses predicted bounding
boxes by removing them. Is it possible that some of these removed ones are actually
useful? How can this algorithm be modified to suppress softly? You may refer to Soft-
NMS (Bodla et al., 2017).

5. Rather than being hand-crafted, can non-maximum suppression be learned?

Discussions213 .

14.5 Multiscale Object Detection

In Section 14.4, we generated multiple anchor boxes centered on each pixel of an input
image. Essentially these anchor boxes represent samples of different regions of the image.
However, we may end up with too many anchor boxes to compute if they are generated for
every pixel. Think of a 561 × 728 input image. If five anchor boxes with varying shapes
are generated for each pixel as their center, over two million anchor boxes (561 × 728 × 5)
need to be labeled and predicted on the image.

14.5.1 Multiscale Anchor Boxes
You may realize that it is not difficult to reduce anchor boxes on an image. For instance, we
can just uniformly sample a small portion of pixels from the input image to generate anchor

https://discuss.d2l.ai/t/370
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boxes centered on them. In addition, at different scales we can generate different numbers
of anchor boxes of different sizes. Intuitively, smaller objects are more likely to appear on
an image than larger ones. As an example, 1 × 1, 1 × 2, and 2 × 2 objects can appear on a
2×2 image in 4, 2, and 1 possible ways, respectively. Therefore, when using smaller anchor
boxes to detect smaller objects, we can sample more regions, while for larger objects we
can sample fewer regions.

To demonstrate how to generate anchor boxes at multiple scales, let’s read an image. Its
height and width are 561 and 728 pixels, respectively.

%matplotlib inline
from mxnet import image, np, npx
from d2l import mxnet as d2l

npx.set_np()

img = image.imread('../img/catdog.jpg')
h, w = img.shape[:2]
h, w

[22:09:30] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(561, 728)

Recall that in Section 7.2 we call a two-dimensional array output of a convolutional layer
a feature map. By defining the feature map shape, we can determine centers of uniformly
sampled anchor boxes on any image.

The display_anchors function is defined below. We generate anchor boxes (anchors) on
the feature map (fmap) with each unit (pixel) as the anchor box center. Since the (𝑥, 𝑦)-
axis coordinate values in the anchor boxes (anchors) have been divided by the width and
height of the feature map (fmap), these values are between 0 and 1, which indicate the
relative positions of anchor boxes in the feature map.

Since centers of the anchor boxes (anchors) are spread over all units on the feature map
(fmap), these centers must be uniformly distributed on any input image in terms of their
relative spatial positions. More concretely, given the width and height of the feature map
fmap_w and fmap_h, respectively, the following function will uniformly sample pixels in
fmap_h rows and fmap_w columns on any input image. Centered on these uniformly sam-
pled pixels, anchor boxes of scale s (assuming the length of the list s is 1) and different
aspect ratios (ratios) will be generated.

def display_anchors(fmap_w, fmap_h, s):
d2l.set_figsize()
# Values on the first two dimensions do not affect the output
fmap = np.zeros((1, 10, fmap_h, fmap_w))

(continues on next page)
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anchors = npx.multibox_prior(fmap, sizes=s, ratios=[1, 2, 0.5])
bbox_scale = np.array((w, h, w, h))
d2l.show_bboxes(d2l.plt.imshow(img.asnumpy()).axes,

anchors[0] * bbox_scale)

First, let’s consider detection of small objects. In order to make it easier to distinguish
when displayed, the anchor boxes with different centers here do not overlap: the anchor
box scale is set to 0.15 and the height and width of the feature map are set to 4. We can see
that the centers of the anchor boxes in 4 rows and 4 columns on the image are uniformly
distributed.

display_anchors(fmap_w=4, fmap_h=4, s=[0.15])

Wemove on to reduce the height and width of the feature map by half and use larger anchor
boxes to detect larger objects. When the scale is set to 0.4, some anchor boxes will overlap
with each other.

display_anchors(fmap_w=2, fmap_h=2, s=[0.4])

Finally, we further reduce the height and width of the feature map by half and increase the
anchor box scale to 0.8. Now the center of the anchor box is the center of the image.

display_anchors(fmap_w=1, fmap_h=1, s=[0.8])

14.5.2 Multiscale Detection
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Since we have generated multiscale anchor boxes, we will use them to detect objects of
various sizes at different scales. In the following we introduce a CNN-based multiscale
object detection method that we will implement in Section 14.7.

At some scale, say that we have 𝑐 feature maps of shape ℎ×𝑤. Using the method in Section
14.5.1, we generate ℎ𝑤 sets of anchor boxes, where each set has 𝑎 anchor boxes with the
same center. For example, at the first scale in the experiments in Section 14.5.1, given ten
(number of channels) 4×4 feature maps, we generated 16 sets of anchor boxes, where each
set contains 3 anchor boxes with the same center. Next, each anchor box is labeled with
the class and offset based on ground-truth bounding boxes. At the current scale, the object
detection model needs to predict the classes and offsets of ℎ𝑤 sets of anchor boxes on the
input image, where different sets have different centers.

Assume that the 𝑐 feature maps here are the intermediate outputs obtained by the CNN for-
ward propagation based on the input image. Since there are ℎ𝑤 different spatial positions
on each feature map, the same spatial position can be thought of as having 𝑐 units. Ac-
cording to the definition of receptive field in Section 7.2, these 𝑐 units at the same spatial
position of the feature maps have the same receptive field on the input image: they repre-
sent the input image information in the same receptive field. Therefore, we can transform
the 𝑐 units of the feature maps at the same spatial position into the classes and offsets of the
𝑎 anchor boxes generated using this spatial position. In essence, we use the information of
the input image in a certain receptive field to predict the classes and offsets of the anchor
boxes that are close to that receptive field on the input image.

When the feature maps at different layers have varying-size receptive fields on the input
image, they can be used to detect objects of different sizes. For example, we can design a
neural network where units of feature maps that are closer to the output layer have wider
receptive fields, so they can detect larger objects from the input image.

In a nutshell, we can leverage layerwise representations of images at multiple levels by deep
neural networks for multiscale object detection. We will show how this works through a
concrete example in Section 14.7.

14.5.3 Summary
• At multiple scales, we can generate anchor boxes with different sizes to detect objects

with different sizes.
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• By defining the shape of feature maps, we can determine centers of uniformly sampled
anchor boxes on any image.

• Weuse the information of the input image in a certain receptive field to predict the classes
and offsets of the anchor boxes that are close to that receptive field on the input image.

• Through deep learning, we can leverage its layerwise representations of images at mul-
tiple levels for multiscale object detection.

14.5.4 Exercises
1. According to our discussions in Section 8.1, deep neural networks learn hierarchical

features with increasing levels of abstraction for images. In multiscale object detection,
do feature maps at different scales correspond to different levels of abstraction? Why or
why not?

2. At the first scale (fmap_w=4, fmap_h=4) in the experiments in Section 14.5.1, generate
uniformly distributed anchor boxes that may overlap.

3. Given a feature map variable with shape 1 × 𝑐 × ℎ × 𝑤, where 𝑐, ℎ, and 𝑤 are the
number of channels, height, and width of the feature maps, respectively. How can you
transform this variable into the classes and offsets of anchor boxes? What is the shape
of the output?

Discussions214 .

14.6 The Object Detection Dataset

There is no small dataset such as MNIST and Fashion-MNIST in the field of object detec-
tion. In order to quickly demonstrate object detection models, we collected and labeled a
small dataset. First, we took photos of free bananas from our office and generated 1000
banana images with different rotations and sizes. Then we placed each banana image at a
random position on some background image. In the end, we labeled bounding boxes for
those bananas on the images.

14.6.1 Downloading the Dataset
The banana detection dataset with all the image and csv label files can be downloaded
directly from the Internet.

%matplotlib inline
import os
import pandas as pd
from mxnet import gluon, image, np, npx
from d2l import mxnet as d2l

(continues on next page)

https://discuss.d2l.ai/t/371
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npx.set_np()

#@save
d2l.DATA_HUB['banana-detection'] = (

d2l.DATA_URL + 'banana-detection.zip',
'5de26c8fce5ccdea9f91267273464dc968d20d72')

14.6.2 Reading the Dataset
We are going to read the banana detection dataset in the read_data_bananas function
below. The dataset includes a csv file for object class labels and ground-truth bounding
box coordinates at the upper-left and lower-right corners.

#@save
def read_data_bananas(is_train=True):

"""Read the banana detection dataset images and labels."""
data_dir = d2l.download_extract('banana-detection')
csv_fname = os.path.join(data_dir, 'bananas_train' if is_train

else 'bananas_val', 'label.csv')
csv_data = pd.read_csv(csv_fname)
csv_data = csv_data.set_index('img_name')
images, targets = [], []
for img_name, target in csv_data.iterrows():

images.append(image.imread(
os.path.join(data_dir, 'bananas_train' if is_train else

'bananas_val', 'images', f'{img_name}')))
# Here `target` contains (class, upper-left x, upper-left y,
# lower-right x, lower-right y), where all the images have the same
# banana class (index 0)
targets.append(list(target))

return images, np.expand_dims(np.array(targets), 1) / 256

By using the read_data_bananas function to read images and labels, the following Ba-

nanasDataset class will allow us to create a customized Dataset instance for loading the
banana detection dataset.

#@save
class BananasDataset(gluon.data.Dataset):

"""A customized dataset to load the banana detection dataset."""
def __init__(self, is_train):

self.features, self.labels = read_data_bananas(is_train)
print('read ' + str(len(self.features)) + (f' training examples' if

is_train else f' validation examples'))

def __getitem__(self, idx):
return (self.features[idx].astype('float32').transpose(2, 0, 1),

self.labels[idx])

(continues on next page)
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def __len__(self):
return len(self.features)

Finally, we define the load_data_bananas function to return two data iterator instances
for both the training and test sets. For the test dataset, there is no need to read it in random
order.

#@save
def load_data_bananas(batch_size):

"""Load the banana detection dataset."""
train_iter = gluon.data.DataLoader(BananasDataset(is_train=True),

batch_size, shuffle=True)
val_iter = gluon.data.DataLoader(BananasDataset(is_train=False),

batch_size)
return train_iter, val_iter

Let’s read a minibatch and print the shapes of both images and labels in this minibatch.
The shape of the image minibatch, (batch size, number of channels, height, width), looks
familiar: it is the same as in our earlier image classification tasks. The shape of the label
minibatch is (batch size, 𝑚, 5), where 𝑚 is the largest possible number of bounding boxes
that any image has in the dataset.

Although computation in minibatches is more efficient, it requires that all the image exam-
ples contain the same number of bounding boxes to form a minibatch via concatenation.
In general, images may have a varying number of bounding boxes; thus, images with fewer
than𝑚 bounding boxes will be padded with illegal bounding boxes until𝑚 is reached. Then
the label of each bounding box is represented by an array of length 5. The first element in
the array is the class of the object in the bounding box, where -1 indicates an illegal bound-
ing box for padding. The remaining four elements of the array are the (𝑥, 𝑦)-coordinate
values of the upper-left corner and the lower-right corner of the bounding box (the range
is between 0 and 1). For the banana dataset, since there is only one bounding box on each
image, we have 𝑚 = 1.

batch_size, edge_size = 32, 256
train_iter, _ = load_data_bananas(batch_size)
batch = next(iter(train_iter))
batch[0].shape, batch[1].shape

Downloading ../data/banana-detection.zip from http://d2l-data.s3-accelerate.
↩→amazonaws.com/banana-detection.zip...
[22:09:31] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
read 1000 training examples
read 100 validation examples
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((32, 3, 256, 256), (32, 1, 5))

14.6.3 Demonstration
Let’s demonstrate ten images with their labeled ground-truth bounding boxes. We can see
that the rotations, sizes, and positions of bananas vary across all these images. Of course,
this is just a simple artificial dataset. In practice, real-world datasets are usually much more
complicated.

imgs = (batch[0][:10].transpose(0, 2, 3, 1)) / 255
axes = d2l.show_images(imgs, 2, 5, scale=2)
for ax, label in zip(axes, batch[1][:10]):

d2l.show_bboxes(ax, [label[0][1:5] * edge_size], colors=['w'])

14.6.4 Summary
• The banana detection dataset we collected can be used to demonstrate object detection

models.

• The data loading for object detection is similar to that for image classification. However,
in object detection the labels also contain information of ground-truth bounding boxes,
which is missing in image classification.

14.6.5 Exercises
1. Demonstrate other images with ground-truth bounding boxes in the banana detection

dataset. How do they differ with respect to bounding boxes and objects?

2. Say that we want to apply data augmentation, such as random cropping, to object detec-
tion. How can it be different from that in image classification? Hint: what if a cropped
image only contains a small portion of an object?

Discussions215 .
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14.7 Single Shot Multibox Detection

In Section 14.3–Section 14.6, we introduced bounding boxes, anchor boxes, multiscale
object detection, and the dataset for object detection. Now we are ready to use such back-
ground knowledge to design an object detection model: single shot multibox detection
(SSD) (Liu et al., 2016). This model is simple, fast, and widely used. Although this is
just one of vast amounts of object detection models, some of the design principles and
implementation details in this section are also applicable to other models.

14.7.1 Model
Fig. 14.7.1 provides an overview of the design of single-shot multibox detection. This
model mainly consists of a base network followed by several multiscale feature map blocks.
The base network is for extracting features from the input image, so it can use a deep CNN.
For example, the original single-shot multibox detection paper adopts a VGG network trun-
cated before the classification layer (Liu et al., 2016), while ResNet has also been commonly
used. Through our design we can make the base network output larger feature maps so as
to generate more anchor boxes for detecting smaller objects. Subsequently, each multiscale
feature map block reduces (e.g., by half) the height and width of the feature maps from the
previous block, and enables each unit of the feature maps to increase its receptive field on
the input image.

Recall the design ofmultiscale object detection through layerwise representations of images
by deep neural networks in Section 14.5. Since multiscale feature maps closer to the top of
Fig. 14.7.1 are smaller but have larger receptive fields, they are suitable for detecting fewer
but larger objects.

In a nutshell, via its base network and several multiscale feature map blocks, single-shot
multibox detection generates a varying number of anchor boxes with different sizes, and
detects varying-size objects by predicting classes and offsets of these anchor boxes (thus
the bounding boxes); thus, this is a multiscale object detection model.

In the following, we will describe the implementation details of different blocks in Fig.
14.7.1. To begin with, we discuss how to implement the class and bounding box predic-
tion.

Class Prediction Layer
Let the number of object classes be 𝑞. Then anchor boxes have 𝑞+1 classes, where class 0 is
background. At some scale, suppose that the height and width of feature maps are ℎ and 𝑤,
respectively. When 𝑎 anchor boxes are generated with each spatial position of these feature
maps as their center, a total of ℎ𝑤𝑎 anchor boxes need to be classified. This often makes
classification with fully connected layers infeasible due to likely heavy parametrization
costs. Recall how we used channels of convolutional layers to predict classes in Section
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tFig. 14.7.1 As a multiscale object detection model, single-shot multibox detection mainly consists of
a base network followed by several multiscale feature map blocks.

8.3. Single-shot multibox detection uses the same technique to reduce model complex-
ity.

Specifically, the class prediction layer uses a convolutional layer without altering width
or height of feature maps. In this way, there can be a one-to-one correspondence between
outputs and inputs at the same spatial dimensions (width and height) of feature maps. More
concretely, channels of the output feature maps at any spatial position (𝑥, 𝑦) represent class
predictions for all the anchor boxes centered on (𝑥, 𝑦) of the input feature maps. To produce
valid predictions, there must be 𝑎(𝑞+1) output channels, where for the same spatial position
the output channel with index 𝑖(𝑞+1)+ 𝑗 represents the prediction of the class 𝑗 (0 ≤ 𝑗 ≤ 𝑞)
for the anchor box 𝑖 (0 ≤ 𝑖 < 𝑎).

Belowwe define such a class prediction layer, specifying 𝑎 and 𝑞 via arguments num_anchors
and num_classes, respectively. This layer uses a 3 × 3 convolutional layer with a padding
of 1. The width and height of the input and output of this convolutional layer remain un-
changed.

%matplotlib inline
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

def cls_predictor(num_anchors, num_classes):
return nn.Conv2D(num_anchors * (num_classes + 1), kernel_size=3,

padding=1)

Bounding Box Prediction Layer
The design of the bounding box prediction layer is similar to that of the class prediction
layer. The only difference lies in the number of outputs for each anchor box: here we need
to predict four offsets rather than 𝑞 + 1 classes.
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def bbox_predictor(num_anchors):
return nn.Conv2D(num_anchors * 4, kernel_size=3, padding=1)

Concatenating Predictions for Multiple Scales
As we mentioned, single-shot multibox detection uses multiscale feature maps to generate
anchor boxes and predict their classes and offsets. At different scales, the shapes of feature
maps or the numbers of anchor boxes centered on the same unit may vary. Therefore, shapes
of the prediction outputs at different scales may vary.

In the following example, we construct feature maps at two different scales, Y1 and Y2, for
the same minibatch, where the height and width of Y2 are half of those of Y1. Let’s take
class prediction as an example. Suppose that 5 and 3 anchor boxes are generated for every
unit in Y1 and Y2, respectively. Suppose further that the number of object classes is 10.
For feature maps Y1 and Y2 the numbers of channels in the class prediction outputs are
5 × (10 + 1) = 55 and 3 × (10 + 1) = 33, respectively, where either output shape is (batch
size, number of channels, height, width).

def forward(x, block):
block.initialize()
return block(x)

Y1 = forward(np.zeros((2, 8, 20, 20)), cls_predictor(5, 10))
Y2 = forward(np.zeros((2, 16, 10, 10)), cls_predictor(3, 10))
Y1.shape, Y2.shape
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((2, 55, 20, 20), (2, 33, 10, 10))

As we can see, except for the batch size dimension, the other three dimensions all have
different sizes. To concatenate these two prediction outputs for more efficient computation,
we will transform these tensors into a more consistent format.

Note that the channel dimension holds the predictions for anchor boxeswith the same center.
We first move this dimension to the innermost. Since the batch size remains the same for
different scales, we can transform the prediction output into a two-dimensional tensor with
shape (batch size, height × width × number of channels). Then we can concatenate such
outputs at different scales along dimension 1.

def flatten_pred(pred):
return npx.batch_flatten(pred.transpose(0, 2, 3, 1))

def concat_preds(preds):
return np.concatenate([flatten_pred(p) for p in preds], axis=1)
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In this way, even though Y1 and Y2 have different sizes in channels, heights, and widths,
we can still concatenate these two prediction outputs at two different scales for the same
minibatch.

concat_preds([Y1, Y2]).shape

(2, 25300)

Downsampling Block
In order to detect objects at multiple scales, we define the following downsampling block
down_sample_blk that halves the height and width of input feature maps. In fact, this block
applies the design of VGG blocks in Section 8.2.1. More concretely, each downsampling
block consists of two 3× 3 convolutional layers with padding of 1 followed by a 2× 2 max-
pooling layer with stride of 2. As we know, 3× 3 convolutional layers with padding of 1 do
not change the shape of feature maps. However, the subsequent 2× 2 max-pooling reduces
the height and width of input feature maps by half. For both input and output feature maps
of this downsampling block, because 1 × 2 + (3 − 1) + (3 − 1) = 6, each unit in the output
has a 6 × 6 receptive field on the input. Therefore, the downsampling block enlarges the
receptive field of each unit in its output feature maps.

def down_sample_blk(num_channels):
blk = nn.Sequential()
for _ in range(2):

blk.add(nn.Conv2D(num_channels, kernel_size=3, padding=1),
nn.BatchNorm(in_channels=num_channels),
nn.Activation('relu'))

blk.add(nn.MaxPool2D(2))
return blk

In the following example, our constructed downsampling block changes the number of input
channels and halves the height and width of the input feature maps.

forward(np.zeros((2, 3, 20, 20)), down_sample_blk(10)).shape

(2, 10, 10, 10)

Base Network Block
The base network block is used to extract features from input images. For simplicity, we
construct a small base network consisting of three downsampling blocks that double the
number of channels at each block. Given a 256× 256 input image, this base network block
outputs 32 × 32 feature maps (256/23 = 32).
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def base_net():
blk = nn.Sequential()
for num_filters in [16, 32, 64]:

blk.add(down_sample_blk(num_filters))
return blk

forward(np.zeros((2, 3, 256, 256)), base_net()).shape

(2, 64, 32, 32)

The Complete Model
The complete single shot multibox detection model consists of five blocks. The feature
maps produced by each block are used for both (i) generating anchor boxes and (ii) predict-
ing classes and offsets of these anchor boxes. Among these five blocks, the first one is the
base network block, the second to the fourth are downsampling blocks, and the last block
uses global max-pooling to reduce both the height and width to 1. Technically, the second
to the fifth blocks are all those multiscale feature map blocks in Fig. 14.7.1.

def get_blk(i):
if i == 0:

blk = base_net()
elif i == 4:

blk = nn.GlobalMaxPool2D()
else:

blk = down_sample_blk(128)
return blk

Now we define the forward propagation for each block. Different from in image classifica-
tion tasks, outputs here include (i) CNN feature maps Y, (ii) anchor boxes generated using
Y at the current scale, and (iii) classes and offsets predicted (based on Y) for these anchor
boxes.

def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):
Y = blk(X)
anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)
cls_preds = cls_predictor(Y)
bbox_preds = bbox_predictor(Y)
return (Y, anchors, cls_preds, bbox_preds)

Recall that in Fig. 14.7.1 a multiscale feature map block that is closer to the top is for
detecting larger objects; thus, it needs to generate larger anchor boxes. In the above forward
propagation, at eachmultiscale featuremap blockwe pass in a list of two scale values via the
sizes argument of the invoked multibox_prior function (described in Section 14.4). In
the following, the interval between 0.2 and 1.05 is split evenly into five sections to determine
the smaller scale values at the five blocks: 0.2, 0.37, 0.54, 0.71, and 0.88. Then their larger
scale values are given by

√
0.2 × 0.37 = 0.272,

√
0.37 × 0.54 = 0.447, and so on.
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sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],
[0.88, 0.961]]

ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) - 1

Now we can define the complete model TinySSD as follows.

class TinySSD(nn.Block):
def __init__(self, num_classes, **kwargs):

super(TinySSD, self).__init__(**kwargs)
self.num_classes = num_classes
for i in range(5):

# Equivalent to the assignment statement `self.blk_i = get_blk(i)`
setattr(self, f'blk_{i}', get_blk(i))
setattr(self, f'cls_{i}', cls_predictor(num_anchors, num_classes))
setattr(self, f'bbox_{i}', bbox_predictor(num_anchors))

def forward(self, X):
anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5
for i in range(5):

# Here `getattr(self, 'blk_%d' % i)` accesses `self.blk_i`
X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(

X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],
getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))

anchors = np.concatenate(anchors, axis=1)
cls_preds = concat_preds(cls_preds)
cls_preds = cls_preds.reshape(

cls_preds.shape[0], -1, self.num_classes + 1)
bbox_preds = concat_preds(bbox_preds)
return anchors, cls_preds, bbox_preds

We create a model instance and use it to perform forward propagation on a minibatch of
256 × 256 images X.

As shown earlier in this section, the first block outputs 32×32 feature maps. Recall that the
second to fourth downsampling blocks halve the height and width and the fifth block uses
global pooling. Since 4 anchor boxes are generated for each unit along spatial dimensions
of feature maps, at all the five scales a total of (322 + 162 + 82 + 42 + 1) × 4 = 5444 anchor
boxes are generated for each image.

net = TinySSD(num_classes=1)
net.initialize()
X = np.zeros((32, 3, 256, 256))
anchors, cls_preds, bbox_preds = net(X)

print('output anchors:', anchors.shape)
print('output class preds:', cls_preds.shape)
print('output bbox preds:', bbox_preds.shape)

output anchors: (1, 5444, 4)

(continues on next page)
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(continued from previous page)

output class preds: (32, 5444, 2)
output bbox preds: (32, 21776)

14.7.2 Training
Now we will explain how to train the single shot multibox detection model for object de-
tection.

Reading the Dataset and Initializing the Model
To begin with, let’s read the banana detection dataset described in Section 14.6.

batch_size = 32
train_iter, _ = d2l.load_data_bananas(batch_size)

read 1000 training examples
read 100 validation examples

There is only one class in the banana detection dataset. After defining the model, we need
to initialize its parameters and define the optimization algorithm.

device, net = d2l.try_gpu(), TinySSD(num_classes=1)
net.initialize(init=init.Xavier(), ctx=device)
trainer = gluon.Trainer(net.collect_params(), 'sgd',

{'learning_rate': 0.2, 'wd': 5e-4})

[22:46:43] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

Defining Loss and Evaluation Functions
Object detection has two types of losses. The first loss concerns classes of anchor boxes:
its computation can simply reuse the cross-entropy loss function that we used for image
classification. The second loss concerns offsets of positive (non-background) anchor boxes:
this is a regression problem. For this regression problem, however, here we do not use the
squared loss described in Section 3.1.3. Instead, we use the ℓ1 norm loss, the absolute
value of the difference between the prediction and the ground-truth. The mask variable
bbox_masks filters out negative anchor boxes and illegal (padded) anchor boxes in the loss
calculation. In the end, we sum up the anchor box class loss and the anchor box offset loss
to obtain the loss function for the model.
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cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()
bbox_loss = gluon.loss.L1Loss()

def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
cls = cls_loss(cls_preds, cls_labels)
bbox = bbox_loss(bbox_preds * bbox_masks, bbox_labels * bbox_masks)
return cls + bbox

We can use accuracy to evaluate the classification results. Due to the used ℓ1 norm loss
for the offsets, we use the mean absolute error to evaluate the predicted bounding boxes.
These prediction results are obtained from the generated anchor boxes and the predicted
offsets for them.

def cls_eval(cls_preds, cls_labels):
# Because the class prediction results are on the final dimension,
# `argmax` needs to specify this dimension
return float((cls_preds.argmax(axis=-1).astype(

cls_labels.dtype) == cls_labels).sum())

def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
return float((np.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())

Training the Model
When training the model, we need to generate multiscale anchor boxes (anchors) and pre-
dict their classes (cls_preds) and offsets (bbox_preds) in the forward propagation. Then
we label the classes (cls_labels) and offsets (bbox_labels) of such generated anchor
boxes based on the label information Y. Finally, we calculate the loss function using the
predicted and labeled values of the classes and offsets. For concise implementations, eval-
uation of the test dataset is omitted here.

num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],

legend=['class error', 'bbox mae'])
for epoch in range(num_epochs):

# Sum of training accuracy, no. of examples in sum of training accuracy,
# Sum of absolute error, no. of examples in sum of absolute error
metric = d2l.Accumulator(4)
for features, target in train_iter:

timer.start()
X = features.as_in_ctx(device)
Y = target.as_in_ctx(device)
with autograd.record():

# Generate multiscale anchor boxes and predict their classes and
# offsets
anchors, cls_preds, bbox_preds = net(X)
# Label the classes and offsets of these anchor boxes
bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors,

Y)
# Calculate the loss function using the predicted and labeled

(continues on next page)
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# values of the classes and offsets
l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,

bbox_masks)
l.backward()
trainer.step(batch_size)
metric.add(cls_eval(cls_preds, cls_labels), cls_labels.size,

bbox_eval(bbox_preds, bbox_labels, bbox_masks),
bbox_labels.size)

cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]
animator.add(epoch + 1, (cls_err, bbox_mae))

print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{len(train_iter._dataset) / timer.stop():.1f} examples/sec on '

f'{str(device)}')

class err 3.48e-03, bbox mae 3.78e-03
1968.6 examples/sec on gpu(0)

14.7.3 Prediction
During prediction, the goal is to detect all the objects of interest on the image. Below we
read and resize a test image, converting it to a four-dimensional tensor that is required by
convolutional layers.

img = image.imread('../img/banana.jpg')
feature = image.imresize(img, 256, 256).astype('float32')
X = np.expand_dims(feature.transpose(2, 0, 1), axis=0)

Using the multibox_detection function below, the predicted bounding boxes are obtained
from the anchor boxes and their predicted offsets. Then non-maximum suppression is used
to remove similar predicted bounding boxes.

def predict(X):
anchors, cls_preds, bbox_preds = net(X.as_in_ctx(device))
cls_probs = npx.softmax(cls_preds).transpose(0, 2, 1)
output = d2l.multibox_detection(cls_probs, bbox_preds, anchors)
idx = [i for i, row in enumerate(output[0]) if row[0] != -1]
return output[0, idx]

(continues on next page)
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output = predict(X)

Finally, we display all the predicted bounding boxes with confidence 0.9 or above as out-
put.

def display(img, output, threshold):
d2l.set_figsize((5, 5))
fig = d2l.plt.imshow(img.asnumpy())
for row in output:

score = float(row[1])
if score < threshold:

continue
h, w = img.shape[:2]
bbox = [row[2:6] * np.array((w, h, w, h), ctx=row.ctx)]
d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')

display(img, output, threshold=0.9)

14.7.4 Summary
• Single shot multibox detection is a multiscale object detection model. Via its base net-

work and several multiscale feature map blocks, single-shot multibox detection gen-
erates a varying number of anchor boxes with different sizes, and detects varying-size
objects by predicting classes and offsets of these anchor boxes (thus the bounding
boxes).

• When training the single-shot multibox detection model, the loss function is calculated
based on the predicted and labeled values of the anchor box classes and offsets.

14.7.5 Exercises
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1. Can you improve the single-shot multibox detection by improving the loss function? For
example, replace ℓ1 norm loss with smooth ℓ1 norm loss for the predicted offsets. This
loss function uses a square function around zero for smoothness, which is controlled by
the hyperparameter 𝜎:

𝑓 (𝑥) =
{
(𝜎𝑥)2/2, if |𝑥 | < 1/𝜎2

|𝑥 | − 0.5/𝜎2, otherwise
(14.7.1)

When 𝜎 is very large, this loss is similar to the ℓ1 norm loss. When its value is smaller, the
loss function is smoother.

sigmas = [10, 1, 0.5]
lines = ['-', '--', '-.']
x = np.arange(-2, 2, 0.1)
d2l.set_figsize()

for l, s in zip(lines, sigmas):
y = npx.smooth_l1(x, scalar=s)
d2l.plt.plot(x.asnumpy(), y.asnumpy(), l, label='sigma=%.1f' % s)

d2l.plt.legend();

Besides, in the experiment we used cross-entropy loss for class prediction: denoting by 𝑝 𝑗
the predicted probability for the ground-truth class 𝑗 , the cross-entropy loss is − log 𝑝 𝑗 . We
can also use the focal loss (Lin et al., 2017): given hyperparameters 𝛾 > 0 and 𝛼 > 0, this
loss is defined as:

−𝛼(1 − 𝑝 𝑗 )𝛾 log 𝑝 𝑗 . (14.7.2)

As we can see, increasing 𝛾 can effectively reduce the relative loss for well-classified ex-
amples (e.g., 𝑝 𝑗 > 0.5) so the training can focus more on those difficult examples that are
misclassified.

def focal_loss(gamma, x):
return -(1 - x) ** gamma * np.log(x)

x = np.arange(0.01, 1, 0.01)
for l, gamma in zip(lines, [0, 1, 5]):

y = d2l.plt.plot(x.asnumpy(), focal_loss(gamma, x).asnumpy(), l,
label='gamma=%.1f' % gamma)

d2l.plt.legend();
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216

2. Due to space limitations, we have omitted some implementation details of the single
shot multibox detection model in this section. Can you further improve the model in the
following aspects:

1. When an object is much smaller compared with the image, the model could resize
the input image bigger.

2. There are typically a vast number of negative anchor boxes. To make the class dis-
tribution more balanced, we could downsample negative anchor boxes.

3. In the loss function, assign different weight hyperparameters to the class loss and the
offset loss.

4. Use other methods to evaluate the object detection model, such as those in the single
shot multibox detection paper (Liu et al., 2016).

Discussions216 .

14.8 Region-based CNNs (R-CNNs)

Besides single shot multibox detection described in Section 14.7, region-based CNNs or
regions with CNN features (R-CNNs) are also among many pioneering approaches of ap-
plying deep learning to object detection (Girshick et al., 2014). In this section, we will
introduce the R-CNN and its series of improvements: the fast R-CNN (Girshick, 2015), the
faster R-CNN (Ren et al., 2015), and the mask R-CNN (He et al., 2017). Due to limited
space, we will only focus on the design of these models.

14.8.1 R-CNNs
The R-CNN first extracts many (e.g., 2000) region proposals from the input image (e.g., an-
chor boxes can also be considered as region proposals), labeling their classes and bounding
boxes (e.g., offsets).

(Girshick et al., 2014)

Then a CNN is used to perform forward propagation on each region proposal to extract

https://discuss.d2l.ai/t/373
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its features. Next, features of each region proposal are used for predicting the class and
bounding box of this region proposal.

tFig. 14.8.1 The R-CNN model.

Fig. 14.8.1 shows the R-CNNmodel. More concretely, the R-CNN consists of the following
four steps:

1. Perform selective search to extract multiple high-quality region proposals on the input
image (Uijlings et al., 2013). These proposed regions are usually selected at multiple
scales with different shapes and sizes. Each region proposal will be labeled with a class
and a ground-truth bounding box.

2. Choose a pretrained CNN and truncate it before the output layer. Resize each region
proposal to the input size required by the network, and output the extracted features for
the region proposal through forward propagation.

3. Take the extracted features and labeled class of each region proposal as an example.
Train multiple support vector machines to classify objects, where each support vector
machine individually determines whether the example contains a specific class.

4. Take the extracted features and labeled bounding box of each region proposal as an
example. Train a linear regression model to predict the ground-truth bounding box.

Although the R-CNN model uses pretrained CNNs to effectively extract image features, it
is slow. Imagine that we select thousands of region proposals from a single input image:
this requires thousands of CNN forward propagations to perform object detection. This
massive computing load makes it infeasible to widely use R-CNNs in real-world applica-
tions.

14.8.2 Fast R-CNN
The main performance bottleneck of an R-CNN lies in the independent CNN forward prop-
agation for each region proposal, without sharing computation. Since these regions usually
have overlaps, independent feature extractions lead to much repeated computation. One
of the major improvements of the fast R-CNN from the R-CNN is that the CNN forward
propagation is only performed on the entire image (Girshick, 2015).

Fig. 14.8.2 describes the fast R-CNNmodel. Its major computations are as follows:

1. Compared with the R-CNN, in the fast R-CNN the input of the CNN for feature extrac-
tion is the entire image, rather than individual region proposals. Moreover, this CNN is
trainable. Given an input image, let the shape of the CNN output be 1 × 𝑐 × ℎ1 × 𝑤1.
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tFig. 14.8.2 The fast R-CNN model.

2. Suppose that selective search generates 𝑛 region proposals. These region proposals (of
different shapes) mark regions of interest (of different shapes) on the CNN output. Then
these regions of interest further extract features of the same shape (say height ℎ2 and
width 𝑤2 are specified) in order to be easily concatenated. To achieve this, the fast R-
CNN introduces the region of interest (RoI) pooling layer: the CNN output and region
proposals are input into this layer, outputting concatenated features of shape 𝑛×𝑐× ℎ2×
𝑤2 that are further extracted for all the region proposals.

3. Using a fully connected layer, transform the concatenated features into an output of
shape 𝑛 × 𝑑, where 𝑑 depends on the model design.

4. Predict the class and bounding box for each of the 𝑛 region proposals. More concretely,
in class and bounding box prediction, transform the fully connected layer output into
an output of shape 𝑛 × 𝑞 (𝑞 is the number of classes) and an output of shape 𝑛 × 4,
respectively. The class prediction uses softmax regression.

The region of interest pooling layer proposed in the fast R-CNN is different from the pooling
layer introduced in Section 7.5. In the pooling layer, we indirectly control the output shape
by specifying sizes of the pooling window, padding, and stride. In contrast, we can directly
specify the output shape in the region of interest pooling layer.

For example, let’s specify the output height and width for each region as ℎ2 and 𝑤2, re-
spectively. For any region of interest window of shape ℎ × 𝑤, this window is divided
into a ℎ2 × 𝑤2 grid of subwindows, where the shape of each subwindow is approximately
(ℎ/ℎ2) × (𝑤/𝑤2). In practice, the height and width of any subwindow shall be rounded up,
and the largest element shall be used as output of the subwindow. Therefore, the region of
interest pooling layer can extract features of the same shape even when regions of interest
have different shapes.

As an illustrative example, in Fig. 14.8.3, the upper-left 3 × 3 region of interest is selected
on a 4×4 input. For this region of interest, we use a 2×2 region of interest pooling layer to
obtain a 2 × 2 output. Note that each of the four divided subwindows contains elements 0,
1, 4, and 5 (5 is the maximum); 2 and 6 (6 is the maximum); 8 and 9 (9 is the maximum);
and 10.
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tFig. 14.8.3 A 2 × 2 region of interest pooling layer.

Below we demonstrate the computation of the region of interest pooling layer. Suppose
that the height and width of the CNN-extracted features X are both 4, and there is only a
single channel.

from mxnet import np, npx

npx.set_np()

X = np.arange(16).reshape(1, 1, 4, 4)
X

[22:09:37] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
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array([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]]])

Let’s further suppose that the height and width of the input image are both 40 pixels and
that selective search generates two region proposals on this image. Each region proposal is
expressed as five elements: its object class followed by the (𝑥, 𝑦)-coordinates of its upper-
left and lower-right corners.

rois = np.array([[0, 0, 0, 20, 20], [0, 0, 10, 30, 30]])

Because the height and width of X are 1/10 of the height and width of the input image,
the coordinates of the two region proposals are multiplied by 0.1 according to the specified
spatial_scale argument. Then the two regions of interest are marked on X as X[:, :,

0:3, 0:3] and X[:, :, 1:4, 0:4], respectively. Finally in the 2 × 2 region of interest
pooling, each region of interest is divided into a grid of sub-windows to further extract
features of the same shape 2 × 2.

npx.roi_pooling(X, rois, pooled_size=(2, 2), spatial_scale=0.1)

array([[[[ 5., 6.],
[ 9., 10.]]],

(continues on next page)
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[[[ 9., 11.],
[13., 15.]]]])

14.8.3 Faster R-CNN
To be more accurate in object detection, the fast R-CNN model usually has to generate
a lot of region proposals in selective search. To reduce region proposals without loss of
accuracy, the faster R-CNN proposes to replace selective search with a region proposal
network (Ren et al., 2015).

tFig. 14.8.4 The faster R-CNN model.

Fig. 14.8.4 shows the faster R-CNN model. Compared with the fast R-CNN, the faster R-
CNN only changes the region proposal method from selective search to a region proposal
network. The rest of the model remain unchanged. The region proposal network works in
the following steps:

1. Use a 3 × 3 convolutional layer with padding of 1 to transform the CNN output to a
new output with 𝑐 channels. In this way, each unit along the spatial dimensions of the
CNN-extracted feature maps gets a new feature vector of length 𝑐.

2. Centered on each pixel of the feature maps, generate multiple anchor boxes of different
scales and aspect ratios and label them.

3. Using the length-𝑐 feature vector at the center of each anchor box, predict the binary
class (background or objects) and bounding box for this anchor box.

4. Consider those predicted bounding boxes whose predicted classes are objects. Remove
overlapped results using non-maximum suppression. The remaining predicted bounding
boxes for objects are the region proposals required by the region of interest pooling layer.

It is worth noting that, as part of the faster R-CNN model, the region proposal network
is jointly trained with the rest of the model. In other words, the objective function of the
faster R-CNN includes not only the class and bounding box prediction in object detection,
but also the binary class and bounding box prediction of anchor boxes in the region proposal
network. As a result of the end-to-end training, the region proposal network learns how to
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generate high-quality region proposals, so as to stay accurate in object detection with a
reduced number of region proposals that are learned from data.

14.8.4 Mask R-CNN
In the training dataset, if pixel-level positions of object are also labeled on images, the
mask R-CNN can effectively leverage such detailed labels to further improve the accuracy
of object detection (He et al., 2017).

tFig. 14.8.5 The mask R-CNN model.

As shown in Fig. 14.8.5, the mask R-CNN is modified based on the faster R-CNN. Specif-
ically, the mask R-CNN replaces the region of interest pooling layer with the region of
interest (RoI) alignment layer. This region of interest alignment layer uses bilinear inter-
polation to preserve the spatial information on the feature maps, which is more suitable for
pixel-level prediction. The output of this layer contains feature maps of the same shape for
all the regions of interest. They are used to predict not only the class and bounding box
for each region of interest, but also the pixel-level position of the object through an addi-
tional fully convolutional network. More details on using a fully convolutional network to
predict pixel-level semantics of an image will be provided in subsequent sections of this
chapter.

14.8.5 Summary
• The R-CNN extracts many region proposals from the input image, uses a CNN to perform

forward propagation on each region proposal to extract its features, then uses these
features to predict the class and bounding box of this region proposal.

• One of the major improvements of the fast R-CNN from the R-CNN is that the CNN for-
ward propagation is only performed on the entire image. It also introduces the region
of interest pooling layer, so that features of the same shape can be further extracted
for regions of interest that have different shapes.

• The faster R-CNN replaces the selective search used in the fast R-CNN with a jointly
trained region proposal network, so that the former can stay accurate in object detec-
tion with a reduced number of region proposals.
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• Based on the faster R-CNN, the mask R-CNN additionally introduces a fully convolu-
tional network, so as to leverage pixel-level labels to further improve the accuracy of
object detection.

14.8.6 Exercises
1. Can we frame object detection as a single regression problem, such as predicting bound-

ing boxes and class probabilities? You may refer to the design of the YOLO model
(Redmon et al., 2016).

2. Compare single shot multibox detection with the methods introduced in this section.
What are their major differences? You may refer to Figure 2 of Zhao et al. (2019).

Discussions217 .

14.9 Semantic Segmentation and the Dataset

When discussing object detection tasks in Section 14.3–Section 14.8, rectangular bound-
ing boxes are used to label and predict objects in images. This section will discuss the
problem of semantic segmentation, which focuses on how to divide an image into regions
belonging to different semantic classes. Different from object detection, semantic seg-
mentation recognizes and understands what are in images in pixel level: its labeling and
prediction of semantic regions are in pixel level. Fig. 14.9.1 shows the labels of the dog,
cat, and background of the image in semantic segmentation. Compared with in object de-
tection, the pixel-level borders labeled in semantic segmentation are obviously more fine-
grained.

tFig. 14.9.1 Labels of the dog, cat, and background of the image in semantic segmentation.

14.9.1 Image Segmentation and Instance Segmentation
There are also two important tasks in the field of computer vision that are similar to seman-
tic segmentation, namely image segmentation and instance segmentation. We will briefly
distinguish them from semantic segmentation as follows.

• Image segmentation divides an image into several constituent regions. The methods for
this type of problem usually make use of the correlation between pixels in the image.
It does not need label information about image pixels during training, and it cannot

https://discuss.d2l.ai/t/374
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guarantee that the segmented regions will have the semantics that we hope to obtain
during prediction. Taking the image in Fig. 14.9.1 as input, image segmentation may
divide the dog into two regions: one covers the mouth and eyes which are mainly
black, and the other covers the rest of the body which is mainly yellow.

• Instance segmentation is also called simultaneous detection and segmentation. It studies
how to recognize the pixel-level regions of each object instance in an image. Differ-
ent from semantic segmentation, instance segmentation needs to distinguish not only
semantics, but also different object instances. For example, if there are two dogs in
the image, instance segmentation needs to distinguish which of the two dogs a pixel
belongs to.

14.9.2 The Pascal VOC2012 Semantic Segmentation Dataset
On of the most important semantic segmentation dataset is Pascal VOC2012 218 . In the
following, we will take a look at this dataset.

%matplotlib inline
import os
from mxnet import gluon, image, np, npx
from d2l import mxnet as d2l

npx.set_np()

The tar file of the dataset is about 2 GB, so it may take a while to download the file. The
extracted dataset is located at ../data/VOCdevkit/VOC2012.

#@save
d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar',

'4e443f8a2eca6b1dac8a6c57641b67dd40621a49')

voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')

Downloading ../data/VOCtrainval_11-May-2012.tar from http://d2l-data.s3-
↩→accelerate.amazonaws.com/VOCtrainval_11-May-2012.tar...

After entering the path ../data/VOCdevkit/VOC2012, we can see the different compo-
nents of the dataset. The ImageSets/Segmentation path contains text files that specify
training and test samples, while the JPEGImages and SegmentationClass paths store the
input image and label for each example, respectively. The label here is also in the im-
age format, with the same size as its labeled input image. Besides, pixels with the same
color in any label image belong to the same semantic class. The following defines the
read_voc_images function to read all the input images and labels into the memory.

#@save
def read_voc_images(voc_dir, is_train=True):

"""Read all VOC feature and label images."""

(continues on next page)

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation',
'train.txt' if is_train else 'val.txt')

with open(txt_fname, 'r') as f:
images = f.read().split()

features, labels = [], []
for i, fname in enumerate(images):

features.append(image.imread(os.path.join(
voc_dir, 'JPEGImages', f'{fname}.jpg')))

labels.append(image.imread(os.path.join(
voc_dir, 'SegmentationClass', f'{fname}.png')))

return features, labels

train_features, train_labels = read_voc_images(voc_dir, True)

[22:12:52] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Wedraw the first five input images and their labels. In the label images, white and black rep-
resent borders and background, respectively, while the other colors correspond to different
classes.

n = 5
imgs = train_features[:n] + train_labels[:n]
d2l.show_images(imgs, 2, n);

Next, we enumerate the RGB color values and class names for all the labels in this dataset.

#@save
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],

[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]]

#@save
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',

(continues on next page)
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'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person',
'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']

With the two constants defined above, we can conveniently find the class index for each
pixel in a label. We define the voc_colormap2label function to build the mapping from
the above RGB color values to class indices, and the voc_label_indices function to map
any RGB values to their class indices in this Pascal VOC2012 dataset.

#@save
def voc_colormap2label():

"""Build the mapping from RGB to class indices for VOC labels."""
colormap2label = np.zeros(256 ** 3)
for i, colormap in enumerate(VOC_COLORMAP):

colormap2label[
(colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i

return colormap2label

#@save
def voc_label_indices(colormap, colormap2label):

"""Map any RGB values in VOC labels to their class indices."""
colormap = colormap.astype(np.int32)
idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256

+ colormap[:, :, 2])
return colormap2label[idx]

For example, in the first example image, the class index for the front part of the airplane is
1, while the background index is 0.

y = voc_label_indices(train_labels[0], voc_colormap2label())
y[105:115, 130:140], VOC_CLASSES[1]

(array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 0., 0., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 1., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]]),

'aeroplane')

Data Preprocessing
In previous experiments such as in Section 8.1–Section 8.4, images are rescaled to fit the
model’s required input shape. However, in semantic segmentation, doing so requires rescal-
ing the predicted pixel classes back to the original shape of the input image. Such rescaling
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may be inaccurate, especially for segmented regions with different classes. To avoid this
issue, we crop the image to a fixed shape instead of rescaling. Specifically, using random
cropping from image augmentation, we crop the same area of the input image and the la-
bel.

#@save
def voc_rand_crop(feature, label, height, width):

"""Randomly crop both feature and label images."""
feature, rect = image.random_crop(feature, (width, height))
label = image.fixed_crop(label, *rect)
return feature, label

imgs = []
for _ in range(n):

imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300)
d2l.show_images(imgs[::2] + imgs[1::2], 2, n);

Custom Semantic Segmentation Dataset Class
We define a custom semantic segmentation dataset class VOCSegDataset by inheriting the
Dataset class provided by high-level APIs. By implementing the __getitem__ function,
we can arbitrarily access the input image indexed as idx in the dataset and the class index
of each pixel in this image. Since some images in the dataset have a smaller size than
the output size of random cropping, these examples are filtered out by a custom filter

function. In addition, we also define the normalize_image function to standardize the
values of the three RGB channels of input images.

#@save
class VOCSegDataset(gluon.data.Dataset):

"""A customized dataset to load the VOC dataset."""
def __init__(self, is_train, crop_size, voc_dir):

self.rgb_mean = np.array([0.485, 0.456, 0.406])
self.rgb_std = np.array([0.229, 0.224, 0.225])
self.crop_size = crop_size
features, labels = read_voc_images(voc_dir, is_train=is_train)
self.features = [self.normalize_image(feature)

for feature in self.filter(features)]

(continues on next page)



660 Computer Vision

(continued from previous page)

self.labels = self.filter(labels)
self.colormap2label = voc_colormap2label()
print('read ' + str(len(self.features)) + ' examples')

def normalize_image(self, img):
return (img.astype('float32') / 255 - self.rgb_mean) / self.rgb_std

def filter(self, imgs):
return [img for img in imgs if (

img.shape[0] >= self.crop_size[0] and
img.shape[1] >= self.crop_size[1])]

def __getitem__(self, idx):
feature, label = voc_rand_crop(self.features[idx], self.labels[idx],

*self.crop_size)
return (feature.transpose(2, 0, 1),

voc_label_indices(label, self.colormap2label))

def __len__(self):
return len(self.features)

Reading the Dataset
We use the custom VOCSegDataset class to create instances of the training set and test set,
respectively. Suppose that we specify that the output shape of randomly cropped images is
320× 480. Below we can view the number of examples that are retained in the training set
and test set.

crop_size = (320, 480)
voc_train = VOCSegDataset(True, crop_size, voc_dir)
voc_test = VOCSegDataset(False, crop_size, voc_dir)

read 1114 examples
read 1078 examples

Setting the batch size to 64, we define the data iterator for the training set. Let’s print
the shape of the first minibatch. Different from in image classification or object detection,
labels here are three-dimensional tensors.

batch_size = 64
train_iter = gluon.data.DataLoader(voc_train, batch_size, shuffle=True,

last_batch='discard',
num_workers=d2l.get_dataloader_workers())

for X, Y in train_iter:
print(X.shape)
print(Y.shape)
break
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(64, 3, 320, 480)
(64, 320, 480)

Putting It All Together
Finally, we define the following load_data_voc function to download and read the Pascal
VOC2012 semantic segmentation dataset. It returns data iterators for both the training and
test datasets.

#@save
def load_data_voc(batch_size, crop_size):

"""Load the VOC semantic segmentation dataset."""
voc_dir = d2l.download_extract('voc2012', os.path.join(

'VOCdevkit', 'VOC2012'))
num_workers = d2l.get_dataloader_workers()
train_iter = gluon.data.DataLoader(

VOCSegDataset(True, crop_size, voc_dir), batch_size,
shuffle=True, last_batch='discard', num_workers=num_workers)

test_iter = gluon.data.DataLoader(
VOCSegDataset(False, crop_size, voc_dir), batch_size,
last_batch='discard', num_workers=num_workers)

return train_iter, test_iter

14.9.3 Summary
• Semantic segmentation recognizes and understands what are in an image in pixel level

by dividing the image into regions belonging to different semantic classes.

• One of the most important semantic segmentation dataset is Pascal VOC2012.

• In semantic segmentation, since the input image and label correspond one-to-one on the
pixel, the input image is randomly cropped to a fixed shape rather than rescaled.

14.9.4 Exercises
1. How can semantic segmentation be applied in autonomous vehicles and medical image

diagnostics? Can you think of other applications?

2. Recall the descriptions of data augmentation in Section 14.1. Which of the image aug-
mentation methods used in image classification would be infeasible to be applied in
semantic segmentation?

Discussions219 .

https://discuss.d2l.ai/t/375
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14.10 Transposed Convolution

The CNN layers we have seen so far, such as convolutional layers (Section 7.2) and pool-
ing layers (Section 7.5), typically reduce (downsample) the spatial dimensions (height and
width) of the input, or keep them unchanged. In semantic segmentation that classifies at
pixel-level, it will be convenient if the spatial dimensions of the input and output are the
same. For example, the channel dimension at one output pixel can hold the classification
results for the input pixel at the same spatial position.

To achieve this, especially after the spatial dimensions are reduced by CNN layers, we
can use another type of CNN layers that can increase (upsample) the spatial dimensions of
intermediate feature maps. In this section, we will introduce transposed convolution, which
is also called fractionally-strided convolution (Dumoulin and Visin, 2016), for reversing
downsampling operations by the convolution.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

14.10.1 Basic Operation
Ignoring channels for now, let’s begin with the basic transposed convolution operation with
stride of 1 and no padding. Suppose that we are given a 𝑛ℎ × 𝑛𝑤 input tensor and a 𝑘ℎ × 𝑘𝑤
kernel. Sliding the kernel window with stride of 1 for 𝑛𝑤 times in each row and 𝑛ℎ times
in each column yields a total of 𝑛ℎ𝑛𝑤 intermediate results. Each intermediate result is
a (𝑛ℎ + 𝑘ℎ − 1) × (𝑛𝑤 + 𝑘𝑤 − 1) tensor that are initialized as zeros. To compute each
intermediate tensor, each element in the input tensor is multiplied by the kernel so that
the resulting 𝑘ℎ × 𝑘𝑤 tensor replaces a portion in each intermediate tensor. Note that the
position of the replaced portion in each intermediate tensor corresponds to the position of
the element in the input tensor used for the computation. In the end, all the intermediate
results are summed over to produce the output.

As an example, Fig. 14.10.1 illustrates how transposed convolution with a 2 × 2 kernel is
computed for a 2 × 2 input tensor.

We can implement this basic transposed convolution operation trans_conv for a input
matrix X and a kernel matrix K.

def trans_conv(X, K):
h, w = K.shape
Y = np.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
for i in range(X.shape[0]):

for j in range(X.shape[1]):

(continues on next page)
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tFig. 14.10.1 Transposed convolution with a 2 × 2 kernel. The shaded portions are a portion of an
intermediate tensor as well as the input and kernel tensor elements used for the
computation.

(continued from previous page)

Y[i: i + h, j: j + w] += X[i, j] * K
return Y

In contrast to the regular convolution (in Section 7.2) that reduces input elements via the
kernel, the transposed convolution broadcasts input elements via the kernel, thereby pro-
ducing an output that is larger than the input. We can construct the input tensor X and the
kernel tensor K from Fig. 14.10.1 to validate the output of the above implementation of the
basic two-dimensional transposed convolution operation.

X = np.array([[0.0, 1.0], [2.0, 3.0]])
K = np.array([[0.0, 1.0], [2.0, 3.0]])
trans_conv(X, K)

[22:07:07] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array([[ 0., 0., 1.],
[ 0., 4., 6.],
[ 4., 12., 9.]])

Alternatively, when the input X and kernel K are both four-dimensional tensors, we can use
high-level APIs to obtain the same results.

X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.Conv2DTranspose(1, kernel_size=2)
tconv.initialize(init.Constant(K))
tconv(X)

array([[[[ 0., 0., 1.],
[ 0., 4., 6.],
[ 4., 12., 9.]]]])
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14.10.2 Padding, Strides, and Multiple Channels
Different from in the regular convolution where padding is applied to input, it is applied to
output in the transposed convolution. For example, when specifying the padding number
on either side of the height and width as 1, the first and last rows and columns will be
removed from the transposed convolution output.

tconv = nn.Conv2DTranspose(1, kernel_size=2, padding=1)
tconv.initialize(init.Constant(K))
tconv(X)

array([[[[4.]]]])

In the transposed convolution, strides are specified for intermediate results (thus output),
not for input. Using the same input and kernel tensors from Fig. 14.10.1, changing the
stride from 1 to 2 increases both the height and weight of intermediate tensors, hence the
output tensor in Fig. 14.10.2.

tFig. 14.10.2 Transposed convolution with a 2 × 2 kernel with stride of 2. The shaded portions are a
portion of an intermediate tensor as well as the input and kernel tensor elements used for
the computation.

The following code snippet can validate the transposed convolution output for stride of 2
in Fig. 14.10.2.

tconv = nn.Conv2DTranspose(1, kernel_size=2, strides=2)
tconv.initialize(init.Constant(K))
tconv(X)

array([[[[0., 0., 0., 1.],
[0., 0., 2., 3.],
[0., 2., 0., 3.],
[4., 6., 6., 9.]]]])
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For multiple input and output channels, the transposed convolution works in the same way
as the regular convolution. Suppose that the input has 𝑐𝑖 channels, and that the transposed
convolution assigns a 𝑘ℎ × 𝑘𝑤 kernel tensor to each input channel. When multiple output
channels are specified, we will have a 𝑐𝑖 × 𝑘ℎ × 𝑘𝑤 kernel for each output channel.

As in all, if we feed X into a convolutional layer 𝑓 to output Y = 𝑓 (X) and create a trans-
posed convolutional layer 𝑔 with the same hyperparameters as 𝑓 except for the number of
output channels being the number of channels in X, then 𝑔(𝑌 ) will have the same shape as
X. This can be illustrated in the following example.

X = np.random.uniform(size=(1, 10, 16, 16))
conv = nn.Conv2D(20, kernel_size=5, padding=2, strides=3)
tconv = nn.Conv2DTranspose(10, kernel_size=5, padding=2, strides=3)
conv.initialize()
tconv.initialize()
tconv(conv(X)).shape == X.shape

True

14.10.3 Connection to Matrix Transposition
The transposed convolution is named after the matrix transposition. To explain, let’s first
see how to implement convolutions using matrix multiplications. In the example below, we
define a 3 × 3 input X and a 2 × 2 convolution kernel K, and then use the corr2d function
to compute the convolution output Y.

X = np.arange(9.0).reshape(3, 3)
K = np.array([[1.0, 2.0], [3.0, 4.0]])
Y = d2l.corr2d(X, K)
Y

array([[27., 37.],
[57., 67.]])

Next, we rewrite the convolution kernel K as a sparse weight matrix W containing a lot of
zeros. The shape of the weight matrix is (4, 9), where the non-zero elements come from
the convolution kernel K.

def kernel2matrix(K):
k, W = np.zeros(5), np.zeros((4, 9))
k[:2], k[3:5] = K[0, :], K[1, :]
W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k
return W

W = kernel2matrix(K)
W
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array([[1., 2., 0., 3., 4., 0., 0., 0., 0.],
[0., 1., 2., 0., 3., 4., 0., 0., 0.],
[0., 0., 0., 1., 2., 0., 3., 4., 0.],
[0., 0., 0., 0., 1., 2., 0., 3., 4.]])

Concatenate the input X row by row to get a vector of length 9. Then the matrix multiplica-
tion of W and the vectorized X gives a vector of length 4. After reshaping it, we can obtain
the same result Y from the original convolution operation above: we just implemented con-
volutions using matrix multiplications.

Y == np.dot(W, X.reshape(-1)).reshape(2, 2)

array([[ True, True],
[ True, True]])

Likewise, we can implement transposed convolutions using matrix multiplications. In the
following example, we take the 2 × 2 output Y from the above regular convolution as input
to the transposed convolution. To implement this operation by multiplying matrices, we
only need to transpose the weight matrix W with the new shape (9, 4).

Z = trans_conv(Y, K)
Z == np.dot(W.T, Y.reshape(-1)).reshape(3, 3)

array([[ True, True, True],
[ True, True, True],
[ True, True, True]])

Consider implementing the convolution by multiplying matrices. Given an input vector
x and a weight matrix W, the forward propagation function of the convolution can be
implemented by multiplying its input with the weight matrix and outputting a vector y =
Wx. Since backpropagation follows the chain rule and ∇xy = W>, the backpropagation
function of the convolution can be implemented bymultiplying its input with the transposed
weight matrix W>. Therefore, the transposed convolutional layer can just exchange the
forward propagation function and the backpropagation function of the convolutional layer:
its forward propagation and backpropagation functions multiply their input vector withW>

and W, respectively.

14.10.4 Summary
• In contrast to the regular convolution that reduces input elements via the kernel, the

transposed convolution broadcasts input elements via the kernel, thereby producing
an output that is larger than the input.

• If we feed X into a convolutional layer 𝑓 to output Y = 𝑓 (X) and create a transposed
convolutional layer 𝑔 with the same hyperparameters as 𝑓 except for the number of



667 Fully Convolutional Networks

220

output channels being the number of channels inX, then 𝑔(𝑌 ) will have the same shape
as X.

• We can implement convolutions using matrix multiplications. The transposed convolu-
tional layer can just exchange the forward propagation function and the backpropaga-
tion function of the convolutional layer.

14.10.5 Exercises
1. In Section 14.10.3, the convolution input X and the transposed convolution output Z have

the same shape. Do they have the same value? Why?

2. Is it efficient to use matrix multiplications to implement convolutions? Why?

Discussions220 .

14.11 Fully Convolutional Networks

As discussed in Section 14.9, semantic segmentation classifies images in pixel level. A
fully convolutional network (FCN) uses a convolutional neural network to transform image
pixels to pixel classes (Long et al., 2015). Unlike the CNNs that we encountered earlier
for image classification or object detection, a fully convolutional network transforms the
height and width of intermediate feature maps back to those of the input image: this is
achieved by the transposed convolutional layer introduced in Section 14.10. As a result, the
classification output and the input image have a one-to-one correspondence in pixel level:
the channel dimension at any output pixel holds the classification results for the input pixel
at the same spatial position.

%matplotlib inline
from mxnet import gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

14.11.1 The Model
Here we describe the basic design of the fully convolutional network model. As shown
in Fig. 14.11.1, this model first uses a CNN to extract image features, then transforms the
number of channels into the number of classes via a 1 × 1 convolutional layer, and finally
transforms the height and width of the feature maps to those of the input image via the
transposed convolution introduced in Section 14.10. As a result, the model output has the
same height and width as the input image, where the output channel contains the predicted
classes for the input pixel at the same spatial position.

https://discuss.d2l.ai/t/376
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tFig. 14.11.1 Fully convolutional network.

Below, we use a ResNet-18 model pretrained on the ImageNet dataset to extract image
features and denote the model instance as pretrained_net. The last few layers of this
model include a global average pooling layer and a fully connected layer: they are not
needed in the fully convolutional network.

pretrained_net = gluon.model_zoo.vision.resnet18_v2(pretrained=True)
pretrained_net.features[-3:], pretrained_net.output

[22:23:49] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(HybridSequential(
(0): Activation(relu)
(1): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_

↩→mode=True, global_pool=True, pool_type=avg, layout=NCHW)
(2): Flatten

),
Dense(512 -> 1000, linear))

Next, we create the fully convolutional network instance net. It copies all the pretrained
layers in the ResNet-18 except for the final global average pooling layer and the fully con-
nected layer that are closest to the output.

net = nn.HybridSequential()
for layer in pretrained_net.features[:-2]:

net.add(layer)

Given an input with height and width of 320 and 480 respectively, the forward propagation
of net reduces the input height and width to 1/32 of the original, namely 10 and 15.
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X = np.random.uniform(size=(1, 3, 320, 480))
net(X).shape

(1, 512, 10, 15)

Next, we use a 1 × 1 convolutional layer to transform the number of output channels into
the number of classes (21) of the Pascal VOC2012 dataset. Finally, we need to increase the
height and width of the feature maps by 32 times to change them back to the height and
width of the input image. Recall how to calculate the output shape of a convolutional layer
in Section 7.3. Since (320−64+16×2+32)/32 = 10 and (480−64+16×2+32)/32 = 15,
we construct a transposed convolutional layer with stride of 32, setting the height and width
of the kernel to 64, the padding to 16. In general, we can see that for stride 𝑠, padding 𝑠/2
(assuming 𝑠/2 is an integer), and the height and width of the kernel 2𝑠, the transposed
convolution will increase the height and width of the input by 𝑠 times.

num_classes = 21
net.add(nn.Conv2D(num_classes, kernel_size=1),

nn.Conv2DTranspose(
num_classes, kernel_size=64, padding=16, strides=32))

14.11.2 Initializing Transposed Convolutional Layers
We already know that transposed convolutional layers can increase the height and width of
feature maps. In image processing, we may need to scale up an image, i.e., upsampling.
Bilinear interpolation is one of the commonly used upsampling techniques. It is also often
used for initializing transposed convolutional layers.

To explain bilinear interpolation, say that given an input image we want to calculate each
pixel of the upsampled output image. In order to calculate the pixel of the output image
at coordinate (𝑥, 𝑦), first map (𝑥, 𝑦) to coordinate (𝑥′, 𝑦′) on the input image, for example,
according to the ratio of the input size to the output size. Note that the mapped 𝑥′ and 𝑦′ are
real numbers. Then, find the four pixels closest to coordinate (𝑥′, 𝑦′) on the input image.
Finally, the pixel of the output image at coordinate (𝑥, 𝑦) is calculated based on these four
closest pixels on the input image and their relative distance from (𝑥′, 𝑦′).

Upsampling of bilinear interpolation can be implemented by the transposed convolutional
layer with the kernel constructed by the following bilinear_kernel function. Due to
space limitations, we only provide the implementation of the bilinear_kernel function
below without discussions on its algorithm design.

def bilinear_kernel(in_channels, out_channels, kernel_size):
factor = (kernel_size + 1) // 2
if kernel_size % 2 == 1:

center = factor - 1
else:

center = factor - 0.5

(continues on next page)
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og = (np.arange(kernel_size).reshape(-1, 1),
np.arange(kernel_size).reshape(1, -1))

filt = (1 - np.abs(og[0] - center) / factor) * \
(1 - np.abs(og[1] - center) / factor)

weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size))
weight[range(in_channels), range(out_channels), :, :] = filt
return np.array(weight)

Let’s experiment with upsampling of bilinear interpolation that is implemented by a trans-
posed convolutional layer. We construct a transposed convolutional layer that doubles the
height and weight, and initialize its kernel with the bilinear_kernel function.

conv_trans = nn.Conv2DTranspose(3, kernel_size=4, padding=1, strides=2)
conv_trans.initialize(init.Constant(bilinear_kernel(3, 3, 4)))

Read the image X and assign the upsampling output to Y. In order to print the image, we
need to adjust the position of the channel dimension.

img = image.imread('../img/catdog.jpg')
X = np.expand_dims(img.astype('float32').transpose(2, 0, 1), axis=0) / 255
Y = conv_trans(X)
out_img = Y[0].transpose(1, 2, 0)

As we can see, the transposed convolutional layer increases both the height and width of
the image by a factor of two. Except for the different scales in coordinates, the image
scaled up by bilinear interpolation and the original image printed in Section 14.3 look the
same.

d2l.set_figsize()
print('input image shape:', img.shape)
d2l.plt.imshow(img.asnumpy());
print('output image shape:', out_img.shape)
d2l.plt.imshow(out_img.asnumpy());

input image shape: (561, 728, 3)
output image shape: (1122, 1456, 3)
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In a fully convolutional network, we initialize the transposed convolutional layer with up-
sampling of bilinear interpolation. For the 1× 1 convolutional layer, we use Xavier initial-
ization.

W = bilinear_kernel(num_classes, num_classes, 64)
net[-1].initialize(init.Constant(W))
net[-2].initialize(init=init.Xavier())

14.11.3 Reading the Dataset
We read the semantic segmentation dataset as introduced in Section 14.9. The output image
shape of random cropping is specified as 320×480: both the height and width are divisible
by 32.

batch_size, crop_size = 32, (320, 480)
train_iter, test_iter = d2l.load_data_voc(batch_size, crop_size)

read 1114 examples
read 1078 examples

14.11.4 Training
Now we can train our constructed fully convolutional network. The loss function and ac-
curacy calculation here are not essentially different from those in image classification of
earlier chapters. Because we use the output channel of the transposed convolutional layer
to predict the class for each pixel, the channel dimension is specified in the loss calculation.
In addition, the accuracy is calculated based on correctness of the predicted class for all the
pixels.

num_epochs, lr, wd, devices = 5, 0.1, 1e-3, d2l.try_all_gpus()
loss = gluon.loss.SoftmaxCrossEntropyLoss(axis=1)
net.collect_params().reset_ctx(devices)
trainer = gluon.Trainer(net.collect_params(), 'sgd',

{'learning_rate': lr, 'wd': wd})
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)

loss 0.322, train acc 0.894, test acc 0.851
132.1 examples/sec on [gpu(0), gpu(1)]

14.11.5 Prediction
When predicting, we need to standardize the input image in each channel and transform the
image into the four-dimensional input format required by the CNN.
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def predict(img):
X = test_iter._dataset.normalize_image(img)
X = np.expand_dims(X.transpose(2, 0, 1), axis=0)
pred = net(X.as_in_ctx(devices[0])).argmax(axis=1)
return pred.reshape(pred.shape[1], pred.shape[2])

To visualize the predicted class of each pixel, we map the predicted class back to its label
color in the dataset.

def label2image(pred):
colormap = np.array(d2l.VOC_COLORMAP, ctx=devices[0], dtype='uint8')
X = pred.astype('int32')
return colormap[X, :]

Images in the test dataset vary in size and shape. Since the model uses a transposed con-
volutional layer with stride of 32, when the height or width of an input image is indivisible
by 32, the output height or width of the transposed convolutional layer will deviate from
the shape of the input image. In order to address this issue, we can crop multiple rectangu-
lar areas with height and width that are integer multiples of 32 in the image, and perform
forward propagation on the pixels in these areas separately. Note that the union of these
rectangular areas needs to completely cover the input image. When a pixel is covered by
multiple rectangular areas, the average of the transposed convolution outputs in separate
areas for this same pixel can be input to the softmax operation to predict the class.

For simplicity, we only read a few larger test images, and crop a 320×480 area for prediction
starting from the upper-left corner of an image. For these test images, we print their cropped
areas, prediction results, and ground-truth row by row.

voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')
test_images, test_labels = d2l.read_voc_images(voc_dir, False)
n, imgs = 4, []
for i in range(n):

crop_rect = (0, 0, 480, 320)
X = image.fixed_crop(test_images[i], *crop_rect)
pred = label2image(predict(X))
imgs += [X, pred, image.fixed_crop(test_labels[i], *crop_rect)]

d2l.show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2);
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14.11.6 Summary
• The fully convolutional network first uses a CNN to extract image features, then trans-

forms the number of channels into the number of classes via a 1 × 1 convolutional
layer, and finally transforms the height and width of the feature maps to those of the
input image via the transposed convolution.

• In a fully convolutional network, we can use upsampling of bilinear interpolation to
initialize the transposed convolutional layer.

14.11.7 Exercises
1. If we use Xavier initialization for the transposed convolutional layer in the experiment,

how does the result change?

2. Can you further improve the accuracy of the model by tuning the hyperparameters?

3. Predict the classes of all pixels in test images.

4. The original fully convolutional network paper also uses outputs of some intermediate
CNN layers (Long et al., 2015). Try to implement this idea.

Discussions221 .

14.12 Neural Style Transfer

If you are a photography enthusiast, you may be familiar with the filter. It can change
the color style of photos so that landscape photos become sharper or portrait photos have
whitened skins. However, one filter usually only changes one aspect of the photo. To apply

https://discuss.d2l.ai/t/377
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an ideal style to a photo, you probably need to try many different filter combinations. This
process is as complex as tuning the hyperparameters of a model.

In this section, we will leverage layerwise representations of a CNN to automatically apply
the style of one image to another image, i.e., style transfer (Gatys et al., 2016). This task
needs two input images: one is the content image and the other is the style image. We will
use neural networks to modify the content image to make it close to the style image in style.
For example, the content image in Fig. 14.12.1 is a landscape photo taken by us in Mount
Rainier National Park in the suburbs of Seattle, while the style image is an oil painting with
the theme of autumn oak trees. In the output synthesized image, the oil brush strokes of
the style image are applied, leading to more vivid colors, while preserving the main shape
of the objects in the content image.

tFig. 14.12.1 Given content and style images, style transfer outputs a synthesized image.

14.12.1 Method
Fig. 14.12.2 illustrates the CNN-based style transfer method with a simplified example.
First, we initialize the synthesized image, for example, into the content image. This syn-
thesized image is the only variable that needs to be updated during the style transfer process,
i.e., the model parameters to be updated during training. Then we choose a pretrained CNN
to extract image features and freeze its model parameters during training. This deep CNN
uses multiple layers to extract hierarchical features for images. We can choose the output
of some of these layers as content features or style features. Take Fig. 14.12.2 as an exam-
ple. The pretrained neural network here has 3 convolutional layers, where the second layer
outputs the content features, and the first and third layers output the style features.

Next, we calculate the loss function of style transfer through forward propagation (direc-
tion of solid arrows), and update the model parameters (the synthesized image for output)
through backpropagation (direction of dashed arrows). The loss function commonly used
in style transfer consists of three parts: (i) content loss makes the synthesized image and
the content image close in content features; (ii) style loss makes the synthesized image and
style image close in style features; and (iii) total variation loss helps to reduce the noise
in the synthesized image. Finally, when the model training is over, we output the model
parameters of the style transfer to generate the final synthesized image.
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tFig. 14.12.2 CNN-based style transfer process. Solid lines show the direction of forward propagation
and dotted lines show backward propagation.

In the following, we will explain the technical details of style transfer via a concrete exper-
iment.

14.12.2 Reading the Content and Style Images
First, we read the content and style images. From their printed coordinate axes, we can tell
that these images have different sizes.

%matplotlib inline
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

d2l.set_figsize()
content_img = image.imread('../img/rainier.jpg')
d2l.plt.imshow(content_img.asnumpy());

[22:41:40] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
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style_img = image.imread('../img/autumn-oak.jpg')
d2l.plt.imshow(style_img.asnumpy());

14.12.3 Preprocessing and Postprocessing
Below, we define two functions for preprocessing and postprocessing images. The pre-

process function standardizes each of the three RGB channels of the input image and
transforms the results into the CNN input format. The postprocess function restores the
pixel values in the output image to their original values before standardization. Since the
image printing function requires that each pixel has a floating point value from 0 to 1, we
replace any value smaller than 0 or greater than 1 with 0 or 1, respectively.

rgb_mean = np.array([0.485, 0.456, 0.406])
rgb_std = np.array([0.229, 0.224, 0.225])

def preprocess(img, image_shape):
img = image.imresize(img, *image_shape)
img = (img.astype('float32') / 255 - rgb_mean) / rgb_std
return np.expand_dims(img.transpose(2, 0, 1), axis=0)

def postprocess(img):
img = img[0].as_in_ctx(rgb_std.ctx)
return (img.transpose(1, 2, 0) * rgb_std + rgb_mean).clip(0, 1)

14.12.4 Extracting Features
We use the VGG-19 model pretrained on the ImageNet dataset to extract image features
(Gatys et al., 2016).

pretrained_net = gluon.model_zoo.vision.vgg19(pretrained=True)

Downloading /opt/mxnet/models/vgg19-ad2f660d.zipf5c89524-14c4-49c9-9bb9-
↩→460a4480a2b2 from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/
↩→gluon/models/vgg19-ad2f660d.zip...

In order to extract the content features and style features of the image, we can select the
output of certain layers in the VGG network. Generally speaking, the closer to the input
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layer, the easier to extract details of the image, and vice versa, the easier to extract the
global information of the image. In order to avoid excessively retaining the details of the
content image in the synthesized image, we choose a VGG layer that is closer to the output
as the content layer to output the content features of the image. We also select the output
of different VGG layers for extracting local and global style features. These layers are also
called style layers. As mentioned in Section 8.2, the VGG network uses 5 convolutional
blocks. In the experiment, we choose the last convolutional layer of the fourth convolutional
block as the content layer, and the first convolutional layer of each convolutional block as
the style layer. The indices of these layers can be obtained by printing the pretrained_net
instance.

style_layers, content_layers = [0, 5, 10, 19, 28], [25]

When extracting features using VGG layers, we only need to use all those from the input
layer to the content layer or style layer that is closest to the output layer. Let’s construct
a new network instance net, which only retains all the VGG layers to be used for feature
extraction.

net = nn.Sequential()
for i in range(max(content_layers + style_layers) + 1):

net.add(pretrained_net.features[i])

Given the input X, if we simply invoke the forward propagation net(X), we can only get
the output of the last layer. Since we also need the outputs of intermediate layers, we need
to perform layer-by-layer computation and keep the content and style layer outputs.

def extract_features(X, content_layers, style_layers):
contents = []
styles = []
for i in range(len(net)):

X = net[i](X)
if i in style_layers:

styles.append(X)
if i in content_layers:

contents.append(X)
return contents, styles

Two functions are defined below: the get_contents function extracts content features
from the content image, and the get_styles function extracts style features from the style
image. Since there is no need to update the model parameters of the pretrained VGG during
training, we can extract the content and the style features even before the training starts.
Since the synthesized image is a set of model parameters to be updated for style transfer,
we can only extract the content and style features of the synthesized image by calling the
extract_features function during training.

def get_contents(image_shape, device):
content_X = preprocess(content_img, image_shape).copyto(device)

(continues on next page)
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contents_Y, _ = extract_features(content_X, content_layers, style_layers)
return content_X, contents_Y

def get_styles(image_shape, device):
style_X = preprocess(style_img, image_shape).copyto(device)
_, styles_Y = extract_features(style_X, content_layers, style_layers)
return style_X, styles_Y

14.12.5 Defining the Loss Function
Now we will describe the loss function for style transfer. The loss function consists of the
content loss, style loss, and total variation loss.

Content Loss
Similar to the loss function in linear regression, the content loss measures the difference in
content features between the synthesized image and the content image via the squared loss
function. The two inputs of the squared loss function are both outputs of the content layer
computed by the extract_features function.

def content_loss(Y_hat, Y):
return np.square(Y_hat - Y).mean()

Style Loss
Style loss, similar to content loss, also uses the squared loss function to measure the dif-
ference in style between the synthesized image and the style image. To express the style
output of any style layer, we first use the extract_features function to compute the style
layer output. Suppose that the output has 1 example, 𝑐 channels, height ℎ, and width 𝑤, we
can transform this output into matrix X with 𝑐 rows and ℎ𝑤 columns. This matrix can be
thought of as the concatenation of 𝑐 vectors x1, . . . ,x𝑐, each of which has a length of ℎ𝑤.
Here, vector x𝑖 represents the style feature of channel 𝑖.

In the Gram matrix of these vectors XX> ∈ R𝑐×𝑐, element 𝑥𝑖 𝑗 in row 𝑖 and column 𝑗 is
the dot product of vectors x𝑖 and x 𝑗 . It represents the correlation of the style features of
channels 𝑖 and 𝑗 . We use this Gram matrix to represent the style output of any style layer.
Note that when the value of ℎ𝑤 is larger, it likely leads to larger values in the Gram matrix.
Note also that the height and width of the Gram matrix are both the number of channels 𝑐.
To allow style loss not to be affected by these values, the gram function below divides the
Gram matrix by the number of its elements, i.e., 𝑐ℎ𝑤.

def gram(X):
num_channels, n = X.shape[1], d2l.size(X) // X.shape[1]
X = X.reshape((num_channels, n))
return np.dot(X, X.T) / (num_channels * n)
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Obviously, the two Gram matrix inputs of the squared loss function for style loss are based
on the style layer outputs for the synthesized image and the style image. It is assumed here
that the Gram matrix gram_Y based on the style image has been precomputed.

def style_loss(Y_hat, gram_Y):
return np.square(gram(Y_hat) - gram_Y).mean()

Total Variation Loss
Sometimes, the learned synthesized image has a lot of high-frequency noise, i.e., particu-
larly bright or dark pixels. One common noise reduction method is total variation denois-
ing. Denote by 𝑥𝑖, 𝑗 the pixel value at coordinate (𝑖, 𝑗). Reducing total variation loss∑

𝑖, 𝑗

��𝑥𝑖, 𝑗 − 𝑥𝑖+1, 𝑗 �� + ��𝑥𝑖, 𝑗 − 𝑥𝑖, 𝑗+1�� (14.12.1)

makes values of neighboring pixels on the synthesized image closer.

def tv_loss(Y_hat):
return 0.5 * (np.abs(Y_hat[:, :, 1:, :] - Y_hat[:, :, :-1, :]).mean() +

np.abs(Y_hat[:, :, :, 1:] - Y_hat[:, :, :, :-1]).mean())

Loss Function
The loss function of style transfer is the weighted sum of content loss, style loss, and total
variation loss. By adjusting these weight hyperparameters, we can balance among content
retention, style transfer, and noise reduction on the synthesized image.

content_weight, style_weight, tv_weight = 1, 1e4, 10

def compute_loss(X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram):
# Calculate the content, style, and total variance losses respectively
contents_l = [content_loss(Y_hat, Y) * content_weight for Y_hat, Y in zip(

contents_Y_hat, contents_Y)]
styles_l = [style_loss(Y_hat, Y) * style_weight for Y_hat, Y in zip(

styles_Y_hat, styles_Y_gram)]
tv_l = tv_loss(X) * tv_weight
# Add up all the losses
l = sum(styles_l + contents_l + [tv_l])
return contents_l, styles_l, tv_l, l

14.12.6 Initializing the Synthesized Image
In style transfer, the synthesized image is the only variable that needs to be updated during
training. Thus, we can define a simple model, SynthesizedImage, and treat the synthe-
sized image as the model parameters. In this model, forward propagation just returns the
model parameters.
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class SynthesizedImage(nn.Block):
def __init__(self, img_shape, **kwargs):

super(SynthesizedImage, self).__init__(**kwargs)
self.weight = self.params.get('weight', shape=img_shape)

def forward(self):
return self.weight.data()

Next, we define the get_inits function. This function creates a synthesized image model
instance and initializes it to the image X. Gram matrices for the style image at various style
layers, styles_Y_gram, are computed prior to training.

def get_inits(X, device, lr, styles_Y):
gen_img = SynthesizedImage(X.shape)
gen_img.initialize(init.Constant(X), ctx=device, force_reinit=True)
trainer = gluon.Trainer(gen_img.collect_params(), 'adam',

{'learning_rate': lr})
styles_Y_gram = [gram(Y) for Y in styles_Y]
return gen_img(), styles_Y_gram, trainer

14.12.7 Training
When training the model for style transfer, we continuously extract content features and
style features of the synthesized image, and calculate the loss function. Below defines the
training loop.

def train(X, contents_Y, styles_Y, device, lr, num_epochs, lr_decay_epoch):
X, styles_Y_gram, trainer = get_inits(X, device, lr, styles_Y)
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[10, num_epochs], ylim=[0, 20],
legend=['content', 'style', 'TV'],
ncols=2, figsize=(7, 2.5))

for epoch in range(num_epochs):
with autograd.record():

contents_Y_hat, styles_Y_hat = extract_features(
X, content_layers, style_layers)

contents_l, styles_l, tv_l, l = compute_loss(
X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram)

l.backward()
trainer.step(1)
if (epoch + 1) % lr_decay_epoch == 0:

trainer.set_learning_rate(trainer.learning_rate * 0.8)
if (epoch + 1) % 10 == 0:

animator.axes[1].imshow(postprocess(X).asnumpy())
animator.add(epoch + 1, [float(sum(contents_l)),

float(sum(styles_l)), float(tv_l)])
return X

Now we start to train the model. We rescale the height and width of the content and style
images to 300 by 450 pixels. We use the content image to initialize the synthesized im-
age.
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device, image_shape = d2l.try_gpu(), (450, 300)
net.collect_params().reset_ctx(device)
content_X, contents_Y = get_contents(image_shape, device)
_, styles_Y = get_styles(image_shape, device)
output = train(content_X, contents_Y, styles_Y, device, 0.9, 500, 50)

We can see that the synthesized image retains the scenery and objects of the content image,
and transfers the color of the style image at the same time. For example, the synthesized
image has blocks of color like those in the style image. Some of these blocks even have the
subtle texture of brush strokes.

14.12.8 Summary
• The loss function commonly used in style transfer consists of three parts: (i) content loss

makes the synthesized image and the content image close in content features; (ii) style
loss makes the synthesized image and style image close in style features; and (iii) total
variation loss helps to reduce the noise in the synthesized image.

• We can use a pretrained CNN to extract image features and minimize the loss function
to continuously update the synthesized image as model parameters during training.

• We use Gram matrices to represent the style outputs from the style layers.

14.12.9 Exercises
1. How does the output change when you select different content and style layers?

2. Adjust the weight hyperparameters in the loss function. Does the output retain more
content or have less noise?

3. Use different content and style images. Can you create more interesting synthesized
images?

4. Can we apply style transfer for text? Hint: you may refer to the survey paper by Hu et
al. (2022).

Discussions222 .

https://discuss.d2l.ai/t/378
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14.13 Image Classification (CIFAR-10) on Kaggle

So far, we have been using high-level APIs of deep learning frameworks to directly obtain
image datasets in tensor format. However, custom image datasets often come in the form
of image files. In this section, we will start from raw image files, and organize, read, then
transform them into tensor format step by step.

We experimented with the CIFAR-10 dataset in Section 14.1, which is an important dataset
in computer vision. In this section, we will apply the knowledge we learned in previous
sections to practice the Kaggle competition of CIFAR-10 image classification. The web
address of the competition is https://www.kaggle.com/c/cifar-10

Fig. 14.13.1 shows the information on the competition’s webpage. In order to submit the
results, you need to register a Kaggle account.

tFig. 14.13.1 CIFAR-10 image classification competition webpage information. The competition
dataset can be obtained by clicking the “Data” tab.

import collections
import math
import os
import shutil
import pandas as pd
from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

14.13.1 Obtaining and Organizing the Dataset
The competition dataset is divided into a training set and a test set, which contain 50000
and 300000 images, respectively. In the test set, 10000 images will be used for evaluation,
while the remaining 290000 images will not be evaluated: they are included just to make

https://www.kaggle.com/c/cifar-10
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it hard to cheat with manually labeled results of the test set. The images in this dataset
are all png color (RGB channels) image files, whose height and width are both 32 pixels.
The images cover a total of 10 categories, namely airplanes, cars, birds, cats, deer, dogs,
frogs, horses, boats, and trucks. The upper-left corner of Fig. 14.13.1 shows some images
of airplanes, cars, and birds in the dataset.

Downloading the Dataset
After logging in to Kaggle, we can click the “Data” tab on the CIFAR-10 image classifi-
cation competition webpage shown in Fig. 14.13.1 and download the dataset by clicking
the “Download All” button. After unzipping the downloaded file in ../data, and un-
zipping train.7z and test.7z inside it, you will find the entire dataset in the following
paths:

• ../data/cifar-10/train/[1-50000].png

• ../data/cifar-10/test/[1-300000].png

• ../data/cifar-10/trainLabels.csv

• ../data/cifar-10/sampleSubmission.csv

where the train and test directories contain the training and testing images, respectively,
trainLabels.csv provides labels for the training images, and sample_submission.csv

is a sample submission file.

To make it easier to get started, we provide a small-scale sample of the dataset that contains
the first 1000 training images and 5 random testing images. To use the full dataset of the
Kaggle competition, you need to set the following demo variable to False.

#@save
d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',

'2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')

# If you use the full dataset downloaded for the Kaggle competition, set
# `demo` to False
demo = True

if demo:
data_dir = d2l.download_extract('cifar10_tiny')

else:
data_dir = '../data/cifar-10/'

Downloading ../data/kaggle_cifar10_tiny.zip from http://d2l-data.s3-accelerate.
↩→amazonaws.com/kaggle_cifar10_tiny.zip...
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Organizing the Dataset
We need to organize datasets to facilitate model training and testing. Let’s first read the
labels from the csv file. The following function returns a dictionary that maps the non-
extension part of the filename to its label.

#@save
def read_csv_labels(fname):

"""Read `fname` to return a filename to label dictionary."""
with open(fname, 'r') as f:

# Skip the file header line (column name)
lines = f.readlines()[1:]

tokens = [l.rstrip().split(',') for l in lines]
return dict(((name, label) for name, label in tokens))

labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
print('# training examples:', len(labels))
print('# classes:', len(set(labels.values())))

# training examples: 1000
# classes: 10

Next, we define the reorg_train_valid function to split the validation set out of the orig-
inal training set. The argument valid_ratio in this function is the ratio of the number
of examples in the validation set to the number of examples in the original training set.
More concretely, let 𝑛 be the number of images of the class with the least examples, and
𝑟 be the ratio. The validation set will split out max(b𝑛𝑟c, 1) images for each class. Let’s
use valid_ratio=0.1 as an example. Since the original training set has 50000 images,
there will be 45000 images used for training in the path train_valid_test/train, while
the other 5000 images will be split out as validation set in the path train_valid_test/

valid. After organizing the dataset, images of the same class will be placed under the same
folder.

#@save
def copyfile(filename, target_dir):

"""Copy a file into a target directory."""
os.makedirs(target_dir, exist_ok=True)
shutil.copy(filename, target_dir)

#@save
def reorg_train_valid(data_dir, labels, valid_ratio):

"""Split the validation set out of the original training set."""
# The number of examples of the class that has the fewest examples in the
# training dataset
n = collections.Counter(labels.values()).most_common()[-1][1]
# The number of examples per class for the validation set
n_valid_per_label = max(1, math.floor(n * valid_ratio))
label_count = {}
for train_file in os.listdir(os.path.join(data_dir, 'train')):

label = labels[train_file.split('.')[0]]
fname = os.path.join(data_dir, 'train', train_file)

(continues on next page)
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copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'train_valid', label))

if label not in label_count or label_count[label] < n_valid_per_label:
copyfile(fname, os.path.join(data_dir, 'train_valid_test',

'valid', label))
label_count[label] = label_count.get(label, 0) + 1

else:
copyfile(fname, os.path.join(data_dir, 'train_valid_test',

'train', label))
return n_valid_per_label

The reorg_test function below organizes the testing set for data loading during predic-
tion.

#@save
def reorg_test(data_dir):

"""Organize the testing set for data loading during prediction."""
for test_file in os.listdir(os.path.join(data_dir, 'test')):

copyfile(os.path.join(data_dir, 'test', test_file),
os.path.join(data_dir, 'train_valid_test', 'test',

'unknown'))

Finally, we use a function to invoke the read_csv_labels, reorg_train_valid, and re-
org_test functions defined above.

def reorg_cifar10_data(data_dir, valid_ratio):
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
reorg_train_valid(data_dir, labels, valid_ratio)
reorg_test(data_dir)

Here we only set the batch size to 32 for the small-scale sample of the dataset. When
training and testing the complete dataset of the Kaggle competition, batch_size should
be set to a larger integer, such as 128. We split out 10% of the training examples as the
validation set for tuning hyperparameters.

batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)

14.13.2 Image Augmentation
We use image augmentation to address overfitting. For example, images can be flipped hor-
izontally at random during training. We can also perform standardization for the three RGB
channels of color images. Below lists some of these operations that you can tweak.

transform_train = gluon.data.vision.transforms.Compose([
# Scale the image up to a square of 40 pixels in both height and width
gluon.data.vision.transforms.Resize(40),

(continues on next page)
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# Randomly crop a square image of 40 pixels in both height and width to
# produce a small square of 0.64 to 1 times the area of the original
# image, and then scale it to a square of 32 pixels in both height and
# width
gluon.data.vision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),

ratio=(1.0, 1.0)),
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor(),
# Standardize each channel of the image
gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465],

[0.2023, 0.1994, 0.2010])])

During testing, we only perform standardization on images so as to remove randomness in
the evaluation results.

transform_test = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465],

[0.2023, 0.1994, 0.2010])])

14.13.3 Reading the Dataset
Next, we read the organized dataset consisting of raw image files. Each example includes
an image and a label.

train_ds, valid_ds, train_valid_ds, test_ds = [
gluon.data.vision.ImageFolderDataset(

os.path.join(data_dir, 'train_valid_test', folder))
for folder in ['train', 'valid', 'train_valid', 'test']]

During training, we need to specify all the image augmentation operations defined above.
When the validation set is used for model evaluation during hyperparameter tuning, no
randomness from image augmentation should be introduced. Before final prediction, we
train the model on the combined training set and validation set to make full use of all the
labeled data.

train_iter, train_valid_iter = [gluon.data.DataLoader(
dataset.transform_first(transform_train), batch_size, shuffle=True,
last_batch='discard') for dataset in (train_ds, train_valid_ds)]

valid_iter = gluon.data.DataLoader(
valid_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='discard')

test_iter = gluon.data.DataLoader(
test_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='keep')

14.13.4 Defining the Model
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Here, we build the residual blocks based on the HybridBlock class, which is slightly differ-
ent from the implementation described in Section 8.6. This is for improving computational
efficiency.

class Residual(nn.HybridBlock):
def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):

super(Residual, self).__init__(**kwargs)
self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,

strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_1x1conv:

self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
strides=strides)

else:
self.conv3 = None

self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()

def hybrid_forward(self, F, X):
Y = F.npx.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:

X = self.conv3(X)
return F.npx.relu(Y + X)

Next, we define the ResNet-18 model.

def resnet18(num_classes):
net = nn.HybridSequential()
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),

nn.BatchNorm(), nn.Activation('relu'))

def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.HybridSequential()
for i in range(num_residuals):

if i == 0 and not first_block:
blk.add(Residual(num_channels, use_1x1conv=True, strides=2))

else:
blk.add(Residual(num_channels))

return blk

net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))

net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net

We use Xavier initialization described in Section 5.4.2 before training begins.

def get_net(devices):
num_classes = 10
net = resnet18(num_classes)

(continues on next page)
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net.initialize(ctx=devices, init=init.Xavier())
return net

loss = gluon.loss.SoftmaxCrossEntropyLoss()

14.13.5 Defining the Training Function
We will select models and tune hyperparameters according to the model’s performance on
the validation set. In the following, we define the model training function train.

def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay):

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': lr, 'momentum': 0.9, 'wd': wd})

num_batches, timer = len(train_iter), d2l.Timer()
legend = ['train loss', 'train acc']
if valid_iter is not None:

legend.append('valid acc')
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],

legend=legend)
for epoch in range(num_epochs):

metric = d2l.Accumulator(3)
if epoch > 0 and epoch % lr_period == 0:

trainer.set_learning_rate(trainer.learning_rate * lr_decay)
for i, (features, labels) in enumerate(train_iter):

timer.start()
l, acc = d2l.train_batch_ch13(

net, features, labels.astype('float32'), loss, trainer,
devices, d2l.split_batch)

metric.add(l, acc, labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:

animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[2],
None))

if valid_iter is not None:
valid_acc = d2l.evaluate_accuracy_gpus(net, valid_iter,

d2l.split_batch)
animator.add(epoch + 1, (None, None, valid_acc))

measures = (f'train loss {metric[0] / metric[2]:.3f}, '
f'train acc {metric[1] / metric[2]:.3f}')

if valid_iter is not None:
measures += f', valid acc {valid_acc:.3f}'

print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'
f' examples/sec on {str(devices)}')

14.13.6 Training and Validating the Model
Now, we can train and validate the model. All the following hyperparameters can be tuned.
For example, we can increase the number of epochs. When lr_period and lr_decay

are set to 4 and 0.9, respectively, the learning rate of the optimization algorithm will be
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multiplied by 0.9 after every 4 epochs. Just for ease of demonstration, we only train 20
epochs here.

devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 0.02, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net(devices)
net.hybridize()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,

lr_decay)

train loss 0.807, train acc 0.723, valid acc 0.422
486.9 examples/sec on [gpu(0), gpu(1)]

14.13.7 Classifying the Testing Set and Submitting Results on Kaggle
After obtaining a promising model with hyperparameters, we use all the labeled data (in-
cluding the validation set) to retrain the model and classify the testing set.

net, preds = get_net(devices), []
net.hybridize()
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,

lr_decay)

for X, _ in test_iter:
y_hat = net(X.as_in_ctx(devices[0]))
preds.extend(y_hat.argmax(axis=1).astype(int).asnumpy())

sorted_ids = list(range(1, len(test_ds) + 1))
sorted_ids.sort(key=lambda x: str(x))
df = pd.DataFrame({'id': sorted_ids, 'label': preds})
df['label'] = df['label'].apply(lambda x: train_valid_ds.synsets[x])
df.to_csv('submission.csv', index=False)

train loss 1.053, train acc 0.616
1148.8 examples/sec on [gpu(0), gpu(1)]

The above code will generate a submission.csv file, whose format meets the requirement
of the Kaggle competition. The method for submitting results to Kaggle is similar to that
in Section 5.7.
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14.13.8 Summary
• We can read datasets containing raw image files after organizing them into the required

format.

• We can use convolutional neural networks, image augmentation, and hybrid programing
in an image classification competition.

14.13.9 Exercises
1. Use the complete CIFAR-10 dataset for this Kaggle competition. Set hyperparameters

as batch_size = 128, num_epochs = 100, lr = 0.1, lr_period = 50, and lr_decay
= 0.1. See what accuracy and ranking you can achieve in this competition. Can you
further improve them?

2. What accuracy can you get when not using image augmentation?

Discussions223 .

14.14 Dog Breed Identification (ImageNet Dogs) on
Kaggle

In this section, we will practice the dog breed identification problem on Kaggle. The web
address of this competition is https://www.kaggle.com/c/dog-breed-identification

In this competition, 120 different breeds of dogs will be recognized. In fact, the dataset for
this competition is a subset of the ImageNet dataset. Unlike the images in the CIFAR-10
dataset in Section 14.13, the images in the ImageNet dataset are both higher and wider in
varying dimensions. Fig. 14.14.1 shows the information on the competition’s webpage.
You need a Kaggle account to submit your results.

import os
from mxnet import autograd, gluon, init, npx
from mxnet.gluon import nn

(continues on next page)

https://discuss.d2l.ai/t/379
https://www.kaggle.com/c/dog-breed-identification
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tFig. 14.14.1 The dog breed identification competition website. The competition dataset can be
obtained by clicking the “Data” tab.

(continued from previous page)

from d2l import mxnet as d2l

npx.set_np()

14.14.1 Obtaining and Organizing the Dataset
The competition dataset is divided into a training set and a test set, which contain 10222
and 10357 JPEG images of three RGB (color) channels, respectively. Among the training
dataset, there are 120 breeds of dogs such as Labradors, Poodles, Dachshunds, Samoyeds,
Huskies, Chihuahuas, and Yorkshire Terriers.

Downloading the Dataset
After logging into Kaggle, you can click on the “Data” tab on the competition webpage
shown in Fig. 14.14.1 and download the dataset by clicking the “Download All” button.
After unzipping the downloaded file in ../data, you will find the entire dataset in the
following paths:

• ../data/dog-breed-identification/labels.csv

• ../data/dog-breed-identification/sample_submission.csv
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• ../data/dog-breed-identification/train

• ../data/dog-breed-identification/test

Youmay have noticed that the above structure is similar to that of the CIFAR-10 competition
in Section 14.13, where folders train/ and test/ contain training and testing dog images,
respectively, and labels.csv contains the labels for the training images. Similarly, to
make it easier to get started, we provide a small sample of the dataset mentioned above:
train_valid_test_tiny.zip. If you are going to use the full dataset for the Kaggle
competition, you need to change the demo variable below to False.

#@save
d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',

'0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')

# If you use the full dataset downloaded for the Kaggle competition, change
# the variable below to `False`
demo = True
if demo:

data_dir = d2l.download_extract('dog_tiny')
else:

data_dir = os.path.join('..', 'data', 'dog-breed-identification')

Downloading ../data/kaggle_dog_tiny.zip from http://d2l-data.s3-accelerate.
↩→amazonaws.com/kaggle_dog_tiny.zip...

Organizing the Dataset
We can organize the dataset similarly to what we did in Section 14.13, namely splitting out
a validation set from the original training set, and moving images into subfolders grouped
by labels.

The reorg_dog_data function below reads the training data labels, splits out the validation
set, and organizes the training set.

def reorg_dog_data(data_dir, valid_ratio):
labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))
d2l.reorg_train_valid(data_dir, labels, valid_ratio)
d2l.reorg_test(data_dir)

batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)

14.14.2 Image Augmentation
Recall that this dog breed dataset is a subset of the ImageNet dataset, whose images are
larger than those of the CIFAR-10 dataset in Section 14.13. The following lists a few image
augmentation operations that might be useful for relatively larger images.
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transform_train = gluon.data.vision.transforms.Compose([
# Randomly crop the image to obtain an image with an area of 0.08 to 1 of
# the original area and height-to-width ratio between 3/4 and 4/3. Then,
# scale the image to create a new 224 x 224 image
gluon.data.vision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),

ratio=(3.0/4.0, 4.0/3.0)),
gluon.data.vision.transforms.RandomFlipLeftRight(),
# Randomly change the brightness, contrast, and saturation
gluon.data.vision.transforms.RandomColorJitter(brightness=0.4,

contrast=0.4,
saturation=0.4),

# Add random noise
gluon.data.vision.transforms.RandomLighting(0.1),
gluon.data.vision.transforms.ToTensor(),
# Standardize each channel of the image
gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])])

During prediction, we only use image preprocessing operationswithout randomness.

transform_test = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(256),
# Crop a 224 x 224 square area from the center of the image
gluon.data.vision.transforms.CenterCrop(224),
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])])

14.14.3 Reading the Dataset
As in Section 14.13, we can read the organized dataset consisting of raw image files.

train_ds, valid_ds, train_valid_ds, test_ds = [
gluon.data.vision.ImageFolderDataset(

os.path.join(data_dir, 'train_valid_test', folder))
for folder in ('train', 'valid', 'train_valid', 'test')]

Below we create data iterator instances the same way as in Section 14.13.

train_iter, train_valid_iter = [gluon.data.DataLoader(
dataset.transform_first(transform_train), batch_size, shuffle=True,
last_batch='discard') for dataset in (train_ds, train_valid_ds)]

valid_iter = gluon.data.DataLoader(
valid_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='discard')

test_iter = gluon.data.DataLoader(
test_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='keep')

14.14.4 Fine-Tuning a Pretrained Model
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Again, the dataset for this competition is a subset of the ImageNet dataset. Therefore, we
can use the approach discussed in Section 14.2 to select a model pretrained on the full
ImageNet dataset and use it to extract image features to be fed into a custom small-scale
output network. High-level APIs of deep learning frameworks provide a wide range of
models pretrained on the ImageNet dataset. Here, we choose a pretrained ResNet-34model,
where we simply reuse the input of this model’s output layer (i.e., the extracted features).
Then we can replace the original output layer with a small custom output network that can
be trained, such as stacking two fully connected layers. Different from the experiment in
Section 14.2, the following does not retrain the pretrained model used for feature extraction.
This reduces training time and memory for storing gradients.

Recall that we standardized images using the means and standard deviations of the three
RGB channels for the full ImageNet dataset. In fact, this is also consistent with the stan-
dardization operation by the pretrained model on ImageNet.

def get_net(devices):
finetune_net = gluon.model_zoo.vision.resnet34_v2(pretrained=True)
# Define a new output network
finetune_net.output_new = nn.HybridSequential(prefix='')
finetune_net.output_new.add(nn.Dense(256, activation='relu'))
# There are 120 output categories
finetune_net.output_new.add(nn.Dense(120))
# Initialize the output network
finetune_net.output_new.initialize(init.Xavier(), ctx=devices)
# Distribute the model parameters to the CPUs or GPUs used for computation
finetune_net.collect_params().reset_ctx(devices)
return finetune_net

Before calculating the loss, we first obtain the input of the pretrained model’s output layer,
i.e., the extracted feature. Then we use this feature as input for our small custom output
network to calculate the loss.

loss = gluon.loss.SoftmaxCrossEntropyLoss()

def evaluate_loss(data_iter, net, devices):
l_sum, n = 0.0, 0
for features, labels in data_iter:

X_shards, y_shards = d2l.split_batch(features, labels, devices)
output_features = [net.features(X_shard) for X_shard in X_shards]
outputs = [net.output_new(feature) for feature in output_features]
ls = [loss(output, y_shard).sum() for output, y_shard

in zip(outputs, y_shards)]
l_sum += sum([float(l.sum()) for l in ls])
n += labels.size

return l_sum / n

14.14.5 Defining the Training Function
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We will select the model and tune hyperparameters according to the model’s performance
on the validation set. The model training function train only iterates parameters of the
small custom output network.

def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay):

# Only train the small custom output network
trainer = gluon.Trainer(net.output_new.collect_params(), 'sgd',

{'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
num_batches, timer = len(train_iter), d2l.Timer()
legend = ['train loss']
if valid_iter is not None:

legend.append('valid loss')
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],

legend=legend)
for epoch in range(num_epochs):

metric = d2l.Accumulator(2)
if epoch > 0 and epoch % lr_period == 0:

trainer.set_learning_rate(trainer.learning_rate * lr_decay)
for i, (features, labels) in enumerate(train_iter):

timer.start()
X_shards, y_shards = d2l.split_batch(features, labels, devices)
output_features = [net.features(X_shard) for X_shard in X_shards]
with autograd.record():

outputs = [net.output_new(feature)
for feature in output_features]

ls = [loss(output, y_shard).sum() for output, y_shard
in zip(outputs, y_shards)]

for l in ls:
l.backward()

trainer.step(batch_size)
metric.add(sum([float(l.sum()) for l in ls]), labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:

animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[1], None))

if valid_iter is not None:
valid_loss = evaluate_loss(valid_iter, net, devices)
animator.add(epoch + 1, (None, valid_loss))

measures = f'train loss {metric[0] / metric[1]:.3f}'
if valid_iter is not None:

measures += f', valid loss {valid_loss:.3f}'
print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'

f' examples/sec on {str(devices)}')

14.14.6 Training and Validating the Model
Now we can train and validate the model. The following hyperparameters are all tunable.
For example, the number of epochs can be increased. Because lr_period and lr_decay

are set to 2 and 0.9, respectively, the learning rate of the optimization algorithm will be
multiplied by 0.9 after every 2 epochs.
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devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 5e-3, 1e-4
lr_period, lr_decay, net = 2, 0.9, get_net(devices)
net.hybridize()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,

lr_decay)

train loss 0.956, valid loss 0.958
251.1 examples/sec on [gpu(0), gpu(1)]

14.14.7 Classifying the Testing Set and Submitting Results on Kaggle
Similar to the final step in Section 14.13, in the end all the labeled data (including the
validation set) are used for training the model and classifying the testing set. We will use
the trained custom output network for classification.

net = get_net(devices)
net.hybridize()
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,

lr_decay)

preds = []
for data, label in test_iter:

output_features = net.features(data.as_in_ctx(devices[0]))
output = npx.softmax(net.output_new(output_features))
preds.extend(output.asnumpy())

ids = sorted(os.listdir(
os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')))

with open('submission.csv', 'w') as f:
f.write('id,' + ','.join(train_valid_ds.synsets) + '\n')
for i, output in zip(ids, preds):

f.write(i.split('.')[0] + ',' + ','.join(
[str(num) for num in output]) + '\n')

train loss 0.848
294.4 examples/sec on [gpu(0), gpu(1)]

The above code will generate a submission.csv file to be submitted to Kaggle in the same
way described in Section 5.7.
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224

14.14.8 Summary
• Images in the ImageNet dataset are larger (with varying dimensions) than CIFAR-10 im-

ages. We may modify image augmentation operations for tasks on a different dataset.

• To classify a subset of the ImageNet dataset, we can leverage pre-trained models on the
full ImageNet dataset to extract features and only train a custom small-scale output
network. This will lead to less computational time and memory cost.

14.14.9 Exercises
1. When using the full Kaggle competition dataset, what results can you achieve when you

increase batch_size (batch size) and num_epochs (number of epochs) while setting
some other hyperparameters as lr = 0.01, lr_period = 10, and lr_decay = 0.1?

2. Do you get better results if you use a deeper pretrained model? How do you tune hyper-
parameters? Can you further improve the results?

Discussions224 .

https://discuss.d2l.ai/t/380


15 Natural Language Processing: Pretraining

Humans need to communicate. Out of this basic need of the human condition, a vast amount
of written text has been generated on an everyday basis. Given rich text in social media,
chat apps, emails, product reviews, news articles, research papers, and books, it becomes
vital to enable computers to understand them to offer assistance or make decisions based
on human languages.

Natural language processing studies interactions between computers and humans using
natural languages. In practice, it is very common to use natural language processing tech-
niques to process and analyze text (human natural language) data, such as language models
in Section 9.3 and machine translation models in Section 10.5.

To understand text, we can begin by learning its representations. Leveraging the existing
text sequences from large corpora, self-supervised learning has been extensively used to
pretrain text representations, such as by predicting some hidden part of the text using some
other part of their surrounding text. In this way, models learn through supervision from
massive text data without expensive labeling efforts!

As we will see in this chapter, when treating each word or subword as an individual token,
the representation of each token can be pretrained using word2vec, GloVe, or subword
embedding models on large corpora. After pretraining, representation of each token can
be a vector, however, it remains the same no matter what the context is. For instance,
the vector representation of “bank” is the same in both “go to the bank to deposit some
money” and “go to the bank to sit down”. Thus, many more recent pretraining models
adapt representation of the same token to different contexts. Among them is BERT, a much
deeper self-supervised model based on the Transformer encoder. In this chapter, we will
focus on how to pretrain such representations for text, as highlighted in Fig. 15.1.

For sight of the big picture, Fig. 15.1 shows that the pretrained text representations can be
fed to a variety of deep learning architectures for different downstream natural language
processing applications. We will cover them in Chapter 16.

698
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tFig. 15.1 Pretrained text representations can be fed to various deep learning architectures for
different downstream natural language processing applications. This chapter focuses on
the upstream text representation pretraining.

225

15.1 Word Embedding (word2vec)

Natural language is a complex system used to express meanings. In this system, words
are the basic unit of the meaning. As the name implies, word vectors are vectors used to
represent words, and can also be considered as feature vectors or representations of words.
The technique of mapping words to real vectors is called word embedding. In recent years,
word embedding has gradually become the basic knowledge of natural language process-
ing.

15.1.1 One-Hot Vectors Are a Bad Choice
We used one-hot vectors to represent words (characters are words) in Section 9.5. Suppose
that the number of different words in the dictionary (the dictionary size) is 𝑁 , and each
word corresponds to a different integer (index) from 0 to 𝑁 − 1. To obtain the one-hot
vector representation for any word with index 𝑖, we create a length-𝑁 vector with all 0s and
set the element at position 𝑖 to 1. In this way, each word is represented as a vector of length
𝑁 , and it can be used directly by neural networks.

Although one-hot word vectors are easy to construct, they are usually not a good choice. A
main reason is that one-hot word vectors cannot accurately express the similarity between
different words, such as the cosine similarity that we often use. For vectors x,y ∈ R𝑑 , their
cosine similarity is the cosine of the angle between them:

x>y

‖x‖‖y‖ ∈ [−1, 1] . (15.1.1)

Since the cosine similarity between one-hot vectors of any two different words is 0, one-hot
vectors cannot encode similarities among words.

15.1.2 Self-Supervised word2vec
The word2vec 225 tool was proposed to address the above issue. It maps each word to a

https://code.google.com/archive/p/word2vec/


700 Natural Language Processing: Pretraining

fixed-length vector, and these vectors can better express the similarity and analogy relation-
ship among different words. The word2vec tool contains two models, namely skip-gram
(Mikolov et al., 2013) and continuous bag of words (CBOW) (Mikolov et al., 2013). For
semantically meaningful representations, their training relies on conditional probabilities
that can be viewed as predicting some words using some of their surrounding words in cor-
pora. Since supervision comes from the data without labels, both skip-gram and continuous
bag of words are self-supervised models.

In the following, we will introduce these two models and their training methods.

15.1.3 The Skip-Gram Model
The skip-grammodel assumes that a word can be used to generate its surrounding words in
a text sequence. Take the text sequence “the”, “man”, “loves”, “his”, “son” as an example.
Let’s choose “loves” as the center word and set the context window size to 2. As shown in
Fig. 15.1.1, given the center word “loves”, the skip-gram model considers the conditional
probability for generating the context words: “the”, “man”, “his”, and “son”, which are no
more than 2 words away from the center word:

𝑃(”the”, ”man”, ”his”, ”son” | ”loves”). (15.1.2)

Assume that the context words are independently generated given the center word (i.e.,
conditional independence). In this case, the above conditional probability can be rewritten
as

𝑃(”the” | ”loves”) · 𝑃(”man” | ”loves”) · 𝑃(”his” | ”loves”) · 𝑃(”son” | ”loves”).
(15.1.3)

tFig. 15.1.1 The skip-gram model considers the conditional probability of generating the surrounding
context words given a center word.

In the skip-gram model, each word has two 𝑑-dimensional-vector representations for cal-
culating conditional probabilities. More concretely, for any word with index 𝑖 in the dic-
tionary, denote by v𝑖 ∈ R𝑑 and u𝑖 ∈ R𝑑 its two vectors when used as a center word and a
context word, respectively. The conditional probability of generating any context word 𝑤𝑜
(with index 𝑜 in the dictionary) given the center word 𝑤𝑐 (with index 𝑐 in the dictionary)
can be modeled by a softmax operation on vector dot products:

𝑃(𝑤𝑜 | 𝑤𝑐) =
exp(u>𝑜v𝑐)∑
𝑖∈V exp(u>𝑖 v𝑐)

, (15.1.4)
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where the vocabulary index set V = {0, 1, . . . , |V| − 1}. Given a text sequence of length
𝑇 , where the word at time step 𝑡 is denoted as 𝑤 (𝑡 ) . Assume that context words are in-
dependently generated given any center word. For context window size 𝑚, the likelihood
function of the skip-gram model is the probability of generating all context words given
any center word:

𝑇∏
𝑡=1

∏
−𝑚≤ 𝑗≤𝑚, 𝑗≠0

𝑃(𝑤 (𝑡+ 𝑗 ) | 𝑤 (𝑡 ) ), (15.1.5)

where any time step that is less than 1 or greater than 𝑇 can be omitted.

Training
The skip-gram model parameters are the center word vector and context word vector for
each word in the vocabulary. In training, we learn the model parameters by maximizing the
likelihood function (i.e., maximum likelihood estimation). This is equivalent to minimizing
the following loss function:

−
𝑇∑
𝑡=1

∑
−𝑚≤ 𝑗≤𝑚, 𝑗≠0

log 𝑃(𝑤 (𝑡+ 𝑗 ) | 𝑤 (𝑡 ) ). (15.1.6)

When using stochastic gradient descent to minimize the loss, in each iteration we can ran-
domly sample a shorter subsequence to calculate the (stochastic) gradient for this subse-
quence to update the model parameters. To calculate this (stochastic) gradient, we need
to obtain the gradients of the log conditional probability with respect to the center word
vector and the context word vector. In general, according to (15.1.4) the log conditional
probability involving any pair of the center word 𝑤𝑐 and the context word 𝑤𝑜 is

log 𝑃(𝑤𝑜 | 𝑤𝑐) = u>𝑜v𝑐 − log

(∑
𝑖∈V

exp(u>𝑖 v𝑐)
)
. (15.1.7)

Through differentiation, we can obtain its gradient with respect to the center word vector
v𝑐 as

𝜕log 𝑃(𝑤𝑜 | 𝑤𝑐)
𝜕v𝑐

= u𝑜 −
∑
𝑗∈V exp(u>𝑗 v𝑐)u 𝑗∑
𝑖∈V exp(u>𝑖 v𝑐)

= u𝑜 −
∑
𝑗∈V

(
exp(u>𝑗 v𝑐)∑
𝑖∈V exp(u>𝑖 v𝑐)

)
u 𝑗

= u𝑜 −
∑
𝑗∈V

𝑃(𝑤 𝑗 | 𝑤𝑐)u 𝑗 .

(15.1.8)

Note that the calculation in (15.1.8) requires the conditional probabilities of all words in
the dictionary with 𝑤𝑐 as the center word. The gradients for the other word vectors can be
obtained in the same way.

After training, for any word with index 𝑖 in the dictionary, we obtain both word vectors
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v𝑖 (as the center word) and u𝑖 (as the context word). In natural language processing ap-
plications, the center word vectors of the skip-gram model are typically used as the word
representations.

15.1.4 The Continuous Bag of Words (CBOW) Model
The continuous bag of words (CBOW) model is similar to the skip-gram model. The major
difference from the skip-grammodel is that the continuous bag of wordsmodel assumes that
a center word is generated based on its surrounding context words in the text sequence. For
example, in the same text sequence “the”, “man”, “loves”, “his”, and “son”, with “loves” as
the center word and the context window size being 2, the continuous bag of words model
considers the conditional probability of generating the center word “loves” based on the
context words “the”, “man”, “his” and “son” (as shown in Fig. 15.1.2), which is

𝑃(”loves” | ”the”, ”man”, ”his”, ”son”). (15.1.9)

tFig. 15.1.2 The continuous bag of words model considers the conditional probability of generating
the center word given its surrounding context words.

Since there are multiple context words in the continuous bag of words model, these context
word vectors are averaged in the calculation of the conditional probability. Specifically, for
any word with index 𝑖 in the dictionary, denote by v𝑖 ∈ R𝑑 and u𝑖 ∈ R𝑑 its two vectors
when used as a context word and a center word (meanings are switched in the skip-gram
model), respectively. The conditional probability of generating any center word 𝑤𝑐 (with
index 𝑐 in the dictionary) given its surrounding context words 𝑤𝑜1 , . . . , 𝑤𝑜2𝑚 (with index
𝑜1, . . . , 𝑜2𝑚 in the dictionary) can be modeled by

𝑃(𝑤𝑐 | 𝑤𝑜1 , . . . , 𝑤𝑜2𝑚 ) =
exp

(
1

2𝑚u
>
𝑐 (v𝑜1 + . . . + v𝑜2𝑚 )

)
∑
𝑖∈V exp

(
1

2𝑚u
>
𝑖 (v𝑜1 + . . . + v𝑜2𝑚 )

) . (15.1.10)

For brevity, letW𝑜 = {𝑤𝑜1 , . . . , 𝑤𝑜2𝑚 } and v̄𝑜 =
(
v𝑜1 + . . . + v𝑜2𝑚

)
/(2𝑚). Then (15.1.10)

can be simplified as

𝑃(𝑤𝑐 | W𝑜) =
exp

(
u>𝑐 v̄𝑜

)∑
𝑖∈V exp

(
u>𝑖 v̄𝑜

) . (15.1.11)

Given a text sequence of length 𝑇 , where the word at time step 𝑡 is denoted as 𝑤 (𝑡 ) . For
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context window size 𝑚, the likelihood function of the continuous bag of words model is
the probability of generating all center words given their context words:

𝑇∏
𝑡=1

𝑃(𝑤 (𝑡 ) | 𝑤 (𝑡−𝑚) , . . . , 𝑤 (𝑡−1) , 𝑤 (𝑡+1) , . . . , 𝑤 (𝑡+𝑚) ). (15.1.12)

Training
Training continuous bag of words models is almost the same as training skip-gram models.
The maximum likelihood estimation of the continuous bag of words model is equivalent to
minimizing the following loss function:

−
𝑇∑
𝑡=1

log 𝑃(𝑤 (𝑡 ) | 𝑤 (𝑡−𝑚) , . . . , 𝑤 (𝑡−1) , 𝑤 (𝑡+1) , . . . , 𝑤 (𝑡+𝑚) ). (15.1.13)

Notice that

log 𝑃(𝑤𝑐 | W𝑜) = u>𝑐 v̄𝑜 − log

(∑
𝑖∈V

exp
(
u>𝑖 v̄𝑜

))
. (15.1.14)

Through differentiation, we can obtain its gradient with respect to any context word vector
v𝑜𝑖 (𝑖 = 1, . . . , 2𝑚) as

𝜕 log 𝑃(𝑤𝑐 | W𝑜)
𝜕v𝑜𝑖

=
1

2𝑚
©­«u𝑐 −

∑
𝑗∈V

exp(u>𝑗 v̄𝑜)u 𝑗∑
𝑖∈V exp(u>𝑖 v̄𝑜)

ª®¬ =
1

2𝑚
©­«u𝑐 −

∑
𝑗∈V

𝑃(𝑤 𝑗 | W𝑜)u 𝑗ª®¬ .
(15.1.15)

The gradients for the other word vectors can be obtained in the same way. Unlike the skip-
gram model, the continuous bag of words model typically uses context word vectors as the
word representations.

15.1.5 Summary
• Word vectors are vectors used to represent words, and can also be considered as feature

vectors or representations of words. The technique of mapping words to real vectors
is called word embedding.

• The word2vec tool contains both the skip-gram and continuous bag of words models.

• The skip-gram model assumes that a word can be used to generate its surrounding words
in a text sequence; while the continuous bag of words model assumes that a center
word is generated based on its surrounding context words.

15.1.6 Exercises
1. What is the computational complexity for calculating each gradient? What could be the

issue if the dictionary size is huge?
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226

2. Some fixed phrases in English consist of multiple words, such as “new york”. How to
train their word vectors? Hint: see Section 4 in the word2vec paper (Mikolov et al.,
2013).

3. Let’s reflect on the word2vec design by taking the skip-grammodel as an example. What
is the relationship between the dot product of two word vectors in the skip-gram model
and the cosine similarity? For a pair of words with similar semantics, why may the
cosine similarity of their word vectors (trained by the skip-gram model) be high?

Discussions226 .

15.2 Approximate Training

Recall our discussions in Section 15.1. The main idea of the skip-gram model is using
softmax operations to calculate the conditional probability of generating a context word
𝑤𝑜 based on the given center word 𝑤𝑐 in (15.1.4), whose corresponding logarithmic loss
is given by the opposite of (15.1.7).

Due to the nature of the softmax operation, since a context word may be anyone in the
dictionary V, the opposite of (15.1.7) contains the summation of items as many as the
entire size of the vocabulary. Consequently, the gradient calculation for the skip-gram
model in (15.1.8) and that for the continuous bag-of-words model in (15.1.15) both contain
the summation. Unfortunately, the computational cost for such gradients that sum over a
large dictionary (often with hundreds of thousands or millions of words) is huge!

In order to reduce the aforementioned computational complexity, this section will introduce
two approximate training methods: negative sampling and hierarchical softmax. Due to the
similarity between the skip-gram model and the continuous bag of words model, we will
just take the skip-gram model as an example to describe these two approximate training
methods.

15.2.1 Negative Sampling
Negative sampling modifies the original objective function. Given the context window of
a center word 𝑤𝑐, the fact that any (context) word 𝑤𝑜 comes from this context window is
considered as an event with the probability modeled by

𝑃(𝐷 = 1 | 𝑤𝑐, 𝑤𝑜) = 𝜎(u>𝑜v𝑐), (15.2.1)

where 𝜎 uses the definition of the sigmoid activation function:

𝜎(𝑥) = 1
1 + exp(−𝑥) . (15.2.2)

Let’s begin by maximizing the joint probability of all such events in text sequences to train
word embeddings. Specifically, given a text sequence of length 𝑇 , denote by 𝑤 (𝑡 ) the word

https://discuss.d2l.ai/t/381
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at time step 𝑡 and let the context window size be 𝑚, consider maximizing the joint proba-
bility

𝑇∏
𝑡=1

∏
−𝑚≤ 𝑗≤𝑚, 𝑗≠0

𝑃(𝐷 = 1 | 𝑤 (𝑡 ) , 𝑤 (𝑡+ 𝑗 ) ). (15.2.3)

However, (15.2.3) only considers those events that involve positive examples. As a result,
the joint probability in (15.2.3) is maximized to 1 only if all the word vectors are equal
to infinity. Of course, such results are meaningless. To make the objective function more
meaningful, negative sampling adds negative examples sampled from a predefined distri-
bution.

Denote by 𝑆 the event that a context word 𝑤𝑜 comes from the context window of a cen-
ter word 𝑤𝑐. For this event involving 𝑤𝑜, from a predefined distribution 𝑃(𝑤) sample 𝐾
noise words that are not from this context window. Denote by 𝑁𝑘 the event that a noise
word 𝑤𝑘 (𝑘 = 1, . . . , 𝐾) does not come from the context window of 𝑤𝑐. Assume that these
events involving both the positive example and negative examples 𝑆, 𝑁1, . . . , 𝑁𝐾 are mutu-
ally independent. Negative sampling rewrites the joint probability (involving only positive
examples) in (15.2.3) as

𝑇∏
𝑡=1

∏
−𝑚≤ 𝑗≤𝑚, 𝑗≠0

𝑃(𝑤 (𝑡+ 𝑗 ) | 𝑤 (𝑡 ) ), (15.2.4)

where the conditional probability is approximated through events 𝑆, 𝑁1, . . . , 𝑁𝐾 :

𝑃(𝑤 (𝑡+ 𝑗 ) | 𝑤 (𝑡 ) ) = 𝑃(𝐷 = 1 | 𝑤 (𝑡 ) , 𝑤 (𝑡+ 𝑗 ) )
𝐾∏

𝑘=1, 𝑤𝑘∼𝑃 (𝑤)
𝑃(𝐷 = 0 | 𝑤 (𝑡 ) , 𝑤𝑘). (15.2.5)

Denote by 𝑖𝑡 and ℎ𝑘 the indices of a word 𝑤 (𝑡 ) at time step 𝑡 of a text sequence and a noise
word 𝑤𝑘 , respectively. The logarithmic loss with respect to the conditional probabilities in
(15.2.5) is

− log 𝑃(𝑤 (𝑡+ 𝑗 ) | 𝑤 (𝑡 ) ) = − log 𝑃(𝐷 = 1 | 𝑤 (𝑡 ) , 𝑤 (𝑡+ 𝑗 ) ) −
𝐾∑

𝑘=1, 𝑤𝑘∼𝑃 (𝑤)
log 𝑃(𝐷 = 0 | 𝑤 (𝑡 ) , 𝑤𝑘)

= − log 𝜎
(
u>𝑖𝑡+ 𝑗v𝑖𝑡

)
−

𝐾∑
𝑘=1, 𝑤𝑘∼𝑃 (𝑤)

log
(
1 − 𝜎

(
u>ℎ𝑘v𝑖𝑡

))
= − log 𝜎

(
u>𝑖𝑡+ 𝑗v𝑖𝑡

)
−

𝐾∑
𝑘=1, 𝑤𝑘∼𝑃 (𝑤)

log𝜎
(
−u>ℎ𝑘v𝑖𝑡

)
.

(15.2.6)

We can see that now the computational cost for gradients at each training step has nothing
to do with the dictionary size, but linearly depends on 𝐾 . When setting the hyperparameter
𝐾 to a smaller value, the computational cost for gradients at each training step with negative
sampling is smaller.
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15.2.2 Hierarchical Softmax
As an alternative approximate training method, hierarchical softmax uses the binary tree, a
data structure illustrated in Fig. 15.2.1, where each leaf node of the tree represents a word
in dictionaryV.

tFig. 15.2.1 Hierarchical softmax for approximate training, where each leaf node of the tree represents
a word in the dictionary.

Denote by 𝐿 (𝑤) the number of nodes (including both ends) on the path from the root node
to the leaf node representing word 𝑤 in the binary tree. Let 𝑛(𝑤, 𝑗) be the 𝑗 th node on this
path, with its context word vector being u𝑛(𝑤, 𝑗 ) . For example, 𝐿 (𝑤3) = 4 in Fig. 15.2.1.
Hierarchical softmax approximates the conditional probability in (15.1.4) as

𝑃(𝑤𝑜 | 𝑤𝑐) =
𝐿 (𝑤𝑜 )−1∏
𝑗=1

𝜎
(
[[𝑛(𝑤𝑜, 𝑗 + 1) = leftChild(𝑛(𝑤𝑜, 𝑗))]] · u>𝑛(𝑤𝑜 , 𝑗 )v𝑐

)
,

(15.2.7)

where function 𝜎 is defined in (15.2.2), and leftChild(𝑛) is the left child node of node 𝑛:
if 𝑥 is true, [[𝑥]] = 1; otherwise [[𝑥]] = −1.

To illustrate, let’s calculate the conditional probability of generating word 𝑤3 given word
𝑤𝑐 in Fig. 15.2.1. This requires dot products between the word vector v𝑐 of 𝑤𝑐 and non-
leaf node vectors on the path (the path in bold in Fig. 15.2.1) from the root to 𝑤3, which is
traversed left, right, then left:

𝑃(𝑤3 | 𝑤𝑐) = 𝜎(u>𝑛(𝑤3 ,1)v𝑐) · 𝜎(−u
>
𝑛(𝑤3 ,2)v𝑐) · 𝜎(u

>
𝑛(𝑤3 ,3)v𝑐). (15.2.8)

Since 𝜎(𝑥) + 𝜎(−𝑥) = 1, it holds that the conditional probabilities of generating all the
words in dictionaryV based on any word 𝑤𝑐 sum up to one:∑

𝑤∈V
𝑃(𝑤 | 𝑤𝑐) = 1. (15.2.9)

Fortunately, since 𝐿 (𝑤𝑜) − 1 is on the order of O(log2 |V|) due to the binary tree struc-
ture, when the dictionary sizeV is huge, the computational cost for each training step us-
ing hierarchical softmax is significantly reduced compared with that without approximate
training.
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15.2.3 Summary
• Negative sampling constructs the loss function by considering mutually independent

events that involve both positive and negative examples. The computational cost for
training is linearly dependent on the number of noise words at each step.

• Hierarchical softmax constructs the loss function using the path from the root node to
the leaf node in the binary tree. The computational cost for training is dependent on
the logarithm of the dictionary size at each step.

15.2.4 Exercises
1. How can we sample noise words in negative sampling?

2. Verify that (15.2.9) holds.

3. How to train the continuous bag of words model using negative sampling and hierarchi-
cal softmax, respectively?

Discussions227 .

15.3 The Dataset for Pretraining Word Embeddings

Now that we know the technical details of the word2vec models and approximate training
methods, let’s walk through their implementations. Specifically, we will take the skip-
gram model in Section 15.1 and negative sampling in Section 15.2 as an example. In this
section, we begin with the dataset for pretraining the word embedding model: the original
format of the data will be transformed into minibatches that can be iterated over during
training.

import collections
import math
import os
import random
from mxnet import gluon, np
from d2l import mxnet as d2l

15.3.1 Reading the Dataset
The dataset that we use here is Penn Tree Bank (PTB)228. This corpus is sampled fromWall
Street Journal articles, split into training, validation, and test sets. In the original format,
each line of the text file represents a sentence of words that are separated by spaces. Here
we treat each word as a token.

https://discuss.d2l.ai/t/382
https://catalog.ldc.upenn.edu/LDC99T42
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#@save
d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip',

'319d85e578af0cdc590547f26231e4e31cdf1e42')

#@save
def read_ptb():

"""Load the PTB dataset into a list of text lines."""
data_dir = d2l.download_extract('ptb')
# Read the training set
with open(os.path.join(data_dir, 'ptb.train.txt')) as f:

raw_text = f.read()
return [line.split() for line in raw_text.split('\n')]

sentences = read_ptb()
f'# sentences: {len(sentences)}'

Downloading ../data/ptb.zip from http://d2l-data.s3-accelerate.amazonaws.com/
↩→ptb.zip...

'# sentences: 42069'

After reading the training set, we build a vocabulary for the corpus, where any word that
appears less than 10 times is replaced by the “<unk>” token. Note that the original dataset
also contains “<unk>” tokens that represent rare (unknown) words.

vocab = d2l.Vocab(sentences, min_freq=10)
f'vocab size: {len(vocab)}'

'vocab size: 6719'

15.3.2 Subsampling
Text data typically have high-frequency words such as “the”, “a”, and “in”: they may even
occur billions of times in very large corpora. However, these words often co-occur with
many different words in context windows, providing little useful signals. For instance,
consider the word “chip” in a context window: intuitively its co-occurrence with a low-
frequency word “intel” is more useful in training than the co-occurrence with a high-
frequency word “a”. Moreover, training with vast amounts of (high-frequency) words is
slow. Thus, when training word embedding models, high-frequency words can be sub-
sampled (Mikolov et al., 2013). Specifically, each indexed word 𝑤𝑖 in the dataset will be
discarded with probability

𝑃(𝑤𝑖) = max
(
1 −

√
𝑡

𝑓 (𝑤𝑖)
, 0

)
, (15.3.1)

where 𝑓 (𝑤𝑖) is the ratio of the number of words 𝑤𝑖 to the total number of words in the
dataset, and the constant 𝑡 is a hyperparameter (10−4 in the experiment). We can see that
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only when the relative frequency 𝑓 (𝑤𝑖) > 𝑡 can the (high-frequency) word 𝑤𝑖 be discarded,
and the higher the relative frequency of the word, the greater the probability of being dis-
carded.

#@save
def subsample(sentences, vocab):

"""Subsample high-frequency words."""
# Exclude unknown tokens ('<unk>')
sentences = [[token for token in line if vocab[token] != vocab.unk]

for line in sentences]
counter = collections.Counter([

token for line in sentences for token in line])
num_tokens = sum(counter.values())

# Return True if `token` is kept during subsampling
def keep(token):

return(random.uniform(0, 1) <
math.sqrt(1e-4 / counter[token] * num_tokens))

return ([[token for token in line if keep(token)] for line in sentences],
counter)

subsampled, counter = subsample(sentences, vocab)

The following code snippet plots the histogram of the number of tokens per sentence be-
fore and after subsampling. As expected, subsampling significantly shortens sentences by
dropping high-frequency words, which will lead to training speedup.

d2l.show_list_len_pair_hist(['origin', 'subsampled'], '# tokens per sentence',
'count', sentences, subsampled);

For individual tokens, the sampling rate of the high-frequency word “the” is less than
1/20.

def compare_counts(token):
return (f'# of "{token}": '

f'before={sum([l.count(token) for l in sentences])}, '
f'after={sum([l.count(token) for l in subsampled])}')

compare_counts('the')
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'# of "the": before=50770, after=2007'

In contrast, low-frequency words “join” are completely kept.

compare_counts('join')

'# of "join": before=45, after=45'

After subsampling, we map tokens to their indices for the corpus.

corpus = [vocab[line] for line in subsampled]
corpus[:3]

[[], [3228, 4060], [3922, 1922, 4743]]

15.3.3 Extracting Center Words and Context Words
The following get_centers_and_contexts function extracts all the center words and their
context words from corpus. It uniformly samples an integer between 1 and max_window_size
at random as the context window size. For any center word, those words whose distance
from it does not exceed the sampled context window size are its context words.

#@save
def get_centers_and_contexts(corpus, max_window_size):

"""Return center words and context words in skip-gram."""
centers, contexts = [], []
for line in corpus:

# To form a "center word--context word" pair, each sentence needs to
# have at least 2 words
if len(line) < 2:

continue
centers += line
for i in range(len(line)): # Context window centered at `i`

window_size = random.randint(1, max_window_size)
indices = list(range(max(0, i - window_size),

min(len(line), i + 1 + window_size)))
# Exclude the center word from the context words
indices.remove(i)
contexts.append([line[idx] for idx in indices])

return centers, contexts

Next, we create an artificial dataset containing two sentences of 7 and 3 words, respectively.
Let the maximum context window size be 2 and print all the center words and their context
words.
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tiny_dataset = [list(range(7)), list(range(7, 10))]
print('dataset', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):

print('center', center, 'has contexts', context)

dataset [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]
center 0 has contexts [1, 2]
center 1 has contexts [0, 2, 3]
center 2 has contexts [0, 1, 3, 4]
center 3 has contexts [2, 4]
center 4 has contexts [2, 3, 5, 6]
center 5 has contexts [4, 6]
center 6 has contexts [4, 5]
center 7 has contexts [8, 9]
center 8 has contexts [7, 9]
center 9 has contexts [7, 8]

When training on the PTB dataset, we set the maximum context window size to 5. The
following extracts all the center words and their context words in the dataset.

all_centers, all_contexts = get_centers_and_contexts(corpus, 5)
f'# center-context pairs: {sum([len(contexts) for contexts in all_contexts])}'

'# center-context pairs: 1497612'

15.3.4 Negative Sampling
We use negative sampling for approximate training. To sample noise words according to a
predefined distribution, we define the following RandomGenerator class, where the (possi-
bly unnormalized) sampling distribution is passed via the argument sampling_weights.

#@save
class RandomGenerator:

"""Randomly draw among {1, ..., n} according to n sampling weights."""
def __init__(self, sampling_weights):

# Exclude
self.population = list(range(1, len(sampling_weights) + 1))
self.sampling_weights = sampling_weights
self.candidates = []
self.i = 0

def draw(self):
if self.i == len(self.candidates):

# Cache `k` random sampling results
self.candidates = random.choices(

self.population, self.sampling_weights, k=10000)
self.i = 0

self.i += 1
return self.candidates[self.i - 1]
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For example, we can draw 10 random variables 𝑋 among indices 1, 2, and 3 with sampling
probabilities 𝑃(𝑋 = 1) = 2/9, 𝑃(𝑋 = 2) = 3/9, and 𝑃(𝑋 = 3) = 4/9 as follows.

generator = RandomGenerator([2, 3, 4])
[generator.draw() for _ in range(10)]

[3, 3, 1, 3, 1, 2, 3, 3, 2, 1]

For a pair of center word and context word, we randomly sample K (5 in the experiment)
noise words. According to the suggestions in the word2vec paper, the sampling probability
𝑃(𝑤) of a noise word 𝑤 is set to its relative frequency in the dictionary raised to the power
of 0.75 (Mikolov et al., 2013).

#@save
def get_negatives(all_contexts, vocab, counter, K):

"""Return noise words in negative sampling."""
# Sampling weights for words with indices 1, 2, ... (index 0 is the
# excluded unknown token) in the vocabulary
sampling_weights = [counter[vocab.to_tokens(i)]**0.75

for i in range(1, len(vocab))]
all_negatives, generator = [], RandomGenerator(sampling_weights)
for contexts in all_contexts:

negatives = []
while len(negatives) < len(contexts) * K:

neg = generator.draw()
# Noise words cannot be context words
if neg not in contexts:

negatives.append(neg)
all_negatives.append(negatives)

return all_negatives

all_negatives = get_negatives(all_contexts, vocab, counter, 5)

15.3.5 Loading Training Examples in Minibatches
After all the center words together with their context words and sampled noise words are
extracted, they will be transformed into minibatches of examples that can be iteratively
loaded during training.

In a minibatch, the 𝑖th example includes a center word and its 𝑛𝑖 context words and𝑚𝑖 noise
words. Due to varying context window sizes, 𝑛𝑖 + 𝑚𝑖 varies for different 𝑖. Thus, for each
example we concatenate its context words and noise words in the contexts_negatives

variable, and pad zeros until the concatenation length reaches max𝑖 𝑛𝑖 + 𝑚𝑖 (max_len). To
exclude paddings in the calculation of the loss, we define a mask variable masks. There is a
one-to-one correspondence between elements in masks and elements in contexts_negatives,
where zeros (otherwise ones) in masks correspond to paddings in contexts_negatives.

To distinguish between positive and negative examples, we separate context words from
noise words in contexts_negatives via a labels variable. Similar to masks, there is also
a one-to-one correspondence between elements in labels and elements in contexts_negatives,
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where ones (otherwise zeros) in labels correspond to context words (positive examples)
in contexts_negatives.

The above idea is implemented in the following batchify function. Its input data is a
list with length equal to the batch size, where each element is an example consisting of
the center word center, its context words context, and its noise words negative. This
function returns a minibatch that can be loaded for calculations during training, such as
including the mask variable.

#@save
def batchify(data):

"""Return a minibatch of examples for skip-gram with negative sampling."""
max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:

cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += [context + negative + [0] * (max_len - cur_len)]
masks += [[1] * cur_len + [0] * (max_len - cur_len)]
labels += [[1] * len(context) + [0] * (max_len - len(context))]

return (np.array(centers).reshape((-1, 1)), np.array(
contexts_negatives), np.array(masks), np.array(labels))

Let’s test this function using a minibatch of two examples.

x_1 = (1, [2, 2], [3, 3, 3, 3])
x_2 = (1, [2, 2, 2], [3, 3])
batch = batchify((x_1, x_2))

names = ['centers', 'contexts_negatives', 'masks', 'labels']
for name, data in zip(names, batch):

print(name, '=', data)

centers = [[1.]
[1.]]
contexts_negatives = [[2. 2. 3. 3. 3. 3.]
[2. 2. 2. 3. 3. 0.]]
masks = [[1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 0.]]
labels = [[1. 1. 0. 0. 0. 0.]
[1. 1. 1. 0. 0. 0.]]
[22:01:00] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

15.3.6 Putting It All Together
Last, we define the load_data_ptb function that reads the PTB dataset and returns the data
iterator and the vocabulary.
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#@save
def load_data_ptb(batch_size, max_window_size, num_noise_words):

"""Download the PTB dataset and then load it into memory."""
sentences = read_ptb()
vocab = d2l.Vocab(sentences, min_freq=10)
subsampled, counter = subsample(sentences, vocab)
corpus = [vocab[line] for line in subsampled]
all_centers, all_contexts = get_centers_and_contexts(

corpus, max_window_size)
all_negatives = get_negatives(

all_contexts, vocab, counter, num_noise_words)
dataset = gluon.data.ArrayDataset(

all_centers, all_contexts, all_negatives)
data_iter = gluon.data.DataLoader(

dataset, batch_size, shuffle=True,batchify_fn=batchify,
num_workers=d2l.get_dataloader_workers())

return data_iter, vocab

Let’s print the first minibatch of the data iterator.

data_iter, vocab = load_data_ptb(512, 5, 5)
for batch in data_iter:

for name, data in zip(names, batch):
print(name, 'shape:', data.shape)

break

centers shape: (512, 1)
contexts_negatives shape: (512, 60)
masks shape: (512, 60)
labels shape: (512, 60)

15.3.7 Summary
• High-frequency words may not be so useful in training. We can subsample them for

speedup in training.

• For computational efficiency, we load examples in minibatches. We can define other
variables to distinguish paddings from non-paddings, and positive examples from neg-
ative ones.

15.3.8 Exercises
1. How does the running time of code in this section changes if not using subsampling?

2. The RandomGenerator class caches k random sampling results. Set k to other values
and see how it affects the data loading speed.

3. What other hyperparameters in the code of this section may affect the data loading
speed?

Discussions229 .

https://discuss.d2l.ai/t/383
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15.4 Pretraining word2vec

We go on to implement the skip-grammodel defined in Section 15.1. Then we will pretrain
word2vec using negative sampling on the PTB dataset. First of all, let’s obtain the data
iterator and the vocabulary for this dataset by calling the d2l.load_data_ptb function,
which was described in Section 15.3

import math
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

batch_size, max_window_size, num_noise_words = 512, 5, 5
data_iter, vocab = d2l.load_data_ptb(batch_size, max_window_size,

num_noise_words)

15.4.1 The Skip-Gram Model
We implement the skip-gram model by using embedding layers and batch matrix multipli-
cations. First, let’s review how embedding layers work.

Embedding Layer
As described in Section 10.7, an embedding layer maps a token’s index to its feature vec-
tor. The weight of this layer is a matrix whose number of rows equals to the dictio-
nary size (input_dim) and number of columns equals to the vector dimension for each
token (output_dim). After a word embedding model is trained, this weight is what we
need.

embed = nn.Embedding(input_dim=20, output_dim=4)
embed.initialize()
embed.weight

[22:26:39] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Parameter embedding0_weight (shape=(20, 4), dtype=float32)

The input of an embedding layer is the index of a token (word). For any token index 𝑖, its
vector representation can be obtained from the 𝑖th row of theweightmatrix in the embedding
layer. Since the vector dimension (output_dim) was set to 4, the embedding layer returns
vectors with shape (2, 3, 4) for a minibatch of token indices with shape (2, 3).
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x = np.array([[1, 2, 3], [4, 5, 6]])
embed(x)

array([[[ 0.01438687, 0.05011239, 0.00628365, 0.04861524],
[-0.01068833, 0.01729892, 0.02042518, -0.01618656],
[-0.00873779, -0.02834515, 0.05484822, -0.06206018]],

[[ 0.06491279, -0.03182812, -0.01631819, -0.00312688],
[ 0.0408415 , 0.04370362, 0.00404529, -0.0028032 ],
[ 0.00952624, -0.01501013, 0.05958354, 0.04705103]]])

Defining the Forward Propagation
In the forward propagation, the input of the skip-gram model includes the center word
indices center of shape (batch size, 1) and the concatenated context and noise word indices
contexts_and_negatives of shape (batch size, max_len), where max_len is defined in
Section 15.3.5. These two variables are first transformed from the token indices into vectors
via the embedding layer, then their batchmatrixmultiplication (described in Section 11.3.2)
returns an output of shape (batch size, 1, max_len). Each element in the output is the dot
product of a center word vector and a context or noise word vector.

def skip_gram(center, contexts_and_negatives, embed_v, embed_u):
v = embed_v(center)
u = embed_u(contexts_and_negatives)
pred = npx.batch_dot(v, u.swapaxes(1, 2))
return pred

Let’s print the output shape of this skip_gram function for some example inputs.

skip_gram(np.ones((2, 1)), np.ones((2, 4)), embed, embed).shape

(2, 1, 4)

15.4.2 Training
Before training the skip-gram model with negative sampling, let’s first define its loss func-
tion.

Binary Cross-Entropy Loss
According to the definition of the loss function for negative sampling in Section 15.2.1, we
will use the binary cross-entropy loss.

loss = gluon.loss.SigmoidBCELoss()
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Recall our descriptions of the mask variable and the label variable in Section 15.3.5. The
following calculates the binary cross-entropy loss for the given variables.

pred = np.array([[1.1, -2.2, 3.3, -4.4]] * 2)
label = np.array([[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]])
mask = np.array([[1, 1, 1, 1], [1, 1, 0, 0]])
loss(pred, label, mask) * mask.shape[1] / mask.sum(axis=1)

array([0.9352101, 1.8462093])

Below shows how the above results are calculated (in a less efficient way) using the sigmoid
activation function in the binary cross-entropy loss. We can consider the two outputs as two
normalized losses that are averaged over non-masked predictions.

def sigmd(x):
return -math.log(1 / (1 + math.exp(-x)))

print(f'{(sigmd(1.1) + sigmd(2.2) + sigmd(-3.3) + sigmd(4.4)) / 4:.4f}')
print(f'{(sigmd(-1.1) + sigmd(-2.2)) / 2:.4f}')

0.9352
1.8462

Initializing Model Parameters
We define two embedding layers for all the words in the vocabulary when they are used as
center words and context words, respectively. The word vector dimension embed_size is
set to 100.

embed_size = 100
net = nn.Sequential()
net.add(nn.Embedding(input_dim=len(vocab), output_dim=embed_size),

nn.Embedding(input_dim=len(vocab), output_dim=embed_size))

Defining the Training Loop
The training loop is defined below. Because of the existence of padding, the calculation of
the loss function is slightly different compared to the previous training functions.

def train(net, data_iter, lr, num_epochs, device=d2l.try_gpu()):
net.initialize(ctx=device, force_reinit=True)
trainer = gluon.Trainer(net.collect_params(), 'adam',

{'learning_rate': lr})
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[1, num_epochs])
# Sum of normalized losses, no. of normalized losses

(continues on next page)
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(continued from previous page)

metric = d2l.Accumulator(2)
for epoch in range(num_epochs):

timer, num_batches = d2l.Timer(), len(data_iter)
for i, batch in enumerate(data_iter):

center, context_negative, mask, label = [
data.as_in_ctx(device) for data in batch]

with autograd.record():
pred = skip_gram(center, context_negative, net[0], net[1])
l = (loss(pred.reshape(label.shape), label, mask) *

mask.shape[1] / mask.sum(axis=1))
l.backward()
trainer.step(batch_size)
metric.add(l.sum(), l.size)
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:

animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[1],))

print(f'loss {metric[0] / metric[1]:.3f}, '
f'{metric[1] / timer.stop():.1f} tokens/sec on {str(device)}')

Now we can train a skip-gram model using negative sampling.

lr, num_epochs = 0.002, 5
train(net, data_iter, lr, num_epochs)

loss 0.408, 108453.4 tokens/sec on gpu(0)

15.4.3 Applying Word Embeddings
After training the word2vec model, we can use the cosine similarity of word vectors from
the trained model to find words from the dictionary that are most semantically similar to
an input word.

def get_similar_tokens(query_token, k, embed):
W = embed.weight.data()
x = W[vocab[query_token]]
# Compute the cosine similarity. Add 1e-9 for numerical stability
cos = np.dot(W, x) / np.sqrt(np.sum(W * W, axis=1) * np.sum(x * x) + 1e-9)

(continues on next page)
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(continued from previous page)

topk = npx.topk(cos, k=k+1, ret_typ='indices').asnumpy().astype('int32')
for i in topk[1:]: # Remove the input words

print(f'cosine sim={float(cos[i]):.3f}: {vocab.to_tokens(i)}')

get_similar_tokens('chip', 3, net[0])

cosine sim=0.681: intel
cosine sim=0.662: microprocessor
cosine sim=0.619: memory

15.4.4 Summary
• We can train a skip-gram model with negative sampling using embedding layers and the

binary cross-entropy loss.

• Applications of word embeddings include finding semantically similar words for a given
word based on the cosine similarity of word vectors.

15.4.5 Exercises
1. Using the trained model, find semantically similar words for other input words. Can you

improve the results by tuning hyperparameters?

2. When a training corpus is huge, we often sample context words and noise words for
the center words in the current minibatch when updating model parameters. In other
words, the same center wordmay have different context words or noise words in different
training epochs. What are the benefits of this method? Try to implement this training
method.

Discussions230 .

15.5 Word Embedding with Global Vectors (GloVe)

Word-word co-occurrences within context windows may carry rich semantic information.
For example, in a large corpus word “solid” is more likely to co-occur with “ice” than
“steam”, but word “gas” probably co-occurs with “steam” more frequently than “ice”. Be-
sides, global corpus statistics of such co-occurrences can be precomputed: this can lead
to more efficient training. To leverage statistical information in the entire corpus for word
embedding, let’s first revisit the skip-grammodel in Section 15.1.3, but interpreting it using
global corpus statistics such as co-occurrence counts.

15.5.1 Skip-Gram with Global Corpus Statistics

https://discuss.d2l.ai/t/384
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Denoting by 𝑞𝑖 𝑗 the conditional probability 𝑃(𝑤 𝑗 | 𝑤𝑖) of word 𝑤 𝑗 given word 𝑤𝑖 in the
skip-gram model, we have

𝑞𝑖 𝑗 =
exp(u>𝑗 v𝑖)∑
𝑘∈V exp(u>𝑘v𝑖)

, (15.5.1)

where for any index 𝑖 vectors v𝑖 and u𝑖 represent word 𝑤𝑖 as the center word and context
word, respectively, andV = {0, 1, . . . , |V| − 1} is the index set of the vocabulary.

Consider word 𝑤𝑖 that may occur multiple times in the corpus. In the entire corpus, all the
context words wherever 𝑤𝑖 is taken as their center word form a multiset C𝑖 of word indices
that allows for multiple instances of the same element. For any element, its number of in-
stances is called itsmultiplicity. To illustrate with an example, suppose that word 𝑤𝑖 occurs
twice in the corpus and indices of the context words that take 𝑤𝑖 as their center word in the
two context windows are 𝑘, 𝑗 , 𝑚, 𝑘 and 𝑘, 𝑙, 𝑘, 𝑗 . Thus, multiset C𝑖 = { 𝑗 , 𝑗 , 𝑘, 𝑘, 𝑘, 𝑘, 𝑙, 𝑚},
where multiplicities of elements 𝑗 , 𝑘, 𝑙, 𝑚 are 2, 4, 1, 1, respectively.

Now let’s denote the multiplicity of element 𝑗 in multiset C𝑖 as 𝑥𝑖 𝑗 . This is the global co-
occurrence count of word 𝑤 𝑗 (as the context word) and word 𝑤𝑖 (as the center word) in
the same context window in the entire corpus. Using such global corpus statistics, the loss
function of the skip-gram model is equivalent to

−
∑
𝑖∈V

∑
𝑗∈V

𝑥𝑖 𝑗 log 𝑞𝑖 𝑗 . (15.5.2)

We further denote by 𝑥𝑖 the number of all the context words in the context windows where
𝑤𝑖 occurs as their center word, which is equivalent to |C𝑖 |. Letting 𝑝𝑖 𝑗 be the conditional
probability 𝑥𝑖 𝑗/𝑥𝑖 for generating context word 𝑤 𝑗 given center word 𝑤𝑖 , (15.5.2) can be
rewritten as

−
∑
𝑖∈V

𝑥𝑖
∑
𝑗∈V

𝑝𝑖 𝑗 log 𝑞𝑖 𝑗 . (15.5.3)

In (15.5.3), −∑
𝑗∈V 𝑝𝑖 𝑗 log 𝑞𝑖 𝑗 calculates the cross-entropy of the conditional distribution

𝑝𝑖 𝑗 of global corpus statistics and the conditional distribution 𝑞𝑖 𝑗 ofmodel predictions. This
loss is also weighted by 𝑥𝑖 as explained above. Minimizing the loss function in (15.5.3)
will allow the predicted conditional distribution to get close to the conditional distribution
from the global corpus statistics.

Though being commonly used formeasuring the distance between probability distributions,
the cross-entropy loss function may not be a good choice here. On the one hand, as we
mentioned in Section 15.2, the cost of properly normalizing 𝑞𝑖 𝑗 results in the sum over
the entire vocabulary, which can be computationally expensive. On the other hand, a large
number of rare events from a large corpus are often modeled by the cross-entropy loss to
be assigned with too much weight.

15.5.2 The GloVe Model
In view of this, the GloVe model makes three changes to the skip-gram model based on
squared loss (Pennington et al., 2014):
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1. Use variables 𝑝′𝑖 𝑗 = 𝑥𝑖 𝑗 and 𝑞′𝑖 𝑗 = exp(u>𝑗 v𝑖) that are not probability distributions

and take the logarithm of both, so the squared loss term is
(
log 𝑝′𝑖 𝑗 − log 𝑞′𝑖 𝑗

)2
=(

u>𝑗 v𝑖 − log 𝑥𝑖 𝑗
)2
.

2. Add two scalar model parameters for each word 𝑤𝑖: the center word bias 𝑏𝑖 and the
context word bias 𝑐𝑖 .

3. Replace the weight of each loss term with the weight function ℎ(𝑥𝑖 𝑗 ), where ℎ(𝑥) is
increasing in the interval of [0, 1].

Putting all things together, trainingGloVe is tominimize the following loss function:∑
𝑖∈V

∑
𝑗∈V

ℎ(𝑥𝑖 𝑗 )
(
u>𝑗 v𝑖 + 𝑏𝑖 + 𝑐 𝑗 − log 𝑥𝑖 𝑗

)2
. (15.5.4)

For the weight function, a suggested choice is: ℎ(𝑥) = (𝑥/𝑐)𝛼 (e.g 𝛼 = 0.75) if 𝑥 < 𝑐 (e.g.,
𝑐 = 100); otherwise ℎ(𝑥) = 1. In this case, because ℎ(0) = 0, the squared loss term for any
𝑥𝑖 𝑗 = 0 can be omitted for computational efficiency. For example, when using minibatch
stochastic gradient descent for training, at each iteration we randomly sample a minibatch
of non-zero 𝑥𝑖 𝑗 to calculate gradients and update the model parameters. Note that these
non-zero 𝑥𝑖 𝑗 are precomputed global corpus statistics; thus, the model is called GloVe for
Global Vectors.

It should be emphasized that if word 𝑤𝑖 appears in the context window of word 𝑤 𝑗 , then
vice versa. Therefore, 𝑥𝑖 𝑗 = 𝑥 𝑗𝑖 . Unlike word2vec that fits the asymmetric conditional
probability 𝑝𝑖 𝑗 , GloVe fits the symmetric log 𝑥𝑖 𝑗 . Therefore, the center word vector and
the context word vector of any word are mathematically equivalent in the GloVe model.
However in practice, owing to different initialization values, the same word may still get
different values in these two vectors after training: GloVe sums them up as the output
vector.

15.5.3 Interpreting GloVe from the Ratio of Co-occurrence
Probabilities

We can also interpret the GloVe model from another perspective. Using the same notation
in Section 15.5.1, let 𝑝𝑖 𝑗

def
= 𝑃(𝑤 𝑗 | 𝑤𝑖) be the conditional probability of generating the

context word 𝑤 𝑗 given 𝑤𝑖 as the center word in the corpus. tab_glove lists several co-
occurrence probabilities given words “ice” and “steam” and their ratios based on statistics
from a large corpus.

:Word-word co-occurrence probabilities and their ratios from a large corpus (adapted from
Table 1 in Pennington et al. (2014))

Table 15.5.1: label:tab_glove
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𝑤𝑘= solid gas water fashion
𝑝1 = 𝑃(𝑤𝑘 | ice) 0.00019 0.000066 0.003 0.000017
𝑝2 = 𝑃(𝑤𝑘 | steam) 0.000022 0.00078 0.0022 0.000018
𝑝1/𝑝2 8.9 0.085 1.36 0.96

We can observe the following from tab_glove:

• For a word 𝑤𝑘 that is related to “ice” but unrelated to “steam”, such as 𝑤𝑘 = solid, we
expect a larger ratio of co-occurence probabilities, such as 8.9.

• For a word 𝑤𝑘 that is related to “steam” but unrelated to “ice”, such as 𝑤𝑘 = gas, we
expect a smaller ratio of co-occurence probabilities, such as 0.085.

• For a word 𝑤𝑘 that is related to both “ice” and “steam”, such as 𝑤𝑘 = water, we expect
a ratio of co-occurence probabilities that is close to 1, such as 1.36.

• For a word 𝑤𝑘 that is unrelated to both “ice” and “steam”, such as 𝑤𝑘 = fashion, we
expect a ratio of co-occurence probabilities that is close to 1, such as 0.96.

It can be seen that the ratio of co-occurrence probabilities can intuitively express the rela-
tionship between words. Thus, we can design a function of three word vectors to fit this
ratio. For the ratio of co-occurrence probabilities 𝑝𝑖 𝑗/𝑝𝑖𝑘 with𝑤𝑖 being the center word and
𝑤 𝑗 and 𝑤𝑘 being the context words, we want to fit this ratio using some function 𝑓 :

𝑓 (u 𝑗 ,u𝑘 ,v𝑖) ≈
𝑝𝑖 𝑗

𝑝𝑖𝑘
. (15.5.5)

Among many possible designs for 𝑓 , we only pick a reasonable choice in the following.
Since the ratio of co-occurrence probabilities is a scalar, we require that 𝑓 be a scalar
function, such as 𝑓 (u 𝑗 ,u𝑘 ,v𝑖) = 𝑓

(
(u 𝑗 − u𝑘)>v𝑖

)
. Switching word indices 𝑗 and 𝑘 in

(15.5.5), it must hold that 𝑓 (𝑥) 𝑓 (−𝑥) = 1, so one possibility is 𝑓 (𝑥) = exp(𝑥), i.e.,

𝑓 (u 𝑗 ,u𝑘 ,v𝑖) =
exp

(
u>𝑗 v𝑖

)
exp

(
u>𝑘v𝑖

) ≈ 𝑝𝑖 𝑗

𝑝𝑖𝑘
. (15.5.6)

Now let’s pick exp
(
u>𝑗 v𝑖

)
≈ 𝛼𝑝𝑖 𝑗 , where 𝛼 is a constant. Since 𝑝𝑖 𝑗 = 𝑥𝑖 𝑗/𝑥𝑖 , after taking

the logarithm on both sides we get u>𝑗 v𝑖 ≈ log 𝛼 + log 𝑥𝑖 𝑗 − log 𝑥𝑖 . We may use additional
bias terms to fit − log 𝛼 + log 𝑥𝑖 , such as the center word bias 𝑏𝑖 and the context word bias
𝑐 𝑗 :

u>𝑗 v𝑖 + 𝑏𝑖 + 𝑐 𝑗 ≈ log 𝑥𝑖 𝑗 . (15.5.7)

Measuring the squared error of (15.5.7) with weights, the GloVe loss function in (15.5.4)
is obtained.

15.5.4 Summary
• The skip-grammodel can be interpreted using global corpus statistics such as word-word

co-occurrence counts.
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• The cross-entropy loss may not be a good choice for measuring the difference of two
probability distributions, especially for a large corpus. GloVe uses squared loss to fit
precomputed global corpus statistics.

• The center word vector and the context word vector are mathematically equivalent for
any word in GloVe.

• GloVe can be interpreted from the ratio of word-word co-occurrence probabilities.

15.5.5 Exercises
1. If words 𝑤𝑖 and 𝑤 𝑗 co-occur in the same context window, how can we use their distance

in the text sequence to redesign the method for calculating the conditional probability
𝑝𝑖 𝑗? Hint: see Section 4.2 of the GloVe paper (Pennington et al., 2014).

2. For any word, are its center word bias and context word bias mathematically equivalent
in GloVe? Why?

Discussions231 .

15.6 Subword Embedding

In English, words such as “helps”, “helped”, and “helping” are inflected forms of the same
word “help”. The relationship between “dog” and “dogs” is the same as that between “cat”
and “cats”, and the relationship between “boy” and “boyfriend” is the same as that between
“girl” and “girlfriend”. In other languages such as French and Spanish, many verbs have
over 40 inflected forms, while in Finnish, a noun may have up to 15 cases. In linguistics,
morphology studies word formation andword relationships. However, the internal structure
of words was neither explored in word2vec nor in GloVe.

15.6.1 The fastText Model
Recall how words are represented in word2vec. In both the skip-gram model and the con-
tinuous bag-of-words model, different inflected forms of the same word are directly repre-
sented by different vectors without shared parameters. To use morphological information,
the fastText model proposed a subword embedding approach, where a subword is a charac-
ter 𝑛-gram (Bojanowski et al., 2017). Instead of learning word-level vector representations,
fastText can be considered as the subword-level skip-gram, where each center word is rep-
resented by the sum of its subword vectors.

Let’s illustrate how to obtain subwords for each center word in fastText using the word
“where”. First, add special characters “<” and “>” at the beginning and end of the word
to distinguish prefixes and suffixes from other subwords. Then, extract character 𝑛-grams
from the word. For example, when 𝑛 = 3, we obtain all subwords of length 3: “<wh”,
“whe”, “her”, “ere”, “re>”, and the special subword “<where>”.

https://discuss.d2l.ai/t/385
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In fastText, for any word 𝑤, denote by G𝑤 the union of all its subwords of length between
3 and 6 and its special subword. The vocabulary is the union of the subwords of all words.
Letting z𝑔 be the vector of subword 𝑔 in the dictionary, the vector v𝑤 for word 𝑤 as a center
word in the skip-gram model is the sum of its subword vectors:

v𝑤 =
∑
𝑔∈G𝑤

z𝑔 . (15.6.1)

The rest of fastText is the same as the skip-gram model. Compared with the skip-gram
model, the vocabulary in fastText is larger, resulting in more model parameters. Besides,
to calculate the representation of a word, all its subword vectors have to be summed, leading
to higher computational complexity. However, thanks to shared parameters from subwords
among words with similar structures, rare words and even out-of-vocabulary words may
obtain better vector representations in fastText.

15.6.2 Byte Pair Encoding
In fastText, all the extracted subwords have to be of the specified lengths, such as 3 to 6,
thus the vocabulary size cannot be predefined. To allow for variable-length subwords in
a fixed-size vocabulary, we can apply a compression algorithm called byte pair encoding
(BPE) to extract subwords (Sennrich et al., 2015).

Byte pair encoding performs a statistical analysis of the training dataset to discover com-
mon symbols within a word, such as consecutive characters of arbitrary length. Starting
from symbols of length 1, byte pair encoding iteratively merges the most frequent pair of
consecutive symbols to produce new longer symbols. Note that for efficiency, pairs cross-
ing word boundaries are not considered. In the end, we can use such symbols as subwords
to segment words. Byte pair encoding and its variants has been used for input representa-
tions in popular natural language processing pretraining models such as GPT-2 (Radford
et al., 2019) and RoBERTa (Liu et al., 2019). In the following, we will illustrate how byte
pair encoding works.

First, we initialize the vocabulary of symbols as all the English lowercase characters, a
special end-of-word symbol '_', and a special unknown symbol '[UNK]'.

import collections

symbols = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'_', '[UNK]']

Since we do not consider symbol pairs that cross boundaries of words, we only need a
dictionary raw_token_freqs that mapswords to their frequencies (number of occurrences)
in a dataset. Note that the special symbol '_' is appended to each word so that we can
easily recover a word sequence (e.g., “a taller man”) from a sequence of output symbols
( e.g., “a_ tall er_ man”). Since we start the merging process from a vocabulary of only
single characters and special symbols, space is inserted between every pair of consecutive
characters within each word (keys of the dictionary token_freqs). In other words, space
is the delimiter between symbols within a word.
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raw_token_freqs = {'fast_': 4, 'faster_': 3, 'tall_': 5, 'taller_': 4}
token_freqs = {}
for token, freq in raw_token_freqs.items():

token_freqs[' '.join(list(token))] = raw_token_freqs[token]
token_freqs

{'f a s t _': 4, 'f a s t e r _': 3, 't a l l _': 5, 't a l l e r _': 4}

We define the following get_max_freq_pair function that returns the most frequent pair
of consecutive symbols within a word, where words come from keys of the input dictionary
token_freqs.

def get_max_freq_pair(token_freqs):
pairs = collections.defaultdict(int)
for token, freq in token_freqs.items():

symbols = token.split()
for i in range(len(symbols) - 1):

# Key of `pairs` is a tuple of two consecutive symbols
pairs[symbols[i], symbols[i + 1]] += freq

return max(pairs, key=pairs.get) # Key of `pairs` with the max value

As a greedy approach based on frequency of consecutive symbols, byte pair encoding will
use the following merge_symbols function to merge the most frequent pair of consecutive
symbols to produce new symbols.

def merge_symbols(max_freq_pair, token_freqs, symbols):
symbols.append(''.join(max_freq_pair))
new_token_freqs = dict()
for token, freq in token_freqs.items():

new_token = token.replace(' '.join(max_freq_pair),
''.join(max_freq_pair))

new_token_freqs[new_token] = token_freqs[token]
return new_token_freqs

Nowwe iteratively perform the byte pair encoding algorithm over the keys of the dictionary
token_freqs. In the first iteration, the most frequent pair of consecutive symbols are 't'
and 'a', thus byte pair encoding merges them to produce a new symbol 'ta'. In the
second iteration, byte pair encoding continues to merge 'ta' and 'l' to result in another
new symbol 'tal'.

num_merges = 10
for i in range(num_merges):

max_freq_pair = get_max_freq_pair(token_freqs)
token_freqs = merge_symbols(max_freq_pair, token_freqs, symbols)
print(f'merge #{i + 1}:', max_freq_pair)

merge #1: ('t', 'a')

(continues on next page)
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(continued from previous page)

merge #2: ('ta', 'l')
merge #3: ('tal', 'l')
merge #4: ('f', 'a')
merge #5: ('fa', 's')
merge #6: ('fas', 't')
merge #7: ('e', 'r')
merge #8: ('er', '_')
merge #9: ('tall', '_')
merge #10: ('fast', '_')

After 10 iterations of byte pair encoding, we can see that list symbols now contains 10
more symbols that are iteratively merged from other symbols.

print(symbols)

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p
↩→', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '_', '[UNK]', 'ta', 'tal
↩→', 'tall', 'fa', 'fas', 'fast', 'er', 'er_', 'tall_', 'fast_']

For the same dataset specified in the keys of the dictionary raw_token_freqs, each word
in the dataset is now segmented by subwords “fast_”, “fast”, “er_”, “tall_”, and “tall” as a
result of the byte pair encoding algorithm. For instance, words “faster_” and “taller_” are
segmented as “fast er_” and “tall er_”, respectively.

print(list(token_freqs.keys()))

['fast_', 'fast er_', 'tall_', 'tall er_']

Note that the result of byte pair encoding depends on the dataset being used. We can also
use the subwords learned from one dataset to segment words of another dataset. As a
greedy approach, the following segment_BPE function tries to break words into the longest
possible subwords from the input argument symbols.

def segment_BPE(tokens, symbols):
outputs = []
for token in tokens:

start, end = 0, len(token)
cur_output = []
# Segment token with the longest possible subwords from symbols
while start < len(token) and start < end:

if token[start: end] in symbols:
cur_output.append(token[start: end])
start = end
end = len(token)

else:
end -= 1

if start < len(token):

(continues on next page)
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cur_output.append('[UNK]')
outputs.append(' '.join(cur_output))

return outputs

In the following, we use the subwords in list symbols, which is learned from the aforemen-
tioned dataset, to segment tokens that represent another dataset.

tokens = ['tallest_', 'fatter_']
print(segment_BPE(tokens, symbols))

['tall e s t _', 'fa t t er_']

15.6.3 Summary
• The fastText model proposes a subword embedding approach. Based on the skip-gram

model in word2vec, it represents a center word as the sum of its subword vectors.

• Byte pair encoding performs a statistical analysis of the training dataset to discover com-
mon symbols within a word. As a greedy approach, byte pair encoding iteratively
merges the most frequent pair of consecutive symbols.

• Subword embedding may improve the quality of representations of rare words and out-
of-dictionary words.

15.6.4 Exercises
1. As an example, there are about 3 × 108 possible 6-grams in English. What is the issue

when there are too many subwords? How to address the issue? Hint: refer to the end of
Section 3.2 of the fastText paper (Bojanowski et al., 2017).

2. How to design a subword embedding model based on the continuous bag-of-words
model?

3. To get a vocabulary of size𝑚, howmany merging operations are needed when the initial
symbol vocabulary size is 𝑛?

4. How to extend the idea of byte pair encoding to extract phrases?

Discussions232 .

15.7 Word Similarity and Analogy

In Section 15.4, we trained a word2vec model on a small dataset, and applied it to find
semantically similar words for an input word. In practice, word vectors that are pretrained

https://discuss.d2l.ai/t/386
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on large corpora can be applied to downstream natural language processing tasks, which
will be covered later in Chapter 16. To demonstrate semantics of pretrained word vectors
from large corpora in a straightforward way, let’s apply them in the word similarity and
analogy tasks.

import os
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

15.7.1 Loading Pretrained Word Vectors
Below lists pretrained GloVe embeddings of dimension 50, 100, and 300, which can be
downloaded from the GloVe website233 . The pretrained fastText embeddings are available
in multiple languages. Here we consider one English version (300-dimensional “wiki.en”)
that can be downloaded from the fastText website234 .

#@save
d2l.DATA_HUB['glove.6b.50d'] = (d2l.DATA_URL + 'glove.6B.50d.zip',

'0b8703943ccdb6eb788e6f091b8946e82231bc4d')

#@save
d2l.DATA_HUB['glove.6b.100d'] = (d2l.DATA_URL + 'glove.6B.100d.zip',

'cd43bfb07e44e6f27cbcc7bc9ae3d80284fdaf5a')

#@save
d2l.DATA_HUB['glove.42b.300d'] = (d2l.DATA_URL + 'glove.42B.300d.zip',

'b5116e234e9eb9076672cfeabf5469f3eec904fa')

#@save
d2l.DATA_HUB['wiki.en'] = (d2l.DATA_URL + 'wiki.en.zip',

'c1816da3821ae9f43899be655002f6c723e91b88')

To load these pretrained GloVe and fastText embeddings, we define the following Token-

Embedding class.

#@save
class TokenEmbedding:

"""Token Embedding."""
def __init__(self, embedding_name):

self.idx_to_token, self.idx_to_vec = self._load_embedding(
embedding_name)

self.unknown_idx = 0
self.token_to_idx = {token: idx for idx, token in

enumerate(self.idx_to_token)}

def _load_embedding(self, embedding_name):
idx_to_token, idx_to_vec = ['<unk>'], []
data_dir = d2l.download_extract(embedding_name)
# GloVe website: https://nlp.stanford.edu/projects/glove/

(continues on next page)

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
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# fastText website: https://fasttext.cc/
with open(os.path.join(data_dir, 'vec.txt'), 'r') as f:

for line in f:
elems = line.rstrip().split(' ')
token, elems = elems[0], [float(elem) for elem in elems[1:]]
# Skip header information, such as the top row in fastText
if len(elems) > 1:

idx_to_token.append(token)
idx_to_vec.append(elems)

idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vec
return idx_to_token, np.array(idx_to_vec)

def __getitem__(self, tokens):
indices = [self.token_to_idx.get(token, self.unknown_idx)

for token in tokens]
vecs = self.idx_to_vec[np.array(indices)]
return vecs

def __len__(self):
return len(self.idx_to_token)

Below we load the 50-dimensional GloVe embeddings (pretrained on a Wikipedia sub-
set). When creating the TokenEmbedding instance, the specified embedding file has to be
downloaded if it was not yet.

glove_6b50d = TokenEmbedding('glove.6b.50d')

Downloading ../data/glove.6B.50d.zip from http://d2l-data.s3-accelerate.
↩→amazonaws.com/glove.6B.50d.zip...
[22:05:47] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Output the vocabulary size. The vocabulary contains 400000 words (tokens) and a special
unknown token.

len(glove_6b50d)

400001

We can get the index of a word in the vocabulary, and vice versa.

glove_6b50d.token_to_idx['beautiful'], glove_6b50d.idx_to_token[3367]

(3367, 'beautiful')

15.7.2 Applying Pretrained Word Vectors
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Using the loaded GloVe vectors, we will demonstrate their semantics by applying them in
the following word similarity and analogy tasks.

Word Similarity
Similar to Section 15.4.3, in order to find semantically similar words for an input word
based on cosine similarities between word vectors, we implement the following knn (𝑘-
nearest neighbors) function.

def knn(W, x, k):
# Add 1e-9 for numerical stability
cos = np.dot(W, x.reshape(-1,)) / (

np.sqrt(np.sum(W * W, axis=1) + 1e-9) * np.sqrt((x * x).sum()))
topk = npx.topk(cos, k=k, ret_typ='indices')
return topk, [cos[int(i)] for i in topk]

Then, we search for similar words using the pretrained word vectors from the TokenEm-

bedding instance embed.

def get_similar_tokens(query_token, k, embed):
topk, cos = knn(embed.idx_to_vec, embed[[query_token]], k + 1)
for i, c in zip(topk[1:], cos[1:]): # Exclude the input word

print(f'cosine sim={float(c):.3f}: {embed.idx_to_token[int(i)]}')

The vocabulary of the pretrained word vectors in glove_6b50d contains 400000 words
and a special unknown token. Excluding the input word and unknown token, among this
vocabulary let’s find three most semantically similar words to word “chip”.

get_similar_tokens('chip', 3, glove_6b50d)

cosine sim=0.856: chips
cosine sim=0.749: intel
cosine sim=0.749: electronics

Below outputs similar words to “baby” and “beautiful”.

get_similar_tokens('baby', 3, glove_6b50d)

cosine sim=0.839: babies
cosine sim=0.800: boy
cosine sim=0.792: girl

get_similar_tokens('beautiful', 3, glove_6b50d)



731 Word Similarity and Analogy

cosine sim=0.921: lovely
cosine sim=0.893: gorgeous
cosine sim=0.830: wonderful

Word Analogy
Besides finding similar words, we can also apply word vectors to word analogy tasks. For
example, “man”:“woman”::“son”:“daughter” is the form of a word analogy: “man” is to
“woman” as “son” is to “daughter”. Specifically, the word analogy completion task can be
defined as: for a word analogy 𝑎 : 𝑏 :: 𝑐 : 𝑑, given the first three words 𝑎, 𝑏 and 𝑐, find 𝑑.
Denote the vector of word 𝑤 by vec(𝑤). To complete the analogy, we will find the word
whose vector is most similar to the result of vec(𝑐) + vec(𝑏) − vec(𝑎).

def get_analogy(token_a, token_b, token_c, embed):
vecs = embed[[token_a, token_b, token_c]]
x = vecs[1] - vecs[0] + vecs[2]
topk, cos = knn(embed.idx_to_vec, x, 1)
return embed.idx_to_token[int(topk[0])] # Remove unknown words

Let’s verify the “male-female” analogy using the loaded word vectors.

get_analogy('man', 'woman', 'son', glove_6b50d)

'daughter'

Below completes a “capital-country” analogy: “beijing”:“china”::“tokyo”:“japan”. This
demonstrates semantics in the pretrained word vectors.

get_analogy('beijing', 'china', 'tokyo', glove_6b50d)

'japan'

For the “adjective-superlative adjective” analogy such as “bad”:“worst”::“big”:“biggest”,
we can see that the pretrained word vectors may capture the syntactic information.

get_analogy('bad', 'worst', 'big', glove_6b50d)

'biggest'

To show the captured notion of past tense in the pretrained word vectors, we can test the
syntax using the “present tense-past tense” analogy: “do”:“did”::“go”:“went”.
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get_analogy('do', 'did', 'go', glove_6b50d)

'went'

15.7.3 Summary
• In practice, word vectors that are pretrained on large corpora can be applied to down-

stream natural language processing tasks.

• Pretrained word vectors can be applied to the word similarity and analogy tasks.

15.7.4 Exercises
1. Test the fastText results using TokenEmbedding('wiki.en').

2. When the vocabulary is extremely large, how can we find similar words or complete a
word analogy faster?

Discussions235 .

15.8 Bidirectional Encoder Representations from
Transformers (BERT)

We have introduced several word embedding models for natural language understanding.
After pretraining, the output can be thought of as a matrix where each row is a vector that
represents a word of a predefined vocabulary. In fact, these word embedding models are
all context-independent. Let’s begin by illustrating this property.

15.8.1 From Context-Independent to Context-Sensitive
Recall the experiments in Section 15.4 and Section 15.7. For instance, word2vec and GloVe
both assign the same pretrained vector to the same word regardless of the context of the
word (if any). Formally, a context-independent representation of any token 𝑥 is a func-
tion 𝑓 (𝑥) that only takes 𝑥 as its input. Given the abundance of polysemy and complex
semantics in natural languages, context-independent representations have obvious limita-
tions. For instance, the word “crane” in contexts “a crane is flying” and “a crane driver
came” has completely different meanings; thus, the same word may be assigned different
representations depending on contexts.

This motivates the development of context-sensitive word representations, where represen-
tations of words depend on their contexts. Hence, a context-sensitive representation of

https://discuss.d2l.ai/t/387
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token 𝑥 is a function 𝑓 (𝑥, 𝑐(𝑥)) depending on both 𝑥 and its context 𝑐(𝑥). Popular context-
sensitive representations include TagLM (language-model-augmented sequence tagger) (Pe-
ters et al., 2017), CoVe (Context Vectors) (McCann et al., 2017), and ELMo (Embeddings
from Language Models) (Peters et al., 2018).

For example, by taking the entire sequence as input, ELMo is a function that assigns a rep-
resentation to each word from the input sequence. Specifically, ELMo combines all the
intermediate layer representations from pretrained bidirectional LSTM as the output rep-
resentation. Then the ELMo representation will be added to a downstream task’s existing
supervised model as additional features, such as by concatenating ELMo representation
and the original representation (e.g., GloVe) of tokens in the existing model. On the one
hand, all the weights in the pretrained bidirectional LSTM model are frozen after ELMo
representations are added. On the other hand, the existing supervised model is specifically
customized for a given task. Leveraging different best models for different tasks at that
time, adding ELMo improved the state of the art across six natural language processing
tasks: sentiment analysis, natural language inference, semantic role labeling, coreference
resolution, named entity recognition, and question answering.

15.8.2 From Task-Specific to Task-Agnostic
Although ELMo has significantly improved solutions to a diverse set of natural language
processing tasks, each solution still hinges on a task-specific architecture. However, it is
practically non-trivial to craft a specific architecture for every natural language processing
task. The GPT (Generative Pre-Training) model represents an effort in designing a general
task-agnostic model for context-sensitive representations (Radford et al., 2018). Built on
a Transformer decoder, GPT pretrains a language model that will be used to represent text
sequences. When applying GPT to a downstream task, the output of the language model
will be fed into an added linear output layer to predict the label of the task. In sharp contrast
to ELMo that freezes parameters of the pretrained model, GPT fine-tunes all the parame-
ters in the pretrained Transformer decoder during supervised learning of the downstream
task. GPT was evaluated on twelve tasks of natural language inference, question answer-
ing, sentence similarity, and classification, and improved the state of the art in nine of them
with minimal changes to the model architecture.

However, due to the autoregressive nature of language models, GPT only looks forward
(left-to-right). In contexts “i went to the bank to deposit cash” and “i went to the bank
to sit down”, as “bank” is sensitive to the context to its left, GPT will return the same
representation for “bank”, though it has different meanings.

15.8.3 BERT: Combining the Best of Both Worlds
Aswe have seen, ELMo encodes context bidirectionally but uses task-specific architectures;
while GPT is task-agnostic but encodes context left-to-right. Combining the best of both
worlds, BERT (Bidirectional Encoder Representations from Transformers) encodes con-
text bidirectionally and requires minimal architecture changes for a wide range of natural
language processing tasks (Devlin et al., 2018). Using a pretrained Transformer encoder,
BERT is able to represent any token based on its bidirectional context. During supervised
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learning of downstream tasks, BERT is similar to GPT in two aspects. First, BERT rep-
resentations will be fed into an added output layer, with minimal changes to the model
architecture depending on nature of tasks, such as predicting for every token vs. predicting
for the entire sequence. Second, all the parameters of the pretrained Transformer encoder
are fine-tuned, while the additional output layer will be trained from scratch. Fig. 15.8.1
depicts the differences among ELMo, GPT, and BERT.

tFig. 15.8.1 A comparison of ELMo, GPT, and BERT.

BERT further improved the state of the art on eleven natural language processing tasks
under broad categories of (i) single text classification (e.g., sentiment analysis), (ii) text pair
classification (e.g., natural language inference), (iii) question answering, (iv) text tagging
(e.g., named entity recognition). All proposed in 2018, from context-sensitive ELMo to
task-agnostic GPT and BERT, conceptually simple yet empirically powerful pretraining of
deep representations for natural languages have revolutionized solutions to various natural
language processing tasks.

In the rest of this chapter, we will dive into the pretraining of BERT.When natural language
processing applications are explained in Chapter 16, we will illustrate fine-tuning of BERT
for downstream applications.

from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

15.8.4 Input Representation
In natural language processing, some tasks (e.g., sentiment analysis) take single text as
input, while in some other tasks (e.g., natural language inference), the input is a pair of
text sequences. The BERT input sequence unambiguously represents both single text and
text pairs. In the former, the BERT input sequence is the concatenation of the special
classification token “<cls>”, tokens of a text sequence, and the special separation token
“<sep>”. In the latter, the BERT input sequence is the concatenation of “<cls>”, tokens
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of the first text sequence, “<sep>”, tokens of the second text sequence, and “<sep>”. We
will consistently distinguish the terminology “BERT input sequence” from other types of
“sequences”. For instance, one BERT input sequencemay include either one text sequence
or two text sequences.

To distinguish text pairs, the learned segment embeddings e𝐴 and e𝐵 are added to the
token embeddings of the first sequence and the second sequence, respectively. For single
text inputs, only e𝐴 is used.

The following get_tokens_and_segments takes either one sentence or two sentences as
input, then returns tokens of the BERT input sequence and their corresponding segment
IDs.

#@save
def get_tokens_and_segments(tokens_a, tokens_b=None):

"""Get tokens of the BERT input sequence and their segment IDs."""
tokens = ['<cls>'] + tokens_a + ['<sep>']
# 0 and 1 are marking segment A and B, respectively
segments = [0] * (len(tokens_a) + 2)
if tokens_b is not None:

tokens += tokens_b + ['<sep>']
segments += [1] * (len(tokens_b) + 1)

return tokens, segments

BERT chooses the Transformer encoder as its bidirectional architecture. Common in the
Transformer encoder, positional embeddings are added at every position of the BERT input
sequence. However, different from the original Transformer encoder, BERT uses learnable
positional embeddings. To sum up, Fig. 15.8.2 shows that the embeddings of the BERT
input sequence are the sum of the token embeddings, segment embeddings, and positional
embeddings.

tFig. 15.8.2 The embeddings of the BERT input sequence are the sum of the token embeddings,
segment embeddings, and positional embeddings.

The following BERTEncoder class is similar to the TransformerEncoder class as imple-
mented in Section 11.7. Different from TransformerEncoder, BERTEncoder uses segment
embeddings and learnable positional embeddings.

#@save
class BERTEncoder(nn.Block):

(continues on next page)
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"""BERT encoder."""
def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens, num_heads,

num_blks, dropout, max_len=1000, **kwargs):
super(BERTEncoder, self).__init__(**kwargs)
self.token_embedding = nn.Embedding(vocab_size, num_hiddens)
self.segment_embedding = nn.Embedding(2, num_hiddens)
self.blks = nn.Sequential()
for _ in range(num_blks):

self.blks.add(d2l.TransformerEncoderBlock(
num_hiddens, ffn_num_hiddens, num_heads, dropout, True))

# In BERT, positional embeddings are learnable, thus we create a
# parameter of positional embeddings that are long enough
self.pos_embedding = self.params.get('pos_embedding',

shape=(1, max_len, num_hiddens))

def forward(self, tokens, segments, valid_lens):
# Shape of `X` remains unchanged in the following code snippet:
# (batch size, max sequence length, `num_hiddens`)
X = self.token_embedding(tokens) + self.segment_embedding(segments)
X = X + self.pos_embedding.data(ctx=X.ctx)[:, :X.shape[1], :]
for blk in self.blks:

X = blk(X, valid_lens)
return X

Suppose that the vocabulary size is 10000. To demonstrate forward inference of BERTEn-
coder, let’s create an instance of it and initialize its parameters.

vocab_size, num_hiddens, ffn_num_hiddens, num_heads = 10000, 768, 1024, 4
num_blks, dropout = 2, 0.2
encoder = BERTEncoder(vocab_size, num_hiddens, ffn_num_hiddens, num_heads,

num_blks, dropout)
encoder.initialize()

[22:07:48] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

We define tokens to be 2 BERT input sequences of length 8, where each token is an index
of the vocabulary. The forward inference of BERTEncoder with the input tokens returns
the encoded result where each token is represented by a vector whose length is predefined
by the hyperparameter num_hiddens. This hyperparameter is usually referred to as the
hidden size (number of hidden units) of the Transformer encoder.

tokens = np.random.randint(0, vocab_size, (2, 8))
segments = np.array([[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1]])
encoded_X = encoder(tokens, segments, None)
encoded_X.shape

(2, 8, 768)



737 Bidirectional Encoder Representations from Transformers (BERT)

15.8.5 Pretraining Tasks
The forward inference of BERTEncoder gives the BERT representation of each token of
the input text and the inserted special tokens “<cls>” and “<seq>”. Next, we will use
these representations to compute the loss function for pretraining BERT. The pretraining
is composed of the following two tasks: masked language modeling and next sentence
prediction.

Masked Language Modeling
As illustrated in Section 9.3, a language model predicts a token using the context on its
left. To encode context bidirectionally for representing each token, BERT randomly masks
tokens and uses tokens from the bidirectional context to predict the masked tokens in a
self-supervised fashion. This task is referred to as a masked language model.

In this pretraining task, 15% of tokens will be selected at random as the masked tokens for
prediction. To predict a masked token without cheating by using the label, one straight-
forward approach is to always replace it with a special “<mask>” token in the BERT input
sequence. However, the artificial special token “<mask>” will never appear in fine-tuning.
To avoid such a mismatch between pretraining and fine-tuning, if a token is masked for
prediction (e.g., “great” is selected to be masked and predicted in “this movie is great”), in
the input it will be replaced with:

• a special “<mask>” token for 80% of the time (e.g., “this movie is great” becomes “this
movie is <mask>”);

• a random token for 10% of the time (e.g., “this movie is great” becomes “this movie is
drink”);

• the unchanged label token for 10% of the time (e.g., “this movie is great” becomes “this
movie is great”).

Note that for 10%of 15% time a random token is inserted. This occasional noise encourages
BERT to be less biased towards the masked token (especially when the label token remains
unchanged) in its bidirectional context encoding.

We implement the following MaskLM class to predict masked tokens in the masked language
model task of BERT pretraining. The prediction uses a one-hidden-layer MLP (self.mlp).
In forward inference, it takes two inputs: the encoded result of BERTEncoder and the token
positions for prediction. The output is the prediction results at these positions.

#@save
class MaskLM(nn.Block):

"""The masked language model task of BERT."""
def __init__(self, vocab_size, num_hiddens, **kwargs):

super(MaskLM, self).__init__(**kwargs)
self.mlp = nn.Sequential()
self.mlp.add(

nn.Dense(num_hiddens, flatten=False, activation='relu'))

(continues on next page)
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self.mlp.add(nn.LayerNorm())
self.mlp.add(nn.Dense(vocab_size, flatten=False))

def forward(self, X, pred_positions):
num_pred_positions = pred_positions.shape[1]
pred_positions = pred_positions.reshape(-1)
batch_size = X.shape[0]
batch_idx = np.arange(0, batch_size)
# Suppose that `batch_size` = 2, `num_pred_positions` = 3, then
# `batch_idx` is `np.array([0, 0, 0, 1, 1, 1])`
batch_idx = np.repeat(batch_idx, num_pred_positions)
masked_X = X[batch_idx, pred_positions]
masked_X = masked_X.reshape((batch_size, num_pred_positions, -1))
mlm_Y_hat = self.mlp(masked_X)
return mlm_Y_hat

To demonstrate the forward inference of MaskLM, we create its instance mlm and initialize
it. Recall that encoded_X from the forward inference of BERTEncoder represents 2 BERT
input sequences. We define mlm_positions as the 3 indices to predict in either BERT input
sequence of encoded_X. The forward inference of mlm returns prediction results mlm_Y_hat
at all the masked positions mlm_positions of encoded_X. For each prediction, the size of
the result is equal to the vocabulary size.

mlm = MaskLM(vocab_size, num_hiddens)
mlm.initialize()
mlm_positions = np.array([[1, 5, 2], [6, 1, 5]])
mlm_Y_hat = mlm(encoded_X, mlm_positions)
mlm_Y_hat.shape

(2, 3, 10000)

With the ground truth labels mlm_Y of the predicted tokens mlm_Y_hat under masks, we
can calculate the cross-entropy loss of the masked language model task in BERT pretrain-
ing.

mlm_Y = np.array([[7, 8, 9], [10, 20, 30]])
loss = gluon.loss.SoftmaxCrossEntropyLoss()
mlm_l = loss(mlm_Y_hat.reshape((-1, vocab_size)), mlm_Y.reshape(-1))
mlm_l.shape

(6,)

Next Sentence Prediction
Although masked language modeling is able to encode bidirectional context for represent-
ing words, it does not explicitly model the logical relationship between text pairs. To help
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understand the relationship between two text sequences, BERT considers a binary classi-
fication task, next sentence prediction, in its pretraining. When generating sentence pairs
for pretraining, for half of the time they are indeed consecutive sentences with the label
“True”; while for the other half of the time the second sentence is randomly sampled from
the corpus with the label “False”.

The following NextSentencePred class uses a one-hidden-layer MLP to predict whether
the second sentence is the next sentence of the first in the BERT input sequence. Due to
self-attention in the Transformer encoder, the BERT representation of the special token
“<cls>” encodes both the two sentences from the input. Hence, the output layer (self.
output) of the MLP classifier takes X as input, where X is the output of the MLP hidden
layer whose input is the encoded “<cls>” token.

#@save
class NextSentencePred(nn.Block):

"""The next sentence prediction task of BERT."""
def __init__(self, **kwargs):

super(NextSentencePred, self).__init__(**kwargs)
self.output = nn.Dense(2)

def forward(self, X):
# `X` shape: (batch size, `num_hiddens`)
return self.output(X)

We can see that the forward inference of an NextSentencePred instance returns binary
predictions for each BERT input sequence.

nsp = NextSentencePred()
nsp.initialize()
nsp_Y_hat = nsp(encoded_X)
nsp_Y_hat.shape

(2, 2)

The cross-entropy loss of the 2 binary classifications can also be computed.

nsp_y = np.array([0, 1])
nsp_l = loss(nsp_Y_hat, nsp_y)
nsp_l.shape

(2,)

It is noteworthy that all the labels in both the aforementioned pretraining tasks can be triv-
ially obtained from the pretraining corpus without manual labeling effort. The original
BERT has been pretrained on the concatenation of BookCorpus (Zhu et al., 2015) and En-
glish Wikipedia. These two text corpora are huge: they have 800 million words and 2.5
billion words, respectively.
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15.8.6 Putting It All Together
When pretraining BERT, the final loss function is a linear combination of both the loss
functions for masked language modeling and next sentence prediction. Now we can de-
fine the BERTModel class by instantiating the three classes BERTEncoder, MaskLM, and
NextSentencePred. The forward inference returns the encoded BERT representations en-
coded_X, predictions of masked language modeling mlm_Y_hat, and next sentence predic-
tions nsp_Y_hat.

#@save
class BERTModel(nn.Block):

"""The BERT model."""
def __init__(self, vocab_size, num_hiddens, ffn_num_hiddens, num_heads,

num_blks, dropout, max_len=1000):
super(BERTModel, self).__init__()
self.encoder = BERTEncoder(vocab_size, num_hiddens, ffn_num_hiddens,

num_heads, num_blks, dropout, max_len)
self.hidden = nn.Dense(num_hiddens, activation='tanh')
self.mlm = MaskLM(vocab_size, num_hiddens)
self.nsp = NextSentencePred()

def forward(self, tokens, segments, valid_lens=None, pred_positions=None):
encoded_X = self.encoder(tokens, segments, valid_lens)
if pred_positions is not None:

mlm_Y_hat = self.mlm(encoded_X, pred_positions)
else:

mlm_Y_hat = None
# The hidden layer of the MLP classifier for next sentence prediction.
# 0 is the index of the '<cls>' token
nsp_Y_hat = self.nsp(self.hidden(encoded_X[:, 0, :]))
return encoded_X, mlm_Y_hat, nsp_Y_hat

15.8.7 Summary
• Word embedding models such as word2vec and GloVe are context-independent. They

assign the same pretrained vector to the same word regardless of the context of the
word (if any). It is hard for them to handle well polysemy or complex semantics in
natural languages.

• For context-sensitive word representations such as ELMo and GPT, representations of
words depend on their contexts.

• ELMo encodes context bidirectionally but uses task-specific architectures (however, it is
practically non-trivial to craft a specific architecture for every natural language pro-
cessing task); while GPT is task-agnostic but encodes context left-to-right.

• BERT combines the best of both worlds: it encodes context bidirectionally and requires
minimal architecture changes for a wide range of natural language processing tasks.

• The embeddings of the BERT input sequence are the sum of the token embeddings,
segment embeddings, and positional embeddings.
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• Pretraining BERT is composed of two tasks: masked language modeling and next sen-
tence prediction. The former is able to encode bidirectional context for representing
words, while the latter explicitly models the logical relationship between text pairs.

15.8.8 Exercises
1. All other things being equal, will a masked language model require more or fewer pre-

training steps to converge than a left-to-right language model? Why?

2. In the original implementation of BERT, the positionwise feed-forward network in BERTEn-
coder (via d2l.TransformerEncoderBlock) and the fully connected layer in MaskLM

both use the Gaussian error linear unit (GELU) (Hendrycks and Gimpel, 2016) as the
activation function. Research into the difference between GELU and ReLU.

Discussions236 .

15.9 The Dataset for Pretraining BERT

To pretrain the BERTmodel as implemented in Section 15.8, we need to generate the dataset
in the ideal format to facilitate the two pretraining tasks: masked language modeling and
next sentence prediction. On the one hand, the original BERT model is pretrained on
the concatenation of two huge corpora BookCorpus and English Wikipedia (see Section
15.8.5), making it hard to run for most readers of this book. On the other hand, the off-
the-shelf pretrained BERT model may not fit for applications from specific domains like
medicine. Thus, it is getting popular to pretrain BERT on a customized dataset. To facil-
itate the demonstration of BERT pretraining, we use a smaller corpus WikiText-2 (Merity
et al., 2016).

Comparing with the PTB dataset used for pretraining word2vec in Section 15.3, WikiText-
2 (i) retains the original punctuation, making it suitable for next sentence prediction; (ii)
retains the original case and numbers; (iii) is over twice larger.

import os
import random
from mxnet import gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

In the WikiText-2 dataset, each line represents a paragraph where space is inserted be-
tween any punctuation and its preceding token. Paragraphs with at least two sentences are
retained. To split sentences, we only use the period as the delimiter for simplicity. We
leave discussions of more complex sentence splitting techniques in the exercises at the end
of this section.

https://discuss.d2l.ai/t/388


742 Natural Language Processing: Pretraining

#@save
d2l.DATA_HUB['wikitext-2'] = (

'https://s3.amazonaws.com/research.metamind.io/wikitext/'
'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')

#@save
def _read_wiki(data_dir):

file_name = os.path.join(data_dir, 'wiki.train.tokens')
with open(file_name, 'r') as f:

lines = f.readlines()
# Uppercase letters are converted to lowercase ones
paragraphs = [line.strip().lower().split(' . ')

for line in lines if len(line.split(' . ')) >= 2]
random.shuffle(paragraphs)
return paragraphs

15.9.1 Defining Helper Functions for Pretraining Tasks
In the following, we begin by implementing helper functions for the two BERT pretraining
tasks: next sentence prediction and masked language modeling. These helper functions
will be invoked later when transforming the raw text corpus into the dataset of the ideal
format to pretrain BERT.

Generating the Next Sentence Prediction Task
According to descriptions of Section 15.8.5, the _get_next_sentence function generates
a training example for the binary classification task.

#@save
def _get_next_sentence(sentence, next_sentence, paragraphs):

if random.random() < 0.5:
is_next = True

else:
# `paragraphs` is a list of lists of lists
next_sentence = random.choice(random.choice(paragraphs))
is_next = False

return sentence, next_sentence, is_next

The following function generates training examples for next sentence prediction from the
input paragraph by invoking the _get_next_sentence function. Here paragraph is a list
of sentences, where each sentence is a list of tokens. The argument max_len specifies the
maximum length of a BERT input sequence during pretraining.

#@save
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):

nsp_data_from_paragraph = []
for i in range(len(paragraph) - 1):

tokens_a, tokens_b, is_next = _get_next_sentence(
paragraph[i], paragraph[i + 1], paragraphs)

# Consider 1 '<cls>' token and 2 '<sep>' tokens

(continues on next page)
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if len(tokens_a) + len(tokens_b) + 3 > max_len:
continue

tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
nsp_data_from_paragraph.append((tokens, segments, is_next))

return nsp_data_from_paragraph

Generating the Masked Language Modeling Task
In order to generate training examples for the masked language modeling task from a BERT
input sequence, we define the following _replace_mlm_tokens function. In its inputs, to-
kens is a list of tokens representing a BERT input sequence, candidate_pred_positions
is a list of token indices of the BERT input sequence excluding those of special tokens (spe-
cial tokens are not predicted in the masked language modeling task), and num_mlm_preds

indicates the number of predictions (recall 15% random tokens to predict). Following the
definition of the masked language modeling task in Section 15.8.5, at each prediction posi-
tion, the input may be replaced by a special “<mask>” token or a random token, or remain
unchanged. In the end, the function returns the input tokens after possible replacement, the
token indices where predictions take place and labels for these predictions.

#@save
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds,

vocab):
# For the input of a masked language model, make a new copy of tokens and
# replace some of them by '<mask>' or random tokens
mlm_input_tokens = [token for token in tokens]
pred_positions_and_labels = []
# Shuffle for getting 15% random tokens for prediction in the masked
# language modeling task
random.shuffle(candidate_pred_positions)
for mlm_pred_position in candidate_pred_positions:

if len(pred_positions_and_labels) >= num_mlm_preds:
break

masked_token = None
# 80% of the time: replace the word with the '<mask>' token
if random.random() < 0.8:

masked_token = '<mask>'
else:

# 10% of the time: keep the word unchanged
if random.random() < 0.5:

masked_token = tokens[mlm_pred_position]
# 10% of the time: replace the word with a random word
else:

masked_token = random.choice(vocab.idx_to_token)
mlm_input_tokens[mlm_pred_position] = masked_token
pred_positions_and_labels.append(

(mlm_pred_position, tokens[mlm_pred_position]))
return mlm_input_tokens, pred_positions_and_labels

By invoking the aforementioned _replace_mlm_tokens function, the following function
takes a BERT input sequence (tokens) as an input and returns indices of the input tokens
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(after possible token replacement as described in Section 15.8.5), the token indices where
predictions take place, and label indices for these predictions.

#@save
def _get_mlm_data_from_tokens(tokens, vocab):

candidate_pred_positions = []
# `tokens` is a list of strings
for i, token in enumerate(tokens):

# Special tokens are not predicted in the masked language modeling
# task
if token in ['<cls>', '<sep>']:

continue
candidate_pred_positions.append(i)

# 15% of random tokens are predicted in the masked language modeling task
num_mlm_preds = max(1, round(len(tokens) * 0.15))
mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(

tokens, candidate_pred_positions, num_mlm_preds, vocab)
pred_positions_and_labels = sorted(pred_positions_and_labels,

key=lambda x: x[0])
pred_positions = [v[0] for v in pred_positions_and_labels]
mlm_pred_labels = [v[1] for v in pred_positions_and_labels]
return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]

15.9.2 Transforming Text into the Pretraining Dataset
Now we are almost ready to customize a Dataset class for pretraining BERT. Before that,
we still need to define a helper function _pad_bert_inputs to append the special “<pad>”
tokens to the inputs. Its argument examples contain the outputs from the helper func-
tions _get_nsp_data_from_paragraph and _get_mlm_data_from_tokens for the two
pretraining tasks.

#@save
def _pad_bert_inputs(examples, max_len, vocab):

max_num_mlm_preds = round(max_len * 0.15)
all_token_ids, all_segments, valid_lens, = [], [], []
all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []
nsp_labels = []
for (token_ids, pred_positions, mlm_pred_label_ids, segments,

is_next) in examples:
all_token_ids.append(np.array(token_ids + [vocab['<pad>']] * (

max_len - len(token_ids)), dtype='int32'))
all_segments.append(np.array(segments + [0] * (

max_len - len(segments)), dtype='int32'))
# `valid_lens` excludes count of '<pad>' tokens
valid_lens.append(np.array(len(token_ids), dtype='float32'))
all_pred_positions.append(np.array(pred_positions + [0] * (

max_num_mlm_preds - len(pred_positions)), dtype='int32'))
# Predictions of padded tokens will be filtered out in the loss via
# multiplication of 0 weights
all_mlm_weights.append(

np.array([1.0] * len(mlm_pred_label_ids) + [0.0] * (
max_num_mlm_preds - len(pred_positions)), dtype='float32'))

all_mlm_labels.append(np.array(mlm_pred_label_ids + [0] * (

(continues on next page)
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max_num_mlm_preds - len(mlm_pred_label_ids)), dtype='int32'))
nsp_labels.append(np.array(is_next))

return (all_token_ids, all_segments, valid_lens, all_pred_positions,
all_mlm_weights, all_mlm_labels, nsp_labels)

Putting the helper functions for generating training examples of the two pretraining tasks,
and the helper function for padding inputs together, we customize the following _Wiki-

TextDataset class as the WikiText-2 dataset for pretraining BERT. By implementing the
__getitem__function, we can arbitrarily access the pretraining (masked language model-
ing and next sentence prediction) examples generated from a pair of sentences from the
WikiText-2 corpus.

The original BERT model uses WordPiece embeddings whose vocabulary size is 30000
(Wu et al., 2016). The tokenization method of WordPiece is a slight modification of the
original byte pair encoding algorithm in Section 15.6.2. For simplicity, we use the d2l.

tokenize function for tokenization. Infrequent tokens that appear less than five times are
filtered out.

#@save
class _WikiTextDataset(gluon.data.Dataset):

def __init__(self, paragraphs, max_len):
# Input `paragraphs[i]` is a list of sentence strings representing a
# paragraph; while output `paragraphs[i]` is a list of sentences
# representing a paragraph, where each sentence is a list of tokens
paragraphs = [d2l.tokenize(

paragraph, token='word') for paragraph in paragraphs]
sentences = [sentence for paragraph in paragraphs

for sentence in paragraph]
self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[

'<pad>', '<mask>', '<cls>', '<sep>'])
# Get data for the next sentence prediction task
examples = []
for paragraph in paragraphs:

examples.extend(_get_nsp_data_from_paragraph(
paragraph, paragraphs, self.vocab, max_len))

# Get data for the masked language model task
examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)

+ (segments, is_next))
for tokens, segments, is_next in examples]

# Pad inputs
(self.all_token_ids, self.all_segments, self.valid_lens,
self.all_pred_positions, self.all_mlm_weights,
self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(

examples, max_len, self.vocab)

def __getitem__(self, idx):
return (self.all_token_ids[idx], self.all_segments[idx],

self.valid_lens[idx], self.all_pred_positions[idx],
self.all_mlm_weights[idx], self.all_mlm_labels[idx],
self.nsp_labels[idx])

(continues on next page)
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def __len__(self):
return len(self.all_token_ids)

By using the _read_wiki function and the _WikiTextDataset class, we define the follow-
ing load_data_wiki to download and WikiText-2 dataset and generate pretraining exam-
ples from it.

#@save
def load_data_wiki(batch_size, max_len):

"""Load the WikiText-2 dataset."""
num_workers = d2l.get_dataloader_workers()
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = _read_wiki(data_dir)
train_set = _WikiTextDataset(paragraphs, max_len)
train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True,

num_workers=num_workers)
return train_iter, train_set.vocab

Setting the batch size to 512 and the maximum length of a BERT input sequence to be
64, we print out the shapes of a minibatch of BERT pretraining examples. Note that in
each BERT input sequence, 10 (64× 0.15) positions are predicted for the masked language
modeling task.

batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)

for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,
mlm_Y, nsp_y) in train_iter:
print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,

pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,
nsp_y.shape)

break

Downloading ../data/wikitext-2-v1.zip from https://s3.amazonaws.com/research.
↩→metamind.io/wikitext/wikitext-2-v1.zip...
[21:52:02] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
(512, 64) (512, 64) (512,) (512, 10) (512, 10) (512, 10) (512,)

In the end, let’s take a look at the vocabulary size. Even after filtering out infrequent tokens,
it is still over twice larger than that of the PTB dataset.

len(vocab)

20256

15.9.3 Summary
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• Comparing with the PTB dataset, theWikiText-2 dateset retains the original punctuation,
case and numbers, and is over twice larger.

• We can arbitrarily access the pretraining (masked language modeling and next sentence
prediction) examples generated from a pair of sentences from the WikiText-2 corpus.

15.9.4 Exercises
1. For simplicity, the period is used as the only delimiter for splitting sentences. Try other

sentence splitting techniques, such as the spaCy and NLTK. Take NLTK as an exam-
ple. You need to install NLTK first: pip install nltk. In the code, first import
nltk. Then, download the Punkt sentence tokenizer: nltk.download('punkt'). To
split sentences such as sentences = 'This is great ! Why not ?', invok-
ing nltk.tokenize.sent_tokenize(sentences) will return a list of two sentence
strings: ['This is great !', 'Why not ?'].

2. What is the vocabulary size if we do not filter out any infrequent token?

Discussions237 .

15.10 Pretraining BERT

With the BERTmodel implemented in Section 15.8 and the pretraining examples generated
from the WikiText-2 dataset in Section 15.9, we will pretrain BERT on the WikiText-2
dataset in this section.

from mxnet import autograd, gluon, init, np, npx
from d2l import mxnet as d2l

npx.set_np()

To start, we load the WikiText-2 dataset as minibatches of pretraining examples for masked
language modeling and next sentence prediction. The batch size is 512 and the maximum
length of a BERT input sequence is 64. Note that in the original BERTmodel, themaximum
length is 512.

batch_size, max_len = 512, 64
train_iter, vocab = d2l.load_data_wiki(batch_size, max_len)

[22:11:29] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

15.10.1 Pretraining BERT

https://discuss.d2l.ai/t/389
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The original BERT has two versions of different model sizes (Devlin et al., 2018). The base
model (BERTBASE) uses 12 layers (Transformer encoder blocks) with 768 hidden units
(hidden size) and 12 self-attention heads. The large model (BERTLARGE) uses 24 layers
with 1024 hidden units and 16 self-attention heads. Notably, the former has 110 million
parameters while the latter has 340 million parameters. For demonstration with ease, we
define a small BERT, using 2 layers, 128 hidden units, and 2 self-attention heads.

net = d2l.BERTModel(len(vocab), num_hiddens=128, ffn_num_hiddens=256,
num_heads=2, num_blks=2, dropout=0.2)

devices = d2l.try_all_gpus()
net.initialize(init.Xavier(), ctx=devices)
loss = gluon.loss.SoftmaxCELoss()

[22:12:33] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[22:12:34] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

Before defining the training loop, we define a helper function _get_batch_loss_bert.
Given the shard of training examples, this function computes the loss for both the masked
language modeling and next sentence prediction tasks. Note that the final loss of BERT
pretraining is just the sum of both the masked language modeling loss and the next sentence
prediction loss.

#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X_shards,

segments_X_shards, valid_lens_x_shards,
pred_positions_X_shards, mlm_weights_X_shards,
mlm_Y_shards, nsp_y_shards):

mlm_ls, nsp_ls, ls = [], [], []
for (tokens_X_shard, segments_X_shard, valid_lens_x_shard,

pred_positions_X_shard, mlm_weights_X_shard, mlm_Y_shard,
nsp_y_shard) in zip(
tokens_X_shards, segments_X_shards, valid_lens_x_shards,
pred_positions_X_shards, mlm_weights_X_shards, mlm_Y_shards,
nsp_y_shards):
# Forward pass
_, mlm_Y_hat, nsp_Y_hat = net(

tokens_X_shard, segments_X_shard, valid_lens_x_shard.reshape(-1),
pred_positions_X_shard)

# Compute masked language model loss
mlm_l = loss(

mlm_Y_hat.reshape((-1, vocab_size)), mlm_Y_shard.reshape(-1),
mlm_weights_X_shard.reshape((-1, 1)))

mlm_l = mlm_l.sum() / (mlm_weights_X_shard.sum() + 1e-8)
# Compute next sentence prediction loss
nsp_l = loss(nsp_Y_hat, nsp_y_shard)
nsp_l = nsp_l.mean()
mlm_ls.append(mlm_l)
nsp_ls.append(nsp_l)
ls.append(mlm_l + nsp_l)

(continues on next page)
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npx.waitall()
return mlm_ls, nsp_ls, ls

Invoking the two aforementioned helper functions, the following train_bert function de-
fines the procedure to pretrain BERT (net) on theWikiText-2 (train_iter) dataset. Train-
ing BERT can take very long. Instead of specifying the number of epochs for training as in
the train_ch13 function (see Section 14.1), the input num_steps of the following function
specifies the number of iteration steps for training.

def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
trainer = gluon.Trainer(net.collect_params(), 'adam',

{'learning_rate': 0.01})
step, timer = 0, d2l.Timer()
animator = d2l.Animator(xlabel='step', ylabel='loss',

xlim=[1, num_steps], legend=['mlm', 'nsp'])
# Sum of masked language modeling losses, sum of next sentence prediction
# losses, no. of sentence pairs, count
metric = d2l.Accumulator(4)
num_steps_reached = False
while step < num_steps and not num_steps_reached:

for batch in train_iter:
(tokens_X_shards, segments_X_shards, valid_lens_x_shards,
pred_positions_X_shards, mlm_weights_X_shards,
mlm_Y_shards, nsp_y_shards) = [gluon.utils.split_and_load(

elem, devices, even_split=False) for elem in batch]
timer.start()
with autograd.record():

mlm_ls, nsp_ls, ls = _get_batch_loss_bert(
net, loss, vocab_size, tokens_X_shards, segments_X_shards,
valid_lens_x_shards, pred_positions_X_shards,
mlm_weights_X_shards, mlm_Y_shards, nsp_y_shards)

for l in ls:
l.backward()

trainer.step(1)
mlm_l_mean = sum([float(l) for l in mlm_ls]) / len(mlm_ls)
nsp_l_mean = sum([float(l) for l in nsp_ls]) / len(nsp_ls)
metric.add(mlm_l_mean, nsp_l_mean, batch[0].shape[0], 1)
timer.stop()
animator.add(step + 1,

(metric[0] / metric[3], metric[1] / metric[3]))
step += 1
if step == num_steps:

num_steps_reached = True
break

print(f'MLM loss {metric[0] / metric[3]:.3f}, '
f'NSP loss {metric[1] / metric[3]:.3f}')

print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
f'{str(devices)}')

We can plot both the masked language modeling loss and the next sentence prediction loss
during BERT pretraining.



750 Natural Language Processing: Pretraining

train_bert(train_iter, net, loss, len(vocab), devices, 50)

MLM loss 7.292, NSP loss 0.822
2417.3 sentence pairs/sec on [gpu(0), gpu(1)]

15.10.2 Representing Text with BERT
After pretraining BERT, we can use it to represent single text, text pairs, or any token in
them. The following function returns the BERT (net) representations for all tokens in
tokens_a and tokens_b.

def get_bert_encoding(net, tokens_a, tokens_b=None):
tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
token_ids = np.expand_dims(np.array(vocab[tokens], ctx=devices[0]),

axis=0)
segments = np.expand_dims(np.array(segments, ctx=devices[0]), axis=0)
valid_len = np.expand_dims(np.array(len(tokens), ctx=devices[0]), axis=0)
encoded_X, _, _ = net(token_ids, segments, valid_len)
return encoded_X

Consider the sentence “a crane is flying”. Recall the input representation of BERT as dis-
cussed in Section 15.8.4. After inserting special tokens “<cls>” (used for classification)
and “<sep>” (used for separation), the BERT input sequence has a length of six. Since
zero is the index of the “<cls>” token, encoded_text[:, 0, :] is the BERT represen-
tation of the entire input sentence. To evaluate the polysemy token “crane”, we also print
out the first three elements of the BERT representation of the token.

tokens_a = ['a', 'crane', 'is', 'flying']
encoded_text = get_bert_encoding(net, tokens_a)
# Tokens: '<cls>', 'a', 'crane', 'is', 'flying', '<sep>'
encoded_text_cls = encoded_text[:, 0, :]
encoded_text_crane = encoded_text[:, 2, :]
encoded_text.shape, encoded_text_cls.shape, encoded_text_crane[0][:3]

((1, 6, 128),

(continues on next page)
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(1, 128),
array([-1.2760178, -0.79205 , -1.0534445], ctx=gpu(0)))

Nowconsider a sentence pair “a crane driver came” and “he just left”. Similarly, encoded_pair[:,
0, :] is the encoded result of the entire sentence pair from the pretrained BERT. Note that
the first three elements of the polysemy token “crane” are different from those when the
context is different. This supports that BERT representations are context-sensitive.

tokens_a, tokens_b = ['a', 'crane', 'driver', 'came'], ['he', 'just', 'left']
encoded_pair = get_bert_encoding(net, tokens_a, tokens_b)
# Tokens: '<cls>', 'a', 'crane', 'driver', 'came', '<sep>', 'he', 'just',
# 'left', '<sep>'
encoded_pair_cls = encoded_pair[:, 0, :]
encoded_pair_crane = encoded_pair[:, 2, :]
encoded_pair.shape, encoded_pair_cls.shape, encoded_pair_crane[0][:3]

((1, 10, 128),
(1, 128),
array([-1.2759778 , -0.79211384, -1.0534613 ], ctx=gpu(0)))

In Chapter 16, we will fine-tune a pretrained BERTmodel for downstream natural language
processing applications.

15.10.3 Summary
• The original BERT has two versions, where the base model has 110 million parameters

and the large model has 340 million parameters.

• After pretraining BERT, we can use it to represent single text, text pairs, or any token in
them.

• In the experiment, the same token has different BERT representation when their contexts
are different. This supports that BERT representations are context-sensitive.

15.10.4 Exercises
1. In the experiment, we can see that the masked language modeling loss is significantly

higher than the next sentence prediction loss. Why?

2. Set themaximum length of a BERT input sequence to be 512 (same as the original BERT
model). Use the configurations of the original BERT model such as BERTLARGE. Do
you encounter any error when running this section? Why?

Discussions238 .
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16 Natural Language Processing:
Applications

We have seen how to represent tokens in text sequences and train their representations in
Chapter 15. Such pretrained text representations can be fed to various models for different
downstream natural language processing tasks.

In fact, earlier chapters have already discussed some natural language processing applica-
tions without pretraining, just for explaining deep learning architectures. For instance, in
Chapter 9, we have relied on RNNs to design language models to generate novella-like text.
In Chapter 10 and Chapter 11, we have also designed models based on RNNs and attention
mechanisms for machine translation.

However, this book does not intend to cover all such applications in a comprehensive man-
ner. Instead, our focus is on how to apply (deep) representation learning of languages to
addressing natural language processing problems. Given pretrained text representations,
this chapter will explore two popular and representative downstream natural language pro-
cessing tasks: sentiment analysis and natural language inference, which analyze single text
and relationships of text pairs, respectively.

tFig. 16.1 Pretrained text representations can be fed to various deep learning architectures for
different downstream natural language processing applications. This chapter focuses on
how to design models for different downstream natural language processing applications.

As depicted in Fig. 16.1, this chapter focuses on describing the basic ideas of designing nat-
ural language processing models using different types of deep learning architectures, such
as MLPs, CNNs, RNNs, and attention. Though it is possible to combine any pretrained
text representations with any architecture for either application in Fig. 16.1, we select a few
representative combinations. Specifically, we will explore popular architectures based on
RNNs and CNNs for sentiment analysis. For natural language inference, we choose atten-
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tion and MLPs to demonstrate how to analyze text pairs. In the end, we introduce how to
fine-tune a pretrained BERT model for a wide range of natural language processing appli-
cations, such as on a sequence level (single text classification and text pair classification)
and a token level (text tagging and question answering). As a concrete empirical case, we
will fine-tune BERT for natural language inference.

As we have introduced in Section 15.8, BERT requires minimal architecture changes for a
wide range of natural language processing applications. However, this benefit comes at the
cost of fine-tuning a huge number of BERT parameters for the downstream applications.
When space or time is limited, those crafted models based on MLPs, CNNs, RNNs, and
attention are more feasible. In the following, we start by the sentiment analysis application
and illustrate the model design based on RNNs and CNNs, respectively.

16.1 Sentiment Analysis and the Dataset

With the proliferation of online social media and review platforms, a plethora of opinion-
ated data has been logged, bearing great potential for supporting decisionmaking processes.
Sentiment analysis studies people’s sentiments in their produced text, such as product re-
views, blog comments, and forum discussions. It enjoys wide applications to fields as
diverse as politics (e.g., analysis of public sentiments towards policies), finance (e.g., anal-
ysis of sentiments of the market), and marketing (e.g., product research and brand manage-
ment).

Since sentiments can be categorized as discrete polarities or scales (e.g., positive and neg-
ative), we can consider sentiment analysis as a text classification task, which transforms a
varying-length text sequence into a fixed-length text category. In this chapter, we will use
Stanford’s large movie review dataset239 for sentiment analysis. It consists of a training set
and a testing set, either containing 25000 movie reviews downloaded from IMDb. In both
datasets, there are equal number of “positive” and “negative” labels, indicating different
sentiment polarities.

import os
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

16.1.1 Reading the Dataset
First, download and extract this IMDb review dataset in the path ../data/aclImdb.

#@save
d2l.DATA_HUB['aclImdb'] = (d2l.DATA_URL + 'aclImdb_v1.tar.gz',

(continues on next page)
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'01ada507287d82875905620988597833ad4e0903')

data_dir = d2l.download_extract('aclImdb', 'aclImdb')

Downloading ../data/aclImdb_v1.tar.gz from http://d2l-data.s3-accelerate.
↩→amazonaws.com/aclImdb_v1.tar.gz...

Next, read the training and test datasets. Each example is a review and its label: 1 for
“positive” and 0 for “negative”.

#@save
def read_imdb(data_dir, is_train):

"""Read the IMDb review dataset text sequences and labels."""
data, labels = [], []
for label in ('pos', 'neg'):

folder_name = os.path.join(data_dir, 'train' if is_train else 'test',
label)

for file in os.listdir(folder_name):
with open(os.path.join(folder_name, file), 'rb') as f:

review = f.read().decode('utf-8').replace('\n', '')
data.append(review)
labels.append(1 if label == 'pos' else 0)

return data, labels

train_data = read_imdb(data_dir, is_train=True)
print('# trainings:', len(train_data[0]))
for x, y in zip(train_data[0][:3], train_data[1][:3]):

print('label:', y, 'review:', x[:60])

# trainings: 25000
label: 1 review: Zentropa has much in common with The Third Man, another noir
label: 1 review: Zentropa is the most original movie I've seen in years. If y
label: 1 review: Lars Von Trier is never backward in trying out new technique

16.1.2 Preprocessing the Dataset
Treating each word as a token and filtering out words that appear less than 5 times, we
create a vocabulary out of the training dataset.

train_tokens = d2l.tokenize(train_data[0], token='word')
vocab = d2l.Vocab(train_tokens, min_freq=5, reserved_tokens=['<pad>'])

After tokenization, let’s plot the histogram of review lengths in tokens.

d2l.set_figsize()
d2l.plt.xlabel('# tokens per review')
d2l.plt.ylabel('count')
d2l.plt.hist([len(line) for line in train_tokens], bins=range(0, 1000, 50));



755 Sentiment Analysis and the Dataset

As we expected, the reviews have varying lengths. To process a minibatch of such reviews
at each time, we set the length of each review to 500 with truncation and padding, which is
similar to the preprocessing step for the machine translation dataset in Section 10.5.

num_steps = 500 # sequence length
train_features = np.array([d2l.truncate_pad(

vocab[line], num_steps, vocab['<pad>']) for line in train_tokens])
print(train_features.shape)

(25000, 500)
[21:59:47] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

16.1.3 Creating Data Iterators
Nowwe can create data iterators. At each iteration, aminibatch of examples are returned.

train_iter = d2l.load_array((train_features, train_data[1]), 64)

for X, y in train_iter:
print('X:', X.shape, ', y:', y.shape)
break

print('# batches:', len(train_iter))

X: (64, 500) , y: (64,)
# batches: 391

16.1.4 Putting It All Together
Last, we wrap up the above steps into the load_data_imdb function. It returns training
and test data iterators and the vocabulary of the IMDb review dataset.

#@save
def load_data_imdb(batch_size, num_steps=500):

"""Return data iterators and the vocabulary of the IMDb review dataset."""
data_dir = d2l.download_extract('aclImdb', 'aclImdb')

(continues on next page)
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241

(continued from previous page)

train_data = read_imdb(data_dir, True)
test_data = read_imdb(data_dir, False)
train_tokens = d2l.tokenize(train_data[0], token='word')
test_tokens = d2l.tokenize(test_data[0], token='word')
vocab = d2l.Vocab(train_tokens, min_freq=5)
train_features = np.array([d2l.truncate_pad(

vocab[line], num_steps, vocab['<pad>']) for line in train_tokens])
test_features = np.array([d2l.truncate_pad(

vocab[line], num_steps, vocab['<pad>']) for line in test_tokens])
train_iter = d2l.load_array((train_features, train_data[1]), batch_size)
test_iter = d2l.load_array((test_features, test_data[1]), batch_size,

is_train=False)
return train_iter, test_iter, vocab

16.1.5 Summary
• Sentiment analysis studies people’s sentiments in their produced text, which is consid-

ered as a text classification problem that transforms a varying-length text sequence
into a fixed-length text category.

• After preprocessing, we can load Stanford’s large movie review dataset (IMDb review
dataset) into data iterators with a vocabulary.

16.1.6 Exercises
1. What hyperparameters in this section can we modify to accelerate training sentiment

analysis models?

2. Can you implement a function to load the dataset of Amazon reviews 240 into data
iterators and labels for sentiment analysis?

Discussions241 .

16.2 Sentiment Analysis: Using Recurrent Neural
Networks

Like word similarity and analogy tasks, we can also apply pretrained word vectors to sen-
timent analysis. Since the IMDb review dataset in Section 16.1 is not very big, using text
representations that were pretrained on large-scale corpora may reduce overfitting of the
model. As a specific example illustrated in Fig. 16.2.1, we will represent each token using
the pretrained GloVe model, and feed these token representations into a multilayer bidi-
rectional RNN to obtain the text sequence representation, which will be transformed into
sentiment analysis outputs (Maas et al., 2011). For the same downstream application, we
will consider a different architectural choice later.

https://snap.stanford.edu/data/web-Amazon.html
https://discuss.d2l.ai/t/391


757 Sentiment Analysis: Using Recurrent Neural Networks

tFig. 16.2.1 This section feeds pretrained GloVe to an RNN-based architecture for sentiment analysis.

from mxnet import gluon, init, np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2l

npx.set_np()

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)

[22:13:34] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

16.2.1 Representing Single Text with RNNs
In text classifications tasks, such as sentiment analysis, a varying-length text sequence will
be transformed into fixed-length categories. In the following BiRNN class, while each token
of a text sequence gets its individual pretrained GloVe representation via the embedding
layer (self.embedding), the entire sequence is encoded by a bidirectional RNN (self.
encoder). More concretely, the hidden states (at the last layer) of the bidirectional LSTM
at both the initial and final time steps are concatenated as the representation of the text
sequence. This single text representation is then transformed into output categories by a
fully connected layer (self.decoder) with two outputs (“positive” and “negative”).

class BiRNN(nn.Block):
def __init__(self, vocab_size, embed_size, num_hiddens,

num_layers, **kwargs):
super(BiRNN, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
# Set `bidirectional` to True to get a bidirectional RNN
self.encoder = rnn.LSTM(num_hiddens, num_layers=num_layers,

bidirectional=True, input_size=embed_size)
self.decoder = nn.Dense(2)

def forward(self, inputs):
# The shape of `inputs` is (batch size, no. of time steps). Because
# LSTM requires its input's first dimension to be the temporal

(continues on next page)
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(continued from previous page)

# dimension, the input is transposed before obtaining token
# representations. The output shape is (no. of time steps, batch size,
# word vector dimension)
embeddings = self.embedding(inputs.T)
# Returns hidden states of the last hidden layer at different time
# steps. The shape of `outputs` is (no. of time steps, batch size,
# 2 * no. of hidden units)
outputs = self.encoder(embeddings)
# Concatenate the hidden states at the initial and final time steps as
# the input of the fully connected layer. Its shape is (batch size,
# 4 * no. of hidden units)
encoding = np.concatenate((outputs[0], outputs[-1]), axis=1)
outs = self.decoder(encoding)
return outs

Let’s construct a bidirectional RNN with two hidden layers to represent single text for sen-
timent analysis.

embed_size, num_hiddens, num_layers, devices = 100, 100, 2, d2l.try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)

net.initialize(init.Xavier(), ctx=devices)

[22:13:40] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[22:13:40] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

16.2.2 Loading Pretrained Word Vectors
Below we load the pretrained 100-dimensional (needs to be consistent with embed_size)
GloVe embeddings for tokens in the vocabulary.

glove_embedding = d2l.TokenEmbedding('glove.6b.100d')

Print the shape of the vectors for all the tokens in the vocabulary.

embeds = glove_embedding[vocab.idx_to_token]
embeds.shape

(49346, 100)

We use these pretrained word vectors to represent tokens in the reviews and will not update
these vectors during training.
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net.embedding.weight.set_data(embeds)
net.embedding.collect_params().setattr('grad_req', 'null')

16.2.3 Training and Evaluating the Model
Now we can train the bidirectional RNN for sentiment analysis.

lr, num_epochs = 0.01, 5
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)

loss 0.305, train acc 0.867, test acc 0.852
822.5 examples/sec on [gpu(0), gpu(1)]

Wedefine the following function to predict the sentiment of a text sequence using the trained
model net.

#@save
def predict_sentiment(net, vocab, sequence):

"""Predict the sentiment of a text sequence."""
sequence = np.array(vocab[sequence.split()], ctx=d2l.try_gpu())
label = np.argmax(net(sequence.reshape(1, -1)), axis=1)
return 'positive' if label == 1 else 'negative'

Finally, let’s use the trained model to predict the sentiment for two simple sentences.

predict_sentiment(net, vocab, 'this movie is so great')

'positive'

predict_sentiment(net, vocab, 'this movie is so bad')
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'negative'

16.2.4 Summary
• Pretrained word vectors can represent individual tokens in a text sequence.

• Bidirectional RNNs can represent a text sequence, such as via the concatenation of its
hidden states at the initial and final time steps. This single text representation can be
transformed into categories using a fully connected layer.

16.2.5 Exercises
1. Increase the number of epochs. Can you improve the training and testing accuracies?

How about tuning other hyperparameters?

2. Use larger pretrained word vectors, such as 300-dimensional GloVe embeddings. Does
it improve classification accuracy?

3. Can we improve the classification accuracy by using the spaCy tokenization? You need
to install spaCy (pip install spacy) and install the English package (python -m

spacy download en). In the code, first, import spaCy (import spacy). Then, load
the spaCy English package (spacy_en = spacy.load('en')). Finally, define the
function def tokenizer(text): return [tok.text for tok in spacy_en.

tokenizer(text)] and replace the original tokenizer function. Note the different
forms of phrase tokens in GloVe and spaCy. For example, the phrase token “new york”
takes the form of “new-york” in GloVe and the form of “new york” after the spaCy
tokenization.

Discussions242 .

16.3 Sentiment Analysis: Using Convolutional
Neural Networks

In Chapter 7, we investigated mechanisms for processing two-dimensional image data with
two-dimensional CNNs, whichwere applied to local features such as adjacent pixels. Though
originally designed for computer vision, CNNs are also widely used for natural language
processing. Simply put, just think of any text sequence as a one-dimensional image. In this
way, one-dimensional CNNs can process local features such as 𝑛-grams in text.

In this section, we will use the textCNN model to demonstrate how to design a CNN ar-
chitecture for representing single text (Kim, 2014). Compared with Fig. 16.2.1 that uses
an RNN architecture with GloVe pretraining for sentiment analysis, the only difference in
Fig. 16.3.1 lies in the choice of the architecture.

https://discuss.d2l.ai/t/392
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tFig. 16.3.1 This section feeds pretrained GloVe to a CNN-based architecture for sentiment analysis.

from mxnet import gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)

[22:21:24] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

16.3.1 One-Dimensional Convolutions
Before introducing the model, let’s see how a one-dimensional convolution works. Bear
in mind that it is just a special case of a two-dimensional convolution based on the cross-
correlation operation.

tFig. 16.3.2 One-dimensional cross-correlation operation. The shaded portions are the first output
element as well as the input and kernel tensor elements used for the output computation:
0 × 1 + 1 × 2 = 2.

As shown in Fig. 16.3.2, in the one-dimensional case, the convolution window slides from
left to right across the input tensor. During sliding, the input subtensor (e.g., 0 and 1 in
Fig. 16.3.2) contained in the convolution window at a certain position and the kernel tensor
(e.g., 1 and 2 in Fig. 16.3.2) are multiplied elementwise. The sum of these multiplications
gives the single scalar value (e.g., 0 × 1 + 1 × 2 = 2 in Fig. 16.3.2) at the corresponding
position of the output tensor.

We implement one-dimensional cross-correlation in the following corr1d function. Given
an input tensor X and a kernel tensor K, it returns the output tensor Y.
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def corr1d(X, K):
w = K.shape[0]
Y = np.zeros((X.shape[0] - w + 1))
for i in range(Y.shape[0]):

Y[i] = (X[i: i + w] * K).sum()
return Y

We can construct the input tensor X and the kernel tensor K from Fig. 16.3.2 to validate the
output of the above one-dimensional cross-correlation implementation.

X, K = np.array([0, 1, 2, 3, 4, 5, 6]), np.array([1, 2])
corr1d(X, K)

array([ 2., 5., 8., 11., 14., 17.])

For any one-dimensional input with multiple channels, the convolution kernel needs to have
the same number of input channels. Then for each channel, perform a cross-correlation
operation on the one-dimensional tensor of the input and the one-dimensional tensor of
the convolution kernel, summing the results over all the channels to produce the one-
dimensional output tensor. Fig. 16.3.3 shows a one-dimensional cross-correlation oper-
ation with 3 input channels.

tFig. 16.3.3 One-dimensional cross-correlation operation with 3 input channels. The shaded portions
are the first output element as well as the input and kernel tensor elements used for the
output computation: 0 × 1 + 1 × 2 + 1 × 3 + 2 × 4 + 2 × (−1) + 3 × (−3) = 2.

We can implement the one-dimensional cross-correlation operation for multiple input chan-
nels and validate the results in Fig. 16.3.3.

def corr1d_multi_in(X, K):
# First, iterate through the 0th dimension (channel dimension) of `X` and
# `K`. Then, add them together
return sum(corr1d(x, k) for x, k in zip(X, K))

X = np.array([[0, 1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6, 7],
[2, 3, 4, 5, 6, 7, 8]])

K = np.array([[1, 2], [3, 4], [-1, -3]])
corr1d_multi_in(X, K)

array([ 2., 8., 14., 20., 26., 32.])
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Note that multi-input-channel one-dimensional cross-correlations are equivalent to single-
input-channel two-dimensional cross-correlations. To illustrate, an equivalent form of the
multi-input-channel one-dimensional cross-correlation in Fig. 16.3.3 is the single-input-
channel two-dimensional cross-correlation in Fig. 16.3.4, where the height of the convolu-
tion kernel has to be the same as that of the input tensor.

tFig. 16.3.4 Two-dimensional cross-correlation operation with a single input channel. The shaded
portions are the first output element as well as the input and kernel tensor elements used
for the output computation: 2 × (−1) + 3 × (−3) + 1 × 3 + 2 × 4 + 0 × 1 + 1 × 2 = 2.

Both the outputs in Fig. 16.3.2 and Fig. 16.3.3 have only one channel. Same as two-
dimensional convolutions with multiple output channels described in Section 7.4.2, we
can also specify multiple output channels for one-dimensional convolutions.

16.3.2 Max-Over-Time Pooling
Similarly, we can use pooling to extract the highest value from sequence representations as
the most important feature across time steps. The max-over-time pooling used in textCNN
works like the one-dimensional global max-pooling (Collobert et al., 2011). For a multi-
channel input where each channel stores values at different time steps, the output at each
channel is the maximum value for that channel. Note that the max-over-time pooling allows
different numbers of time steps at different channels.

16.3.3 The textCNN Model
Using the one-dimensional convolution and max-over-time pooling, the textCNN model
takes individual pretrained token representations as input, then obtains and transforms se-
quence representations for the downstream application.

For a single text sequence with 𝑛 tokens represented by 𝑑-dimensional vectors, the width,
height, and number of channels of the input tensor are 𝑛, 1, and 𝑑, respectively. The
textCNN model transforms the input into the output as follows:

1. Define multiple one-dimensional convolution kernels and perform convolution opera-
tions separately on the inputs. Convolution kernels with different widths may capture
local features among different numbers of adjacent tokens.

2. Perform max-over-time pooling on all the output channels, and then concatenate all the
scalar pooling outputs as a vector.

3. Transform the concatenated vector into the output categories using the fully connected
layer. Dropout can be used for reducing overfitting.
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tFig. 16.3.5 The model architecture of textCNN.

Fig. 16.3.5 illustrates themodel architecture of textCNNwith a concrete example. The input
is a sentence with 11 tokens, where each token is represented by a 6-dimensional vectors.
So we have a 6-channel input with width 11. Define two one-dimensional convolution
kernels of widths 2 and 4, with 4 and 5 output channels, respectively. They produce 4 output
channels with width 11−2+1 = 10 and 5 output channels with width 11−4+1 = 8. Despite
different widths of these 9 channels, the max-over-time pooling gives a concatenated 9-
dimensional vector, which is finally transformed into a 2-dimensional output vector for
binary sentiment predictions.

Defining the Model
We implement the textCNN model in the following class. Compared with the bidirectional
RNN model in Section 16.2, besides replacing recurrent layers with convolutional layers,
we also use two embedding layers: one with trainable weights and the other with fixed
weights.

class TextCNN(nn.Block):
def __init__(self, vocab_size, embed_size, kernel_sizes, num_channels,

**kwargs):
super(TextCNN, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
# The embedding layer not to be trained
self.constant_embedding = nn.Embedding(vocab_size, embed_size)
self.dropout = nn.Dropout(0.5)
self.decoder = nn.Dense(2)
# The max-over-time pooling layer has no parameters, so this instance
# can be shared
self.pool = nn.GlobalMaxPool1D()
# Create multiple one-dimensional convolutional layers

(continues on next page)
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(continued from previous page)

self.convs = nn.Sequential()
for c, k in zip(num_channels, kernel_sizes):

self.convs.add(nn.Conv1D(c, k, activation='relu'))

def forward(self, inputs):
# Concatenate two embedding layer outputs with shape (batch size, no.
# of tokens, token vector dimension) along vectors
embeddings = np.concatenate((

self.embedding(inputs), self.constant_embedding(inputs)), axis=2)
# Per the input format of one-dimensional convolutional layers,
# rearrange the tensor so that the second dimension stores channels
embeddings = embeddings.transpose(0, 2, 1)
# For each one-dimensional convolutional layer, after max-over-time
# pooling, a tensor of shape (batch size, no. of channels, 1) is
# obtained. Remove the last dimension and concatenate along channels
encoding = np.concatenate([

np.squeeze(self.pool(conv(embeddings)), axis=-1)
for conv in self.convs], axis=1)

outputs = self.decoder(self.dropout(encoding))
return outputs

Let’s create a textCNN instance. It has 3 convolutional layers with kernel widths of 3, 4,
and 5, all with 100 output channels.

embed_size, kernel_sizes, nums_channels = 100, [3, 4, 5], [100, 100, 100]
devices = d2l.try_all_gpus()
net = TextCNN(len(vocab), embed_size, kernel_sizes, nums_channels)
net.initialize(init.Xavier(), ctx=devices)

[22:21:29] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[22:21:30] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

Loading Pretrained Word Vectors
Same as Section 16.2, we load pretrained 100-dimensional GloVe embeddings as the ini-
tialized token representations. These token representations (embedding weights) will be
trained in embedding and fixed in constant_embedding.

glove_embedding = d2l.TokenEmbedding('glove.6b.100d')
embeds = glove_embedding[vocab.idx_to_token]
net.embedding.weight.set_data(embeds)
net.constant_embedding.weight.set_data(embeds)
net.constant_embedding.collect_params().setattr('grad_req', 'null')

Training and Evaluating the Model
Now we can train the textCNN model for sentiment analysis.
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lr, num_epochs = 0.001, 5
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)

loss 0.089, train acc 0.969, test acc 0.864
2425.2 examples/sec on [gpu(0), gpu(1)]

Below we use the trained model to predict the sentiment for two simple sentences.

d2l.predict_sentiment(net, vocab, 'this movie is so great')

'positive'

d2l.predict_sentiment(net, vocab, 'this movie is so bad')

'negative'

16.3.4 Summary
• One-dimensional CNNs can process local features such as 𝑛-grams in text.

• Multi-input-channel one-dimensional cross-correlations are equivalent to single-input-
channel two-dimensional cross-correlations.

• The max-over-time pooling allows different numbers of time steps at different channels.

• The textCNN model transforms individual token representations into downstream appli-
cation outputs using one-dimensional convolutional layers and max-over-time pooling
layers.

16.3.5 Exercises
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1. Tune hyperparameters and compare the two architectures for sentiment analysis in Sec-
tion 16.2 and in this section, such as in classification accuracy and computational effi-
ciency.

2. Can you further improve the classification accuracy of the model by using the methods
introduced in the exercises of Section 16.2?

3. Add positional encoding in the input representations. Does it improve the classification
accuracy?

Discussions243 .

16.4 Natural Language Inference and the Dataset

In Section 16.1, we discussed the problem of sentiment analysis. This task aims to clas-
sify a single text sequence into predefined categories, such as a set of sentiment polarities.
However, when there is a need to decide whether one sentence can be inferred form an-
other, or eliminate redundancy by identifying sentences that are semantically equivalent,
knowing how to classify one text sequence is insufficient. Instead, we need to be able to
reason over pairs of text sequences.

16.4.1 Natural Language Inference
Natural language inference studies whether a hypothesis can be inferred from a premise,
where both are a text sequence. In other words, natural language inference determines the
logical relationship between a pair of text sequences. Such relationships usually fall into
three types:

• Entailment: the hypothesis can be inferred from the premise.

• Contradiction: the negation of the hypothesis can be inferred from the premise.

• Neutral: all the other cases.

Natural language inference is also known as the recognizing textual entailment task. For
example, the following pair will be labeled as entailment because “showing affection” in
the hypothesis can be inferred from “hugging one another” in the premise.

Premise: Two women are hugging each other.

Hypothesis: Two women are showing affection.

The following is an example of contradiction as “running the coding example” indicates
“not sleeping” rather than “sleeping”.

Premise: A man is running the coding example from Dive into Deep Learning.

Hypothesis: The man is sleeping.

https://discuss.d2l.ai/t/393
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The third example shows a neutrality relationship because neither “famous” nor “not fa-
mous” can be inferred from the fact that “are performing for us”.

Premise: The musicians are performing for us.

Hypothesis: The musicians are famous.

Natural language inference has been a central topic for understanding natural language.
It enjoys wide applications ranging from information retrieval to open-domain question
answering. To study this problem, wewill begin by investigating a popular natural language
inference benchmark dataset.

16.4.2 The Stanford Natural Language Inference (SNLI) Dataset
Stanford Natural Language Inference (SNLI) Corpus is a collection of over 500000 labeled
English sentence pairs (Bowman et al., 2015). We download and store the extracted SNLI
dataset in the path ../data/snli_1.0.

import os
import re
from mxnet import gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

#@save
d2l.DATA_HUB['SNLI'] = (

'https://nlp.stanford.edu/projects/snli/snli_1.0.zip',
'9fcde07509c7e87ec61c640c1b2753d9041758e4')

data_dir = d2l.download_extract('SNLI')

Reading the Dataset
The original SNLI dataset contains much richer information than what we really need in
our experiments. Thus, we define a function read_snli to only extract part of the dataset,
then return lists of premises, hypotheses, and their labels.

#@save
def read_snli(data_dir, is_train):

"""Read the SNLI dataset into premises, hypotheses, and labels."""
def extract_text(s):

# Remove information that will not be used by us
s = re.sub('\\(', '', s)
s = re.sub('\\)', '', s)
# Substitute two or more consecutive whitespace with space
s = re.sub('\\s{2,}', ' ', s)
return s.strip()

label_set = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
file_name = os.path.join(data_dir, 'snli_1.0_train.txt'

if is_train else 'snli_1.0_test.txt')

(continues on next page)
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with open(file_name, 'r') as f:
rows = [row.split('\t') for row in f.readlines()[1:]]

premises = [extract_text(row[1]) for row in rows if row[0] in label_set]
hypotheses = [extract_text(row[2]) for row in rows if row[0] in label_set]
labels = [label_set[row[0]] for row in rows if row[0] in label_set]
return premises, hypotheses, labels

Now let’s print the first 3 pairs of premise and hypothesis, as well as their labels (“0”, “1”,
and “2” correspond to “entailment”, “contradiction”, and “neutral”, respectively ).

train_data = read_snli(data_dir, is_train=True)
for x0, x1, y in zip(train_data[0][:3], train_data[1][:3], train_data[2][:3]):

print('premise:', x0)
print('hypothesis:', x1)
print('label:', y)

premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is training his horse for a competition .
label: 2
premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is at a diner , ordering an omelette .
label: 1
premise: A person on a horse jumps over a broken down airplane .
hypothesis: A person is outdoors , on a horse .
label: 0

The training set has about 550000 pairs, and the testing set has about 10000 pairs. The fol-
lowing shows that the three labels “entailment”, “contradiction”, and “neutral” are balanced
in both the training set and the testing set.

test_data = read_snli(data_dir, is_train=False)
for data in [train_data, test_data]:

print([[row for row in data[2]].count(i) for i in range(3)])

[183416, 183187, 182764]
[3368, 3237, 3219]

Defining a Class for Loading the Dataset
Below we define a class for loading the SNLI dataset by inheriting from the Dataset class
in Gluon. The argument num_steps in the class constructor specifies the length of a text
sequence so that each minibatch of sequences will have the same shape. In other words,
tokens after the first num_steps ones in longer sequence are trimmed, while special tokens
“<pad>” will be appended to shorter sequences until their length becomes num_steps. By
implementing the __getitem__ function, we can arbitrarily access the premise, hypothesis,
and label with the index idx.
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#@save
class SNLIDataset(gluon.data.Dataset):

"""A customized dataset to load the SNLI dataset."""
def __init__(self, dataset, num_steps, vocab=None):

self.num_steps = num_steps
all_premise_tokens = d2l.tokenize(dataset[0])
all_hypothesis_tokens = d2l.tokenize(dataset[1])
if vocab is None:

self.vocab = d2l.Vocab(all_premise_tokens + all_hypothesis_tokens,
min_freq=5, reserved_tokens=['<pad>'])

else:
self.vocab = vocab

self.premises = self._pad(all_premise_tokens)
self.hypotheses = self._pad(all_hypothesis_tokens)
self.labels = np.array(dataset[2])
print('read ' + str(len(self.premises)) + ' examples')

def _pad(self, lines):
return np.array([d2l.truncate_pad(

self.vocab[line], self.num_steps, self.vocab['<pad>'])
for line in lines])

def __getitem__(self, idx):
return (self.premises[idx], self.hypotheses[idx]), self.labels[idx]

def __len__(self):
return len(self.premises)

Putting It All Together
Now we can invoke the read_snli function and the SNLIDataset class to download the
SNLI dataset and return DataLoader instances for both training and testing sets, together
with the vocabulary of the training set. It is noteworthy that we must use the vocabulary
constructed from the training set as that of the testing set. As a result, any new token from
the testing set will be unknown to the model trained on the training set.

#@save
def load_data_snli(batch_size, num_steps=50):

"""Download the SNLI dataset and return data iterators and vocabulary."""
num_workers = d2l.get_dataloader_workers()
data_dir = d2l.download_extract('SNLI')
train_data = read_snli(data_dir, True)
test_data = read_snli(data_dir, False)
train_set = SNLIDataset(train_data, num_steps)
test_set = SNLIDataset(test_data, num_steps, train_set.vocab)
train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True,

num_workers=num_workers)
test_iter = gluon.data.DataLoader(test_set, batch_size, shuffle=False,

num_workers=num_workers)
return train_iter, test_iter, train_set.vocab

Herewe set the batch size to 128 and sequence length to 50, and invoke the load_data_snli
function to get the data iterators and vocabulary. Then we print the vocabulary size.
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train_iter, test_iter, vocab = load_data_snli(128, 50)
len(vocab)

[22:09:03] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
read 549367 examples
read 9824 examples

18678

Now we print the shape of the first minibatch. Contrary to sentiment analysis, we have two
inputs X[0] and X[1] representing pairs of premises and hypotheses.

for X, Y in train_iter:
print(X[0].shape)
print(X[1].shape)
print(Y.shape)
break

(128, 50)
(128, 50)
(128,)

16.4.3 Summary
• Natural language inference studies whether a hypothesis can be inferred from a premise,

where both are a text sequence.

• In natural language inference, relationships between premises and hypotheses include
entailment, contradiction, and neutral.

• Stanford Natural Language Inference (SNLI) Corpus is a popular benchmark dataset of
natural language inference.

16.4.4 Exercises
1. Machine translation has long been evaluated based on superficial 𝑛-gram matching be-

tween an output translation and a ground-truth translation. Can you design a measure
for evaluating machine translation results by using natural language inference?

2. How can we change hyperparameters to reduce the vocabulary size?

Discussions244 .

https://discuss.d2l.ai/t/394
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16.5 Natural Language Inference: Using Attention

We introduced the natural language inference task and the SNLI dataset in Section 16.4. In
view of manymodels that are based on complex and deep architectures, Parikh et al. (2016)
proposed to address natural language inference with attention mechanisms and called it a
“decomposable attentionmodel”. This results in amodel without recurrent or convolutional
layers, achieving the best result at the time on the SNLI dataset withmuch fewer parameters.
In this section, we will describe and implement this attention-based method (with MLPs)
for natural language inference, as depicted in Fig. 16.5.1.

tFig. 16.5.1 This section feeds pretrained GloVe to an architecture based on attention and MLPs for
natural language inference.

16.5.1 The Model
Simpler than preserving the order of tokens in premises and hypotheses, we can just align
tokens in one text sequence to every token in the other, and vice versa, then compare and
aggregate such information to predict the logical relationships between premises and hy-
potheses. Similar to alignment of tokens between source and target sentences in machine
translation, the alignment of tokens between premises and hypotheses can be neatly accom-
plished by attention mechanisms.

Fig. 16.5.2 depicts the natural language inference method using attention mechanisms. At a
high level, it consists of three jointly trained steps: attending, comparing, and aggregating.
We will illustrate them step by step in the following.

from mxnet import gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()



773 Natural Language Inference: Using Attention

tFig. 16.5.2 Natural language inference using attention mechanisms.

Attending
The first step is to align tokens in one text sequence to each token in the other sequence.
Suppose that the premise is “i do need sleep” and the hypothesis is “i am tired”. Due to
semantical similarity, we may wish to align “i” in the hypothesis with “i” in the premise,
and align “tired” in the hypothesis with “sleep” in the premise. Likewise, we may wish
to align “i” in the premise with “i” in the hypothesis, and align “need” and “sleep” in the
premise with “tired” in the hypothesis. Note that such alignment is soft using weighted
average, where ideally large weights are associated with the tokens to be aligned. For ease
of demonstration, Fig. 16.5.2 shows such alignment in a hard way.

Now we describe the soft alignment using attention mechanisms in more detail. Denote
by A = (a1, . . . , a𝑚) and B = (b1, . . . ,b𝑛) the premise and hypothesis, whose number
of tokens are 𝑚 and 𝑛, respectively, where a𝑖 ,b 𝑗 ∈ R𝑑 (𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛) is a
𝑑-dimensional word vector. For soft alignment, we compute the attention weights 𝑒𝑖 𝑗 ∈ R
as

𝑒𝑖 𝑗 = 𝑓 (a𝑖)> 𝑓 (b 𝑗 ), (16.5.1)

where the function 𝑓 is an MLP defined in the following mlp function. The output dimen-
sion of 𝑓 is specified by the num_hiddens argument of mlp.

def mlp(num_hiddens, flatten):
net = nn.Sequential()
net.add(nn.Dropout(0.2))
net.add(nn.Dense(num_hiddens, activation='relu', flatten=flatten))
net.add(nn.Dropout(0.2))
net.add(nn.Dense(num_hiddens, activation='relu', flatten=flatten))
return net

It should be highlighted that, in (16.5.1) 𝑓 takes inputs a𝑖 and b 𝑗 separately rather than
takes a pair of them together as input. This decomposition trick leads to only 𝑚+𝑛 applica-
tions (linear complexity) of 𝑓 rather than 𝑚𝑛 applications (quadratic complexity).

Normalizing the attention weights in (16.5.1), we compute the weighted average of all
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the token vectors in the hypothesis to obtain representation of the hypothesis that is softly
aligned with the token indexed by 𝑖 in the premise:

𝜷𝑖 =
𝑛∑
𝑗=1

exp(𝑒𝑖 𝑗 )∑𝑛
𝑘=1 exp(𝑒𝑖𝑘)

b 𝑗 . (16.5.2)

Likewise, we compute soft alignment of premise tokens for each token indexed by 𝑗 in the
hypothesis:

𝜶 𝑗 =
𝑚∑
𝑖=1

exp(𝑒𝑖 𝑗 )∑𝑚
𝑘=1 exp(𝑒𝑘 𝑗 )

a𝑖 . (16.5.3)

Below we define the Attend class to compute the soft alignment of hypotheses (beta) with
input premises A and soft alignment of premises (alpha) with input hypotheses B.

class Attend(nn.Block):
def __init__(self, num_hiddens, **kwargs):

super(Attend, self).__init__(**kwargs)
self.f = mlp(num_hiddens=num_hiddens, flatten=False)

def forward(self, A, B):
# Shape of `A`/`B`: (b`atch_size`, no. of tokens in sequence A/B,
# `embed_size`)
# Shape of `f_A`/`f_B`: (`batch_size`, no. of tokens in sequence A/B,
# `num_hiddens`)
f_A = self.f(A)
f_B = self.f(B)
# Shape of `e`: (`batch_size`, no. of tokens in sequence A,
# no. of tokens in sequence B)
e = npx.batch_dot(f_A, f_B, transpose_b=True)
# Shape of `beta`: (`batch_size`, no. of tokens in sequence A,
# `embed_size`), where sequence B is softly aligned with each token
# (axis 1 of `beta`) in sequence A
beta = npx.batch_dot(npx.softmax(e), B)
# Shape of `alpha`: (`batch_size`, no. of tokens in sequence B,
# `embed_size`), where sequence A is softly aligned with each token
# (axis 1 of `alpha`) in sequence B
alpha = npx.batch_dot(npx.softmax(e.transpose(0, 2, 1)), A)
return beta, alpha

Comparing
In the next step, we compare a token in one sequence with the other sequence that is softly
aligned with that token. Note that in soft alignment, all the tokens from one sequence,
though with probably different attention weights, will be compared with a token in the
other sequence. For easy of demonstration, Fig. 16.5.2 pairs tokens with aligned tokens
in a hard way. For example, suppose that the attending step determines that “need” and
“sleep” in the premise are both aligned with “tired” in the hypothesis, the pair “tired–need
sleep” will be compared.

In the comparing step, we feed the concatenation (operator [·, ·]) of tokens from one se-
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quence and aligned tokens from the other sequence into a function 𝑔 (an MLP):

v𝐴,𝑖 = 𝑔([a𝑖 , 𝜷𝑖]), 𝑖 = 1, . . . , 𝑚
v𝐵, 𝑗 = 𝑔( [b 𝑗 ,𝜶 𝑗 ]), 𝑗 = 1, . . . , 𝑛.

(16.5.4)

In (16.5.4), v𝐴,𝑖 is the comparison between token 𝑖 in the premise and all the hypothesis
tokens that are softly aligned with token 𝑖; while v𝐵, 𝑗 is the comparison between token 𝑗 in
the hypothesis and all the premise tokens that are softly aligned with token 𝑗 . The following
Compare class defines such as comparing step.

class Compare(nn.Block):
def __init__(self, num_hiddens, **kwargs):

super(Compare, self).__init__(**kwargs)
self.g = mlp(num_hiddens=num_hiddens, flatten=False)

def forward(self, A, B, beta, alpha):
V_A = self.g(np.concatenate([A, beta], axis=2))
V_B = self.g(np.concatenate([B, alpha], axis=2))
return V_A, V_B

Aggregating
With two sets of comparison vectors v𝐴,𝑖 (𝑖 = 1, . . . , 𝑚) and v𝐵, 𝑗 ( 𝑗 = 1, . . . , 𝑛) on hand,
in the last step we will aggregate such information to infer the logical relationship. We
begin by summing up both sets:

v𝐴 =
𝑚∑
𝑖=1

v𝐴,𝑖 , v𝐵 =
𝑛∑
𝑗=1

v𝐵, 𝑗 . (16.5.5)

Next we feed the concatenation of both summarization results into function ℎ (an MLP) to
obtain the classification result of the logical relationship:

ŷ = ℎ( [v𝐴,v𝐵]). (16.5.6)

The aggregation step is defined in the following Aggregate class.

class Aggregate(nn.Block):
def __init__(self, num_hiddens, num_outputs, **kwargs):

super(Aggregate, self).__init__(**kwargs)
self.h = mlp(num_hiddens=num_hiddens, flatten=True)
self.h.add(nn.Dense(num_outputs))

def forward(self, V_A, V_B):
# Sum up both sets of comparison vectors
V_A = V_A.sum(axis=1)
V_B = V_B.sum(axis=1)
# Feed the concatenation of both summarization results into an MLP
Y_hat = self.h(np.concatenate([V_A, V_B], axis=1))
return Y_hat



776 Natural Language Processing: Applications

Putting It All Together
By putting the attending, comparing, and aggregating steps together, we define the decom-
posable attention model to jointly train these three steps.

class DecomposableAttention(nn.Block):
def __init__(self, vocab, embed_size, num_hiddens, **kwargs):

super(DecomposableAttention, self).__init__(**kwargs)
self.embedding = nn.Embedding(len(vocab), embed_size)
self.attend = Attend(num_hiddens)
self.compare = Compare(num_hiddens)
# There are 3 possible outputs: entailment, contradiction, and neutral
self.aggregate = Aggregate(num_hiddens, 3)

def forward(self, X):
premises, hypotheses = X
A = self.embedding(premises)
B = self.embedding(hypotheses)
beta, alpha = self.attend(A, B)
V_A, V_B = self.compare(A, B, beta, alpha)
Y_hat = self.aggregate(V_A, V_B)
return Y_hat

16.5.2 Training and Evaluating the Model
Now we will train and evaluate the defined decomposable attention model on the SNLI
dataset. We begin by reading the dataset.

Reading the dataset
We download and read the SNLI dataset using the function defined in Section 16.4. The
batch size and sequence length are set to 256 and 50, respectively.

batch_size, num_steps = 256, 50
train_iter, test_iter, vocab = d2l.load_data_snli(batch_size, num_steps)

Downloading ../data/snli_1.0.zip from https://nlp.stanford.edu/projects/snli/
↩→snli_1.0.zip...
[21:49:40] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
read 549367 examples
read 9824 examples

Creating the Model
We use the pretrained 100-dimensional GloVe embedding to represent the input tokens.
Thus, we predefine the dimension of vectors a𝑖 and b 𝑗 in (16.5.1) as 100. The output
dimension of functions 𝑓 in (16.5.1) and 𝑔 in (16.5.4) is set to 200. Then we create a
model instance, initialize its parameters, and load the GloVe embedding to initialize vectors
of input tokens.
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embed_size, num_hiddens, devices = 100, 200, d2l.try_all_gpus()
net = DecomposableAttention(vocab, embed_size, num_hiddens)
net.initialize(init.Xavier(), ctx=devices)
glove_embedding = d2l.TokenEmbedding('glove.6b.100d')
embeds = glove_embedding[vocab.idx_to_token]
net.embedding.weight.set_data(embeds)

[21:49:49] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[21:49:49] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
Downloading ../data/glove.6B.100d.zip from http://d2l-data.s3-accelerate.
↩→amazonaws.com/glove.6B.100d.zip...

Training and Evaluating the Model
In contrast to the split_batch function in Section 13.5 that takes single inputs such as text
sequences (or images), we define a split_batch_multi_inputs function to take multiple
inputs such as premises and hypotheses in minibatches.

#@save
def split_batch_multi_inputs(X, y, devices):

"""Split multi-input `X` and `y` into multiple devices."""
X = list(zip(*[gluon.utils.split_and_load(

feature, devices, even_split=False) for feature in X]))
return (X, gluon.utils.split_and_load(y, devices, even_split=False))

Now we can train and evaluate the model on the SNLI dataset.

lr, num_epochs = 0.001, 4
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices,

split_batch_multi_inputs)

loss 0.514, train acc 0.797, test acc 0.814
4621.6 examples/sec on [gpu(0), gpu(1)]



778 Natural Language Processing: Applications

245

Using the Model
Finally, define the prediction function to output the logical relationship between a pair of
premise and hypothesis.

#@save
def predict_snli(net, vocab, premise, hypothesis):

"""Predict the logical relationship between the premise and hypothesis."""
premise = np.array(vocab[premise], ctx=d2l.try_gpu())
hypothesis = np.array(vocab[hypothesis], ctx=d2l.try_gpu())
label = np.argmax(net([premise.reshape((1, -1)),

hypothesis.reshape((1, -1))]), axis=1)
return 'entailment' if label == 0 else 'contradiction' if label == 1 \

else 'neutral'

We can use the trained model to obtain the natural language inference result for a sample
pair of sentences.

predict_snli(net, vocab, ['he', 'is', 'good', '.'], ['he', 'is', 'bad', '.'])

'contradiction'

16.5.3 Summary
• The decomposable attention model consists of three steps for predicting the logical rela-

tionships between premises and hypotheses: attending, comparing, and aggregating.

• With attention mechanisms, we can align tokens in one text sequence to every token in
the other, and vice versa. Such alignment is soft using weighted average, where ideally
large weights are associated with the tokens to be aligned.

• The decomposition trick leads to a more desirable linear complexity than quadratic com-
plexity when computing attention weights.

• We can use pretrained word vectors as the input representation for downstream natural
language processing task such as natural language inference.

16.5.4 Exercises
1. Train the model with other combinations of hyperparameters. Can you get better accu-

racy on the test set?

2. What are major drawbacks of the decomposable attention model for natural language
inference?

3. Suppose that we want to get the level of semantical similarity (e.g., a continuous value
between 0 and 1) for any pair of sentences. How shall we collect and label the dataset?
Can you design a model with attention mechanisms?

Discussions245 .

https://discuss.d2l.ai/t/395
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16.6 Fine-Tuning BERT for Sequence-Level and
Token-Level Applications

In the previous sections of this chapter, we have designed different models for natural lan-
guage processing applications, such as based on RNNs, CNNs, attention, andMLPs. These
models are helpful when there is space or time constraint, however, crafting a specificmodel
for every natural language processing task is practically infeasible. In Section 15.8, we in-
troduced a pretraining model, BERT, that requires minimal architecture changes for a wide
range of natural language processing tasks. On the one hand, at the time of its proposal,
BERT improved the state of the art on various natural language processing tasks. On the
other hand, as noted in Section 15.10, the two versions of the original BERT model come
with 110million and 340million parameters. Thus, when there are sufficient computational
resources, we may consider fine-tuning BERT for downstream natural language processing
applications.

In the following, we generalize a subset of natural language processing applications as
sequence-level and token-level. On the sequence level, we introduce how to transform the
BERT representation of the text input to the output label in single text classification and
text pair classification or regression. On the token level, we will briefly introduce new ap-
plications such as text tagging and question answering and shed light on how BERT can
represent their inputs and get transformed into output labels. During fine-tuning, the “mini-
mal architecture changes” required by BERT across different applications are the extra fully
connected layers. During supervised learning of a downstream application, parameters of
the extra layers are learned from scratch while all the parameters in the pretrained BERT
model are fine-tuned.

16.6.1 Single Text Classification
Single text classification takes a single text sequence as input and outputs its classification
result. Besides sentiment analysis that we have studied in this chapter, the Corpus of Lin-
guistic Acceptability (CoLA) is also a dataset for single text classification, judging whether
a given sentence is grammatically acceptable or not (Warstadt et al., 2019). For instance,
“I should study.” is acceptable but “I should studying.” is not.

Section 15.8 describes the input representation of BERT. The BERT input sequence unam-
biguously represents both single text and text pairs, where the special classification token
“<cls>” is used for sequence classification and the special classification token “<sep>”
marks the end of single text or separates a pair of text. As shown in Fig. 16.6.1, in single
text classification applications, the BERT representation of the special classification token
“<cls>” encodes the information of the entire input text sequence. As the representation of
the input single text, it will be fed into a small MLP consisting of fully connected (dense)
layers to output the distribution of all the discrete label values.

16.6.2 Text Pair Classification or Regression
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tFig. 16.6.1 Fine-tuning BERT for single text classification applications, such as sentiment analysis
and testing linguistic acceptability. Suppose that the input single text has six tokens.

We have also examined natural language inference in this chapter. It belongs to text pair
classification, a type of application classifying a pair of text.

Taking a pair of text as input but outputting a continuous value, semantic textual similarity
is a popular text pair regression task. This task measures semantic similarity of sentences.
For instance, in the Semantic Textual Similarity Benchmark dataset, the similarity score of
a pair of sentences is an ordinal scale ranging from 0 (no meaning overlap) to 5 (meaning
equivalence) (Cer et al., 2017). The goal is to predict these scores. Examples from the
Semantic Textual Similarity Benchmark dataset include (sentence 1, sentence 2, similarity
score):

• “A plane is taking off.”, “An air plane is taking off.”, 5.000;

• “A woman is eating something.”, “A woman is eating meat.”, 3.000;

• “A woman is dancing.”, “A man is talking.”, 0.000.

tFig. 16.6.2 Fine-tuning BERT for text pair classification or regression applications, such as natural
language inference and semantic textual similarity. Suppose that the input text pair has
two and three tokens.

Comparing with single text classification in Fig. 16.6.1, fine-tuning BERT for text pair
classification in Fig. 16.6.2 is different in the input representation. For text pair regression
tasks such as semantic textual similarity, trivial changes can be applied such as outputting
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a continuous label value and using the mean squared loss: they are common for regres-
sion.

16.6.3 Text Tagging
Now let’s consider token-level tasks, such as text tagging, where each token is assigned a
label. Among text tagging tasks, part-of-speech tagging assigns each word a part-of-speech
tag (e.g., adjective and determiner) according to the role of the word in the sentence. For
example, according to the Penn Treebank II tag set, the sentence “John Smith ’s car is
new” should be tagged as “NNP (noun, proper singular) NNP POS (possessive ending)
NN (noun, singular or mass) VB (verb, base form) JJ (adjective)”.

tFig. 16.6.3 Fine-tuning BERT for text tagging applications, such as part-of-speech tagging. Suppose
that the input single text has six tokens.

Fine-tuning BERT for text tagging applications is illustrated in Fig. 16.6.3. Comparing
with Fig. 16.6.1, the only distinction lies in that in text tagging, the BERT representation
of every token of the input text is fed into the same extra fully connected layers to output
the label of the token, such as a part-of-speech tag.

16.6.4 Question Answering
As another token-level application, question answering reflects capabilities of reading com-
prehension. For example, the Stanford Question Answering Dataset (SQuAD v1.1) consists
of reading passages and questions, where the answer to every question is just a segment of
text (text span) from the passage that the question is about (Rajpurkar et al., 2016). To
explain, consider a passage “Some experts report that a mask’s efficacy is inconclusive.
However, mask makers insist that their products, such as N95 respirator masks, can guard
against the virus.” and a question “Who say that N95 respirator masks can guard against
the virus?”. The answer should be the text span “mask makers” in the passage. Thus, the
goal in SQuAD v1.1 is to predict the start and end of the text span in the passage given a
pair of question and passage.

To fine-tune BERT for question answering, the question and passage are packed as the first
and second text sequence, respectively, in the input of BERT. To predict the position of the
start of the text span, the same additional fully connected layer will transform the BERT
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tFig. 16.6.4 Fine-tuning BERT for question answering. Suppose that the input text pair has two and
three tokens.

representation of any token from the passage of position 𝑖 into a scalar score 𝑠𝑖 . Such scores
of all the passage tokens are further transformed by the softmax operation into a probability
distribution, so that each token position 𝑖 in the passage is assigned a probability 𝑝𝑖 of being
the start of the text span. Predicting the end of the text span is the same as above, except that
parameters in its additional fully connected layer are independent from those for predicting
the start. When predicting the end, any passage token of position 𝑖 is transformed by the
same fully connected layer into a scalar score 𝑒𝑖 . Fig. 16.6.4 depicts fine-tuning BERT for
question answering.

For question answering, the supervised learning’s training objective is as straightforward as
maximizing the log-likelihoods of the ground-truth start and end positions. When predict-
ing the span, we can compute the score 𝑠𝑖 + 𝑒 𝑗 for a valid span from position 𝑖 to position
𝑗 (𝑖 ≤ 𝑗), and output the span with the highest score.

16.6.5 Summary
• BERT requires minimal architecture changes (extra fully connected layers) for sequence-

level and token-level natural language processing applications, such as single text clas-
sification (e.g., sentiment analysis and testing linguistic acceptability), text pair classi-
fication or regression (e.g., natural language inference and semantic textual similarity),
text tagging (e.g., part-of-speech tagging), and question answering.

• During supervised learning of a downstream application, parameters of the extra layers
are learned from scratch while all the parameters in the pretrained BERT model are
fine-tuned.

16.6.6 Exercises
1. Let’s design a search engine algorithm for news articles. When the system receives an

query (e.g., “oil industry during the coronavirus outbreak”), it should return a ranked
list of news articles that are most relevant to the query. Suppose that we have a huge pool
of news articles and a large number of queries. To simplify the problem, suppose that
the most relevant article has been labeled for each query. How can we apply negative
sampling (see Section 15.2.1) and BERT in the algorithm design?
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2. How can we leverage BERT in training language models?

3. Can we leverage BERT in machine translation?

Discussions246 .

16.7 Natural Language Inference: Fine-Tuning
BERT

In earlier sections of this chapter, we have designed an attention-based architecture (in
Section 16.5) for the natural language inference task on the SNLI dataset (as described
in Section 16.4). Now we revisit this task by fine-tuning BERT. As discussed in Section
16.6, natural language inference is a sequence-level text pair classification problem, and
fine-tuning BERT only requires an additional MLP-based architecture, as illustrated in Fig.
16.7.1.

tFig. 16.7.1 This section feeds pretrained BERT to an MLP-based architecture for natural language
inference.

In this section, we will download a pretrained small version of BERT, then fine-tune it for
natural language inference on the SNLI dataset.

import json
import multiprocessing
import os
from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

16.7.1 Loading Pretrained BERT
We have explained how to pretrain BERT on the WikiText-2 dataset in Section 15.9 and
Section 15.10 (note that the original BERT model is pretrained on much bigger corpora).

https://discuss.d2l.ai/t/396
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As discussed in Section 15.10, the original BERTmodel has hundreds of millions of param-
eters. In the following, we provide two versions of pretrained BERT: “bert.base” is about
as big as the original BERT base model that requires a lot of computational resources to
fine-tune, while “bert.small” is a small version to facilitate demonstration.

d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.zip',
'7b3820b35da691042e5d34c0971ac3edbd80d3f4')

d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.zip',
'a4e718a47137ccd1809c9107ab4f5edd317bae2c')

Either pretrained BERT model contains a “vocab.json” file that defines the vocabulary set
and a “pretrained.params” file of the pretrained parameters. We implement the following
load_pretrained_model function to load pretrained BERT parameters.

def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,
num_heads, num_blks, dropout, max_len, devices):

data_dir = d2l.download_extract(pretrained_model)
# Define an empty vocabulary to load the predefined vocabulary
vocab = d2l.Vocab()
vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json')))
vocab.token_to_idx = {token: idx for idx, token in enumerate(

vocab.idx_to_token)}
bert = d2l.BERTModel(len(vocab), num_hiddens, ffn_num_hiddens, num_heads,

num_blks, dropout, max_len)
# Load pretrained BERT parameters
bert.load_parameters(os.path.join(data_dir, 'pretrained.params'),

ctx=devices)
return bert, vocab

To facilitate demonstration on most of machines, we will load and fine-tune the small ver-
sion (“bert.small”) of the pretrained BERT in this section. In the exercise, we will show
how to fine-tune the much larger “bert.base” to significantly improve the testing accu-
racy.

devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model(

'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,
num_blks=2, dropout=0.1, max_len=512, devices=devices)

Downloading ../data/bert.small.zip from http://d2l-data.s3-accelerate.
↩→amazonaws.com/bert.small.zip...
[21:49:07] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
[21:49:08] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[21:49:08] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

16.7.2 The Dataset for Fine-Tuning BERT



785 Natural Language Inference: Fine-Tuning BERT

For the downstream task natural language inference on the SNLI dataset, we define a cus-
tomized dataset class SNLIBERTDataset. In each example, the premise and hypothesis
form a pair of text sequence and is packed into one BERT input sequence as depicted in
Fig. 16.6.2. Recall Section 15.8.4 that segment IDs are used to distinguish the premise
and the hypothesis in a BERT input sequence. With the predefined maximum length of a
BERT input sequence (max_len), the last token of the longer of the input text pair keeps
getting removed until max_len is met. To accelerate generation of the SNLI dataset for
fine-tuning BERT, we use 4 worker processes to generate training or testing examples in
parallel.

class SNLIBERTDataset(gluon.data.Dataset):
def __init__(self, dataset, max_len, vocab=None):

all_premise_hypothesis_tokens = [[
p_tokens, h_tokens] for p_tokens, h_tokens in zip(
*[d2l.tokenize([s.lower() for s in sentences])

for sentences in dataset[:2]])]

self.labels = np.array(dataset[2])
self.vocab = vocab
self.max_len = max_len
(self.all_token_ids, self.all_segments,
self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens)
print('read ' + str(len(self.all_token_ids)) + ' examples')

def _preprocess(self, all_premise_hypothesis_tokens):
pool = multiprocessing.Pool(4) # Use 4 worker processes
out = pool.map(self._mp_worker, all_premise_hypothesis_tokens)
all_token_ids = [

token_ids for token_ids, segments, valid_len in out]
all_segments = [segments for token_ids, segments, valid_len in out]
valid_lens = [valid_len for token_ids, segments, valid_len in out]
return (np.array(all_token_ids, dtype='int32'),

np.array(all_segments, dtype='int32'),
np.array(valid_lens))

def _mp_worker(self, premise_hypothesis_tokens):
p_tokens, h_tokens = premise_hypothesis_tokens
self._truncate_pair_of_tokens(p_tokens, h_tokens)
tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens)
token_ids = self.vocab[tokens] + [self.vocab['<pad>']] \

* (self.max_len - len(tokens))
segments = segments + [0] * (self.max_len - len(segments))
valid_len = len(tokens)
return token_ids, segments, valid_len

def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
# Reserve slots for '<CLS>', '<SEP>', and '<SEP>' tokens for the BERT
# input
while len(p_tokens) + len(h_tokens) > self.max_len - 3:

if len(p_tokens) > len(h_tokens):
p_tokens.pop()

else:
h_tokens.pop()

(continues on next page)
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(continued from previous page)

def __getitem__(self, idx):
return (self.all_token_ids[idx], self.all_segments[idx],

self.valid_lens[idx]), self.labels[idx]

def __len__(self):
return len(self.all_token_ids)

After downloading the SNLI dataset, we generate training and testing examples by instan-
tiating the SNLIBERTDataset class. Such examples will be read in minibatches during
training and testing of natural language inference.

# Reduce `batch_size` if there is an out of memory error. In the original BERT
# model, `max_len` = 512
batch_size, max_len, num_workers = 512, 128, d2l.get_dataloader_workers()
data_dir = d2l.download_extract('SNLI')
train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab)
test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab)
train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True,

num_workers=num_workers)
test_iter = gluon.data.DataLoader(test_set, batch_size,

num_workers=num_workers)

read 549367 examples
read 9824 examples

16.7.3 Fine-Tuning BERT
As Fig. 16.6.2 indicates, fine-tuning BERT for natural language inference requires only an
extra MLP consisting of two fully connected layers (see self.hidden and self.output

in the following BERTClassifier class). This MLP transforms the BERT representation
of the special “<cls>” token, which encodes the information of both the premise and the
hypothesis, into three outputs of natural language inference: entailment, contradiction, and
neutral.

class BERTClassifier(nn.Block):
def __init__(self, bert):

super(BERTClassifier, self).__init__()
self.encoder = bert.encoder
self.hidden = bert.hidden
self.output = nn.Dense(3)

def forward(self, inputs):
tokens_X, segments_X, valid_lens_x = inputs
encoded_X = self.encoder(tokens_X, segments_X, valid_lens_x)
return self.output(self.hidden(encoded_X[:, 0, :]))

In the following, the pretrained BERTmodel bert is fed into the BERTClassifier instance
net for the downstream application. In common implementations of BERT fine-tuning,
only the parameters of the output layer of the additional MLP (net.output) will be learned
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from scratch. All the parameters of the pretrained BERT encoder (net.encoder) and the
hidden layer of the additional MLP (net.hidden) will be fine-tuned.

net = BERTClassifier(bert)
net.output.initialize(ctx=devices)

Recall that in Section 15.8 both the MaskLM class and the NextSentencePred class have
parameters in their employed MLPs. These parameters are part of those in the pretrained
BERT model bert, and thus part of parameters in net. However, such parameters are
only for computing the masked language modeling loss and the next sentence prediction
loss during pretraining. These two loss functions are irrelevant to fine-tuning downstream
applications, thus the parameters of the employedMLPs in MaskLM and NextSentencePred
are not updated (staled) when BERT is fine-tuned.

To allow parameters with stale gradients, the flag ignore_stale_grad=True is set in the
step function of d2l.train_batch_ch13. We use this function to train and evaluate the
model net using the training set (train_iter) and the testing set (test_iter) of SNLI.
Due to the limited computational resources, the training and testing accuracy can be further
improved: we leave its discussions in the exercises.

lr, num_epochs = 1e-4, 5
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices,

d2l.split_batch_multi_inputs)

loss 0.477, train acc 0.811, test acc 0.789
4652.5 examples/sec on [gpu(0), gpu(1)]

16.7.4 Summary
• We can fine-tune the pretrained BERT model for downstream applications, such as nat-

ural language inference on the SNLI dataset.

• During fine-tuning, the BERT model becomes part of the model for the downstream
application. Parameters that are only related to pretraining loss will not be updated
during fine-tuning.
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16.7.5 Exercises
1. Fine-tune amuch larger pretrained BERTmodel that is about as big as the original BERT

basemodel if your computational resource allows. Set arguments in the load_pretrained_model
function as: replacing ‘bert.small’ with ‘bert.base’, increasing values of num_hiddens=256,
ffn_num_hiddens=512, num_heads=4, and num_blks=2 to 768, 3072, 12, and 12, re-
spectively. By increasing fine-tuning epochs (and possibly tuning other hyperparame-
ters), can you get a testing accuracy higher than 0.86?

2. How to truncate a pair of sequences according to their ratio of length? Compare this
pair truncation method and the one used in the SNLIBERTDataset class. What are their
pros and cons?

Discussions247 .

https://discuss.d2l.ai/t/397
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17 Reinforcement Learning

Pratik Chaudhari (University of Pennsylvania and Amazon), Rasool Fakoor (Amazon),
and Kavosh Asadi (Amazon)

Reinforcement Learning (RL) is a suite of techniques that allows us to build machine learn-
ing systems that take decisions sequentially. For example, a package containing new clothes
that you purchased from an online retailer arrives at your doorstep after a sequence of de-
cisions, e.g., the retailer finding the clothes in the warehouse closest to your house, putting
the clothes in a box, transporting the box via land or by air, and delivering it to your house
within the city. There are many variables that affect the delivery of the package along the
way, e.g., whether or not the clothes were available in the warehouse, how long it took to
transport the box, whether it arrived in your city before the daily delivery truck left, etc.
The key idea is that at each stage these variables that we do not often control affect the
entire sequence of events in the future, e.g., if there were delays in packing the box in the
warehouse the retailer may need to send the package via air instead of ground to ensure a
timely delivery. Reinforcement Learning methods allow us to take the appropriate action
at each stage of a sequential decision making problem in order to maximize some utility
eventually, e.g., the timely delivery of the package to you.

Such sequential decision making problems are seen in numerous other places, e.g., while
playing Go248 your current move determines the next moves and the opponent’s moves are
the variables that you cannot control… a sequence of moves eventually determines whether
or not you win; the movies that Netflix recommends to you now determine what you watch,
whether you like the movie or not is unknown to Netflix, eventually a sequence of movie
recommendations determines how satisfied you are with Netflix. Reinforcement learning
is being used today to develop effective solutions to these problems (Mnih et al., 2013,
Silver et al., 2016). The key distinction between reinforcement learning and standard deep
learning is that in standard deep learning the prediction of a trainedmodel on one test datum
does not affect the predictions on a future test datum; in reinforcement learning decisions
at future instants (in RL, decisions are also called actions) are affected by what decisions
were made in the past.

In this chapter, we will develop the fundamentals of reinforcement learning and obtain
hands-on experience in implementing some popular reinforcement learning methods. We
will first develop a concept called a Markov Decision Process (MDP) which allows us to
think of such sequential decision making problems. An algorithm called Value Iteration
will be our first insight into solving reinforcement learning problems under the assumption
that we know how the uncontrolled variables in an MDP (in RL, these controlled variables
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are called the environment) typically behave. Using the more general version of Value
Iteration, an algorithm called Q-Learning, we will be able to take appropriate actions even
when we do not necessarily have full knowledge of the environment. We will then study
how to use deep networks for reinforcement learning problems by imitating the actions of
an expert. And finally, we will develop a reinforcement learning method that uses a deep
network to take actions in unknown environments. These techniques form the basis of more
advanced RL algorithms that are used today in a variety of real-world applications, some
of which we will point to in the chapter.

tFig. 17.1 Reinforcement Learning Structure

17.1 Markov Decision Process (MDP)

In this section, we will discuss how to formulate reinforcement learning problems using
Markov decision processes (MDPs) and describe various components of MDPs in de-
tail.

17.1.1 Definition of an MDP
AMarkov decision process (MDP) (Bellman, 1957) is a model for how the state of a system
evolves as different actions are applied to the system. A few different quantities come
together to form an MDP.

• Let S be the set of states in the MDP. As a concrete example see Fig. 17.1.1, for a robot
that is navigating a gridworld. In this case, S corresponds to the set of locations that
the robot can be at any given timestep.

• LetA be the set of actions that the robot can take at each state, e.g., “go forward”, “turn
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tFig. 17.1.1 A simple gridworld navigation task where the robot not only has to find its way to the goal
location (shown as a green house) but also has to avoid trap locations (shown as red cross
signs).

right”, “turn left”, “stay at the same location”, etc. Actions can change the current
state of the robot to some other state within the set S.

• It may happen that we do not know how the robot moves exactly but only know it up to
some approximation. We model this situation in reinforcement learning as follows: if
the robot takes an action “go forward”, there might be a small probability that it stays
at the current state, another small probability that it “turns left”, etc. Mathematically,
this amounts to defining a “transition function” 𝑇 : S × A × S → [0, 1] such that
𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃(𝑠′ | 𝑠, 𝑎) using the conditional probability of reaching a state 𝑠′ given
that the robot was at state 𝑠 and took an action 𝑎. The transition function is a probability
distribution and we therefore have

∑
𝑠′∈S 𝑇 (𝑠, 𝑎, 𝑠′) = 1 for all 𝑠 ∈ S and 𝑎 ∈ A, i.e.,

the robot has to go to some state if it takes an action.

• We now construct a notion of which actions are useful and which ones are not using the
concept of a “reward” 𝑟 : S × A → R. We say that the robot gets a reward 𝑟 (𝑠, 𝑎)
if the robot takes an action 𝑎 at state 𝑠. If the reward 𝑟 (𝑠, 𝑎) is large, this indicates
that taking the action 𝑎 at state 𝑠 is more useful to achieving the goal of the robot, i.e.,
going to the green house. If the reward 𝑟 (𝑠, 𝑎) is small, then action 𝑎 is less useful to
achieving this goal. It is important to note that the reward is designed by the user (the
person who creates the reinforcement learning algorithm) with the goal in mind.

17.1.2 Return and Discount Factor
The different components above together form a Markov decision process (MDP)

MDP : (S,A, 𝑇, 𝑟). (17.1.1)
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Let’s now consider the situation when the robot starts at a particular state 𝑠0 ∈ S and
continues taking actions to result in a trajectory

𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, . . .). (17.1.2)

At each time step 𝑡 the robot is at a state 𝑠𝑡 and takes an action 𝑎𝑡 which results in a reward
𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ). The return of a trajectory is the total reward obtained by the robot along
such a trajectory

𝑅(𝜏) = 𝑟0 + 𝑟1 + 𝑟2 + · · · . (17.1.3)

The goal in reinforcement learning is to find a trajectory that has the largest return.

Think of the situation when the robot continues to travel in the gridworld without ever
reaching the goal location. The sequence of states and actions in a trajectory can be in-
finitely long in this case and the return of any such infinitely long trajectory will be infinite.
In order to keep the reinforcement learning formulation meaningful even for such trajecto-
ries, we introduce the notion of a discount factor 𝛾 < 1. We write the discounted return
as

𝑅(𝜏) = 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + · · · =
∞∑
𝑡=0

𝛾𝑡𝑟𝑡 . (17.1.4)

Note that if 𝛾 is very small, the rewards earned by the robot in the far future, say 𝑡 =
1000, are heavily discounted by the factor 𝛾1000. This encourages the robot to select short
trajectories that achieve its goal, namely that of going to the green house in the gridwold
example (see Fig. 17.1.1). For large values of the discount factor, say 𝛾 = 0.99, the robot
is encouraged to explore and then find the best trajectory to go to the goal location.

17.1.3 Discussion of the Markov Assumption
Let us think of a new robot where the state 𝑠𝑡 is the location as above but the action 𝑎𝑡 is
the acceleration that the robot applies to its wheels instead of an abstract command like “go
forward”. If this robot has some non-zero velocity at state 𝑠𝑡 , then the next location 𝑠𝑡+1 is
a function of the past location 𝑠𝑡 , the acceleration 𝑎𝑡 , also the velocity of the robot at time
𝑡 which is proportional to 𝑠𝑡 − 𝑠𝑡−1. This indicates that we should have

𝑠𝑡+1 = some function(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡−1); (17.1.5)

the “some function” in our case would be Newton’s law of motion. This is quite different
from our transition function that simply depends upon 𝑠𝑡 and 𝑎𝑡 .

Markov systems are all systems where the next state 𝑠𝑡+1 is only a function of the current
state 𝑠𝑡 and the action 𝑎𝑡 taken at the current state. In Markov systems, the next state does
not depend on which actions were taken in the past or the states that the robot was at in the
past. For example, the new robot that has acceleration as the action above is not Markovian
because the next location 𝑠𝑡+1 depends upon the previous state 𝑠𝑡−1 through the velocity.
It may seem that Markovian nature of a system is a restrictive assumption, but it is not so.
Markov Decision Processes are still capable of modeling a very large class of real systems.
For example, for our new robot, if we chose our state 𝑠𝑡 to the tuple (location, velocity)
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then the system is Markovian because its next state (location𝑡+1, velocity𝑡+1) depends only
upon the current state (location𝑡 , velocity𝑡 ) and the action at the current state 𝑎𝑡 .

17.1.4 Summary
The reinforcement learning problem is typically modeled using Markov Decision Pro-
cesses. AMarkov decision process (MDP) is defined by a tuple of four entities (S,A, 𝑇, 𝑟)
where S is the state space, A is the action space, 𝑇 is the transition function that encodes
the transition probabilities of the MDP and 𝑟 is the immediate reward obtained by taking
action at a particular state.

17.1.5 Exercises
1. Suppose that we want to design an MDP to model MountainCar249 problem.

1. What would be the set of states?

2. What would be the set of actions?

3. What would be the possible reward functions?

2. How would you design an MDP for an Atari game like Pong game250 ?

https://www.gymlibrary.dev/environments/classic_control/mountain_car/
https://www.gymlibrary.dev/environments/atari/pong/


251

18 Gaussian Processes

Andrew Gordon Wilson (New York University and Amazon)

Gaussian processes (GPs) are ubitiquous. You have already encountered many examples of
GPs without realizing it. Any model that is linear in its parameters with a Gaussian distri-
bution over the parameters is a Gaussian process. This class spans discrete models, includ-
ing random walks, and autoregressive processes, as well as continuous models, including
Bayesian linear regression models, polynomials, Fourier series, radial basis functions, and
even neural networks with an infinite number of hidden units. There is a running joke that
“everything is a special case of a Gaussian process”.

Learning about Gaussian processes is important for three reasons: (1) they provide a func-
tion space perspective of modelling, whichmakes understanding a variety of model classes,
including deep neural networks, much more approachable; (2) they have an extraordinary
range of applications where they are state-of-the-art, including active learning, hyperpa-
rameter learning, auto-ML, and spatiotemporal regression; (3) over the last few years,
algorithmic advances have made Gaussian processes increasingly scalable and relevant,
harmonizing with deep learning through frameworks such as GPyTorch 251 (Gardner et
al., 2018). Indeed, GPs and and deep neural networks are not competing approaches, but
highly complementary, and can be combined to great effect. These algorithmic advances
are not just relevant to Gaussian processes, but provide a foundation in numerical methods
that is broadly useful in deep learning.

In this chapter, we introduce Gaussian processes. In the introductory notebook, we start
by reasoning intuitively about what Gaussian processes are and how they directly model
functions. In the priors notebook, we focus on how to specify Gaussian process priors.
We directly connect the tradiational weight-space approach to modelling to function space,
which will help us reason about constructing and understanding machine learning mod-
els, including deep neural networks. We then introduce popular covariance functions, also
known as kernels, which control the generalization properties of a Gaussian process. A
GP with a given kernel defines a prior over functions. In the inference notebook, we will
show how to use data to infer a posterior, in order to make predictions. This notebook
contains from-scratch code for making predictions with a Gaussian process, as well as an
introduction to GPyTorch. In upcoming notebooks, we will introduce the numerics behind
Gaussian processes, which is useful for scaling Gaussian processes but also a powerful gen-
eral foundation for deep learning, and advanced use-cases such as hyperparameter tuning in
deep learning. Our examples will make use of GPyTorch, which makes Gaussian processes
scale, and is closely integrated with deep learning functionality and PyTorch.
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18.1 Introduction to Gaussian Processes

In many cases, machine learning amounts to estimating parameters from data. These pa-
rameters are often numerous and relatively uninterpretable — such as the weights of a neu-
ral network. Gaussian processes, by contrast, provide a mechanism for directly reasoning
about the high-level properties of functions that could fit our data. For example, we may
have a sense of whether these functions are quickly varying, periodic, involve conditional
independencies, or translation invariance. Gaussian processes enable us to easily incorpo-
rate these properties into our model, by directly specifying a Gaussian distribution over the
function values that could fit our data.

Let’s get a feel for howGaussian processes operate, by starting with some examples.

Suppose we observe the following dataset, of regression targets (outputs), 𝑦, indexed by
inputs, 𝑥. As an example, the targets could be changes in carbon dioxide concentrations,
and the inputs could be the times at which these targets have been recorded. What are
some features of the data? How quickly does it seem to varying? Do we have data points
collected at regular intervals, or are there missing inputs? How would you imagine filling
in the missing regions, or forecasting up until 𝑥 = 25?

tFig. 18.1.1 Observed data.

In order to fit the data with a Gaussian process, we start by specifying a prior distribution
over what types of functions we might believe to be reasonable. Here we show several
sample functions from a Gaussian process. Does this prior look reasonable? Note here
we are not looking for functions that fit our dataset, but instead for specifying reasonable
high-level properties of the solutions, such as how quickly they vary with inputs. Note that
we will see code for reproducing all of the plots in this notebook, in the next notebooks on
priors and inference.

Once we condition on data, we can use this prior to infer a posterior distribution over func-
tions that could fit the data. Here we show sample posterior functions.

We see that each of these functions are entirely consistent with our data, perfectly running
through each observation. In order to use these posterior samples to make predictions, we
can average the values of every possible sample function from the posterior, to create the
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tFig. 18.1.2 Sample prior functions that we may want to represent with our model.

tFig. 18.1.3 Sample posterior functions, once we have observed the data.

curve below, in thick blue. Note that we do not actually have to take an infinite number of
samples to compute this expectation; as we will see later, we can compute the expectation
in closed form.

tFig. 18.1.4 Posterior samples, alongside posterior mean, which can be used for point predictions, in
blue.

We may also want a representation of uncertainty, so we know how confident we should
be in our predictions. Intuitively, we should have more uncertainty where there is more
variability in the sample posterior functions, as this tells us there are many more possible
values the true function could take. This type of uncertainty is called epistemic uncertainty,
which is the reducible uncertainty associated with lack of information. As we acquire more
data, this type of uncertainty disappears, as there will be increasingly fewer solutions con-
sistent with what we observe. Like with the posterior mean, we can compute the posterior
variance (the variability of these functions in the posterior) in closed form. With shade,
we show two times the posterior standard deviation on either side of the mean, creating a
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credible interval that has a 95% probability of containing the true value of the function for
any input 𝑥.

tFig. 18.1.5 Posterior samples, including 95% credible set.

The plot looks somewhat cleaner if we remove the posterior samples, simply visualizing
the data, posterior mean, and 95% credible set. Notice how the uncertainty grows away
from the data, a property of epistemic uncertainty.

tFig. 18.1.6 Point predictions, and credible set.

The properties of the Gaussian process that we used to fit the data are strongly controlled
by what’s called a covariance function, also known as a kernel. The covariance function
we used is called the RBF (Radial Basis Function) kernel, which has the form

𝑘RBF (𝑥, 𝑥′) = Cov( 𝑓 (𝑥), 𝑓 (𝑥′)) = 𝑎2 exp
(
− 1

2ℓ2 | |𝑥 − 𝑥
′ | |2

)
(18.1.1)

The hyperparameters of this kernel are interpretable. The amplitude parameter 𝑎 controls
the vertical scale over which the function is varying, and the length-scale parameter ℓ con-
trols the rate of variation (the wiggliness) of the function. Larger 𝑎 means larger function
values, and larger ℓ means more slowly varying functions. Let’s see what happens to our
sample prior and posterior functions as we vary 𝑎 and ℓ.

The length-scale has a particularly pronounced effect on the predictions and uncertainty of
a GP. At | |𝑥 − 𝑥′ | | = ℓ , the covariance between a pair of function values is 𝑎2 exp(−0.5).
At larger distances than ℓ , the values of the function values becomes nearly uncorrelated.
This means that if we want to make a prediction at a point 𝑥∗, then function values with
inputs 𝑥 such that | |𝑥 − 𝑥′ | | > ℓ will not have a strong effect on our predictions.

Let’s see how changing the lengthscale affects sample prior and posterior functions, and
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credible sets. The above fits use a length-scale of 2. Let’s now consider ℓ = 0.1, 0.5, 2, 5, 10
. A length-scale of 0.1 is very small relative to the range of the input domain we are consid-
ering, 25. For example, the values of the function at 𝑥 = 5 and 𝑥 = 10 will have essentially
no correlation at such a length-scale. On the other hand, for a length-scale of 10, the func-
tion values at these inputs will be highly correlated. Note that the vertical scale changes in
the following figures.
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Notice as the length-scale increases the ‘wiggliness’ of the functions decrease, and our
uncertainty decreases. If the length-scale is small, the uncertainty will quickly increase as
we move away from the data, as the datapoints become less informative about the function
values.

Now, let’s vary the amplitude parameter, holding the length-scale fixed at 2. Note the ver-
tical scale is held fixed for the prior samples, and varies for the posterior samples, so you
can clearly see both the increasing scale of the function, and the fits to the data.
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We see the amplitude parameter affects the scale of the function, but not the rate of variation.
At this point, we also have the sense that the generalization performance of our procedure
will depend on having reasonable values for these hyperparameters. Values of ℓ = 2 and 𝑎 =
1 appeared to provide reasonable fits, while some of the other values did not. Fortunately,
there is a robust and automatic way to specify these hyperparameters, using what is called
the marginal likelihood, which we will return to in the notebook on inference.
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So what is a GP, really? As we started, a GP simply says that any collection of function
values 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛), indexed by any collection of inputs 𝑥1, . . . , 𝑥𝑛 has a joint multi-
variate Gaussian distribution. The mean vector 𝜇 of this distribution is given by a mean
function, which is typically taken to be a constant or zero. The covariance matrix of this
distribution is given by the kernel evaluated at all pairs of the inputs 𝑥.

𝑓 (𝑥)
𝑓 (𝑥1)
...

𝑓 (𝑥𝑛)


∼ N

©­­­­­«
𝜇,


𝑘 (𝑥, 𝑥) 𝑘 (𝑥, 𝑥1) . . . 𝑘 (𝑥, 𝑥𝑛)
𝑘 (𝑥1, 𝑥) 𝑘 (𝑥1, 𝑥1) . . . 𝑘 (𝑥1, 𝑥𝑛)

...
...

. . .
...

𝑘 (𝑥𝑛, 𝑥) 𝑘 (𝑥𝑛, 𝑥1) . . . 𝑘 (𝑥𝑛, 𝑥𝑛)


ª®®®®®¬

(18.1.2)

Equation (18.1.2) specifies aGP prior. We can compute the conditional distribution of 𝑓 (𝑥)
for any 𝑥 given 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛), the function values we have observed. This conditional
distribution is called the posterior, and it is what we use to make predictions.

In particular,

𝑓 (𝑥) | 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛) ∼ N (𝑚, 𝑠2) (18.1.3)

where

𝑚 = 𝑘 (𝑥, 𝑥1:𝑛)𝑘 (𝑥1:𝑛, 𝑥1:𝑛)−1 𝑓 (𝑥1:𝑛) (18.1.4)

𝑠2 = 𝑘 (𝑥, 𝑥) − 𝑘 (𝑥, 𝑥1:𝑛)𝑘 (𝑥1:𝑛, 𝑥1:𝑛)−1𝑘 (𝑥, 𝑥1:𝑛) (18.1.5)

where 𝑘 (𝑥, 𝑥1:𝑛) is a 1 × 𝑛 vector formed by evaluating 𝑘 (𝑥, 𝑥𝑖) for 𝑖 = 1, . . . , 𝑛 and
𝑘 (𝑥1:𝑛, 𝑥1:𝑛) is an 𝑛 × 𝑛 matrix formed by evaluating 𝑘 (𝑥𝑖 , 𝑥 𝑗 ) for 𝑖, 𝑗 = 1, . . . , 𝑛. 𝑚 is
what we can use as a point predictor for any 𝑥, and 𝑠2 is what we use for uncertainty: if we
want to create an interval with a 95% probability that 𝑓 (𝑥) is in the interval, we would use
𝑚 ±2𝑠. The predictive means and uncertainties for all the above figures were created using
these equations. The observed data points were given by 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛) and chose a fine
grained set of 𝑥 points to make predictions.

Let’s suppose we observe a single datapoint, 𝑓 (𝑥1), and we want to determine the value
of 𝑓 (𝑥) at some 𝑥. Because 𝑓 (𝑥) is described by a Gaussian process, we know the joint
distribution over ( 𝑓 (𝑥), 𝑓 (𝑥1)) is Gaussian:[

𝑓 (𝑥)
𝑓 (𝑥1)

]
∼ N

(
𝜇,

[
𝑘 (𝑥, 𝑥) 𝑘 (𝑥, 𝑥1)
𝑘 (𝑥1, 𝑥) 𝑘 (𝑥1, 𝑥1)

] )
(18.1.6)

The off-diagonal expression 𝑘 (𝑥, 𝑥1) = 𝑘 (𝑥1, 𝑥) tells us how correlated the function values
will be — how strongly determined 𝑓 (𝑥) will be from 𝑓 (𝑥1). We have seen already that if
we use a large length-scale, relative to the distance between 𝑥 and 𝑥1, | |𝑥 − 𝑥1 | |, then the
function values will be highly correlated. We can visualize the process of determining 𝑓 (𝑥)
from 𝑓 (𝑥1) both in the space of functions, and in the joint distribution over 𝑓 (𝑥1), 𝑓 (𝑥).
Let’s initially consider an 𝑥 such that 𝑘 (𝑥, 𝑥1) = 0.9, and 𝑘 (𝑥, 𝑥) = 1, meaning that the
value of 𝑓 (𝑥) is moderately correlated with the value of 𝑓 (𝑥1). In the joint distribution, the
contours of constant probability will be relatively narrow ellipses.

Suppose we observe 𝑓 (𝑥1) = 1.2. To condition on this value of 𝑓 (𝑥1), we can draw a
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horizontal line at 1.2 on our plot of the density, and see that the value of 𝑓 (𝑥) is mostly
constrained to [0.64, 1.52]. We have also drawn this plot in function space, showing the
observed point 𝑓 (𝑥1) in orange, and 1 standard deviation of the Gaussian process predictive
distribution for 𝑓 (𝑥) in blue, about the mean value of 1.08.

Now suppose we have a stronger correlation, 𝑘 (𝑥, 𝑥1) = 0.95. Now the ellipses have nar-
rowed further, and the value of 𝑓 (𝑥) is even more strongly determined by 𝑓 (𝑥1). Draw-
ing a horizontal line at 1.2, we see the contours for 𝑓 (𝑥) support values mostly within
[0.83, 1.45]. Again, we also show the plot in function space, with one standard deviation
about the mean predictive value of 1.14.
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We see that the posterior mean predictor of our Gaussian process is closer to 1.2, be-
cause there is now a stronger correlation. We also see that our uncertainty (the error bars)
have somewhat decreased. Despite the strong correlation between these function values,
our uncertainty is still righly quite large, because we have only observed a single data
point!

This procedure can give us a posterior on 𝑓 (𝑥) for any 𝑥, for any number of points we have
observed. Suppose we observe 𝑓 (𝑥1), 𝑓 (𝑥2). We now visualize the posterior for 𝑓 (𝑥) at a
particular 𝑥 = 𝑥′ in function space. The exact distribution for 𝑓 (𝑥) is given by the above
equations. 𝑓 (𝑥) is Gaussian distributed, with mean

𝑚 = 𝑘 (𝑥, 𝑥1:3)𝑘 (𝑥1:3, 𝑥1:3)−1 𝑓 (𝑥1:3) (18.1.7)

and variance

𝑠2 = 𝑘 (𝑥, 𝑥) − 𝑘 (𝑥, 𝑥1:3)𝑘 (𝑥1:3, 𝑥1:3)−1𝑘 (𝑥, 𝑥1:3) (18.1.8)

In this introductory notebook, we have been considering noise free observations. Aswewill
see, it is easy to include observation noise. If we assume that the data are generated from a
latent noise free function 𝑓 (𝑥) plus iid Gaussian noise 𝜖 (𝑥) ∼ N (0, 𝜎2) with variance 𝜎2,
then our covariance function simply becomes 𝑘 (𝑥𝑖 , 𝑥 𝑗 ) → 𝑘 (𝑥𝑖 , 𝑥 𝑗 ) + 𝛿𝑖 𝑗𝜎2, where 𝛿𝑖 𝑗 = 1
if 𝑖 = 𝑗 and 0 otherwise.

We have already started getting some intuition about how we can use a Gaussian process
to specify a prior and posterior over solutions, and how the kernel function affects the
properties of these solutions. In the following notebooks, we will precisely show how to
specify a Gaussian process prior, introduce and derive various kernel functions, and then
go through the mechanics of how to automatically learn kernel hyperparameters, and form
a Gaussian process posterior to make predictions. While it takes time and practice to get
used to concepts such as a “distributions over functions”, the actual mechanics of finding
the GP predictive equations is actually quite simple — making it easy to get practice to
form an intuitive understanding of these concepts.

18.1.1 Summary
In typical machine learning, we specify a function with some free parameters (such as
a neural network and its weights), and we focus on estimating those parameters, which
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may not be interpretable. With a Gaussian process, we instead reason about distributions
over functions directly, which enables us to reason about the high-level properties of the
solutions. These properties are controlled by a covariance function (kernel), which often
has a few highly interpretable hyperparameters. These hyperparameters include the length-
scale, which controls how rapidly (howwiggily) the functions are. Another hyperparameter
is the amplitude, which controls the vertical scale over which our functions are varying.
Representing many different functions that can fit the data, and combining them all together
into a predictive distribution, is a distinctive feature of Bayesian methods. Because there
is a greater amount of variability between possible solutions far away from the data, our
uncertainty intuitively grows as we move from the data.

A Gaussian process represents a distribution over functions by specifying a multivariate
normal (Gaussian) distribution over all possible function values. It is possible to easily
manipulate Gaussian distributions to find the distribution of one function value based on
the values of any set of other values. In other words, if we observe a set of points, then we
can condition on these points and infer a distribution over what the value of the function
might look like at any other input. How we model the correlations between these points is
determined by the covariance function and is what defines the generalization properties of
the Gaussian process. While it takes time to get used to Gaussian processes, they are easy
to work with, have many applications, and help us understand and develop other model
classes, like neural networks.

18.1.2 Exercises
1. What is the difference between epistemic uncertainty versus observation uncertainty?

2. Besides rate of variation and amplitude, what other properties of functions might we
want to consider, and what would be real-world examples of functions that have those
properties?

3. The RBF covariance function we considered says that covariances (and correlations)
between observations decrease with their distance in the input space (times, spatial lo-
cations, etc.). Is this a reasonable assumption? Why or why not?

4. Is a sum of two Gaussian variables Gaussian? Is a product of two Gaussian variables
Gaussian? If (a,b) have a joint Gaussian distribution, is a|b (a given b) Gaussian? Is a
Gaussian?

5. Repeat the exercise where we observe a data point at 𝑓 (𝑥1) = 1.2, but now suppose we
additionally observe 𝑓 (𝑥2) = 1.4. Let 𝑘 (𝑥, 𝑥1) = 0.9, and 𝑘 (𝑥, 𝑥2) = 0.8. Will we be
more or less certain about the value of 𝑓 (𝑥), than when we had only observed 𝑓 (𝑥1)?
What is the mean and 95% credible set for our value of 𝑓 (𝑥) now?

6. Do you think increasing our estimate of observation noise would increase or decrease
our estimate of the length-scale of the ground truth function?

7. As we move away from the data, suppose the uncertainty in our predictive distribution
increases to a point, then stops increasing. Why might that happen?
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Aaron Klein (Amazon), Matthias Seeger (Amazon), and Cedric Archambeau (Ama-
zon)

The performance of every machine learning model depends on its hyperparameters. They
control the learning algorithm or the structure of the underlying statistical model. However,
there is no general way to choose hyperparameters in practice. Instead, hyperparameters
are often set in a trial-and-error manner or sometimes left to their default values by practi-
tioners, leading to suboptimal generalization.

Hyperparameter optimization provides a systematic approach to this problem, by casting
it as an optimization problem: a good set of hyperparameters should (at least) minimize a
validation error. Compared to most other optimization problems arising in machine learn-
ing, hyperparameter optimization is a nested one, where each iteration requires training and
validating a machine learning model.

In this chapter, we will first introduce the basics of hyperparameter optimization. We will
also present some recent advancements that improve the overall efficiency of hyperparame-
ter optimization by exploiting cheap-to-evaluate proxies of the original objective function.
At the end of this chapter, you should be able to apply state-of-the-art hyperparameter
optimization techniques to optimize the hyperparameter of your own machine learning al-
gorithm.
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20 Generative Adversarial Networks

20.1 Generative Adversarial Networks

Throughout most of this book, we have talked about how to make predictions. In some
form or another, we used deep neural networks to learn mappings from data examples to
labels. This kind of learning is called discriminative learning, as in, we’d like to be able
to discriminate between photos of cats and photos of dogs. Classifiers and regressors are
both examples of discriminative learning. And neural networks trained by backpropaga-
tion have upended everything we thought we knew about discriminative learning on large
complicated datasets. Classification accuracies on high-res images have gone from useless
to human-level (with some caveats) in just 5-6 years. We will spare you another spiel about
all the other discriminative tasks where deep neural networks do astoundingly well.

But there is more to machine learning than just solving discriminative tasks. For example,
given a large dataset, without any labels, we might want to learn a model that concisely
captures the characteristics of this data. Given such a model, we could sample synthetic
data examples that resemble the distribution of the training data. For example, given a large
corpus of photographs of faces, we might want to be able to generate a new photorealistic
image that looks like it might plausibly have come from the same dataset. This kind of
learning is called generative modeling.

Until recently, we had no method that could synthesize novel photorealistic images. But the
success of deep neural networks for discriminative learning opened up new possibilities.
One big trend over the last three years has been the application of discriminative deep
nets to overcome challenges in problems that we do not generally think of as supervised
learning problems. The recurrent neural network languagemodels are one example of using
a discriminative network (trained to predict the next character) that once trained can act as
a generative model.

In 2014, a breakthrough paper introduced Generative adversarial networks (GANs) (Good-
fellow et al., 2014), a clever new way to leverage the power of discriminative models to get
good generative models. At their heart, GANs rely on the idea that a data generator is good
if we cannot tell fake data apart from real data. In statistics, this is called a two-sample test
- a test to answer the question whether datasets 𝑋 = {𝑥1, . . . , 𝑥𝑛} and 𝑋 ′ = {𝑥′1, . . . , 𝑥′𝑛}
were drawn from the same distribution. The main difference between most statistics papers

807



808 Generative Adversarial Networks

252

and GANs is that the latter use this idea in a constructive way. In other words, rather than
just training a model to say “hey, these two datasets do not look like they came from the
same distribution”, they use the two-sample test252 to provide training signals to a gener-
ative model. This allows us to improve the data generator until it generates something that
resembles the real data. At the very least, it needs to fool the classifier even if our classifier
is a state of the art deep neural network.

tFig. 20.1.1 Generative Adversarial Networks

The GAN architecture is illustrated in Fig. 20.1.1. As you can see, there are two pieces
in GAN architecture - first off, we need a device (say, a deep network but it really could
be anything, such as a game rendering engine) that might potentially be able to generate
data that looks just like the real thing. If we are dealing with images, this needs to generate
images. If we are dealing with speech, it needs to generate audio sequences, and so on.
We call this the generator network. The second component is the discriminator network. It
attempts to distinguish fake and real data from each other. Both networks are in competition
with each other. The generator network attempts to fool the discriminator network. At that
point, the discriminator network adapts to the new fake data. This information, in turn is
used to improve the generator network, and so on.

The discriminator is a binary classifier to distinguish if the input 𝑥 is real (from real data) or
fake (from the generator). Typically, the discriminator outputs a scalar prediction 𝑜 ∈ R for
input x, such as using a fully connected layer with hidden size 1, and then applies sigmoid
function to obtain the predicted probability 𝐷 (x) = 1/(1 + 𝑒−𝑜). Assume the label 𝑦
for the true data is 1 and 0 for the fake data. We train the discriminator to minimize the
cross-entropy loss, i.e.,

min
𝐷
{−𝑦 log𝐷 (x) − (1 − 𝑦) log(1 − 𝐷 (x))}, (20.1.1)

For the generator, it first draws some parameter z ∈ R𝑑 from a source of randomness, e.g.,
a normal distribution z ∼ N(0, 1). We often call z as the latent variable. It then applies
a function to generate x′ = 𝐺 (z). The goal of the generator is to fool the discriminator
to classify x′ = 𝐺 (z) as true data, i.e., we want 𝐷 (𝐺 (z)) ≈ 1. In other words, for a
given discriminator 𝐷, we update the parameters of the generator𝐺 to maximize the cross-
entropy loss when 𝑦 = 0, i.e.,

max
𝐺
{−(1 − 𝑦) log(1 − 𝐷 (𝐺 (z)))} = max

𝐺
{− log(1 − 𝐷 (𝐺 (z)))}. (20.1.2)

If the generator does a perfect job, then 𝐷 (x′) ≈ 1, so the above loss is near 0, which

https://en.wikipedia.org/wiki/Two-sample_hypothesis_testing
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results in the gradients that are too small to make good progress for the discriminator. So
commonly, we minimize the following loss:

min
𝐺
{−𝑦 log(𝐷 (𝐺 (z)))} = min

𝐺
{− log(𝐷 (𝐺 (z)))}, (20.1.3)

which is just feeding x′ = 𝐺 (z) into the discriminator but giving label 𝑦 = 1.

To sum up, 𝐷 and 𝐺 are playing a “minimax” game with the comprehensive objective
function:

min
𝐷

max
𝐺
{−𝐸𝑥∼Data log𝐷 (x) − 𝐸𝑧∼Noise log(1 − 𝐷 (𝐺 (z)))}. (20.1.4)

Many of the GANs applications are in the context of images. As a demonstration purpose,
we are going to content ourselves with fitting a much simpler distribution first. We will
illustrate what happens if we use GANs to build the world’s most inefficient estimator of
parameters for a Gaussian. Let’s get started.

%matplotlib inline
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

20.1.1 Generate Some “Real” Data
Since this is going to be the world’s lamest example, we simply generate data drawn from
a Gaussian.

X = np.random.normal(0.0, 1, (1000, 2))
A = np.array([[1, 2], [-0.1, 0.5]])
b = np.array([1, 2])
data = np.dot(X, A) + b

[21:54:27] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

Let’s see what we got. This should be a Gaussian shifted in some rather arbitrary way with
mean 𝑏 and covariance matrix 𝐴𝑇 𝐴.

d2l.set_figsize()
d2l.plt.scatter(data[:100, (0)].asnumpy(), data[:100, (1)].asnumpy());
print(f'The covariance matrix is\n{np.dot(A.T, A)}')

The covariance matrix is
[[1.01 1.95]
[1.95 4.25]]
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batch_size = 8
data_iter = d2l.load_array((data,), batch_size)

20.1.2 Generator
Our generator network will be the simplest network possible - a single layer linear model.
This is since we will be driving that linear network with a Gaussian data generator. Hence,
it literally only needs to learn the parameters to fake things perfectly.

net_G = nn.Sequential()
net_G.add(nn.Dense(2))

20.1.3 Discriminator
For the discriminator we will be a bit more discriminating: we will use an MLP with 3
layers to make things a bit more interesting.

net_D = nn.Sequential()
net_D.add(nn.Dense(5, activation='tanh'),

nn.Dense(3, activation='tanh'),
nn.Dense(1))

20.1.4 Training
First we define a function to update the discriminator.

#@save
def update_D(X, Z, net_D, net_G, loss, trainer_D):

"""Update discriminator."""
batch_size = X.shape[0]
ones = np.ones((batch_size,), ctx=X.ctx)
zeros = np.zeros((batch_size,), ctx=X.ctx)
with autograd.record():

real_Y = net_D(X)
fake_X = net_G(Z)
# Do not need to compute gradient for `net_G`, detach it from
# computing gradients.

(continues on next page)
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(continued from previous page)

fake_Y = net_D(fake_X.detach())
loss_D = (loss(real_Y, ones) + loss(fake_Y, zeros)) / 2

loss_D.backward()
trainer_D.step(batch_size)
return float(loss_D.sum())

The generator is updated similarly. Here we reuse the cross-entropy loss but change the
label of the fake data from 0 to 1.

#@save
def update_G(Z, net_D, net_G, loss, trainer_G):

"""Update generator."""
batch_size = Z.shape[0]
ones = np.ones((batch_size,), ctx=Z.ctx)
with autograd.record():

# We could reuse `fake_X` from `update_D` to save computation
fake_X = net_G(Z)
# Recomputing `fake_Y` is needed since `net_D` is changed
fake_Y = net_D(fake_X)
loss_G = loss(fake_Y, ones)

loss_G.backward()
trainer_G.step(batch_size)
return float(loss_G.sum())

Both the discriminator and the generator performs a binary logistic regression with the
cross-entropy loss. We use Adam to smooth the training process. In each iteration, we first
update the discriminator and then the generator. We visualize both losses and generated
examples.

def train(net_D, net_G, data_iter, num_epochs, lr_D, lr_G, latent_dim, data):
loss = gluon.loss.SigmoidBCELoss()
net_D.initialize(init=init.Normal(0.02), force_reinit=True)
net_G.initialize(init=init.Normal(0.02), force_reinit=True)
trainer_D = gluon.Trainer(net_D.collect_params(),

'adam', {'learning_rate': lr_D})
trainer_G = gluon.Trainer(net_G.collect_params(),

'adam', {'learning_rate': lr_G})
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[1, num_epochs], nrows=2, figsize=(5, 5),
legend=['discriminator', 'generator'])

animator.fig.subplots_adjust(hspace=0.3)
for epoch in range(num_epochs):

# Train one epoch
timer = d2l.Timer()
metric = d2l.Accumulator(3) # loss_D, loss_G, num_examples
for X in data_iter:

batch_size = X.shape[0]
Z = np.random.normal(0, 1, size=(batch_size, latent_dim))
metric.add(update_D(X, Z, net_D, net_G, loss, trainer_D),

update_G(Z, net_D, net_G, loss, trainer_G),
batch_size)

# Visualize generated examples

(continues on next page)
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Z = np.random.normal(0, 1, size=(100, latent_dim))
fake_X = net_G(Z).asnumpy()
animator.axes[1].cla()
animator.axes[1].scatter(data[:, 0], data[:, 1])
animator.axes[1].scatter(fake_X[:, 0], fake_X[:, 1])
animator.axes[1].legend(['real', 'generated'])
# Show the losses
loss_D, loss_G = metric[0]/metric[2], metric[1]/metric[2]
animator.add(epoch + 1, (loss_D, loss_G))

print(f'loss_D {loss_D:.3f}, loss_G {loss_G:.3f}, '
f'{metric[2] / timer.stop():.1f} examples/sec')

Now we specify the hyperparameters to fit the Gaussian distribution.

lr_D, lr_G, latent_dim, num_epochs = 0.05, 0.005, 2, 20
train(net_D, net_G, data_iter, num_epochs, lr_D, lr_G,

latent_dim, data[:100].asnumpy())

loss_D 0.693, loss_G 0.693, 265.2 examples/sec

20.1.5 Summary
• Generative adversarial networks (GANs) composes of two deep networks, the generator

and the discriminator.

• The generator generates the image as much closer to the true image as possible to fool
the discriminator, via maximizing the cross-entropy loss, i.e., max log(𝐷 (x′)).

• The discriminator tries to distinguish the generated images from the true images, via
minimizing the cross-entropy loss, i.e., min−𝑦 log𝐷 (x) − (1 − 𝑦) log(1 − 𝐷 (x)).
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20.1.6 Exercises
• Does an equilibrium exist where the generator wins, i.e. the discriminator ends up unable

to distinguish the two distributions on finite samples?

Discussions253 .

20.2 Deep Convolutional Generative Adversarial
Networks

In Section 20.1, we introduced the basic ideas behind how GANs work. We showed that
they can draw samples from some simple, easy-to-sample distribution, like a uniform or
normal distribution, and transform them into samples that appear to match the distribution
of some dataset. And while our example of matching a 2D Gaussian distribution got the
point across, it is not especially exciting.

In this section, we will demonstrate how you can use GANs to generate photorealistic im-
ages. We will be basing our models on the deep convolutional GANs (DCGAN) introduced
in Radford et al. (2015). We will borrow the convolutional architecture that have proven
so successful for discriminative computer vision problems and show how via GANs, they
can be leveraged to generate photorealistic images.

from mxnet import gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

20.2.1 The Pokemon Dataset
The dataset we will use is a collection of Pokemon sprites obtained from pokemondb254 .
First download, extract and load this dataset.

#@save
d2l.DATA_HUB['pokemon'] = (d2l.DATA_URL + 'pokemon.zip',

'c065c0e2593b8b161a2d7873e42418bf6a21106c')

data_dir = d2l.download_extract('pokemon')
pokemon = gluon.data.vision.datasets.ImageFolderDataset(data_dir)

Downloading ../data/pokemon.zip from http://d2l-data.s3-accelerate.amazonaws.
↩→com/pokemon.zip...

We resize each image into 64 × 64. The ToTensor transformation will project the pixel

https://discuss.d2l.ai/t/408
https://pokemondb.net/sprites
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value into [0, 1], while our generator will use the tanh function to obtain outputs in [−1, 1].
Therefore we normalize the data with 0.5 mean and 0.5 standard deviation to match the
value range.

batch_size = 256
transformer = gluon.data.vision.transforms.Compose([

gluon.data.vision.transforms.Resize(64),
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize(0.5, 0.5)

])
data_iter = gluon.data.DataLoader(

pokemon.transform_first(transformer), batch_size=batch_size,
shuffle=True, num_workers=d2l.get_dataloader_workers())

Let’s visualize the first 20 images.

d2l.set_figsize((4, 4))
for X, y in data_iter:

imgs = X[:20,:,:,:].transpose(0, 2, 3, 1)/2+0.5
d2l.show_images(imgs, num_rows=4, num_cols=5)
break

[22:43:03] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
[22:43:03] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
[22:43:03] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
[22:43:03] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
[22:43:03] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

20.2.2 The Generator
The generator needs to map the noise variable z ∈ R𝑑 , a length-𝑑 vector, to a RGB image
with width and height to be 64×64 . In Section 14.11 we introduced the fully convolutional
network that uses transposed convolution layer (refer to Section 14.10) to enlarge input size.
The basic block of the generator contains a transposed convolution layer followed by the
batch normalization and ReLU activation.

class G_block(nn.Block):
def __init__(self, channels, kernel_size=4,

strides=2, padding=1, **kwargs):
super(G_block, self).__init__(**kwargs)
self.conv2d_trans = nn.Conv2DTranspose(

channels, kernel_size, strides, padding, use_bias=False)
self.batch_norm = nn.BatchNorm()
self.activation = nn.Activation('relu')

(continues on next page)
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def forward(self, X):
return self.activation(self.batch_norm(self.conv2d_trans(X)))

In default, the transposed convolution layer uses a 𝑘ℎ = 𝑘𝑤 = 4 kernel, a 𝑠ℎ = 𝑠𝑤 = 2
strides, and a 𝑝ℎ = 𝑝𝑤 = 1 padding. With a input shape of 𝑛′ℎ×𝑛

′
𝑤 = 16×16, the generator

block will double input’s width and height.

𝑛
′
ℎ × 𝑛

′
𝑤 = [(𝑛ℎ𝑘ℎ − (𝑛ℎ − 1)(𝑘ℎ − 𝑠ℎ) − 2𝑝ℎ] × [(𝑛𝑤𝑘𝑤 − (𝑛𝑤 − 1) (𝑘𝑤 − 𝑠𝑤) − 2𝑝𝑤]
= [(𝑘ℎ + 𝑠ℎ (𝑛ℎ − 1) − 2𝑝ℎ] × [(𝑘𝑤 + 𝑠𝑤 (𝑛𝑤 − 1) − 2𝑝𝑤]
= [(4 + 2 × (16 − 1) − 2 × 1] × [(4 + 2 × (16 − 1) − 2 × 1]
= 32 × 32.

(20.2.1)

x = np.zeros((2, 3, 16, 16))
g_blk = G_block(20)
g_blk.initialize()
g_blk(x).shape

(2, 20, 32, 32)

If changing the transposed convolution layer to a 4×4 kernel, 1×1 strides and zero padding.
With a input size of 1 × 1, the output will have its width and height increased by 3 respec-
tively.
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x = np.zeros((2, 3, 1, 1))
g_blk = G_block(20, strides=1, padding=0)
g_blk.initialize()
g_blk(x).shape

(2, 20, 4, 4)

The generator consists of four basic blocks that increase input’s both width and height from
1 to 32. At the same time, it first projects the latent variable into 64 × 8 channels, and then
halve the channels each time. At last, a transposed convolution layer is used to generate
the output. It further doubles the width and height to match the desired 64 × 64 shape,
and reduces the channel size to 3. The tanh activation function is applied to project output
values into the (−1, 1) range.

n_G = 64
net_G = nn.Sequential()
net_G.add(G_block(n_G*8, strides=1, padding=0), # Output: (64 * 8, 4, 4)

G_block(n_G*4), # Output: (64 * 4, 8, 8)
G_block(n_G*2), # Output: (64 * 2, 16, 16)
G_block(n_G), # Output: (64, 32, 32)
nn.Conv2DTranspose(

3, kernel_size=4, strides=2, padding=1, use_bias=False,
activation='tanh')) # Output: (3, 64, 64)

Generate a 100 dimensional latent variable to verify the generator’s output shape.

x = np.zeros((1, 100, 1, 1))
net_G.initialize()
net_G(x).shape

(1, 3, 64, 64)

20.2.3 Discriminator
The discriminator is a normal convolutional network network except that it uses a leaky
ReLU as its activation function. Given 𝛼 ∈ [0, 1], its definition is

leaky ReLU(𝑥) =
{
𝑥 if 𝑥 > 0
𝛼𝑥 otherwise

. (20.2.2)

As it can be seen, it is normal ReLU if 𝛼 = 0, and an identity function if 𝛼 = 1. For
𝛼 ∈ (0, 1), leaky ReLU is a nonlinear function that give a non-zero output for a negative
input. It aims to fix the “dying ReLU” problem that a neuronmight always output a negative
value and therefore cannot make any progress since the gradient of ReLU is 0.
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alphas = [0, .2, .4, .6, .8, 1]
x = np.arange(-2, 1, 0.1)
Y = [nn.LeakyReLU(alpha)(x).asnumpy() for alpha in alphas]
d2l.plot(x.asnumpy(), Y, 'x', 'y', alphas)

The basic block of the discriminator is a convolution layer followed by a batch normalization
layer and a leaky ReLU activation. The hyperparameters of the convolution layer are similar
to the transpose convolution layer in the generator block.

class D_block(nn.Block):
def __init__(self, channels, kernel_size=4, strides=2,

padding=1, alpha=0.2, **kwargs):
super(D_block, self).__init__(**kwargs)
self.conv2d = nn.Conv2D(

channels, kernel_size, strides, padding, use_bias=False)
self.batch_norm = nn.BatchNorm()
self.activation = nn.LeakyReLU(alpha)

def forward(self, X):
return self.activation(self.batch_norm(self.conv2d(X)))

A basic block with default settings will halve the width and height of the inputs, as we
demonstrated in Section 7.3. For example, given a input shape 𝑛ℎ = 𝑛𝑤 = 16, with a kernel
shape 𝑘ℎ = 𝑘𝑤 = 4, a stride shape 𝑠ℎ = 𝑠𝑤 = 2, and a padding shape 𝑝ℎ = 𝑝𝑤 = 1, the
output shape will be:

𝑛
′
ℎ × 𝑛

′
𝑤 = b(𝑛ℎ − 𝑘ℎ + 2𝑝ℎ + 𝑠ℎ)/𝑠ℎc × b(𝑛𝑤 − 𝑘𝑤 + 2𝑝𝑤 + 𝑠𝑤)/𝑠𝑤c
= b(16 − 4 + 2 × 1 + 2)/2c × b(16 − 4 + 2 × 1 + 2)/2c
= 8 × 8.

(20.2.3)

x = np.zeros((2, 3, 16, 16))
d_blk = D_block(20)
d_blk.initialize()
d_blk(x).shape

(2, 20, 8, 8)
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The discriminator is a mirror of the generator.

n_D = 64
net_D = nn.Sequential()
net_D.add(D_block(n_D), # Output: (64, 32, 32)

D_block(n_D*2), # Output: (64 * 2, 16, 16)
D_block(n_D*4), # Output: (64 * 4, 8, 8)
D_block(n_D*8), # Output: (64 * 8, 4, 4)
nn.Conv2D(1, kernel_size=4, use_bias=False)) # Output: (1, 1, 1)

It uses a convolution layer with output channel 1 as the last layer to obtain a single prediction
value.

x = np.zeros((1, 3, 64, 64))
net_D.initialize()
net_D(x).shape

(1, 1, 1, 1)

20.2.4 Training
Compared to the basic GAN in Section 20.1, we use the same learning rate for both gen-
erator and discriminator since they are similar to each other. In addition, we change 𝛽1 in
Adam (Section 12.10) from 0.9 to 0.5. It decreases the smoothness of the momentum, the
exponentially weighted moving average of past gradients, to take care of the rapid changing
gradients because the generator and the discriminator fight with each other. Besides, the
random generated noise Z, is a 4-D tensor and we are using GPU to accelerate the compu-
tation.

def train(net_D, net_G, data_iter, num_epochs, lr, latent_dim,
device=d2l.try_gpu()):

loss = gluon.loss.SigmoidBCELoss()
net_D.initialize(init=init.Normal(0.02), force_reinit=True, ctx=device)
net_G.initialize(init=init.Normal(0.02), force_reinit=True, ctx=device)
trainer_hp = {'learning_rate': lr, 'beta1': 0.5}
trainer_D = gluon.Trainer(net_D.collect_params(), 'adam', trainer_hp)
trainer_G = gluon.Trainer(net_G.collect_params(), 'adam', trainer_hp)
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[1, num_epochs], nrows=2, figsize=(5, 5),
legend=['discriminator', 'generator'])

animator.fig.subplots_adjust(hspace=0.3)
for epoch in range(1, num_epochs + 1):

# Train one epoch
timer = d2l.Timer()
metric = d2l.Accumulator(3) # loss_D, loss_G, num_examples
for X, _ in data_iter:

batch_size = X.shape[0]
Z = np.random.normal(0, 1, size=(batch_size, latent_dim, 1, 1))
X, Z = X.as_in_ctx(device), Z.as_in_ctx(device),
metric.add(d2l.update_D(X, Z, net_D, net_G, loss, trainer_D),

(continues on next page)
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d2l.update_G(Z, net_D, net_G, loss, trainer_G),
batch_size)

# Show generated examples
Z = np.random.normal(0, 1, size=(21, latent_dim, 1, 1), ctx=device)
# Normalize the synthetic data to N(0, 1)
fake_x = net_G(Z).transpose(0, 2, 3, 1) / 2 + 0.5
imgs = np.concatenate(

[np.concatenate([fake_x[i * 7 + j] for j in range(7)], axis=1)
for i in range(len(fake_x)//7)], axis=0)

animator.axes[1].cla()
animator.axes[1].imshow(imgs.asnumpy())
# Show the losses
loss_D, loss_G = metric[0] / metric[2], metric[1] / metric[2]
animator.add(epoch, (loss_D, loss_G))

print(f'loss_D {loss_D:.3f}, loss_G {loss_G:.3f}, '
f'{metric[2] / timer.stop():.1f} examples/sec on {str(device)}')

We train the model with a small number of epochs just for demonstration. For better per-
formance, the variable num_epochs can be set to a larger number.

latent_dim, lr, num_epochs = 100, 0.005, 20
train(net_D, net_G, data_iter, num_epochs, lr, latent_dim)

loss_D 0.035, loss_G 6.190, 2583.0 examples/sec on gpu(0)

20.2.5 Summary
• DCGANarchitecture has four convolutional layers for theDiscriminator and four “fractionally-

strided” convolutional layers for the Generator.

• The Discriminator is a 4-layer strided convolutions with batch normalization (except its
input layer) and leaky ReLU activations.
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• Leaky ReLU is a nonlinear function that give a non-zero output for a negative input. It
aims to fix the “dying ReLU” problem and helps the gradients flow easier through the
architecture.

20.2.6 Exercises
1. What will happen if we use standard ReLU activation rather than leaky ReLU?

2. Apply DCGAN on Fashion-MNIST and see which category works well and which does
not.

Discussions255 .

https://discuss.d2l.ai/t/409
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Shuai Zhang (Amazon), Aston Zhang (Amazon), and Yi Tay (Google)

Recommender systems are widely employed in industry and are ubiquitous in our daily
lives. These systems are utilized in a number of areas such as online shopping sites (e.g.,
amazon.com), music/movie services site (e.g., Netflix and Spotify), mobile application
stores (e.g., IOS app store and google play), online advertising, just to name a few.

The major goal of recommender systems is to help users discover relevant items such as
movies to watch, text to read or products to buy, so as to create a delightful user experience.
Moreover, recommender systems are among the most powerful machine learning systems
that online retailers implement in order to drive incremental revenue. Recommender sys-
tems are replacements of search engines by reducing the efforts in proactive searches and
surprising users with offers they never searched for. Many companies managed to position
themselves ahead of their competitors with the help of more effective recommender sys-
tems. As such, recommender systems are central to not only our everyday lives but also
highly indispensable in some industries.

In this chapter, we will cover the fundamentals and advancements of recommender systems,
alongwith exploring some common fundamental techniques for building recommender sys-
tems with different data sources available and their implementations. Specifically, you will
learn how to predict the rating a user might give to a prospective item, how to generate a
recommendation list of items and how to predict the click-through rate from abundant fea-
tures. These tasks are commonplace in real-world applications. By studying this chapter,
you will get hands-on experience pertaining to solving real world recommendation prob-
lems with not only classical methods but the more advanced deep learning based models
as well.

21.1 Overview of Recommender Systems

In the last decade, the Internet has evolved into a platform for large-scale online services,
which profoundly changed the way we communicate, read news, buy products, and watch
movies. In themeanwhile, the unprecedented number of items (we use the term item to refer
to movies, news, books, and products.) offered online requires a system that can help us
discover items that we preferred. Recommender systems are therefore powerful information

821
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filtering tools that can facilitate personalized services and provide tailored experience to
individual users. In short, recommender systems play a pivotal role in utilizing the wealth
of data available to make choices manageable. Nowadays, recommender systems are at
the core of a number of online services providers such as Amazon, Netflix, and YouTube.
Recall the example of Deep learning books recommended by Amazon in Fig. 1.3.3. The
benefits of employing recommender systems are two-folds: On the one hand, it can largely
reduce users’ effort in finding items and alleviate the issue of information overload. On
the other hand, it can add business value to online service providers and is an important
source of revenue. This chapter will introduce the fundamental concepts, classic models
and recent advances with deep learning in the field of recommender systems, together with
implemented examples.

tFig. 21.1.1 Illustration of the Recommendation Process

21.1.1 Collaborative Filtering
We start the journey with the important concept in recommender systems—collaborative
filtering (CF), which was first coined by the Tapestry system (Goldberg et al., 1992), re-
ferring to “people collaborate to help one another perform the filtering process in order to
handle the large amounts of email and messages posted to newsgroups”. This term has been
enriched with more senses. In a broad sense, it is the process of filtering for information or
patterns using techniques involving collaboration among multiple users, agents, and data
sources. CF has many forms and numerous CF methods proposed since its advent.

Overall, CF techniques can be categorized into: memory-based CF, model-based CF, and
their hybrid (Su and Khoshgoftaar, 2009). Representative memory-based CF techniques
are nearest neighbor-based CF such as user-based CF and item-based CF (Sarwar et al.,
2001). Latent factor models such as matrix factorization are examples of model-based CF.
Memory-based CF has limitations in dealing with sparse and large-scale data since it com-
putes the similarity values based on common items. Model-based methods become more
popular with its better capability in dealing with sparsity and scalability. Many model-
based CF approaches can be extended with neural networks, leading to more flexible and
scalable models with the computation acceleration in deep learning (Zhang et al., 2019).
In general, CF only uses the user-item interaction data to make predictions and recom-
mendations. Besides CF, content-based and context-based recommender systems are also
useful in incorporating the content descriptions of items/users and contextual signals such
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as timestamps and locations. Obviously, we may need to adjust the model types/structures
when different input data is available.

21.1.2 Explicit Feedback and Implicit Feedback
To learn the preference of users, the system shall collect feedback from them. The feedback
can be either explicit or implicit (Hu et al., 2008). For example, IMDb 256 collects star
ratings ranging from one to ten stars for movies. YouTube provides the thumbs-up and
thumbs-down buttons for users to show their preferences. It is apparent that gathering
explicit feedback requires users to indicate their interests proactively. Nonetheless, explicit
feedback is not always readily available as many users may be reluctant to rate products.
Relatively speaking, implicit feedback is often readily available since it is mainly concerned
with modeling implicit behavior such as user clicks. As such, many recommender systems
are centered on implicit feedback which indirectly reflects user’s opinion through observing
user behavior. There are diverse forms of implicit feedback including purchase history,
browsing history, watches and even mouse movements. For example, a user that purchased
many books by the same author probably likes that author. Note that implicit feedback is
inherently noisy. We can only guess their preferences and true motives. A user watched a
movie does not necessarily indicate a positive view of that movie.

21.1.3 Recommendation Tasks
A number of recommendation tasks have been investigated in the past decades. Based
on the domain of applications, there are movies recommendation, news recommendations,
point-of-interest recommendation (Ye et al., 2011) and so forth. It is also possible to dif-
ferentiate the tasks based on the types of feedback and input data, for example, the rating
prediction task aims to predict the explicit ratings. Top-𝑛 recommendation (item ranking)
ranks all items for each user personally based on the implicit feedback. If time-stamp infor-
mation is also included, we can build sequence-aware recommendation (Quadrana et al.,
2018). Another popular task is called click-through rate prediction, which is also based on
implicit feedback, but various categorical features can be utilized. Recommending for new
users and recommending new items to existing users are called cold-start recommendation
(Schein et al., 2002).

21.1.4 Summary
• Recommender systems are important for individual users and industries. Collaborative

filtering is a key concept in recommendation.

• There are two types of feedbacks: implicit feedback and explicit feedback. A number of
recommendation tasks have been explored during the last decade.

21.1.5 Exercises
1. Can you explain how recommender systems influence your daily life?

2. What interesting recommendation tasks do you think can be investigated?

https://www.imdb.com/
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Discussions257 .

21.2 The MovieLens Dataset

There are a number of datasets that are available for recommendation research. Amongst
them, the MovieLens258 dataset is probably one of the more popular ones. MovieLens is
a non-commercial web-based movie recommender system. It is created in 1997 and run by
GroupLens, a research lab at the University of Minnesota, in order to gather movie rating
data for research purposes. MovieLens data has been critical for several research studies
including personalized recommendation and social psychology.

21.2.1 Getting the Data
The MovieLens dataset is hosted by the GroupLens259 website. Several versions are avail-
able. We will use the MovieLens 100K dataset (Herlocker et al., 1999). This dataset is
comprised of 100, 000 ratings, ranging from 1 to 5 stars, from 943 users on 1682 movies.
It has been cleaned up so that each user has rated at least 20 movies. Some simple demo-
graphic information such as age, gender, genres for the users and items are also available.
We can download the ml-100k.zip 260 and extract the u.data file, which contains all the
100, 000 ratings in the csv format. There are many other files in the folder, a detailed de-
scription for each file can be found in the README261 file of the dataset.

To begin with, let’s import the packages required to run this section’s experiments.

import os
import pandas as pd
from mxnet import gluon, np
from d2l import mxnet as d2l

Then, we download theMovieLens 100k dataset and load the interactions as DataFrame.

#@save
d2l.DATA_HUB['ml-100k'] = (

'https://files.grouplens.org/datasets/movielens/ml-100k.zip',
'cd4dcac4241c8a4ad7badc7ca635da8a69dddb83')

#@save
def read_data_ml100k():

data_dir = d2l.download_extract('ml-100k')
names = ['user_id', 'item_id', 'rating', 'timestamp']
data = pd.read_csv(os.path.join(data_dir, 'u.data'), sep='\t',

names=names, engine='python')
num_users = data.user_id.unique().shape[0]
num_items = data.item_id.unique().shape[0]
return data, num_users, num_items

https://discuss.d2l.ai/t/398
https://movielens.org/
https://grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/ml-100k.zip
http://files.grouplens.org/datasets/movielens/ml-100k-README.txt
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21.2.2 Statistics of the Dataset
Let’s load up the data and inspect the first five records manually. It is an effective way to
learn the data structure and verify that they have been loaded properly.

data, num_users, num_items = read_data_ml100k()
sparsity = 1 - len(data) / (num_users * num_items)
print(f'number of users: {num_users}, number of items: {num_items}')
print(f'matrix sparsity: {sparsity:f}')
print(data.head(5))

number of users: 943, number of items: 1682
matrix sparsity: 0.936953

user_id item_id rating timestamp
0 196 242 3 881250949
1 186 302 3 891717742
2 22 377 1 878887116
3 244 51 2 880606923
4 166 346 1 886397596

We can see that each line consists of four columns, including “user id” 1-943, “item id”
1-1682, “rating” 1-5 and “timestamp”. We can construct an interaction matrix of size 𝑛 ×
𝑚, where 𝑛 and 𝑚 are the number of users and the number of items respectively. This
dataset only records the existing ratings, so we can also call it rating matrix and we will use
interaction matrix and rating matrix interchangeably in case that the values of this matrix
represent exact ratings. Most of the values in the rating matrix are unknown as users have
not rated the majority of movies. We also show the sparsity of this dataset. The sparsity is
defined as 1 - number of nonzero entries / ( number of users * number of

items). Clearly, the interaction matrix is extremely sparse (i.e., sparsity = 93.695%). Real
world datasets may suffer from a greater extent of sparsity and has been a long-standing
challenge in building recommender systems. A viable solution is to use additional side
information such as user/item features to alleviate the sparsity.

We then plot the distribution of the count of different ratings. As expected, it appears to be
a normal distribution, with most ratings centered at 3-4.

d2l.plt.hist(data['rating'], bins=5, ec='black')
d2l.plt.xlabel('Rating')
d2l.plt.ylabel('Count')
d2l.plt.title('Distribution of Ratings in MovieLens 100K')
d2l.plt.show()

21.2.3 Splitting the dataset
We split the dataset into training and test sets. The following function provides two split
modes including random and seq-aware. In the randommode, the function splits the 100k
interactions randomly without considering timestamp and uses the 90% of the data as train-
ing samples and the rest 10% as test samples by default. In the seq-aware mode, we leave
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out the item that a user ratedmost recently for test, and users’ historical interactions as train-
ing set. User historical interactions are sorted from oldest to newest based on timestamp.
This mode will be used in the sequence-aware recommendation section.

#@save
def split_data_ml100k(data, num_users, num_items,

split_mode='random', test_ratio=0.1):
"""Split the dataset in random mode or seq-aware mode."""
if split_mode == 'seq-aware':

train_items, test_items, train_list = {}, {}, []
for line in data.itertuples():

u, i, rating, time = line[1], line[2], line[3], line[4]
train_items.setdefault(u, []).append((u, i, rating, time))
if u not in test_items or test_items[u][-1] < time:

test_items[u] = (i, rating, time)
for u in range(1, num_users + 1):

train_list.extend(sorted(train_items[u], key=lambda k: k[3]))
test_data = [(key, *value) for key, value in test_items.items()]
train_data = [item for item in train_list if item not in test_data]
train_data = pd.DataFrame(train_data)
test_data = pd.DataFrame(test_data)

else:
mask = [True if x == 1 else False for x in np.random.uniform(

0, 1, (len(data))) < 1 - test_ratio]
neg_mask = [not x for x in mask]
train_data, test_data = data[mask], data[neg_mask]

return train_data, test_data

Note that it is good practice to use a validation set in practice, apart from only a test set.
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However, we omit that for the sake of brevity. In this case, our test set can be regarded as
our held-out validation set.

21.2.4 Loading the data
After dataset splitting, we will convert the training set and test set into lists and dictionar-
ies/matrix for the sake of convenience. The following function reads the dataframe line
by line and enumerates the index of users/items start from zero. The function then returns
lists of users, items, ratings and a dictionary/matrix that records the interactions. We can
specify the type of feedback to either explicit or implicit.

#@save
def load_data_ml100k(data, num_users, num_items, feedback='explicit'):

users, items, scores = [], [], []
inter = np.zeros((num_items, num_users)) if feedback == 'explicit' else {}
for line in data.itertuples():

user_index, item_index = int(line[1] - 1), int(line[2] - 1)
score = int(line[3]) if feedback == 'explicit' else 1
users.append(user_index)
items.append(item_index)
scores.append(score)
if feedback == 'implicit':

inter.setdefault(user_index, []).append(item_index)
else:

inter[item_index, user_index] = score
return users, items, scores, inter

Afterwards, we put the above steps together and it will be used in the next section. The
results are wrapped with Dataset and DataLoader. Note that the last_batch of Dat-
aLoader for training data is set to the rollover mode (The remaining samples are rolled
over to the next epoch.) and orders are shuffled.

#@save
def split_and_load_ml100k(split_mode='seq-aware', feedback='explicit',

test_ratio=0.1, batch_size=256):
data, num_users, num_items = read_data_ml100k()
train_data, test_data = split_data_ml100k(

data, num_users, num_items, split_mode, test_ratio)
train_u, train_i, train_r, _ = load_data_ml100k(

train_data, num_users, num_items, feedback)
test_u, test_i, test_r, _ = load_data_ml100k(

test_data, num_users, num_items, feedback)
train_set = gluon.data.ArrayDataset(

np.array(train_u), np.array(train_i), np.array(train_r))
test_set = gluon.data.ArrayDataset(

np.array(test_u), np.array(test_i), np.array(test_r))
train_iter = gluon.data.DataLoader(

train_set, shuffle=True, last_batch='rollover',
batch_size=batch_size)

test_iter = gluon.data.DataLoader(
test_set, batch_size=batch_size)

return num_users, num_items, train_iter, test_iter
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21.2.5 Summary
• MovieLens datasets are widely used for recommendation research. It is public available

and free to use.

• We define functions to download and preprocess the MovieLens 100k dataset for further
use in later sections.

21.2.6 Exercises
• What other similar recommendation datasets can you find?

• Go through the https://movielens.org/ site for more information about MovieLens.

Discussions262 .

21.3 Matrix Factorization

Matrix Factorization (Koren et al., 2009) is a well-established algorithm in the recom-
mender systems literature. The first version of matrix factorization model is proposed by
Simon Funk in a famous blog post 263 in which he described the idea of factorizing the
interaction matrix. It then became widely known due to the Netflix contest which was held
in 2006. At that time, Netflix, a media-streaming and video-rental company, announced a
contest to improve its recommender system performance. The best team that can improve
on the Netflix baseline, i.e., Cinematch), by 10 percent would win a one million USD prize.
As such, this contest attracted a lot of attention to the field of recommender system research.
Subsequently, the grand prize was won by the BellKor’s Pragmatic Chaos team, a combined
team of BellKor, Pragmatic Theory, and BigChaos (you do not need to worry about these
algorithms now). Although the final score was the result of an ensemble solution (i.e., a
combination of many algorithms), the matrix factorization algorithm played a critical role
in the final blend. The technical report of the Netflix Grand Prize solution (Töscher et al.,
2009) provides a detailed introduction to the adopted model. In this section, we will dive
into the details of the matrix factorization model and its implementation.

21.3.1 The Matrix Factorization Model
Matrix factorization is a class of collaborative filtering models. Specifically, the model
factorizes the user-item interactionmatrix (e.g., ratingmatrix) into the product of two lower-
rank matrices, capturing the low-rank structure of the user-item interactions.

Let R ∈ R𝑚×𝑛 denote the interaction matrix with 𝑚 users and 𝑛 items, and the values
of R represent explicit ratings. The user-item interaction will be factorized into a user
latent matrix P ∈ R𝑚×𝑘 and an item latent matrix Q ∈ R𝑛×𝑘 , where 𝑘 � 𝑚, 𝑛, is the
latent factor size. Let p𝑢 denote the 𝑢th row of P and q𝑖 denote the 𝑖th row of Q. For
a given item 𝑖, the elements of q𝑖 measure the extent to which the item possesses those

https://movielens.org/
https://discuss.d2l.ai/t/399
https://sifter.org/%7Esimon/journal/20061211.html
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characteristics such as the genres and languages of a movie. For a given user 𝑢, the elements
of p𝑢 measure the extent of interest the user has in items’ corresponding characteristics.
These latent factors might measure obvious dimensions as mentioned in those examples or
are completely uninterpretable. The predicted ratings can be estimated by

R̂ = PQ> (21.3.1)

where R̂ ∈ R𝑚×𝑛 is the predicted rating matrix which has the same shape asR. One major
problem of this prediction rule is that users/items biases can not be modeled. For example,
some users tend to give higher ratings or some items always get lower ratings due to poorer
quality. These biases are commonplace in real-world applications. To capture these biases,
user specific and item specific bias terms are introduced. Specifically, the predicted rating
user 𝑢 gives to item 𝑖 is calculated by

R̂𝑢𝑖 = p𝑢q
>
𝑖 + 𝑏𝑢 + 𝑏𝑖 (21.3.2)

Then, we train the matrix factorization model by minimizing the mean squared error be-
tween predicted rating scores and real rating scores. The objective function is defined as
follows:

argmin
P,Q,𝑏

∑
(𝑢,𝑖) ∈K

‖R𝑢𝑖 − R̂𝑢𝑖 ‖2 + 𝜆(‖P‖2𝐹 + ‖Q‖2𝐹 + 𝑏2
𝑢 + 𝑏2

𝑖 ) (21.3.3)

where 𝜆 denotes the regularization rate. The regularizing term 𝜆(‖P‖2𝐹 + ‖Q‖2𝐹 + 𝑏2
𝑢 + 𝑏2

𝑖 )
is used to avoid over-fitting by penalizing the magnitude of the parameters. The (𝑢, 𝑖) pairs
for which R𝑢𝑖 is known are stored in the set K = {(𝑢, 𝑖) | R𝑢𝑖 is known}. The model
parameters can be learned with an optimization algorithm, such as Stochastic Gradient
Descent and Adam.

An intuitive illustration of the matrix factorization model is shown below:

tFig. 21.3.1 Illustration of matrix factorization model

In the rest of this section, we will explain the implementation of matrix factorization and
train the model on the MovieLens dataset.

import mxnet as mx
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn

(continues on next page)
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(continued from previous page)

from d2l import mxnet as d2l

npx.set_np()

21.3.2 Model Implementation
First, we implement the matrix factorization model described above. The user and item
latent factors can be created with the nn.Embedding. The input_dim is the number of
items/users and the output_dim is the dimension of the latent factors 𝑘 . We can also use
nn.Embedding to create the user/item biases by setting the output_dim to one. In the
forward function, user and item ids are used to look up the embeddings.

class MF(nn.Block):
def __init__(self, num_factors, num_users, num_items, **kwargs):

super(MF, self).__init__(**kwargs)
self.P = nn.Embedding(input_dim=num_users, output_dim=num_factors)
self.Q = nn.Embedding(input_dim=num_items, output_dim=num_factors)
self.user_bias = nn.Embedding(num_users, 1)
self.item_bias = nn.Embedding(num_items, 1)

def forward(self, user_id, item_id):
P_u = self.P(user_id)
Q_i = self.Q(item_id)
b_u = self.user_bias(user_id)
b_i = self.item_bias(item_id)
outputs = (P_u * Q_i).sum(axis=1) + np.squeeze(b_u) + np.squeeze(b_i)
return outputs.flatten()

21.3.3 Evaluation Measures
We then implement the RMSE (root-mean-square error) measure, which is commonly used
tomeasure the differences between rating scores predicted by themodel and the actually ob-
served ratings (ground truth) (Gunawardana and Shani, 2015). RMSE is defined as:

RMSE =

√√
1
|T |

∑
(𝑢,𝑖) ∈T

(R𝑢𝑖 − R̂𝑢𝑖)2 (21.3.4)

where T is the set consisting of pairs of users and items that you want to evaluate on. |T |
is the size of this set. We can use the RMSE function provided by mx.metric.

def evaluator(net, test_iter, devices):
rmse = mx.metric.RMSE() # Get the RMSE
rmse_list = []
for idx, (users, items, ratings) in enumerate(test_iter):

u = gluon.utils.split_and_load(users, devices, even_split=False)
i = gluon.utils.split_and_load(items, devices, even_split=False)
r_ui = gluon.utils.split_and_load(ratings, devices, even_split=False)
r_hat = [net(u, i) for u, i in zip(u, i)]

(continues on next page)
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(continued from previous page)

rmse.update(labels=r_ui, preds=r_hat)
rmse_list.append(rmse.get()[1])

return float(np.mean(np.array(rmse_list)))

21.3.4 Training and Evaluating the Model
In the training function, we adopt the ℓ2 loss with weight decay. The weight decay mecha-
nism has the same effect as the ℓ2 regularization.

#@save
def train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,

devices=d2l.try_all_gpus(), evaluator=None,
**kwargs):

timer = d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 2],

legend=['train loss', 'test RMSE'])
for epoch in range(num_epochs):

metric, l = d2l.Accumulator(3), 0.
for i, values in enumerate(train_iter):

timer.start()
input_data = []
values = values if isinstance(values, list) else [values]
for v in values:

input_data.append(gluon.utils.split_and_load(v, devices))
train_feat = input_data[:-1] if len(values) > 1 else input_data
train_label = input_data[-1]
with autograd.record():

preds = [net(*t) for t in zip(*train_feat)]
ls = [loss(p, s) for p, s in zip(preds, train_label)]

[l.backward() for l in ls]
l += sum([l.asnumpy() for l in ls]).mean() / len(devices)
trainer.step(values[0].shape[0])
metric.add(l, values[0].shape[0], values[0].size)
timer.stop()

if len(kwargs) > 0: # It will be used in section AutoRec
test_rmse = evaluator(net, test_iter, kwargs['inter_mat'],

devices)
else:

test_rmse = evaluator(net, test_iter, devices)
train_l = l / (i + 1)
animator.add(epoch + 1, (train_l, test_rmse))

print(f'train loss {metric[0] / metric[1]:.3f}, '
f'test RMSE {test_rmse:.3f}')

print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
f'on {str(devices)}')

Finally, let’s put all things together and train the model. Here, we set the latent factor
dimension to 30.

devices = d2l.try_all_gpus()
num_users, num_items, train_iter, test_iter = d2l.split_and_load_ml100k(

(continues on next page)
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(continued from previous page)

test_ratio=0.1, batch_size=512)
net = MF(30, num_users, num_items)
net.initialize(ctx=devices, force_reinit=True, init=mx.init.Normal(0.01))
lr, num_epochs, wd, optimizer = 0.002, 20, 1e-5, 'adam'
loss = gluon.loss.L2Loss()
trainer = gluon.Trainer(net.collect_params(), optimizer,

{"learning_rate": lr, 'wd': wd})
train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,

devices, evaluator)

train loss 0.065, test RMSE 1.066
56722.8 examples/sec on [gpu(0), gpu(1)]

Below, we use the trained model to predict the rating that a user (ID 20) might give to an
item (ID 30).

scores = net(np.array([20], dtype='int', ctx=devices[0]),
np.array([30], dtype='int', ctx=devices[0]))

scores

array([3.1718655], ctx=gpu(0))

21.3.5 Summary
• The matrix factorization model is widely used in recommender systems. It can be used

to predict ratings that a user might give to an item.

• We can implement and train matrix factorization for recommender systems.

21.3.6 Exercises
• Vary the size of latent factors. How does the size of latent factors influence the model

performance?

• Try different optimizers, learning rates, and weight decay rates.

• Check the predicted rating scores of other users for a specific movie.
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264
Discussions264 .

21.4 AutoRec: Rating Prediction with Autoencoders

Although the matrix factorization model achieves decent performance on the rating predic-
tion task, it is essentially a linear model. Thus, such models are not capable of capturing
complex nonlinear and intricate relationships that may be predictive of users’ preferences.
In this section, we introduce a nonlinear neural network collaborative filtering model, Au-
toRec (Sedhain et al., 2015). It identifies collaborative filtering (CF) with an autoencoder
architecture and aims to integrate nonlinear transformations into CF on the basis of explicit
feedback. Neural networks have been proven to be capable of approximating any continu-
ous function, making it suitable to address the limitation of matrix factorization and enrich
the expressiveness of matrix factorization.

On the one hand, AutoRec has the same structure as an autoencoder which consists of an
input layer, a hidden layer, and a reconstruction (output) layer. An autoencoder is a neu-
ral network that learns to copy its input to its output in order to code the inputs into the
hidden (and usually low-dimensional) representations. In AutoRec, instead of explicitly
embedding users/items into low-dimensional space, it uses the column/row of the interac-
tion matrix as input, then reconstructs the interaction matrix in the output layer.

On the other hand, AutoRec differs from a traditional autoencoder: rather than learning
the hidden representations, AutoRec focuses on learning/reconstructing the output layer.
It uses a partially observed interaction matrix as input, aiming to reconstruct a completed
rating matrix. In the meantime, the missing entries of the input are filled in the output layer
via reconstruction for the purpose of recommendation.

There are two variants of AutoRec: user-based and item-based. For brevity, here we only in-
troduce the item-based AutoRec. User-based AutoRec can be derived accordingly.

21.4.1 Model
Let R∗𝑖 denote the 𝑖th column of the rating matrix, where unknown ratings are set to zeros
by default. The neural architecture is defined as:

ℎ(R∗𝑖) = 𝑓 (W · 𝑔(VR∗𝑖 + 𝜇) + 𝑏) (21.4.1)

where 𝑓 (·) and 𝑔(·) represent activation functions, W and V are weight matrices, 𝜇 and
𝑏 are biases. Let ℎ(·) denote the whole network of AutoRec. The output ℎ(R∗𝑖) is the
reconstruction of the 𝑖th column of the rating matrix.

The following objective function aims to minimize the reconstruction error:

argmin
W,V,𝜇,𝑏

𝑀∑
𝑖=1
‖ R∗𝑖 − ℎ(R∗𝑖) ‖2O + 𝜆(‖W‖

2
𝐹 + ‖V‖2𝐹) (21.4.2)

https://discuss.d2l.ai/t/400
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where ‖ · ‖O means only the contribution of observed ratings are considered, that is, only
weights that are associatedwith observed inputs are updated during back-propagation.

import mxnet as mx
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

21.4.2 Implementing the Model
A typical autoencoder consists of an encoder and a decoder. The encoder projects the input
to hidden representations and the decoder maps the hidden layer to the reconstruction layer.
We follow this practice and create the encoder and decoder with fully connected layers. The
activation of encoder is set to sigmoid by default and no activation is applied for decoder.
Dropout is included after the encoding transformation to reduce over-fitting. The gradients
of unobserved inputs are masked out to ensure that only observed ratings contribute to the
model learning process.

class AutoRec(nn.Block):
def __init__(self, num_hidden, num_users, dropout=0.05):

super(AutoRec, self).__init__()
self.encoder = nn.Dense(num_hidden, activation='sigmoid',

use_bias=True)
self.decoder = nn.Dense(num_users, use_bias=True)
self.dropout = nn.Dropout(dropout)

def forward(self, input):
hidden = self.dropout(self.encoder(input))
pred = self.decoder(hidden)
if autograd.is_training(): # Mask the gradient during training

return pred * np.sign(input)
else:

return pred

21.4.3 Reimplementing the Evaluator
Since the input and output have been changed, we need to reimplement the evaluation func-
tion, while we still use RMSE as the accuracy measure.

def evaluator(network, inter_matrix, test_data, devices):
scores = []
for values in inter_matrix:

feat = gluon.utils.split_and_load(values, devices, even_split=False)
scores.extend([network(i).asnumpy() for i in feat])

recons = np.array([item for sublist in scores for item in sublist])
# Calculate the test RMSE
rmse = np.sqrt(np.sum(np.square(test_data - np.sign(test_data) * recons))

/ np.sum(np.sign(test_data)))
return float(rmse)
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21.4.4 Training and Evaluating the Model
Now, let’s train and evaluate AutoRec on the MovieLens dataset. We can clearly see that
the test RMSE is lower than the matrix factorization model, confirming the effectiveness
of neural networks in the rating prediction task.

devices = d2l.try_all_gpus()
# Load the MovieLens 100K dataset
df, num_users, num_items = d2l.read_data_ml100k()
train_data, test_data = d2l.split_data_ml100k(df, num_users, num_items)
_, _, _, train_inter_mat = d2l.load_data_ml100k(train_data, num_users,

num_items)
_, _, _, test_inter_mat = d2l.load_data_ml100k(test_data, num_users,

num_items)
train_iter = gluon.data.DataLoader(train_inter_mat, shuffle=True,

last_batch="rollover", batch_size=256,
num_workers=d2l.get_dataloader_workers())

test_iter = gluon.data.DataLoader(np.array(train_inter_mat), shuffle=False,
last_batch="keep", batch_size=1024,
num_workers=d2l.get_dataloader_workers())

# Model initialization, training, and evaluation
net = AutoRec(500, num_users)
net.initialize(ctx=devices, force_reinit=True, init=mx.init.Normal(0.01))
lr, num_epochs, wd, optimizer = 0.002, 25, 1e-5, 'adam'
loss = gluon.loss.L2Loss()
trainer = gluon.Trainer(net.collect_params(), optimizer,

{"learning_rate": lr, 'wd': wd})
d2l.train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,

devices, evaluator, inter_mat=test_inter_mat)

train loss 0.000, test RMSE 0.900
10593393.7 examples/sec on [gpu(0), gpu(1)]

21.4.5 Summary
• We can frame the matrix factorization algorithm with autoencoders, while integrating

non-linear layers and dropout regularization.

• Experiments on the MovieLens 100K dataset show that AutoRec achieves superior per-
formance than matrix factorization.
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21.4.6 Exercises
• Vary the hidden dimension of AutoRec to see its impact on the model performance.

• Try to add more hidden layers. Is it helpful to improve the model performance?

• Can you find a better combination of decoder and encoder activation functions?

Discussions265 .

21.5 Personalized Ranking for Recommender
Systems

In the former sections, only explicit feedback was considered and models were trained and
tested on observed ratings. There are two demerits of such methods: First, most feedback is
not explicit but implicit in real-world scenarios, and explicit feedback can be more expen-
sive to collect. Second, non-observed user-item pairs which may be predictive for users’
interests are totally ignored, making these methods unsuitable for cases where ratings are
not missing at random but because of users’ preferences. Non-observed user-item pairs
are a mixture of real negative feedback (users are not interested in the items) and missing
values (the user might interact with the items in the future). We simply ignore the non-
observed pairs in matrix factorization and AutoRec. Clearly, these models are incapable
of distinguishing between observed and non-observed pairs and are usually not suitable for
personalized ranking tasks.

To this end, a class of recommendation models targeting at generating ranked recommen-
dation lists from implicit feedback have gained popularity. In general, personalized rank-
ing models can be optimized with pointwise, pairwise or listwise approaches. Pointwise
approaches considers a single interaction at a time and train a classifier or a regressor to
predict individual preferences. Matrix factorization and AutoRec are optimized with point-
wise objectives. Pairwise approaches consider a pair of items for each user and aim to
approximate the optimal ordering for that pair. Usually, pairwise approaches are more
suitable for the ranking task because predicting relative order is reminiscent to the nature
of ranking. Listwise approaches approximate the ordering of the entire list of items, for ex-
ample, direct optimizing the ranking measures such as Normalized Discounted Cumulative
Gain (NDCG266 ). However, listwise approaches are more complex and compute-intensive
than pointwise or pairwise approaches. In this section, we will introduce two pairwise ob-
jectives/losses, Bayesian Personalized Ranking loss and Hinge loss, and their respective
implementations.

21.5.1 Bayesian Personalized Ranking Loss and its Implementation
Bayesian personalized ranking (BPR) (Rendle et al., 2009) is a pairwise personalized rank-
ing loss that is derived from the maximum posterior estimator. It has been widely used in

https://discuss.d2l.ai/t/401
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
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many existing recommendation models. The training data of BPR consists of both positive
and negative pairs (missing values). It assumes that the user prefers the positive item over
all other non-observed items.

In formal, the training data is constructed by tuples in the form of (𝑢, 𝑖, 𝑗), which represents
that the user 𝑢 prefers the item 𝑖 over the item 𝑗 . The Bayesian formulation of BPR which
aims to maximize the posterior probability is given below:

𝑝(Θ |>𝑢) ∝ 𝑝(>𝑢 | Θ)𝑝(Θ) (21.5.1)

Where Θ represents the parameters of an arbitrary recommendation model, >𝑢 represents
the desired personalized total ranking of all items for user 𝑢. We can formulate the max-
imum posterior estimator to derive the generic optimization criterion for the personalized
ranking task.

BPR-OPT : = ln 𝑝(Θ |>𝑢)
∝ ln 𝑝(>𝑢 | Θ)𝑝(Θ)

= ln
∏

(𝑢,𝑖, 𝑗∈𝐷)
𝜎( 𝑦̂𝑢𝑖 − 𝑦̂𝑢 𝑗 )𝑝(Θ)

=
∑

(𝑢,𝑖, 𝑗∈𝐷)
ln𝜎( 𝑦̂𝑢𝑖 − 𝑦̂𝑢 𝑗 ) + ln 𝑝(Θ)

=
∑

(𝑢,𝑖, 𝑗∈𝐷)
ln𝜎( 𝑦̂𝑢𝑖 − 𝑦̂𝑢 𝑗 ) − 𝜆Θ‖Θ‖2

(21.5.2)

where 𝐷 def
= {(𝑢, 𝑖, 𝑗) | 𝑖 ∈ 𝐼+𝑢 ∧ 𝑗 ∈ 𝐼\𝐼+𝑢 } is the training set, with 𝐼+𝑢 denoting the items the

user 𝑢 liked, 𝐼 denoting all items, and 𝐼\𝐼+𝑢 indicating all other items excluding items the
user liked. 𝑦̂𝑢𝑖 and 𝑦̂𝑢 𝑗 are the predicted scores of the user 𝑢 to item 𝑖 and 𝑗 , respectively.
The prior 𝑝(Θ) is a normal distribution with zero mean and variance-covariance matrix
ΣΘ. Here, we let ΣΘ = 𝜆Θ𝐼.

We will implement the base class mxnet.gluon.loss.Loss and override the forward

method to construct the Bayesian personalized ranking loss. We begin by importing the
Loss class and the np module.
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from mxnet import gluon, np, npx

npx.set_np()

The implementation of BPR loss is as follows.

#@save
class BPRLoss(gluon.loss.Loss):

def __init__(self, weight=None, batch_axis=0, **kwargs):
super(BPRLoss, self).__init__(weight=None, batch_axis=0, **kwargs)

def forward(self, positive, negative):
distances = positive - negative
loss = - np.sum(np.log(npx.sigmoid(distances)), 0, keepdims=True)
return loss

21.5.2 Hinge Loss and its Implementation
The Hinge loss for ranking has different form to the hinge loss 267 provided within the
gluon library that is often used in classifiers such as SVMs. The loss used for ranking in
recommender systems has the following form.∑

(𝑢,𝑖, 𝑗∈𝐷)
max(𝑚 − 𝑦̂𝑢𝑖 + 𝑦̂𝑢 𝑗 , 0) (21.5.3)

where 𝑚 is the safety margin size. It aims to push negative items away from positive items.
Similar to BPR, it aims to optimize for relevant distance between positive and negative
samples instead of absolute outputs, making it well suited to recommender systems.

#@save
class HingeLossbRec(gluon.loss.Loss):

def __init__(self, weight=None, batch_axis=0, **kwargs):
super(HingeLossbRec, self).__init__(weight=None, batch_axis=0,

**kwargs)

def forward(self, positive, negative, margin=1):
distances = positive - negative
loss = np.sum(np.maximum(- distances + margin, 0))
return loss

These two losses are interchangeable for personalized ranking in recommendation.

21.5.3 Summary
• There are three types of ranking losses available for the personalized ranking task in

recommender systems, namely, pointwise, pairwise and listwise methods.

• The two pairwise loses, Bayesian personalized ranking loss and hinge loss, can be used
interchangeably.

https://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.HingeLoss
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268

21.5.4 Exercises
• Are there any variants of BPR and hinge loss available?

• Can you find any recommendation models that use BPR or hinge loss?

Discussions268 .

21.6 Neural Collaborative Filtering for Personalized
Ranking

This section moves beyond explicit feedback, introducing the neural collaborative filter-
ing (NCF) framework for recommendation with implicit feedback. Implicit feedback is
pervasive in recommender systems. Actions such as Clicks, buys, and watches are com-
mon implicit feedback which are easy to collect and indicative of users’ preferences. The
model we will introduce, titled NeuMF (He et al., 2017), short for neural matrix factor-
ization, aims to address the personalized ranking task with implicit feedback. This model
leverages the flexibility and non-linearity of neural networks to replace dot products of ma-
trix factorization, aiming at enhancing the model expressiveness. In specific, this model
is structured with two subnetworks including generalized matrix factorization (GMF) and
MLP and models the interactions from two pathways instead of simple dot products. The
outputs of these two networks are concatenated for the final prediction scores calculation.
Unlike the rating prediction task in AutoRec, this model generates a ranked recommenda-
tion list to each user based on the implicit feedback. We will use the personalized ranking
loss introduced in the last section to train this model.

21.6.1 The NeuMF model
As aforementioned, NeuMF fuses two subnetworks. The GMF is a generic neural network
version of matrix factorization where the input is the elementwise product of user and item
latent factors. It consists of two neural layers:

x = p𝑢 � q𝑖

𝑦̂𝑢𝑖 = 𝛼(h>x),
(21.6.1)

where � denotes the Hadamard product of vectors. P ∈ R𝑚×𝑘 and Q ∈ R𝑛×𝑘 correspond
to user and item latent matrix respectively. p𝑢 ∈ R𝑘 is the 𝑢th row of 𝑃 and q𝑖 ∈ R𝑘 is the
𝑖th row of 𝑄. 𝛼 and ℎ denote the activation function and weight of the output layer. 𝑦̂𝑢𝑖 is
the prediction score of the user 𝑢 might give to the item 𝑖.

Another component of this model is MLP. To enrich model flexibility, theMLP subnetwork
does not share user and item embeddings with GMF. It uses the concatenation of user and
item embeddings as input. With the complicated connections and nonlinear transforma-
tions, it is capable of estimating the intricate interactions between users and items. More

https://discuss.d2l.ai/t/402
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precisely, the MLP subnetwork is defined as:

𝑧 (1) = 𝜙1 (U𝑢,V𝑖) = [U𝑢,V𝑖]
𝜙 (2) (𝑧 (1) ) = 𝛼1 (W (2) 𝑧 (1) + 𝑏 (2) )

...

𝜙 (𝐿) (𝑧 (𝐿−1) ) = 𝛼𝐿 (W (𝐿) 𝑧 (𝐿−1) + 𝑏 (𝐿) ))
𝑦̂𝑢𝑖 = 𝛼(h>𝜙𝐿 (𝑧 (𝐿−1) ))

(21.6.2)

where W∗,b∗ and 𝛼∗ denote the weight matrix, bias vector, and activation function. 𝜙∗
denotes the function of the corresponding layer. z∗ denotes the output of corresponding
layer.

To fuse the results of GMF and MLP, instead of simple addition, NeuMF concatenates the
second last layers of two subnetworks to create a feature vector which can be passed to the
further layers. Afterwards, the outputs are projected with matrix h and a sigmoid activation
function. The prediction layer is formulated as:

𝑦̂𝑢𝑖 = 𝜎(h> [x, 𝜙𝐿 (𝑧 (𝐿−1) )]). (21.6.3)

The following figure illustrates the model architecture of NeuMF.

tFig. 21.6.1 Illustration of the NeuMF model

import random
import mxnet as mx
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

21.6.2 Model Implementation
The following code implements the NeuMF model. It consists of a generalized matrix
factorization model and an MLP with different user and item embedding vectors. The
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structure of the MLP is controlled with the parameter nums_hiddens. ReLU is used as the
default activation function.

class NeuMF(nn.Block):
def __init__(self, num_factors, num_users, num_items, nums_hiddens,

**kwargs):
super(NeuMF, self).__init__(**kwargs)
self.P = nn.Embedding(num_users, num_factors)
self.Q = nn.Embedding(num_items, num_factors)
self.U = nn.Embedding(num_users, num_factors)
self.V = nn.Embedding(num_items, num_factors)
self.mlp = nn.Sequential()
for num_hiddens in nums_hiddens:

self.mlp.add(nn.Dense(num_hiddens, activation='relu',
use_bias=True))

self.prediction_layer = nn.Dense(1, activation='sigmoid', use_
↩→bias=False)

def forward(self, user_id, item_id):
p_mf = self.P(user_id)
q_mf = self.Q(item_id)
gmf = p_mf * q_mf
p_mlp = self.U(user_id)
q_mlp = self.V(item_id)
mlp = self.mlp(np.concatenate([p_mlp, q_mlp], axis=1))
con_res = np.concatenate([gmf, mlp], axis=1)
return self.prediction_layer(con_res)

21.6.3 Customized Dataset with Negative Sampling
For pairwise ranking loss, an important step is negative sampling. For each user, the items
that a user has not interacted with are candidate items (unobserved entries). The follow-
ing function takes users identity and candidate items as input, and samples negative items
randomly for each user from the candidate set of that user. During the training stage, the
model ensures that the items that a user likes to be ranked higher than items he dislikes or
has not interacted with.

class PRDataset(gluon.data.Dataset):
def __init__(self, users, items, candidates, num_items):

self.users = users
self.items = items
self.cand = candidates
self.all = set([i for i in range(num_items)])

def __len__(self):
return len(self.users)

def __getitem__(self, idx):
neg_items = list(self.all - set(self.cand[int(self.users[idx])]))
indices = random.randint(0, len(neg_items) - 1)
return self.users[idx], self.items[idx], neg_items[indices]
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21.6.4 Evaluator
In this section, we adopt the splitting by time strategy to construct the training and test sets.
Two evaluation measures including hit rate at given cutting off ℓ (Hit@ℓ) and area under
the ROC curve (AUC) are used to assess the model effectiveness. Hit rate at given position
ℓ for each user indicates that whether the recommended item is included in the top ℓ ranked
list. The formal definition is as follows:

Hit@ℓ =
1
𝑚

∑
𝑢∈U

1(𝑟𝑎𝑛𝑘𝑢,𝑔𝑢 <= ℓ), (21.6.4)

where 1 denotes an indicator function that is equal to one if the ground truth item is ranked
in the top ℓ list, otherwise it is equal to zero. 𝑟𝑎𝑛𝑘𝑢,𝑔𝑢 denotes the ranking of the ground
truth item 𝑔𝑢 of the user 𝑢 in the recommendation list (The ideal ranking is 1). 𝑚 is the
number of users. U is the user set.

The definition of AUC is as follows:

AUC =
1
𝑚

∑
𝑢∈U

1
|I\𝑆𝑢 |

∑
𝑗∈𝐼\𝑆𝑢

1(𝑟𝑎𝑛𝑘𝑢,𝑔𝑢 < 𝑟𝑎𝑛𝑘𝑢, 𝑗 ), (21.6.5)

whereI is the item set. 𝑆𝑢 is the candidate items of user 𝑢. Note that many other evaluation
protocols such as precision, recall and normalized discounted cumulative gain (NDCG) can
also be used.

The following function calculates the hit counts and AUC for each user.

#@save
def hit_and_auc(rankedlist, test_matrix, k):

hits_k = [(idx, val) for idx, val in enumerate(rankedlist[:k])
if val in set(test_matrix)]

hits_all = [(idx, val) for idx, val in enumerate(rankedlist)
if val in set(test_matrix)]

max = len(rankedlist) - 1
auc = 1.0 * (max - hits_all[0][0]) / max if len(hits_all) > 0 else 0
return len(hits_k), auc

Then, the overall Hit rate and AUC are calculated as follows.

#@save
def evaluate_ranking(net, test_input, seq, candidates, num_users, num_items,

devices):
ranked_list, ranked_items, hit_rate, auc = {}, {}, [], []
all_items = set([i for i in range(num_users)])
for u in range(num_users):

neg_items = list(all_items - set(candidates[int(u)]))
user_ids, item_ids, x, scores = [], [], [], []
[item_ids.append(i) for i in neg_items]
[user_ids.append(u) for _ in neg_items]
x.extend([np.array(user_ids)])
if seq is not None:

x.append(seq[user_ids, :])
x.extend([np.array(item_ids)])

(continues on next page)
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(continued from previous page)

test_data_iter = gluon.data.DataLoader(
gluon.data.ArrayDataset(*x), shuffle=False, last_batch="keep",
batch_size=1024)

for index, values in enumerate(test_data_iter):
x = [gluon.utils.split_and_load(v, devices, even_split=False)

for v in values]
scores.extend([list(net(*t).asnumpy()) for t in zip(*x)])

scores = [item for sublist in scores for item in sublist]
item_scores = list(zip(item_ids, scores))
ranked_list[u] = sorted(item_scores, key=lambda t: t[1], reverse=True)
ranked_items[u] = [r[0] for r in ranked_list[u]]
temp = hit_and_auc(ranked_items[u], test_input[u], 50)
hit_rate.append(temp[0])
auc.append(temp[1])

return np.mean(np.array(hit_rate)), np.mean(np.array(auc))

21.6.5 Training and Evaluating the Model
The training function is defined below. We train the model in the pairwise manner.

#@save
def train_ranking(net, train_iter, test_iter, loss, trainer, test_seq_iter,

num_users, num_items, num_epochs, devices, evaluator,
candidates, eval_step=1):

timer, hit_rate, auc = d2l.Timer(), 0, 0
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],

legend=['test hit rate', 'test AUC'])
for epoch in range(num_epochs):

metric, l = d2l.Accumulator(3), 0.
for i, values in enumerate(train_iter):

input_data = []
for v in values:

input_data.append(gluon.utils.split_and_load(v, devices))
with autograd.record():

p_pos = [net(*t) for t in zip(*input_data[:-1])]
p_neg = [net(*t) for t in zip(*input_data[:-2],

input_data[-1])]
ls = [loss(p, n) for p, n in zip(p_pos, p_neg)]

[l.backward(retain_graph=False) for l in ls]
l += sum([l.asnumpy() for l in ls]).mean()/len(devices)
trainer.step(values[0].shape[0])
metric.add(l, values[0].shape[0], values[0].size)
timer.stop()

with autograd.predict_mode():
if (epoch + 1) % eval_step == 0:

hit_rate, auc = evaluator(net, test_iter, test_seq_iter,
candidates, num_users, num_items,
devices)

animator.add(epoch + 1, (hit_rate, auc))
print(f'train loss {metric[0] / metric[1]:.3f}, '

f'test hit rate {float(hit_rate):.3f}, test AUC {float(auc):.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '

f'on {str(devices)}')
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Now, we can load the MovieLens 100k dataset and train the model. Since there are only
ratings in the MovieLens dataset, with some losses of accuracy, we binarize these ratings to
zeros and ones. If a user rated an item, we consider the implicit feedback as one, otherwise
as zero. The action of rating an item can be treated as a form of providing implicit feedback.
Here, we split the dataset in the seq-aware mode where users’ latest interacted items are
left out for test.

batch_size = 1024
df, num_users, num_items = d2l.read_data_ml100k()
train_data, test_data = d2l.split_data_ml100k(df, num_users, num_items,

'seq-aware')
users_train, items_train, ratings_train, candidates = d2l.load_data_ml100k(

train_data, num_users, num_items, feedback="implicit")
users_test, items_test, ratings_test, test_iter = d2l.load_data_ml100k(

test_data, num_users, num_items, feedback="implicit")
train_iter = gluon.data.DataLoader(

PRDataset(users_train, items_train, candidates, num_items ), batch_size,
True, last_batch="rollover", num_workers=d2l.get_dataloader_workers())

We then create and initialize the model. we use a three-layer MLP with constant hidden
size 10.

devices = d2l.try_all_gpus()
net = NeuMF(10, num_users, num_items, nums_hiddens=[10, 10, 10])
net.initialize(ctx=devices, force_reinit=True, init=mx.init.Normal(0.01))

[22:14:55] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
[22:14:56] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU
[22:14:56] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

The following code trains the model.

lr, num_epochs, wd, optimizer = 0.01, 10, 1e-5, 'adam'
loss = d2l.BPRLoss()
trainer = gluon.Trainer(net.collect_params(), optimizer,

{"learning_rate": lr, 'wd': wd})
train_ranking(net, train_iter, test_iter, loss, trainer, None, num_users,

num_items, num_epochs, devices, evaluate_ranking, candidates)

train loss 16.982, test hit rate 0.075, test AUC 0.531
2.6 examples/sec on [gpu(0), gpu(1)]

21.6.6 Summary
• Adding nonlinearity to matrix factorization model is beneficial for improving the model

capability and effectiveness.
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• NeuMF is a combination of matrix factorization and an MLP. The MLP takes the con-
catenation of user and item embeddings as input.

21.6.7 Exercises
• Vary the size of latent factors. How the size of latent factors impact the model perfor-

mance?

• Vary the architectures (e.g., number of layers, number of neurons of each layer) of the
MLP to check the its impact on the performance.

• Try different optimizers, learning rate and weight decay rate.

• Try to use hinge loss defined in the last section to optimize this model.

Discussions269 .

21.7 Sequence-Aware Recommender Systems

In previous sections, we abstract the recommendation task as a matrix completion prob-
lem without considering users’ short-term behaviors. In this section, we will introduce a
recommendation model that takes the sequentially-ordered user interaction logs into ac-
count. It is a sequence-aware recommender (Quadrana et al., 2018) where the input is an
ordered and often timestamped list of past user actions. A number of recent literatures have
demonstrated the usefulness of incorporating such information in modeling users’ temporal
behavioral patterns and discovering their interest drift.

The model we will introduce, Caser (Tang and Wang, 2018), short for convolutional se-
quence embedding recommendation model, adopts convolutional neural networks capture
the dynamic pattern influences of users’ recent activities. The main component of Caser
consists of a horizontal convolutional network and a vertical convolutional network, aiming
to uncover the union-level and point-level sequence patterns, respectively. Point-level pat-
tern indicates the impact of single item in the historical sequence on the target item, while
union level pattern implies the influences of several previous actions on the subsequent

https://discuss.d2l.ai/t/403
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target. For example, buying both milk and butter together leads to higher probability of
buying flour than just buying one of them. Moreover, users’ general interests, or long term
preferences are also modeled in the last fully connected layers, resulting in a more compre-
hensive modeling of user interests. Details of the model are described as follows.

21.7.1 Model Architectures
In sequence-aware recommendation system, each user is associated with a sequence of
some items from the item set. Let 𝑆𝑢 = (𝑆𝑢1 , ...𝑆

𝑢
|𝑆𝑢 | ) denotes the ordered sequence. The

goal of Caser is to recommend item by considering user general tastes as well as short-term
intention. Suppose we take the previous 𝐿 items into consideration, an embedding matrix
that represents the former interactions for time step 𝑡 can be constructed:

E(𝑢,𝑡 ) = [q𝑆𝑢𝑡−𝐿 , ...,q𝑆𝑢𝑡−2
,q𝑆𝑢

𝑡−1
]>, (21.7.1)

where Q ∈ R𝑛×𝑘 represents item embeddings and q𝑖 denotes the 𝑖th row. E(𝑢,𝑡 ) ∈ R𝐿×𝑘
can be used to infer the transient interest of user 𝑢 at time-step 𝑡. We can view the input
matrix E(𝑢,𝑡 ) as an image which is the input of the subsequent two convolutional compo-
nents.

The horizontal convolutional layer has 𝑑 horizontal filters F 𝑗 ∈ Rℎ×𝑘 , 1 ≤ 𝑗 ≤ 𝑑, ℎ =
{1, ..., 𝐿}, and the vertical convolutional layer has 𝑑′ vertical filtersG 𝑗 ∈ R𝐿×1, 1 ≤ 𝑗 ≤ 𝑑′.
After a series of convolutional and pool operations, we get the two outputs:

o = HConv(E(𝑢,𝑡 ) ,F)
o′ = VConv(E(𝑢,𝑡 ) ,G),

(21.7.2)

where o ∈ R𝑑 is the output of horizontal convolutional network and o′ ∈ R𝑘𝑑′ is the output
of vertical convolutional network. For simplicity, we omit the details of convolution and
pool operations. They are concatenated and fed into a fully connected neural network layer
to get more high-level representations.

z = 𝜙(W[o, o′]> + b), (21.7.3)

where W ∈ R𝑘×(𝑑+𝑘𝑑′ ) is the weight matrix and b ∈ R𝑘 is the bias. The learned vector
z ∈ R𝑘 is the representation of user’s short-term intent.

At last, the prediction function combines users’ short-term and general taste together, which
is defined as:

𝑦̂𝑢𝑖𝑡 = v𝑖 · [z,p𝑢]> + b′𝑖 , (21.7.4)

where V ∈ R𝑛×2𝑘 is another item embedding matrix. b′ ∈ R𝑛 is the item specific bias.
P ∈ R𝑚×𝑘 is the user embedding matrix for users’ general tastes. p𝑢 ∈ R𝑘 is the 𝑢th row
of 𝑃 and v𝑖 ∈ R2𝑘 is the 𝑖th row of V.

The model can be learned with BPR or Hinge loss. The architecture of Caser is shown
below:

We first import the required libraries.
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tFig. 21.7.1 Illustration of the Caser Model

import random
import mxnet as mx
from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

21.7.2 Model Implementation
The following code implements the Caser model. It consists of a vertical convolutional
layer, a horizontal convolutional layer, and a full-connected layer.

class Caser(nn.Block):
def __init__(self, num_factors, num_users, num_items, L=5, d=16,

d_prime=4, drop_ratio=0.05, **kwargs):
super(Caser, self).__init__(**kwargs)
self.P = nn.Embedding(num_users, num_factors)
self.Q = nn.Embedding(num_items, num_factors)
self.d_prime, self.d = d_prime, d
# Vertical convolution layer
self.conv_v = nn.Conv2D(d_prime, (L, 1), in_channels=1)
# Horizontal convolution layer
h = [i + 1 for i in range(L)]
self.conv_h, self.max_pool = nn.Sequential(), nn.Sequential()
for i in h:

self.conv_h.add(nn.Conv2D(d, (i, num_factors), in_channels=1))
self.max_pool.add(nn.MaxPool1D(L - i + 1))

# Fully connected layer
self.fc1_dim_v, self.fc1_dim_h = d_prime * num_factors, d * len(h)
self.fc = nn.Dense(in_units=d_prime * num_factors + d * L,

activation='relu', units=num_factors)
self.Q_prime = nn.Embedding(num_items, num_factors * 2)

(continues on next page)
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self.b = nn.Embedding(num_items, 1)
self.dropout = nn.Dropout(drop_ratio)

def forward(self, user_id, seq, item_id):
item_embs = np.expand_dims(self.Q(seq), 1)
user_emb = self.P(user_id)
out, out_h, out_v, out_hs = None, None, None, []
if self.d_prime:

out_v = self.conv_v(item_embs)
out_v = out_v.reshape(out_v.shape[0], self.fc1_dim_v)

if self.d:
for conv, maxp in zip(self.conv_h, self.max_pool):

conv_out = np.squeeze(npx.relu(conv(item_embs)), axis=3)
t = maxp(conv_out)
pool_out = np.squeeze(t, axis=2)
out_hs.append(pool_out)

out_h = np.concatenate(out_hs, axis=1)
out = np.concatenate([out_v, out_h], axis=1)
z = self.fc(self.dropout(out))
x = np.concatenate([z, user_emb], axis=1)
q_prime_i = np.squeeze(self.Q_prime(item_id))
b = np.squeeze(self.b(item_id))
res = (x * q_prime_i).sum(1) + b
return res

21.7.3 Sequential Dataset with Negative Sampling
To process the sequential interaction data, we need to reimplement the Dataset class. The
following code creates a new dataset class named SeqDataset. In each sample, it outputs
the user identity, his previous 𝐿 interacted items as a sequence and the next item he interacts
as the target. The following figure demonstrates the data loading process for one user.
Suppose that this user liked 9 movies, we organize these nine movies in chronological
order. The latest movie is left out as the test item. For the remaining eight movies, we
can get three training samples, with each sample containing a sequence of five (𝐿 = 5)
movies and its subsequent item as the target item. Negative samples are also included in
the customized dataset.

tFig. 21.7.2 Illustration of the data generation process

class SeqDataset(gluon.data.Dataset):
def __init__(self, user_ids, item_ids, L, num_users, num_items,

(continues on next page)
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candidates):
user_ids, item_ids = np.array(user_ids), np.array(item_ids)
sort_idx = np.array(sorted(range(len(user_ids)),

key=lambda k: user_ids[k]))
u_ids, i_ids = user_ids[sort_idx], item_ids[sort_idx]
temp, u_ids, self.cand = {}, u_ids.asnumpy(), candidates
self.all_items = set([i for i in range(num_items)])
[temp.setdefault(u_ids[i], []).append(i) for i, _ in enumerate(u_ids)]
temp = sorted(temp.items(), key=lambda x: x[0])
u_ids = np.array([i[0] for i in temp])
idx = np.array([i[1][0] for i in temp])
self.ns = ns = int(sum([c - L if c >= L + 1 else 1 for c

in np.array([len(i[1]) for i in temp])]))
self.seq_items = np.zeros((ns, L))
self.seq_users = np.zeros(ns, dtype='int32')
self.seq_tgt = np.zeros((ns, 1))
self.test_seq = np.zeros((num_users, L))
test_users, _uid = np.empty(num_users), None
for i, (uid, i_seq) in enumerate(self._seq(u_ids, i_ids, idx, L + 1)):

if uid != _uid:
self.test_seq[uid][:] = i_seq[-L:]
test_users[uid], _uid = uid, uid

self.seq_tgt[i][:] = i_seq[-1:]
self.seq_items[i][:], self.seq_users[i] = i_seq[:L], uid

def _win(self, tensor, window_size, step_size=1):
if len(tensor) - window_size >= 0:

for i in range(len(tensor), 0, - step_size):
if i - window_size >= 0:

yield tensor[i - window_size:i]
else:

break
else:

yield tensor

def _seq(self, u_ids, i_ids, idx, max_len):
for i in range(len(idx)):

stop_idx = None if i >= len(idx) - 1 else int(idx[i + 1])
for s in self._win(i_ids[int(idx[i]):stop_idx], max_len):

yield (int(u_ids[i]), s)

def __len__(self):
return self.ns

def __getitem__(self, idx):
neg = list(self.all_items - set(self.cand[int(self.seq_users[idx])]))
i = random.randint(0, len(neg) - 1)
return (self.seq_users[idx], self.seq_items[idx], self.seq_tgt[idx],

neg[i])

21.7.4 Load the MovieLens 100K dataset
Afterwards, we read and split the MovieLens 100K dataset in sequence-aware mode and
load the training data with sequential dataloader implemented above.
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TARGET_NUM, L, batch_size = 1, 5, 4096
df, num_users, num_items = d2l.read_data_ml100k()
train_data, test_data = d2l.split_data_ml100k(df, num_users, num_items,

'seq-aware')
users_train, items_train, ratings_train, candidates = d2l.load_data_ml100k(

train_data, num_users, num_items, feedback="implicit")
users_test, items_test, ratings_test, test_iter = d2l.load_data_ml100k(

test_data, num_users, num_items, feedback="implicit")
train_seq_data = SeqDataset(users_train, items_train, L, num_users,

num_items, candidates)
train_iter = gluon.data.DataLoader(train_seq_data, batch_size, True,

last_batch="rollover",
num_workers=d2l.get_dataloader_workers())

test_seq_iter = train_seq_data.test_seq
train_seq_data[0]

Downloading ../data/ml-100k.zip from https://files.grouplens.org/datasets/
↩→movielens/ml-100k.zip...
[22:02:15] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

(array(0, dtype=int32),
array([241., 170., 110., 255., 4.]),
array([101.]),
709)

The training data structure is shown above. The first element is the user identity, the next
list indicates the last five items this user liked, and the last element is the item this user liked
after the five items.

21.7.5 Train the Model
Now, let’s train the model. We use the same setting as NeuMF, including learning rate,
optimizer, and 𝑘 , in the last section so that the results are comparable.

devices = d2l.try_all_gpus()
net = Caser(10, num_users, num_items, L)
net.initialize(ctx=devices, force_reinit=True, init=mx.init.Normal(0.01))
lr, num_epochs, wd, optimizer = 0.04, 8, 1e-5, 'adam'
loss = d2l.BPRLoss()
trainer = gluon.Trainer(net.collect_params(), optimizer,

{"learning_rate": lr, 'wd': wd})

# Running takes > 1h (pending fix from MXNet)
# d2l.train_ranking(net, train_iter, test_iter, loss, trainer, test_seq_iter,␣
↩→num_users, num_items, num_epochs, devices, d2l.evaluate_ranking, candidates,␣
↩→eval_step=1)

[22:04:02] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣

(continues on next page)
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(continued from previous page)

↩→for GPU
[22:04:02] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for GPU

21.7.6 Summary
• Inferring a user’s short-term and long-term interests can make prediction of the next item

that he preferred more effectively.

• Convolutional neural networks can be utilized to capture users’ short-term interests from
sequential interactions.

21.7.7 Exercises
• Conduct an ablation study by removing one of the horizontal and vertical convolutional

networks, which component is the more important ?

• Vary the hyperparameter 𝐿. Does longer historical interactions bring higher accuracy?

• Apart from the sequence-aware recommendation task we introduced above, there is an-
other type of sequence-aware recommendation task called session-based recommen-
dation (Hidasi et al., 2015). Can you explain the differences between these two tasks?

Discussions270 .

21.8 Feature-Rich Recommender Systems

Interaction data is the most basic indication of users’ preferences and interests. It plays a
critical role in former introduced models. Yet, interaction data is usually extremely sparse
and can be noisy at times. To address this issue, we can integrate side information such as
features of items, profiles of users, and even in which context that the interaction occurred
into the recommendation model. Utilizing these features are helpful in making recommen-
dations in that these features can be an effective predictor of users interests especially when
interaction data is lacking. As such, it is essential for recommendation models also have the
capability to deal with those features and give the model some content/context awareness.
To demonstrate this type of recommendation models, we introduce another task on click-
through rate (CTR) for online advertisement recommendations (McMahan et al., 2013) and
present an anonymous advertising dataset. Targeted advertisement services have attracted
widespread attention and are often framed as recommendation engines. Recommending
advertisements that match users’ personal taste and interest is important for click-through
rate improvement.

Digital marketers use online advertising to display advertisements to customers. Click-
through rate is a metric that measures the number of clicks advertisers receive on their

https://discuss.d2l.ai/t/404
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ads per number of impressions and it is expressed as a percentage calculated with the for-
mula:

CTR =
#Clicks

#Impressions
× 100%. (21.8.1)

Click-through rate is an important signal that indicates the effectiveness of prediction algo-
rithms. Click-through rate prediction is a task of predicting the likelihood that something
on a website will be clicked. Models on CTR prediction can not only be employed in
targeted advertising systems but also in general item (e.g., movies, news, products) recom-
mender systems, email campaigns, and even search engines. It is also closely related to
user satisfaction, conversion rate, and can be helpful in setting campaign goals as it can
help advertisers to set realistic expectations.

import os
from collections import defaultdict
from mxnet import gluon, np
from d2l import mxnet as d2l

21.8.1 An Online Advertising Dataset
With the considerable advancements of Internet and mobile technology, online advertising
has become an important income resource and generates vast majority of revenue in the
Internet industry. It is important to display relevant advertisements or advertisements that
pique users’ interests so that casual visitors can be converted into paying customers. The
dataset we introduced is an online advertising dataset. It consists of 34 fields, with the first
column representing the target variable that indicates if an ad was clicked (1) or not (0). All
the other columns are categorical features. The columns might represent the advertisement
id, site or application id, device id, time, user profiles and so on. The real semantics of the
features are undisclosed due to anonymization and privacy concern.

The following code downloads the dataset from our server and saves it into the local data
folder.

#@save
d2l.DATA_HUB['ctr'] = (d2l.DATA_URL + 'ctr.zip',

'e18327c48c8e8e5c23da714dd614e390d369843f')

data_dir = d2l.download_extract('ctr')

Downloading ../data/ctr.zip from http://d2l-data.s3-accelerate.amazonaws.com/
↩→ctr.zip...

There are a training set and a test set, consisting of 15000 and 3000 samples/lines, respec-
tively.

21.8.2 Dataset Wrapper
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For the convenience of data loading, we implement a CTRDataset which loads the adver-
tising dataset from the CSV file and can be used by DataLoader.

#@save
class CTRDataset(gluon.data.Dataset):

def __init__(self, data_path, feat_mapper=None, defaults=None,
min_threshold=4, num_feat=34):

self.NUM_FEATS, self.count, self.data = num_feat, 0, {}
feat_cnts = defaultdict(lambda: defaultdict(int))
self.feat_mapper, self.defaults = feat_mapper, defaults
self.field_dims = np.zeros(self.NUM_FEATS, dtype=np.int64)
with open(data_path) as f:

for line in f:
instance = {}
values = line.rstrip('\n').split('\t')
if len(values) != self.NUM_FEATS + 1:

continue
label = np.float32([0, 0])
label[int(values[0])] = 1
instance['y'] = [np.float32(values[0])]
for i in range(1, self.NUM_FEATS + 1):

feat_cnts[i][values[i]] += 1
instance.setdefault('x', []).append(values[i])

self.data[self.count] = instance
self.count = self.count + 1

if self.feat_mapper is None and self.defaults is None:
feat_mapper = {i: {feat for feat, c in cnt.items() if c >=

min_threshold} for i, cnt in feat_cnts.items()}
self.feat_mapper = {i: {feat_v: idx for idx, feat_v in␣

↩→enumerate(feat_values)}
for i, feat_values in feat_mapper.items()}

self.defaults = {i: len(feat_values) for i, feat_values in feat_
↩→mapper.items()}

for i, fm in self.feat_mapper.items():
self.field_dims[i - 1] = len(fm) + 1

self.offsets = np.array((0, *np.cumsum(self.field_dims).asnumpy()
[:-1]))

def __len__(self):
return self.count

def __getitem__(self, idx):
feat = np.array([self.feat_mapper[i + 1].get(v, self.defaults[i + 1])

for i, v in enumerate(self.data[idx]['x'])])
return feat + self.offsets, self.data[idx]['y']

The following example loads the training data and print out the first record.

train_data = CTRDataset(os.path.join(data_dir, 'train.csv'))
train_data[0]

[21:49:38] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
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271

272

273

(array([ 143., 144., 227., 232., 957., 1250., 1471., 1566., 1624.,
1662., 2008., 2061., 2229., 2304., 2305., 2360., 2745., 2746.,
2747., 2748., 2892., 2988., 3165., 3167., 3194., 3195., 3258.,
3683., 3687., 3689., 3732., 3761., 3765., 3803.]),

[1.0])

As can be seen, all the 34 fields are categorical features. Each value represents the one-hot
index of the corresponding entry. The label 0 means that it is not clicked. This CTRDataset
can also be used to load other datasets such as the Criteo display advertising challenge
dataset271 and the Avazu click-through rate prediction dataset272 .

21.8.3 Summary
• Click-through rate is an important metric that is used to measure the effectiveness of

advertising systems and recommender systems.

• Click-through rate prediction is usually converted to a binary classification problem. The
target is to predict whether an ad/item will be clicked or not based on given features.

21.8.4 Exercises
• Can you load the Criteo and Avazu dataset with the provided CTRDataset. It is worth

noting that the Criteo dataset consisting of real-valued features so you may have to
revise the code a bit.

Discussions273 .

21.9 Factorization Machines

Factorization machines (FM), proposed by Rendle (2010), is a supervised algorithm that
can be used for classification, regression, and ranking tasks. It quickly took notice and be-
came a popular and impactful method for making predictions and recommendations. Par-
ticularly, it is a generalization of the linear regression model and the matrix factorization
model. Moreover, it is reminiscent of support vector machines with a polynomial kernel.
The strengths of factorization machines over the linear regression and matrix factorization
are: (1) it can model 𝜒-way variable interactions, where 𝜒 is the number of polynomial
order and is usually set to two. (2) A fast optimization algorithm associated with factor-
ization machines can reduce the polynomial computation time to linear complexity, mak-
ing it extremely efficient especially for high dimensional sparse inputs. For these reasons,
factorization machines are widely employed in modern advertisement and products recom-
mendations. The technical details and implementations are described below.

21.9.1 2-Way Factorization Machines

https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
https://www.kaggle.com/c/avazu-ctr-prediction
https://discuss.d2l.ai/t/405
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Formally, let 𝑥 ∈ R𝑑 denote the feature vectors of one sample, and 𝑦 denote the correspond-
ing label which can be real-valued label or class label such as binary class “click/non-click”.
The model for a factorization machine of degree two is defined as:

𝑦̂(𝑥) = w0 +
𝑑∑
𝑖=1

w𝑖𝑥𝑖 +
𝑑∑
𝑖=1

𝑑∑
𝑗=𝑖+1
〈v𝑖 ,v 𝑗〉𝑥𝑖𝑥 𝑗 (21.9.1)

wherew0 ∈ R is the global bias;w ∈ R𝑑 denotes the weights of the i-th variable;V ∈ R𝑑×𝑘
represents the feature embeddings; v𝑖 represents the 𝑖th row of V; 𝑘 is the dimensionality
of latent factors; 〈·, ·〉 is the dot product of two vectors. 〈v𝑖 ,v 𝑗〉 model the interaction
between the 𝑖th and 𝑗 th feature. Some feature interactions can be easily understood so they
can be designed by experts. However, most other feature interactions are hidden in data
and difficult to identify. So modeling feature interactions automatically can greatly reduce
the efforts in feature engineering. It is obvious that the first two terms correspond to the
linear regression model and the last term is an extension of the matrix factorization model.
If the feature 𝑖 represents an item and the feature 𝑗 represents a user, the third term is
exactly the dot product between user and item embeddings. It is worth noting that FM can
also generalize to higher orders (degree > 2). Nevertheless, the numerical stability might
weaken the generalization.

21.9.2 An Efficient Optimization Criterion
Optimizing the factorization machines in a straight forward method leads to a complexity
of O(𝑘𝑑2) as all pairwise interactions require to be computed. To solve this inefficiency
problem, we can reorganize the third term of FM which could greatly reduce the computa-
tion cost, leading to a linear time complexity (O(𝑘𝑑)). The reformulation of the pairwise
interaction term is as follows:

𝑑∑
𝑖=1

𝑑∑
𝑗=𝑖+1
〈v𝑖 ,v 𝑗〉𝑥𝑖𝑥 𝑗

=
1
2

𝑑∑
𝑖=1

𝑑∑
𝑗=1
〈v𝑖 ,v 𝑗〉𝑥𝑖𝑥 𝑗 −

1
2

𝑑∑
𝑖=1
〈v𝑖 ,v𝑖〉𝑥𝑖𝑥𝑖

=
1
2
( 𝑑∑
𝑖=1

𝑑∑
𝑗=1

𝑘∑
𝑙=1

v𝑖,𝑙v 𝑗 ,𝑙𝑥𝑖𝑥 𝑗 −
𝑑∑
𝑖=1

𝑘∑
𝑙=1

v𝑖,𝑙v𝑖,𝑙𝑥𝑖𝑥𝑖
)

=
1
2

𝑘∑
𝑙=1

(
(
𝑑∑
𝑖=1

v𝑖,𝑙𝑥𝑖)(
𝑑∑
𝑗=1

v 𝑗 ,𝑙𝑥 𝑗 ) −
𝑑∑
𝑖=1

v2
𝑖,𝑙𝑥

2
𝑖

)
=

1
2

𝑘∑
𝑙=1

(
(
𝑑∑
𝑖=1

v𝑖,𝑙𝑥𝑖)2 −
𝑑∑
𝑖=1

v2
𝑖,𝑙𝑥

2
𝑖 )

(21.9.2)

With this reformulation, the model complexity are decreased greatly. Moreover, for sparse
features, only non-zero elements needs to be computed so that the overall complexity is
linear to the number of non-zero features.

To learn the FM model, we can use the MSE loss for regression task, the cross-entropy
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loss for classification tasks, and the BPR loss for ranking task. Standard optimizers such as
stochastic gradient descent and Adam are viable for optimization.

import os
from mxnet import gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

21.9.3 Model Implementation
The following code implement the factorization machines. It is clear to see that FM con-
sists a linear regression block and an efficient feature interaction block. We apply a sig-
moid function over the final score since we treat the CTR prediction as a classification
task.

class FM(nn.Block):
def __init__(self, field_dims, num_factors):

super(FM, self).__init__()
num_inputs = int(sum(field_dims))
self.embedding = nn.Embedding(num_inputs, num_factors)
self.fc = nn.Embedding(num_inputs, 1)
self.linear_layer = nn.Dense(1, use_bias=True)

def forward(self, x):
square_of_sum = np.sum(self.embedding(x), axis=1) ** 2
sum_of_square = np.sum(self.embedding(x) ** 2, axis=1)
x = self.linear_layer(self.fc(x).sum(1)) \

+ 0.5 * (square_of_sum - sum_of_square).sum(1, keepdims=True)
x = npx.sigmoid(x)
return x

21.9.4 Load the Advertising Dataset
Weuse theCTRdatawrapper from the last section to load the online advertising dataset.

batch_size = 2048
data_dir = d2l.download_extract('ctr')
train_data = d2l.CTRDataset(os.path.join(data_dir, 'train.csv'))
test_data = d2l.CTRDataset(os.path.join(data_dir, 'test.csv'),

feat_mapper=train_data.feat_mapper,
defaults=train_data.defaults)

train_iter = gluon.data.DataLoader(
train_data, shuffle=True, last_batch='rollover', batch_size=batch_size,
num_workers=d2l.get_dataloader_workers())

test_iter = gluon.data.DataLoader(
test_data, shuffle=False, last_batch='rollover', batch_size=batch_size,
num_workers=d2l.get_dataloader_workers())
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[22:12:53] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

21.9.5 Train the Model
Afterwards, we train the model. The learning rate is set to 0.02 and the embedding size is
set to 20 by default. The Adam optimizer and the SigmoidBinaryCrossEntropyLoss loss
are used for model training.

devices = d2l.try_all_gpus()
net = FM(train_data.field_dims, num_factors=20)
net.initialize(init.Xavier(), ctx=devices)
lr, num_epochs, optimizer = 0.02, 30, 'adam'
trainer = gluon.Trainer(net.collect_params(), optimizer,

{'learning_rate': lr})
loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)

loss 0.504, train acc 0.283, test acc 0.277
44217.6 examples/sec on [gpu(0), gpu(1)]

21.9.6 Summary
• FM is a general framework that can be applied on a variety of tasks such as regression,

classification, and ranking.

• Feature interaction/crossing is important for prediction tasks and the 2-way interaction
can be efficiently modeled with FM.

21.9.7 Exercises
• Can you test FM on other dataset such as Avazu, MovieLens, and Criteo datasets?

• Vary the embedding size to check its impact on performance, can you observe a similar
pattern as that of matrix factorization?

Discussions274 .

https://discuss.d2l.ai/t/406
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21.10 Deep Factorization Machines

Learning effective feature combinations is critical to the success of click-through rate pre-
diction task. Factorization machines model feature interactions in a linear paradigm (e.g.,
bilinear interactions). This is often insufficient for real-world data where inherent feature
crossing structures are usually very complex and nonlinear. What’s worse, second-order
feature interactions are generally used in factorization machines in practice. Modeling
higher degrees of feature combinations with factorization machines is possible theoret-
ically but it is usually not adopted due to numerical instability and high computational
complexity.

One effective solution is using deep neural networks. Deep neural networks are power-
ful in feature representation learning and have the potential to learn sophisticated feature
interactions. As such, it is natural to integrate deep neural networks to factorization ma-
chines. Adding nonlinear transformation layers to factorization machines gives it the ca-
pability to model both low-order feature combinations and high-order feature combina-
tions. Moreover, non-linear inherent structures from inputs can also be captured with deep
neural networks. In this section, we will introduce a representative model named deep
factorization machines (DeepFM) (Guo et al., 2017) which combine FM and deep neural
networks.

21.10.1 Model Architectures
DeepFM consists of an FM component and a deep component which are integrated in a
parallel structure. The FM component is the same as the 2-way factorization machines
which is used to model the low-order feature interactions. The deep component is an MLP
that is used to capture high-order feature interactions and nonlinearities. These two com-
ponents share the same inputs/embeddings and their outputs are summed up as the final
prediction. It is worth pointing out that the spirit of DeepFM resembles that of the Wide
& Deep architecture which can capture both memorization and generalization. The advan-
tages of DeepFM over the Wide & Deep model is that it reduces the effort of hand-crafted
feature engineering by identifying feature combinations automatically.

We omit the description of the FM component for brevity and denote the output as 𝑦̂ (𝐹𝑀 ) .
Readers are referred to the last section for more details. Let e𝑖 ∈ R𝑘 denote the latent
feature vector of the 𝑖th field. The input of the deep component is the concatenation of the
dense embeddings of all fields that are looked up with the sparse categorical feature input,
denoted as:

z(0) = [e1, e2, ..., e 𝑓 ], (21.10.1)

where 𝑓 is the number of fields. It is then fed into the following neural network:

z(𝑙) = 𝛼(W (𝑙)z(𝑙−1) + b(𝑙) ), (21.10.2)

where 𝛼 is the activation function. W𝑙 and b𝑙 are the weight and bias at the 𝑙 th layer.
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Let 𝑦𝐷𝑁𝑁 denote the output of the prediction. The ultimate prediction of DeepFM is the
summation of the outputs from both FM and DNN. So we have:

𝑦̂ = 𝜎( 𝑦̂ (𝐹𝑀 ) + 𝑦̂ (𝐷𝑁𝑁 ) ), (21.10.3)

where 𝜎 is the sigmoid function. The architecture of DeepFM is illustrated below.

It is worth noting that DeepFM is not the only way to combine deep neural networks
with FM. We can also add nonlinear layers over the feature interactions (He and Chua,
2017).

import os
from mxnet import gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

21.10.2 Implementation of DeepFM
The implementation of DeepFM is similar to that of FM. We keep the FM part unchanged
and use an MLP block with relu as the activation function. Dropout is also used to regu-
larize the model. The number of neurons of the MLP can be adjusted with the mlp_dims
hyperparameter.

class DeepFM(nn.Block):
def __init__(self, field_dims, num_factors, mlp_dims, drop_rate=0.1):

super(DeepFM, self).__init__()
num_inputs = int(sum(field_dims))
self.embedding = nn.Embedding(num_inputs, num_factors)
self.fc = nn.Embedding(num_inputs, 1)
self.linear_layer = nn.Dense(1, use_bias=True)
input_dim = self.embed_output_dim = len(field_dims) * num_factors

(continues on next page)
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(continued from previous page)

self.mlp = nn.Sequential()
for dim in mlp_dims:

self.mlp.add(nn.Dense(dim, 'relu', True, in_units=input_dim))
self.mlp.add(nn.Dropout(rate=drop_rate))
input_dim = dim

self.mlp.add(nn.Dense(in_units=input_dim, units=1))

def forward(self, x):
embed_x = self.embedding(x)
square_of_sum = np.sum(embed_x, axis=1) ** 2
sum_of_square = np.sum(embed_x ** 2, axis=1)
inputs = np.reshape(embed_x, (-1, self.embed_output_dim))
x = self.linear_layer(self.fc(x).sum(1)) \

+ 0.5 * (square_of_sum - sum_of_square).sum(1, keepdims=True) \
+ self.mlp(inputs)

x = npx.sigmoid(x)
return x

21.10.3 Training and Evaluating the Model
The data loading process is the same as that of FM.We set theMLP component of DeepFM
to a three-layered dense network with the a pyramid structure (30-20-10). All other hyper-
parameters remain the same as FM.

batch_size = 2048
data_dir = d2l.download_extract('ctr')
train_data = d2l.CTRDataset(os.path.join(data_dir, 'train.csv'))
test_data = d2l.CTRDataset(os.path.join(data_dir, 'test.csv'),

feat_mapper=train_data.feat_mapper,
defaults=train_data.defaults)

field_dims = train_data.field_dims
train_iter = gluon.data.DataLoader(

train_data, shuffle=True, last_batch='rollover', batch_size=batch_size,
num_workers=d2l.get_dataloader_workers())

test_iter = gluon.data.DataLoader(
test_data, shuffle=False, last_batch='rollover', batch_size=batch_size,
num_workers=d2l.get_dataloader_workers())

devices = d2l.try_all_gpus()
net = DeepFM(field_dims, num_factors=10, mlp_dims=[30, 20, 10])
net.initialize(init.Xavier(), ctx=devices)
lr, num_epochs, optimizer = 0.01, 30, 'adam'
trainer = gluon.Trainer(net.collect_params(), optimizer,

{'learning_rate': lr})
loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)

loss 0.509, train acc 0.489, test acc 0.510
46234.4 examples/sec on [gpu(0), gpu(1)]

Compared with FM, DeepFM converges faster and achieves better performance.
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21.10.4 Summary
• Integrating neural networks to FM enables it to model complex and high-order interac-

tions.

• DeepFM outperforms the original FM on the advertising dataset.

21.10.5 Exercises
• Vary the structure of the MLP to check its impact on model performance.

• Change the dataset to Criteo and compare it with the original FM model.

Discussions275 .

https://discuss.d2l.ai/t/407


A Mathematics for Deep
Learning

Brent Werness (Amazon), Rachel Hu (Amazon), and authors of this book

One of the wonderful parts of modern deep learning is the fact that much of it can be
understood and used without a full understanding of the mathematics below it. This is a
sign that the field is maturing. Just as most software developers no longer need to worry
about the theory of computable functions, neither should deep learning practitioners need
to worry about the theoretical foundations of maximum likelihood learning.

But, we are not quite there yet.

In practice, you will sometimes need to understand how architectural choices influence
gradient flow, or the implicit assumptions you make by training with a certain loss function.
You might need to know what in the world entropy measures, and how it can help you
understand exactly what bits-per-character means in your model. These all require deeper
mathematical understanding.

This appendix aims to provide you the mathematical background you need to understand
the core theory of modern deep learning, but it is not exhaustive. We will begin with
examining linear algebra in greater depth. We develop a geometric understanding of all the
common linear algebraic objects and operations that will enable us to visualize the effects
of various transformations on our data. A key element is the development of the basics of
eigen-decompositions.

We next develop the theory of differential calculus to the point that we can fully understand
why the gradient is the direction of steepest descent, and why back-propagation takes the
form it does. Integral calculus is then discussed to the degree needed to support our next
topic, probability theory.

Problems encountered in practice frequently are not certain, and thus we need a language to
speak about uncertain things. We review the theory of random variables and the most com-
monly encountered distributions so we may discuss models probabilistically. This provides
the foundation for the naive Bayes classifier, a probabilistic classification technique.

Closely related to probability theory is the study of statistics. While statistics is far too
large a field to do justice in a short section, we will introduce fundamental concepts that all
machine learning practitioners should be aware of, in particular: evaluating and comparing
estimators, conducting hypothesis tests, and constructing confidence intervals.

Last, we turn to the topic of information theory, which is the mathematical study of infor-
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mation storage and transmission. This provides the core language by which we may discuss
quantitatively how much information a model holds on a domain of discourse.

Taken together, these form the core of the mathematical concepts needed to begin down the
path towards a deep understanding of deep learning.

A.1 Geometry and Linear Algebraic Operations

In Section 2.3, we encountered the basics of linear algebra and saw how it could be used
to express common operations for transforming our data. Linear algebra is one of the key
mathematical pillars underlying much of the work that we do in deep learning and in ma-
chine learning more broadly. While Section 2.3 contained enough machinery to commu-
nicate the mechanics of modern deep learning models, there is a lot more to the subject.
In this section, we will go deeper, highlighting some geometric interpretations of linear
algebra operations, and introducing a few fundamental concepts, including of eigenvalues
and eigenvectors.

A.1.1 Geometry of Vectors
First, we need to discuss the two common geometric interpretations of vectors, as either
points or directions in space. Fundamentally, a vector is a list of numbers such as the
Python list below.

v = [1, 7, 0, 1]

Mathematicians most often write this as either a column or row vector, which is to say either
as

x =


1
7
0
1

 , (A.1)

or

x> =
[
1 7 0 1

]
. (A.2)

These often have different interpretations, where data examples are column vectors and
weights used to form weighted sums are row vectors. However, it can be beneficial to be
flexible. As we have described in Section 2.3, though a single vector’s default orientation is
a column vector, for any matrix representing a tabular dataset, treating each data example
as a row vector in the matrix is more conventional.

Given a vector, the first interpretation that we should give it is as a point in space. In two
or three dimensions, we can visualize these points by using the components of the vectors
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to define the location of the points in space compared to a fixed reference called the origin.
This can be seen in Fig. A.1.

tFig. A.1 An illustration of visualizing vectors as points in the plane. The first component of the
vector gives the x -coordinate, the second component gives the y-coordinate. Higher
dimensions are analogous, although much harder to visualize.

This geometric point of view allows us to consider the problem on a more abstract level. No
longer faced with some insurmountable seeming problem like classifying pictures as either
cats or dogs, we can start considering tasks abstractly as collections of points in space and
picturing the task as discovering how to separate two distinct clusters of points.

In parallel, there is a second point of view that people often take of vectors: as directions
in space. Not only can we think of the vector v = [3, 2]> as the location 3 units to the right
and 2 units up from the origin, we can also think of it as the direction itself to take 3 steps
to the right and 2 steps up. In this way, we consider all the vectors in figure Fig. A.2 the
same.

tFig. A.2 Any vector can be visualized as an arrow in the plane. In this case, every vector drawn is a
representation of the vector (3, 2)>.

One of the benefits of this shift is that we can make visual sense of the act of vector addition.
In particular, we follow the directions given by one vector, and then follow the directions
given by the other, as is seen in Fig. A.3.

Vector subtraction has a similar interpretation. By considering the identity that u = v +
(u − v), we see that the vector u − v is the direction that takes us from the point v to the
point u.

A.1.2 Dot Products and Angles
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tFig. A.3 We can visualize vector addition by first following one vector, and then another.

As we saw in Section 2.3, if we take two column vectors u and v, we can form their dot
product by computing:

u>v =
∑
𝑖

𝑢𝑖 · 𝑣𝑖 . (A.3)

Because (A.3) is symmetric, we will mirror the notation of classical multiplication and
write

u · v = u>v = v>u, (A.4)

to highlight the fact that exchanging the order of the vectorswill yield the same answer.

The dot product (A.3) also admits a geometric interpretation: it is closely related to the
angle between two vectors. Consider the angle shown in Fig. A.4.

tFig. A.4 Between any two vectors in the plane there is a well defined angle 𝜃. We will see this
angle is intimately tied to the dot product.

To start, let’s consider two specific vectors:

v = (𝑟, 0) and w = (𝑠 cos(𝜃), 𝑠 sin(𝜃)). (A.5)

The vector v is length 𝑟 and runs parallel to the 𝑥-axis, and the vector w is of length 𝑠
and at angle 𝜃 with the 𝑥-axis. If we compute the dot product of these two vectors, we see
that

v ·w = 𝑟𝑠 cos(𝜃) = ‖v‖‖w‖ cos(𝜃). (A.6)

With some simple algebraic manipulation, we can rearrange terms to obtain

𝜃 = arccos
(

v ·w
‖v‖‖w‖

)
. (A.7)
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In short, for these two specific vectors, the dot product combined with the norms tell us
the angle between the two vectors. This same fact is true in general. We will not derive
the expression here, however, if we consider writing ‖v − w‖2 in two ways: one with
the dot product, and the other geometrically using the law of cosines, we can obtain the
full relationship. Indeed, for any two vectors v and w, the angle between the two vectors
is

𝜃 = arccos
(

v ·w
‖v‖‖w‖

)
. (A.8)

This is a nice result since nothing in the computation references two-dimensions. Indeed,
we can use this in three or three million dimensions without issue.

As a simple example, let’s see how to compute the angle between a pair of vectors:

%matplotlib inline
from IPython import display
from mxnet import gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

def angle(v, w):
return np.arccos(v.dot(w) / (np.linalg.norm(v) * np.linalg.norm(w)))

angle(np.array([0, 1, 2]), np.array([2, 3, 4]))

[22:03:02] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

array(0.41899002)

We will not use it right now, but it is useful to know that we will refer to vectors for which
the angle is 𝜋/2 (or equivalently 90◦) as being orthogonal. By examining the equation
above, we see that this happens when 𝜃 = 𝜋/2, which is the same thing as cos(𝜃) = 0. The
only way this can happen is if the dot product itself is zero, and two vectors are orthogonal
if and only if v ·w = 0. This will prove to be a helpful formula when understanding objects
geometrically.

It is reasonable to ask: why is computing the angle useful? The answer comes in the kind
of invariance we expect data to have. Consider an image, and a duplicate image, where
every pixel value is the same but 10% the brightness. The values of the individual pixels
are in general far from the original values. Thus, if one computed the distance between
the original image and the darker one, the distance can be large. However, for most ML
applications, the content is the same—it is still an image of a cat as far as a cat/dog classifier
is concerned. However, if we consider the angle, it is not hard to see that for any vector v,
the angle between v and 0.1 · v is zero. This corresponds to the fact that scaling vectors
keeps the same direction and just changes the length. The angle considers the darker image
identical.
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Examples like this are everywhere. In text, we might want the topic being discussed to
not change if we write twice as long of document that says the same thing. For some
encoding (such as counting the number of occurrences of words in some vocabulary), this
corresponds to a doubling of the vector encoding the document, so again we can use the
angle.

Cosine Similarity
In ML contexts where the angle is employed to measure the closeness of two vectors, prac-
titioners adopt the term cosine similarity to refer to the portion

cos(𝜃) = v ·w
‖v‖‖w‖ . (A.9)

The cosine takes a maximum value of 1 when the two vectors point in the same direction,
a minimum value of −1 when they point in opposite directions, and a value of 0 when the
two vectors are orthogonal. Note that if the components of high-dimensional vectors are
sampled randomly with mean 0, their cosine will nearly always be close to 0.

A.1.3 Hyperplanes
In addition to working with vectors, another key object that you must understand to go far
in linear algebra is the hyperplane, a generalization to higher dimensions of a line (two di-
mensions) or of a plane (three dimensions). In an 𝑑-dimensional vector space, a hyperplane
has 𝑑 − 1 dimensions and divides the space into two half-spaces.

Let’s start with an example. Suppose that we have a column vector w = [2, 1]>. We want
to know, “what are the points v with w · v = 1?” By recalling the connection between dot
products and angles above (A.8), we can see that this is equivalent to

‖v‖‖w‖ cos(𝜃) = 1 ⇐⇒ ‖v‖ cos(𝜃) = 1
‖w‖ =

1
√

5
. (A.10)

tFig. A.5 Recalling trigonometry, we see the formula ‖v‖ cos(𝜃) is the length of the projection of
the vector v onto the direction of w

If we consider the geometric meaning of this expression, we see that this is equivalent to
saying that the length of the projection of v onto the direction of w is exactly 1/‖w‖, as
is shown in Fig. A.5. The set of all points where this is true is a line at right angles to the
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vectorw. If we wanted, we could find the equation for this line and see that it is 2𝑥 + 𝑦 = 1
or equivalently 𝑦 = 1 − 2𝑥.

If we now look at what happens when we ask about the set of points with w · v > 1 or
w · v < 1, we can see that these are cases where the projections are longer or shorter than
1/‖w‖, respectively. Thus, those two inequalities define either side of the line. In this way,
we have found a way to cut our space into two halves, where all the points on one side have
dot product below a threshold, and the other side above as we see in Fig. A.6.

tFig. A.6 If we now consider the inequality version of the expression, we see that our hyperplane (in
this case: just a line) separates the space into two halves.

The story in higher dimension is much the same. If we now take w = [1, 2, 3]> and ask
about the points in three dimensions withw ·v = 1, we obtain a plane at right angles to the
given vector w. The two inequalities again define the two sides of the plane as is shown in
Fig. A.7.

tFig. A.7 Hyperplanes in any dimension separate the space into two halves.

While our ability to visualize runs out at this point, nothing stops us from doing this in
tens, hundreds, or billions of dimensions. This occurs often when thinking about machine
learned models. For instance, we can understand linear classification models like those
from Section 4.1, as methods to find hyperplanes that separate the different target classes.
In this context, such hyperplanes are often referred to as decision planes. The majority of
deep learned classification models end with a linear layer fed into a softmax, so one can
interpret the role of the deep neural network to be to find a non-linear embedding such that
the target classes can be separated cleanly by hyperplanes.

To give a hand-built example, notice that we can produce a reasonable model to classify
tiny images of t-shirts and trousers from the Fashion-MNIST dataset (seen in Section 4.2)
by just taking the vector between their means to define the decision plane and eyeball a
crude threshold. First we will load the data and compute the averages.
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# Load in the dataset
train = gluon.data.vision.FashionMNIST(train=True)
test = gluon.data.vision.FashionMNIST(train=False)

X_train_0 = np.stack([x[0] for x in train if x[1] == 0]).astype(float)
X_train_1 = np.stack([x[0] for x in train if x[1] == 1]).astype(float)
X_test = np.stack(

[x[0] for x in test if x[1] == 0 or x[1] == 1]).astype(float)
y_test = np.stack(

[x[1] for x in test if x[1] == 0 or x[1] == 1]).astype(float)

# Compute averages
ave_0 = np.mean(X_train_0, axis=0)
ave_1 = np.mean(X_train_1, axis=0)

It can be informative to examine these averages in detail, so let’s plot what they look like.
In this case, we see that the average indeed resembles a blurry image of a t-shirt.

# Plot average t-shirt
d2l.set_figsize()
d2l.plt.imshow(ave_0.reshape(28, 28).tolist(), cmap='Greys')
d2l.plt.show()

In the second case, we again see that the average resembles a blurry image of trousers.

# Plot average trousers
d2l.plt.imshow(ave_1.reshape(28, 28).tolist(), cmap='Greys')
d2l.plt.show()
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In a fully machine learned solution, we would learn the threshold from the dataset. In this
case, I simply eyeballed a threshold that looked good on the training data by hand.

# Print test set accuracy with eyeballed threshold
w = (ave_1 - ave_0).T
predictions = X_test.reshape(2000, -1).dot(w.flatten()) > -1500000

# Accuracy
np.mean(predictions.astype(y_test.dtype) == y_test, dtype=np.float64)

array(0.801, dtype=float64)

A.1.4 Geometry of Linear Transformations
Through Section 2.3 and the above discussions, we have a solid understanding of the geom-
etry of vectors, lengths, and angles. However, there is one important object we have omitted
discussing, and that is a geometric understanding of linear transformations represented by
matrices. Fully internalizing what matrices can do to transform data between two poten-
tially different high dimensional spaces takes significant practice, and is beyond the scope
of this appendix. However, we can start building up intuition in two dimensions.

Suppose that we have some matrix:

A =

[
𝑎 𝑏

𝑐 𝑑

]
. (A.11)

If we want to apply this to an arbitrary vector v = [𝑥, 𝑦]>, we multiply and see that

Av =

[
𝑎 𝑏

𝑐 𝑑

] [
𝑥

𝑦

]
=

[
𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

]
= 𝑥

[
𝑎

𝑐

]
+ 𝑦

[
𝑏

𝑑

]
= 𝑥

{
A

[
1
0

]}
+ 𝑦

{
A

[
0
1

]}
.

(A.12)

This may seem like an odd computation, where something clear became somewhat impen-
etrable. However, it tells us that we can write the way that a matrix transforms any vector
in terms of how it transforms two specific vectors: [1, 0]> and [0, 1]>. This is worth con-
sidering for a moment. We have essentially reduced an infinite problem (what happens to
any pair of real numbers) to a finite one (what happens to these specific vectors). These
vectors are an example a basis, where we can write any vector in our space as a weighted
sum of these basis vectors.

Let’s draw what happens when we use the specific matrix

A =

[
1 2
−1 3

]
. (A.13)
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If we look at the specific vector v = [2,−1]>, we see this is 2 · [1, 0]> + −1 · [0, 1]>, and
thus we know that the matrix 𝐴will send this to 2(A[1, 0]>)+−1(A[0, 1])> = 2[1,−1]>−
[2, 3]> = [0,−5]>. If we follow this logic through carefully, say by considering the grid
of all integer pairs of points, we see that what happens is that the matrix multiplication
can skew, rotate, and scale the grid, but the grid structure must remain as you see in Fig.
A.8.

tFig. A.8 The matrix A acting on the given basis vectors. Notice how the entire grid is transported
along with it.

This is the most important intuitive point to internalize about linear transformations rep-
resented by matrices. Matrices are incapable of distorting some parts of space differently
than others. All they can do is take the original coordinates on our space and skew, rotate,
and scale them.

Some distortions can be severe. For instance the matrix

B =

[
2 −1
4 −2

]
, (A.14)

compresses the entire two-dimensional plane down to a single line. Identifying andworking
with such transformations are the topic of a later section, but geometrically we can see
that this is fundamentally different from the types of transformations we saw above. For
instance, the result from matrixA can be “bent back” to the original grid. The results from
matrix B cannot because we will never know where the vector [1, 2]> came from—was it
[1, 1]> or [0,−1]>?

While this picture was for a 2×2 matrix, nothing prevents us from taking the lessons learned
into higher dimensions. If we take similar basis vectors like [1, 0, . . . , 0] and see where our
matrix sends them, we can start to get a feeling for how the matrix multiplication distorts
the entire space in whatever dimension space we are dealing with.

A.1.5 Linear Dependence
Consider again the matrix

B =

[
2 −1
4 −2

]
. (A.15)

This compresses the entire plane down to live on the single line 𝑦 = 2𝑥. The question now
arises: is there some way we can detect this just looking at the matrix itself? The answer is
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that indeed we can. Let’s take b1 = [2, 4]> and b2 = [−1,−2]> be the two columns of B.
Remember that we can write everything transformed by the matrixB as a weighted sum of
the columns of the matrix: like 𝑎1b1 + 𝑎2b2. We call this a linear combination. The fact
that b1 = −2 · b2 means that we can write any linear combination of those two columns
entirely in terms of say b2 since

𝑎1b1 + 𝑎2b2 = −2𝑎1b2 + 𝑎2b2 = (𝑎2 − 2𝑎1)b2. (A.16)

This means that one of the columns is, in a sense, redundant because it does not define a
unique direction in space. This should not surprise us too much since we already saw that
this matrix collapses the entire plane down into a single line. Moreover, we see that the
linear dependence b1 = −2 · b2 captures this. To make this more symmetrical between the
two vectors, we will write this as

b1 + 2 · b2 = 0. (A.17)

In general, we will say that a collection of vectors v1, . . . ,v𝑘 are linearly dependent if there
exist coefficients 𝑎1, . . . , 𝑎𝑘 not all equal to zero so that

𝑘∑
𝑖=1

𝑎𝑖vi = 0. (A.18)

In this case, we can solve for one of the vectors in terms of some combination of the others,
and effectively render it redundant. Thus, a linear dependence in the columns of a matrix
is a witness to the fact that our matrix is compressing the space down to some lower di-
mension. If there is no linear dependence we say the vectors are linearly independent. If
the columns of a matrix are linearly independent, no compression occurs and the operation
can be undone.

A.1.6 Rank
If we have a general 𝑛 ×𝑚 matrix, it is reasonable to ask what dimension space the matrix
maps into. A concept known as the rank will be our answer. In the previous section, we
noted that a linear dependence bears witness to compression of space into a lower dimension
and so we will be able to use this to define the notion of rank. In particular, the rank of
a matrix A is the largest number of linearly independent columns amongst all subsets of
columns. For example, the matrix

B =

[
2 4
−1 −2

]
, (A.19)

has rank(𝐵) = 1, since the two columns are linearly dependent, but either column by itself
is not linearly dependent. For a more challenging example, we can consider

C =


1 3 0 −1 0
−1 0 1 1 −1
0 3 1 0 −1
2 3 −1 −2 1

 , (A.20)
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and show that C has rank two since, for instance, the first two columns are linearly inde-
pendent, however any of the four collections of three columns are dependent.

This procedure, as described, is very inefficient. It requires looking at every subset of the
columns of our given matrix, and thus is potentially exponential in the number of columns.
Later we will see a more computationally efficient way to compute the rank of a matrix,
but for now, this is sufficient to see that the concept is well defined and understand the
meaning.

A.1.7 Invertibility
We have seen above that multiplication by a matrix with linearly dependent columns cannot
be undone, i.e., there is no inverse operation that can always recover the input. However,
multiplication by a full-rank matrix (i.e., some A that is 𝑛 × 𝑛 matrix with rank 𝑛), we
should always be able to undo it. Consider the matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


. (A.21)

which is the matrix with ones along the diagonal, and zeros elsewhere. We call this the
identity matrix. It is the matrix which leaves our data unchanged when applied. To find
a matrix which undoes what our matrix A has done, we want to find a matrix A−1 such
that

A−1A = AA−1 = I. (A.22)

If we look at this as a system, we have 𝑛 × 𝑛 unknowns (the entries of A−1) and 𝑛 × 𝑛
equations (the equality that needs to hold between every entry of the product A−1A and
every entry of I) so we should generically expect a solution to exist. Indeed, in the next
section we will see a quantity called the determinant, which has the property that as long as
the determinant is not zero, we can find a solution. We call such a matrix A−1 the inverse
matrix. As an example, if A is the general 2 × 2 matrix

A =

[
𝑎 𝑏

𝑐 𝑑

]
, (A.23)

then we can see that the inverse is

1
𝑎𝑑 − 𝑏𝑐

[
𝑑 −𝑏
−𝑐 𝑎

]
. (A.24)

We can test to see this by seeing that multiplying by the inverse given by the formula above
works in practice.

M = np.array([[1, 2], [1, 4]])
M_inv = np.array([[2, -1], [-0.5, 0.5]])
M_inv.dot(M)
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array([[1., 0.],
[0., 1.]])

Numerical Issues
While the inverse of a matrix is useful in theory, we must say that most of the time we do
not wish to use the matrix inverse to solve a problem in practice. In general, there are far
more numerically stable algorithms for solving linear equations like

Ax = b, (A.25)

than computing the inverse and multiplying to get

x = A−1b. (A.26)

Just as division by a small number can lead to numerical instability, so can inversion of a
matrix which is close to having low rank.

Moreover, it is common that the matrix A is sparse, which is to say that it contains only a
small number of non-zero values. If we were to explore examples, we would see that this
does not mean the inverse is sparse. Even ifAwas a 1 million by 1 million matrix with only
5 million non-zero entries (and thus we need only store those 5 million), the inverse will
typically have almost every entry non-negative, requiring us to store all 1M2 entries—that
is 1 trillion entries!

While we do not have time to dive all the way into the thorny numerical issues frequently
encountered when working with linear algebra, we want to provide you with some intuition
about when to proceed with caution, and generally avoiding inversion in practice is a good
rule of thumb.

A.1.8 Determinant
The geometric view of linear algebra gives an intuitive way to interpret a fundamental
quantity known as the determinant. Consider the grid image from before, but now with a
highlighted region (Fig. A.9).

tFig. A.9 The matrix A again distorting the grid. This time, I want to draw particular attention to
what happens to the highlighted square.
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Look at the highlighted square. This is a square with edges given by (0, 1) and (1, 0) and
thus it has area one. AfterA transforms this square, we see that it becomes a parallelogram.
There is no reason this parallelogram should have the same area that we started with, and
indeed in the specific case shown here of

A =

[
1 2
−1 3

]
, (A.27)

it is an exercise in coordinate geometry to compute the area of this parallelogram and obtain
that the area is 5.

In general, if we have a matrix

A =

[
𝑎 𝑏

𝑐 𝑑

]
, (A.28)

we can see with some computation that the area of the resulting parallelogram is 𝑎𝑑 − 𝑏𝑐.
This area is referred to as the determinant.

Let’s check this quickly with some example code.

import numpy as np

np.linalg.det(np.array([[1, -1], [2, 3]]))

5.000000000000001

The eagle-eyed amongst us will notice that this expression can be zero or even negative.
For the negative term, this is a matter of convention taken generally in mathematics: if the
matrix flips the figure, we say the area is negated. Let’s see now that when the determinant
is zero, we learn more.

Let’s consider

B =

[
2 4
−1 −2

]
. (A.29)

If we compute the determinant of this matrix, we get 2 · (−2) − 4 · (−1) = 0. Given our
understanding above, this makes sense. B compresses the square from the original image
down to a line segment, which has zero area. And indeed, being compressed into a lower
dimensional space is the only way to have zero area after the transformation. Thus we see
the following result is true: a matrix 𝐴 is invertible if and only if the determinant is not
equal to zero.

As a final comment, imagine that we have any figure drawn on the plane. Thinking like
computer scientists, we can decompose that figure into a collection of little squares so that
the area of the figure is in essence just the number of squares in the decomposition. If we
now transform that figure by amatrix, we send each of these squares to parallelograms, each
one of which has area given by the determinant. We see that for any figure, the determinant
gives the (signed) number that a matrix scales the area of any figure.



876 Mathematics for Deep Learning

Computing determinants for larger matrices can be laborious, but the intuition is the same.
The determinant remains the factor that 𝑛×𝑛matrices scale 𝑛-dimensional volumes.

A.1.9 Tensors and Common Linear Algebra Operations
In Section 2.3 the concept of tensors was introduced. In this section, we will dive more
deeply into tensor contractions (the tensor equivalent of matrix multiplication), and see
how it can provide a unified view on a number of matrix and vector operations.

With matrices and vectors we knew how to multiply them to transform data. We need
to have a similar definition for tensors if they are to be useful to us. Think about matrix
multiplication:

C = AB, (A.30)

or equivalently

𝑐𝑖, 𝑗 =
∑
𝑘

𝑎𝑖,𝑘𝑏𝑘, 𝑗 . (A.31)

This pattern is one we can repeat for tensors. For tensors, there is no one case of what to
sum over that can be universally chosen, so we need specify exactly which indices we want
to sum over. For instance we could consider

𝑦𝑖𝑙 =
∑
𝑗𝑘

𝑥𝑖 𝑗𝑘𝑙𝑎 𝑗𝑘 . (A.32)

Such a transformation is called a tensor contraction. It can represent a far more flexible
family of transformations that matrix multiplication alone.

As a often-used notational simplification, we can notice that the sum is over exactly those
indices that occur more than once in the expression, thus people often work with Einstein
notation, where the summation is implicitly taken over all repeated indices. This gives the
compact expression:

𝑦𝑖𝑙 = 𝑥𝑖 𝑗𝑘𝑙𝑎 𝑗𝑘 . (A.33)

Common Examples from Linear Algebra
Let’s see howmany of the linear algebraic definitions we have seen before can be expressed
in this compressed tensor notation:

• v ·w =
∑
𝑖 𝑣𝑖𝑤𝑖

• ‖v‖22 =
∑
𝑖 𝑣𝑖𝑣𝑖

• (Av)𝑖 =
∑
𝑗 𝑎𝑖 𝑗𝑣 𝑗

• (AB)𝑖𝑘 =
∑
𝑗 𝑎𝑖 𝑗𝑏 𝑗𝑘

• tr(A) = ∑
𝑖 𝑎𝑖𝑖

In this way, we can replace a myriad of specialized notations with short tensor expres-
sions.
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Expressing in Code
Tensors may flexibly be operated on in code as well. As seen in Section 2.3, we can create
tensors as is shown below.

# Define tensors
B = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
A = np.array([[1, 2], [3, 4]])
v = np.array([1, 2])

# Print out the shapes
A.shape, B.shape, v.shape

((2, 2), (2, 2, 3), (2,))

Einstein summation has been implemented directly. The indices that occurs in the Einstein
summation can be passed as a string, followed by the tensors that are being acted upon. For
instance, to implement matrix multiplication, we can consider the Einstein summation seen
above (Av = 𝑎𝑖 𝑗𝑣 𝑗 ) and strip out the indices themselves to get the implementation:

# Reimplement matrix multiplication
np.einsum("ij, j -> i", A, v), A.dot(v)

(array([ 5, 11]), array([ 5, 11]))

This is a highly flexible notation. For instance if we want to compute what would be tradi-
tionally written as

𝑐𝑘𝑙 =
∑
𝑖 𝑗

b𝑖 𝑗𝑘a𝑖𝑙𝑣 𝑗 . (A.34)

it can be implemented via Einstein summation as:

np.einsum("ijk, il, j -> kl", B, A, v)

array([[ 90, 126],
[102, 144],
[114, 162]])

This notation is readable and efficient for humans, however bulky if for whatever reason we
need to generate a tensor contraction programmatically. For this reason, einsum provides
an alternative notation by providing integer indices for each tensor. For example, the same
tensor contraction can also be written as:

np.einsum(B, [0, 1, 2], A, [0, 3], v, [1], [2, 3])
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array([[ 90, 126],
[102, 144],
[114, 162]])

Either notation allows for concise and efficient representation of tensor contractions in
code.

A.1.10 Summary
• Vectors can be interpreted geometrically as either points or directions in space.

• Dot products define the notion of angle to arbitrarily high-dimensional spaces.

• Hyperplanes are high-dimensional generalizations of lines and planes. They can be used
to define decision planes that are often used as the last step in a classification task.

• Matrix multiplication can be geometrically interpreted as uniform distortions of the un-
derlying coordinates. They represent a very restricted, but mathematically clean, way
to transform vectors.

• Linear dependence is a way to tell when a collection of vectors are in a lower dimensional
space than we would expect (say you have 3 vectors living in a 2-dimensional space).
The rank of a matrix is the size of the largest subset of its columns that are linearly
independent.

• When a matrix’s inverse is defined, matrix inversion allows us to find another matrix that
undoes the action of the first. Matrix inversion is useful in theory, but requires care in
practice owing to numerical instability.

• Determinants allow us to measure how much a matrix expands or contracts a space. A
nonzero determinant implies an invertible (non-singular) matrix and a zero-valued
determinant means that the matrix is non-invertible (singular).

• Tensor contractions and Einstein summation provide for a neat and clean notation for
expressing many of the computations that are seen in machine learning.

A.1.11 Exercises
1. What is the angle between

®𝑣1 =


1
0
−1
2

 , ®𝑣2 =


3
1
0
1

? (A.35)

2. True or false:
[
1 2
0 1

]
and

[
1 −2
0 1

]
are inverses of one another?
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276

3. Suppose that we draw a shape in the plane with area 100m2. What is the area after
transforming the figure by the matrix [

2 3
1 2

]
. (A.36)

4. Which of the following sets of vectors are linearly independent?

•

©­­«

1
0
−1

ª®®¬ ,
©­­«

2
1
−1

ª®®¬ ,
©­­«
3
1
1

ª®®¬


•

©­­«
3
1
1

ª®®¬ ,
©­­«
1
1
1

ª®®¬ ,
©­­«
0
0
0

ª®®¬


•

©­­«
1
1
0

ª®®¬ ,
©­­«

0
1
−1

ª®®¬ ,
©­­«
1
0
1

ª®®¬


5. Suppose that you have a matrix written as 𝐴 =

[
𝑐

𝑑

]
·
[
𝑎 𝑏

]
for some choice of values

𝑎, 𝑏, 𝑐, and 𝑑. True or false: the determinant of such a matrix is always 0?

6. The vectors 𝑒1 =

[
1
0

]
and 𝑒2 =

[
0
1

]
are orthogonal. What is the condition on a matrix 𝐴

so that 𝐴𝑒1 and 𝐴𝑒2 are orthogonal?

7. How can you write tr(A4) in Einstein notation for an arbitrary matrix 𝐴?

Discussions276 .

A.2 Eigendecompositions

Eigenvalues are often one of themost useful notions wewill encounter when studying linear
algebra, however, as a beginner, it is easy to overlook their importance. Below, we introduce
eigendecomposition and try to convey some sense of just why it is so important.

Suppose that we have a matrix 𝐴 with the following entries:

A =

[
2 0
0 −1

]
. (A.1)

If we apply 𝐴 to any vector v = [𝑥, 𝑦]>, we obtain a vector Av = [2𝑥,−𝑦]>. This has an
intuitive interpretation: stretch the vector to be twice as wide in the 𝑥-direction, and then
flip it in the 𝑦-direction.

https://discuss.d2l.ai/t/410
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However, there are some vectors for which something remains unchanged. Namely [1, 0]>
gets sent to [2, 0]> and [0, 1]> gets sent to [0,−1]>. These vectors are still in the same
line, and the only modification is that the matrix stretches them by a factor of 2 and −1
respectively. We call such vectors eigenvectors and the factor they are stretched by eigen-
values.

In general, if we can find a number 𝜆 and a vector v such that

Av = 𝜆v. (A.2)

We say that v is an eigenvector for 𝐴 and 𝜆 is an eigenvalue.

A.2.1 Finding Eigenvalues
Let’s figure out how to find them. By subtracting off the 𝜆v from both sides, and then
factoring out the vector, we see the above is equivalent to:

(A − 𝜆I)v = 0. (A.3)

For (A.3) to happen, we see that (A − 𝜆I) must compress some direction down to zero,
hence it is not invertible, and thus the determinant is zero. Thus, we can find the eigenvalues
by finding for what 𝜆 is det(A − 𝜆I) = 0. Once we find the eigenvalues, we can solve
Av = 𝜆v to find the associated eigenvector(s).

An Example
Let’s see this with a more challenging matrix

A =

[
2 1
2 3

]
. (A.4)

If we consider det(A − 𝜆I) = 0, we see this is equivalent to the polynomial equation
0 = (2 − 𝜆)(3 − 𝜆) − 2 = (4 − 𝜆)(1 − 𝜆). Thus, two eigenvalues are 4 and 1. To find the
associated vectors, we then need to solve[

2 1
2 3

] [
𝑥

𝑦

]
=

[
𝑥

𝑦

]
and

[
2 1
2 3

] [
𝑥

𝑦

]
=

[
4𝑥
4𝑦

]
. (A.5)

We can solve this with the vectors [1,−1]> and [1, 2]> respectively.

We can check this in code using the built-in numpy.linalg.eig routine.

%matplotlib inline
import numpy as np
from IPython import display
from d2l import mxnet as d2l

np.linalg.eig(np.array([[2, 1], [2, 3]]))
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(array([1., 4.]),
array([[-0.70710678, -0.4472136 ],

[ 0.70710678, -0.89442719]]))

Note that numpy normalizes the eigenvectors to be of length one, whereas we took ours to
be of arbitrary length. Additionally, the choice of sign is arbitrary. However, the vectors
computed are parallel to the ones we found by hand with the same eigenvalues.

A.2.2 Decomposing Matrices
Let’s continue the previous example one step further. Let

W =

[
1 1
−1 2

]
, (A.6)

be the matrix where the columns are the eigenvectors of the matrix A. Let

𝚺 =

[
1 0
0 4

]
, (A.7)

be the matrix with the associated eigenvalues on the diagonal. Then the definition of eigen-
values and eigenvectors tells us that

AW = W𝚺. (A.8)

The matrix𝑊 is invertible, so we may multiply both sides by𝑊−1 on the right, we see that
we may write

A = W𝚺W−1. (A.9)

In the next section we will see some nice consequences of this, but for now we need only
know that such a decomposition will exist as long as we can find a full collection of linearly
independent eigenvectors (so that𝑊 is invertible).

A.2.3 Operations on Eigendecompositions
One nice thing about eigendecompositions (A.9) is that we can write many operations we
usually encounter cleanly in terms of the eigendecomposition. As a first example, con-
sider:

A𝑛 =

𝑛 times︷   ︸︸   ︷
A · · ·A =

𝑛 times︷                              ︸︸                              ︷
(W𝚺W−1) · · · (W𝚺W−1) = W

𝑛 times︷  ︸︸  ︷
𝚺 · · ·𝚺W−1 = W𝚺𝑛W−1.

(A.10)

This tells us that for any positive power of a matrix, the eigendecomposition is obtained by
just raising the eigenvalues to the same power. The same can be shown for negative powers,
so if we want to invert a matrix we need only consider

A−1 = W𝚺−1W−1, (A.11)

or in other words, just invert each eigenvalue. This will work as long as each eigenvalue is
non-zero, so we see that invertible is the same as having no zero eigenvalues.
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Indeed, additional work can show that if 𝜆1, . . . , 𝜆𝑛 are the eigenvalues of a matrix, then
the determinant of that matrix is

det(A) = 𝜆1 · · · 𝜆𝑛, (A.12)

or the product of all the eigenvalues. This makes sense intuitively because whatever stretch-
ing W does, 𝑊−1 undoes it, so in the end the only stretching that happens is by multipli-
cation by the diagonal matrix 𝚺, which stretches volumes by the product of the diagonal
elements.

Finally, recall that the rank was the maximum number of linearly independent columns of
your matrix. By examining the eigendecomposition closely, we can see that the rank is the
same as the number of non-zero eigenvalues of A.

The examples could continue, but hopefully the point is clear: eigendecomposition can
simplify many linear-algebraic computations and is a fundamental operation underlying
many numerical algorithms and much of the analysis that we do in linear algebra.

A.2.4 Eigendecompositions of Symmetric Matrices
It is not always possible to find enough linearly independent eigenvectors for the above
process to work. For instance the matrix

A =

[
1 1
0 1

]
, (A.13)

has only a single eigenvector, namely (1, 0)>. To handle such matrices, we require more
advanced techniques than we can cover (such as the Jordan Normal Form, or Singular Value
Decomposition). We will often need to restrict our attention to those matrices where we
can guarantee the existence of a full set of eigenvectors.

The most commonly encountered family are the symmetric matrices, which are those ma-
trices where A = A>. In this case, we may take𝑊 to be an orthogonal matrix—a matrix
whose columns are all length one vectors that are at right angles to one another, where
W> = W−1—and all the eigenvalues will be real. Thus, in this special case, we can write
(A.9) as

A = W𝚺W>. (A.14)

A.2.5 Gershgorin Circle Theorem
Eigenvalues are often difficult to reason with intuitively. If presented an arbitrary matrix,
there is little that can be said about what the eigenvalues are without computing them. There
is, however, one theorem that can make it easy to approximate well if the largest values are
on the diagonal.

Let A = (𝑎𝑖 𝑗 ) be any square matrix (𝑛 × 𝑛). We will define 𝑟𝑖 =
∑
𝑗≠𝑖 |𝑎𝑖 𝑗 |. Let D𝑖

represent the disc in the complex plane with center 𝑎𝑖𝑖 radius 𝑟𝑖 . Then, every eigenvalue of
A is contained in one of the D𝑖 .
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This can be a bit to unpack, so let’s look at an example. Consider the matrix:

A =


1.0 0.1 0.1 0.1
0.1 3.0 0.2 0.3
0.1 0.2 5.0 0.5
0.1 0.3 0.5 9.0

 . (A.15)

We have 𝑟1 = 0.3, 𝑟2 = 0.6, 𝑟3 = 0.8 and 𝑟4 = 0.9. The matrix is symmetric, so all
eigenvalues are real. This means that all of our eigenvalues will be in one of the ranges
of

[𝑎11 − 𝑟1, 𝑎11 + 𝑟1] = [0.7, 1.3], (A.16)

[𝑎22 − 𝑟2, 𝑎22 + 𝑟2] = [2.4, 3.6], (A.17)

[𝑎33 − 𝑟3, 𝑎33 + 𝑟3] = [4.2, 5.8], (A.18)

[𝑎44 − 𝑟4, 𝑎44 + 𝑟4] = [8.1, 9.9] . (A.19)

Performing the numerical computation shows that the eigenvalues are approximately 0.99,
2.97, 4.95, 9.08, all comfortably inside the ranges provided.

A = np.array([[1.0, 0.1, 0.1, 0.1],
[0.1, 3.0, 0.2, 0.3],
[0.1, 0.2, 5.0, 0.5],
[0.1, 0.3, 0.5, 9.0]])

v, _ = np.linalg.eig(A)
v

array([9.08033648, 0.99228545, 4.95394089, 2.97343718])

In this way, eigenvalues can be approximated, and the approximations will be fairly accurate
in the case that the diagonal is significantly larger than all the other elements.

It is a small thing, but with a complex and subtle topic like eigendecomposition, it is good
to get any intuitive grasp we can.

A.2.6 A Useful Application: The Growth of Iterated Maps
Now that we understand what eigenvectors are in principle, let’s see how they can be used
to provide a deep understanding of a problem central to neural network behavior: proper
weight initialization.

Eigenvectors as Long Term Behavior
The full mathematical investigation of the initialization of deep neural networks is beyond
the scope of the text, but we can see a toy version here to understand how eigenvalues can
help us see how these models work. As we know, neural networks operate by interspersing
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layers of linear transformations with non-linear operations. For simplicity here, we will
assume that there is no non-linearity, and that the transformation is a single repeated matrix
operation 𝐴, so that the output of our model is

v𝑜𝑢𝑡 = A ·A · · ·Av𝑖𝑛 = A𝑁v𝑖𝑛. (A.20)

When these models are initialized, 𝐴 is taken to be a random matrix with Gaussian entries,
so let’s make one of those. To be concrete, we start with a mean zero, variance one Gaussian
distributed 5 × 5 matrix.

np.random.seed(8675309)

k = 5
A = np.random.randn(k, k)
A

array([[ 0.58902366, 0.73311856, -1.1621888 , -0.55681601, -0.77248843],
[-0.16822143, -0.41650391, -1.37843129, 0.74925588, 0.17888446],
[ 0.69401121, -1.9780535 , -0.83381434, 0.56437344, 0.31201299],
[-0.87334496, 0.15601291, -0.38710108, -0.23920821, 0.88850104],
[ 1.29385371, -0.76774106, 0.20131613, 0.91800842, 0.38974115]])

Behavior on Random Data
For simplicity in our toy model, we will assume that the data vector we feed in v𝑖𝑛 is a
random five dimensional Gaussian vector. Let’s think about what we want to have happen.
For context, lets think of a generic ML problem, where we are trying to turn input data, like
an image, into a prediction, like the probability the image is a picture of a cat. If repeated
application ofA stretches a random vector out to be very long, then small changes in input
will be amplified into large changes in output—tiny modifications of the input image would
lead to vastly different predictions. This does not seem right!

On the flip side, ifA shrinks random vectors to be shorter, then after running through many
layers, the vector will essentially shrink to nothing, and the output will not depend on the
input. This is also clearly not right either!

We need to walk the narrow line between growth and decay to make sure that our output
changes depending on our input, but not much!

Let’s see what happens when we repeatedly multiply our matrix A against a random input
vector, and keep track of the norm.

# Calculate the sequence of norms after repeatedly applying `A`
v_in = np.random.randn(k, 1)

norm_list = [np.linalg.norm(v_in)]
for i in range(1, 100):

v_in = A.dot(v_in)

(continues on next page)
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(continued from previous page)

norm_list.append(np.linalg.norm(v_in))

d2l.plot(np.arange(0, 100), norm_list, 'Iteration', 'Value')

The norm is growing uncontrollably! Indeed if we take the list of quotients, we will see a
pattern.

# Compute the scaling factor of the norms
norm_ratio_list = []
for i in range(1, 100):

norm_ratio_list.append(norm_list[i]/norm_list[i - 1])

d2l.plot(np.arange(1, 100), norm_ratio_list, 'Iteration', 'Ratio')

If we look at the last portion of the above computation, we see that the random vector is
stretched by a factor of 1.974459321485[...], where the portion at the end shifts a little,
but the stretching factor is stable.

Relating Back to Eigenvectors
We have seen that eigenvectors and eigenvalues correspond to the amount something is
stretched, but that was for specific vectors, and specific stretches. Let’s take a look at what
they are for A. A bit of a caveat here: it turns out that to see them all, we will need to go
to complex numbers. You can think of these as stretches and rotations. By taking the norm
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of the complex number (square root of the sums of squares of real and imaginary parts) we
can measure that stretching factor. Let’s also sort them.

# Compute the eigenvalues
eigs = np.linalg.eigvals(A).tolist()
norm_eigs = [np.absolute(x) for x in eigs]
norm_eigs.sort()
print(f'norms of eigenvalues: {norm_eigs}')

norms of eigenvalues: [0.8786205280381857, 1.2757952665062624, 1.
↩→4983381517710659, 1.4983381517710659, 1.974459321485074]

An Observation
We see something a bit unexpected happening here: that number we identified before for the
long term stretching of our matrixA applied to a random vector is exactly (accurate to thir-
teen decimal places!) the largest eigenvalue ofA. This is clearly not a coincidence!

But, if we now think about what is happening geometrically, this starts to make sense. Con-
sider a random vector. This random vector points a little in every direction, so in particular,
it points at least a little bit in the same direction as the eigenvector of A associated with
the largest eigenvalue. This is so important that it is called the principle eigenvalue and
principle eigenvector. After applying A, our random vector gets stretched in every possi-
ble direction, as is associated with every possible eigenvector, but it is stretched most of
all in the direction associated with this principle eigenvector. What this means is that after
apply in 𝐴, our random vector is longer, and points in a direction closer to being aligned
with the principle eigenvector. After applying the matrix many times, the alignment with
the principle eigenvector becomes closer and closer until, for all practical purposes, our
random vector has been transformed into the principle eigenvector! Indeed this algorithm
is the basis for what is known as the power iteration for finding the largest eigenvalue and
eigenvector of a matrix. For details see, for example, (Golub and Van Loan, 1996).

Fixing the Normalization
Now, from above discussions, we concluded that we do not want a random vector to be
stretched or squished at all, we would like random vectors to stay about the same size
throughout the entire process. To do so, we now rescale our matrix by this principle eigen-
value so that the largest eigenvalue is instead now just one. Let’s see what happens in this
case.

# Rescale the matrix `A`
A /= norm_eigs[-1]

# Do the same experiment again
v_in = np.random.randn(k, 1)

(continues on next page)
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(continued from previous page)

norm_list = [np.linalg.norm(v_in)]
for i in range(1, 100):

v_in = A.dot(v_in)
norm_list.append(np.linalg.norm(v_in))

d2l.plot(np.arange(0, 100), norm_list, 'Iteration', 'Value')

We can also plot the ratio between consecutive norms as before and see that indeed it sta-
bilizes.

# Also plot the ratio
norm_ratio_list = []
for i in range(1, 100):

norm_ratio_list.append(norm_list[i]/norm_list[i-1])

d2l.plot(np.arange(1, 100), norm_ratio_list, 'Iteration', 'Ratio')

A.2.7 Discussion
We now see exactly what we hoped for! After normalizing the matrices by the principal
eigenvalue, we see that the random data does not explode as before, but rather eventually
equilibrates to a specific value. It would be nice to be able to do these things from first
principles, and it turns out that if we look deeply at the mathematics of it, we can see that
the largest eigenvalue of a large random matrix with independent mean zero, variance one
Gaussian entries is on average about

√
𝑛, or in our case

√
5 ≈ 2.2, due to a fascinating fact

known as the circular law (Ginibre, 1965). The relationship between the eigenvalues (and
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a related object called singular values) of random matrices has been shown to have deep
connections to proper initialization of neural networks as was discussed in Pennington et
al. (2017) and subsequent works.

A.2.8 Summary
• Eigenvectors are vectors which are stretched by a matrix without changing direction.

• Eigenvalues are the amount that the eigenvectors are stretched by the application of the
matrix.

• The eigendecomposition of a matrix can allow for many operations to be reduced to
operations on the eigenvalues.

• The Gershgorin Circle Theorem can provide approximate values for the eigenvalues of
a matrix.

• The behavior of iterated matrix powers depends primarily on the size of the largest eigen-
value. This understanding has many applications in the theory of neural network ini-
tialization.

A.2.9 Exercises
1. What are the eigenvalues and eigenvectors of

A =

[
2 1
1 2

]
? (A.21)

2. What are the eigenvalues and eigenvectors of the following matrix, and what is strange
about this example compared to the previous one?

A =

[
2 1
0 2

]
. (A.22)

3. Without computing the eigenvalues, is it possible that the smallest eigenvalue of the
following matrix is less that 0.5? Note: this problem can be done in your head.

A =


3.0 0.1 0.3 1.0
0.1 1.0 0.1 0.2
0.3 0.1 5.0 0.0
1.0 0.2 0.0 1.8

 . (A.23)

Discussions277 .

https://discuss.d2l.ai/t/411
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A.3 Single Variable Calculus

In Section 2.4, we saw the basic elements of differential calculus. This section takes a
deeper dive into the fundamentals of calculus and how we can understand and apply it in
the context of machine learning.

A.3.1 Differential Calculus
Differential calculus is fundamentally the study of how functions behave under small changes.
To see why this is so core to deep learning, let’s consider an example.

Suppose that we have a deep neural network where the weights are, for convenience, con-
catenated into a single vectorw = (𝑤1, . . . , 𝑤𝑛). Given a training dataset, we consider the
loss of our neural network on this dataset, which we will write as L(w).

This function is extraordinarily complex, encoding the performance of all possible models
of the given architecture on this dataset, so it is nearly impossible to tell what set of weights
w will minimize the loss. Thus, in practice, we often start by initializing our weights ran-
domly, and then iteratively take small steps in the direction which makes the loss decrease
as rapidly as possible.

The question then becomes something that on the surface is no easier: how do we find
the direction which makes the weights decrease as quickly as possible? To dig into this,
let’s first examine the case with only a single weight: 𝐿 (w) = 𝐿 (𝑥) for a single real value
𝑥.

Let’s take 𝑥 and try to understand what happens when we change it by a small amount to
𝑥 + 𝜖 . If you wish to be concrete, think a number like 𝜖 = 0.0000001. To help us visualize
what happens, let’s graph an example function, 𝑓 (𝑥) = sin(𝑥𝑥), over the [0, 3].

%matplotlib inline
from IPython import display
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

# Plot a function in a normal range
x_big = np.arange(0.01, 3.01, 0.01)
ys = np.sin(x_big**x_big)
d2l.plot(x_big, ys, 'x', 'f(x)')

[21:56:22] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

At this large scale, the function’s behavior is not simple. However, if we reduce our range to
something smaller like [1.75, 2.25], we see that the graph becomes much simpler.
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# Plot a the same function in a tiny range
x_med = np.arange(1.75, 2.25, 0.001)
ys = np.sin(x_med**x_med)
d2l.plot(x_med, ys, 'x', 'f(x)')

Taking this to an extreme, if we zoom into a tiny segment, the behavior becomes far simpler:
it is just a straight line.

# Plot a the same function in a tiny range
x_small = np.arange(2.0, 2.01, 0.0001)
ys = np.sin(x_small**x_small)
d2l.plot(x_small, ys, 'x', 'f(x)')

This is the key observation of single variable calculus: the behavior of familiar functions
can be modeled by a line in a small enough range. This means that for most functions, it
is reasonable to expect that as we shift the 𝑥 value of the function by a little bit, the output
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𝑓 (𝑥) will also be shifted by a little bit. The only question we need to answer is, “How large
is the change in the output compared to the change in the input? Is it half as large? Twice
as large?”

Thus, we can consider the ratio of the change in the output of a function for a small change
in the input of the function. We can write this formally as

𝐿 (𝑥 + 𝜖) − 𝐿 (𝑥)
(𝑥 + 𝜖) − 𝑥 =

𝐿 (𝑥 + 𝜖) − 𝐿 (𝑥)
𝜖

. (A.1)

This is already enough to start to play around with in code. For instance, suppose that we
know that 𝐿 (𝑥) = 𝑥2 + 1701(𝑥 − 4)3, then we can see how large this value is at the point
𝑥 = 4 as follows.

# Define our function
def L(x):

return x**2 + 1701*(x-4)**3

# Print the difference divided by epsilon for several epsilon
for epsilon in [0.1, 0.001, 0.0001, 0.00001]:

print(f'epsilon = {epsilon:.5f} -> {(L(4+epsilon) - L(4)) / epsilon:.5f}')

epsilon = 0.10000 -> 25.11000
epsilon = 0.00100 -> 8.00270
epsilon = 0.00010 -> 8.00012
epsilon = 0.00001 -> 8.00001

Now, if we are observant, we will notice that the output of this number is suspiciously close
to 8. Indeed, if we decrease 𝜖 , we will see value becomes progressively closer to 8. Thus we
may conclude, correctly, that the value we seek (the degree a change in the input changes
the output) should be 8 at the point 𝑥 = 4. The way that a mathematician encodes this fact
is

lim
𝜖→0

𝐿 (4 + 𝜖) − 𝐿 (4)
𝜖

= 8. (A.2)

As a bit of a historical digression: in the first few decades of neural network research, sci-
entists used this algorithm (the method of finite differences) to evaluate how a loss function
changed under small perturbation: just change the weights and see how the loss changed.
This is computationally inefficient, requiring two evaluations of the loss function to see how
a single change of one variable influenced the loss. If we tried to do this with even a pal-
try few thousand parameters, it would require several thousand evaluations of the network
over the entire dataset! It was not solved until 1986 that the backpropagation algorithm
introduced in Rumelhart et al. (1988) provided a way to calculate how any change of the
weights together would change the loss in the same computation time as a single prediction
of the network over the dataset.

Back in our example, this value 8 is different for different values of 𝑥, so it makes sense to
define it as a function of 𝑥. More formally, this value dependent rate of change is referred
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to as the derivative which is written as
𝑑𝑓

𝑑𝑥
(𝑥) = lim

𝜖→0

𝑓 (𝑥 + 𝜖) − 𝑓 (𝑥)
𝜖

. (A.3)

Different texts will use different notations for the derivative. For instance, all of the below
notations indicate the same thing:

𝑑𝑓

𝑑𝑥
=
𝑑

𝑑𝑥
𝑓 = 𝑓 ′ = ∇𝑥 𝑓 = 𝐷𝑥 𝑓 = 𝑓𝑥 . (A.4)

Most authors will pick a single notation and stick with it, however even that is not guaran-
teed. It is best to be familiar with all of these. We will use the notation 𝑑 𝑓

𝑑𝑥 throughout this
text, unless we want to take the derivative of a complex expression, in which case we will
use 𝑑

𝑑𝑥 𝑓 to write expressions like

𝑑

𝑑𝑥

[
𝑥4 + cos

(
𝑥2 + 1
2𝑥 − 1

)]
. (A.5)

Oftentimes, it is intuitively useful to unravel the definition of derivative (A.3) again to see
how a function changes when we make a small change of 𝑥:

𝑑𝑓

𝑑𝑥
(𝑥) = lim

𝜖→0

𝑓 (𝑥 + 𝜖) − 𝑓 (𝑥)
𝜖

=⇒ 𝑑𝑓

𝑑𝑥
(𝑥) ≈ 𝑓 (𝑥 + 𝜖) − 𝑓 (𝑥)

𝜖

=⇒ 𝜖
𝑑𝑓

𝑑𝑥
(𝑥) ≈ 𝑓 (𝑥 + 𝜖) − 𝑓 (𝑥)

=⇒ 𝑓 (𝑥 + 𝜖) ≈ 𝑓 (𝑥) + 𝜖 𝑑𝑓
𝑑𝑥
(𝑥).

(A.6)

The last equation is worth explicitly calling out. It tells us that if you take any function and
change the input by a small amount, the output would change by that small amount scaled
by the derivative.

In this way, we can understand the derivative as the scaling factor that tells us how large of
change we get in the output from a change in the input.

A.3.2 Rules of Calculus
We now turn to the task of understanding how to compute the derivative of an explicit
function. A full formal treatment of calculus would derive everything from first principles.
We will not indulge in this temptation here, but rather provide an understanding of the
common rules encountered.

Common Derivatives
As was seen in Section 2.4, when computing derivatives one can oftentimes use a series of
rules to reduce the computation to a few core functions. We repeat them here for ease of
reference.

• Derivative of constants. 𝑑
𝑑𝑥 𝑐 = 0.

• Derivative of linear functions. 𝑑
𝑑𝑥 (𝑎𝑥) = 𝑎.
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• Power rule. 𝑑
𝑑𝑥 𝑥

𝑛 = 𝑛𝑥𝑛−1.

• Derivative of exponentials. 𝑑
𝑑𝑥 𝑒

𝑥 = 𝑒𝑥 .

• Derivative of the logarithm. 𝑑
𝑑𝑥 log(𝑥) = 1

𝑥 .

Derivative Rules
If every derivative needed to be separately computed and stored in a table, differential cal-
culus would be near impossible. It is a gift of mathematics that we can generalize the
above derivatives and compute more complex derivatives like finding the derivative of
𝑓 (𝑥) = log

(
1 + (𝑥 − 1)10) . As was mentioned in Section 2.4, the key to doing so is to

codify what happens when we take functions and combine them in various ways, most
importantly: sums, products, and compositions.

• Sum rule. 𝑑
𝑑𝑥 (𝑔(𝑥) + ℎ(𝑥)) =

𝑑𝑔
𝑑𝑥 (𝑥) +

𝑑ℎ
𝑑𝑥 (𝑥).

• Product rule. 𝑑
𝑑𝑥 (𝑔(𝑥) · ℎ(𝑥)) = 𝑔(𝑥)

𝑑ℎ
𝑑𝑥 (𝑥) +

𝑑𝑔
𝑑𝑥 (𝑥)ℎ(𝑥).

• Chain rule. 𝑑
𝑑𝑥 𝑔(ℎ(𝑥)) =

𝑑𝑔
𝑑ℎ (ℎ(𝑥)) ·

𝑑ℎ
𝑑𝑥 (𝑥).

Let’s see how we may use (A.6) to understand these rules. For the sum rule, consider
following chain of reasoning:

𝑓 (𝑥 + 𝜖) = 𝑔(𝑥 + 𝜖) + ℎ(𝑥 + 𝜖)

≈ 𝑔(𝑥) + 𝜖 𝑑𝑔
𝑑𝑥
(𝑥) + ℎ(𝑥) + 𝜖 𝑑ℎ

𝑑𝑥
(𝑥)

= 𝑔(𝑥) + ℎ(𝑥) + 𝜖
(
𝑑𝑔

𝑑𝑥
(𝑥) + 𝑑ℎ

𝑑𝑥
(𝑥)

)
= 𝑓 (𝑥) + 𝜖

(
𝑑𝑔

𝑑𝑥
(𝑥) + 𝑑ℎ

𝑑𝑥
(𝑥)

)
.

(A.7)

By comparing this result with the fact that 𝑓 (𝑥 + 𝜖) ≈ 𝑓 (𝑥) + 𝜖 𝑑 𝑓𝑑𝑥 (𝑥), we see that 𝑑 𝑓𝑑𝑥 (𝑥) =
𝑑𝑔
𝑑𝑥 (𝑥) +

𝑑ℎ
𝑑𝑥 (𝑥) as desired. The intuition here is: when we change the input 𝑥, 𝑔 and ℎ jointly

contribute to the change of the output by 𝑑𝑔
𝑑𝑥 (𝑥) and

𝑑ℎ
𝑑𝑥 (𝑥).

The product is more subtle, and will require a new observation about how to work with
these expressions. We will begin as before using (A.6):

𝑓 (𝑥 + 𝜖) = 𝑔(𝑥 + 𝜖) · ℎ(𝑥 + 𝜖)

≈
(
𝑔(𝑥) + 𝜖 𝑑𝑔

𝑑𝑥
(𝑥)

)
·
(
ℎ(𝑥) + 𝜖 𝑑ℎ

𝑑𝑥
(𝑥)

)
= 𝑔(𝑥) · ℎ(𝑥) + 𝜖

(
𝑔(𝑥) 𝑑ℎ

𝑑𝑥
(𝑥) + 𝑑𝑔

𝑑𝑥
(𝑥)ℎ(𝑥)

)
+ 𝜖2 𝑑𝑔

𝑑𝑥
(𝑥) 𝑑ℎ

𝑑𝑥
(𝑥)

= 𝑓 (𝑥) + 𝜖
(
𝑔(𝑥) 𝑑ℎ

𝑑𝑥
(𝑥) + 𝑑𝑔

𝑑𝑥
(𝑥)ℎ(𝑥)

)
+ 𝜖2 𝑑𝑔

𝑑𝑥
(𝑥) 𝑑ℎ

𝑑𝑥
(𝑥).

(A.8)

This resembles the computation done above, and indeed we see our answer ( 𝑑 𝑓𝑑𝑥 (𝑥) =

𝑔(𝑥) 𝑑ℎ𝑑𝑥 (𝑥) +
𝑑𝑔
𝑑𝑥 (𝑥)ℎ(𝑥)) sitting next to 𝜖 , but there is the issue of that term of size 𝜖2.
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We will refer to this as a higher-order term, since the power of 𝜖2 is higher than the power
of 𝜖1. We will see in a later section that we will sometimes want to keep track of these,
however for now observe that if 𝜖 = 0.0000001, then 𝜖2 = 0.0000000000001, which is
vastly smaller. As we send 𝜖 → 0, we may safely ignore the higher order terms. As a
general convention in this appendix, we will use “≈” to denote that the two terms are equal
up to higher order terms. However, if we wish to be more formal we may examine the
difference quotient

𝑓 (𝑥 + 𝜖) − 𝑓 (𝑥)
𝜖

= 𝑔(𝑥) 𝑑ℎ
𝑑𝑥
(𝑥) + 𝑑𝑔

𝑑𝑥
(𝑥)ℎ(𝑥) + 𝜖 𝑑𝑔

𝑑𝑥
(𝑥) 𝑑ℎ

𝑑𝑥
(𝑥), (A.9)

and see that as we send 𝜖 → 0, the right hand term goes to zero as well.

Finally, with the chain rule, we can again progress as before using (A.6) and see that

𝑓 (𝑥 + 𝜖) = 𝑔(ℎ(𝑥 + 𝜖))

≈ 𝑔
(
ℎ(𝑥) + 𝜖 𝑑ℎ

𝑑𝑥
(𝑥)

)
≈ 𝑔(ℎ(𝑥)) + 𝜖 𝑑ℎ

𝑑𝑥
(𝑥) 𝑑𝑔

𝑑ℎ
(ℎ(𝑥))

= 𝑓 (𝑥) + 𝜖 𝑑𝑔
𝑑ℎ
(ℎ(𝑥)) 𝑑ℎ

𝑑𝑥
(𝑥),

(A.10)

where in the second line we view the function 𝑔 as having its input (ℎ(𝑥)) shifted by the
tiny quantity 𝜖 𝑑ℎ𝑑𝑥 (𝑥).

These rule provide us with a flexible set of tools to compute essentially any expression
desired. For instance,

𝑑

𝑑𝑥

[
log

(
1 + (𝑥 − 1)10

)]
=

(
1 + (𝑥 − 1)10

)−1 𝑑

𝑑𝑥

[
1 + (𝑥 − 1)10]

=
(
1 + (𝑥 − 1)10

)−1
(
𝑑

𝑑𝑥
[1] + 𝑑

𝑑𝑥
[(𝑥 − 1)10]

)
=

(
1 + (𝑥 − 1)10

)−1
(
0 + 10(𝑥 − 1)9 𝑑

𝑑𝑥
[𝑥 − 1]

)
= 10

(
1 + (𝑥 − 1)10

)−1
(𝑥 − 1)9

=
10(𝑥 − 1)9

1 + (𝑥 − 1)10 .

(A.11)

Where each line has used the following rules:

1. The chain rule and derivative of logarithm.

2. The sum rule.

3. The derivative of constants, chain rule, and power rule.

4. The sum rule, derivative of linear functions, derivative of constants.

Two things should be clear after doing this example:
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1. Any function we can write down using sums, products, constants, powers, exponentials,
and logarithms can have its derivate computed mechanically by following these rules.

2. Having a human follow these rules can be tedious and error prone!

Thankfully, these two facts together hint towards a way forward: this is a perfect candidate
for mechanization! Indeed backpropagation, which we will revisit later in this section, is
exactly that.

Linear Approximation
When working with derivatives, it is often useful to geometrically interpret the approxima-
tion used above. In particular, note that the equation

𝑓 (𝑥 + 𝜖) ≈ 𝑓 (𝑥) + 𝜖 𝑑𝑓
𝑑𝑥
(𝑥), (A.12)

approximates the value of 𝑓 by a line which passes through the point (𝑥, 𝑓 (𝑥)) and has
slope 𝑑 𝑓

𝑑𝑥 (𝑥). In this way we say that the derivative gives a linear approximation to the
function 𝑓 , as illustrated below:

# Compute sin
xs = np.arange(-np.pi, np.pi, 0.01)
plots = [np.sin(xs)]

# Compute some linear approximations. Use d(sin(x)) / dx = cos(x)
for x0 in [-1.5, 0, 2]:

plots.append(np.sin(x0) + (xs - x0) * np.cos(x0))

d2l.plot(xs, plots, 'x', 'f(x)', ylim=[-1.5, 1.5])

Higher Order Derivatives
Let’s now do something that may on the surface seem strange. Take a function 𝑓 and
compute the derivative 𝑑 𝑓

𝑑𝑥 . This gives us the rate of change of 𝑓 at any point.

However, the derivative, 𝑑 𝑓𝑑𝑥 , can be viewed as a function itself, so nothing stops us from
computing the derivative of 𝑑 𝑓𝑑𝑥 to get 𝑑

2 𝑓
𝑑𝑥2 = 𝑑 𝑓

𝑑𝑥

(
𝑑 𝑓
𝑑𝑥

)
. We will call this the second deriva-

tive of 𝑓 . This function is the rate of change of the rate of change of 𝑓 , or in other words,
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how the rate of change is changing. We may apply the derivative any number of times to
obtain what is called the 𝑛-th derivative. To keep the notation clean, we will denote the
𝑛-th derivative as

𝑓 (𝑛) (𝑥) = 𝑑𝑛 𝑓

𝑑𝑥𝑛
=

(
𝑑

𝑑𝑥

)𝑛
𝑓 . (A.13)

Let’s try to understand why this is a useful notion. Below, we visualize 𝑓 (2) (𝑥), 𝑓 (1) (𝑥),
and 𝑓 (𝑥).

First, consider the case that the second derivative 𝑓 (2) (𝑥) is a positive constant. This means
that the slope of the first derivative is positive. As a result, the first derivative 𝑓 (1) (𝑥) may
start out negative, becomes zero at a point, and then becomes positive in the end. This tells
us the slope of our original function 𝑓 and therefore, the function 𝑓 itself decreases, flattens
out, then increases. In other words, the function 𝑓 curves up, and has a single minimum as
is shown in Fig. A.1.

tFig. A.1 If we assume the second derivative is a positive constant, then the fist derivative in
increasing, which implies the function itself has a minimum.

Second, if the second derivative is a negative constant, that means that the first derivative
is decreasing. This implies the first derivative may start out positive, becomes zero at a
point, and then becomes negative. Hence, the function 𝑓 itself increases, flattens out, then
decreases. In other words, the function 𝑓 curves down, and has a single maximum as is
shown in Fig. A.2.

tFig. A.2 If we assume the second derivative is a negative constant, then the fist derivative in
decreasing, which implies the function itself has a maximum.

Third, if the second derivative is a always zero, then the first derivative will never change—
it is constant! This means that 𝑓 increases (or decreases) at a fixed rate, and 𝑓 is itself a
straight line as is shown in Fig. A.3.

To summarize, the second derivative can be interpreted as describing the way that the func-
tion 𝑓 curves. A positive second derivative leads to a upwards curve, while a negative sec-
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tFig. A.3 If we assume the second derivative is zero, then the fist derivative is constant, which
implies the function itself is a straight line.

ond derivative means that 𝑓 curves downwards, and a zero second derivative means that 𝑓
does not curve at all.

Let’s take this one step further. Consider the function 𝑔(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. We can then
compute that

𝑑𝑔

𝑑𝑥
(𝑥) = 2𝑎𝑥 + 𝑏

𝑑2𝑔

𝑑𝑥2 (𝑥) = 2𝑎.
(A.14)

If we have some original function 𝑓 (𝑥) in mind, we may compute the first two derivatives
and find the values for 𝑎, 𝑏, and 𝑐 that make them match this computation. Similarly to
the previous section where we saw that the first derivative gave the best approximation
with a straight line, this construction provides the best approximation by a quadratic. Let’s
visualize this for 𝑓 (𝑥) = sin(𝑥).

# Compute sin
xs = np.arange(-np.pi, np.pi, 0.01)
plots = [np.sin(xs)]

# Compute some quadratic approximations. Use d(sin(x)) / dx = cos(x)
for x0 in [-1.5, 0, 2]:

plots.append(np.sin(x0) + (xs - x0) * np.cos(x0) -
(xs - x0)**2 * np.sin(x0) / 2)

d2l.plot(xs, plots, 'x', 'f(x)', ylim=[-1.5, 1.5])

We will extend this idea to the idea of a Taylor series in the next section.
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Taylor Series
The Taylor series provides amethod to approximate the function 𝑓 (𝑥) if we are given values
for the first 𝑛 derivatives at a point 𝑥0, i.e.,

{
𝑓 (𝑥0), 𝑓 (1) (𝑥0), 𝑓 (2) (𝑥0), . . . , 𝑓 (𝑛) (𝑥0)

}
. The

idea will be to find a degree 𝑛 polynomial that matches all the given derivatives at 𝑥0.

We saw the case of 𝑛 = 2 in the previous section and a little algebra shows this is

𝑓 (𝑥) ≈ 1
2
𝑑2 𝑓

𝑑𝑥2 (𝑥0)(𝑥 − 𝑥0)2 +
𝑑𝑓

𝑑𝑥
(𝑥0)(𝑥 − 𝑥0) + 𝑓 (𝑥0). (A.15)

As we can see above, the denominator of 2 is there to cancel out the 2 we get when we take
two derivatives of 𝑥2, while the other terms are all zero. Same logic applies for the first
derivative and the value itself.

If we push the logic further to 𝑛 = 3, we will conclude that

𝑓 (𝑥) ≈
𝑑3 𝑓
𝑑𝑥3 (𝑥0)

6
(𝑥 − 𝑥0)3 +

𝑑2 𝑓
𝑑𝑥2 (𝑥0)

2
(𝑥 − 𝑥0)2 +

𝑑𝑓

𝑑𝑥
(𝑥0) (𝑥 − 𝑥0) + 𝑓 (𝑥0). (A.16)

where the 6 = 3×2 = 3! comes from the constant we get in front if we take three derivatives
of 𝑥3.

Furthermore, we can get a degree 𝑛 polynomial by

𝑃𝑛 (𝑥) =
𝑛∑
𝑖=0

𝑓 (𝑖) (𝑥0)
𝑖!

(𝑥 − 𝑥0)𝑖 . (A.17)

where the notation

𝑓 (𝑛) (𝑥) = 𝑑𝑛 𝑓

𝑑𝑥𝑛
=

(
𝑑

𝑑𝑥

)𝑛
𝑓 . (A.18)

Indeed, 𝑃𝑛 (𝑥) can be viewed as the best 𝑛-th degree polynomial approximation to our func-
tion 𝑓 (𝑥).

While we are not going to dive all the way into the error of the above approximations, it
is worth mentioning the infinite limit. In this case, for well behaved functions (known as
real analytic functions) like cos(𝑥) or 𝑒𝑥 , we can write out the infinite number of terms and
approximate the exactly same function

𝑓 (𝑥) =
∞∑
𝑛=0

𝑓 (𝑛) (𝑥0)
𝑛!

(𝑥 − 𝑥0)𝑛. (A.19)

Take 𝑓 (𝑥) = 𝑒𝑥 as am example. Since 𝑒𝑥 is its own derivative, we know that 𝑓 (𝑛) (𝑥) = 𝑒𝑥 .
Therefore, 𝑒𝑥 can be reconstructed by taking the Taylor series at 𝑥0 = 0, i.e.,

𝑒𝑥 =
∞∑
𝑛=0

𝑥𝑛

𝑛!
= 1 + 𝑥 + 𝑥

2

2
+ 𝑥

3

6
+ · · · . (A.20)

Let’s see how this works in code and observe how increasing the degree of the Taylor
approximation brings us closer to the desired function 𝑒𝑥 .
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# Compute the exponential function
xs = np.arange(0, 3, 0.01)
ys = np.exp(xs)

# Compute a few Taylor series approximations
P1 = 1 + xs
P2 = 1 + xs + xs**2 / 2
P5 = 1 + xs + xs**2 / 2 + xs**3 / 6 + xs**4 / 24 + xs**5 / 120

d2l.plot(xs, [ys, P1, P2, P5], 'x', 'f(x)', legend=[
"Exponential", "Degree 1 Taylor Series", "Degree 2 Taylor Series",
"Degree 5 Taylor Series"])

Taylor series have two primary applications:

1. Theoretical applications: Often when we try to understand a too complex function,
using Taylor series enables us to turn it into a polynomial that we can work with directly.

2. Numerical applications: Some functions like 𝑒𝑥 or cos(𝑥) are difficult for machines to
compute. They can store tables of values at a fixed precision (and this is often done), but
it still leaves open questions like “What is the 1000-th digit of cos(1)?” Taylor series
are often helpful to answer such questions.

A.3.3 Summary
• Derivatives can be used to express how functions change when we change the input by a

small amount.

• Elementary derivatives can be combined using derivative rules to create arbitrarily com-
plex derivatives.

• Derivatives can be iterated to get second or higher order derivatives. Each increase in
order provides more fine grained information on the behavior of the function.

• Using information in the derivatives of a single data example, we can approximate well
behaved functions by polynomials obtained from the Taylor series.

A.3.4 Exercises
1. What is the derivative of 𝑥3 − 4𝑥 + 1?
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2. What is the derivative of log( 1
𝑥 )?

3. True or False: If 𝑓 ′ (𝑥) = 0 then 𝑓 has a maximum or minimum at 𝑥?

4. Where is the minimum of 𝑓 (𝑥) = 𝑥 log(𝑥) for 𝑥 ≥ 0 (where we assume that 𝑓 takes the
limiting value of 0 at 𝑓 (0))?

Discussions278 .

A.4 Multivariable Calculus

Now that we have a fairly strong understanding of derivatives of a function of a single
variable, let’s return to our original question where we were considering a loss function of
potentially billions of weights.

A.4.1 Higher-Dimensional Differentiation
What Section A.3 tells us is that if we change a single one of these billions of weights
leaving every other one fixed, we know what will happen! This is nothing more than a
function of a single variable, so we can write

𝐿 (𝑤1 + 𝜖1, 𝑤2, . . . , 𝑤𝑁 ) ≈ 𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 ) + 𝜖1
𝑑

𝑑𝑤1
𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 ). (A.1)

Wewill call the derivative in one variable while fixing the other variables the partial deriva-
tive, and we will use the notation 𝜕

𝜕𝑤1
for the derivative in (A.1).

Now, let’s take this and change 𝑤2 a little bit to 𝑤2 + 𝜖2:

𝐿 (𝑤1 + 𝜖1, 𝑤2 + 𝜖2, . . . , 𝑤𝑁 ) ≈ 𝐿 (𝑤1, 𝑤2 + 𝜖2, . . . , 𝑤𝑁 ) + 𝜖1
𝜕

𝜕𝑤1
𝐿 (𝑤1, 𝑤2 + 𝜖2, . . . , 𝑤𝑁 + 𝜖𝑁 )

≈ 𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 )

+ 𝜖2
𝜕

𝜕𝑤2
𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 )

+ 𝜖1
𝜕

𝜕𝑤1
𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 )

+ 𝜖1𝜖2
𝜕

𝜕𝑤2

𝜕

𝜕𝑤1
𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 )

≈ 𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 )

+ 𝜖2
𝜕

𝜕𝑤2
𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 )

+ 𝜖1
𝜕

𝜕𝑤1
𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 ).

(A.2)

We have again used the idea that 𝜖1𝜖2 is a higher order term that we can discard in the same

https://discuss.d2l.ai/t/412
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way we could discard 𝜖2 in the previous section, along with what we saw in (A.1). By
continuing in this manner, we may write that

𝐿 (𝑤1 + 𝜖1, 𝑤2 + 𝜖2, . . . , 𝑤𝑁 + 𝜖𝑁 ) ≈ 𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 ) +
∑
𝑖

𝜖𝑖
𝜕

𝜕𝑤𝑖
𝐿 (𝑤1, 𝑤2, . . . , 𝑤𝑁 ).

(A.3)

This may look like a mess, but we can make this more familiar by noting that the sum on
the right looks exactly like a dot product, so if we let

𝝐 = [𝜖1, . . . , 𝜖𝑁 ]> and ∇x𝐿 =

[
𝜕𝐿

𝜕𝑥1
, . . . ,

𝜕𝐿

𝜕𝑥𝑁

]>
, (A.4)

then

𝐿 (w + 𝝐) ≈ 𝐿 (w) + 𝝐 · ∇w𝐿 (w). (A.5)

We will call the vector ∇w𝐿 the gradient of 𝐿.

Equation (A.5) is worth pondering for a moment. It has exactly the format that we encoun-
tered in one dimension, just we have converted everything to vectors and dot products.
It allows us to tell approximately how the function 𝐿 will change given any perturbation
to the input. As we will see in the next section, this will provide us with an important
tool in understanding geometrically how we can learn using information contained in the
gradient.

But first, let’s see this approximation at work with an example. Suppose that we are working
with the function

𝑓 (𝑥, 𝑦) = log(𝑒𝑥 + 𝑒𝑦) with gradient ∇ 𝑓 (𝑥, 𝑦) =
[

𝑒𝑥

𝑒𝑥 + 𝑒𝑦 ,
𝑒𝑦

𝑒𝑥 + 𝑒𝑦

]
. (A.6)

If we look at a point like (0, log(2)), we see that

𝑓 (𝑥, 𝑦) = log(3) with gradient ∇ 𝑓 (𝑥, 𝑦) =
[
1
3
,
2
3

]
. (A.7)

Thus, if we want to approximate 𝑓 at (𝜖1, log(2) + 𝜖2), we see that we should have the
specific instance of (A.5):

𝑓 (𝜖1, log(2) + 𝜖2) ≈ log(3) + 1
3
𝜖1 +

2
3
𝜖2. (A.8)

We can test this in code to see how good the approximation is.

%matplotlib inline
from IPython import display
from mpl_toolkits import mplot3d
from mxnet import autograd, np, npx
from d2l import mxnet as d2l

npx.set_np()

def f(x, y):

(continues on next page)
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(continued from previous page)

return np.log(np.exp(x) + np.exp(y))
def grad_f(x, y):

return np.array([np.exp(x) / (np.exp(x) + np.exp(y)),
np.exp(y) / (np.exp(x) + np.exp(y))])

epsilon = np.array([0.01, -0.03])
grad_approx = f(0, np.log(2)) + epsilon.dot(grad_f(0, np.log(2)))
true_value = f(0 + epsilon[0], np.log(2) + epsilon[1])
f'approximation: {grad_approx}, true Value: {true_value}'

[21:56:31] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

'approximation: 1.0819456577301025, true Value: 1.0821242332458496'

A.4.2 Geometry of Gradients and Gradient Descent
Consider the expression from (A.5) again:

𝐿 (w + 𝝐) ≈ 𝐿 (w) + 𝝐 · ∇w𝐿 (w). (A.9)

Let’s suppose that I want to use this to help minimize our loss 𝐿. Let’s understand geomet-
rically the algorithm of gradient descent first described in Section 2.5. What we will do is
the following:

1. Start with a random choice for the initial parameters w.

2. Find the direction v that makes 𝐿 decrease the most rapidly at w.

3. Take a small step in that direction: w→ w + 𝜖v.

4. Repeat.

The only thing we do not know exactly how to do is to compute the vector v in the second
step. We will call such a direction the direction of steepest descent. Using the geometric
understanding of dot products from Section A.1, we see that we can rewrite (A.5) as

𝐿 (w + v) ≈ 𝐿 (w) + v · ∇w𝐿 (w) = 𝐿 (w) + ‖∇w𝐿 (w)‖ cos(𝜃). (A.10)

Note that we have taken our direction to have length one for convenience, and used 𝜃 for
the angle between v and ∇w𝐿 (w). If we want to find the direction that decreases 𝐿 as
rapidly as possible, we want to make this expression as negative as possible. The only way
the direction we pick enters into this equation is through cos(𝜃), and thus we wish to make
this cosine as negative as possible. Now, recalling the shape of cosine, we can make this as
negative as possible by making cos(𝜃) = −1 or equivalently making the angle between the
gradient and our chosen direction to be 𝜋 radians, or equivalently 180 degrees. The only
way to achieve this is to head in the exact opposite direction: pick v to point in the exact
opposite direction to ∇w𝐿 (w)!
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This brings us to one of the most important mathematical concepts in machine learning:
the direction of steepest decent points in the direction of −∇w𝐿 (w). Thus our informal
algorithm can be rewritten as follows.

1. Start with a random choice for the initial parameters w.

2. Compute ∇w𝐿 (w).

3. Take a small step in the opposite of that direction: w← w − 𝜖∇w𝐿 (w).

4. Repeat.

This basic algorithm has been modified and adapted many ways by many researchers, but
the core concept remains the same in all of them. Use the gradient to find the direction that
decreases the loss as rapidly as possible, and update the parameters to take a step in that
direction.

A.4.3 A Note on Mathematical Optimization
Throughout this book, we focus squarely on numerical optimization techniques for the prac-
tical reason that all functions we encounter in the deep learning setting are too complex to
minimize explicitly.

However, it is a useful exercise to consider what the geometric understanding we obtained
above tells us about optimizing functions directly.

Suppose that we wish to find the value of x0 which minimizes some function 𝐿 (x). Let’s
suppose that moreover someone gives us a value and tells us that it is the value that mini-
mizes 𝐿. Is there anything we can check to see if their answer is even plausible?

Again consider (A.5):

𝐿 (x0 + 𝝐) ≈ 𝐿 (x0) + 𝝐 · ∇x𝐿 (x0). (A.11)

If the gradient is not zero, we know that we can take a step in the direction −𝜖∇x𝐿 (x0) to
find a value of 𝐿 that is smaller. Thus, if we truly are at a minimum, this cannot be the
case! We can conclude that if x0 is a minimum, then ∇x𝐿 (x0) = 0. We call points with
∇x𝐿 (x0) = 0 critical points.

This is nice, because in some rare settings, we can explicitly find all the points where the
gradient is zero, and find the one with the smallest value.

For a concrete example, consider the function

𝑓 (𝑥) = 3𝑥4 − 4𝑥3 − 12𝑥2. (A.12)

This function has derivative
𝑑𝑓

𝑑𝑥
= 12𝑥3 − 12𝑥2 − 24𝑥 = 12𝑥(𝑥 − 2) (𝑥 + 1). (A.13)

The only possible location of minima are at 𝑥 = −1, 0, 2, where the function takes the
values −5, 0,−32 respectively, and thus we can conclude that we minimize our function
when 𝑥 = 2. A quick plot confirms this.
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x = np.arange(-2, 3, 0.01)
f = (3 * x**4) - (4 * x**3) - (12 * x**2)

d2l.plot(x, f, 'x', 'f(x)')

This highlights an important fact to knowwhen working either theoretically or numerically:
the only possible points where we canminimize (or maximize) a function will have gradient
equal to zero, however, not every point with gradient zero is the true global minimum (or
maximum).

A.4.4 Multivariate Chain Rule
Let’s suppose that we have a function of four variables (𝑤, 𝑥, 𝑦, and 𝑧) which we can make
by composing many terms:

𝑓 (𝑢, 𝑣) = (𝑢 + 𝑣)2

𝑢(𝑎, 𝑏) = (𝑎 + 𝑏)2, 𝑣(𝑎, 𝑏) = (𝑎 − 𝑏)2,
𝑎(𝑤, 𝑥, 𝑦, 𝑧) = (𝑤 + 𝑥 + 𝑦 + 𝑧)2, 𝑏(𝑤, 𝑥, 𝑦, 𝑧) = (𝑤 + 𝑥 − 𝑦 − 𝑧)2.

(A.14)

Such chains of equations are common when working with neural networks, so trying to
understand how to compute gradients of such functions is key. We can start to see visual
hints of this connection in Fig. A.1 if we take a look at what variables directly relate to one
another.

tFig. A.1 The function relations above where nodes represent values and edges show functional
dependence.

Nothing stops us from just composing everything from (A.14) and writing out that

𝑓 (𝑤, 𝑥, 𝑦, 𝑧) =
((
(𝑤 + 𝑥 + 𝑦 + 𝑧)2 + (𝑤 + 𝑥 − 𝑦 − 𝑧)2

)2
+

(
(𝑤 + 𝑥 + 𝑦 + 𝑧)2 − (𝑤 + 𝑥 − 𝑦 − 𝑧)2

)2
)2
.

(A.15)
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We may then take the derivative by just using single variable derivatives, but if we did that
we would quickly find ourself swamped with terms, many of which are repeats! Indeed,
one can see that, for instance:
𝜕 𝑓

𝜕𝑤
= 2

(
2 (2(𝑤 + 𝑥 + 𝑦 + 𝑧) − 2(𝑤 + 𝑥 − 𝑦 − 𝑧))

(
(𝑤 + 𝑥 + 𝑦 + 𝑧)2 − (𝑤 + 𝑥 − 𝑦 − 𝑧)2

)
+

2 (2(𝑤 + 𝑥 − 𝑦 − 𝑧) + 2(𝑤 + 𝑥 + 𝑦 + 𝑧))
(
(𝑤 + 𝑥 − 𝑦 − 𝑧)2 + (𝑤 + 𝑥 + 𝑦 + 𝑧)2

))
×((

(𝑤 + 𝑥 + 𝑦 + 𝑧)2 − (𝑤 + 𝑥 − 𝑦 − 𝑧)2
)2
+

(
(𝑤 + 𝑥 − 𝑦 − 𝑧)2 + (𝑤 + 𝑥 + 𝑦 + 𝑧)2

)2
)
.

(A.16)

If we then also wanted to compute 𝜕 𝑓
𝜕𝑥 , we would end up with a similar equation again with

many repeated terms, and many shared repeated terms between the two derivatives. This
represents a massive quantity of wasted work, and if we needed to compute derivatives this
way, the whole deep learning revolution would have stalled out before it began!

Let’s break up the problem. We will start by trying to understand how 𝑓 changes when we
change 𝑎, essentially assuming that 𝑤, 𝑥, 𝑦, and 𝑧 all do not exist. We will reason as we
did back when we worked with the gradient for the first time. Let’s take 𝑎 and add a small
amount 𝜖 to it.

𝑓 (𝑢(𝑎 + 𝜖, 𝑏), 𝑣(𝑎 + 𝜖, 𝑏))

≈ 𝑓
(
𝑢(𝑎, 𝑏) + 𝜖 𝜕𝑢

𝜕𝑎
(𝑎, 𝑏), 𝑣(𝑎, 𝑏) + 𝜖 𝜕𝑣

𝜕𝑎
(𝑎, 𝑏)

)
≈ 𝑓 (𝑢(𝑎, 𝑏), 𝑣(𝑎, 𝑏)) + 𝜖

[
𝜕 𝑓

𝜕𝑢
(𝑢(𝑎, 𝑏), 𝑣(𝑎, 𝑏)) 𝜕𝑢

𝜕𝑎
(𝑎, 𝑏) + 𝜕 𝑓

𝜕𝑣
(𝑢(𝑎, 𝑏), 𝑣(𝑎, 𝑏)) 𝜕𝑣

𝜕𝑎
(𝑎, 𝑏)

]
.

(A.17)

The first line follows from the definition of partial derivative, and the second follows from
the definition of gradient. It is notationally burdensome to track exactly where we evaluate
every derivative, as in the expression 𝜕 𝑓

𝜕𝑢 (𝑢(𝑎, 𝑏), 𝑣(𝑎, 𝑏)), so we often abbreviate this to
the much more memorable

𝜕 𝑓

𝜕𝑎
=
𝜕 𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑎
+ 𝜕 𝑓
𝜕𝑣

𝜕𝑣

𝜕𝑎
. (A.18)

It is useful to think about the meaning of the process. We are trying to understand how
a function of the form 𝑓 (𝑢(𝑎, 𝑏), 𝑣(𝑎, 𝑏)) changes its value with a change in 𝑎. There
are two pathways this can occur: there is the pathway where 𝑎 → 𝑢 → 𝑓 and where
𝑎 → 𝑣 → 𝑓 . We can compute both of these contributions via the chain rule: 𝜕𝑤𝜕𝑢 ·

𝜕𝑢
𝜕𝑥 and

𝜕𝑤
𝜕𝑣 ·

𝜕𝑣
𝜕𝑥 respectively, and added up.

Imagine we have a different network of functions where the functions on the right depend
on those that are connected to on the left as is shown in Fig. A.2.

tFig. A.2 Another more subtle example of the chain rule.
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To compute something like 𝜕 𝑓
𝜕𝑦 , we need to sum over all (in this case 3) paths from 𝑦 to 𝑓

giving

𝜕 𝑓

𝜕𝑦
=
𝜕 𝑓

𝜕𝑎

𝜕𝑎

𝜕𝑢

𝜕𝑢

𝜕𝑦
+ 𝜕 𝑓
𝜕𝑢

𝜕𝑢

𝜕𝑦
+ 𝜕 𝑓
𝜕𝑏

𝜕𝑏

𝜕𝑣

𝜕𝑣

𝜕𝑦
. (A.19)

Understanding the chain rule in this way will pay great dividends when trying to understand
how gradients flow through networks, and why various architectural choices like those in
LSTMs (Section 10.1) or residual layers (Section 8.6) can help shape the learning process
by controlling gradient flow.

A.4.5 The Backpropagation Algorithm
Let’s return to the example of (A.14) the previous section where

𝑓 (𝑢, 𝑣) = (𝑢 + 𝑣)2

𝑢(𝑎, 𝑏) = (𝑎 + 𝑏)2, 𝑣(𝑎, 𝑏) = (𝑎 − 𝑏)2,
𝑎(𝑤, 𝑥, 𝑦, 𝑧) = (𝑤 + 𝑥 + 𝑦 + 𝑧)2, 𝑏(𝑤, 𝑥, 𝑦, 𝑧) = (𝑤 + 𝑥 − 𝑦 − 𝑧)2.

(A.20)

If we want to compute say 𝜕 𝑓
𝜕𝑤 we may apply the multi-variate chain rule to see:

𝜕 𝑓

𝜕𝑤
=
𝜕 𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑤
+ 𝜕 𝑓
𝜕𝑣

𝜕𝑣

𝜕𝑤
,

𝜕𝑢

𝜕𝑤
=
𝜕𝑢

𝜕𝑎

𝜕𝑎

𝜕𝑤
+ 𝜕𝑢
𝜕𝑏

𝜕𝑏

𝜕𝑤
,

𝜕𝑣

𝜕𝑤
=
𝜕𝑣

𝜕𝑎

𝜕𝑎

𝜕𝑤
+ 𝜕𝑣
𝜕𝑏

𝜕𝑏

𝜕𝑤
.

(A.21)

Let’s try using this decomposition to compute 𝜕 𝑓
𝜕𝑤 . Notice that all we need here are the

various single step partials:

𝜕 𝑓

𝜕𝑢
= 2(𝑢 + 𝑣), 𝜕 𝑓

𝜕𝑣
= 2(𝑢 + 𝑣),

𝜕𝑢

𝜕𝑎
= 2(𝑎 + 𝑏), 𝜕𝑢

𝜕𝑏
= 2(𝑎 + 𝑏),

𝜕𝑣

𝜕𝑎
= 2(𝑎 − 𝑏), 𝜕𝑣

𝜕𝑏
= −2(𝑎 − 𝑏),

𝜕𝑎

𝜕𝑤
= 2(𝑤 + 𝑥 + 𝑦 + 𝑧), 𝜕𝑏

𝜕𝑤
= 2(𝑤 + 𝑥 − 𝑦 − 𝑧).

(A.22)

If we write this out into code this becomes a fairly manageable expression.

# Compute the value of the function from inputs to outputs
w, x, y, z = -1, 0, -2, 1
a, b = (w + x + y + z)**2, (w + x - y - z)**2
u, v = (a + b)**2, (a - b)**2
f = (u + v)**2
print(f' f at {w}, {x}, {y}, {z} is {f}')

# Compute the single step partials
df_du, df_dv = 2*(u + v), 2*(u + v)

(continues on next page)



907 Multivariable Calculus

(continued from previous page)

du_da, du_db, dv_da, dv_db = 2*(a + b), 2*(a + b), 2*(a - b), -2*(a - b)
da_dw, db_dw = 2*(w + x + y + z), 2*(w + x - y - z)

# Compute the final result from inputs to outputs
du_dw, dv_dw = du_da*da_dw + du_db*db_dw, dv_da*da_dw + dv_db*db_dw
df_dw = df_du*du_dw + df_dv*dv_dw
print(f'df/dw at {w}, {x}, {y}, {z} is {df_dw}')

f at -1, 0, -2, 1 is 1024
df/dw at -1, 0, -2, 1 is -4096

However, note that this still does not make it easy to compute something like 𝜕 𝑓
𝜕𝑥 . The

reason for that is the waywe chose to apply the chain rule. If we look at what we did above,
we always kept 𝜕𝑤 in the denominator when we could. In this way, we chose to apply the
chain rule seeing how 𝑤 changed every other variable. If that is what we wanted, this would
be a good idea. However, think back to our motivation from deep learning: we want to see
how every parameter changes the loss. In essence, we want to apply the chain rule keeping
𝜕 𝑓 in the numerator whenever we can!

To be more explicit, note that we can write
𝜕 𝑓

𝜕𝑤
=
𝜕 𝑓

𝜕𝑎

𝜕𝑎

𝜕𝑤
+ 𝜕 𝑓
𝜕𝑏

𝜕𝑏

𝜕𝑤
,

𝜕 𝑓

𝜕𝑎
=
𝜕 𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑎
+ 𝜕 𝑓
𝜕𝑣

𝜕𝑣

𝜕𝑎
,

𝜕 𝑓

𝜕𝑏
=
𝜕 𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑏
+ 𝜕 𝑓
𝜕𝑣

𝜕𝑣

𝜕𝑏
.

(A.23)

Note that this application of the chain rule has us explicitly compute 𝜕 𝑓𝜕𝑢 ,
𝜕 𝑓
𝜕𝑣 ,

𝜕 𝑓
𝜕𝑎 ,

𝜕 𝑓
𝜕𝑏 , and

𝜕 𝑓
𝜕𝑤 .

Nothing stops us from also including the equations:
𝜕 𝑓

𝜕𝑥
=
𝜕 𝑓

𝜕𝑎

𝜕𝑎

𝜕𝑥
+ 𝜕 𝑓
𝜕𝑏

𝜕𝑏

𝜕𝑥
,

𝜕 𝑓

𝜕𝑦
=
𝜕 𝑓

𝜕𝑎

𝜕𝑎

𝜕𝑦
+ 𝜕 𝑓
𝜕𝑏

𝜕𝑏

𝜕𝑦
,

𝜕 𝑓

𝜕𝑧
=
𝜕 𝑓

𝜕𝑎

𝜕𝑎

𝜕𝑧
+ 𝜕 𝑓
𝜕𝑏

𝜕𝑏

𝜕𝑧
.

(A.24)

and then keeping track of how 𝑓 changes when we change any node in the entire network.
Let’s implement it.

# Compute the value of the function from inputs to outputs
w, x, y, z = -1, 0, -2, 1
a, b = (w + x + y + z)**2, (w + x - y - z)**2
u, v = (a + b)**2, (a - b)**2
f = (u + v)**2
print(f'f at {w}, {x}, {y}, {z} is {f}')

# Compute the derivative using the decomposition above

(continues on next page)
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# First compute the single step partials
df_du, df_dv = 2*(u + v), 2*(u + v)
du_da, du_db, dv_da, dv_db = 2*(a + b), 2*(a + b), 2*(a - b), -2*(a - b)
da_dw, db_dw = 2*(w + x + y + z), 2*(w + x - y - z)
da_dx, db_dx = 2*(w + x + y + z), 2*(w + x - y - z)
da_dy, db_dy = 2*(w + x + y + z), -2*(w + x - y - z)
da_dz, db_dz = 2*(w + x + y + z), -2*(w + x - y - z)

# Now compute how f changes when we change any value from output to input
df_da, df_db = df_du*du_da + df_dv*dv_da, df_du*du_db + df_dv*dv_db
df_dw, df_dx = df_da*da_dw + df_db*db_dw, df_da*da_dx + df_db*db_dx
df_dy, df_dz = df_da*da_dy + df_db*db_dy, df_da*da_dz + df_db*db_dz

print(f'df/dw at {w}, {x}, {y}, {z} is {df_dw}')
print(f'df/dx at {w}, {x}, {y}, {z} is {df_dx}')
print(f'df/dy at {w}, {x}, {y}, {z} is {df_dy}')
print(f'df/dz at {w}, {x}, {y}, {z} is {df_dz}')

f at -1, 0, -2, 1 is 1024
df/dw at -1, 0, -2, 1 is -4096
df/dx at -1, 0, -2, 1 is -4096
df/dy at -1, 0, -2, 1 is -4096
df/dz at -1, 0, -2, 1 is -4096

The fact that we compute derivatives from 𝑓 back towards the inputs rather than from the
inputs forward to the outputs (as we did in the first code snippet above) is what gives this
algorithm its name: backpropagation. Note that there are two steps: 1. Compute the value
of the function, and the single step partials from front to back. While not done above, this
can be combined into a single forward pass. 2. Compute the gradient of 𝑓 from back to
front. We call this the backwards pass.

This is precisely what every deep learning algorithm implements to allow the computation
of the gradient of the loss with respect to every weight in the network at one pass. It is an
astonishing fact that we have such a decomposition.

To see how to encapsulated this, let’s take a quick look at this example.

# Initialize as ndarrays, then attach gradients
w, x, y, z = np.array(-1), np.array(0), np.array(-2), np.array(1)

w.attach_grad()
x.attach_grad()
y.attach_grad()
z.attach_grad()

# Do the computation like usual, tracking gradients
with autograd.record():

a, b = (w + x + y + z)**2, (w + x - y - z)**2
u, v = (a + b)**2, (a - b)**2
f = (u + v)**2

(continues on next page)



909 Multivariable Calculus

(continued from previous page)

# Execute backward pass
f.backward()

print(f'df/dw at {w}, {x}, {y}, {z} is {w.grad}')
print(f'df/dx at {w}, {x}, {y}, {z} is {x.grad}')
print(f'df/dy at {w}, {x}, {y}, {z} is {y.grad}')
print(f'df/dz at {w}, {x}, {y}, {z} is {z.grad}')

df/dw at -1.0, 0.0, -2.0, 1.0 is -4096.0
df/dx at -1.0, 0.0, -2.0, 1.0 is -4096.0
df/dy at -1.0, 0.0, -2.0, 1.0 is -4096.0
df/dz at -1.0, 0.0, -2.0, 1.0 is -4096.0
[21:56:31] ../src/base.cc:48: GPU context requested, but no GPUs found.

All of what we did above can be done automatically by calling f.backwards().

A.4.6 Hessians
As with single variable calculus, it is useful to consider higher-order derivatives in order
to get a handle on how we can obtain a better approximation to a function than using the
gradient alone.

There is one immediate problem one encounters when working with higher order deriva-
tives of functions of several variables, and that is there are a large number of them. If we
have a function 𝑓 (𝑥1, . . . , 𝑥𝑛) of 𝑛 variables, then we can take 𝑛2 many second derivatives,
namely for any choice of 𝑖 and 𝑗 :

𝑑2 𝑓

𝑑𝑥𝑖𝑑𝑥 𝑗
=

𝑑

𝑑𝑥𝑖

(
𝑑

𝑑𝑥 𝑗
𝑓

)
. (A.25)

This is traditionally assembled into a matrix called the Hessian:

H 𝑓 =


𝑑2 𝑓

𝑑𝑥1𝑑𝑥1
· · · 𝑑2 𝑓

𝑑𝑥1𝑑𝑥𝑛
...

. . .
...

𝑑2 𝑓
𝑑𝑥𝑛𝑑𝑥1

· · · 𝑑2 𝑓
𝑑𝑥𝑛𝑑𝑥𝑛

 . (A.26)

Not every entry of this matrix is independent. Indeed, we can show that as long as both
mixed partials (partial derivatives with respect to more than one variable) exist and are
continuous, we can say that for any 𝑖, and 𝑗 ,

𝑑2 𝑓

𝑑𝑥𝑖𝑑𝑥 𝑗
=

𝑑2 𝑓

𝑑𝑥 𝑗𝑑𝑥𝑖
. (A.27)

This follows by considering first perturbing a function in the direction of 𝑥𝑖 , and then per-
turbing it in 𝑥 𝑗 and then comparing the result of that with what happens if we perturb first
𝑥 𝑗 and then 𝑥𝑖 , with the knowledge that both of these orders lead to the same final change
in the output of 𝑓 .

As with single variables, we can use these derivatives to get a far better idea of how the
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function behaves near a point. In particular, we can use it to find the best fitting quadratic
near a point x0, as we saw in a single variable.

Let’s see an example. Suppose that 𝑓 (𝑥1, 𝑥2) = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑐11𝑥
2
1 + 𝑐12𝑥1𝑥2 + 𝑐22𝑥

2
2.

This is the general form for a quadratic in two variables. If we look at the value of the
function, its gradient, and its Hessian (A.26), all at the point zero:

𝑓 (0, 0) = 𝑎,

∇ 𝑓 (0, 0) =
[
𝑏1
𝑏2

]
,

H 𝑓 (0, 0) =
[
2𝑐11 𝑐12
𝑐12 2𝑐22

]
,

(A.28)

we can get our original polynomial back by saying

𝑓 (x) = 𝑓 (0) + ∇ 𝑓 (0) · x + 1
2
x>H 𝑓 (0)x. (A.29)

In general, if we computed this expansion any point x0, we see that

𝑓 (x) = 𝑓 (x0) + ∇ 𝑓 (x0) · (x − x0) +
1
2
(x − x0)>H 𝑓 (x0)(x − x0). (A.30)

This works for any dimensional input, and provides the best approximating quadratic to any
function at a point. To give an example, let’s plot the function

𝑓 (𝑥, 𝑦) = 𝑥𝑒−𝑥2−𝑦2
. (A.31)

One can compute that the gradient and Hessian are

∇ 𝑓 (𝑥, 𝑦) = 𝑒−𝑥2−𝑦2
(
1 − 2𝑥2

−2𝑥𝑦

)
and H 𝑓 (𝑥, 𝑦) = 𝑒−𝑥2−𝑦2

(
4𝑥3 − 6𝑥 4𝑥2𝑦 − 2𝑦
4𝑥2𝑦 − 2𝑦 4𝑥𝑦2 − 2𝑥

)
.

(A.32)

And thus, with a little algebra, see that the approximating quadratic at [−1, 0]> is

𝑓 (𝑥, 𝑦) ≈ 𝑒−1
(
−1 − (𝑥 + 1) + (𝑥 + 1)2 + 𝑦2

)
. (A.33)

# Construct grid and compute function
x, y = np.meshgrid(np.linspace(-2, 2, 101),

np.linspace(-2, 2, 101), indexing='ij')
z = x*np.exp(- x**2 - y**2)

# Compute approximating quadratic with gradient and Hessian at (1, 0)
w = np.exp(-1)*(-1 - (x + 1) + (x + 1)**2 + y**2)

# Plot function
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x.asnumpy(), y.asnumpy(), z.asnumpy(),

**{'rstride': 10, 'cstride': 10})
ax.plot_wireframe(x.asnumpy(), y.asnumpy(), w.asnumpy(),

**{'rstride': 10, 'cstride': 10}, color='purple')
d2l.plt.xlabel('x')

(continues on next page)
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d2l.plt.ylabel('y')
d2l.set_figsize()
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(-1, 1)
ax.dist = 12

This forms the basis for Newton’s Algorithm discussed in Section 12.3, where we perform
numerical optimization iteratively finding the best fitting quadratic, and then exactly mini-
mizing that quadratic.

A.4.7 A Little Matrix Calculus
Derivatives of functions involving matrices turn out to be particularly nice. This section
can become notationally heavy, so may be skipped in a first reading, but it is useful to know
how derivatives of functions involving common matrix operations are often much cleaner
than one might initially anticipate, particularly given how central matrix operations are to
deep learning applications.

Let’s begin with an example. Suppose that we have some fixed column vector 𝜷, and we
want to take the product function 𝑓 (x) = 𝜷>x, and understand how the dot product changes
when we change x.

A bit of notation that will be useful when working with matrix derivatives in ML is called
the denominator layout matrix derivative where we assemble our partial derivatives into
the shape of whatever vector, matrix, or tensor is in the denominator of the differential. In
this case, we will write

𝑑𝑓

𝑑x
=


𝑑 𝑓
𝑑𝑥1
...
𝑑 𝑓
𝑑𝑥𝑛

 , (A.34)

where we matched the shape of the column vector x.

If we write out our function into components this is

𝑓 (x) =
𝑛∑
𝑖=1

𝛽𝑖𝑥𝑖 = 𝛽1𝑥1 + · · · + 𝛽𝑛𝑥𝑛. (A.35)
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If we now take the partial derivative with respect to say 𝛽1, note that everything is zero but
the first term, which is just 𝑥1 multiplied by 𝛽1, so we obtain that

𝑑𝑓

𝑑𝑥1
= 𝛽1, (A.36)

or more generally that

𝑑𝑓

𝑑𝑥𝑖
= 𝛽𝑖 . (A.37)

We can now reassemble this into a matrix to see

𝑑𝑓

𝑑x
=


𝑑 𝑓
𝑑𝑥1
...
𝑑 𝑓
𝑑𝑥𝑛

 =


𝛽1
...

𝛽𝑛

 = 𝜷. (A.38)

This illustrates a few factors about matrix calculus that we will often counter throughout
this section:

• First, The computations will get rather involved.

• Second, The final results are much cleaner than the intermediate process, and will al-
ways look similar to the single variable case. In this case, note that 𝑑

𝑑𝑥 (𝑏𝑥) = 𝑏 and
𝑑
𝑑x (𝜷

>x) = 𝜷 are both similar.

• Third, transposes can often appear seemingly from nowhere. The core reason for this is
the convention that we match the shape of the denominator, thus when we multiply
matrices, we will need to take transposes to match back to the shape of the original
term.

To keep building intuition, let’s try a computation that is a little harder. Suppose that we
have a column vector x, and a square matrix 𝐴 and we want to compute

𝑑

𝑑x
(x>𝐴x). (A.39)

To drive towards easier to manipulate notation, let’s consider this problem using Einstein
notation. In this case we can write the function as

x>𝐴x = 𝑥𝑖𝑎𝑖 𝑗𝑥 𝑗 . (A.40)

To compute our derivative, we need to understand for every 𝑘 , what is the value of

𝑑

𝑑𝑥𝑘
(x>𝐴x) = 𝑑

𝑑𝑥𝑘
𝑥𝑖𝑎𝑖 𝑗𝑥 𝑗 . (A.41)

By the product rule, this is

𝑑

𝑑𝑥𝑘
𝑥𝑖𝑎𝑖 𝑗𝑥 𝑗 =

𝑑𝑥𝑖
𝑑𝑥𝑘

𝑎𝑖 𝑗𝑥 𝑗 + 𝑥𝑖𝑎𝑖 𝑗
𝑑𝑥 𝑗

𝑑𝑥𝑘
. (A.42)

For a term like 𝑑𝑥𝑖
𝑑𝑥𝑘

, it is not hard to see that this is one when 𝑖 = 𝑘 and zero otherwise.
This means that every term where 𝑖 and 𝑘 are different vanish from this sum, so the only



913 Multivariable Calculus

terms that remain in that first sum are the ones where 𝑖 = 𝑘 . The same reasoning holds for
the second term where we need 𝑗 = 𝑘 . This gives

𝑑

𝑑𝑥𝑘
𝑥𝑖𝑎𝑖 𝑗𝑥 𝑗 = 𝑎𝑘 𝑗𝑥 𝑗 + 𝑥𝑖𝑎𝑖𝑘 . (A.43)

Now, the names of the indices in Einstein notation are arbitrary—the fact that 𝑖 and 𝑗 are
different is immaterial to this computation at this point, so we can re-index so that they both
use 𝑖 to see that

𝑑

𝑑𝑥𝑘
𝑥𝑖𝑎𝑖 𝑗𝑥 𝑗 = 𝑎𝑘𝑖𝑥𝑖 + 𝑥𝑖𝑎𝑖𝑘 = (𝑎𝑘𝑖 + 𝑎𝑖𝑘)𝑥𝑖 . (A.44)

Now, here is where we start to need some practice to go further. Let’s try and identify this
outcome in terms of matrix operations. 𝑎𝑘𝑖 + 𝑎𝑖𝑘 is the 𝑘, 𝑖-th component ofA +A>. This
gives

𝑑

𝑑𝑥𝑘
𝑥𝑖𝑎𝑖 𝑗𝑥 𝑗 = [A +A>]𝑘𝑖𝑥𝑖 . (A.45)

Similarly, this term is now the product of the matrix A + A> by the vector x, so we see
that [

𝑑

𝑑x
(x>𝐴x)

]
𝑘

=
𝑑

𝑑𝑥𝑘
𝑥𝑖𝑎𝑖 𝑗𝑥 𝑗 = [(A +A>)x]𝑘 . (A.46)

Thus, we see that the 𝑘-th entry of the desired derivative from (A.39) is just the 𝑘-th entry
of the vector on the right, and thus the two are the same. Thus yields

𝑑

𝑑x
(x>𝐴x) = (A +A>)x. (A.47)

This required significantly more work than our last one, but the final result is small. More
than that, consider the following computation for traditional single variable derivatives:

𝑑

𝑑𝑥
(𝑥𝑎𝑥) = 𝑑𝑥

𝑑𝑥
𝑎𝑥 + 𝑥𝑎 𝑑𝑥

𝑑𝑥
= (𝑎 + 𝑎)𝑥. (A.48)

Equivalently 𝑑
𝑑𝑥 (𝑎𝑥2) = 2𝑎𝑥 = (𝑎 + 𝑎)𝑥. Again, we get a result that looks rather like the

single variable result but with a transpose tossed in.

At this point, the pattern should be looking rather suspicious, so let’s try to figure out
why. When we take matrix derivatives like this, let’s first assume that the expression we
get will be another matrix expression: an expression we can write it in terms of products
and sums of matrices and their transposes. If such an expression exists, it will need to be
true for all matrices. In particular, it will need to be true of 1 × 1 matrices, in which case
the matrix product is just the product of the numbers, the matrix sum is just the sum, and
the transpose does nothing at all! In other words, whatever expression we get must match
the single variable expression. This means that, with some practice, one can often guess
matrix derivatives just by knowing what the associated single variable expressionmust look
like!

Let’s try this out. Suppose that X is a 𝑛 ×𝑚 matrix, U is an 𝑛 × 𝑟 and V is an 𝑟 ×𝑚. Let’s
try to compute

𝑑

𝑑V
‖X −UV‖22 = ? (A.49)
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This computation is important in an area called matrix factorization. For us, however, it is
just a derivative to compute. Let’s try to imagine what this would be for 1 × 1 matrices. In
that case, we get the expression

𝑑

𝑑𝑣
(𝑥 − 𝑢𝑣)2 = −2(𝑥 − 𝑢𝑣)𝑢, (A.50)

where, the derivative is rather standard. If we try to convert this back into a matrix expres-
sion we get

𝑑

𝑑V
‖X −UV‖22 = −2(X −UV)U. (A.51)

However, if we look at this it does not quite work. Recall thatX is 𝑛 ×𝑚, as isUV, so the
matrix 2(X−UV) is 𝑛×𝑚. On the other handU is 𝑛× 𝑟 , and we cannot multiply a 𝑛×𝑚
and a 𝑛 × 𝑟 matrix since the dimensions do not match!

We want to get 𝑑
𝑑V , which is the same shape as V, which is 𝑟 × 𝑚. So somehow we need

to take a 𝑛 × 𝑚 matrix and a 𝑛 × 𝑟 matrix, multiply them together (perhaps with some
transposes) to get a 𝑟 ×𝑚. We can do this by multiplying𝑈> by (X−UV). Thus, we can
guess the solution to (A.49) is

𝑑

𝑑V
‖X −UV‖22 = −2U> (X −UV). (A.52)

To show that this works, we would be remiss to not provide a detailed computation. If
we already believe that this rule-of-thumb works, feel free to skip past this derivation. To
compute

𝑑

𝑑V
‖X −UV‖22, (A.53)

we must find for every 𝑎, and 𝑏

𝑑

𝑑𝑣𝑎𝑏
‖X −UV‖22 =

𝑑

𝑑𝑣𝑎𝑏

∑
𝑖, 𝑗

(
𝑥𝑖 𝑗 −

∑
𝑘

𝑢𝑖𝑘𝑣𝑘 𝑗

)2

. (A.54)

Recalling that all entries of X and U are constants as far as 𝑑
𝑑𝑣𝑎𝑏

is concerned, we may
push the derivative inside the sum, and apply the chain rule to the square to get

𝑑

𝑑𝑣𝑎𝑏
‖X −UV‖22 =

∑
𝑖, 𝑗

2

(
𝑥𝑖 𝑗 −

∑
𝑘

𝑢𝑖𝑘𝑣𝑘 𝑗

) (
−

∑
𝑘

𝑢𝑖𝑘
𝑑𝑣𝑘 𝑗

𝑑𝑣𝑎𝑏

)
. (A.55)

As in the previous derivation, we may note that 𝑑𝑣𝑘 𝑗

𝑑𝑣𝑎𝑏
is only non-zero if the 𝑘 = 𝑎 and

𝑗 = 𝑏. If either of those conditions do not hold, the term in the sum is zero, and we may
freely discard it. We see that

𝑑

𝑑𝑣𝑎𝑏
‖X −UV‖22 = −2

∑
𝑖

(
𝑥𝑖𝑏 −

∑
𝑘

𝑢𝑖𝑘𝑣𝑘𝑏

)
𝑢𝑖𝑎 . (A.56)

An important subtlety here is that the requirement that 𝑘 = 𝑎 does not occur inside the
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inner sum since that 𝑘 is a dummy variable which we are summing over inside the inner
term. For a notationally cleaner example, consider why

𝑑

𝑑𝑥1

(∑
𝑖

𝑥𝑖

)2

= 2

(∑
𝑖

𝑥𝑖

)
. (A.57)

From this point, we may start identifying components of the sum. First,∑
𝑘

𝑢𝑖𝑘𝑣𝑘𝑏 = [UV]𝑖𝑏 . (A.58)

So the entire expression in the inside of the sum is

𝑥𝑖𝑏 −
∑
𝑘

𝑢𝑖𝑘𝑣𝑘𝑏 = [X −UV]𝑖𝑏 . (A.59)

This means we may now write our derivative as

𝑑

𝑑𝑣𝑎𝑏
‖X −UV‖22 = −2

∑
𝑖

[X −UV]𝑖𝑏𝑢𝑖𝑎 . (A.60)

We want this to look like the 𝑎, 𝑏 element of a matrix so we can use the technique as in the
previous example to arrive at a matrix expression, which means that we need to exchange
the order of the indices on 𝑢𝑖𝑎. If we notice that 𝑢𝑖𝑎 = [U>]𝑎𝑖 , we can then write

𝑑

𝑑𝑣𝑎𝑏
‖X −UV‖22 = −2

∑
𝑖

[U>]𝑎𝑖 [X −UV]𝑖𝑏 . (A.61)

This is a matrix product, and thus we can conclude that

𝑑

𝑑𝑣𝑎𝑏
‖X −UV‖22 = −2[U> (X −UV)]𝑎𝑏 . (A.62)

and thus we may write the solution to (A.49)

𝑑

𝑑V
‖X −UV‖22 = −2U> (X −UV). (A.63)

This matches the solution we guessed above!

It is reasonable to ask at this point, “Why can I not just write down matrix versions of
all the calculus rules I have learned? It is clear this is still mechanical. Why do we not
just get it over with!” And indeed there are such rules and (Petersen and Pedersen, 2008)
provides an excellent summary. However, due to the plethora of ways matrix operations
can be combined compared to single values, there are many more matrix derivative rules
than single variable ones. It is often the case that it is best to work with the indices, or leave
it up to automatic differentiation when appropriate.

A.4.8 Summary
• In higher dimensions, we can define gradients which serve the same purpose as deriva-

tives in one dimension. These allow us to see how a multi-variable function changes
when we make an arbitrary small change to the inputs.
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• The backpropagation algorithm can be seen to be a method of organizing the multi-
variable chain rule to allow for the efficient computation of many partial derivatives.

• Matrix calculus allows us to write the derivatives of matrix expressions in concise ways.

A.4.9 Exercises
1. Given a column vector 𝜷, compute the derivatives of both 𝑓 (x) = 𝜷>x and 𝑔(x) = x>𝜷.

Why do you get the same answer?

2. Let v be an 𝑛 dimension vector. What is 𝜕
𝜕v ‖v‖2?

3. Let 𝐿 (𝑥, 𝑦) = log(𝑒𝑥 + 𝑒𝑦). Compute the gradient. What is the sum of the components
of the gradient?

4. Let 𝑓 (𝑥, 𝑦) = 𝑥2𝑦 + 𝑥𝑦2. Show that the only critical point is (0, 0). By considering
𝑓 (𝑥, 𝑥), determine if (0, 0) is a maximum, minimum, or neither.

5. Suppose that we are minimizing a function 𝑓 (x) = 𝑔(x) + ℎ(x). How can we geomet-
rically interpret the condition of ∇ 𝑓 = 0 in terms of 𝑔 and ℎ?

Discussions279 .

A.5 Integral Calculus

Differentiation only makes up half of the content of a traditional calculus education. The
other pillar, integration, starts out seeming a rather disjoint question, “What is the area
underneath this curve?” While seemingly unrelated, integration is tightly intertwined with
the differentiation via what is known as the fundamental theorem of calculus.

At the level ofmachine learningwe discuss in this book, wewill not need a deep understand-
ing of integration. However, we will provide a brief introduction to lay the groundwork for
any further applications we will encounter later on.

A.5.1 Geometric Interpretation
Suppose that we have a function 𝑓 (𝑥). For simplicity, let’s assume that 𝑓 (𝑥) is non-negative
(never takes a value less than zero). What we want to try and understand is: what is the
area contained between 𝑓 (𝑥) and the 𝑥-axis?

%matplotlib inline
from IPython import display
from mpl_toolkits import mplot3d
from mxnet import np, npx
from d2l import mxnet as d2l

(continues on next page)

https://discuss.d2l.ai/t/413
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(continued from previous page)

npx.set_np()

x = np.arange(-2, 2, 0.01)
f = np.exp(-x**2)

d2l.set_figsize()
d2l.plt.plot(x, f, color='black')
d2l.plt.fill_between(x.tolist(), f.tolist())
d2l.plt.show()

[22:02:47] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

In most cases, this area will be infinite or undefined (consider the area under 𝑓 (𝑥) = 𝑥2),
so people will often talk about the area between a pair of ends, say 𝑎 and 𝑏.

x = np.arange(-2, 2, 0.01)
f = np.exp(-x**2)

d2l.set_figsize()
d2l.plt.plot(x, f, color='black')
d2l.plt.fill_between(x.tolist()[50:250], f.tolist()[50:250])
d2l.plt.show()

We will denote this area by the integral symbol below:

Area(A) =
∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥. (A.1)
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The inner variable is a dummy variable, much like the index of a sum in a
∑
, and so this

can be equivalently written with any inner value we like:∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑏

𝑎
𝑓 (𝑧) 𝑑𝑧. (A.2)

There is a traditional way to try and understand how we might try to approximate such
integrals: we can imagine taking the region in-between 𝑎 and 𝑏 and chopping it into 𝑁
vertical slices. If 𝑁 is large, we can approximate the area of each slice by a rectangle, and
then add up the areas to get the total area under the curve. Let’s take a look at an example
doing this in code. We will see how to get the true value in a later section.

epsilon = 0.05
a = 0
b = 2

x = np.arange(a, b, epsilon)
f = x / (1 + x**2)

approx = np.sum(epsilon*f)
true = np.log(2) / 2

d2l.set_figsize()
d2l.plt.bar(x.asnumpy(), f.asnumpy(), width=epsilon, align='edge')
d2l.plt.plot(x, f, color='black')
d2l.plt.ylim([0, 1])
d2l.plt.show()

f'approximation: {approx}, truth: {true}'

'approximation: 0.7944855690002441, truth: 0.34657359027997264'

The issue is that while it can be done numerically, we can do this approach analytically for
only the simplest functions like ∫ 𝑏

𝑎
𝑥 𝑑𝑥. (A.3)

Anything somewhat more complex like our example from the code above∫ 𝑏

𝑎

𝑥

1 + 𝑥2 𝑑𝑥.
(A.4)
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is beyond what we can solve with such a direct method.

We will instead take a different approach. We will work intuitively with the notion of the
area, and learn the main computational tool used to find integrals: the fundamental theorem
of calculus. This will be the basis for our study of integration.

A.5.2 The Fundamental Theorem of Calculus
To dive deeper into the theory of integration, let’s introduce a function

𝐹 (𝑥) =
∫ 𝑥

0
𝑓 (𝑦)𝑑𝑦. (A.5)

This function measures the area between 0 and 𝑥 depending on how we change 𝑥. Notice
that this is everything we need since∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎). (A.6)

This is a mathematical encoding of the fact that we can measure the area out to the far end-
point and then subtract off the area to the near end point as indicated in Fig. A.1.

tFig. A.1 Visualizing why we may reduce the problem of computing the area under a curve between
two points to computing the area to the left of a point.

Thus, we can figure out what the integral over any interval is by figuring out what 𝐹 (𝑥)
is.

To do so, let’s consider an experiment. As we often do in calculus, let’s imagine what hap-
pens when we shift the value by a tiny bit. From the comment above, we know that

𝐹 (𝑥 + 𝜖) − 𝐹 (𝑥) =
∫ 𝑥+𝜖

𝑥
𝑓 (𝑦) 𝑑𝑦. (A.7)

This tells us that the function changes by the area under a tiny sliver of a function.

This is the point at which we make an approximation. If we look at a tiny sliver of area like
this, it looks like this area is close to the rectangular area with height the value of 𝑓 (𝑥) and
the base width 𝜖 . Indeed, one can show that as 𝜖 → 0 this approximation becomes better
and better. Thus we can conclude:

𝐹 (𝑥 + 𝜖) − 𝐹 (𝑥) ≈ 𝜖 𝑓 (𝑥). (A.8)

However, we can now notice: this is exactly the pattern we expect if we were computing
the derivative of 𝐹! Thus we see the following rather surprising fact:

𝑑𝐹

𝑑𝑥
(𝑥) = 𝑓 (𝑥). (A.9)
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This is the fundamental theorem of calculus. We may write it in expanded form as

𝑑

𝑑𝑥

∫ 𝑥

0
𝑓 (𝑦) 𝑑𝑦 = 𝑓 (𝑥). (A.10)

It takes the concept of finding areas (a priori rather hard), and reduces it to a statement
derivatives (something much more completely understood). One last comment that we
must make is that this does not tell us exactly what 𝐹 (𝑥) is. Indeed 𝐹 (𝑥) +𝐶 for any 𝐶 has
the same derivative. This is a fact-of-life in the theory of integration. Thankfully, notice
that when working with definite integrals, the constants drop out, and thus are irrelevant to
the outcome. ∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = (𝐹 (𝑏) + 𝐶) − (𝐹 (𝑎) + 𝐶) = 𝐹 (𝑏) − 𝐹 (𝑎). (A.11)

Thismay seem like abstract non-sense, but let’s take amoment to appreciate that it has given
us a whole new perspective on computing integrals. Our goal is no-longer to do some sort
of chop-and-sum process to try and recover the area, rather we need only find a function
whose derivative is the function we have! This is incredible since we can now list many
rather difficult integrals by just reversing the table from Section A.3.2. For instance, we
know that the derivative of 𝑥𝑛 is 𝑛𝑥𝑛−1. Thus, we can say using the fundamental theorem
(A.10) that ∫ 𝑥

0
𝑛𝑦𝑛−1 𝑑𝑦 = 𝑥𝑛 − 0𝑛 = 𝑥𝑛. (A.12)

Similarly, we know that the derivative of 𝑒𝑥 is itself, so that means∫ 𝑥

0
𝑒𝑥 𝑑𝑥 = 𝑒𝑥 − 𝑒0 = 𝑒𝑥 − 1. (A.13)

In this way, we can develop the entire theory of integration leveraging ideas from differential
calculus freely. Every integration rule derives from this one fact.

A.5.3 Change of Variables
Just as with differentiation, there are a number of rules which make the computation of
integrals more tractable. In fact, every rule of differential calculus (like the product rule,
sum rule, and chain rule) has a corresponding rule for integral calculus (integration by parts,
linearity of integration, and the change of variables formula respectively). In this section,
we will dive into what is arguably the most important from the list: the change of variables
formula.

First, suppose that we have a function which is itself an integral:

𝐹 (𝑥) =
∫ 𝑥

0
𝑓 (𝑦) 𝑑𝑦. (A.14)

Let’s suppose that we want to know how this function looks when we compose it with
another to obtain 𝐹 (𝑢(𝑥)). By the chain rule, we know

𝑑

𝑑𝑥
𝐹 (𝑢(𝑥)) = 𝑑𝐹

𝑑𝑢
(𝑢(𝑥)) · 𝑑𝑢

𝑑𝑥
. (A.15)



921 Integral Calculus

We can turn this into a statement about integration by using the fundamental theorem
(A.10) as above. This gives

𝐹 (𝑢(𝑥)) − 𝐹 (𝑢(0)) =
∫ 𝑥

0

𝑑𝐹

𝑑𝑢
(𝑢(𝑦)) · 𝑑𝑢

𝑑𝑦
𝑑𝑦. (A.16)

Recalling that 𝐹 is itself an integral gives that the left hand side may be rewritten to
be ∫ 𝑢(𝑥 )

𝑢(0)
𝑓 (𝑦) 𝑑𝑦 =

∫ 𝑥

0

𝑑𝐹

𝑑𝑢
(𝑢(𝑦)) · 𝑑𝑢

𝑑𝑦
𝑑𝑦. (A.17)

Similarly, recalling that 𝐹 is an integral allows us to recognize that 𝑑𝐹𝑑𝑥 = 𝑓 using the
fundamental theorem (A.10), and thus we may conclude∫ 𝑢(𝑥 )

𝑢(0)
𝑓 (𝑦) 𝑑𝑦 =

∫ 𝑥

0
𝑓 (𝑢(𝑦)) · 𝑑𝑢

𝑑𝑦
𝑑𝑦. (A.18)

This is the change of variables formula.

For a more intuitive derivation, consider what happens when we take an integral of 𝑓 (𝑢(𝑥))
between 𝑥 and 𝑥 + 𝜖 . For a small 𝜖 , this integral is approximately 𝜖 𝑓 (𝑢(𝑥)), the area of
the associated rectangle. Now, let’s compare this with the integral of 𝑓 (𝑦) from 𝑢(𝑥) to
𝑢(𝑥 + 𝜖). We know that 𝑢(𝑥 + 𝜖) ≈ 𝑢(𝑥) + 𝜖 𝑑𝑢𝑑𝑥 (𝑥), so the area of this rectangle is approx-
imately 𝜖 𝑑𝑢𝑑𝑥 (𝑥) 𝑓 (𝑢(𝑥)). Thus, to make the area of these two rectangles to agree, we need
to multiply the first one by 𝑑𝑢

𝑑𝑥 (𝑥) as is illustrated in Fig. A.2.

tFig. A.2 Visualizing the transformation of a single thin rectangle under the change of variables.

This tells us that ∫ 𝑥+𝜖

𝑥
𝑓 (𝑢(𝑦)) 𝑑𝑢

𝑑𝑦
(𝑦) 𝑑𝑦 =

∫ 𝑢(𝑥+𝜖 )

𝑢(𝑥 )
𝑓 (𝑦) 𝑑𝑦. (A.19)

This is the change of variables formula expressed for a single small rectangle.

If 𝑢(𝑥) and 𝑓 (𝑥) are properly chosen, this can allow for the computation of incredibly
complex integrals. For instance, if we even chose 𝑓 (𝑦) = 1 and 𝑢(𝑥) = 𝑒−𝑥2 (which means
𝑑𝑢
𝑑𝑥 (𝑥) = −2𝑥𝑒−𝑥2 ), this can show for instance that

𝑒−1 − 1 =
∫ 𝑒−1

𝑒−0
1 𝑑𝑦 = −2

∫ 1

0
𝑦𝑒−𝑦

2
𝑑𝑦, (A.20)

and thus by rearranging that ∫ 1

0
𝑦𝑒−𝑦

2
𝑑𝑦 =

1 − 𝑒−1

2
. (A.21)
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A.5.4 A Comment on Sign Conventions
Keen-eyed readers will observe something strange about the computations above. Namely,
computations like ∫ 𝑒−1

𝑒−0
1 𝑑𝑦 = 𝑒−1 − 1 < 0, (A.22)

can produce negative numbers. When thinking about areas, it can be strange to see a neg-
ative value, and so it is worth digging into what the convention is.

Mathematicians take the notion of signed areas. This manifests itself in two ways. First, if
we consider a function 𝑓 (𝑥) which is sometimes less than zero, then the area will also be
negative. So for instance ∫ 1

0
(−1) 𝑑𝑥 = −1. (A.23)

Similarly, integrals which progress from right to left, rather than left to right are also taken
to be negative areas ∫ −1

0
1 𝑑𝑥 = −1. (A.24)

The standard area (from left to right of a positive function) is always positive. Anything
obtained by flipping it (say flipping over the 𝑥-axis to get the integral of a negative number,
or flipping over the 𝑦-axis to get an integral in the wrong order) will produce a negative
area. And indeed, flipping twice will give a pair of negative signs that cancel out to have
positive area ∫ −1

0
(−1) 𝑑𝑥 = 1. (A.25)

If this discussion sounds familiar, it is! In Section A.1 we discussed how the determinant
represented the signed area in much the same way.

A.5.5 Multiple Integrals
In some cases, we will need to work in higher dimensions. For instance, suppose that we
have a function of two variables, like 𝑓 (𝑥, 𝑦) and we want to know the volume under 𝑓
when 𝑥 ranges over [𝑎, 𝑏] and 𝑦 ranges over [𝑐, 𝑑].

# Construct grid and compute function
x, y = np.meshgrid(np.linspace(-2, 2, 101), np.linspace(-2, 2, 101),

indexing='ij')
z = np.exp(- x**2 - y**2)

# Plot function
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x.asnumpy(), y.asnumpy(), z.asnumpy())
d2l.plt.xlabel('x')
d2l.plt.ylabel('y')

(continues on next page)
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(continued from previous page)

d2l.plt.xticks([-2, -1, 0, 1, 2])
d2l.plt.yticks([-2, -1, 0, 1, 2])
d2l.set_figsize()
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(0, 1)
ax.dist = 12

We write this as ∫
[𝑎,𝑏]×[𝑐,𝑑 ]

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (A.26)

Suppose that we wish to compute this integral. My claim is that we can do this by iteratively
computing first the integral in 𝑥 and then shifting to the integral in 𝑦, that is to say∫

[𝑎,𝑏]×[𝑐,𝑑 ]
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∫ 𝑑

𝑐

(∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥

)
𝑑𝑦. (A.27)

Let’s see why this is.

Consider the figure above where we have split the function into 𝜖 × 𝜖 squares which we will
index with integer coordinates 𝑖, 𝑗 . In this case, our integral is approximately∑

𝑖, 𝑗

𝜖2 𝑓 (𝜖𝑖, 𝜖 𝑗). (A.28)

Once we discretize the problem, we may add up the values on these squares in whatever
order we like, and not worry about changing the values. This is illustrated in Fig. A.3. In
particular, we can say that ∑

𝑗

𝜖

(∑
𝑖

𝜖 𝑓 (𝜖𝑖, 𝜖 𝑗)
)
. (A.29)

The sum on the inside is precisely the discretization of the integral

𝐺 (𝜖 𝑗) =
∫ 𝑏

𝑎
𝑓 (𝑥, 𝜖 𝑗) 𝑑𝑥. (A.30)

Finally, notice that if we combine these two expressions we get∑
𝑗

𝜖𝐺 (𝜖 𝑗) ≈
∫ 𝑑

𝑐
𝐺 (𝑦) 𝑑𝑦 =

∫
[𝑎,𝑏]×[𝑐,𝑑 ]

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (A.31)
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tFig. A.3 Illustrating how to decompose a sum over many squares as a sum over first the columns
(1), then adding the column sums together (2).

Thus putting it all together, we have that∫
[𝑎,𝑏]×[𝑐,𝑑 ]

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =
∫ 𝑑

𝑐

(∫ 𝑏

𝑎
𝑓 (𝑥, 𝑦) 𝑑𝑥

)
𝑑𝑦. (A.32)

Notice that, once discretized, all we did was rearrange the order in which we added a list
of numbers. This may make it seem like it is nothing, however this result (called Fubini’s
Theorem) is not always true! For the type of mathematics encountered when doing ma-
chine learning (continuous functions), there is no concern, however it is possible to create
examples where it fails (for example the function 𝑓 (𝑥, 𝑦) = 𝑥𝑦(𝑥2 − 𝑦2)/(𝑥2 + 𝑦2)3 over the
rectangle [0, 2] × [0, 1]).

Note that the choice to do the integral in 𝑥 first, and then the integral in 𝑦 was arbitrary. We
could have equally well chosen to do 𝑦 first and then 𝑥 to see∫

[𝑎,𝑏]×[𝑐,𝑑 ]
𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∫ 𝑏

𝑎

(∫ 𝑑

𝑐
𝑓 (𝑥, 𝑦) 𝑑𝑦

)
𝑑𝑥. (A.33)

Often times, we will condense down to vector notation, and say that for𝑈 = [𝑎, 𝑏] × [𝑐, 𝑑]
this is ∫

𝑈
𝑓 (x) 𝑑x. (A.34)

A.5.6 Change of Variables in Multiple Integrals
As with single variables in (A.18), the ability to change variables inside a higher dimen-
sional integral is a key tool. Let’s summarize the result without derivation.

We need a function that reparametrizes our domain of integration. We can take this to be
𝜙 : R𝑛 → R𝑛, that is any function which takes in 𝑛 real variables and returns another 𝑛. To
keep the expressions clean, we will assume that 𝜙 is injective which is to say it never folds
over itself (𝜙(x) = 𝜙(y) =⇒ x = y).

In this case, we can say that∫
𝜙 (𝑈)

𝑓 (x) 𝑑x =
∫
𝑈
𝑓 (𝜙(x)) |det(𝐷𝜙(x)) | 𝑑x. (A.35)
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where𝐷𝜙 is the Jacobian of 𝜙, which is thematrix of partial derivatives of 𝝓 = (𝜙1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝜙𝑛 (𝑥1, . . . , 𝑥𝑛)),

𝐷𝝓 =


𝜕𝜙1
𝜕𝑥1

· · · 𝜕𝜙1
𝜕𝑥𝑛

...
. . .

...
𝜕𝜙𝑛
𝜕𝑥1

· · · 𝜕𝜙𝑛
𝜕𝑥𝑛

 . (A.36)

Looking closely, we see that this is similar to the single variable chain rule (A.18), except
we have replaced the term 𝑑𝑢

𝑑𝑥 (𝑥) with |det(𝐷𝜙(x)) |. Let’s see how we can to interpret
this term. Recall that the 𝑑𝑢

𝑑𝑥 (𝑥) term existed to say how much we stretched our 𝑥-axis by
applying 𝑢. The same process in higher dimensions is to determine how much we stretch
the area (or volume, or hyper-volume) of a little square (or little hyper-cube) by applying 𝝓.
If 𝝓 was the multiplication by a matrix, then we know how the determinant already gives
the answer.

With some work, one can show that the Jacobian provides the best approximation to a
multivariable function 𝝓 at a point by a matrix in the same way we could approximate by
lines or planes with derivatives and gradients. Thus the determinant of the Jacobian exactly
mirrors the scaling factor we identified in one dimension.

It takes some work to fill in the details to this, so do not worry if they are not clear now.
Let’s see at least one example we will make use of later on. Consider the integral∫ ∞

−∞

∫ ∞

−∞
𝑒−𝑥

2−𝑦2
𝑑𝑥 𝑑𝑦. (A.37)

Playing with this integral directly will get us no-where, but if we change variables, we can
make significant progress. If we let 𝝓(𝑟, 𝜃) = (𝑟 cos(𝜃), 𝑟 sin(𝜃)) (which is to say that
𝑥 = 𝑟 cos(𝜃), 𝑦 = 𝑟 sin(𝜃)), then we can apply the change of variable formula to see that
this is the same thing as ∫ ∞

0

∫ 2𝜋

0
𝑒−𝑟

2 |det(𝐷Œ(x)) | 𝑑𝜃 𝑑𝑟, (A.38)

where

|det(𝐷Œ(x)) | =
����det

[
cos(𝜃) −𝑟 sin(𝜃)
sin(𝜃) 𝑟 cos(𝜃)

] ���� = 𝑟 (cos2 (𝜃) + sin2 (𝜃)) = 𝑟. (A.39)

Thus, the integral is ∫ ∞

0

∫ 2𝜋

0
𝑟𝑒−𝑟

2
𝑑𝜃 𝑑𝑟 = 2𝜋

∫ ∞

0
𝑟𝑒−𝑟

2
𝑑𝑟 = 𝜋, (A.40)

where the final equality follows by the same computation that we used in section Section
A.5.3.

We will meet this integral again when we study continuous random variables in Section
A.6.

A.5.7 Summary
• The theory of integration allows us to answer questions about areas or volumes.
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• The fundamental theorem of calculus allows us to leverage knowledge about derivatives
to compute areas via the observation that the derivative of the area up to some point
is given by the value of the function being integrated.

• Integrals in higher dimensions can be computed by iterating single variable integrals.

A.5.8 Exercises

1. What is
∫ 2
1

1
𝑥 𝑑𝑥?

2. Use the change of variables formula to integrate
∫ √𝜋
0 𝑥 sin(𝑥2) 𝑑𝑥.

3. What is
∫
[0,1]2 𝑥𝑦 𝑑𝑥 𝑑𝑦?

4. Use the change of variables formula to compute
∫ 2
0

∫ 1
0 𝑥𝑦(𝑥2 − 𝑦2)/(𝑥2 + 𝑦2)3 𝑑𝑦 𝑑𝑥

and
∫ 1
0

∫ 2
0 𝑓 (𝑥, 𝑦) = 𝑥𝑦(𝑥2 − 𝑦2)/(𝑥2 + 𝑦2)3 𝑑𝑥 𝑑𝑦 to see they are different.

Discussions280 .

A.6 Random Variables

In Section 2.6 we saw the basics of how to work with discrete random variables, which in
our case refer to those random variables which take either a finite set of possible values, or
the integers. In this section, we develop the theory of continuous random variables, which
are random variables which can take on any real value.

A.6.1 Continuous Random Variables
Continuous random variables are a significantly more subtle topic than discrete random
variables. A fair analogy to make is that the technical jump is comparable to the jump
between adding lists of numbers and integrating functions. As such, we will need to take
some time to develop the theory.

From Discrete to Continuous
To understand the additional technical challenges encountered when working with contin-
uous random variables, let’s perform a thought experiment. Suppose that we are throwing
a dart at the dart board, and we want to know the probability that it hits exactly 2cm from
the center of the board.

To start with, we imagine measuring a single digit of accuracy, that is to say with bins for
0cm, 1cm, 2cm, and so on. We throw say 100 darts at the dart board, and if 20 of them fall
into the bin for 2cm we conclude that 20% of the darts we throw hit the board 2cm away
from the center.

https://discuss.d2l.ai/t/414
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However, when we look closer, this does not match our question! Wewanted exact equality,
whereas these bins hold all that fell between say 1.5cm and 2.5cm.

Undeterred, we continue further. We measure even more precisely, say 1.9cm, 2.0cm,
2.1cm, and now see that perhaps 3 of the 100 darts hit the board in the 2.0cm bucket. Thus
we conclude the probability is 3%.

However, this does not solve anything! We have just pushed the issue down one digit further.
Let’s abstract a bit. Imagine we know the probability that the first 𝑘 digits match with
2.00000 . . . and we want to know the probability it matches for the first 𝑘 + 1 digits. It is
fairly reasonable to assume that the 𝑘 + 1th digit is essentially a random choice from the
set {0, 1, 2, . . . , 9}. At least, we cannot conceive of a physically meaningful process which
would force the number of micrometers away form the center to prefer to end in a 7 vs a
3.

What this means is that in essence each additional digit of accuracy we require should
decrease probability of matching by a factor of 10. Or put another way, we would expect
that

𝑃(distance is 2.00 . . . , to 𝑘 digits) ≈ 𝑝 · 10−𝑘 . (A.1)

The value 𝑝 essentially encodes what happens with the first few digits, and the 10−𝑘 handles
the rest.

Notice that if we know the position accurate to 𝑘 = 4 digits after the decimal, that means
we know the value falls within the interval say [1.99995, 2.00005] which is an interval of
length 2.00005 − 1.99995 = 10−4. Thus, if we call the length of this interval 𝜖 , we can
say

𝑃(distance is in an 𝜖-sized interval around 2) ≈ 𝜖 · 𝑝. (A.2)

Let’s take this one final step further. We have been thinking about the point 2 the entire
time, but never thinking about other points. Nothing is different there fundamentally, but
it is the case that the value 𝑝 will likely be different. We would at least hope that a dart
thrower was more likely to hit a point near the center, like 2cm rather than 20cm. Thus, the
value 𝑝 is not fixed, but rather should depend on the point 𝑥. This tells us that we should
expect

𝑃(distance is in an 𝜖-sized interval around 𝑥) ≈ 𝜖 · 𝑝(𝑥). (A.3)

Indeed, (A.3) precisely defines the probability density function. It is a function 𝑝(𝑥) which
encodes the relative probability of hitting near one point vs. another. Let’s visualize what
such a function might look like.

%matplotlib inline
from IPython import display
from mxnet import np, npx
from d2l import mxnet as d2l

(continues on next page)
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(continued from previous page)

npx.set_np()

# Plot the probability density function for some random variable
x = np.arange(-5, 5, 0.01)
p = 0.2*np.exp(-(x - 3)**2 / 2)/np.sqrt(2 * np.pi) + \

0.8*np.exp(-(x + 1)**2 / 2)/np.sqrt(2 * np.pi)

d2l.plot(x, p, 'x', 'Density')

[22:06:14] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

The locations where the function value is large indicates regions where we are more likely
to find the random value. The low portions are areas where we are unlikely to find the
random value.

Probability Density Functions
Let’s now investigate this further. We have already seen what a probability density function
is intuitively for a random variable 𝑋 , namely the density function is a function 𝑝(𝑥) so
that

𝑃(𝑋 is in an 𝜖-sized interval around 𝑥) ≈ 𝜖 · 𝑝(𝑥). (A.4)

But what does this imply for the properties of 𝑝(𝑥)?

First, probabilities are never negative, thus we should expect that 𝑝(𝑥) ≥ 0 as well.

Second, let’s imagine that we slice up the R into an infinite number of slices which are 𝜖
wide, say with slices (𝜖 ·𝑖, 𝜖 · (𝑖+1)]. For each of these, we know from (A.4) the probability
is approximately

𝑃(𝑋 is in an 𝜖-sized interval around 𝑥) ≈ 𝜖 · 𝑝(𝜖 · 𝑖), (A.5)

so summed over all of them it should be

𝑃(𝑋 ∈ R) ≈
∑
𝑖

𝜖 · 𝑝(𝜖 · 𝑖). (A.6)
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This is nothing more than the approximation of an integral discussed in Section A.5, thus
we can say that

𝑃(𝑋 ∈ R) =
∫ ∞

−∞
𝑝(𝑥) 𝑑𝑥. (A.7)

We know that 𝑃(𝑋 ∈ R) = 1, since the random variable must take on some number, we
can conclude that for any density ∫ ∞

−∞
𝑝(𝑥) 𝑑𝑥 = 1. (A.8)

Indeed, digging into this further shows that for any 𝑎, and 𝑏, we see that

𝑃(𝑋 ∈ (𝑎, 𝑏]) =
∫ 𝑏

𝑎
𝑝(𝑥) 𝑑𝑥. (A.9)

We may approximate this in code by using the same discrete approximation methods as
before. In this case we can approximate the probability of falling in the blue region.

# Approximate probability using numerical integration
epsilon = 0.01
x = np.arange(-5, 5, 0.01)
p = 0.2*np.exp(-(x - 3)**2 / 2) / np.sqrt(2 * np.pi) + \

0.8*np.exp(-(x + 1)**2 / 2) / np.sqrt(2 * np.pi)

d2l.set_figsize()
d2l.plt.plot(x, p, color='black')
d2l.plt.fill_between(x.tolist()[300:800], p.tolist()[300:800])
d2l.plt.show()

f'approximate Probability: {np.sum(epsilon*p[300:800])}'

'approximate Probability: 0.7736172080039978'

It turns out that these two properties describe exactly the space of possible probability
density functions (or p.d.f.’s for the commonly encountered abbreviation). They are non-
negative functions 𝑝(𝑥) ≥ 0 such that∫ ∞

−∞
𝑝(𝑥) 𝑑𝑥 = 1. (A.10)
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We interpret this function by using integration to obtain the probability our random variable
is in a specific interval:

𝑃(𝑋 ∈ (𝑎, 𝑏]) =
∫ 𝑏

𝑎
𝑝(𝑥) 𝑑𝑥. (A.11)

In Section A.8 we will see a number of common distributions, but let’s continue working
in the abstract.

Cumulative Distribution Functions
In the previous section, we saw the notion of the p.d.f. In practice, this is a commonly en-
countered method to discuss continuous random variables, but it has one significant pitfall:
that the values of the p.d.f. are not themselves probabilities, but rather a function that we
must integrate to yield probabilities. There is nothing wrong with a density being larger
than 10, as long as it is not larger than 10 for more than an interval of length 1/10. This
can be counter-intuitive, so people often also think in terms of the cumulative distribution
function, or c.d.f., which is a probability.

In particular, by using (A.11), we define the c.d.f. for a random variable 𝑋 with density
𝑝(𝑥) by

𝐹 (𝑥) =
∫ 𝑥

−∞
𝑝(𝑥) 𝑑𝑥 = 𝑃(𝑋 ≤ 𝑥). (A.12)

Let’s observe a few properties.

• 𝐹 (𝑥) → 0 as 𝑥 → −∞.

• 𝐹 (𝑥) → 1 as 𝑥 →∞.

• 𝐹 (𝑥) is non-decreasing (𝑦 > 𝑥 =⇒ 𝐹 (𝑦) ≥ 𝐹 (𝑥)).

• 𝐹 (𝑥) is continuous (has no jumps) if 𝑋 is a continuous random variable.

With the fourth bullet point, note that this would not be true if 𝑋 were discrete, say taking
the values 0 and 1 both with probability 1/2. In that case

𝐹 (𝑥) =


0 𝑥 < 0,
1
2 𝑥 < 1,
1 𝑥 ≥ 1.

(A.13)

In this example, we see one of the benefits of working with the c.d.f., the ability to deal
with continuous or discrete random variables in the same framework, or indeed mixtures
of the two (flip a coin: if heads return the roll of a die, if tails return the distance of a dart
throw from the center of a dart board).

Means
Suppose that we are dealing with a random variables 𝑋 . The distribution itself can be hard
to interpret. It is often useful to be able to summarize the behavior of a random variable
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concisely. Numbers that help us capture the behavior of a random variable are called sum-
mary statistics. The most commonly encountered ones are the mean, the variance, and the
standard deviation.

The mean encodes the average value of a random variable. If we have a discrete random
variable 𝑋 , which takes the values 𝑥𝑖 with probabilities 𝑝𝑖 , then the mean is given by the
weighted average: sum the values times the probability that the random variable takes on
that value:

𝜇𝑋 = 𝐸 [𝑋] =
∑
𝑖

𝑥𝑖 𝑝𝑖 . (A.14)

The way we should interpret the mean (albeit with caution) is that it tells us essentially
where the random variable tends to be located.

As a minimalistic example that we will examine throughout this section, let’s take 𝑋 to be
the random variable which takes the value 𝑎−2 with probability 𝑝, 𝑎+2 with probability 𝑝
and 𝑎 with probability 1 − 2𝑝. We can compute using (A.14) that, for any possible choice
of 𝑎 and 𝑝, the mean is

𝜇𝑋 = 𝐸 [𝑋] =
∑
𝑖

𝑥𝑖 𝑝𝑖 = (𝑎 − 2)𝑝 + 𝑎(1 − 2𝑝) + (𝑎 + 2)𝑝 = 𝑎. (A.15)

Thus we see that the mean is 𝑎. This matches the intuition since 𝑎 is the location around
which we centered our random variable.

Because they are helpful, let’s summarize a few properties.

• For any random variable 𝑋 and numbers 𝑎 and 𝑏, we have that 𝜇𝑎𝑋+𝑏 = 𝑎𝜇𝑋 + 𝑏.

• If we have two random variables 𝑋 and 𝑌 , we have 𝜇𝑋+𝑌 = 𝜇𝑋 + 𝜇𝑌 .

Means are useful for understanding the average behavior of a random variable, however the
mean is not sufficient to even have a full intuitive understanding. Making a profit of $10±$1
per sale is very different from making $10 ± $15 per sale despite having the same average
value. The second one has a much larger degree of fluctuation, and thus represents a much
larger risk. Thus, to understand the behavior of a random variable, wewill need at minimum
one more measure: some measure of how widely a random variable fluctuates.

Variances
This leads us to consider the variance of a random variable. This is a quantitative measure
of how far a random variable deviates from the mean. Consider the expression 𝑋 − 𝜇𝑋.
This is the deviation of the random variable from its mean. This value can be positive
or negative, so we need to do something to make it positive so that we are measuring the
magnitude of the deviation.

A reasonable thing to try is to look at |𝑋 − 𝜇𝑋 |, and indeed this leads to a useful quan-
tity called the mean absolute deviation, however due to connections with other areas of
mathematics and statistics, people often use a different solution.
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In particular, they look at (𝑋 − 𝜇𝑋)2. If we look at the typical size of this quantity by taking
the mean, we arrive at the variance

𝜎2
𝑋 = Var(𝑋) = 𝐸

[
(𝑋 − 𝜇𝑋)2

]
= 𝐸 [𝑋2] − 𝜇2

𝑋 . (A.16)

The last equality in (A.16) holds by expanding out the definition in themiddle, and applying
the properties of expectation.

Let’s look at our example where 𝑋 is the random variable which takes the value 𝑎 − 2 with
probability 𝑝, 𝑎 + 2 with probability 𝑝 and 𝑎 with probability 1 − 2𝑝. In this case 𝜇𝑋 = 𝑎,
so all we need to compute is 𝐸

[
𝑋2] . This can readily be done:

𝐸
[
𝑋2] = (𝑎 − 2)2𝑝 + 𝑎2 (1 − 2𝑝) + (𝑎 + 2)2𝑝 = 𝑎2 + 8𝑝. (A.17)

Thus, we see that by (A.16) our variance is

𝜎2
𝑋 = Var(𝑋) = 𝐸 [𝑋2] − 𝜇2

𝑋 = 𝑎2 + 8𝑝 − 𝑎2 = 8𝑝. (A.18)

This result again makes sense. The largest 𝑝 can be is 1/2 which corresponds to picking
𝑎 − 2 or 𝑎 + 2 with a coin flip. The variance of this being 4 corresponds to the fact that
both 𝑎 − 2 and 𝑎 + 2 are 2 units away from the mean, and 22 = 4. On the other end of the
spectrum, if 𝑝 = 0, this random variable always takes the value 0 and so it has no variance
at all.

We will list a few properties of variance below:

• For any random variable 𝑋 , Var(𝑋) ≥ 0, with Var(𝑋) = 0 if and only if 𝑋 is a constant.

• For any random variable 𝑋 and numbers 𝑎 and 𝑏, we have that Var(𝑎𝑋 +𝑏) = 𝑎2Var(𝑋).

• If we have two independent random variables 𝑋 and 𝑌 , we have Var(𝑋 +𝑌 ) = Var(𝑋) +
Var(𝑌 ).

When interpreting these values, there can be a bit of a hiccup. In particular, let’s try imag-
ining what happens if we keep track of units through this computation. Suppose that we are
working with the star rating assigned to a product on the web page. Then 𝑎, 𝑎−2, and 𝑎+2
are all measured in units of stars. Similarly, the mean 𝜇𝑋 is then also measured in stars
(being a weighted average). However, if we get to the variance, we immediately encounter
an issue, which is we want to look at (𝑋 − 𝜇𝑋)2, which is in units of squared stars. This
means that the variance itself is not comparable to the original measurements. To make it
interpretable, we will need to return to our original units.

Standard Deviations
This summary statistics can always be deduced from the variance by taking the square root!
Thus we define the standard deviation to be

𝜎𝑋 =
√
Var(𝑋). (A.19)

In our example, this means we now have the standard deviation is 𝜎𝑋 = 2
√

2𝑝. If we are
dealing with units of stars for our review example, 𝜎𝑋 is again in units of stars.
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The properties we had for the variance can be restated for the standard deviation.

• For any random variable 𝑋 , 𝜎𝑋 ≥ 0.

• For any random variable 𝑋 and numbers 𝑎 and 𝑏, we have that 𝜎𝑎𝑋+𝑏 = |𝑎 |𝜎𝑋

• If we have two independent random variables 𝑋 and 𝑌 , we have 𝜎𝑋+𝑌 =
√
𝜎2
𝑋 + 𝜎2

𝑌 .

It is natural at this moment to ask, “If the standard deviation is in the units of our original
random variable, does it represent something we can draw with regards to that random
variable?” The answer is a resounding yes! Indeed much like the mean told us the typical
location of our random variable, the standard deviation gives the typical range of variation
of that random variable. We can make this rigorous with what is known as Chebyshev’s
inequality:

𝑃 (𝑋 ∉ [𝜇𝑋 − 𝛼𝜎𝑋, 𝜇𝑋 + 𝛼𝜎𝑋]) ≤
1
𝛼2 . (A.20)

Or to state it verbally in the case of 𝛼 = 10, 99% of the samples from any random variable
fall within 10 standard deviations of the mean. This gives an immediate interpretation to
our standard summary statistics.

To see how this statement is rather subtle, let’s take a look at our running example again
where 𝑋 is the random variable which takes the value 𝑎 − 2 with probability 𝑝, 𝑎 + 2 with
probability 𝑝 and 𝑎 with probability 1 − 2𝑝. We saw that the mean was 𝑎 and the standard
deviation was 2

√
2𝑝. This means, if we take Chebyshev’s inequality (A.20) with 𝛼 = 2,

we see that the expression is

𝑃
(
𝑋 ∉ [𝑎 − 4

√
2𝑝, 𝑎 + 4

√
2𝑝]

)
≤ 1

4
. (A.21)

This means that 75% of the time, this random variable will fall within this interval for any
value of 𝑝. Now, notice that as 𝑝 → 0, this interval also converges to the single point 𝑎.
But we know that our random variable takes the values 𝑎−2, 𝑎, and 𝑎+2 only so eventually
we can be certain 𝑎 − 2 and 𝑎 + 2 will fall outside the interval! The question is, at what 𝑝
does that happen. So we want to solve: for what 𝑝 does 𝑎 + 4

√
2𝑝 = 𝑎 + 2, which is solved

when 𝑝 = 1/8, which is exactly the first 𝑝 where it could possibly happen without violating
our claim that no more than 1/4 of samples from the distribution would fall outside the
interval (1/8 to the left, and 1/8 to the right).

Let’s visualize this. Wewill show the probability of getting the three values as three vertical
bars with height proportional to the probability. The interval will be drawn as a horizontal
line in the middle. The first plot shows what happens for 𝑝 > 1/8 where the interval safely
contains all points.

# Define a helper to plot these figures
def plot_chebyshev(a, p):

d2l.set_figsize()
d2l.plt.stem([a-2, a, a+2], [p, 1-2*p, p], use_line_collection=True)
d2l.plt.xlim([-4, 4])
d2l.plt.xlabel('x')

(continues on next page)
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(continued from previous page)

d2l.plt.ylabel('p.m.f.')

d2l.plt.hlines(0.5, a - 4 * np.sqrt(2 * p),
a + 4 * np.sqrt(2 * p), 'black', lw=4)

d2l.plt.vlines(a - 4 * np.sqrt(2 * p), 0.53, 0.47, 'black', lw=1)
d2l.plt.vlines(a + 4 * np.sqrt(2 * p), 0.53, 0.47, 'black', lw=1)
d2l.plt.title(f'p = {p:.3f}')

d2l.plt.show()

# Plot interval when p > 1/8
plot_chebyshev(0.0, 0.2)

The second shows that at 𝑝 = 1/8, the interval exactly touches the two points. This shows
that the inequality is sharp, since no smaller interval could be taken while keeping the
inequality true.

# Plot interval when p = 1/8
plot_chebyshev(0.0, 0.125)

The third shows that for 𝑝 < 1/8 the interval only contains the center. This does not invali-
date the inequality since we only needed to ensure that no more than 1/4 of the probability
falls outside the interval, which means that once 𝑝 < 1/8, the two points at 𝑎 − 2 and 𝑎 + 2
can be discarded.
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# Plot interval when p < 1/8
plot_chebyshev(0.0, 0.05)

Means and Variances in the Continuum
This has all been in terms of discrete random variables, but the case of continuous random
variables is similar. To intuitively understand how this works, imagine that we split the
real number line into intervals of length 𝜖 given by (𝜖𝑖, 𝜖 (𝑖 + 1)]. Once we do this, our
continuous random variable has been made discrete and we can use (A.14) say that

𝜇𝑋 ≈
∑
𝑖

(𝜖𝑖)𝑃(𝑋 ∈ (𝜖𝑖, 𝜖 (𝑖 + 1)])

≈
∑
𝑖

(𝜖𝑖)𝑝𝑋 (𝜖𝑖)𝜖,
(A.22)

where 𝑝𝑋 is the density of 𝑋 . This is an approximation to the integral of 𝑥𝑝𝑋 (𝑥), so we
can conclude that

𝜇𝑋 =
∫ ∞

−∞
𝑥𝑝𝑋 (𝑥) 𝑑𝑥. (A.23)

Similarly, using (A.16) the variance can be written as

𝜎2
𝑋 = 𝐸 [𝑋2] − 𝜇2

𝑋 =
∫ ∞

−∞
𝑥2𝑝𝑋 (𝑥) 𝑑𝑥 −

(∫ ∞

−∞
𝑥𝑝𝑋 (𝑥) 𝑑𝑥

)2
. (A.24)

Everything stated above about the mean, the variance, and the standard deviation still ap-
plies in this case. For instance, if we consider the random variable with density

𝑝(𝑥) =
{

1 𝑥 ∈ [0, 1],
0 otherwise.

(A.25)

we can compute

𝜇𝑋 =
∫ ∞

−∞
𝑥𝑝(𝑥) 𝑑𝑥 =

∫ 1

0
𝑥 𝑑𝑥 =

1
2
. (A.26)

and

𝜎2
𝑋 =

∫ ∞

−∞
𝑥2𝑝(𝑥) 𝑑𝑥 −

(
1
2

)2
=

1
3
− 1

4
=

1
12
. (A.27)
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As a warning, let’s examine one more example, known as the Cauchy distribution. This is
the distribution with p.d.f. given by

𝑝(𝑥) = 1
1 + 𝑥2 . (A.28)

# Plot the Cauchy distribution p.d.f.
x = np.arange(-5, 5, 0.01)
p = 1 / (1 + x**2)

d2l.plot(x, p, 'x', 'p.d.f.')

This function looks innocent, and indeed consulting a table of integrals will show it has
area one under it, and thus it defines a continuous random variable.

To see what goes astray, let’s try to compute the variance of this. This would involve using
(A.16) computing ∫ ∞

−∞

𝑥2

1 + 𝑥2 𝑑𝑥. (A.29)

The function on the inside looks like this:

# Plot the integrand needed to compute the variance
x = np.arange(-20, 20, 0.01)
p = x**2 / (1 + x**2)

d2l.plot(x, p, 'x', 'integrand')
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This function clearly has infinite area under it since it is essentially the constant one with a
small dip near zero, and indeed we could show that∫ ∞

−∞

𝑥2

1 + 𝑥2 𝑑𝑥 = ∞. (A.30)

This means it does not have a well-defined finite variance.

However, looking deeper shows an even more disturbing result. Let’s try to compute the
mean using (A.14). Using the change of variables formula, we see

𝜇𝑋 =
∫ ∞

−∞

𝑥

1 + 𝑥2 𝑑𝑥 =
1
2

∫ ∞

1

1
𝑢
𝑑𝑢. (A.31)

The integral inside is the definition of the logarithm, so this is in essence log(∞) = ∞, so
there is no well-defined average value either!

Machine learning scientists define their models so that we most often do not need to deal
with these issues, and will in the vast majority of cases deal with random variables with
well-defined means and variances. However, every so often random variables with heavy
tails (that is those random variables where the probabilities of getting large values are large
enough tomake things like themean or variance undefined) are helpful inmodeling physical
systems, thus it is worth knowing that they exist.

Joint Density Functions
The above work all assumes we are working with a single real valued random variable. But
what if we are dealing with two or more potentially highly correlated random variables?
This circumstance is the norm in machine learning: imagine random variables like 𝑅𝑖, 𝑗
which encode the red value of the pixel at the (𝑖, 𝑗) coordinate in an image, or 𝑃𝑡 which is
a random variable given by a stock price at time 𝑡. Nearby pixels tend to have similar color,
and nearby times tend to have similar prices. We cannot treat them as separate random
variables, and expect to create a successful model (we will see in Section A.9 a model that
under-performs due to such an assumption). We need to develop the mathematical language
to handle these correlated continuous random variables.

Thankfully, with the multiple integrals in Section A.5 we can develop such a language.
Suppose that we have, for simplicity, two random variables 𝑋,𝑌 which can be correlated.
Then, similar to the case of a single variable, we can ask the question:

𝑃(𝑋 is in an 𝜖-sized interval around 𝑥 and 𝑌 is in an 𝜖-sized interval around 𝑦). (A.32)

Similar reasoning to the single variable case shows that this should be approximately

𝑃(𝑋 is in an 𝜖-sized interval around 𝑥 and 𝑌 is in an 𝜖-sized interval around 𝑦) ≈ 𝜖2𝑝(𝑥, 𝑦),
(A.33)

for some function 𝑝(𝑥, 𝑦). This is referred to as the joint density of 𝑋 and 𝑌 . Similar
properties are true for this as we saw in the single variable case. Namely:

• 𝑝(𝑥, 𝑦) ≥ 0;
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•
∫
R2 𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 1;

• 𝑃((𝑋,𝑌 ) ∈ D) =
∫
D 𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

In this way, we can deal with multiple, potentially correlated random variables. If we wish
to work with more than two random variables, we can extend the multivariate density to as
many coordinates as desired by considering 𝑝(x) = 𝑝(𝑥1, . . . , 𝑥𝑛). The same properties of
being non-negative, and having total integral of one still hold.

Marginal Distributions
When dealing with multiple variables, we oftentimes want to be able to ignore the rela-
tionships and ask, “how is this one variable distributed?” Such a distribution is called a
marginal distribution.

To be concrete, let’s suppose that we have two random variables 𝑋,𝑌 with joint density
given by 𝑝𝑋,𝑌 (𝑥, 𝑦). We will be using the subscript to indicate what random variables the
density is for. The question of finding the marginal distribution is taking this function, and
using it to find 𝑝𝑋 (𝑥).

As with most things, it is best to return to the intuitive picture to figure out what should be
true. Recall that the density is the function 𝑝𝑋 so that

𝑃(𝑋 ∈ [𝑥, 𝑥 + 𝜖]) ≈ 𝜖 · 𝑝𝑋 (𝑥). (A.34)

There is no mention of 𝑌 , but if all we are given is 𝑝𝑋,𝑌 , we need to include 𝑌 somehow.
We can first observe that this is the same as

𝑃(𝑋 ∈ [𝑥, 𝑥 + 𝜖], and 𝑌 ∈ R) ≈ 𝜖 · 𝑝𝑋 (𝑥). (A.35)

Our density does not directly tell us about what happens in this case, we need to split into
small intervals in 𝑦 as well, so we can write this as

𝜖 · 𝑝𝑋 (𝑥) ≈
∑
𝑖

𝑃(𝑋 ∈ [𝑥, 𝑥 + 𝜖], and 𝑌 ∈ [𝜖 · 𝑖, 𝜖 · (𝑖 + 1)])

≈
∑
𝑖

𝜖2𝑝𝑋,𝑌 (𝑥, 𝜖 · 𝑖).
(A.36)

tFig. A.1 By summing along the columns of our array of probabilities, we are able to obtain the
marginal distribution for just the random variable represented along the x -axis.
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This tells us to add up the value of the density along a series of squares in a line as is shown
in Fig. A.1. Indeed, after canceling one factor of epsilon from both sides, and recognizing
the sum on the right is the integral over 𝑦, we can conclude that

𝑝𝑋 (𝑥) ≈
∑
𝑖

𝜖 𝑝𝑋,𝑌 (𝑥, 𝜖 · 𝑖)

≈
∫ ∞

−∞
𝑝𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦.

(A.37)

Thus we see

𝑝𝑋 (𝑥) =
∫ ∞

−∞
𝑝𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦. (A.38)

This tells us that to get a marginal distribution, we integrate over the variables we do not
care about. This process is often referred to as integrating out or marginalized out the
unneeded variables.

Covariance
When dealing with multiple random variables, there is one additional summary statistic
which is helpful to know: the covariance. This measures the degree that two random vari-
able fluctuate together.

Suppose that we have two random variables 𝑋 and 𝑌 , to begin with, let’s suppose they
are discrete, taking on values (𝑥𝑖 , 𝑦 𝑗 ) with probability 𝑝𝑖 𝑗 . In this case, the covariance is
defined as

𝜎𝑋𝑌 = Cov(𝑋,𝑌 ) =
∑
𝑖, 𝑗

(𝑥𝑖 − 𝜇𝑋) (𝑦 𝑗 − 𝜇𝑌 )𝑝𝑖 𝑗 . = 𝐸 [𝑋𝑌 ] − 𝐸 [𝑋]𝐸 [𝑌 ] . (A.39)

To think about this intuitively: consider the following pair of random variables. Suppose
that 𝑋 takes the values 1 and 3, and 𝑌 takes the values −1 and 3. Suppose that we have the
following probabilities

𝑃(𝑋 = 1 and 𝑌 = −1) = 𝑝

2
,

𝑃(𝑋 = 1 and 𝑌 = 3) = 1 − 𝑝
2

,

𝑃(𝑋 = 3 and 𝑌 = −1) = 1 − 𝑝
2

,

𝑃(𝑋 = 3 and 𝑌 = 3) = 𝑝

2
,

(A.40)

where 𝑝 is a parameter in [0, 1] we get to pick. Notice that if 𝑝 = 1 then they are both always
their minimum or maximum values simultaneously, and if 𝑝 = 0 they are guaranteed to take
their flipped values simultaneously (one is large when the other is small and vice versa).
If 𝑝 = 1/2, then the four possibilities are all equally likely, and neither should be related.
Let’s compute the covariance. First, note 𝜇𝑋 = 2 and 𝜇𝑌 = 1, so we may compute using
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(A.39):

Cov(𝑋,𝑌 ) =
∑
𝑖, 𝑗

(𝑥𝑖 − 𝜇𝑋) (𝑦 𝑗 − 𝜇𝑌 )𝑝𝑖 𝑗

= (1 − 2)(−1 − 1) 𝑝
2
+ (1 − 2)(3 − 1) 1 − 𝑝

2
+ (3 − 2)(−1 − 1) 1 − 𝑝

2
+ (3 − 2) (3 − 1) 𝑝

2
= 4𝑝 − 2.

(A.41)

When 𝑝 = 1 (the case where they are both maximally positive or negative at the same time)
has a covariance of 2. When 𝑝 = 0 (the case where they are flipped) the covariance is −2.
Finally, when 𝑝 = 1/2 (the case where they are unrelated), the covariance is 0. Thus we
see that the covariance measures how these two random variables are related.

A quick note on the covariance is that it only measures these linear relationships. More
complex relationships like 𝑋 = 𝑌2 where 𝑌 is randomly chosen from {−2,−1, 0, 1, 2} with
equal probability can be missed. Indeed a quick computation shows that these random vari-
ables have covariance zero, despite one being a deterministic function of the other.

For continuous random variables, much the same story holds. At this point, we are pretty
comfortable with doing the transition between discrete and continuous, so we will provide
the continuous analogue of (A.39) without any derivation.

𝜎𝑋𝑌 =
∫
R2
(𝑥 − 𝜇𝑋)(𝑦 − 𝜇𝑌 )𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (A.42)

For visualization, let’s take a look at a collection of random variables with tunable covari-
ance.

# Plot a few random variables adjustable covariance
covs = [-0.9, 0.0, 1.2]
d2l.plt.figure(figsize=(12, 3))
for i in range(3):

X = np.random.normal(0, 1, 500)
Y = covs[i]*X + np.random.normal(0, 1, (500))

d2l.plt.subplot(1, 4, i+1)
d2l.plt.scatter(X.asnumpy(), Y.asnumpy())
d2l.plt.xlabel('X')
d2l.plt.ylabel('Y')
d2l.plt.title(f'cov = {covs[i]}')

d2l.plt.show()

Let’s see some properties of covariances:

• For any random variable 𝑋 , Cov(𝑋, 𝑋) = Var(𝑋).

• For any random variables 𝑋,𝑌 and numbers 𝑎 and 𝑏, Cov(𝑎𝑋+𝑏,𝑌 ) = Cov(𝑋, 𝑎𝑌 +𝑏) =
𝑎Cov(𝑋,𝑌 ).

• If 𝑋 and 𝑌 are independent then Cov(𝑋,𝑌 ) = 0.
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In addition, we can use the covariance to expand a relationship we saw before. Recall that
is 𝑋 and 𝑌 are two independent random variables then

Var(𝑋 + 𝑌 ) = Var(𝑋) + Var(𝑌 ). (A.43)

With knowledge of covariances, we can expand this relationship. Indeed, some algebra can
show that in general,

Var(𝑋 + 𝑌 ) = Var(𝑋) + Var(𝑌 ) + 2Cov(𝑋,𝑌 ). (A.44)

This allows us to generalize the variance summation rule for correlated randomvariables.

Correlation
As we did in the case of means and variances, let’s now consider units. If 𝑋 is measured in
one unit (say inches), and𝑌 is measured in another (say dollars), the covariance is measured
in the product of these two units inches×dollars. These units can be hard to interpret. What
we will often want in this case is a unit-less measurement of relatedness. Indeed, often we
do not care about exact quantitative correlation, but rather ask if the correlation is in the
same direction, and how strong the relationship is.

To see what makes sense, let’s perform a thought experiment. Suppose that we convert
our random variables in inches and dollars to be in inches and cents. In this case the ran-
dom variable 𝑌 is multiplied by 100. If we work through the definition, this means that
Cov(𝑋,𝑌 ) will be multiplied by 100. Thus we see that in this case a change of units change
the covariance by a factor of 100. Thus, to find our unit-invariant measure of correlation,
we will need to divide by something else that also gets scaled by 100. Indeed we have a
clear candidate, the standard deviation! Indeed if we define the correlation coefficient to
be

𝜌(𝑋,𝑌 ) = Cov(𝑋,𝑌 )
𝜎𝑋𝜎𝑌

, (A.45)

we see that this is a unit-less value. A little mathematics can show that this number is
between −1 and 1 with 1 meaning maximally positively correlated, whereas −1 means
maximally negatively correlated.



942 Mathematics for Deep Learning

Returning to our explicit discrete example above, we can see that 𝜎𝑋 = 1 and 𝜎𝑌 = 2,
so we can compute the correlation between the two random variables using (A.45) to see
that

𝜌(𝑋,𝑌 ) = 4𝑝 − 2
1 · 2 = 2𝑝 − 1. (A.46)

This now ranges between−1 and 1with the expected behavior of 1meaningmost correlated,
and −1 meaning minimally correlated.

As another example, consider 𝑋 as any random variable, and 𝑌 = 𝑎𝑋 + 𝑏 as any linear
deterministic function of 𝑋 . Then, one can compute that

𝜎𝑌 = 𝜎𝑎𝑋+𝑏 = |𝑎 |𝜎𝑋, (A.47)

Cov(𝑋,𝑌 ) = Cov(𝑋, 𝑎𝑋 + 𝑏) = 𝑎Cov(𝑋, 𝑋) = 𝑎Var(𝑋), (A.48)

and thus by (A.45) that

𝜌(𝑋,𝑌 ) = 𝑎Var(𝑋)
|𝑎 |𝜎2

𝑋

=
𝑎

|𝑎 | = sign(𝑎). (A.49)

Thus we see that the correlation is +1 for any 𝑎 > 0, and −1 for any 𝑎 < 0 illustrating that
correlation measures the degree and directionality the two random variables are related,
not the scale that the variation takes.

Let’s again plot a collection of random variables with tunable correlation.

# Plot a few random variables adjustable correlations
cors = [-0.9, 0.0, 1.0]
d2l.plt.figure(figsize=(12, 3))
for i in range(3):

X = np.random.normal(0, 1, 500)
Y = cors[i] * X + np.sqrt(1 - cors[i]**2) * np.random.normal(0, 1, 500)

d2l.plt.subplot(1, 4, i + 1)
d2l.plt.scatter(X.asnumpy(), Y.asnumpy())
d2l.plt.xlabel('X')
d2l.plt.ylabel('Y')
d2l.plt.title(f'cor = {cors[i]}')

d2l.plt.show()

Let’s list a few properties of the correlation below.

• For any random variable 𝑋 , 𝜌(𝑋, 𝑋) = 1.

• For any random variables 𝑋,𝑌 and numbers 𝑎 and 𝑏, 𝜌(𝑎𝑋 + 𝑏,𝑌 ) = 𝜌(𝑋, 𝑎𝑌 + 𝑏) =
𝜌(𝑋,𝑌 ).

• If 𝑋 and 𝑌 are independent with non-zero variance then 𝜌(𝑋,𝑌 ) = 0.

As a final note, you may feel like some of these formulae are familiar. Indeed, if we expand
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everything out assuming that 𝜇𝑋 = 𝜇𝑌 = 0, we see that this is

𝜌(𝑋,𝑌 ) =
∑
𝑖, 𝑗 𝑥𝑖𝑦𝑖 𝑝𝑖 𝑗√∑

𝑖, 𝑗 𝑥
2
𝑖 𝑝𝑖 𝑗

√∑
𝑖, 𝑗 𝑦

2
𝑗 𝑝𝑖 𝑗

. (A.50)

This looks like a sum of a product of terms divided by the square root of sums of terms.
This is exactly the formula for the cosine of the angle between two vectors v,w with the
different coordinates weighted by 𝑝𝑖 𝑗 :

cos(𝜃) = v ·w
‖v‖‖w‖ =

∑
𝑖 𝑣𝑖𝑤𝑖√∑

𝑖 𝑣
2
𝑖

√∑
𝑖 𝑤

2
𝑖

. (A.51)

Indeed if we think of norms as being related to standard deviations, and correlations as
being cosines of angles, much of the intuition we have from geometry can be applied to
thinking about random variables.

A.6.2 Summary
• Continuous random variables are random variables that can take on a continuum of val-

ues. They have some technical difficulties that make them more challenging to work
with compared to discrete random variables.

• The probability density function allows us to work with continuous random variables by
giving a function where the area under the curve on some interval gives the probability
of finding a sample point in that interval.

• The cumulative distribution function is the probability of observing the random variable
to be less than a given threshold. It can provide a useful alternate viewpoint which
unifies discrete and continuous variables.

• The mean is the average value of a random variable.

• The variance is the expected square of the difference between the random variable and
its mean.

• The standard deviation is the square root of the variance. It can be thought of as mea-
suring the range of values the random variable may take.
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• Chebyshev’s inequality allows us to make this intuition rigorous by giving an explicit
interval that contains the random variable most of the time.

• Joint densities allow us to work with correlated random variables. We may marginalize
joint densities by integrating over unwanted random variables to get the distribution
of the desired random variable.

• The covariance and correlation coefficient provide a way to measure any linear relation-
ship between two correlated random variables.

A.6.3 Exercises
1. Suppose that we have the random variable with density given by 𝑝(𝑥) = 1

𝑥2 for 𝑥 ≥ 1
and 𝑝(𝑥) = 0 otherwise. What is 𝑃(𝑋 > 2)?

2. The Laplace distribution is a random variable whose density is given by 𝑝(𝑥 = 1
2 𝑒
−|𝑥 | .

What is the mean and the standard deviation of this function? As a hint,
∫ ∞
0 𝑥𝑒−𝑥 𝑑𝑥 = 1

and
∫ ∞
0 𝑥2𝑒−𝑥 𝑑𝑥 = 2.

3. I walk up to you on the street and say “I have a random variable with mean 1, standard
deviation 2, and I observed 25% of my samples taking a value larger than 9.” Do you
believe me? Why or why not?

4. Suppose that you have two randomvariables 𝑋,𝑌 , with joint density given by 𝑝𝑋𝑌 (𝑥, 𝑦) =
4𝑥𝑦 for 𝑥, 𝑦 ∈ [0, 1] and 𝑝𝑋𝑌 (𝑥, 𝑦) = 0 otherwise. What is the covariance of 𝑋 and 𝑌?

Discussions281 .

A.7 Maximum Likelihood

One of the most commonly encountered way of thinking in machine learning is the maxi-
mum likelihood point of view. This is the concept that when working with a probabilistic
model with unknown parameters, the parameters which make the data have the highest
probability are the most likely ones.

A.7.1 The Maximum Likelihood Principle
This has a Bayesian interpretation which can be helpful to think about. Suppose that we
have a model with parameters 𝜽 and a collection of data examples 𝑋 . For concreteness, we
can imagine that 𝜽 is a single value representing the probability that a coin comes up heads
when flipped, and 𝑋 is a sequence of independent coin flips. We will look at this example
in depth later.

If we want to find the most likely value for the parameters of our model, that means we

https://discuss.d2l.ai/t/415
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want to find

argmax 𝑃(𝜽 | 𝑋). (A.1)

By Bayes’ rule, this is the same thing as

argmax
𝑃(𝑋 | 𝜽)𝑃(𝜽)

𝑃(𝑋) . (A.2)

The expression 𝑃(𝑋), a parameter agnostic probability of generating the data, does not
depend on 𝜽 at all, and so can be dropped without changing the best choice of 𝜽 . Similarly,
we may now posit that we have no prior assumption on which set of parameters are better
than any others, so we may declare that 𝑃(𝜽) does not depend on theta either! This, for
instance, makes sense in our coin flipping example where the probability it comes up heads
could be any value in [0, 1] without any prior belief it is fair or not (often referred to as an
uninformative prior). Thus we see that our application of Bayes’ rule shows that our best
choice of 𝜽 is the maximum likelihood estimate for 𝜽:

𝜽̂ = argmax
𝜽

𝑃(𝑋 | 𝜽). (A.3)

As amatter of common terminology, the probability of the data given the parameters (𝑃(𝑋 |
𝜽)) is referred to as the likelihood.

A Concrete Example
Let’s see how this works in a concrete example. Suppose that we have a single parameter 𝜃
representing the probability that a coin flip is heads. Then the probability of getting a tails
is 1 − 𝜃, and so if our observed data 𝑋 is a sequence with 𝑛𝐻 heads and 𝑛𝑇 tails, we can
use the fact that independent probabilities multiply to see that

𝑃(𝑋 | 𝜃) = 𝜃𝑛𝐻 (1 − 𝜃)𝑛𝑇 . (A.4)

If we flip 13 coins and get the sequence “HHHTHTTHHHHHT”, which has 𝑛𝐻 = 9 and
𝑛𝑇 = 4, we see that this is

𝑃(𝑋 | 𝜃) = 𝜃9 (1 − 𝜃)4. (A.5)

One nice thing about this example will be that we know the answer going in. Indeed, if
we said verbally, “I flipped 13 coins, and 9 came up heads, what is our best guess for the
probability that the coin comes us heads?,” everyone would correctly guess 9/13. What this
maximum likelihood method will give us is a way to get that number from first principals
in a way that will generalize to vastly more complex situations.

For our example, the plot of 𝑃(𝑋 | 𝜃) is as follows:

%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l

npx.set_np()

(continues on next page)
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(continued from previous page)

theta = np.arange(0, 1, 0.001)
p = theta**9 * (1 - theta)**4.

d2l.plot(theta, p, 'theta', 'likelihood')

[22:07:56] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

This has its maximum value somewhere near our expected 9/13 ≈ 0.7 . . .. To see if it
is exactly there, we can turn to calculus. Notice that at the maximum, the gradient of the
function is flat. Thus, we could find the maximum likelihood estimate (A.1) by finding
the values of 𝜃 where the derivative is zero, and finding the one that gives the highest
probability. We compute:

0 =
𝑑

𝑑𝜃
𝑃(𝑋 | 𝜃)

=
𝑑

𝑑𝜃
𝜃9 (1 − 𝜃)4

= 9𝜃8 (1 − 𝜃)4 − 4𝜃9 (1 − 𝜃)3

= 𝜃8 (1 − 𝜃)3 (9 − 13𝜃).

(A.6)

This has three solutions: 0, 1 and 9/13. The first two are clearly minima, not maxima as
they assign probability 0 to our sequence. The final value does not assign zero probability
to our sequence, and thus must be the maximum likelihood estimate 𝜃 = 9/13.

A.7.2 Numerical Optimization and the Negative Log-Likelihood
The previous example is nice, but what if we have billions of parameters and data exam-
ples?

First, notice that if we make the assumption that all the data examples are independent, we
can no longer practically consider the likelihood itself as it is a product of many probabili-
ties. Indeed, each probability is in [0, 1], say typically of value about 1/2, and the product of
(1/2)1000000000 is far below machine precision. We cannot work with that directly.
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However, recall that the logarithm turns products to sums, in which case

log((1/2)1000000000) = 1000000000 · log(1/2) ≈ −301029995.6 . . . (A.7)

This number fits perfectly within even a single precision 32-bit float. Thus, we should
consider the log-likelihood, which is

log(𝑃(𝑋 | 𝜽)). (A.8)

Since the function 𝑥 ↦→ log(𝑥) is increasing, maximizing the likelihood is the same thing
as maximizing the log-likelihood. Indeed in Section A.9 we will see this reasoning applied
when working with the specific example of the naive Bayes classifier.

We often work with loss functions, where we wish to minimize the loss. We may turn
maximum likelihood into the minimization of a loss by taking − log(𝑃(𝑋 | 𝜽)), which is
the negative log-likelihood.

To illustrate this, consider the coin flipping problem from before, and pretend that we do
not know the closed form solution. We may compute that

− log(𝑃(𝑋 | 𝜽)) = − log(𝜃𝑛𝐻 (1 − 𝜃)𝑛𝑇 ) = −(𝑛𝐻 log(𝜃) + 𝑛𝑇 log(1 − 𝜃)). (A.9)

This can be written into code, and freely optimized even for billions of coin flips.

# Set up our data
n_H = 8675309
n_T = 256245

# Initialize our paramteres
theta = np.array(0.5)
theta.attach_grad()

# Perform gradient descent
lr = 1e-9
for iter in range(100):

with autograd.record():
loss = -(n_H * np.log(theta) + n_T * np.log(1 - theta))

loss.backward()
theta -= lr * theta.grad

# Check output
theta, n_H / (n_H + n_T)

[22:07:57] ../src/base.cc:48: GPU context requested, but no GPUs found.

(array(0.9713101), 0.9713101437890875)

Numerical convenience is not the only reasonwhy people like to use negative log-likelihoods.
There are several other reasons why it is preferable.

The second reason we consider the log-likelihood is the simplified application of calcu-
lus rules. As discussed above, due to independence assumptions, most probabilities we
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encounter in machine learning are products of individual probabilities.

𝑃(𝑋 | 𝜽) = 𝑝(𝑥1 | 𝜽) · 𝑝(𝑥2 | 𝜽) · · · 𝑝(𝑥𝑛 | 𝜽). (A.10)

This means that if we directly apply the product rule to compute a derivative we get

𝜕

𝜕𝜽
𝑃(𝑋 | 𝜽) =

(
𝜕

𝜕𝜽
𝑃(𝑥1 | 𝜽)

)
· 𝑃(𝑥2 | 𝜽) · · · 𝑃(𝑥𝑛 | 𝜽)

+ 𝑃(𝑥1 | 𝜽) ·
(
𝜕

𝜕𝜽
𝑃(𝑥2 | 𝜽)

)
· · · 𝑃(𝑥𝑛 | 𝜽)

...

+ 𝑃(𝑥1 | 𝜽) · 𝑃(𝑥2 | 𝜽) · · ·
(
𝜕

𝜕𝜽
𝑃(𝑥𝑛 | 𝜽)

)
.

(A.11)

This requires 𝑛(𝑛 − 1) multiplications, along with (𝑛 − 1) additions, so it is proportional
to quadratic time in the inputs! Sufficient cleverness in grouping terms will reduce this
to linear time, but it requires some thought. For the negative log-likelihood we have in-
stead

− log (𝑃(𝑋 | 𝜽)) = − log(𝑃(𝑥1 | 𝜽)) − log(𝑃(𝑥2 | 𝜽)) · · · − log(𝑃(𝑥𝑛 | 𝜽)), (A.12)

which then gives

− 𝜕
𝜕𝜽

log (𝑃(𝑋 | 𝜽)) = 1
𝑃(𝑥1 | 𝜽)

(
𝜕

𝜕𝜽
𝑃(𝑥1 | 𝜽)

)
+ · · · + 1

𝑃(𝑥𝑛 | 𝜽)

(
𝜕

𝜕𝜽
𝑃(𝑥𝑛 | 𝜽)

)
.

(A.13)

This requires only 𝑛 divides and 𝑛 − 1 sums, and thus is linear time in the inputs.

The third and final reason to consider the negative log-likelihood is the relationship to
information theory, which we will discuss in detail in Section A.11. This is a rigorous
mathematical theorywhich gives away tomeasure the degree of information or randomness
in a random variable. The key object of study in that field is the entropy which is

𝐻 (𝑝) = −
∑
𝑖

𝑝𝑖 log2 (𝑝𝑖), (A.14)

which measures the randomness of a source. Notice that this is nothing more than the av-
erage − log probability, and thus if we take our negative log-likelihood and divide by the
number of data examples, we get a relative of entropy known as cross-entropy. This theoret-
ical interpretation alone would be sufficiently compelling to motivate reporting the average
negative log-likelihood over the dataset as a way of measuring model performance.

A.7.3 Maximum Likelihood for Continuous Variables
Everything that we have done so far assumes we are working with discrete random vari-
ables, but what if we want to work with continuous ones?

The short summary is that nothing at all changes, except we replace all the instances of the
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probability with the probability density. Recalling that we write densities with lower case
𝑝, this means that for example we now say

− log (𝑝(𝑋 | 𝜽)) = − log(𝑝(𝑥1 | 𝜽)) − log(𝑝(𝑥2 | 𝜽)) · · · − log(𝑝(𝑥𝑛 | 𝜽)) = −
∑
𝑖

log(𝑝(𝑥𝑖 | 𝜃)).

(A.15)

The question becomes, “Why is this OK?” After all, the reason we introduced densities was
because probabilities of getting specific outcomes themselves was zero, and thus is not the
probability of generating our data for any set of parameters zero?

Indeed, this is the case, and understanding why we can shift to densities is an exercise in
tracing what happens to the epsilons.

Let’s first re-define our goal. Suppose that for continuous random variables we no longer
want to compute the probability of getting exactly the right value, but instead matching to
within some range 𝜖 . For simplicity, we assume our data is repeated observations 𝑥1, . . . , 𝑥𝑁
of identically distributed random variables 𝑋1, . . . , 𝑋𝑁 . As we have seen previously, this
can be written as

𝑃(𝑋1 ∈ [𝑥1, 𝑥1 + 𝜖], 𝑋2 ∈ [𝑥2, 𝑥2 + 𝜖], . . . , 𝑋𝑁 ∈ [𝑥𝑁 , 𝑥𝑁 + 𝜖] | 𝜽)
≈𝜖𝑁 𝑝(𝑥1 | 𝜽) · 𝑝(𝑥2 | 𝜽) · · · 𝑝(𝑥𝑛 | 𝜽).

(A.16)

Thus, if we take negative logarithms of this we obtain

− log(𝑃(𝑋1 ∈ [𝑥1, 𝑥1 + 𝜖], 𝑋2 ∈ [𝑥2, 𝑥2 + 𝜖], . . . , 𝑋𝑁 ∈ [𝑥𝑁 , 𝑥𝑁 + 𝜖] | 𝜽))

≈ − 𝑁 log(𝜖) −
∑
𝑖

log(𝑝(𝑥𝑖 | 𝜽)). (A.17)

If we examine this expression, the only place that the 𝜖 occurs is in the additive constant
−𝑁 log(𝜖). This does not depend on the parameters 𝜽 at all, so the optimal choice of 𝜽 does
not depend on our choice of 𝜖! If we demand four digits or four-hundred, the best choice
of 𝜽 remains the same, thus we may freely drop the epsilon to see that what we want to
optimize is

−
∑
𝑖

log(𝑝(𝑥𝑖 | 𝜽)). (A.18)

Thus, we see that the maximum likelihood point of view can operate with continuous ran-
dom variables as easily as with discrete ones by replacing the probabilities with probability
densities.

A.7.4 Summary
• The maximum likelihood principle tells us that the best fit model for a given dataset is

the one that generates the data with the highest probability.

• Often people work with the negative log-likelihood instead for a variety of reasons: nu-
merical stability, conversion of products to sums (and the resulting simplification of
gradient computations), and theoretical ties to information theory.



950 Mathematics for Deep Learning

282

• While simplest to motivate in the discrete setting, it may be freely generalized to the
continuous setting as well by maximizing the probability density assigned to the dat-
apoints.

A.7.5 Exercises
1. Suppose that you know that a non-negative random variable has density 𝛼𝑒−𝛼𝑥 for some

value 𝛼 > 0. You obtain a single observation from the random variable which is the
number 3. What is the maximum likelihood estimate for 𝛼?

2. Suppose that you have a dataset of samples {𝑥𝑖}𝑁𝑖=1 drawn from aGaussianwith unknown
mean, but variance 1. What is the maximum likelihood estimate for the mean?

Discussions282 .

A.8 Distributions

Now that we have learned how to work with probability in both the discrete and the contin-
uous setting, let’s get to know some of the common distributions encountered. Depending
on the area of machine learning, we may need to be familiar with vastly more of these, or
for some areas of deep learning potentially none at all. This is, however, a good basic list
to be familiar with. Let’s first import some common libraries.

%matplotlib inline
from math import erf, factorial
import numpy as np
from IPython import display
from d2l import mxnet as d2l

A.8.1 Bernoulli
This is the simplest random variable usually encountered. This random variable encodes a
coin flip which comes up 1 with probability 𝑝 and 0 with probability 1 − 𝑝. If we have a
random variable 𝑋 with this distribution, we will write

𝑋 ∼ Bernoulli(𝑝). (A.1)

The cumulative distribution function is

𝐹 (𝑥) =


0 𝑥 < 0,
1 − 𝑝 0 ≤ 𝑥 < 1,
1 𝑥 >= 1.

(A.2)

The probability mass function is plotted below.

https://discuss.d2l.ai/t/416
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p = 0.3

d2l.set_figsize()
d2l.plt.stem([0, 1], [1 - p, p], use_line_collection=True)
d2l.plt.xlabel('x')
d2l.plt.ylabel('p.m.f.')
d2l.plt.show()

Now, let’s plot the cumulative distribution function (A.2).

x = np.arange(-1, 2, 0.01)

def F(x):
return 0 if x < 0 else 1 if x > 1 else 1 - p

d2l.plot(x, np.array([F(y) for y in x]), 'x', 'c.d.f.')

If 𝑋 ∼ Bernoulli(𝑝), then:

• 𝜇𝑋 = 𝑝,

• 𝜎2
𝑋 = 𝑝(1 − 𝑝).

We can sample an array of arbitrary shape from aBernoulli randomvariable as follows.

1*(np.random.rand(10, 10) < p)
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array([[0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 1, 1, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 1, 0, 1, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 1, 1, 0, 0, 0, 0, 1],
[1, 0, 1, 0, 0, 1, 1, 0, 0, 0]])

A.8.2 Discrete Uniform
The next commonly encountered random variable is a discrete uniform. For our discussion
here, we will assume that it is supported on the integers {1, 2, . . . , 𝑛}, however any other
set of values can be freely chosen. The meaning of the word uniform in this context is that
every possible value is equally likely. The probability for each value 𝑖 ∈ {1, 2, 3, . . . , 𝑛} is
𝑝𝑖 = 1

𝑛 . We will denote a random variable 𝑋 with this distribution as

𝑋 ∼ 𝑈 (𝑛). (A.3)

The cumulative distribution function is

𝐹 (𝑥) =


0 𝑥 < 1,
𝑘
𝑛 𝑘 ≤ 𝑥 < 𝑘 + 1 with 1 ≤ 𝑘 < 𝑛,
1 𝑥 >= 𝑛.

(A.4)

Let’s first plot the probability mass function.

n = 5

d2l.plt.stem([i+1 for i in range(n)], n*[1 / n], use_line_collection=True)
d2l.plt.xlabel('x')
d2l.plt.ylabel('p.m.f.')
d2l.plt.show()

Now, let’s plot the cumulative distribution function (A.4).
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x = np.arange(-1, 6, 0.01)

def F(x):
return 0 if x < 1 else 1 if x > n else np.floor(x) / n

d2l.plot(x, np.array([F(y) for y in x]), 'x', 'c.d.f.')

If 𝑋 ∼ 𝑈 (𝑛), then:

• 𝜇𝑋 = 1+𝑛
2 ,

• 𝜎2
𝑋 = 𝑛2−1

12 .

We can sample an array of arbitrary shape from a discrete uniform random variable as
follows.

np.random.randint(1, n, size=(10, 10))

array([[3, 4, 2, 1, 2, 1, 4, 4, 1, 4],
[2, 3, 4, 2, 1, 4, 4, 2, 2, 4],
[3, 4, 3, 4, 4, 4, 2, 4, 2, 4],
[3, 4, 4, 4, 1, 3, 1, 2, 4, 1],
[2, 2, 4, 1, 2, 4, 4, 3, 1, 2],
[3, 4, 4, 3, 4, 1, 1, 1, 4, 2],
[2, 1, 2, 1, 2, 2, 4, 4, 2, 2],
[3, 4, 3, 3, 3, 3, 3, 4, 4, 1],
[2, 1, 4, 2, 4, 2, 1, 2, 3, 1],
[3, 4, 1, 2, 2, 4, 4, 4, 4, 3]])

A.8.3 Continuous Uniform
Next, let’s discuss the continuous uniform distribution. The idea behind this random vari-
able is that if we increase the 𝑛 in the discrete uniform distribution, and then scale it to fit
within the interval [𝑎, 𝑏], we will approach a continuous random variable that just picks
an arbitrary value in [𝑎, 𝑏] all with equal probability. We will denote this distribution
as

𝑋 ∼ 𝑈 (𝑎, 𝑏). (A.5)
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The probability density function is

𝑝(𝑥) =
{

1
𝑏−𝑎 𝑥 ∈ [𝑎, 𝑏],
0 𝑥 ∉ [𝑎, 𝑏] .

(A.6)

The cumulative distribution function is

𝐹 (𝑥) =


0 𝑥 < 𝑎,
𝑥−𝑎
𝑏−𝑎 𝑥 ∈ [𝑎, 𝑏],
1 𝑥 >= 𝑏.

(A.7)

Let’s first plot the probability density function (A.6).

a, b = 1, 3

x = np.arange(0, 4, 0.01)
p = (x > a)*(x < b)/(b - a)

d2l.plot(x, p, 'x', 'p.d.f.')

Now, let’s plot the cumulative distribution function (A.7).

def F(x):
return 0 if x < a else 1 if x > b else (x - a) / (b - a)

d2l.plot(x, np.array([F(y) for y in x]), 'x', 'c.d.f.')

If 𝑋 ∼ 𝑈 (𝑎, 𝑏), then:
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• 𝜇𝑋 = 𝑎+𝑏
2 ,

• 𝜎2
𝑋 = (𝑏−𝑎)

2

12 .

We can sample an array of arbitrary shape from a uniform random variable as follows. Note
that it by default samples from a 𝑈 (0, 1), so if we want a different range we need to scale
it.

(b - a) * np.random.rand(10, 10) + a

array([[2.38360201, 1.42301059, 1.30828215, 2.23648218, 2.36792603,
1.91291633, 2.86068987, 1.82011582, 2.04179583, 1.60297964],
[2.16824638, 1.57385641, 1.66921053, 1.43114352, 2.25602411,
2.87490344, 2.40876076, 1.7617666 , 2.02837681, 1.95209339],
[2.10921523, 2.19732773, 1.59625198, 1.61302107, 1.27852537,
2.37811459, 2.29000406, 1.03847199, 1.56422557, 2.50686118],
[1.7817774 , 1.62100143, 2.27307703, 2.05133929, 2.05104624,
2.96610051, 2.89734953, 1.21910903, 2.9754619 , 2.48726223],
[2.56736775, 1.839721 , 2.95232472, 1.12483235, 2.5400353 ,
2.29622885, 2.28849311, 2.52556794, 1.11539063, 1.49332251],
[1.87762881, 2.0559545 , 1.62359339, 1.90967816, 2.98212587,
1.21525452, 2.68658767, 2.54676585, 1.1852055 , 2.45969756],
[2.07266639, 2.95876653, 2.00955484, 1.55029107, 1.50520493,
1.88796762, 1.92171128, 2.02120858, 1.56685236, 2.6619405 ],
[1.11606361, 1.40236782, 1.0776729 , 1.41579594, 2.87791721,
1.28461063, 1.91013181, 1.59194299, 2.97532135, 2.85899927],
[2.06719995, 1.70292102, 2.4059567 , 1.61806169, 1.81718481,
2.92306811, 2.31158504, 1.05026323, 1.57910039, 1.83457301],
[1.85492878, 1.84662898, 1.41416257, 1.05939756, 1.23999994,
2.11843352, 2.93857488, 1.05851556, 1.69802914, 2.87658077]])

A.8.4 Binomial
Let’s make things a little more complex and examine the binomial random variable. This
random variable originates from performing a sequence of 𝑛 independent experiments, each
of which has probability 𝑝 of succeeding, and asking how many successes we expect to
see.

Let’s express this mathematically. Each experiment is an independent random variable 𝑋𝑖
where wewill use 1 to encode success, and 0 to encode failure. Since each is an independent
coin flip which is successful with probability 𝑝, we can say that 𝑋𝑖 ∼ Bernoulli(𝑝). Then,
the binomial random variable is

𝑋 =
𝑛∑
𝑖=1

𝑋𝑖 . (A.8)

In this case, we will write

𝑋 ∼ Binomial(𝑛, 𝑝). (A.9)

To get the cumulative distribution function, we need to notice that getting exactly 𝑘 suc-
cesses can occur in

(𝑛
𝑘

)
= 𝑛!
𝑘!(𝑛−𝑘 )! ways each of which has a probability of 𝑝𝑘 (1 − 𝑝)𝑛−𝑘
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of occurring. Thus the cumulative distribution function is

𝐹 (𝑥) =


0 𝑥 < 0,∑
𝑚≤𝑘

( 𝑛
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚 𝑘 ≤ 𝑥 < 𝑘 + 1 with 0 ≤ 𝑘 < 𝑛,

1 𝑥 >= 𝑛.

(A.10)

Let’s first plot the probability mass function.

n, p = 10, 0.2

# Compute binomial coefficient
def binom(n, k):

comb = 1
for i in range(min(k, n - k)):

comb = comb * (n - i) // (i + 1)
return comb

pmf = np.array([p**i * (1-p)**(n - i) * binom(n, i) for i in range(n + 1)])

d2l.plt.stem([i for i in range(n + 1)], pmf, use_line_collection=True)
d2l.plt.xlabel('x')
d2l.plt.ylabel('p.m.f.')
d2l.plt.show()

Now, let’s plot the cumulative distribution function (A.10).

x = np.arange(-1, 11, 0.01)
cmf = np.cumsum(pmf)

def F(x):
return 0 if x < 0 else 1 if x > n else cmf[int(x)]

d2l.plot(x, np.array([F(y) for y in x.tolist()]), 'x', 'c.d.f.')

If 𝑋 ∼ Binomial(𝑛, 𝑝), then:

• 𝜇𝑋 = 𝑛𝑝,

• 𝜎2
𝑋 = 𝑛𝑝(1 − 𝑝).

This follows from the linearity of expected value over the sum of 𝑛 Bernoulli random vari-
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ables, and the fact that the variance of the sum of independent random variables is the sum
of the variances. This can be sampled as follows.

np.random.binomial(n, p, size=(10, 10))

array([[2, 1, 1, 2, 0, 3, 3, 1, 3, 4],
[0, 2, 0, 2, 2, 1, 2, 1, 1, 2],
[2, 2, 1, 1, 1, 2, 2, 3, 2, 3],
[3, 2, 3, 2, 3, 2, 1, 1, 4, 1],
[2, 2, 1, 2, 0, 2, 2, 1, 1, 2],
[1, 1, 1, 0, 2, 0, 3, 3, 1, 0],
[3, 3, 0, 3, 2, 2, 0, 1, 4, 4],
[0, 1, 0, 1, 2, 5, 1, 3, 1, 0],
[0, 3, 2, 4, 2, 1, 3, 3, 3, 3],
[4, 3, 3, 2, 3, 2, 1, 3, 0, 1]])

A.8.5 Poisson
Let’s now perform a thought experiment. We are standing at a bus stop and we want to
know how many buses will arrive in the next minute. Let’s start by considering 𝑋 (1) ∼
Bernoulli(𝑝) which is simply the probability that a bus arrives in the one minute window.
For bus stops far from an urban center, this might be a pretty good approximation. We may
never see more than one bus in a minute.

However, if we are in a busy area, it is possible or even likely that two buses will arrive.
We can model this by splitting our random variable into two parts for the first 30 seconds,
or the second 30 seconds. In this case we can write

𝑋 (2) ∼ 𝑋 (2)1 + 𝑋 (2)2 , (A.11)

where 𝑋 (2) is the total sum, and 𝑋 (2)𝑖 ∼ Bernoulli(𝑝/2). The total distribution is then
𝑋 (2) ∼ Binomial(2, 𝑝/2).

Why stop here? Let’s continue to split that minute into 𝑛 parts. By the same reasoning as
above, we see that

𝑋 (𝑛) ∼ Binomial(𝑛, 𝑝/𝑛). (A.12)

Consider these random variables. By the previous section, we know that (A.12) has mean
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𝜇𝑋 (𝑛) = 𝑛(𝑝/𝑛) = 𝑝, and variance 𝜎2
𝑋 (𝑛)

= 𝑛(𝑝/𝑛)(1 − (𝑝/𝑛)) = 𝑝(1 − 𝑝/𝑛). If we take
𝑛→∞, we can see that these numbers stabilize to 𝜇𝑋 (∞) = 𝑝, and variance 𝜎2

𝑋 (∞)
= 𝑝. This

indicates that there could be some random variable we can define in this infinite subdivision
limit.

This should not come as too much of a surprise, since in the real world we can just count
the number of bus arrivals, however it is nice to see that our mathematical model is well
defined. This discussion can be made formal as the law of rare events.

Following through this reasoning carefully, we can arrive at the following model. We will
say that 𝑋 ∼ Poisson(𝜆) if it is a random variable which takes the values {0, 1, 2, . . .} with
probability

𝑝𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
. (A.13)

The value 𝜆 > 0 is known as the rate (or the shape parameter), and denotes the average
number of arrivals we expect in one unit of time.

Wemay sum this probabilitymass function to get the cumulative distribution function.

𝐹 (𝑥) =
{

0 𝑥 < 0,
𝑒−𝜆

∑𝑘
𝑚=0

𝜆𝑚

𝑚! 𝑘 ≤ 𝑥 < 𝑘 + 1 with 0 ≤ 𝑘.
(A.14)

Let’s first plot the probability mass function (A.13).

lam = 5.0

xs = [i for i in range(20)]
pmf = np.array([np.exp(-lam) * lam**k / factorial(k) for k in xs])

d2l.plt.stem(xs, pmf, use_line_collection=True)
d2l.plt.xlabel('x')
d2l.plt.ylabel('p.m.f.')
d2l.plt.show()

Now, let’s plot the cumulative distribution function (A.14).

x = np.arange(-1, 21, 0.01)
cmf = np.cumsum(pmf)

(continues on next page)
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(continued from previous page)

def F(x):
return 0 if x < 0 else 1 if x > n else cmf[int(x)]

d2l.plot(x, np.array([F(y) for y in x.tolist()]), 'x', 'c.d.f.')

As we saw above, the means and variances are particularly concise. If 𝑋 ∼ Poisson(𝜆),
then:

• 𝜇𝑋 = 𝜆,

• 𝜎2
𝑋 = 𝜆.

This can be sampled as follows.

np.random.poisson(lam, size=(10, 10))

array([[ 5, 5, 4, 2, 13, 7, 8, 6, 6, 5],
[ 6, 3, 4, 5, 4, 2, 1, 3, 6, 3],
[ 6, 5, 3, 4, 4, 4, 2, 3, 2, 5],
[ 2, 8, 4, 7, 7, 7, 5, 6, 2, 6],
[ 3, 4, 3, 0, 7, 2, 6, 6, 7, 4],
[ 4, 1, 5, 0, 3, 3, 3, 6, 4, 3],
[ 4, 5, 4, 6, 4, 5, 3, 6, 9, 7],
[ 4, 2, 5, 3, 5, 5, 2, 6, 10, 5],
[ 5, 4, 5, 3, 6, 5, 2, 3, 6, 3],
[ 8, 7, 9, 6, 3, 7, 11, 7, 13, 2]])

A.8.6 Gaussian
Now Let’s try a different, but related experiment. Let’s say we again are performing 𝑛
independent Bernoulli(𝑝) measurements 𝑋𝑖 . The distribution of the sum of these is 𝑋 (𝑛) ∼
Binomial(𝑛, 𝑝). Rather than taking a limit as 𝑛 increases and 𝑝 decreases, Let’s fix 𝑝, and
then send 𝑛 → ∞. In this case 𝜇𝑋 (𝑛) = 𝑛𝑝 → ∞ and 𝜎2

𝑋 (𝑛)
= 𝑛𝑝(1 − 𝑝) → ∞, so there is

no reason to think this limit should be well defined.

However, not all hope is lost! Let’s just make the mean and variance be well behaved by
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defining

𝑌 (𝑛) =
𝑋 (𝑛) − 𝜇𝑋 (𝑛)

𝜎𝑋 (𝑛)
. (A.15)

This can be seen to have mean zero and variance one, and so it is plausible to believe that
it will converge to some limiting distribution. If we plot what these distributions look like,
we will become even more convinced that it will work.

p = 0.2
ns = [1, 10, 100, 1000]
d2l.plt.figure(figsize=(10, 3))
for i in range(4):

n = ns[i]
pmf = np.array([p**i * (1-p)**(n-i) * binom(n, i) for i in range(n + 1)])
d2l.plt.subplot(1, 4, i + 1)
d2l.plt.stem([(i - n*p)/np.sqrt(n*p*(1 - p)) for i in range(n + 1)], pmf,

use_line_collection=True)
d2l.plt.xlim([-4, 4])
d2l.plt.xlabel('x')
d2l.plt.ylabel('p.m.f.')
d2l.plt.title("n = {}".format(n))

d2l.plt.show()

One thing to note: compared to the Poisson case, we are now dividing by the standard de-
viation which means that we are squeezing the possible outcomes into smaller and smaller
areas. This is an indication that our limit will no longer be discrete, but rather continu-
ous.

A derivation of what occurs is beyond the scope of this document, but the central limit
theorem states that as 𝑛 → ∞, this will yield the Gaussian Distribution (or sometimes
normal distribution). More explicitly, for any 𝑎, 𝑏:

lim
𝑛→∞

𝑃(𝑌 (𝑛) ∈ [𝑎, 𝑏]) = 𝑃(N (0, 1) ∈ [𝑎, 𝑏]), (A.16)

where we say a random variable is normally distributed with given mean 𝜇 and variance
𝜎2, written 𝑋 ∼ N(𝜇, 𝜎2) if 𝑋 has density

𝑝𝑋 (𝑥) =
1

√
2𝜋𝜎2

𝑒
− (𝑥−𝜇)

2

2𝜎2 . (A.17)
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Let’s first plot the probability density function (A.17).

mu, sigma = 0, 1

x = np.arange(-3, 3, 0.01)
p = 1 / np.sqrt(2 * np.pi * sigma**2) * np.exp(-(x - mu)**2 / (2 * sigma**2))

d2l.plot(x, p, 'x', 'p.d.f.')

Now, let’s plot the cumulative distribution function. It is beyond the scope of this ap-
pendix, but the Gaussian c.d.f. does not have a closed-form formula in terms of more
elementary functions. We will use erf which provides a way to compute this integral nu-
merically.

def phi(x):
return (1.0 + erf((x - mu) / (sigma * np.sqrt(2)))) / 2.0

d2l.plot(x, np.array([phi(y) for y in x.tolist()]), 'x', 'c.d.f.')

Keen-eyed readers will recognize some of these terms. Indeed, we encountered this integral
in Section A.5. Indeed we need exactly that computation to see that this 𝑝𝑋 (𝑥) has total
area one and is thus a valid density.

Our choice of working with coin flips made computations shorter, but nothing about that
choice was fundamental. Indeed, if we take any collection of independent identically dis-
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tributed random variables 𝑋𝑖 , and form

𝑋 (𝑁 ) =
𝑁∑
𝑖=1

𝑋𝑖 . (A.18)

Then

𝑋 (𝑁 ) − 𝜇𝑋 (𝑁 )
𝜎𝑋 (𝑁 )

(A.19)

will be approximately Gaussian. There are additional requirements needed to make it work,
most commonly 𝐸 [𝑋4] < ∞, but the philosophy is clear.

The central limit theorem is the reason why the Gaussian is fundamental to probability,
statistics, and machine learning. Whenever we can say that something we measured is a
sum ofmany small independent contributions, we can assume that the thing beingmeasured
will be close to Gaussian.

There are many more fascinating properties of Gaussians, and we would like to discuss one
more here. The Gaussian is what is known as a maximum entropy distribution. We will
get into entropy more deeply in Section A.11, however all we need to know at this point
is that it is a measure of randomness. In a rigorous mathematical sense, we can think of
the Gaussian as the most random choice of random variable with fixed mean and variance.
Thus, if we know that our random variable has some mean and variance, the Gaussian is in
a sense the most conservative choice of distribution we can make.

To close the section, let’s recall that if 𝑋 ∼ N(𝜇, 𝜎2), then:

• 𝜇𝑋 = 𝜇,

• 𝜎2
𝑋 = 𝜎2.

We can sample from the Gaussian (or standard normal) distribution as shown below.

np.random.normal(mu, sigma, size=(10, 10))

array([[-0.11992579, 0.11242172, -0.35572603, 0.58136987, 0.12435943,
0.75733951, -0.13772477, -0.10270837, -1.59153191, -0.94093858],

[ 1.01421669, -0.64482199, -1.19968905, -0.29650658, 0.21354805,
-0.233707 , -0.84922388, 0.38375312, -0.3886712 , -0.28680926],
[ 0.26912722, 0.3832668 , -1.56047648, 1.55956818, -0.84004616,
-0.35190349, -0.54684824, 0.83748666, -0.95408109, 0.61570842],
[ 1.42284436, 1.47742409, 1.24482391, -0.85638551, -0.78176885,

0.78364858, 0.3804224 , 0.68402399, -1.51515355, 0.77536699],
[ 0.80657544, -2.01318421, 0.0262837 , 0.14704248, -1.05968065,

0.09993582, 0.3437732 , 0.71795499, 2.40652949, -0.24287448],
[ 0.60314452, 0.96139177, 0.42617912, -1.50385243, 1.89889768,
-0.18784024, -0.29100909, -0.61710869, 1.00194018, 0.81604849],
[ 0.27520902, -1.01320489, -1.32230684, 0.91961478, 1.08834228,

1.52541641, 0.83242223, -0.70249323, -1.41539373, 0.35746912],
[-0.37485341, -0.81440897, 0.64964391, -2.64441164, 0.51285708,
-0.00280402, -0.36267136, -0.89061862, -0.2587532 , 1.36505027],

(continues on next page)
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(continued from previous page)

[ 0.30396154, -1.17431444, 0.3697711 , -0.58526674, -1.00467336,
1.80141639, 0.44061838, 0.66772324, 0.00462039, -1.1309502 ],

[-0.28877008, 0.89796664, -0.80642533, -1.38372865, -0.72438918,
0.34978787, 0.9175374 , -0.43026127, -0.409859 , -1.43388418]])

A.8.7 Exponential Family
One shared property for all the distributions listed above is that they all belong to which
is known as the exponential family. The exponential family is a set of distributions whose
density can be expressed in the following form:

𝑝(x | 𝜼) = ℎ(x) · exp
(
𝜼> · 𝑇 (x) − 𝐴(𝜼)

)
(A.20)

As this definition can be a little subtle, let’s examine it closely.

First, ℎ(x) is known as the underlying measure or the base measure. This can be viewed
as an original choice of measure we are modifying with our exponential weight.

Second, we have the vector 𝜼 = (𝜂1, 𝜂2, ..., 𝜂𝑙) ∈ R𝑙 called the natural parameters or
canonical parameters. These define how the base measure will be modified. The natural
parameters enter into the newmeasure by taking the dot product of these parameters against
some function 𝑇 (·) of x = (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ R𝑛 and exponentiated. The vector 𝑇 (x) =
(𝑇1 (x), 𝑇2 (x), ..., 𝑇𝑙 (x)) is called the sufficient statistics for 𝜼. This name is used since the
information represented by 𝑇 (x) is sufficient to calculate the probability density and no
other information from the sample x’s are required.

Third, we have 𝐴(𝜼), which is referred to as the cumulant function, which ensures that the
above distribution (A.20) integrates to one, i.e.,

𝐴(𝜼) = log
[∫

ℎ(x) · exp
(
𝜼> · 𝑇 (x)

)
𝑑x

]
. (A.21)

To be concrete, let’s consider the Gaussian. Assuming that x is an univariate variable, we
saw that it had a density of

𝑝(𝑥 | 𝜇, 𝜎) = 1
√

2𝜋𝜎2
· exp

{
−(𝑥 − 𝜇)2

2𝜎2

}
=

1
√

2𝜋
· exp

{
𝜇

𝜎2 𝑥 −
1

2𝜎2 𝑥
2 −

(
1

2𝜎2 𝜇
2 + log(𝜎)

)}
.

(A.22)

This matches the definition of the exponential family with:

• underlying measure: ℎ(𝑥) = 1√
2𝜋

,

• natural parameters: 𝜼 =

[
𝜂1
𝜂2

]
=

[ 𝜇
𝜎2
1

2𝜎2

]
,

• sufficient statistics: 𝑇 (𝑥) =
[
𝑥

−𝑥2

]
, and
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• cumulant function: 𝐴(𝜼) = 1
2𝜎2 𝜇

2 + log(𝜎) = 𝜂2
1

4𝜂2
− 1

2 log(2𝜂2).

It is worth noting that the exact choice of each of above terms is somewhat arbitrary. Indeed,
the important feature is that the distribution can be expressed in this form, not the exact form
itself.

As we allude to in Section 4.1.2, a widely used technique is to assume that the final output
y follows an exponential family distribution. The exponential family is a common and
powerful family of distributions encountered frequently in machine learning.

A.8.8 Summary
• Bernoulli random variables can be used to model events with a yes/no outcome.

• Discrete uniform distributions model selects from a finite set of possibilities.

• Continuous uniform distributions select from an interval.

• Binomial distributions model a series of Bernoulli random variables, and count the num-
ber of successes.

• Poisson random variables model the arrival of rare events.

• Gaussian random variables model the result of adding a large number of independent
random variables together.

• All the above distributions belong to exponential family.

A.8.9 Exercises
1. What is the standard deviation of a random variable that is the difference 𝑋 − 𝑌 of two

independent binomial random variables 𝑋,𝑌 ∼ Binomial(16, 1/2).

2. If we take a Poisson random variable 𝑋 ∼ Poisson(𝜆) and consider (𝑋 − 𝜆)/
√
𝜆 as

𝜆 → ∞, we can show that this becomes approximately Gaussian. Why does this make
sense?

3. What is the probabilitymass function for a sumof two discrete uniform randomvariables
on 𝑛 elements?

Discussions283 .

A.9 Naive Bayes

Throughout the previous sections, we learned about the theory of probability and random
variables. To put this theory to work, let’s introduce the naive Bayes classifier. This
uses nothing but probabilistic fundamentals to allow us to perform classification of dig-
its.

https://discuss.d2l.ai/t/417
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Learning is all aboutmaking assumptions. If wewant to classify a new data example that we
have never seen before we have to make some assumptions about which data examples are
similar to each other. The naive Bayes classifier, a popular and remarkably clear algorithm,
assumes all features are independent from each other to simplify the computation. In this
section, we will apply this model to recognize characters in images.

%matplotlib inline
import math
from mxnet import gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()
d2l.use_svg_display()

A.9.1 Optical Character Recognition
MNIST (LeCun et al., 1998) is one of widely used datasets. It contains 60,000 images for
training and 10,000 images for validation. Each image contains a handwritten digit from 0
to 9. The task is classifying each image into the corresponding digit.

Gluon provides a MNIST class in the data.vision module to automatically retrieve the
dataset from the Internet. Subsequently, Gluon will use the already-downloaded local copy.
We specify whether we are requesting the training set or the test set by setting the value of
the parameter train to True or False, respectively. Each image is a grayscale image with
both width and height of 28 with shape (28,28,1). We use a customized transformation to
remove the last channel dimension. In addition, the dataset represents each pixel by an un-
signed 8-bit integer. We quantize them into binary features to simplify the problem.

def transform(data, label):
return np.floor(data.astype('float32') / 128).squeeze(axis=-1), label

mnist_train = gluon.data.vision.MNIST(train=True, transform=transform)
mnist_test = gluon.data.vision.MNIST(train=False, transform=transform)

Downloading /opt/mxnet/datasets/mnist/train-images-idx3-ubyte.gz from https://
↩→apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/train-
↩→images-idx3-ubyte.gz...
Downloading /opt/mxnet/datasets/mnist/train-labels-idx1-ubyte.gz from https://
↩→apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/train-
↩→labels-idx1-ubyte.gz...
[22:05:00] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU
Downloading /opt/mxnet/datasets/mnist/t10k-images-idx3-ubyte.gz from https://
↩→apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/t10k-
↩→images-idx3-ubyte.gz...
Downloading /opt/mxnet/datasets/mnist/t10k-labels-idx1-ubyte.gz from https://
↩→apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/t10k-
↩→labels-idx1-ubyte.gz...
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We can access a particular example, which contains the image and the corresponding la-
bel.

image, label = mnist_train[2]
image.shape, label

((28, 28), array(4, dtype=int32))

Our example, stored here in the variable image, corresponds to an image with a height and
width of 28 pixels.

image.shape, image.dtype

((28, 28), dtype('float32'))

Our code stores the label of each image as a scalar. Its type is a 32-bit integer.

label, type(label), label.dtype

(array(4, dtype=int32), mxnet.numpy.ndarray, dtype('int32'))

We can also access multiple examples at the same time.

images, labels = mnist_train[10:38]
images.shape, labels.shape

((28, 28, 28), (28,))

Let’s visualize these examples.

d2l.show_images(images, 2, 9);

A.9.2 The Probabilistic Model for Classification
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In a classification task, we map an example into a category. Here an example is a grayscale
28 × 28 image, and a category is a digit. (Refer to Section 4.1 for a more detailed expla-
nation.) One natural way to express the classification task is via the probabilistic question:
what is the most likely label given the features (i.e., image pixels)? Denote by x ∈ R𝑑 the
features of the example and 𝑦 ∈ R the label. Here features are image pixels, where we can
reshape a 2-dimensional image to a vector so that 𝑑 = 282 = 784, and labels are digits.
The probability of the label given the features is 𝑝(𝑦 | x). If we are able to compute these
probabilities, which are 𝑝(𝑦 | x) for 𝑦 = 0, . . . , 9 in our example, then the classifier will
output the prediction 𝑦̂ given by the expression:

𝑦̂ = argmax 𝑝(𝑦 | x). (A.1)

Unfortunately, this requires that we estimate 𝑝(𝑦 | x) for every value of x = 𝑥1, ..., 𝑥𝑑 .
Imagine that each feature could take one of 2 values. For example, the feature 𝑥1 = 1 might
signify that the word apple appears in a given document and 𝑥1 = 0 would signify that it
does not. If we had 30 such binary features, that would mean that we need to be prepared
to classify any of 230 (over 1 billion!) possible values of the input vector x.

Moreover, where is the learning? If we need to see every single possible example in order to
predict the corresponding label then we are not really learning a pattern but just memorizing
the dataset.

A.9.3 The Naive Bayes Classifier
Fortunately, by making some assumptions about conditional independence, we can intro-
duce some inductive bias and build a model capable of generalizing from a comparatively
modest selection of training examples. To begin, let’s use Bayes theorem, to express the
classifier as

𝑦̂ = argmax𝑦 𝑝(𝑦 | x) = argmax𝑦
𝑝(x | 𝑦)𝑝(𝑦)

𝑝(x) . (A.2)

Note that the denominator is the normalizing term 𝑝(x) which does not depend on the value
of the label 𝑦. As a result, we only need to worry about comparing the numerator across
different values of 𝑦. Even if calculating the denominator turned out to be intractable, we
could get away with ignoring it, so long as we could evaluate the numerator. Fortunately,
even if we wanted to recover the normalizing constant, we could. We can always recover
the normalization term since

∑
𝑦 𝑝(𝑦 | x) = 1.

Now, let’s focus on 𝑝(x | 𝑦). Using the chain rule of probability, we can express the term
𝑝(x | 𝑦) as

𝑝(𝑥1 | 𝑦) · 𝑝(𝑥2 | 𝑥1, 𝑦) · ... · 𝑝(𝑥𝑑 | 𝑥1, ..., 𝑥𝑑−1, 𝑦). (A.3)

By itself, this expression does not get us any further. We still must estimate roughly 2𝑑

parameters. However, if we assume that the features are conditionally independent of each
other, given the label, then suddenly we are in much better shape, as this term simplifies to
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∏
𝑖 𝑝(𝑥𝑖 | 𝑦), giving us the predictor

𝑦̂ = argmax𝑦
𝑑∏
𝑖=1

𝑝(𝑥𝑖 | 𝑦)𝑝(𝑦). (A.4)

If we can estimate 𝑝(𝑥𝑖 = 1 | 𝑦) for every 𝑖 and 𝑦, and save its value in 𝑃𝑥𝑦 [𝑖, 𝑦], here 𝑃𝑥𝑦
is a 𝑑 × 𝑛 matrix with 𝑛 being the number of classes and 𝑦 ∈ {1, . . . , 𝑛}, then we can also
use this to estimate 𝑝(𝑥𝑖 = 0 | 𝑦), i.e.,

𝑝(𝑥𝑖 = 𝑡𝑖 | 𝑦) =
{
𝑃𝑥𝑦 [𝑖, 𝑦] for 𝑡𝑖 = 1;
1 − 𝑃𝑥𝑦 [𝑖, 𝑦] for 𝑡𝑖 = 0.

(A.5)

In addition, we estimate 𝑝(𝑦) for every 𝑦 and save it in 𝑃𝑦 [𝑦], with 𝑃𝑦 a 𝑛-length vector.
Then, for any new example t = (𝑡1, 𝑡2, . . . , 𝑡𝑑), we could compute

𝑦̂ = argmax𝑦 𝑝(𝑦)
𝑑∏
𝑖=1

𝑝(𝑥𝑡 = 𝑡𝑖 | 𝑦)

= argmax𝑦 𝑃𝑦 [𝑦]
𝑑∏
𝑖=1

𝑃𝑥𝑦 [𝑖, 𝑦]𝑡𝑖
(
1 − 𝑃𝑥𝑦 [𝑖, 𝑦]

)1−𝑡𝑖

(A.6)

for any 𝑦. So our assumption of conditional independence has taken the complexity of
our model from an exponential dependence on the number of features O(2𝑑𝑛) to a linear
dependence, which is O(𝑑𝑛).

A.9.4 Training
The problem now is that we do not know 𝑃𝑥𝑦 and 𝑃𝑦 . So we need to estimate their values
given some training data first. This is training the model. Estimating 𝑃𝑦 is not too hard.
Since we are only dealing with 10 classes, we may count the number of occurrences 𝑛𝑦 for
each of the digits and divide it by the total amount of data 𝑛. For instance, if digit 8 occurs
𝑛8 = 5, 800 times and we have a total of 𝑛 = 60, 000 images, the probability estimate is
𝑝(𝑦 = 8) = 0.0967.

X, Y = mnist_train[:] # All training examples

n_y = np.zeros((10))
for y in range(10):

n_y[y] = (Y == y).sum()
P_y = n_y / n_y.sum()
P_y

array([0.09871667, 0.11236667, 0.0993 , 0.10218333, 0.09736667,
0.09035 , 0.09863333, 0.10441667, 0.09751666, 0.09915 ])

Now on to slightly more difficult things 𝑃𝑥𝑦 . Since we picked black and white images,
𝑝(𝑥𝑖 | 𝑦) denotes the probability that pixel 𝑖 is switched on for class 𝑦. Just like before we
can go and count the number of times 𝑛𝑖𝑦 such that an event occurs and divide it by the
total number of occurrences of 𝑦, i.e., 𝑛𝑦 . But there is something slightly troubling: certain
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pixels may never be black (e.g., for well cropped images the corner pixels might always be
white). A convenient way for statisticians to deal with this problem is to add pseudo counts
to all occurrences. Hence, rather than 𝑛𝑖𝑦 we use 𝑛𝑖𝑦 + 1 and instead of 𝑛𝑦 we use 𝑛𝑦 + 2
(since there are two possible values pixel 𝑖 can take - it can either be black or white). This
is also called Laplace Smoothing. It may seem ad-hoc, however it can be motivated from a
Bayesian point-of-view by a Beta-binomial model.

n_x = np.zeros((10, 28, 28))
for y in range(10):

n_x[y] = np.array(X.asnumpy()[Y.asnumpy() == y].sum(axis=0))
P_xy = (n_x + 1) / (n_y + 2).reshape(10, 1, 1)

d2l.show_images(P_xy, 2, 5);

By visualizing these 10 × 28 × 28 probabilities (for each pixel for each class) we could get
some mean looking digits.

Now we can use (A.6) to predict a new image. Given x, the following functions computes
𝑝(x | 𝑦)𝑝(𝑦) for every 𝑦.

def bayes_pred(x):
x = np.expand_dims(x, axis=0) # (28, 28) -> (1, 28, 28)
p_xy = P_xy * x + (1 - P_xy)*(1 - x)
p_xy = p_xy.reshape(10, -1).prod(axis=1) # p(x|y)
return np.array(p_xy) * P_y

image, label = mnist_test[0]
bayes_pred(image)

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

This went horribly wrong! To find out why, let’s look at the per pixel probabilities. They
are typically numbers between 0.001 and 1. We are multiplying 784 of them. At this point
it is worth mentioning that we are calculating these numbers on a computer, hence with a
fixed range for the exponent. What happens is that we experience numerical underflow, i.e.,
multiplying all the small numbers leads to something even smaller until it is rounded down
to zero. We discussed this as a theoretical issue in Section A.7, but we see the phenomena
clearly here in practice.
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As discussed in that section, we fix this by use the fact that log 𝑎𝑏 = log 𝑎 + log 𝑏, i.e.,
we switch to summing logarithms. Even if both 𝑎 and 𝑏 are small numbers, the logarithm
values should be in a proper range.

a = 0.1
print('underflow:', a**784)
print('logarithm is normal:', 784*math.log(a))

underflow: 0.0
logarithm is normal: -1805.2267129073316

Since the logarithm is an increasing function, we can rewrite (A.6) as

𝑦̂ = argmax𝑦 log 𝑃𝑦 [𝑦] +
𝑑∑
𝑖=1

[
𝑡𝑖 log 𝑃𝑥𝑦 [𝑥𝑖 , 𝑦] + (1 − 𝑡𝑖) log(1 − 𝑃𝑥𝑦 [𝑥𝑖 , 𝑦])

]
. (A.7)

We can implement the following stable version:

log_P_xy = np.log(P_xy)
log_P_xy_neg = np.log(1 - P_xy)
log_P_y = np.log(P_y)

def bayes_pred_stable(x):
x = np.expand_dims(x, axis=0) # (28, 28) -> (1, 28, 28)
p_xy = log_P_xy * x + log_P_xy_neg * (1 - x)
p_xy = p_xy.reshape(10, -1).sum(axis=1) # p(x|y)
return p_xy + log_P_y

py = bayes_pred_stable(image)
py

array([-268.97253, -301.7044 , -245.19514, -218.87384, -193.45703,
-206.09088, -292.52264, -114.62566, -220.33133, -163.17842])

We may now check if the prediction is correct.

# Convert label which is a scalar tensor of int32 dtype to a Python scalar
# integer for comparison
py.argmax(axis=0) == int(label)

array(True)

If we now predict a few validation examples, we can see the Bayes classifier works pretty
well.

def predict(X):
return [bayes_pred_stable(x).argmax(axis=0).astype(np.int32) for x in X]

(continues on next page)
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(continued from previous page)

X, y = mnist_test[:18]
preds = predict(X)
d2l.show_images(X, 2, 9, titles=[str(d) for d in preds]);

Finally, let’s compute the overall accuracy of the classifier.

X, y = mnist_test[:]
preds = np.array(predict(X), dtype=np.int32)
float((preds == y).sum()) / len(y) # Validation accuracy

0.8427

Modern deep networks achieve error rates of less than 0.01. The relatively poor perfor-
mance is due to the incorrect statistical assumptions that we made in our model: we as-
sumed that each and every pixel are independently generated, depending only on the label.
This is clearly not how humans write digits, and this wrong assumption led to the downfall
of our overly naive (Bayes) classifier.

A.9.5 Summary
• Using Bayes’ rule, a classifier can be made by assuming all observed features are inde-

pendent.

• This classifier can be trained on a dataset by counting the number of occurrences of
combinations of labels and pixel values.

• This classifier was the gold standard for decades for tasks such as spam detection.

A.9.6 Exercises
1. Consider the dataset [[0, 0], [0, 1], [1, 0], [1, 1]] with labels given by the XOR of the

two elements [0, 1, 1, 0]. What are the probabilities for a Naive Bayes classifier built
on this dataset. Does it successfully classify our points? If not, what assumptions are
violated?

2. Suppose that we did not use Laplace smoothing when estimating probabilities and a
data example arrived at testing time which contained a value never observed in training.
What would the model output?
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284

3. The naive Bayes classifier is a specific example of a Bayesian network, where the de-
pendence of random variables are encoded with a graph structure. While the full theory
is beyond the scope of this section (see Koller and Friedman (2009) for full details),
explain why allowing explicit dependence between the two input variables in the XOR
model allows for the creation of a successful classifier.

Discussions284 .

A.10 Statistics

Undoubtedly, to be a top deep learning practitioner, the ability to train the state-of-the-art
and high accurate models is crucial. However, it is often unclear when improvements are
significant, or only the result of random fluctuations in the training process. To be able to
discuss uncertainty in estimated values, we must learn some statistics.

The earliest reference of statistics can be traced back to an Arab scholar Al-Kindi in the 9th-
century, who gave a detailed description of how to use statistics and frequency analysis to
decipher encrypted messages. After 800 years, the modern statistics arose from Germany
in 1700s, when the researchers focused on the demographic and economic data collection
and analysis. Today, statistics is the science subject that concerns the collection, processing,
analysis, interpretation and visualization of data. What is more, the core theory of statistics
has been widely used in the research within academia, industry, and government.

More specifically, statistics can be divided to descriptive statistics and statistical inference.
The former focus on summarizing and illustrating the features of a collection of observed
data, which is referred to as a sample. The sample is drawn from a population, denotes
the total set of similar individuals, items, or events of our experiment interests. Contrary to
descriptive statistics, statistical inference further deduces the characteristics of a population
from the given samples, based on the assumptions that the sample distribution can replicate
the population distribution at some degree.

You may wonder: “What is the essential difference between machine learning and statis-
tics?” Fundamentally speaking, statistics focuses on the inference problem. This type of
problems includes modeling the relationship between the variables, such as causal infer-
ence, and testing the statistically significance of model parameters, such as A/B testing. In
contrast, machine learning emphasizes on making accurate predictions, without explicitly
programming and understanding each parameter’s functionality.

In this section, we will introduce three types of statistics inference methods: evaluating and
comparing estimators, conducting hypothesis tests, and constructing confidence intervals.
These methods can help us infer the characteristics of a given population, i.e., the true
parameter 𝜃. For brevity, we assume that the true parameter 𝜃 of a given population is a
scalar value. It is straightforward to extend to the case where 𝜃 is a vector or a tensor, thus
we omit it in our discussion.

https://discuss.d2l.ai/t/418
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A.10.1 Evaluating and Comparing Estimators
In statistics, an estimator is a function of given samples used to estimate the true parameter
𝜃. We will write 𝜃𝑛 = 𝑓 (𝑥1, . . . , 𝑥𝑛) for the estimate of 𝜃 after observing the samples
{𝑥1, 𝑥2, . . . , 𝑥𝑛}.

We have seen simple examples of estimators before in section Section A.7. If you have a
number of samples from a Bernoulli random variable, then the maximum likelihood esti-
mate for the probability the random variable is one can be obtained by counting the number
of ones observed and dividing by the total number of samples. Similarly, an exercise asked
you to show that the maximum likelihood estimate of the mean of a Gaussian given a num-
ber of samples is given by the average value of all the samples. These estimators will almost
never give the true value of the parameter, but ideally for a large number of samples the
estimate will be close.

As an example, we show below the true density of a Gaussian random variable with mean
zero and variance one, along with a collection samples from that Gaussian. We constructed
the 𝑦 coordinate so every point is visible and the relationship to the original density is
clearer.

import random
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

# Sample datapoints and create y coordinate
epsilon = 0.1
random.seed(8675309)
xs = np.random.normal(loc=0, scale=1, size=(300,))

ys = [np.sum(np.exp(-(xs[:i] - xs[i])**2 / (2 * epsilon**2))
/ np.sqrt(2*np.pi*epsilon**2)) / len(xs) for i in range(len(xs))]

# Compute true density
xd = np.arange(np.min(xs), np.max(xs), 0.01)
yd = np.exp(-xd**2/2) / np.sqrt(2 * np.pi)

# Plot the results
d2l.plot(xd, yd, 'x', 'density')
d2l.plt.scatter(xs, ys)
d2l.plt.axvline(x=0)
d2l.plt.axvline(x=np.mean(xs), linestyle='--', color='purple')
d2l.plt.title(f'sample mean: {float(np.mean(xs)):.2f}')
d2l.plt.show()

[21:50:06] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

There can be many ways to compute an estimator of a parameter 𝜃𝑛. In this section, we
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introduce three common methods to evaluate and compare estimators: the mean squared
error, the standard deviation, and statistical bias.

Mean Squared Error
Perhaps the simplest metric used to evaluate estimators is the mean squared error (MSE)
(or 𝑙2 loss) estimator which can be defined as

MSE(𝜃𝑛, 𝜃) = 𝐸 [(𝜃𝑛 − 𝜃)2] . (A.1)

This allows us to quantify the average squared deviation from the true value. MSE is always
non-negative. If you have read Section 3.1, youwill recognize it as themost commonly used
regression loss function. As a measure to evaluate an estimator, the closer its value to zero,
the closer the estimator is close to the true parameter 𝜃.

Statistical Bias
The MSE provides a natural metric, but we can easily imagine multiple different phenom-
ena that might make it large. Two fundamentally important are fluctuation in the estimator
due to randomness in the dataset, and systematic error in the estimator due to the estimation
procedure.

First, let’s measure the systematic error. For an estimator 𝜃𝑛, the mathematical illustration
of statistical bias can be defined as

bias(𝜃𝑛) = 𝐸 (𝜃𝑛 − 𝜃) = 𝐸 (𝜃𝑛) − 𝜃. (A.2)

Note that when bias(𝜃𝑛) = 0, the expectation of the estimator 𝜃𝑛 is equal to the true value
of parameter. In this case, we say 𝜃𝑛 is an unbiased estimator. In general, an unbiased
estimator is better than a biased estimator since its expectation is the same as the true pa-
rameter.

It is worth being aware, however, that biased estimators are frequently used in practice.
There are cases where unbiased estimators do not exist without further assumptions, or
are intractable to compute. This may seem like a significant flaw in an estimator, however
the majority of estimators encountered in practice are at least asymptotically unbiased in
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the sense that the bias tends to zero as the number of available samples tends to infinity:
lim𝑛→∞ bias(𝜃𝑛) = 0.

Variance and Standard Deviation
Second, let’s measure the randomness in the estimator. Recall from Section A.6, the stan-
dard deviation (or standard error) is defined as the squared root of the variance. We may
measure the degree of fluctuation of an estimator by measuring the standard deviation or
variance of that estimator.

𝜎𝜃𝑛 =
√
Var(𝜃𝑛) =

√
𝐸 [(𝜃𝑛 − 𝐸 (𝜃𝑛))2] . (A.3)

It is important to compare (A.3) to (A.1). In this equation we do not compare to the true
population value 𝜃, but instead to 𝐸 (𝜃𝑛), the expected sample mean. Thus we are not
measuring how far the estimator tends to be from the true value, but instead we measuring
the fluctuation of the estimator itself.

The Bias-Variance Trade-off
It is intuitively clear that these two main components contribute to the mean squared error.
What is somewhat shocking is that we can show that this is actually a decomposition of
the mean squared error into these two contributions plus a third one. That is to say that we
can write the mean squared error as the sum of the square of the bias, the variance and the
irreducible error.

MSE(𝜃𝑛, 𝜃) = 𝐸 [(𝜃𝑛 − 𝜃)2]
= 𝐸 [(𝜃𝑛)2] + 𝐸 [𝜃2] − 2𝐸 [𝜃𝑛𝜃]
= Var[𝜃𝑛] + 𝐸 [𝜃𝑛]2 + Var[𝜃] + 𝐸 [𝜃]2 − 2𝐸 [𝜃𝑛]𝐸 [𝜃]
= (𝐸 [𝜃𝑛] − 𝐸 [𝜃])2 + Var[𝜃𝑛] + Var[𝜃]
= (𝐸 [𝜃𝑛 − 𝜃])2 + Var[𝜃𝑛] + Var[𝜃]
= (bias[𝜃𝑛])2 + Var(𝜃𝑛) + Var[𝜃] .

(A.4)

We refer the above formula as bias-variance trade-off. The mean squared error can be di-
vided into three sources of error: the error from high bias, the error from high variance and
the irreducible error. The bias error is commonly seen in a simple model (such as a linear
regression model), which cannot extract high dimensional relations between the features
and the outputs. If a model suffers from high bias error, we often say it is underfitting or
lack of flexibilty as introduced in (Section 3.6). The high variance usually results from a
too complex model, which overfits the training data. As a result, an overfitting model is
sensitive to small fluctuations in the data. If a model suffers from high variance, we often
say it is overfitting and lack of generalization as introduced in (Section 3.6). The irreducible
error is the result from noise in the 𝜃 itself.
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Evaluating Estimators in Code
Since the standard deviation of an estimator has been implementing by simply calling a.

std() for a tensor a, we will skip it but implement the statistical bias and the mean squared
error.

# Statistical bias
def stat_bias(true_theta, est_theta):

return(np.mean(est_theta) - true_theta)

# Mean squared error
def mse(data, true_theta):

return(np.mean(np.square(data - true_theta)))

To illustrate the equation of the bias-variance trade-off, let’s simulate of normal distribution
N(𝜃, 𝜎2) with 10, 000 samples. Here, we use a 𝜃 = 1 and 𝜎 = 4. As the estimator is a
function of the given samples, here we use the mean of the samples as an estimator for true
𝜃 in this normal distribution N(𝜃, 𝜎2) .

theta_true = 1
sigma = 4
sample_len = 10000
samples = np.random.normal(theta_true, sigma, sample_len)
theta_est = np.mean(samples)
theta_est

array(0.9503336)

Let’s validate the trade-off equation by calculating the summation of the squared bias and
the variance of our estimator. First, calculate the MSE of our estimator.

mse(samples, theta_true)

array(15.781996)

Next, we calculate Var(𝜃𝑛) + [bias(𝜃𝑛)]2 as below. As you can see, the two values agree to
numerical precision.

bias = stat_bias(theta_true, theta_est)
np.square(samples.std()) + np.square(bias)

array(15.781995)

A.10.2 Conducting Hypothesis Tests
The most commonly encountered topic in statistical inference is hypothesis testing. While
hypothesis testing was popularized in the early 20th century, the first use can be traced
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back to John Arbuthnot in the 1700s. John tracked 80-year birth records in London and
concluded that more men were born than women each year. Following that, the modern
significance testing is the intelligence heritage by Karl Pearson who invented 𝑝-value and
Pearson’s chi-squared test, William Gosset who is the father of Student’s t-distribution, and
Ronald Fisher who initialed the null hypothesis and the significance test.

A hypothesis test is a way of evaluating some evidence against the default statement about a
population. We refer the default statement as the null hypothesis 𝐻0, which we try to reject
using the observed data. Here, we use 𝐻0 as a starting point for the statistical significance
testing. The alternative hypothesis 𝐻𝐴 (or 𝐻1) is a statement that is contrary to the null
hypothesis. A null hypothesis is often stated in a declarative form which posits a relation-
ship between variables. It should reflect the brief as explicit as possible, and be testable by
statistics theory.

Imagine you are a chemist. After spending thousands of hours in the lab, you develop a
new medicine which can dramatically improve one’s ability to understand math. To show
its magic power, you need to test it. Naturally, you may need some volunteers to take
the medicine and see whether it can help them learn mathematics better. How do you get
started?

First, you will need carefully random selected two groups of volunteers, so that there is no
difference between their mathematical understanding ability measured by some metrics.
The two groups are commonly referred to as the test group and the control group. The
test group (or treatment group) is a group of individuals who will experience the medicine,
while the control group represents the group of users who are set aside as a benchmark,
i.e., identical environment setups except taking this medicine. In this way, the influence
of all the variables are minimized, except the impact of the independent variable in the
treatment.

Second, after a period of taking the medicine, you will need to measure the two groups’
mathematical understanding by the same metrics, such as letting the volunteers do the same
tests after learning a new mathematical formula. Then, you can collect their performance
and compare the results. In this case, our null hypothesis will be that there is no difference
between the two groups, and our alternate will be that there is.

This is still not fully formal. There are many details you have to think of carefully. For
example, what is the suitable metrics to test their mathematical understanding ability? How
many volunteers for your test so you can be confident to claim the effectiveness of your
medicine? How long should you run the test? How do you decide if there is a difference
between the two groups? Do you care about the average performance only, or also the range
of variation of the scores? And so on.

In this way, hypothesis testing provides a framework for experimental design and reasoning
about certainty in observed results. If we can now show that the null hypothesis is very
unlikely to be true, we may reject it with confidence.

To complete the story of how to work with hypothesis testing, we need to now introduce
some additional terminology and make some of our concepts above formal.
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Statistical Significance
The statistical significance measures the probability of erroneously rejecting the null hy-
pothesis, 𝐻0, when it should not be rejected, i.e.,

statistical significance = 1 − 𝛼 = 1 − 𝑃(reject 𝐻0 | 𝐻0 is true). (A.5)

It is also referred to as the type I error or false positive. The 𝛼, is called as the significance
level and its commonly used value is 5%, i.e., 1 − 𝛼 = 95%. The significance level can
be explained as the level of risk that we are willing to take, when we reject a true null
hypothesis.

Fig. A.1 shows the observations’ values and probability of a given normal distribution
in a two-sample hypothesis test. If the observation data example is located outsides the
95% threshold, it will be a very unlikely observation under the null hypothesis assump-
tion. Hence, there might be something wrong with the null hypothesis and we will reject
it.

tFig. A.1 Statistical significance.

Statistical Power
The statistical power (or sensitivity) measures the probability of reject the null hypothesis,
𝐻0, when it should be rejected, i.e.,

statistical power = 1 − 𝛽 = 1 − 𝑃( fail to reject 𝐻0 | 𝐻0 is false). (A.6)

Recall that a type I error is error caused by rejecting the null hypothesis when it is true,
whereas a type II error is resulted from failing to reject the null hypothesis when it is false.
A type II error is usually denoted as 𝛽, and hence the corresponding statistical power is
1 − 𝛽.

Intuitively, statistical power can be interpreted as how likely our test will detect a real dis-
crepancy of some minimum magnitude at a desired statistical significance level. 80% is
a commonly used statistical power threshold. The higher the statistical power, the more
likely we are to detect true differences.

One of the most common uses of statistical power is in determining the number of samples
needed. The probability you reject the null hypothesis when it is false depends on the degree
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to which it is false (known as the effect size) and the number of samples you have. As you
might expect, small effect sizes will require a very large number of samples to be detectable
with high probability. While beyond the scope of this brief appendix to derive in detail, as
an example, want to be able to reject a null hypothesis that our sample came from a mean
zero variance one Gaussian, and we believe that our sample’s mean is actually close to one,
we can do so with acceptable error rates with a sample size of only 8. However, if we think
our sample population true mean is close to 0.01, then we’d need a sample size of nearly
80000 to detect the difference.

We can imagine the power as a water filter. In this analogy, a high power hypothesis test is
like a high quality water filtration system that will reduce harmful substances in the water
as much as possible. On the other hand, a smaller discrepancy is like a low quality water
filter, where some relative small substances may easily escape from the gaps. Similarly, if
the statistical power is not of enough high power, then the test may not catch the smaller
discrepancy.

Test Statistic
A test statistic 𝑇 (𝑥) is a scalar which summarizes some characteristic of the sample data.
The goal of defining such a statistic is that it should allow us to distinguish between different
distributions and conduct our hypothesis test. Thinking back to our chemist example, if we
wish to show that one population performs better than the other, it could be reasonable to
take the mean as the test statistic. Different choices of test statistic can lead to statistical
test with drastically different statistical power.

Often, 𝑇 (𝑋) (the distribution of the test statistic under our null hypothesis) will follow, at
least approximately, a common probability distribution such as a normal distribution when
considered under the null hypothesis. If we can derive explicitly such a distribution, and
then measure our test statistic on our dataset, we can safely reject the null hypothesis if our
statistic is far outside the range that we would expect. Making this quantitative leads us to
the notion of 𝑝-values.

𝑝-value
The 𝑝-value (or the probability value) is the probability that 𝑇 (𝑋) is at least as extreme as
the observed test statistic 𝑇 (𝑥) assuming that the null hypothesis is true, i.e.,

𝑝-value = 𝑃𝐻0 (𝑇 (𝑋) ≥ 𝑇 (𝑥)). (A.7)

If the 𝑝-value is smaller than or equal to a predefined and fixed statistical significance level
𝛼, we may reject the null hypothesis. Otherwise, we will conclude that we are lack of
evidence to reject the null hypothesis. For a given population distribution, the region of
rejection will be the interval contained of all the points which has a 𝑝-value smaller than
the statistical significance level 𝛼.
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One-side Test and Two-sided Test
Normally there are two kinds of significance test: the one-sided test and the two-sided
test. The one-sided test (or one-tailed test) is applicable when the null hypothesis and the
alternative hypothesis only have one direction. For example, the null hypothesis may state
that the true parameter 𝜃 is less than or equal to a value 𝑐. The alternative hypothesis
would be that 𝜃 is greater than 𝑐. That is, the region of rejection is on only one side of the
sampling distribution. Contrary to the one-sided test, the two-sided test (or two-tailed test)
is applicable when the region of rejection is on both sides of the sampling distribution. An
example in this case may have a null hypothesis state that the true parameter 𝜃 is equal to a
value 𝑐. The alternative hypothesis would be that 𝜃 is not equal to 𝑐.

General Steps of Hypothesis Testing
After getting familiar with the above concepts, let’s go through the general steps of hypoth-
esis testing.

1. State the question and establish a null hypotheses 𝐻0.

2. Set the statistical significance level 𝛼 and a statistical power (1 − 𝛽).

3. Obtain samples through experiments. The number of samples needed will depend on
the statistical power, and the expected effect size.

4. Calculate the test statistic and the 𝑝-value.

5. Make the decision to keep or reject the null hypothesis based on the 𝑝-value and the
statistical significance level 𝛼.

To conduct a hypothesis test, we start by defining a null hypothesis and a level of risk that
we are willing to take. Then we calculate the test statistic of the sample, taking an extreme
value of the test statistic as evidence against the null hypothesis. If the test statistic falls
within the reject region, we may reject the null hypothesis in favor of the alternative.

Hypothesis testing is applicable in a variety of scenarios such as the clinical trails and A/B
testing.

A.10.3 Constructing Confidence Intervals
When estimating the value of a parameter 𝜃, point estimators like 𝜃 are of limited utility
since they contain no notion of uncertainty. Rather, it would be far better if we could
produce an interval that would contain the true parameter 𝜃 with high probability. If you
were interested in such ideas a century ago, then you would have been excited to read
“Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability”
by Jerzy Neyman (Neyman, 1937), who first introduced the concept of confidence interval
in 1937.

To be useful, a confidence interval should be as small as possible for a given degree of
certainty. Let’s see how to derive it.
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Definition
Mathematically, a confidence interval for the true parameter 𝜃 is an interval 𝐶𝑛 that com-
puted from the sample data such that

𝑃𝜃 (𝐶𝑛 3 𝜃) ≥ 1 − 𝛼,∀𝜃. (A.8)

Here 𝛼 ∈ (0, 1), and 1− 𝛼 is called the confidence level or coverage of the interval. This is
the same 𝛼 as the significance level as we discussed about above.

Note that (A.8) is about variable 𝐶𝑛, not about the fixed 𝜃. To emphasize this, we write
𝑃𝜃 (𝐶𝑛 3 𝜃) rather than 𝑃𝜃 (𝜃 ∈ 𝐶𝑛).

Interpretation
It is very tempting to interpret a 95% confidence interval as an interval where you can be
95% sure the true parameter lies, however this is sadly not true. The true parameter is fixed,
and it is the interval that is random. Thus a better interpretation would be to say that if you
generated a large number of confidence intervals by this procedure, 95% of the generated
intervals would contain the true parameter.

Thismay seem pedantic, but it can have real implications for the interpretation of the results.
In particular, we may satisfy (A.8) by constructing intervals that we are almost certain do
not contain the true value, as long as we only do so rarely enough. We close this section by
providing three tempting but false statements. An in-depth discussion of these points can
be found in Morey et al. (2016).

• Fallacy 1. Narrow confidence intervals mean we can estimate the parameter precisely.

• Fallacy 2. The values inside the confidence interval are more likely to be the true value
than those outside the interval.

• Fallacy 3. The probability that a particular observed 95% confidence interval contains
the true value is 95%.

Sufficed to say, confidence intervals are subtle objects. However, if you keep the interpre-
tation clear, they can be powerful tools.

A Gaussian Example
Let’s discuss the most classical example, the confidence interval for the mean of a Gaussian
of unknown mean and variance. Suppose we collect 𝑛 samples {𝑥𝑖}𝑛𝑖=1 from our Gaussian
N(𝜇, 𝜎2). We can compute estimators for the mean and variance by taking

𝜇̂𝑛 =
1
𝑛

𝑛∑
𝑖=1

𝑥𝑖 and 𝜎̂2
𝑛 =

1
𝑛 − 1

𝑛∑
𝑖=1
(𝑥𝑖 − 𝜇̂)2. (A.9)

If we now consider the random variable

𝑇 =
𝜇̂𝑛 − 𝜇
𝜎̂𝑛/
√
𝑛
, (A.10)
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we obtain a random variable following a well-known distribution called the Student’s t-
distribution on 𝑛 − 1 degrees of freedom.

This distribution is very well studied, and it is known, for instance, that as 𝑛 → ∞, it is
approximately a standard Gaussian, and thus by looking up values of the Gaussian c.d.f. in
a table, we may conclude that the value of 𝑇 is in the interval [−1.96, 1.96] at least 95%
of the time. For finite values of 𝑛, the interval needs to be somewhat larger, but are well
known and precomputed in tables.

Thus, we may conclude that for large 𝑛,

𝑃

(
𝜇̂𝑛 − 𝜇
𝜎̂𝑛/
√
𝑛
∈ [−1.96, 1.96]

)
≥ 0.95. (A.11)

Rearranging this by multiplying both sides by 𝜎̂𝑛/
√
𝑛 and then adding 𝜇̂𝑛, we obtain

𝑃

(
𝜇 ∈

[
𝜇̂𝑛 − 1.96

𝜎̂𝑛√
𝑛
, 𝜇̂𝑛 + 1.96

𝜎̂𝑛√
𝑛

] )
≥ 0.95. (A.12)

Thus we know that we have found our 95% confidence interval:[
𝜇̂𝑛 − 1.96

𝜎̂𝑛√
𝑛
, 𝜇̂𝑛 + 1.96

𝜎̂𝑛√
𝑛

]
. (A.13)

It is safe to say that (A.13) is one of the most used formula in statistics. Let’s close our
discussion of statistics by implementing it. For simplicity, we assume we are in the asymp-
totic regime. Small values of 𝑁 should include the correct value of t_star obtained either
programmatically or from a 𝑡-table.

# Number of samples
N = 1000

# Sample dataset
samples = np.random.normal(loc=0, scale=1, size=(N,))

# Lookup Students's t-distribution c.d.f.
t_star = 1.96

# Construct interval
mu_hat = np.mean(samples)
sigma_hat = samples.std(ddof=1)
(mu_hat - t_star*sigma_hat/np.sqrt(N), mu_hat + t_star*sigma_hat/np.sqrt(N))

(array(-0.07853346), array(0.04412608))

A.10.4 Summary
• Statistics focuses on inference problems, whereas deep learning emphasizes on making

accurate predictions without explicitly programming and understanding.

• There are three common statistics inference methods: evaluating and comparing estima-
tors, conducting hypothesis tests, and constructing confidence intervals.
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• There are three most common estimators: statistical bias, standard deviation, and mean
square error.

• A confidence interval is an estimated range of a true population parameter that we can
construct by given the samples.

• Hypothesis testing is a way of evaluating some evidence against the default statement
about a population.

A.10.5 Exercises

1. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛
iid∼ Unif(0, 𝜃), where “iid” stands for independent and identically

distributed. Consider the following estimators of 𝜃:

𝜃 = max{𝑋1, 𝑋2, . . . , 𝑋𝑛}; (A.14)

𝜃 = 2𝑋𝑛 =
2
𝑛

𝑛∑
𝑖=1

𝑋𝑖 . (A.15)

• Find the statistical bias, standard deviation, and mean square error of 𝜃.

• Find the statistical bias, standard deviation, and mean square error of 𝜃.

• Which estimator is better?

2. For our chemist example in introduction, can you derive the 5 steps to conduct a two-
sided hypothesis testing? Given the statistical significance level 𝛼 = 0.05 and the sta-
tistical power 1 − 𝛽 = 0.8.

3. Run the confidence interval code with 𝑁 = 2 and 𝛼 = 0.5 for 100 independently gener-
ated dataset, and plot the resulting intervals (in this case t_star = 1.0). You will see
several very short intervals which are very far from containing the true mean 0. Does
this contradict the interpretation of the confidence interval? Do you feel comfortable
using short intervals to indicate high precision estimates?

Discussions285 .

A.11 Information Theory

The universe is overflowing with information. Information provides a common language
across disciplinary rifts: fromShakespeare’s Sonnet to researchers’ paper onCornell ArXiv,
from Van Gogh’s printing Starry Night to Beethoven’s music Symphony No. 5, from the
first programming language Plankalkül to the state-of-the-art machine learning algorithms.
Everything must follow the rules of information theory, no matter the format. With infor-
mation theory, we can measure and compare how much information is present in different

https://discuss.d2l.ai/t/419
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signals. In this section, we will investigate the fundamental concepts of information theory
and applications of information theory in machine learning.

Before we get started, let’s outline the relationship between machine learning and informa-
tion theory. Machine learning aims to extract interesting signals from data andmake critical
predictions. On the other hand, information theory studies encoding, decoding, transmit-
ting, and manipulating information. As a result, information theory provides fundamental
language for discussing the information processing in machine learned systems. For exam-
ple, many machine learning applications use the cross-entropy loss as described in Section
4.1. This loss can be directly derived from information theoretic considerations.

A.11.1 Information
Let’s start with the “soul” of information theory: information. Information can be encoded
in anything with a particular sequence of one or more encoding formats. Suppose that we
task ourselves with trying to define a notion of information. What could be our starting
point?

Consider the following thought experiment. We have a friend with a deck of cards. They
will shuffle the deck, flip over some cards, and tell us statements about the cards. We will
try to assess the information content of each statement.

First, they flip over a card and tell us, “I see a card.” This provides us with no information
at all. We were already certain that this was the case so we hope the information should be
zero.

Next, they flip over a card and say, “I see a heart.” This provides us some information,
but in reality there are only 4 different suits that were possible, each equally likely, so we
are not surprised by this outcome. We hope that whatever the measure of information, this
event should have low information content.

Next, they flip over a card and say, “This is the 3 of spades.” This is more information.
Indeed there were 52 equally likely possible outcomes, and our friend told us which one it
was. This should be a medium amount of information.

Let’s take this to the logical extreme. Suppose that finally they flip over every card from the
deck and read off the entire sequence of the shuffled deck. There are 52! different orders
to the deck, again all equally likely, so we need a lot of information to know which one it
is.

Any notion of information we develop must conform to this intuition. Indeed, in the next
sections we will learn how to compute that these events have 0 bits, 2 bits, 5.7 bits, and
225.6 bits of information respectively.

If we read through these thought experiments, we see a natural idea. As a starting point,
rather than caring about the knowledge, we may build off the idea that information repre-
sents the degree of surprise or the abstract possibility of the event. For example, if we want
to describe an unusual event, we need a lot information. For a common event, we may not
need much information.
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In 1948, Claude E. Shannon published A Mathematical Theory of Communication (Shan-
non, 1948) establishing the theory of information. In his article, Shannon introduced the
concept of information entropy for the first time. We will begin our journey here.

Self-information
Since information embodies the abstract possibility of an event, how do we map the pos-
sibility to the number of bits? Shannon introduced the terminology bit as the unit of in-
formation, which was originally created by John Tukey. So what is a “bit” and why do we
use it to measure information? Historically, an antique transmitter can only send or receive
two types of code: 0 and 1. Indeed, binary encoding is still in common use on all modern
digital computers. In this way, any information is encoded by a series of 0 and 1. And
hence, a series of binary digits of length 𝑛 contains 𝑛 bits of information.

Now, suppose that for any series of codes, each 0 or 1 occurs with a probability of 1
2 .

Hence, an event 𝑋 with a series of codes of length 𝑛, occurs with a probability of 1
2𝑛 . At

the same time, as we mentioned before, this series contains 𝑛 bits of information. So, can
we generalize to a mathematical function which can transfer the probability 𝑝 to the number
of bits? Shannon gave the answer by defining self-information

𝐼 (𝑋) = − log2 (𝑝), (A.1)

as the bits of information we have received for this event 𝑋 . Note that we will always use
base-2 logarithms in this section. For the sake of simplicity, the rest of this section will omit
the subscript 2 in the logarithm notation, i.e., log(.) always refers to log2 (.). For example,
the code “0010” has a self-information

𝐼 (”0010”) = − log(𝑝(”0010”)) = − log
(

1
24

)
= 4 bits. (A.2)

We can calculate self information as shown below. Before that, let’s first import all the
necessary packages in this section.

import random
from mxnet import np
from mxnet.metric import NegativeLogLikelihood
from mxnet.ndarray import nansum

def self_information(p):
return -np.log2(p)

self_information(1 / 64)

6.0

A.11.2 Entropy
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As self-information only measures the information of a single discrete event, we need a
more generalized measure for any random variable of either discrete or continuous distri-
bution.

Motivating Entropy
Let’s try to get specific about what we want. This will be an informal statement of what are
known as the axioms of Shannon entropy. It will turn out that the following collection of
common-sense statements force us to a unique definition of information. A formal version
of these axioms, along with several others may be found in Csiszár (2008).

1. The information we gain by observing a random variable does not depend on what we
call the elements, or the presence of additional elements which have probability zero.

2. The information we gain by observing two random variables is no more than the sum
of the information we gain by observing them separately. If they are independent, then
it is exactly the sum.

3. The information gained when observing (nearly) certain events is (nearly) zero.

While proving this fact is beyond the scope of our text, it is important to know that this
uniquely determines the form that entropy must take. The only ambiguity that these allow
is in the choice of fundamental units, which is most often normalized by making the choice
we saw before that the information provided by a single fair coin flip is one bit.

Definition
For any random variable 𝑋 that follows a probability distribution 𝑃 with a probability den-
sity function (p.d.f.) or a probability mass function (p.m.f.) 𝑝(𝑥), we measure the expected
amount of information through entropy (or Shannon entropy)

𝐻 (𝑋) = −𝐸𝑥∼𝑃 [log 𝑝(𝑥)] . (A.3)

To be specific, if 𝑋 is discrete,

𝐻 (𝑋) = −
∑
𝑖

𝑝𝑖 log 𝑝𝑖 , where 𝑝𝑖 = 𝑃(𝑋𝑖). (A.4)

Otherwise, if 𝑋 is continuous, we also refer entropy as differential entropy

𝐻 (𝑋) = −
∫
𝑥
𝑝(𝑥) log 𝑝(𝑥) 𝑑𝑥. (A.5)

We can define entropy as below.

def entropy(p):
entropy = - p * np.log2(p)
# Operator `nansum` will sum up the non-nan number
out = nansum(entropy.as_nd_ndarray())
return out

entropy(np.array([0.1, 0.5, 0.1, 0.3]))
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[21:59:56] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager␣
↩→for CPU

[1.6854753]
<NDArray 1 @cpu(0)>

Interpretations
You may be curious: in the entropy definition (A.3), why do we use an expectation of a
negative logarithm? Here are some intuitions.

First, why do we use a logarithm function log? Suppose that 𝑝(𝑥) = 𝑓1 (𝑥) 𝑓2 (𝑥) . . . , 𝑓𝑛 (𝑥),
where each component function 𝑓𝑖 (𝑥) is independent from each other. This means that each
𝑓𝑖 (𝑥) contributes independently to the total information obtained from 𝑝(𝑥). As discussed
above, we want the entropy formula to be additive over independent random variables.
Luckily, log can naturally turn a product of probability distributions to a summation of the
individual terms.

Next, why do we use a negative log? Intuitively, more frequent events should contain less
information than less common events, since we often gain more information from an un-
usual case than from an ordinary one. However, log is monotonically increasing with the
probabilities, and indeed negative for all values in [0, 1]. We need to construct a monoton-
ically decreasing relationship between the probability of events and their entropy, which
will ideally be always positive (for nothing we observe should force us to forget what we
have known). Hence, we add a negative sign in front of log function.

Last, where does the expectation function come from? Consider a random variable 𝑋 . We
can interpret the self-information (− log(𝑝)) as the amount of surprise we have at seeing
a particular outcome. Indeed, as the probability approaches zero, the surprise becomes
infinite. Similarly, we can interpret the entropy as the average amount of surprise from
observing 𝑋 . For example, imagine that a slot machine system emits statistical indepen-
dently symbols 𝑠1, . . . , 𝑠𝑘 with probabilities 𝑝1, . . . , 𝑝𝑘 respectively. Then the entropy of
this system equals to the average self-information from observing each output, i.e.,

𝐻 (𝑆) =
∑
𝑖

𝑝𝑖 · 𝐼 (𝑠𝑖) = −
∑
𝑖

𝑝𝑖 · log 𝑝𝑖 . (A.6)

Properties of Entropy
By the above examples and interpretations, we can derive the following properties of en-
tropy (A.3). Here, we refer to 𝑋 as an event and 𝑃 as the probability distribution of
𝑋 .

• 𝐻 (𝑋) ≥ 0 for all discrete 𝑋 (entropy can be negative for continuous 𝑋).

• If 𝑋 ∼ 𝑃 with a p.d.f. or a p.m.f. 𝑝(𝑥), and we try to estimate 𝑃 by a new probability
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distribution 𝑄 with a p.d.f. or a p.m.f. 𝑞(𝑥), then

𝐻 (𝑋) = −𝐸𝑥∼𝑃 [log 𝑝(𝑥)] ≤ −𝐸𝑥∼𝑃 [log 𝑞(𝑥)], with equality if and only if 𝑃 = 𝑄.

(A.7)

Alternatively, 𝐻 (𝑋) gives a lower bound of the average number of bits needed to
encode symbols drawn from 𝑃.

• If 𝑋 ∼ 𝑃, then 𝑥 conveys the maximum amount of information if it spreads evenly among
all possible outcomes. Specifically, if the probability distribution 𝑃 is discrete with
𝑘-class {𝑝1, . . . , 𝑝𝑘}, then

𝐻 (𝑋) ≤ log(𝑘), with equality if and only if 𝑝𝑖 =
1
𝑘
,∀𝑖. (A.8)

If 𝑃 is a continuous random variable, then the story becomes much more complicated.
However, if we additionally impose that 𝑃 is supported on a finite interval (with all
values between 0 and 1), then 𝑃 has the highest entropy if it is the uniform distribution
on that interval.

A.11.3 Mutual Information
Previously we defined entropy of a single random variable 𝑋 , how about the entropy of a
pair random variables (𝑋,𝑌 )? We can think of these techniques as trying to answer the
following type of question, “What information is contained in 𝑋 and 𝑌 together compared
to each separately? Is there redundant information, or is it all unique?”

For the following discussion, we always use (𝑋,𝑌 ) as a pair of random variables that follows
a joint probability distribution 𝑃 with a p.d.f. or a p.m.f. 𝑝𝑋,𝑌 (𝑥, 𝑦), while 𝑋 and 𝑌 follow
probability distribution 𝑝𝑋 (𝑥) and 𝑝𝑌 (𝑦), respectively.

Joint Entropy
Similar to entropy of a single random variable (A.3), we define the joint entropy 𝐻 (𝑋,𝑌 )
of a pair random variables (𝑋,𝑌 ) as

𝐻 (𝑋,𝑌 ) = −𝐸 (𝑥,𝑦)∼𝑃 [log 𝑝𝑋,𝑌 (𝑥, 𝑦)] . (A.9)

Precisely, on the one hand, if (𝑋,𝑌 ) is a pair of discrete random variables, then

𝐻 (𝑋,𝑌 ) = −
∑
𝑥

∑
𝑦

𝑝𝑋,𝑌 (𝑥, 𝑦) log 𝑝𝑋,𝑌 (𝑥, 𝑦). (A.10)

On the other hand, if (𝑋,𝑌 ) is a pair of continuous random variables, then we define the
differential joint entropy as

𝐻 (𝑋,𝑌 ) = −
∫
𝑥,𝑦

𝑝𝑋,𝑌 (𝑥, 𝑦) log 𝑝𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (A.11)

We can think of (A.9) as telling us the total randomness in the pair of random variables.
As a pair of extremes, if 𝑋 = 𝑌 are two identical random variables, then the information in
the pair is exactly the information in one and we have 𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋) = 𝐻 (𝑌 ). On the
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other extreme, if 𝑋 and 𝑌 are independent then 𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 ). Indeed we will
always have that the information contained in a pair of random variables is no smaller than
the entropy of either random variable and no more than the sum of both.

𝐻 (𝑋), 𝐻 (𝑌 ) ≤ 𝐻 (𝑋,𝑌 ) ≤ 𝐻 (𝑋) + 𝐻 (𝑌 ). (A.12)

Let’s implement joint entropy from scratch.

def joint_entropy(p_xy):
joint_ent = -p_xy * np.log2(p_xy)
# Operator `nansum` will sum up the non-nan number
out = nansum(joint_ent.as_nd_ndarray())
return out

joint_entropy(np.array([[0.1, 0.5], [0.1, 0.3]]))

[1.6854753]
<NDArray 1 @cpu(0)>

Notice that this is the same code as before, but now we interpret it differently as working
on the joint distribution of the two random variables.

Conditional Entropy
The joint entropy defined above the amount of information contained in a pair of random
variables. This is useful, but oftentimes it is not what we care about. Consider the setting
of machine learning. Let’s take 𝑋 to be the random variable (or vector of random variables)
that describes the pixel values of an image, and 𝑌 to be the random variable which is the
class label. 𝑋 should contain substantial information—a natural image is a complex thing.
However, the information contained in 𝑌 once the image has been show should be low.
Indeed, the image of a digit should already contain the information about what digit it is
unless the digit is illegible. Thus, to continue to extend our vocabulary of information
theory, we need to be able to reason about the information content in a random variable
conditional on another.

In the probability theory, we saw the definition of the conditional probability to measure
the relationship between variables. We now want to analogously define the conditional
entropy 𝐻 (𝑌 | 𝑋). We can write this as

𝐻 (𝑌 | 𝑋) = −𝐸 (𝑥,𝑦)∼𝑃 [log 𝑝(𝑦 | 𝑥)], (A.13)

where 𝑝(𝑦 | 𝑥) = 𝑝𝑋,𝑌 (𝑥,𝑦)
𝑝𝑋 (𝑥 ) is the conditional probability. Specifically, if (𝑋,𝑌 ) is a pair of

discrete random variables, then

𝐻 (𝑌 | 𝑋) = −
∑
𝑥

∑
𝑦

𝑝(𝑥, 𝑦) log 𝑝(𝑦 | 𝑥). (A.14)

If (𝑋,𝑌 ) is a pair of continuous random variables, then the differential conditional entropy
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is similarly defined as

𝐻 (𝑌 | 𝑋) = −
∫
𝑥

∫
𝑦
𝑝(𝑥, 𝑦) log 𝑝(𝑦 | 𝑥) 𝑑𝑥 𝑑𝑦. (A.15)

It is now natural to ask, how does the conditional entropy 𝐻 (𝑌 | 𝑋) relate to the entropy
𝐻 (𝑋) and the joint entropy 𝐻 (𝑋,𝑌 )? Using the definitions above, we can express this
cleanly:

𝐻 (𝑌 | 𝑋) = 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑋). (A.16)

This has an intuitive interpretation: the information in 𝑌 given 𝑋 (𝐻 (𝑌 | 𝑋)) is the same
as the information in both 𝑋 and 𝑌 together (𝐻 (𝑋,𝑌 )) minus the information already con-
tained in 𝑋 . This gives us the information in 𝑌 which is not also represented in 𝑋 .

Now, let’s implement conditional entropy (A.13) from scratch.

def conditional_entropy(p_xy, p_x):
p_y_given_x = p_xy/p_x
cond_ent = -p_xy * np.log2(p_y_given_x)
# Operator `nansum` will sum up the non-nan number
out = nansum(cond_ent.as_nd_ndarray())
return out

conditional_entropy(np.array([[0.1, 0.5], [0.2, 0.3]]), np.array([0.2, 0.8]))

[0.8635472]
<NDArray 1 @cpu(0)>

Mutual Information
Given the previous setting of random variables (𝑋,𝑌 ), you may wonder: “Now that we
know howmuch information is contained in𝑌 but not in 𝑋 , can we similarly ask how much
information is shared between 𝑋 and 𝑌?” The answer will be the mutual information of
(𝑋,𝑌 ), which we will write as 𝐼 (𝑋,𝑌 ).

Rather than diving straight into the formal definition, let’s practice our intuition by first
trying to derive an expression for the mutual information entirely based on terms we have
constructed before. We wish to find the information shared between two random variables.
One way we could try to do this is to start with all the information contained in both 𝑋 and
𝑌 together, and then we take off the parts that are not shared. The information contained in
both 𝑋 and𝑌 together is written as 𝐻 (𝑋,𝑌 ). We want to subtract from this the information
contained in 𝑋 but not in 𝑌 , and the information contained in 𝑌 but not in 𝑋 . As we saw in
the previous section, this is given by 𝐻 (𝑋 | 𝑌 ) and 𝐻 (𝑌 | 𝑋) respectively. Thus, we have
that the mutual information should be

𝐼 (𝑋,𝑌 ) = 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑌 | 𝑋) − 𝐻 (𝑋 | 𝑌 ). (A.17)

Indeed, this is a valid definition for the mutual information. If we expand out the definitions
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of these terms and combine them, a little algebra shows that this is the same as

𝐼 (𝑋,𝑌 ) = 𝐸𝑥𝐸𝑦
{
𝑝𝑋,𝑌 (𝑥, 𝑦) log

𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

}
. (A.18)

We can summarize all of these relationships in image Fig. A.1. It is an excellent test of
intuition to see why the following statements are all also equivalent to 𝐼 (𝑋,𝑌 ).

• 𝐻 (𝑋) − 𝐻 (𝑋 | 𝑌 )

• 𝐻 (𝑌 ) − 𝐻 (𝑌 | 𝑋)

• 𝐻 (𝑋) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 )

tFig. A.1 Mutual information’s relationship with joint entropy and conditional entropy.

In many ways we can think of the mutual information (A.18) as principled extension of
correlation coefficient we saw in Section A.6. This allows us to ask not only for linear
relationships between variables, but for the maximum information shared between the two
random variables of any kind.

Now, let’s implement mutual information from scratch.

def mutual_information(p_xy, p_x, p_y):
p = p_xy / (p_x * p_y)
mutual = p_xy * np.log2(p)
# Operator `nansum` will sum up the non-nan number
out = nansum(mutual.as_nd_ndarray())
return out

mutual_information(np.array([[0.1, 0.5], [0.1, 0.3]]),
np.array([0.2, 0.8]), np.array([[0.75, 0.25]]))

[0.7194603]
<NDArray 1 @cpu(0)>

Properties of Mutual Information
Rather than memorizing the definition of mutual information (A.18), you only need to keep
in mind its notable properties:

• Mutual information is symmetric, i.e., 𝐼 (𝑋,𝑌 ) = 𝐼 (𝑌, 𝑋).
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• Mutual information is non-negative, i.e., 𝐼 (𝑋,𝑌 ) ≥ 0.

• 𝐼 (𝑋,𝑌 ) = 0 if and only if 𝑋 and 𝑌 are independent. For example, if 𝑋 and 𝑌 are in-
dependent, then knowing 𝑌 does not give any information about 𝑋 and vice versa, so
their mutual information is zero.

• Alternatively, if 𝑋 is an invertible function of 𝑌 , then 𝑌 and 𝑋 share all information and

𝐼 (𝑋,𝑌 ) = 𝐻 (𝑌 ) = 𝐻 (𝑋). (A.19)

Pointwise Mutual Information
When we worked with entropy at the beginning of this chapter, we were able to provide an
interpretation of − log(𝑝𝑋 (𝑥)) as how surprised we were with the particular outcome. We
may give a similar interpretation to the logarithmic term in the mutual information, which
is often referred to as the pointwise mutual information:

pmi(𝑥, 𝑦) = log
𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

. (A.20)

We can think of (A.20) as measuring how much more or less likely the specific combina-
tion of outcomes 𝑥 and 𝑦 are compared to what we would expect for independent random
outcomes. If it is large and positive, then these two specific outcomes occur much more fre-
quently than theywould compared to random chance (note: the denominator is 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
which is the probability of the two outcomes were independent), whereas if it is large and
negative it represents the two outcomes happening far less than we would expect by random
chance.

This allows us to interpret the mutual information (A.18) as the average amount that we
were surprised to see two outcomes occurring together compared to what we would expect
if they were independent.

Applications of Mutual Information
Mutual information may be a little abstract in it pure definition, so how does it related to
machine learning? In natural language processing, one of the most difficult problems is the
ambiguity resolution, or the issue of the meaning of a word being unclear from context.
For example, recently a headline in the news reported that “Amazon is on fire”. You may
wonder whether the company Amazon has a building on fire, or the Amazon rain forest is
on fire.

In this case, mutual information can help us resolve this ambiguity. We first find the group
of words that each has a relatively large mutual information with the company Amazon,
such as e-commerce, technology, and online. Second, we find another group of words that
each has a relatively large mutual information with the Amazon rain forest, such as rain,
forest, and tropical. When we need to disambiguate “Amazon”, we can compare which
group has more occurrence in the context of the word Amazon. In this case the article
would go on to describe the forest, and make the context clear.
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A.11.4 Kullback–Leibler Divergence
As what we have discussed in Section 2.3, we can use norms to measure distance between
two points in space of any dimensionality. We would like to be able to do a similar task
with probability distributions. There are manyways to go about this, but information theory
provides one of the nicest. We now explore the Kullback–Leibler (KL) divergence, which
provides a way to measure if two distributions are close together or not.

Definition
Given a random variable 𝑋 that follows the probability distribution 𝑃 with a p.d.f. or a
p.m.f. 𝑝(𝑥), and we estimate 𝑃 by another probability distribution 𝑄 with a p.d.f. or a
p.m.f. 𝑞(𝑥). Then the Kullback–Leibler (KL) divergence (or relative entropy) between 𝑃
and 𝑄 is

𝐷KL (𝑃‖𝑄) = 𝐸𝑥∼𝑃
[
log

𝑝(𝑥)
𝑞(𝑥)

]
. (A.21)

Aswith the pointwise mutual information (A.20), we can again provide an interpretation of
the logarithmic term: − log 𝑞 (𝑥 )

𝑝 (𝑥 ) = − log(𝑞(𝑥)) − (− log(𝑝(𝑥))) will be large and positive
if we see 𝑥 far more often under 𝑃 than we would expect for 𝑄, and large and negative if
we see the outcome far less than expected. In this way, we can interpret it as our relative
surprise at observing the outcome compared to how surprised we would be observing it
from our reference distribution.

Let’s implement the KL divergence from Scratch.

def kl_divergence(p, q):
kl = p * np.log2(p / q)
out = nansum(kl.as_nd_ndarray())
return out.abs().asscalar()

KL Divergence Properties
Let’s take a look at some properties of the KL divergence (A.21).

• KL divergence is non-symmetric, i.e., there are 𝑃,𝑄 such that

𝐷KL (𝑃‖𝑄) ≠ 𝐷KL (𝑄‖𝑃). (A.22)

• KL divergence is non-negative, i.e.,

𝐷KL (𝑃‖𝑄) ≥ 0. (A.23)

Note that the equality holds only when 𝑃 = 𝑄.

• If there exists an 𝑥 such that 𝑝(𝑥) > 0 and 𝑞(𝑥) = 0, then 𝐷KL (𝑃‖𝑄) = ∞.

• There is a close relationship between KL divergence and mutual information. Besides
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the relationship shown in Fig. A.1, 𝐼 (𝑋,𝑌 ) is also numerically equivalent with the
following terms:

1. 𝐷KL (𝑃(𝑋,𝑌 ) ‖ 𝑃(𝑋)𝑃(𝑌 ));

2. 𝐸𝑌 {𝐷KL (𝑃(𝑋 | 𝑌 ) ‖ 𝑃(𝑋))};

3. 𝐸𝑋{𝐷KL (𝑃(𝑌 | 𝑋) ‖ 𝑃(𝑌 ))}.

For the first term, we interpret mutual information as the KL divergence between
𝑃(𝑋,𝑌 ) and the product of 𝑃(𝑋) and 𝑃(𝑌 ), and thus is a measure of how differ-
ent the joint distribution is from the distribution if they were independent. For the
second term, mutual information tells us the average reduction in uncertainty about 𝑌
that results from learning the value of the 𝑋’s distribution. Similarly to the third term.

Example
Let’s go through a toy example to see the non-symmetry explicitly.

First, let’s generate and sort three tensors of length 10, 000: an objective tensor 𝑝 which
follows a normal distribution 𝑁 (0, 1), and two candidate tensors 𝑞1 and 𝑞2 which follow
normal distributions 𝑁 (−1, 1) and 𝑁 (1, 1) respectively.

random.seed(1)

nd_len = 10000
p = np.random.normal(loc=0, scale=1, size=(nd_len, ))
q1 = np.random.normal(loc=-1, scale=1, size=(nd_len, ))
q2 = np.random.normal(loc=1, scale=1, size=(nd_len, ))

p = np.array(sorted(p.asnumpy()))
q1 = np.array(sorted(q1.asnumpy()))
q2 = np.array(sorted(q2.asnumpy()))

Since 𝑞1 and 𝑞2 are symmetric with respect to the y-axis (i.e., 𝑥 = 0), we expect a similar
value of KL divergence between 𝐷KL (𝑝‖𝑞1) and 𝐷KL (𝑝‖𝑞2). As you can see below, there
is only a less than 3% off between 𝐷KL (𝑝‖𝑞1) and 𝐷KL (𝑝‖𝑞2).

kl_pq1 = kl_divergence(p, q1)
kl_pq2 = kl_divergence(p, q2)
similar_percentage = abs(kl_pq1 - kl_pq2) / ((kl_pq1 + kl_pq2) / 2) * 100

kl_pq1, kl_pq2, similar_percentage

(8470.638, 8664.998, 2.268492904612395)

In contrast, you may find that 𝐷KL (𝑞2‖𝑝) and 𝐷KL (𝑝‖𝑞2) are off a lot, with around 40%
off as shown below.



995 Information Theory

kl_q2p = kl_divergence(q2, p)
differ_percentage = abs(kl_q2p - kl_pq2) / ((kl_q2p + kl_pq2) / 2) * 100

kl_q2p, differ_percentage

(13536.835, 43.88680093791528)

A.11.5 Cross-Entropy
If you are curious about applications of information theory in deep learning, here is a quick
example. We define the true distribution 𝑃 with probability distribution 𝑝(𝑥), and the
estimated distribution 𝑄 with probability distribution 𝑞(𝑥), and we will use them in the
rest of this section.

Say we need to solve a binary classification problem based on given 𝑛 data examples
{𝑥1, . . . , 𝑥𝑛}. Assume that we encode 1 and 0 as the positive and negative class label 𝑦𝑖
respectively, and our neural network is parametrized by 𝜃. If we aim to find a best 𝜃 so
that 𝑦̂𝑖 = 𝑝𝜃 (𝑦𝑖 | 𝑥𝑖), it is natural to apply the maximum log-likelihood approach as was
seen in Section A.7. To be specific, for true labels 𝑦𝑖 and predictions 𝑦̂𝑖 = 𝑝𝜃 (𝑦𝑖 | 𝑥𝑖), the
probability to be classified as positive is 𝜋𝑖 = 𝑝𝜃 (𝑦𝑖 = 1 | 𝑥𝑖). Hence, the log-likelihood
function would be

𝑙 (𝜃) = log 𝐿 (𝜃)

= log
𝑛∏
𝑖=1

𝜋
𝑦𝑖
𝑖 (1 − 𝜋𝑖)

1−𝑦𝑖

=
𝑛∑
𝑖=1

𝑦𝑖 log(𝜋𝑖) + (1 − 𝑦𝑖) log(1 − 𝜋𝑖).

(A.24)

Maximizing the log-likelihood function 𝑙 (𝜃) is identical to minimizing −𝑙 (𝜃), and hence
we can find the best 𝜃 from here. To generalize the above loss to any distributions, we also
called −𝑙 (𝜃) the cross-entropy loss CE(𝑦, 𝑦̂), where 𝑦 follows the true distribution 𝑃 and 𝑦̂
follows the estimated distribution 𝑄.

This was all derived by working from the maximum likelihood point of view. However, if
we look closely we can see that terms like log(𝜋𝑖) have entered into our computation which
is a solid indication that we can understand the expression from an information theoretic
point of view.

Formal Definition
Like KL divergence, for a random variable 𝑋 , we can also measure the divergence between
the estimating distribution 𝑄 and the true distribution 𝑃 via cross-entropy,

CE(𝑃,𝑄) = −𝐸𝑥∼𝑃 [log(𝑞(𝑥))] . (A.25)
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By using properties of entropy discussed above, we can also interpret it as the summation
of the entropy 𝐻 (𝑃) and the KL divergence between 𝑃 and 𝑄, i.e.,

CE(𝑃,𝑄) = 𝐻 (𝑃) + 𝐷KL (𝑃‖𝑄). (A.26)

We can implement the cross-entropy loss as below.

def cross_entropy(y_hat, y):
ce = -np.log(y_hat[range(len(y_hat)), y])
return ce.mean()

Now define two tensors for the labels and predictions, and calculate the cross-entropy loss
of them.

labels = np.array([0, 2])
preds = np.array([[0.3, 0.6, 0.1], [0.2, 0.3, 0.5]])

cross_entropy(preds, labels)

array(0.94856)

Properties
As alluded in the beginning of this section, cross-entropy (A.25) can be used to define a loss
function in the optimization problem. It turns out that the following are equivalent:

1. Maximizing predictive probability of 𝑄 for distribution 𝑃, (i.e., 𝐸𝑥∼𝑃 [log(𝑞(𝑥))]);

2. Minimizing cross-entropy CE(𝑃,𝑄);

3. Minimizing the KL divergence 𝐷KL (𝑃‖𝑄).

The definition of cross-entropy indirectly proves the equivalent relationship between ob-
jective 2 and objective 3, as long as the entropy of true data 𝐻 (𝑃) is constant.

Cross-Entropy as An Objective Function of Multi-class Classification
If we dive deep into the classification objective function with cross-entropy loss CE, we
will find minimizing CE is equivalent to maximizing the log-likelihood function 𝐿.

To begin with, suppose that we are given a dataset with 𝑛 examples, and it can be classified
into 𝑘-classes. For each data example 𝑖, we represent any 𝑘-class label y𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑘)
by one-hot encoding. To be specific, if the example 𝑖 belongs to class 𝑗 , then we set the
𝑗-th entry to 1, and all other components to 0, i.e.,

𝑦𝑖 𝑗 =

{
1 𝑗 ∈ 𝐽;
0 otherwise.

(A.27)
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For instance, if a multi-class classification problem contains three classes 𝐴, 𝐵, and𝐶, then
the labels y𝑖 can be encoded in {𝐴 : (1, 0, 0); 𝐵 : (0, 1, 0);𝐶 : (0, 0, 1)}.

Assume that our neural network is parametrized by 𝜃. For true label vectors y𝑖 and predic-
tions

ŷ𝑖 = 𝑝𝜃 (y𝑖 | x𝑖) =
𝑘∑
𝑗=1

𝑦𝑖 𝑗 𝑝𝜃 (𝑦𝑖 𝑗 | x𝑖). (A.28)

Hence, the cross-entropy loss would be

CE(y, ŷ) = −
𝑛∑
𝑖=1

y𝑖 log ŷ𝑖 = −
𝑛∑
𝑖=1

𝑘∑
𝑗=1

𝑦𝑖 𝑗 log 𝑝𝜃 (𝑦𝑖 𝑗 | x𝑖). (A.29)

On the other side, we can also approach the problem through maximum likelihood es-
timation. To begin with, let’s quickly introduce a 𝑘-class multinoulli distribution. It is
an extension of the Bernoulli distribution from binary class to multi-class. If a random
variable z = (𝑧1, . . . , 𝑧𝑘) follows a 𝑘-class multinoulli distribution with probabilities p =
(𝑝1, . . . , 𝑝𝑘), i.e.,

𝑝(z) = 𝑝(𝑧1, . . . , 𝑧𝑘) = Multi(𝑝1, . . . , 𝑝𝑘), where
𝑘∑
𝑖=1

𝑝𝑖 = 1, (A.30)

then the joint probability mass function(p.m.f.) of z is

pz =
𝑘∏
𝑗=1

𝑝
𝑧 𝑗
𝑗 . (A.31)

It can be seen that the label of each data example, y𝑖 , is following a 𝑘-class multinoulli
distribution with probabilities 𝝅 = (𝜋1, . . . , 𝜋𝑘). Therefore, the joint p.m.f. of each data
example y𝑖 is ßy𝑖 =

∏𝑘
𝑗=1 𝜋

𝑦𝑖 𝑗
𝑗 . Hence, the log-likelihood function would be

𝑙 (𝜃) = log 𝐿 (𝜃) = log
𝑛∏
𝑖=1

𝝅y𝑖 = log
𝑛∏
𝑖=1

𝑘∏
𝑗=1

𝜋
𝑦𝑖 𝑗
𝑗 =

𝑛∑
𝑖=1

𝑘∑
𝑗=1

𝑦𝑖 𝑗 log 𝜋 𝑗 . (A.32)

Since in maximum likelihood estimation, we maximizing the objective function 𝑙 (𝜃) by
having 𝜋 𝑗 = 𝑝𝜃 (𝑦𝑖 𝑗 | x𝑖). Therefore, for any multi-class classification, maximizing the
above log-likelihood function 𝑙 (𝜃) is equivalent tominimizing the CE loss CE(𝑦, 𝑦̂).

To test the above proof, let’s apply the built-in measure NegativeLogLikelihood. Using
the same labels and preds as in the earlier example, we will get the same numerical loss
as the previous example up to the 5 decimal place.

nll_loss = NegativeLogLikelihood()
nll_loss.update(labels.as_nd_ndarray(), preds.as_nd_ndarray())
nll_loss.get()

('nll-loss', 0.9485599994659424)



998 Mathematics for Deep Learning

286

A.11.6 Summary
• Information theory is a field of study about encoding, decoding, transmitting, and ma-

nipulating information.

• Entropy is the unit to measure how much information is presented in different signals.

• KL divergence can also measure the divergence between two distributions.

• Cross-entropy can be viewed as an objective function of multi-class classification. Min-
imizing cross-entropy loss is equivalent to maximizing the log-likelihood function.

A.11.7 Exercises
1. Verify that the card examples from the first section indeed have the claimed entropy.

2. Show that the KL divergence 𝐷 (𝑝‖𝑞) is nonnegative for all distributions 𝑝 and 𝑞. Hint:
use Jensen’s inequality, i.e., use the fact that − log 𝑥 is a convex function.

3. Let’s compute the entropy from a few data sources:

• Assume that you are watching the output generated by a monkey at a typewriter. The
monkey presses any of the 44 keys of the typewriter at random (you can assume
that it has not discovered any special keys or the shift key yet). How many bits of
randomness per character do you observe?

• Being unhappy with the monkey, you replaced it by a drunk typesetter. It is able
to generate words, albeit not coherently. Instead, it picks a random word out of
a vocabulary of 2, 000 words. Let’s assume that the average length of a word is
4.5 letters in English. How many bits of randomness per character do you observe
now?

• Still being unhappy with the result, you replace the typesetter by a high quality lan-
guage model. The language model can currently obtain a perplexity as low as 15
points per word. The character perplexity of a language model is defined as the
inverse of the geometric mean of a set of probabilities, each probability is corre-
sponding to a character in the word. To be specific, if the length of a given word is
𝑙, then PPL(word) = [∏𝑖 𝑝(character𝑖)]−

1
𝑙 = exp

[
− 1
𝑙

∑
𝑖 log 𝑝(character𝑖)

]
. As-

sume that the test word has 4.5 letters, how many bits of randomness per character
do you observe now?

4. Explain intuitively why 𝐼 (𝑋,𝑌 ) = 𝐻 (𝑋) − 𝐻 (𝑋 | 𝑌 ). Then, show this is true by
expressing both sides as an expectation with respect to the joint distribution.

5. What is the KL Divergence between the two Gaussian distributions N(𝜇1, 𝜎
2
1 ) and

N(𝜇2, 𝜎
2
2 )?

Discussions286 .
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B Tools for Deep Learning

To get the most out of Dive into Deep Learning, we will talk you through different tools in
this appendix, such as for running and contributing to this interactive open-source book.

B.1 Using Jupyter Notebooks

This section describes how to edit and run the code in each section of this book using
the Jupyter Notebook. Make sure you have installed Jupyter and downloaded the code as
described in Installation (page xxxiii). If you want to know more about Jupyter see the
excellent tutorial in their documentation287 .

B.1.1 Editing and Running the Code Locally
Suppose that the local path of the book’s code is xx/yy/d2l-en/. Use the shell to change
the directory to this path (cd xx/yy/d2l-en) and run the command jupyter notebook.
If your browser does not do this automatically, open http://localhost:8888 and you will see
the interface of Jupyter and all the folders containing the code of the book, as shown in Fig.
B.1.

tFig. B.1 The folders containing the code of this book.

You can access the notebook files by clicking on the folder displayed on the webpage. They
usually have the suffix “.ipynb”. For the sake of brevity, we create a temporary “test.ipynb”
file. The content displayed after you click it is shown in Fig. B.2. This notebook includes a

999

https://jupyter.readthedocs.io/en/latest/
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markdown cell and a code cell. The content in the markdown cell includes “This Is a Title”
and “This is text.”. The code cell contains two lines of Python code.

tFig. B.2 Markdown and code cells in the “text.ipynb” file.

Double click on the markdown cell to enter edit mode. Add a new text string “Hello world.”
at the end of the cell, as shown in Fig. B.3.

tFig. B.3 Edit the markdown cell.

As demonstrated in Fig. B.4, click “Cell”→ “Run Cells” in the menu bar to run the edited
cell.

After running, the markdown cell is shown in Fig. B.5.

Next, click on the code cell. Multiply the elements by 2 after the last line of code, as shown
in Fig. B.6.

You can also run the cell with a shortcut (“Ctrl + Enter” by default) and obtain the output
result from Fig. B.7.

When a notebook contains more cells, we can click “Kernel”→ “Restart & Run All” in the
menu bar to run all the cells in the entire notebook. By clicking “Help”→ “Edit Keyboard
Shortcuts” in the menu bar, you can edit the shortcuts according to your preferences.
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tFig. B.4 Run the cell.

tFig. B.5 The markdown cell after running.

tFig. B.6 Edit the code cell.
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tFig. B.7 Run the code cell to obtain the output.

B.1.2 Advanced Options
Beyond local editing two things are quite important: editing the notebooks in themarkdown
format and running Jupyter remotely. The latter matters when we want to run the code on a
faster server. The former matters since Jupyter’s native ipynb format stores a lot of auxiliary
data that is irrelevant to the content, mostly related to how and where the code is run. This
is confusing for Git, making reviewing contributions very difficult. Fortunately there is an
alternative—native editing in the markdown format.

Markdown Files in Jupyter
If you wish to contribute to the content of this book, you need to modify the source file (md
file, not ipynb file) on GitHub. Using the notedown plugin we can modify notebooks in the
md format directly in Jupyter.

First, install the notedown plugin, run the Jupyter Notebook, and load the plugin:

pip install d2l-notedown # You may need to uninstall the original notedown.
jupyter notebook --NotebookApp.contents_manager_class='notedown.
↩→NotedownContentsManager'

You may also turn on the notedown plugin by default whenever you run the Jupyter Note-
book. First, generate a Jupyter Notebook configuration file (if it has already been generated,
you can skip this step).

jupyter notebook --generate-config

Then, add the following line to the end of the Jupyter Notebook configuration file (for Linux
or macOS, usually in the path ~/.jupyter/jupyter_notebook_config.py):
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c.NotebookApp.contents_manager_class = 'notedown.NotedownContentsManager'

After that, you only need to run the jupyter notebook command to turn on the notedown
plugin by default.

Running Jupyter Notebooks on a Remote Server
Sometimes, youmaywant to run Jupyter notebooks on a remote server and access it through
a browser on your local computer. If Linux or macOS is installed on your local machine
(Windows can also support this function through third-party software such as PuTTY), you
can use port forwarding:

ssh myserver -L 8888:localhost:8888

The above string myserver is the address of the remote server. Then we can use http:
//localhost:8888 to access the remote server myserver that runs Jupyter notebooks. We
will detail on how to run Jupyter notebooks on AWS instances later in this appendix.

Timing
We can use the ExecuteTime plugin to time the execution of each code cell in Jupyter
notebooks. Use the following commands to install the plugin:

pip install jupyter_contrib_nbextensions
jupyter contrib nbextension install --user
jupyter nbextension enable execute_time/ExecuteTime

B.1.3 Summary
• Using the Jupyter Notebook tool, we can edit, run, and contribute to each section of the

book.

• We can run Jupyter notebooks on remote servers using port forwarding.

B.1.4 Exercises
1. Edit and run the code in this book with the Jupyter Notebook on your local machine.

2. Edit and run the code in this book with the Jupyter Notebook remotely via port forward-
ing.

3. Compare the running time of the operations A>B and AB for two square matrices in
R1024×1024. Which one is faster?

Discussions288 .

http://localhost:8888
http://localhost:8888
https://discuss.d2l.ai/t/421
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B.2 Using Amazon SageMaker

Deep learning applications may demand so much computational resource that easily goes
beyond what your local machine can offer. Cloud computing services allow you to run
GPU-intensive code of this book more easily using more powerful computers. This section
will introduce how to use Amazon SageMaker to run the code of this book.

B.2.1 Signing Up
First, we need to sign up an account at https://aws.amazon.com/. For additional security,
using two-factor authentication is encouraged. It is also a good idea to set up detailed billing
and spending alerts to avoid any surprise, e.g., when forgetting to stop running instances.
After logging into your AWS account, go to your console 289 and search for “Amazon
SageMaker” (see Fig. B.1), then click it to open the SageMaker panel.

tFig. B.1 Search for and open the SageMaker panel.

B.2.2 Creating a SageMaker Instance
Next, let’s create a notebook instance as described in Fig. B.2.

tFig. B.2 Create a SageMaker instance.

https://aws.amazon.com/
http://console.aws.amazon.com/
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SageMaker provides multiple instance types 290 with varying computational power and
prices. When creating a notebook instance, we can specify its name and type. In Fig. B.3,
we choose ml.p3.2xlarge: with one Tesla V100 GPU and an 8-core CPU, this instance is
powerful enough for most of the book.

tFig. B.3 Choose the instance type.

The entire book in the ipynb format for running with SageMaker is available at https://
github.com/d2l-ai/d2l-en-sagemaker. We can specify this GitHub repository URL (Fig.
B.4) to allow SageMaker to clone it when creating the instance.

tFig. B.4 Specify the GitHub repository.

B.2.3 Running and Stopping an Instance
Creating an instance may take a few minutes. When it is ready, click on the “Open Jupyter”
link next to it (Fig. B.5) so you can edit and run all the Jupyter notebooks of this book on
this instance (similar to steps in Section B.1).

tFig. B.5 Open Jupyter on the created SageMaker instance.

After finishing your work, do not forget to stop the instance to avoid being charged further
(Fig. B.6).

https://aws.amazon.com/sagemaker/pricing/instance-types/
https://github.com/d2l-ai/d2l-en-sagemaker
https://github.com/d2l-ai/d2l-en-sagemaker
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tFig. B.6 Stop a SageMaker instance.

291

B.2.4 Updating Notebooks
Notebooks of this open-source bookwill be regularly updated in the d2l-ai/d2l-en-sagemaker
291 repository on GitHub. To update to the latest version, you may open a terminal on the
SageMaker instance (Fig. B.7).

tFig. B.7 Open a terminal on the SageMaker instance.

You may wish to commit your local changes before pulling updates from the remote repos-
itory. Otherwise, simply discard all your local changes with the following commands in
the terminal:

cd SageMaker/d2l-en-sagemaker/
git reset --hard
git pull

B.2.5 Summary
• We can create a notebook instance using Amazon SageMaker to run GPU-intensive code

of this book.

• We can update notebooks via the terminal on the Amazon SageMaker instance.

B.2.6 Exercises
1. Edit and run any section that requires a GPU using Amazon SageMaker.

https://github.com/d2l-ai/d2l-en-sagemaker
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2. Open a terminal to access the local directory that hosts all the notebooks of this book.

Discussions292 .

B.3 Using AWS EC2 Instances

In this section, we will show you how to install all libraries on a raw Linux machine. Recall
that in Section B.2 we discussed how to use Amazon SageMaker, while building an instance
by yourself costs less on AWS. The walkthrough includes three steps:

1. Request for a GPU Linux instance from AWS EC2.

2. Install CUDA (or use an Amazon Machine Image with preinstalled CUDA).

3. Install the deep learning framework and other libraries for running the code of the book.

This process applies to other instances (and other clouds), too, albeit with some minor
modifications. Before going forward, you need to create an AWS account, see Section B.2
for more details.

B.3.1 Creating and Running an EC2 Instance
After logging into your AWS account, click “EC2” (Fig. B.1) to go to the EC2 panel.

tFig. B.1 Open the EC2 console.

Fig. B.2 shows the EC2 panel.

Presetting Location
Select a nearby data center to reduce latency, e.g., “Oregon” (marked by the red box in the
top-right of Fig. B.2). If you are located in China, you can select a nearby Asia Pacific

https://discuss.d2l.ai/t/422
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tFig. B.2 The EC2 panel.

region, such as Seoul or Tokyo. Please note that some data centers may not have GPU
instances.

Increasing Limits
Before choosing an instance, check if there are quantity restrictions by clicking the “Lim-
its” label in the bar on the left as shown in Fig. B.2. Fig. B.3 shows an example of such
a limitation. The account currently cannot open “p2.xlarge” instances according to the re-
gion. If you need to open one or more instances, click on the “Request limit increase” link
to apply for a higher instance quota. Generally, it takes one business day to process an
application.

tFig. B.3 Instance quantity restrictions.

Launching an Instance
Next, click the “Launch Instance” button marked by the red box in Fig. B.2 to launch your
instance.

We begin by selecting a suitable AmazonMachine Image (AMI). Select an Ubuntu instance
(Fig. B.4).

EC2 provides many different instance configurations to choose from. This can sometimes
feel overwhelming to a beginner. tab_ec2 lists different suitable machines.

:Different EC2 instance types



1009 Using AWS EC2 Instances

tFig. B.4 Choose an AMI.
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Table B.1: label:tab_ec2
Name GPU Notes
g2 Grid K520 ancient
p2 Kepler K80 old but often cheap as spot
g3 Maxwell M60 good trade-off
p3 Volta V100 high performance for FP16
p4 Ampere A100 high performance for large-scale training
g4 Turing T4 inference optimized FP16/INT8

All these servers come in multiple flavors indicating the number of GPUs used. For exam-
ple, a p2.xlarge has 1 GPU and a p2.16xlarge has 16 GPUs and more memory. For more
details, see the AWS EC2 documentation 293 or a summary page 294 . For the purpose of
illustration, a p2.xlarge will suffice (marked in the red box of Fig. B.5).

tFig. B.5 Choose an instance.

https://aws.amazon.com/ec2/instance-types/
https://www.ec2instances.info
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Note that you should use a GPU-enabled instance with suitable drivers and a GPU-enabled
deep learning framework. Otherwise you will not see any benefit from using GPUs.

We go on to select the key pair used to access the instance. If you do not have a key pair,
click “Create new key pair” in Fig. B.6 to generate a key pair. Subsequently, you can select
the previously generated key pair. Make sure that you download the key pair and store
it in a safe location if you generated a new one. This is your only way to SSH into the
server.

tFig. B.6 Select a key pair.

In this example, we will keep the default configurations for “Network settings” (click the
“Edit” button to configure items such as the subnet and security groups). We just increase
the default hard disk size to 64 GB (Fig. B.7). Note that CUDA by itself already takes up
4 GB.

tFig. B.7 Modify the hard disk size.

Click “Launch Instance” to launch the created instance. Click the instance ID shown in Fig.
B.8 to view the status of this instance.

Connecting to the Instance
As shown in Fig. B.9, after the instance state turns green, right-click the instance and select
Connect to view the instance access method.

If this is a new key, it must not be publicly viewable for SSH to work. Go to the folder where
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tFig. B.8 Click the instance ID.

tFig. B.9 View the instance access method.

you store D2L_key.pem and execute the following command to make the key not publicly
viewable:

chmod 400 D2L_key.pem

tFig. B.10 View instance access and startup method.

Now, copy the SSH command in the lower red box of Fig. B.10 and paste onto the command
line:
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ssh -i "D2L_key.pem" ubuntu@ec2-xx-xxx-xxx-xxx.y.compute.amazonaws.com

When the command line prompts “Are you sure you want to continue connecting (yes/no)”,
enter “yes” and press Enter to log into the instance.

Your server is ready now.

B.3.2 Installing CUDA
Before installing CUDA, be sure to update the instance with the latest drivers.

sudo apt-get update && sudo apt-get install -y build-essential git libgfortran3

Here we download CUDA 12.1. Visit NVIDIA’s official repository295 to find the download
link as shown in Fig. B.11.

tFig. B.11 Find the CUDA 12.1 download address.

Copy the instructions and paste them onto the terminal to install CUDA 12.1.

# The link and file name are subject to changes
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_
↩→64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_
↩→installers/cuda-repo-ubuntu2204-12-1-local_12.1.0-530.30.02-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204-12-1-local_12.1.0-530.30.02-1_amd64.deb

(continues on next page)

https://developer.nvidia.com/cuda-toolkit-archive
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sudo cp /var/cuda-repo-ubuntu2204-12-1-local/cuda-*-keyring.gpg /usr/share/
↩→keyrings/
sudo apt-get update
sudo apt-get -y install cuda

After installing the program, run the following command to view the GPUs:

nvidia-smi

Finally, add CUDA to the library path to help other libraries find it, such as appending the
following lines to the end of ~/.bashrc.

export PATH="/usr/local/cuda-12.1/bin:$PATH"
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda-12.1/lib64

B.3.3 Installing Libraries for Running the Code
To run the code of this book, just follow steps in Installation (page xxxiii) for Linux users on
the EC2 instance and use the following tips for working on a remote Linux server:

• To download the bash script on the Miniconda installation page, right click the download
link and select “Copy Link Address”, then execute wget [copied link address].

• After running ~/miniconda3/bin/conda init, you may execute source ~/.bashrc

instead of closing and reopening your current shell.

B.3.4 Running the Jupyter Notebook remotely
To run the Jupyter Notebook remotely you need to use SSH port forwarding. After all, the
server in the cloud does not have a monitor or keyboard. For this, log into your server from
your desktop (or laptop) as follows:

# This command must be run in the local command line
ssh -i "/path/to/key.pem" ubuntu@ec2-xx-xxx-xxx-xxx.y.compute.amazonaws.com -L␣
↩→8889:localhost:8888

Next, go to the location of the downloaded code of this book on the EC2 instance, then
run:

conda activate d2l
jupyter notebook

Fig. B.12 shows the possible output after you run the Jupyter Notebook. The last row is the
URL for port 8888.

Since you used port forwarding to port 8889, copy the last row in the red box of Fig. B.12,
replace “8888” with “8889” in the URL, and open it in your local browser.
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tFig. B.12 Output after running the Jupyter Notebook. The last row is the URL for port 8888.
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B.3.5 Closing Unused Instances
As cloud services are billed by the time of use, you should close instances that are not being
used. Note that there are alternatives:

• “Stopping” an instance means that you will be able to start it again. This is akin to
switching off the power for your regular server. However, stopped instances will still
be billed a small amount for the hard disk space retained.

• “Terminating” an instance will delete all data associated with it. This includes the disk,
hence you cannot start it again. Only do this if you know that you will not need it in
the future.

If you want to use the instance as a template for many more instances, right-click on the
example in Fig. B.9 and select “Image”→ “Create” to create an image of the instance. Once
this is complete, select “Instance State”→ “Terminate” to terminate the instance. The next
time you want to use this instance, you can follow the steps in this section to create an
instance based on the saved image. The only difference is that, in “1. Choose AMI” shown
in Fig. B.4, you must use the “My AMIs” option on the left to select your saved image. The
created instance will retain the information stored on the image hard disk. For example,
you will not have to reinstall CUDA and other runtime environments.

B.3.6 Summary
• We can launch and stop instances on demand without having to buy and build our own

computer.

• We need to install CUDA before using the GPU-enabled deep learning framework.

• We can use port forwarding to run the Jupyter Notebook on a remote server.

B.3.7 Exercises
1. The cloud offers convenience, but it does not come cheap. Find out how to launch spot

instances296 to see how to reduce costs.

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
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2. Experiment with different GPU servers. How fast are they?

3. Experiment with multi-GPU servers. How well can you scale things up?

Discussions297 .

B.4 Using Google Colab

We introduced how to run this book on AWS in Section B.2 and Section B.3. Another
option is running this book on Google Colab298 if you have a Google account.

To run the code of a section on Colab, simply click the Colab button as shown in Fig.
B.1.

tFig. B.1 Run the code of a section on Colab

If it is your first time to run a code cell, you will receive a warning message as shown in
Fig. B.2. Just click “RUN ANYWAY” to ignore it.

tFig. B.2 Ignore the warning message by clicking “RUN ANYWAY”.

Next, Colab will connect you to an instance to run the code of this section. Specifically,
if a GPU is needed, Colab will be automatically requested for connecting to a GPU in-
stance.

B.4.1 Summary
• You can use Google Colab to run each section’s code in this book.

• Colab will be requested to connect to a GPU instance if a GPU is needed in any section
of this book.

https://discuss.d2l.ai/t/423
https://colab.research.google.com/
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B.4.2 Exercises
1. Open any section of this book using Google Colab.

2. Edit and run any section that requires a GPU using Google Colab.

Discussions299 .

B.5 Selecting Servers and GPUs

Deep learning training generally requires large amounts of computation. At present GPUs
are the most cost-effective hardware accelerators for deep learning. In particular, compared
with CPUs, GPUs are cheaper and offer higher performance, often by over an order of
magnitude. Furthermore, a single server can support multiple GPUs, up to 8 for high end
servers. More typical numbers are up to 4 GPUs for an engineering workstation, since
heat, cooling, and power requirements escalate quickly beyond what an office building can
support. For larger deployments, cloud computing (e.g., Amazon’s P3 300 and G4 301

instances) is a much more practical solution.

B.5.1 Selecting Servers
There is typically no need to purchase high-end CPUs with many threads since much of
the computation occurs on the GPUs. That said, due to the global interpreter lock (GIL)
in Python single-thread performance of a CPU can matter in situations where we have 4–8
GPUs. All things equal this suggests that CPUs with a smaller number of cores but a higher
clock frequency might be a more economical choice. For example, when choosing between
a 6-core 4 GHz and an 8-core 3.5 GHz CPU, the former is much preferable, even though
its aggregate speed is less. An important consideration is that GPUs use lots of power and
thus dissipate lots of heat. This requires very good cooling and a large enough chassis to
use the GPUs. Follow the guidelines below if possible:

1. Power Supply. GPUs use significant amounts of power. Budget with up to 350W per
device (check for the peak demand of the graphics card rather than typical demand, since
efficient code can use lots of energy). If your power supply is not up to the demand you
will find that your system becomes unstable.

2. Chassis Size. GPUs are large and the auxiliary power connectors often need extra space.
Also, large chassis are easier to cool.

3. GPU Cooling. If you have a large number of GPUs you might want to invest in water
cooling. Also, aim for reference designs even if they have fewer fans, since they are
thin enough to allow for air intake between the devices. If you buy a multi-fan GPU it
might be too thick to get enough air when installing multiple GPUs and you will run
into thermal throttling.

https://discuss.d2l.ai/t/424
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/blogs/aws/in-the-works-ec2-instances-g4-with-nvidia-t4-gpus/
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4. PCIe Slots. Moving data to and from the GPU (and exchanging it between GPUs)
requires lots of bandwidth. We recommend PCIe 3.0 slots with 16 lanes. If you mount
multiple GPUs, be sure to carefully read the motherboard description to ensure that 16×
bandwidth is still available when multiple GPUs are used at the same time and that you
are getting PCIe 3.0 as opposed to PCIe 2.0 for the additional slots. Some motherboards
downgrade to 8× or even 4× bandwidth with multiple GPUs installed. This is partly due
to the number of PCIe lanes that the CPU offers.

In short, here are some recommendations for building a deep learning server:

• Beginner. Buy a low end GPU with low power consumption (cheap gaming GPUs suit-
able for deep learning use 150–200W). If you are lucky your current computer supports
it.

• 1 GPU. A low-end CPU with 4 cores will be sufficient and most motherboards suffice.
Aim for at least 32 GB DRAM and invest into an SSD for local data access. A power
supply with 600W should be sufficient. Buy a GPU with lots of fans.

• 2 GPUs. A low-end CPU with 4-6 cores will suffice. Aim for 64 GB DRAM and invest
into an SSD. You will need in the order of 1000W for two high-end GPUs. In terms
of mainboards, make sure that they have two PCIe 3.0 x16 slots. If you can, get a
mainboard that has two free spaces (60mm spacing) between the PCIe 3.0 x16 slots
for extra air. In this case, buy two GPUs with lots of fans.

• 4GPUs. Make sure that you buy a CPUwith relatively fast single-thread speed (i.e., high
clock frequency). You will probably need a CPU with a larger number of PCIe lanes,
such as an AMD Threadripper. You will likely need relatively expensive mainboards
to get 4 PCIe 3.0 x16 slots since they probably need a PLX to multiplex the PCIe lanes.
Buy GPUs with reference design that are narrow and let air in between the GPUs. You
need a 1600–2000W power supply and the outlet in your office might not support that.
This server will probably run loud and hot. You do not want it under your desk. 128
GB of DRAM is recommended. Get an SSD (1–2 TB NVMe) for local storage and a
bunch of hard disks in RAID configuration to store your data.

• 8 GPUs. You need to buy a dedicated multi-GPU server chassis with multiple redundant
power supplies (e.g., 2+1 for 1600W per power supply). This will require dual socket
server CPUs, 256 GB ECC DRAM, a fast network card (10 GBE recommended),
and you will need to check whether the servers support the physical form factor of
the GPUs. Airflow and wiring placement differ significantly between consumer and
server GPUs (e.g., RTX 2080 vs. Tesla V100). This means that you might not be able
to install the consumer GPU in a server due to insufficient clearance for the power cable
or lack of a suitable wiring harness (as one of the coauthors painfully discovered).

B.5.2 Selecting GPUs
At present, AMDandNVIDIA are the twomainmanufacturers of dedicatedGPUs. NVIDIA
was the first to enter the deep learning field and provides better support for deep learning
frameworks via CUDA. Therefore, most buyers choose NVIDIA GPUs.
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NVIDIA provides two types of GPUs, targeting individual users (e.g., via the GTX and
RTX series) and enterprise users (via its Tesla series). The two types of GPUs provide
comparable compute power. However, the enterprise user GPUs generally use (passive)
forced cooling, more memory, and ECC (error correcting) memory. These GPUs are more
suitable for data centers and usually cost ten times more than consumer GPUs.

If you are a large company with 100+ servers you should consider the NVIDIA Tesla series
or alternatively use GPU servers in the cloud. For a lab or a small to medium company with
10+ servers the NVIDIA RTX series is likely most cost effective. You can buy preconfig-
ured servers with Supermicro or Asus chassis that hold 4–8 GPUs efficiently.

GPU vendors typically release a new generation every one to two years, such as the GTX
1000 (Pascal) series released in 2017 and the RTX 2000 (Turing) series released in 2019.
Each series offers several different models that provide different performance levels. GPU
performance is primarily a combination of the following three parameters:

1. Compute Power. Generally we look for 32-bit floating-point compute power. 16-bit
floating point training (FP16) is also entering the mainstream. If you are only interested
in prediction, you can also use 8-bit integer. The latest generation of Turing GPUs offers
4-bit acceleration. Unfortunately at the time of writing the algorithms for training low-
precision networks are not yet widespread.

2. Memory Size. As your models become larger or the batches used during training grow
bigger, you will need more GPUmemory. Check for HBM2 (High BandwidthMemory)
vs. GDDR6 (Graphics DDR) memory. HBM2 is faster but much more expensive.

3. Memory Bandwidth. You can only get the most out of your compute power when you
have sufficient memory bandwidth. Look for wide memory buses if using GDDR6.

For most users, it is enough to look at compute power. Note that many GPUs offer different
types of acceleration. For example, NVIDIA’s TensorCores accelerate a subset of opera-
tors by 5×. Ensure that your libraries support this. The GPU memory should be no less
than 4 GB (8 GB is much better). Try to avoid using the GPU also for displaying a GUI
(use the built-in graphics instead). If you cannot avoid it, add an extra 2 GB of RAM for
safety.

Fig. B.1 compares the 32-bit floating-point compute power and price of the various GTX
900, GTX 1000 and RTX 2000 series models. The prices suggested are those found on
Wikipedia at the time of writing.

We can see a number of things:

1. Within each series, price and performance are roughly proportional. Titan models com-
mand a significant premium for the benefit of larger amounts of GPU memory. How-
ever, the newer models offer better cost effectiveness, as can be seen by comparing the
980 Ti and 1080 Ti. The price does not appear to improvemuch for the RTX 2000 series.
However, this is due to the fact that they offer far superior low precision performance
(FP16, INT8, and INT4).
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tFig. B.1 Floating-point compute power and price comparison.

2. The performance-to-cost ratio of the GTX 1000 series is about two times greater than
the 900 series.

3. For the RTX 2000 series the performance (in GFLOPs) is an affine function of the price.

tFig. B.2 Floating-point compute power and energy consumption.

Fig. B.2 shows how energy consumption scales mostly linearly with the amount of com-
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putation. Second, later generations are more efficient. This seems to be contradicted by
the graph corresponding to the RTX 2000 series. However, this is a consequence of the
TensorCores that draw disproportionately much energy.

B.5.3 Summary
• Watch out for power, PCIe bus lanes, CPU single thread speed, and cooling when build-

ing a server.

• You should purchase the latest GPU generation if possible.

• Use the cloud for large deployments.

• High density servers may not be compatible with all GPUs. Check the mechanical and
cooling specifications before you buy.

• Use FP16 or lower precision for high efficiency.

Discussions302 .

B.6 Contributing to This Book

Contributions by readers303 help us improve this book. If you find a typo, an outdated link,
something where you think we missed a citation, where the code does not look elegant or
where an explanation is unclear, please contribute back and help us help our readers. While
in regular books the delay between print runs (and thus between typo corrections) can be
measured in years, it typically takes hours to days to incorporate an improvement in this
book. This is all possible due to version control and continuous integration (CI) testing. To
do so you need to submit a pull request304 to the GitHub repository. When your pull request
is merged into the code repository by the authors, you will become a contributor.

B.6.1 Submitting Minor Changes
The most common contributions are editing one sentence or fixing typos. We recommend
that you find the source file in the GitHub repository 305 and edit the file directly. For
example, you can search the file through the Find file 306 button (Fig. B.1) to locate the
source file (a markdown file). Then you click the “Edit this file” button on the upper-right
corner to make your changes in the markdown file.

After you are done, fill in your change descriptions in the “Propose file change” panel on
the page bottom and then click the “Propose file change” button. It will redirect you to a
new page to review your changes (Fig. B.7). If everything is good, you can submit a pull
request by clicking the “Create pull request” button.

https://discuss.d2l.ai/t/425
https://github.com/d2l-ai/d2l-en/graphs/contributors
https://github.com/d2l-ai/d2l-en/pulls
https://github.com/d2l-ai/d2l-en
https://github.com/d2l-ai/d2l-en/find/master
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tFig. B.1 Edit the file on Github.

307

308

B.6.2 Proposing Major Changes
If you plan to update a large portion of text or code, then you need to know a little bit more
about the format this book is using. The source file is based on the markdown format307
with a set of extensions through the D2L-Book308 package such as referring to equations,
images, chapters, and citations. You can use any markdown editors to open these files and
make your changes.

If you would like to change the code, we recommend that you use the Jupyter Notebook to
open these markdown files as described in Section B.1, so that you can run and test your
changes. Please remember to clear all outputs before submitting your changes since our CI
system will execute the sections you updated to generate outputs.

Some sections may support multiple framework implementations. If you add a new code
block, please use %%tab to mark this block on the beginning line. For example, %%tab
pytorch for a PyTorch code block, %%tab tensorflow for a TensorFlow code block, or
%%tab all a shared code block for all implementations. You may refer to the d2lbook

package for more information.

B.6.3 Submitting Major Changes
We suggest you to use the standard Git process to submit a major change. In a nutshell the
process works as described in Fig. B.2.

tFig. B.2 Contributing to the book.

We will walk you through the steps in detail. If you are already familiar with Git you
can skip this section. For concreteness we assume that the contributor’s user name is “as-
tonzhang”.

https://daringfireball.net/projects/markdown/syntax
http://book.d2l.ai/user/markdown.html
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Installing Git
The Git open-source book describes how to install Git 309 . This typically works via apt

install git on Ubuntu Linux, by installing the Xcode developer tools on macOS, or by
using GitHub’s desktop client310 . If you do not have a GitHub account, you need to sign
up for one.

Logging in to GitHub
Enter the address 311 of the book’s code repository in your browser. Click on the Fork

button in the red box at the upper-right of Fig. B.3, to make a copy of the repository of this
book. This is now your copy and you can change it any way you want.

tFig. B.3 The code repository page.

Now, the code repository of this book will be forked (i.e., copied) to your username, such
as astonzhang/d2l-en shown at the upper-left of Fig. B.4.

tFig. B.4 The forked code repository.

Cloning the Repository
To clone the repository (i.e., to make a local copy) we need to get its repository address.
The green button in Fig. B.5 displays this. Make sure that your local copy is up to date
with the main repository if you decide to keep this fork around for longer. For now simply
follow the instructions in Installation (page xxxiii) to get started. The main difference is
that you are now downloading your own fork of the repository.

tFig. B.5 Cloning the repository.

https://git-scm.com/book/en/v2
https://desktop.github.com
https://github.com/d2l-ai/d2l-en/
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# Replace your_github_username with your GitHub username
git clone https://github.com/your_github_username/d2l-en.git

Editing and Pushing
Now it is time to edit the book. It is best to edit it in the Jupyter Notebook following instruc-
tions in Section B.1. Make the changes and check that they are OK. Assume that we have
modified a typo in the file ~/d2l-en/chapter_appendix-tools-for-deep-learning/

contributing.md. You can then check which files you have changed.

At this point Git will prompt that the chapter_appendix-tools-for-deep-learning/

contributing.md file has been modified.

mylaptop:d2l-en me$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: chapter_appendix-tools-for-deep-learning/contributing.md

After confirming that this is what you want, execute the following command:

git add chapter_appendix-tools-for-deep-learning/contributing.md
git commit -m 'Fix a typo in git documentation'
git push

The changed code will then be in your personal fork of the repository. To request the
addition of your change, you have to create a pull request for the official repository of the
book.

Submitting Pull Requests
As shown in Fig. B.6, go to your fork of the repository on GitHub and select “New pull
request”. This will open up a screen that shows you the changes between your edits and
what is current in the main repository of the book.

tFig. B.6 New pull request.
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Finally, submit a pull request by clicking the button as shown in Fig. B.7. Make sure to
describe the changes you have made in the pull request. This will make it easier for the
authors to review it and to merge it with the book. Depending on the changes, this might
get accepted right away, rejected, or more likely, you will get some feedback on the changes.
Once you have incorporated them, you are good to go.

tFig. B.7 Create pull request.

B.6.4 Summary
• You can use GitHub to contribute to this book.

• You can edit the file on GitHub directly for minor changes.

• For a major change, please fork the repository, edit things locally, and only contribute
back once you are ready.

• Pull requests are how contributions are being bundled up. Try not to submit huge pull
requests since this makes them hard to understand and incorporate. Better send several
smaller ones.

B.6.5 Exercises
1. Star and fork the d2l-ai/d2l-en repository.

2. If you spot anything that needs improvement (e.g., missing a reference), submit a pull
request.

3. It is usually a better practice to create a pull request using a new branch. Learn how to
do it with Git branching312 .

Discussions313 .

B.7 Utility Functions and Classes

This section contains the implementations of utility functions and classes used in this
book.

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://discuss.d2l.ai/t/426
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import collections
import inspect
import random
from IPython import display
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

Hyperparameters.

@d2l.add_to_class(d2l.HyperParameters) #@save
def save_hyperparameters(self, ignore=[]):

"""Save function arguments into class attributes."""
frame = inspect.currentframe().f_back
_, _, _, local_vars = inspect.getargvalues(frame)
self.hparams = {k:v for k, v in local_vars.items()

if k not in set(ignore+['self']) and not k.startswith('_')}
for k, v in self.hparams.items():

setattr(self, k, v)

Progress bar.

@d2l.add_to_class(d2l.ProgressBoard) #@save
def draw(self, x, y, label, every_n=1):

Point = collections.namedtuple('Point', ['x', 'y'])
if not hasattr(self, 'raw_points'):

self.raw_points = collections.OrderedDict()
self.data = collections.OrderedDict()

if label not in self.raw_points:
self.raw_points[label] = []
self.data[label] = []

points = self.raw_points[label]
line = self.data[label]
points.append(Point(x, y))
if len(points) != every_n:

return
mean = lambda x: sum(x) / len(x)
line.append(Point(mean([p.x for p in points]),

mean([p.y for p in points])))
points.clear()
if not self.display:

return
d2l.use_svg_display()
if self.fig is None:

self.fig = d2l.plt.figure(figsize=self.figsize)
plt_lines, labels = [], []
for (k, v), ls, color in zip(self.data.items(), self.ls, self.colors):

plt_lines.append(d2l.plt.plot([p.x for p in v], [p.y for p in v],
linestyle=ls, color=color)[0])

labels.append(k)
axes = self.axes if self.axes else d2l.plt.gca()
if self.xlim: axes.set_xlim(self.xlim)

(continues on next page)
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(continued from previous page)

if self.ylim: axes.set_ylim(self.ylim)
if not self.xlabel: self.xlabel = self.x
axes.set_xlabel(self.xlabel)
axes.set_ylabel(self.ylabel)
axes.set_xscale(self.xscale)
axes.set_yscale(self.yscale)
axes.legend(plt_lines, labels)
display.display(self.fig)
display.clear_output(wait=True)

Add FrozenLake enviroment

Create enviroment

Show value function

Show Q function

Trainer

A bunch of functions that will be deprecated:

def load_array(data_arrays, batch_size, is_train=True): #@save
"""Construct a Gluon data iterator."""
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)

def synthetic_data(w, b, num_examples): #@save
"""Generate y = Xw + b + noise."""
X = np.random.normal(0, 1, (num_examples, len(w)))
y = np.dot(X, w) + b
y += np.random.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))

def sgd(params, lr, batch_size): #@save
"""Minibatch stochastic gradient descent."""
for param in params:

param[:] = param - lr * param.grad / batch_size

def get_dataloader_workers(): #@save
"""Use 4 processes to read the data except for Windows."""
return 0 if sys.platform.startswith('win') else 4

def load_data_fashion_mnist(batch_size, resize=None): #@save
"""Download the Fashion-MNIST dataset and then load it into memory."""
dataset = gluon.data.vision
trans = [dataset.transforms.ToTensor()]
if resize:

trans.insert(0, dataset.transforms.Resize(resize))
trans = dataset.transforms.Compose(trans)
mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)
mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)
return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True,

num_workers=get_dataloader_workers()),

(continues on next page)
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gluon.data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))

def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
"""Compute the accuracy for a model on a dataset using a GPU."""
if not device: # Query the first device where the first parameter is on

device = list(net.collect_params().values())[0].list_ctx()[0]
# No. of correct predictions, no. of predictions
metric = d2l.Accumulator(2)
for X, y in data_iter:

X, y = X.as_in_ctx(device), y.as_in_ctx(device)
metric.add(d2l.accuracy(net(X), y), d2l.size(y))

return metric[0] / metric[1]

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):

"""Train a model with a GPU (defined in Chapter 6)."""
net.initialize(force_reinit=True, ctx=device, init=init.Xavier())
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(),

'sgd', {'learning_rate': lr})
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],

legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):

# Sum of training loss, sum of training accuracy, no. of examples
metric = d2l.Accumulator(3)
for i, (X, y) in enumerate(train_iter):

timer.start()
# Here is the major difference from `d2l.train_epoch_ch3`
X, y = X.as_in_ctx(device), y.as_in_ctx(device)
with autograd.record():

y_hat = net(X)
l = loss(y_hat, y)

l.backward()
trainer.step(X.shape[0])
metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:

animator.add(epoch + (i + 1) / num_batches,
(train_l, train_acc, None))

test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))

print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
f'test acc {test_acc:.3f}')

print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
f'on {str(device)}')

def grad_clipping(net, theta): #@save
"""Clip the gradient."""
if isinstance(net, gluon.Block):

params = [p.data() for p in net.collect_params().values()]
else:

(continues on next page)
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params = net.params
norm = math.sqrt(sum((p.grad ** 2).sum() for p in params))
if norm > theta:

for param in params:
param.grad[:] *= theta / norm

def evaluate_accuracy(net, data_iter): #@save
"""Compute the accuracy for a model on a dataset."""
metric = Accumulator(2) # No. of correct predictions, no. of predictions
for X, y in data_iter:

metric.add(accuracy(net(X), y), d2l.size(y))
return metric[0] / metric[1]

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""Plot a list of images."""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):

try:
img = img.asnumpy()

except:
pass

ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:

ax.set_title(titles[i])
return axes

def linreg(X, w, b): #@save
"""The linear regression model."""
return np.dot(X, w) + b

def squared_loss(y_hat, y): #@save
"""Squared loss."""
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

def get_fashion_mnist_labels(labels): #@save
"""Return text labels for the Fashion-MNIST dataset."""
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',

'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]

class Animator: #@save
"""For plotting data in animation."""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,

ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):

# Incrementally plot multiple lines
if legend is None:

(continues on next page)
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legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:

self.axes = [self.axes, ]
# Use a lambda function to capture arguments
self.config_axes = lambda: d2l.set_axes(

self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts

def add(self, x, y):
# Add multiple data points into the figure
if not hasattr(y, "__len__"):

y = [y]
n = len(y)
if not hasattr(x, "__len__"):

x = [x] * n
if not self.X:

self.X = [[] for _ in range(n)]
if not self.Y:

self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):

if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)

self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):

self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)

class Accumulator: #@save
"""For accumulating sums over `n` variables."""
def __init__(self, n):

self.data = [0.0] * n

def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]

def reset(self):
self.data = [0.0] * len(self.data)

def __getitem__(self, idx):
return self.data[idx]

def accuracy(y_hat, y): #@save
"""Compute the number of correct predictions."""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:

y_hat = y_hat.argmax(axis=1)
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())
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import hashlib
import os
import tarfile
import zipfile
import requests

def download(url, folder='../data', sha1_hash=None): #@save
"""Download a file to folder and return the local filepath."""
if not url.startswith('http'):

# For back compatability
url, sha1_hash = DATA_HUB[url]

os.makedirs(folder, exist_ok=True)
fname = os.path.join(folder, url.split('/')[-1])
# Check if hit cache
if os.path.exists(fname) and sha1_hash:

sha1 = hashlib.sha1()
with open(fname, 'rb') as f:

while True:
data = f.read(1048576)
if not data:

break
sha1.update(data)

if sha1.hexdigest() == sha1_hash:
return fname

# Download
print(f'Downloading {fname} from {url}...')
r = requests.get(url, stream=True, verify=True)
with open(fname, 'wb') as f:

f.write(r.content)
return fname

def extract(filename, folder=None): #@save
"""Extract a zip/tar file into folder."""
base_dir = os.path.dirname(filename)
_, ext = os.path.splitext(filename)
assert ext in ('.zip', '.tar', '.gz'), 'Only support zip/tar files.'
if ext == '.zip':

fp = zipfile.ZipFile(filename, 'r')
else:

fp = tarfile.open(filename, 'r')
if folder is None:

folder = base_dir
fp.extractall(folder)

def download_extract(name, folder=None): #@save
"""Download and extract a zip/tar file."""
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == '.zip':

fp = zipfile.ZipFile(fname, 'r')
elif ext in ('.tar', '.gz'):

fp = tarfile.open(fname, 'r')
else:

(continues on next page)
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assert False, 'Only zip/tar files can be extracted.'
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir

def tokenize(lines, token='word'): #@save
"""Split text lines into word or character tokens."""
assert token in ('word', 'char'), 'Unknown token type: ' + token
return [line.split() if token == 'word' else list(line) for line in lines]

def evaluate_loss(net, data_iter, loss): #@save
"""Evaluate the loss of a model on the given dataset."""
metric = d2l.Accumulator(2) # Sum of losses, no. of examples
for X, y in data_iter:

l = loss(net(X), y)
metric.add(l.sum(), d2l.size(l))

return metric[0] / metric[1]

More for the attention chapter.

#@save
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip',

'94646ad1522d915e7b0f9296181140edcf86a4f5')

#@save
def read_data_nmt():

"""Load the English-French dataset."""
data_dir = d2l.download_extract('fra-eng')
with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:

return f.read()

#@save
def preprocess_nmt(text):

"""Preprocess the English-French dataset."""
def no_space(char, prev_char):

return char in set(',.!?') and prev_char != ' '

# Replace non-breaking space with space, and convert uppercase letters to
# lowercase ones
text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
# Insert space between words and punctuation marks
out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char

for i, char in enumerate(text)]
return ''.join(out)

#@save
def tokenize_nmt(text, num_examples=None):

"""Tokenize the English-French dataset."""
source, target = [], []
for i, line in enumerate(text.split('\n')):

if num_examples and i > num_examples:
break

parts = line.split('\t')

(continues on next page)
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if len(parts) == 2:
source.append(parts[0].split(' '))
target.append(parts[1].split(' '))

return source, target

#@save
def truncate_pad(line, num_steps, padding_token):

"""Truncate or pad sequences."""
if len(line) > num_steps:

return line[:num_steps] # Truncate
return line + [padding_token] * (num_steps - len(line)) # Pad

#@save
def build_array_nmt(lines, vocab, num_steps):

"""Transform text sequences of machine translation into minibatches."""
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = np.array([truncate_pad(

l, num_steps, vocab['<pad>']) for l in lines])
valid_len = (array != vocab['<pad>']).astype(np.int32).sum(1)
return array, valid_len

#@save
def load_data_nmt(batch_size, num_steps, num_examples=600):

"""Return the iterator and the vocabularies of the translation dataset."""
text = preprocess_nmt(read_data_nmt())
source, target = tokenize_nmt(text, num_examples)
src_vocab = d2l.Vocab(source, min_freq=2,

reserved_tokens=['<pad>', '<bos>', '<eos>'])
tgt_vocab = d2l.Vocab(target, min_freq=2,

reserved_tokens=['<pad>', '<bos>', '<eos>'])
src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
data_iter = d2l.load_array(data_arrays, batch_size)
return data_iter, src_vocab, tgt_vocab

#@save
class MaskedSoftmaxCELoss(gluon.loss.SoftmaxCELoss):

"""The softmax cross-entropy loss with masks."""
# `pred` shape: (`batch_size`, `num_steps`, `vocab_size`)
# `label` shape: (`batch_size`, `num_steps`)
# `valid_len` shape: (`batch_size`,)
def forward(self, pred, label, valid_len):

# `weights` shape: (`batch_size`, `num_steps`, 1)
weights = np.expand_dims(np.ones_like(label), axis=-1)
weights = npx.sequence_mask(weights, valid_len, True, axis=1)
return super(MaskedSoftmaxCELoss, self).forward(pred, label, weights)

#@save
def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):

(continues on next page)
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"""Train a model for sequence to sequence."""
net.initialize(init.Xavier(), force_reinit=True, ctx=device)
trainer = gluon.Trainer(net.collect_params(), 'adam',

{'learning_rate': lr})
loss = MaskedSoftmaxCELoss()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[10, num_epochs])
for epoch in range(num_epochs):

timer = d2l.Timer()
metric = d2l.Accumulator(2) # Sum of training loss, no. of tokens
for batch in data_iter:

X, X_valid_len, Y, Y_valid_len = [
x.as_in_ctx(device) for x in batch]

bos = np.array(
[tgt_vocab['<bos>']] * Y.shape[0], ctx=device).reshape(-1, 1)

dec_input = np.concatenate([bos, Y[:, :-1]], 1) # Teacher forcing
with autograd.record():

Y_hat, _ = net(X, dec_input, X_valid_len)
l = loss(Y_hat, Y, Y_valid_len)

l.backward()
d2l.grad_clipping(net, 1)
num_tokens = Y_valid_len.sum()
trainer.step(num_tokens)
metric.add(l.sum(), num_tokens)

if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, (metric[0] / metric[1],))

print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} '
f'tokens/sec on {str(device)}')

#@save
def predict_seq2seq(net, src_sentence, src_vocab, tgt_vocab, num_steps,

device, save_attention_weights=False):
"""Predict for sequence to sequence."""
src_tokens = src_vocab[src_sentence.lower().split(' ')] + [

src_vocab['<eos>']]
enc_valid_len = np.array([len(src_tokens)], ctx=device)
src_tokens = d2l.truncate_pad(src_tokens, num_steps, src_vocab['<pad>'])
# Add the batch axis
enc_X = np.expand_dims(np.array(src_tokens, ctx=device), axis=0)
enc_outputs = net.encoder(enc_X, enc_valid_len)
dec_state = net.decoder.init_state(enc_outputs, enc_valid_len)
# Add the batch axis
dec_X = np.expand_dims(np.array([tgt_vocab['<bos>']], ctx=device), axis=0)
output_seq, attention_weight_seq = [], []
for _ in range(num_steps):

Y, dec_state = net.decoder(dec_X, dec_state)
# We use the token with the highest prediction likelihood as input
# of the decoder at the next time step
dec_X = Y.argmax(axis=2)
pred = dec_X.squeeze(axis=0).astype('int32').item()
# Save attention weights (to be covered later)
if save_attention_weights:

attention_weight_seq.append(net.decoder.attention_weights)
# Once the end-of-sequence token is predicted, the generation of the
# output sequence is complete

(continues on next page)
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if pred == tgt_vocab['<eos>']:
break

output_seq.append(pred)
return ' '.join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq

B.8 The d2l API Document

This section displays classes and functions (sorted alphabetically) in the d2l package,
showing where they are defined in the book so you can find more detailed implementa-
tions and explanations. See also the source code on the GitHub repository314 .

B.8.1 Classes
class d2l.mxnet.AdditiveAttention(num_hiddens, dropout, **kwargs)

Bases: Block

Additive attention.

Defined in Section 11.3.2

forward(queries, keys, values, valid_lens)

Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.AddNorm(dropout)

Bases: Block

The residual connection followed by layer normalization.

Defined in Section 11.7.2

forward(X, Y)

Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

https://github.com/d2l-ai/d2l-en/tree/master/d2l
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Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.AttentionDecoder

Bases: Decoder (page 1035)

The base attention-based decoder interface.

Defined in Section 11.4

property attention_weights

class d2l.mxnet.Classifier(plot_train_per_epoch=2, plot_valid_per_epoch=1)
Bases: Module (page 1038)

The base class of classification models.

Defined in Section 4.3

accuracy(Y_hat, Y, averaged=True)
Compute the number of correct predictions.

Defined in Section 4.3

layer_summary(X_shape)
Defined in Section 7.6

loss(Y_hat, Y, averaged=True)
Defined in Section 4.5

validation_step(batch)

class d2l.mxnet.DataModule(root=’../data’, num_workers=4)
Bases: HyperParameters (page 1037)

The base class of data.

Defined in Section 3.2.2

get_dataloader(train)

get_tensorloader(tensors, train, indices=slice(0, None, None))
Defined in Section 3.3

train_dataloader()

val_dataloader()
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class d2l.mxnet.Decoder

Bases: Block

The base decoder interface for the encoder–decoder architecture.

Defined in Section 10.6

forward(X, state)

Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

init_state(enc_all_outputs, *args)

class d2l.mxnet.DotProductAttention(dropout)

Bases: Block

Scaled dot product attention.

Defined in Section 11.3.2

forward(queries, keys, values, valid_lens=None)

Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.Encoder

Bases: Block

The base encoder interface for the encoder–decoder architecture.

Defined in Section 10.6

forward(X, *args)

Overrides to implement forward computation using NDArray. Only accepts positional
arguments.
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Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.EncoderDecoder(encoder, decoder)
Bases: Classifier (page 1035)

The base class for the encoder–decoder architecture.

Defined in Section 10.6

forward(enc_X, dec_X, *args)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

predict_step(batch, device, num_steps, save_attention_weights=False)
Defined in Section 10.7.6

class d2l.mxnet.FashionMNIST(batch_size=64, resize=(28, 28))
Bases: DataModule (page 1035)

The Fashion-MNIST dataset.

Defined in Section 4.2

get_dataloader(train)
Defined in Section 4.2

text_labels(indices)
Return text labels.

Defined in Section 4.2

visualize(batch, nrows=1, ncols=8, labels=[])
Defined in Section 4.2

class d2l.mxnet.GRU(num_hiddens, num_layers, dropout=0)
Bases: RNN (page 1042)

The multilayer GRU model.

Defined in Section 10.3
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class d2l.mxnet.HyperParameters

Bases: object

The base class of hyperparameters.

save_hyperparameters(ignore=[])
Save function arguments into class attributes.

Defined in Section B.7

class d2l.mxnet.LeNet(lr=0.1, num_classes=10)
Bases: Classifier (page 1035)

The LeNet-5 model.

Defined in Section 7.6

class d2l.mxnet.LinearRegression(lr)
Bases: Module (page 1038)

The linear regression model implemented with high-level APIs.

Defined in Section 3.5

configure_optimizers()

Defined in Section 3.5

forward(X)
Defined in Section 3.5

get_w_b()

Defined in Section 3.5

loss(y_hat, y)
Defined in Section 3.5

class d2l.mxnet.LinearRegressionScratch(num_inputs, lr, sigma=0.01)
Bases: Module (page 1038)

The linear regression model implemented from scratch.

Defined in Section 3.4

configure_optimizers()

Defined in Section 3.4

forward(X)
Defined in Section 3.4

loss(y_hat, y)
Defined in Section 3.4
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class d2l.mxnet.Module(plot_train_per_epoch=2, plot_valid_per_epoch=1)
Bases: Block, HyperParameters (page 1037)

The base class of models.

Defined in Section 3.2

configure_optimizers()

Defined in Section 4.3

forward(X)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

get_scratch_params()

Defined in Section 4.3

loss(y_hat, y)

parameters()

Defined in Section 4.3

plot(key, value, train)
Plot a point in animation.

set_scratch_params_device(device)
Defined in Section 6.7

training_step(batch)

validation_step(batch)

class d2l.mxnet.MTFraEng(batch_size, num_steps=9, num_train=512,
num_val=128)

Bases: DataModule (page 1035)

The English-French dataset.

Defined in Section 10.5

build(src_sentences, tgt_sentences)
Defined in Section 10.5.3
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get_dataloader(train)
Defined in Section 10.5.3

class d2l.mxnet.MultiHeadAttention(num_hiddens, num_heads, dropout,
use_bias=False, **kwargs)

Bases: Module (page 1038)

Multi-head attention.

Defined in Section 11.5

forward(queries, keys, values, valid_lens)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

transpose_output(X)
Reverse the operation of transpose_qkv.

Defined in Section 11.5

transpose_qkv(X)
Transposition for parallel computation of multiple attention heads.

Defined in Section 11.5

class d2l.mxnet.PositionalEncoding(num_hiddens, dropout, max_len=1000)
Bases: Block

Positional encoding.

Defined in Section 11.6

forward(X)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.
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class d2l.mxnet.PositionWiseFFN(ffn_num_hiddens, ffn_num_outputs)
Bases: Block

The positionwise feed-forward network.

Defined in Section 11.7

forward(X)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.ProgressBoard(xlabel=None, ylabel=None, xlim=None,
ylim=None, xscale=’linear’, yscale=’linear’,
ls=[’-’, ’--’, ’-.’, ’:’], colors=[’C0’, ’C1’, ’C2’,
’C3’], fig=None, axes=None, figsize=(3.5, 2.5),
display=True)

Bases: HyperParameters (page 1037)

The board that plots data points in animation.

Defined in Section 3.2

draw(x, y, label, every_n=1)
Defined in Section B.7

class d2l.mxnet.Residual(num_channels, use_1x1conv=False, strides=1, **kwargs)
Bases: Block

The Residual block of ResNet models.

Defined in Section 8.6

forward(X)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.
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class d2l.mxnet.ResNeXtBlock(num_channels, groups, bot_mul,
use_1x1conv=False, strides=1, **kwargs)

Bases: Block

The ResNeXt block.

Defined in Section 8.6.2

forward(X)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.RNN(num_hiddens)
Bases: Module (page 1038)

The RNN model implemented with high-level APIs.

Defined in Section 9.6

forward(inputs, H=None)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.RNNLM(rnn, vocab_size, lr=0.01)
Bases: RNNLMScratch (page 1042)

The RNN-based language model implemented with high-level APIs.

Defined in Section 9.6

init_params()

output_layer(hiddens)
Defined in Section 9.5
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class d2l.mxnet.RNNLMScratch(rnn, vocab_size, lr=0.01)
Bases: Classifier (page 1035)

The RNN-based language model implemented from scratch.

Defined in Section 9.5

forward(X, state=None)
Defined in Section 9.5

init_params()

one_hot(X)
Defined in Section 9.5

output_layer(rnn_outputs)
Defined in Section 9.5

predict(prefix, num_preds, vocab, device=None)
Defined in Section 9.5

training_step(batch)

validation_step(batch)

class d2l.mxnet.RNNScratch(num_inputs, num_hiddens, sigma=0.01)
Bases: Module (page 1038)

The RNN model implemented from scratch.

Defined in Section 9.5

forward(inputs, state=None)
Defined in Section 9.5

class d2l.mxnet.Seq2Seq(encoder, decoder, tgt_pad, lr)
Bases: EncoderDecoder (page 1037)

The RNN encoder–decoder for sequence to sequence learning.

Defined in Section 10.7.3

configure_optimizers()

Defined in Section 4.3

validation_step(batch)

class d2l.mxnet.Seq2SeqEncoder(vocab_size, embed_size, num_hiddens,
num_layers, dropout=0)

Bases: Encoder (page 1036)

The RNN encoder for sequence-to-sequence learning.
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Defined in Section 10.7

forward(X, *args)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.SGD(params, lr)
Bases: HyperParameters (page 1037)

Minibatch stochastic gradient descent.

Defined in Section 3.4

step(_)

class d2l.mxnet.SoftmaxRegression(num_outputs, lr)
Bases: Classifier (page 1035)

The softmax regression model.

Defined in Section 4.5

forward(X)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.SyntheticRegressionData(w, b, noise=0.01, num_train=1000,
num_val=1000, batch_size=32)

Bases: DataModule (page 1035)

Synthetic data for linear regression.

Defined in Section 3.3

get_dataloader(train)
Defined in Section 3.3
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class d2l.mxnet.TimeMachine(batch_size, num_steps, num_train=10000,
num_val=5000)

Bases: DataModule (page 1035)

The Time Machine dataset.

Defined in Section 9.2

build(raw_text, vocab=None)
Defined in Section 9.2

get_dataloader(train)
Defined in Section 9.3.3

class d2l.mxnet.Trainer(max_epochs, num_gpus=0, gradient_clip_val=0)
Bases: HyperParameters (page 1037)

The base class for training models with data.

Defined in Section 3.2.2

clip_gradients(grad_clip_val, model)
Defined in Section 9.5

fit(model, data)

fit_epoch()

Defined in Section 3.4

prepare_batch(batch)
Defined in Section 6.7

prepare_data(data)

prepare_model(model)
Defined in Section 6.7

class d2l.mxnet.TransformerEncoder(vocab_size, num_hiddens, ffn_num_hiddens,
num_heads, num_blks, dropout,
use_bias=False)

Bases: Encoder (page 1036)

The Transformer encoder.

Defined in Section 11.7.4

forward(X, valid_lens)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.
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Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.TransformerEncoderBlock(num_hiddens, ffn_num_hiddens,
num_heads, dropout, use_bias=False)

Bases: Block

The Transformer encoder block.

Defined in Section 11.7.2

forward(X, valid_lens)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

Parameters

*args
[list of NDArray] Input tensors.

class d2l.mxnet.Vocab(tokens=[], min_freq=0, reserved_tokens=[])
Bases: object

Vocabulary for text.

to_tokens(indices)

property unk

B.8.2 Functions
d2l.mxnet.add_to_class(Class)

Register functions as methods in created class.

Defined in Section 3.2

d2l.mxnet.bleu(pred_seq, label_seq, k)
Compute the BLEU.

Defined in Section 10.7.6

d2l.mxnet.check_len(a, n)
Check the length of a list.

Defined in Section 9.5
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d2l.mxnet.check_shape(a, shape)
Check the shape of a tensor.

Defined in Section 9.5

d2l.mxnet.corr2d(X, K)
Compute 2D cross-correlation.

Defined in Section 7.2

d2l.mxnet.cpu()

Get the CPU device.

Defined in Section 6.7

d2l.mxnet.gpu(i=0)
Get a GPU device.

Defined in Section 6.7

d2l.mxnet.masked_softmax(X, valid_lens)
Perform softmax operation by masking elements on the last axis.

Defined in Section 11.3

d2l.mxnet.num_gpus()

Get the number of available GPUs.

Defined in Section 6.7

d2l.mxnet.plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None,
ylim=None, xscale=’linear’, yscale=’linear’, fmts=(’-’, ’m--’, ’g-.’,
’r:’), figsize=(3.5, 2.5), axes=None)

Plot data points.

Defined in Section 2.4

d2l.mxnet.set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
Set the axes for matplotlib.

Defined in Section 2.4

d2l.mxnet.set_figsize(figsize=(3.5, 2.5))
Set the figure size for matplotlib.

Defined in Section 2.4

d2l.mxnet.show_heatmaps(matrices, xlabel, ylabel, titles=None, figsize=(2.5, 2.5),
cmap=’Reds’)

Show heatmaps of matrices.

Defined in Section 11.1
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d2l.mxnet.show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist)
Plot the histogram for list length pairs.

Defined in Section 10.5

d2l.mxnet.try_all_gpus()

Return all available GPUs, or [cpu(),] if no GPU exists.

Defined in Section 6.7

d2l.mxnet.try_gpu(i=0)
Return gpu(i) if exists, otherwise return cpu().

Defined in Section 6.7

d2l.mxnet.use_svg_display()

Use the svg format to display a plot in Jupyter.

Defined in Section 2.4
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