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Just a few years ago, there were no legions of deep learning scientists developing intelli-
gent products and services at major companies and startups. When we entered the field,
machine learning did not command headlines in daily newspapers. Our parents had no idea
what machine learning was, let alone why we might prefer it to a career in medicine or law.
Machine learning was a blue skies academic discipline whose industrial significance was
limited to a narrow set of real-world applications, including speech recognition and com-
puter vision. Moreover, many of these applications required so much domain knowledge
that they were often regarded as entirely separate areas for which machine learning was
one small component. At that time, neural networks—the predecessors of the deep learn-
ing methods that we focus on in this book—were generally regarded as outmoded.

Yet in just few years, deep learning has taken the world by surprise, driving rapid progress
in such diverse fields as computer vision, natural language processing, automatic speech
recognition, reinforcement learning, and biomedical informatics. Moreover, the success
of deep learning in so many tasks of practical interest has even catalyzed developments in
theoretical machine learning and statistics. With these advances in hand, we can now build
cars that drive themselves with more autonomy than ever before (though less autonomy
than some companies might have you believe), dialogue systems that debug code by asking
clarifying questions, and software agents beating the best human players in the world at
board games such as Go, a feat once thought to be decades away. Already, these tools exert
ever-wider influence on industry and society, changing the way movies are made, diseases
are diagnosed, and playing a growing role in basic sciences—from astrophysics, to climate
modeling, to weather prediction, to biomedicine.

About This Book
|

This book represents our attempt to make deep learning approachable, teaching you the
concepts, the context, and the code.

One Medium Combining Code, Math, and HTML

For any computing technology to reach its full impact, it must be well understood, well
documented, and supported by mature, well-maintained tools. The key ideas should be
clearly distilled, minimizing the onboarding time needed to bring new practitioners up to
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date. Mature libraries should automate common tasks, and exemplar code should make
it easy for practitioners to modify, apply, and extend common applications to suit their
needs.

As an example, take dynamic web applications. Despite a large number of companies,
such as Amazon, developing successful database-driven web applications in the 1990s, the
potential of this technology to aid creative entrepreneurs was realized to a far greater degree
only in the past ten years, owing in part to the development of powerful, well-documented
frameworks.

Testing the potential of deep learning presents unique challenges because any single appli-
cation brings together various disciplines. Applying deep learning requires simultaneously
understanding (i) the motivations for casting a problem in a particular way; (ii) the math-
ematical form of a given model; (iii) the optimization algorithms for fitting the models to
data; (iv) the statistical principles that tell us when we should expect our models to general-
ize to unseen data and practical methods for certifying that they have, in fact, generalized;
and (v) the engineering techniques required to train models efficiently, navigating the pit-
falls of numerical computing and getting the most out of available hardware. Teaching the
critical thinking skills required to formulate problems, the mathematics to solve them, and
the software tools to implement those solutions all in one place presents formidable chal-
lenges. Our goal in this book is to present a unified resource to bring would-be practitioners
up to speed.

When we started this book project, there were no resources that simultaneously (i) remained
up to date; (ii) covered the breadth of modern machine learning practices with sufficient
technical depth; and (iii) interleaved exposition of the quality one expects of a textbook
with the clean runnable code that one expects of a hands-on tutorial. We found plenty of
code examples illustrating how to use a given deep learning framework (e.g., how to do
basic numerical computing with matrices in TensorFlow) or for implementing particular
techniques (e.g., code snippets for LeNet, AlexNet, ResNet, etc.) scattered across various
blog posts and GitHub repositories. However, these examples typically focused on how to
implement a given approach, but left out the discussion of why certain algorithmic deci-
sions are made. While some interactive resources have popped up sporadically to address a
particular topic, e.g., the engaging blog posts published on the website Distill!, or personal
blogs, they only covered selected topics in deep learning, and often lacked associated code.
On the other hand, while several deep learning textbooks have emerged—e.g., Goodfellow
et al. (2016), which offers a comprehensive survey on the basics of deep learning—these
resources do not marry the descriptions to realizations of the concepts in code, sometimes
leaving readers clueless as to how to implement them. Moreover, too many resources are
hidden behind the paywalls of commercial course providers.

We set out to create a resource that could (i) be freely available for everyone; (ii) offer suffi-
cient technical depth to provide a starting point on the path to actually becoming an applied
machine learning scientist; (iii) include runnable code, showing readers ow to solve prob-
lems in practice; (iv) allow for rapid updates, both by us and also by the community at large;
and (v) be complemented by a forum? for interactive discussion of technical details and to
answer questions.


http://distill.pub
https://discuss.d2l.ai/c/5
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These goals were often in conflict. Equations, theorems, and citations are best managed and
laid out in LaTeX. Code is best described in Python. And webpages are native in HTML
and JavaScript. Furthermore, we want the content to be accessible both as executable code,
as a physical book, as a downloadable PDF, and on the Internet as a website. No workflows
seemed suited to these demands, so we decided to assemble our own (Section B.6). We
settled on GitHub to share the source and to facilitate community contributions; Jupyter
notebooks for mixing code, equations and text; Sphinx as a rendering engine; and Discourse
as a discussion platform. While our system is not perfect, these choices strike a compromise
among the competing concerns. We believe that Dive into Deep Learning might be the first
book published using such an integrated workflow.

Learning by Doing

Many textbooks present concepts in succession, covering each in exhaustive detail. For
example, the excellent textbook of Bishop (2006), teaches each topic so thoroughly that
getting to the chapter on linear regression requires a nontrivial amount of work. While
experts love this book precisely for its thoroughness, for true beginners, this property limits
its usefulness as an introductory text.

In this book, we teach most concepts just in time. In other words, you will learn concepts
at the very moment that they are needed to accomplish some practical end. While we
take some time at the outset to teach fundamental preliminaries, like linear algebra and
probability, we want you to taste the satisfaction of training your first model before worrying
about more esoteric concepts.

Aside from a few preliminary notebooks that provide a crash course in the basic mathe-
matical background, each subsequent chapter both introduces a reasonable number of new
concepts and provides several self-contained working examples, using real datasets. This
presented an organizational challenge. Some models might logically be grouped together
in a single notebook. And some ideas might be best taught by executing several models
in succession. By contrast, there is a big advantage to adhering to a policy of one working
example, one notebook: This makes it as easy as possible for you to start your own research
projects by leveraging our code. Just copy a notebook and start modifying it.

Throughout, we interleave the runnable code with background material as needed. In gen-
eral, we err on the side of making tools available before explaining them fully (often filling
in the background later). For instance, we might use stochastic gradient descent before
explaining why it is useful or offering some intuition for why it works. This helps to give
practitioners the necessary ammunition to solve problems quickly, at the expense of requir-
ing the reader to trust us with some curatorial decisions.

This book teaches deep learning concepts from scratch. Sometimes, we delve into fine
details about models that would typically be hidden from users by modern deep learning
frameworks. This comes up especially in the basic tutorials, where we want you to un-
derstand everything that happens in a given layer or optimizer. In these cases, we often
present two versions of the example: one where we implement everything from scratch,
relying only on NumPy-like functionality and automatic differentiation, and a more prac-
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tical example, where we write succinct code using the high-level APIs of deep learning
frameworks. After explaining how some component works, we rely on the high-level API
in subsequent tutorials.

Content and Structure

The book can be divided into roughly three parts, dealing with preliminaries, deep learning
techniques, and advanced topics focused on real systems and applications (Fig. 1).

1. Introduction

2. Preliminaries

3-4. Linear Neural
Networks

5. Multilayer Perceptrons

12. Optimization
Algorithms

6. Builders’ Guide

7. Convolutional Neural 9. Recurrent Neural
Networks Networks

10. Modern Recurrent
Neural Networks
8. Modern Convolutional
Neural Networks

- 15-16. Natural Language
| 14. Computer Vision | | Processing

13. Computational
Performance

11. Attention Mechanisms
and Transformers

Book structure.

e Part 1: Basics and Preliminaries. Chapter 1 is an introduction to deep learning. Then,

in Chapter 2, we quickly bring you up to speed on the prerequisites required for hands-
on deep learning, such as how to store and manipulate data, and how to apply vari-
ous numerical operations based on elementary concepts from linear algebra, calculus,
and probability. Chapter 3 and Chapter 5 cover the most fundamental concepts and
techniques in deep learning, including regression and classification; linear models;
multilayer perceptrons; and overfitting and regularization.

e Part 2: Modern Deep Learning Techniques. Chapter 6 describes the key computa-

tional components of deep learning systems and lays the groundwork for our sub-
sequent implementations of more complex models. Next, Chapter 7 and Chapter 8
present convolutional neural networks (CNNs), powerful tools that form the back-
bone of most modern computer vision systems. Similarly, Chapter 9 and Chapter 10
introduce recurrent neural networks (RNNs), models that exploit sequential (e.g., tem-
poral) structure in data and are commonly used for natural language processing and
time series prediction. In Chapter 11, we describe a relatively new class of models,
based on so-called attention mechanisms, that has displaced RNNs as the dominant
architecture for most natural language processing tasks. These sections will bring
you up to speed on the most powerful and general tools that are widely used by deep
learning practitioners.
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e Part 3: Scalability, Efficiency, and Applications (available online®). In Chapter 12, we

31 ,!;i discuss several common optimization algorithms used to train deep learning models.

EEF Next, in Chapter 13, we examine several key factors that influence the computational

performance of deep learning code. Then, in Chapter 14, we illustrate major applica-

tions of deep learning in computer vision. Finally, in Chapter 15 and Chapter 16, we

demonstrate how to pretrain language representation models and apply them to natural
language processing tasks.

F
4

bt

Code

Most sections of this book feature executable code. We believe that some intuitions are best

developed via trial and error, tweaking the code in small ways and observing the results.
Ideally, an elegant mathematical theory might tell us precisely how to tweak our code to
achieve a desired result. However, deep learning practitioners today must often tread where
no solid theory provides guidance. Despite our best attempts, formal explanations for the
efficacy of various techniques are still lacking, for a variety of reasons: the mathematics to
characterize these models can be so difficult; the explanation likely depends on properties
of the data that currently lack clear definitions; and serious inquiry on these topics has
only recently kicked into high gear. We are hopeful that as the theory of deep learning
progresses, each future edition of this book will provide insights that eclipse those presently
available.

To avoid unnecessary repetition, we capture some of our most frequently imported and used
functions and classes in the d21 package. Throughout, we mark blocks of code (such as
functions, classes, or collection of import statements) with #@save to indicate that they will
be accessed later via the d21 package. We offer a detailed overview of these classes and
functions in Section B.8. The d21 package is lightweight and only requires the following
dependencies:

#@save

import collections

import hashlib

import inspect

import math

import os

import random

import re

import shutil

import sys

import tarfile

import time

import zipfile

from collections import defaultdict
import pandas as pd

import requests

from IPython import display

from matplotlib import pyplot as plt
from matplotlib_inline import backend_inline

d21 = sys.modules[__name__]


https://d2l.ai
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Most of the code in this book is based on Apache MXNet, an open-source framework for
deep learning that is the preferred choice of AWS (Amazon Web Services), as well as many
colleges and companies. All of the code in this book has passed tests under the newest
MXNet version. However, due to the rapid development of deep learning, some code in
the print edition may not work properly in future versions of MXNet. We plan to keep the
online version up to date. In case you encounter any problems, please consult Installation
(page xxxiii) to update your code and runtime environment. Below lists dependencies in
our MXNet implementation.

#@save
from mxnet import autograd, context, gluon, image, init, np, npx
from mxnet.gluon import nn, rnn

Target Audience

This book is for students (undergraduate or graduate), engineers, and researchers, who seek
a solid grasp of the practical techniques of deep learning. Because we explain every con-
cept from scratch, no previous background in deep learning or machine learning is required.
Fully explaining the methods of deep learning requires some mathematics and program-
ming, but we will only assume that you enter with some basics, including modest amounts
of linear algebra, calculus, probability, and Python programming. Just in case you have
forgotten anything, the online Appendix* provides a refresher on most of the mathematics
you will find in this book. Usually, we will prioritize intuition and ideas over mathematical
rigor. If you would like to extend these foundations beyond the prerequisites to understand
our book, we happily recommend some other terrific resources: Linear Analysis by Bol-
lobds (1999) covers linear algebra and functional analysis in great depth. All of Statistics
(Wasserman, 2013) provides a marvelous introduction to statistics. Joe Blitzstein’s books®
and courses® on probability and inference are pedagogical gems. And if you have not used
Python before, you may want to peruse this Python tutorial ” .

Notebooks, Website, GitHub, and Forum

All of our notebooks are available for download on the D2L.ai website® and on GitHub?.
Associated with this book, we have launched a discussion forum, located at discuss.d2l.ai
10 Whenever you have questions on any section of the book, you can find a link to the
associated discussion page at the end of each notebook.
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Summary
. _________________________________________________________________________________________|

Deep learning has revolutionized pattern recognition, introducing technology that now
powers a wide range of technologies, in such diverse fields as computer vision, natural
language processing, and automatic speech recognition. To successfully apply deep learn-
ing, you must understand how to cast a problem, the basic mathematics of modeling, the
algorithms for fitting your models to data, and the engineering techniques to implement it
all. This book presents a comprehensive resource, including prose, figures, mathematics,
and code, all in one place.

Exercises

1. Register an account on the discussion forum of this book discuss.d2l.ai'!.
2. Install Python on your computer.

3. Follow the links at the bottom of the section to the forum, where you will be able to
seek out help and discuss the book and find answers to your questions by engaging the
authors and broader community.

Discussions 2.
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Installation

In order to get up and running, we will need an environment for running Python, the Jupyter
Notebook, the relevant libraries, and the code needed to run the book itself.

Installing Miniconda

o8

e
6

§§ | Your simplest option is to install Miniconda'3. Note that the Python 3.x version is required.
E’gsgﬁi You can skip the following steps if your machine already has conda installed.

Visit the Miniconda website and determine the appropriate version for your system based
on your Python 3.x version and machine architecture. Suppose that your Python version is
3.9 (our tested version). If you are using macOS, you would download the bash script whose
name contains the strings “MacOSX”, navigate to the download location, and execute the
installation as follows (taking Intel Macs as an example):

# The file name is subject to changes
sh Miniconda3-py39_4.12.0-MacOSX-x86_64.sh -b

A Linux user would download the file whose name contains the strings “Linux” and execute
the following at the download location:

# The file name is subject to changes
sh Miniconda3-py39_4.12.0-Linux-x86_64.sh -b

o A Windows user would download and install Miniconda by following its online instructions
E§E5 14 On Windows, you may search for cmd to open the Command Prompt (command-line

14 SR
il )
e interpreter) for running commands.

P
&

Next, initialize the shell so we can run conda directly.

~/miniconda3/bin/conda init

Then close and reopen your current shell. You should be able to create a new environment
as follows:

XXXiii
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conda create --name d21 python=3.9 -y

Now we can activate the d21 environment:

conda activate d21

Installing the Deep Learning Framework and the
d21 Package

Before installing any deep learning framework, please first check whether or not you have
proper GPUs on your machine (the GPUs that power the display on a standard laptop are
not relevant for our purposes). For example, if your computer has NVIDIA GPUs and has
installed CUDA ®, then you are all set. If your machine does not house any GPU, there
is no need to worry just yet. Your CPU provides more than enough horsepower to get you
through the first few chapters. Just remember that you will want to access GPUs before
running larger models.

To install a GPU-enabled version of MXNet, we need to find out what version of CUDA you
have installed. You can check this by running nvcc --versionor cat /usr/local/cuda/
version.txt. Assume that you have installed CUDA 11.2, then execute the following
command:

# For macOS and Linux users
pip install mxnet-cull2==1.9.1

# For Windows users
pip install mxnet-cull2==1.9.1 -f https://dist.mxnet.io/python

You may change the last digits according to your CUDA version, e.g., cul@l for CUDA
10.1 and cu90 for CUDA 9.0.

If your machine has no NVIDIA GPUs or CUDA, you can install the CPU version as fol-
lows:

pip install mxnet==1.9.1

Our next step is to install the d21 package that we developed in order to encapsulate fre-
quently used functions and classes found throughout this book:

pip install d21==1.0.3


https://developer.nvidia.com/cuda-downloads
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Downloading and Running the Code
____________________________________________________________________________________________

Next, you will want to download the notebooks so that you can run each of the book’s
code blocks. Simply click on the “Notebooks” tab at the top of any HTML page on the
D2L.ai website'6 to download the code and then unzip it. Alternatively, you can fetch the
notebooks from the command line as follows:

5
EIZ5E
SERE

mkdir d21-en && cd d2l-en

curl https://d21l.ai/d21-en-1.0.3.zip -o d2l-en.zip
unzip d2l-en.zip && rm d2l-en.zip

cd mxnet

If you do not already have unzip installed, first run sudo apt-get install unzip. Now
we can start the Jupyter Notebook server by running:

jupyter notebook

At this point, you can open http://localhost:8888 (it may have already opened automatically)
in your web browser. Then we can run the code for each section of the book. Whenever
you open a new command line window, you will need to execute conda activate d21
to activate the runtime environment before running the D2L notebooks, or updating your
packages (either the deep learning framework or the d21 package). To exit the environment,
run conda deactivate.

Discussions 7.
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Notation

Throughout this book, we adhere to the following notational conventions. Note that some
of these symbols are placeholders, while others refer to specific objects. As a general rule
of thumb, the indefinite article “a” often indicates that the symbol is a placeholder and that
similarly formatted symbols can denote other objects of the same type. For example, “x: a
scalar” means that lowercased letters generally represent scalar values, but “Z: the set of
integers” refers specifically to the symbol Z.

Numerical Objects
I —

e x: ascalar
e X: a vector

e X: a matrix

X: a general tensor

I: the identity matrix (of some given dimension), i.e., a square matrix with 1 on all
diagonal entries and 0 on all off-diagonals

xi, [x];: the i™ element of vector x

Xij> Xij»[X]ij, [X];,j: the element of matrix X at row i and column ;.

Set Theory
. _________________________________________________________________________________________|

e X:aset

Z: the set of integers

Z*: the set of positive integers

R: the set of real numbers

e R: the set of n-dimensional vectors of real numbers



XXXVii

Notation

R%*P: The set of matrices of real numbers with a rows and b columns

|X|: cardinality (number of elements) of set X
e A U B: union of sets A and B

e A N B: intersection of sets A and B

A\ B: set subtraction of B from A (contains only those elements of A that do not
belong to B)

Functions and Operators

e f(-): a function

e log(-): the natural logarithm (base ¢)
e log,(+): logarithm to base 2

e exp(-): the exponential function

e 1(-): the indicator function; evaluates to 1 if the boolean argument is true, and O other-
wise

e 1x(z): the set-membership indicator function; evaluates to 1 if the element z belongs to
the set X and 0 otherwise

e (-)T: transpose of a vector or a matrix

e X! inverse of matrix X

e O: Hadamard (elementwise) product

e [-,-]: concatenation

e || -]lp: £, norm

e || ||: &2 norm

e (x,y): inner (dot) product of vectors x and y
e > : summation over a collection of elements

e []: product over a collection of elements

o &an equality asserted as a definition of the symbol on the left-hand side
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Calculus
]

%: derivative of y with respect to x

. %: partial derivative of y with respect to x

e V,y: gradient of y with respect to x
. fa b f(x) dx: definite integral of f from a to b with respect to x

. f f(x) dx: indefinite integral of f with respect to x

Probability and Information Theory
- _______________________________________________________________________________________|

e X: arandom variable

P: a probability distribution

X ~ P: the random variable X follows distribution P

e P(X = x): the probability assigned to the event where random variable X takes value x
e P(X | Y): the conditional probability distribution of X given Y

e p(-): a probability density function (PDF) associated with distribution P

e E[X]: expectation of a random variable X

e X 1 Y: random variables X and Y are independent

e X 1Y | Z: random variables X and Y are conditionally independent given Z

e ox: standard deviation of random variable X

e Var(X): variance of random variable X, equal to 0'}2(

e Cov(X,Y): covariance of random variables X and Y

Cov(X,Y)

e p(X,Y): the Pearson correlation coefficient between X and Y, equals ~—
X0y

e H(X): entropy of random variable X

e Dy (P||Q): the KL-divergence (or relative entropy) from distribution Q to distribution
P

Discussions 8.

EE!"'#.?EE]
18 i e ﬂ_g
o

e T


https://discuss.d2l.ai/t/25

Introduction

Until recently, nearly every computer program that you might have interacted with during an
ordinary day was coded up as arigid set of rules specifying precisely how it should behave.
Say that we wanted to write an application to manage an e-commerce platform. After
huddling around a whiteboard for a few hours to ponder the problem, we might settle on
the broad strokes of a working solution, for example: (i) users interact with the application
through an interface running in a web browser or mobile application; (ii) our application
interacts with a commercial-grade database engine to keep track of each user’s state and
maintain records of historical transactions; and (iii) at the heart of our application, the
business logic (you might say, the brains) of our application spells out a set of rules that
map every conceivable circumstance to the corresponding action that our program should
take.

To build the brains of our application, we might enumerate all the common events that our
program should handle. For example, whenever a customer clicks to add an item to their
shopping cart, our program should add an entry to the shopping cart database table, associ-
ating that user’s ID with the requested product’s ID. We might then attempt to step through
every possible corner case, testing the appropriateness of our rules and making any neces-
sary modifications. What happens if a user initiates a purchase with an empty cart? While
few developers ever get it completely right the first time (it might take some test runs to
work out the kinks), for the most part we can write such programs and confidently launch
them before ever seeing a real customer. Our ability to manually design automated sys-
tems that drive functioning products and systems, often in novel situations, is a remarkable
cognitive feat. And when you are able to devise solutions that work 100% of the time, you
typically should not be worrying about machine learning.

Fortunately for the growing community of machine learning scientists, many tasks that we
would like to automate do not bend so easily to human ingenuity. Imagine huddling around
the whiteboard with the smartest minds you know, but this time you are tackling one of the
following problems:

e Write a program that predicts tomorrow’s weather given geographic information, satellite
images, and a trailing window of past weather.

e Write a program that takes in a factoid question, expressed in free-form text, and answers
it correctly.

e Write a program that, given an image, identifies every person depicted in it and draws
outlines around each.
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e Write a program that presents users with products that they are likely to enjoy but un-
likely, in the natural course of browsing, to encounter.

For these problems, even elite programmers would struggle to code up solutions from
scratch. The reasons can vary. Sometimes the program that we are looking for follows
a pattern that changes over time, so there is no fixed right answer! In such cases, any
successful solution must adapt gracefully to a changing world. At other times, the rela-
tionship (say between pixels, and abstract categories) may be too complicated, requiring
thousands or millions of computations and following unknown principles. In the case of
image recognition, the precise steps required to perform the task lie beyond our conscious
understanding, even though our subconscious cognitive processes execute the task effort-
lessly.

Machine learning is the study of algorithms that can learn from experience. As a machine
learning algorithm accumulates more experience, typically in the form of observational
data or interactions with an environment, its performance improves. Contrast this with
our deterministic e-commerce platform, which follows the same business logic, no matter
how much experience accrues, until the developers themselves learn and decide that it is
time to update the software. In this book, we will teach you the fundamentals of machine
learning, focusing in particular on deep learning, a powerful set of techniques driving in-
novations in areas as diverse as computer vision, natural language processing, healthcare,
and genomics.

1.1 A Motivating Example
. _________________________________________________________________________________________|

Before beginning writing, the authors of this book, like much of the work force, had to
become caffeinated. We hopped in the car and started driving. Using an iPhone, Alex called
out “Hey Siri”, awakening the phone’s voice recognition system. Then Mu commanded
“directions to Blue Bottle coffee shop”. The phone quickly displayed the transcription of
his command. It also recognized that we were asking for directions and launched the Maps
application (app) to fulfill our request. Once launched, the Maps app identified a number
of routes. Next to each route, the phone displayed a predicted transit time. While this story
was fabricated for pedagogical convenience, it demonstrates that in the span of just a few
seconds, our everyday interactions with a smart phone can engage several machine learning
models.

Imagine just writing a program to respond to a wake word such as “Alexa”, “OK Google”,
and “Hey Siri”. Try coding it up in a room by yourself with nothing but a computer and
a code editor, as illustrated in Fig. 1.1.1. How would you write such a program from first
principles? Think about it... the problem is hard. Every second, the microphone will col-
lect roughly 44,000 samples. Each sample is a measurement of the amplitude of the sound
wave. What rule could map reliably from a snippet of raw audio to confident predictions
{yes, no} about whether the snippet contains the wake word? If you are stuck, do not worry.



A Motivating Example

We do not know how to write such a program from scratch either. That is why we use ma-
chine learning.

@ 0’) \!/ —> | Wake word model | —>  {ves, no}

Identify a wake word.

Here is the trick. Often, even when we do not know how to tell a computer explicitly how
to map from inputs to outputs, we are nonetheless capable of performing the cognitive feat
ourselves. In other words, even if you do not know how to program a computer to rec-
ognize the word “Alexa”, you yourself are able to recognize it. Armed with this ability,
we can collect a huge dataset containing examples of audio snippets and associated labels,
indicating which snippets contain the wake word. In the currently dominant approach to
machine learning, we do not attempt to design a system explicitly to recognize wake words.
Instead, we define a flexible program whose behavior is determined by a number of pa-
rameters. Then we use the dataset to determine the best possible parameter values, i.e.,
those that improve the performance of our program with respect to a chosen performance
measure.

You can think of the parameters as knobs that we can turn, manipulating the behavior of
the program. Once the parameters are fixed, we call the program a model. The set of all
distinct programs (input—output mappings) that we can produce just by manipulating the
parameters is called a family of models. And the “meta-program” that uses our dataset to
choose the parameters is called a learning algorithm.

Before we can go ahead and engage the learning algorithm, we have to define the problem
precisely, pinning down the exact nature of the inputs and outputs, and choosing an ap-
propriate model family. In this case, our model receives a snippet of audio as input, and
the model generates a selection among {yes, no} as output. If all goes according to plan
the model’s guesses will typically be correct as to whether the snippet contains the wake
word.

If we choose the right family of models, there should exist one setting of the knobs such
that the model fires “yes” every time it hears the word “Alexa”. Because the exact choice of
the wake word is arbitrary, we will probably need a model family sufficiently rich that, via
another setting of the knobs, it could fire “yes” only upon hearing the word “Apricot”. We
expect that the same model family should be suitable for “Alexa” recognition and “Apricot”
recognition because they seem, intuitively, to be similar tasks. However, we might need a
different family of models entirely if we want to deal with fundamentally different inputs
or outputs, say if we wanted to map from images to captions, or from English sentences to
Chinese sentences.

As you might guess, if we just set all of the knobs randomly, it is unlikely that our model
will recognize “Alexa”, “Apricot”, or any other English word. In machine learning, the
learning is the process by which we discover the right setting of the knobs for coercing the
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desired behavior from our model. In other words, we train our model with data. As shown
in Fig. 1.1.2, the training process usually looks like the following:

1. Start off with a randomly initialized model that cannot do anything useful.
2. Grab some of your data (e.g., audio snippets and corresponding {yes, no} labels).
3. Tweak the knobs to make the model perform better as assessed on those examples.

4. Repeat Steps 2 and 3 until the model is awesome.

Update the
| model
Design a model Grab new data
l Check if good
enough

A typical training process.

To summarize, rather than code up a wake word recognizer, we code up a program that can
learn to recognize wake words, if presented with a large labeled dataset. You can think of
this act of determining a program’s behavior by presenting it with a dataset as programming
with data. That is to say, we can “program” a cat detector by providing our machine learning
system with many examples of cats and dogs. This way the detector will eventually learn
to emit a very large positive number if it is a cat, a very large negative number if it is a
dog, and something closer to zero if it is not sure. This barely scratches the surface of what
machine learning can do. Deep learning, which we will explain in greater detail later, is
just one among many popular methods for solving machine learning problems.

1.2 Key Components
. _________________________________________________________________________________________|

In our wake word example, we described a dataset consisting of audio snippets and binary
labels, and we gave a hand-wavy sense of how we might train a model to approximate a
mapping from snippets to classifications. This sort of problem, where we try to predict a
designated unknown label based on known inputs given a dataset consisting of examples
for which the labels are known, is called supervised learning. This is just one among many
kinds of machine learning problems. Before we explore other varieties, we would like to
shed more light on some core components that will follow us around, no matter what kind
of machine learning problem we tackle:

1. The data that we can learn from.
2. A model of how to transform the data.
3. An objective function that quantifies how well (or badly) the model is doing.

4. An algorithm to adjust the model’s parameters to optimize the objective function.
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1.2.1 Data

It might go without saying that you cannot do data science without data. We could lose
hundreds of pages pondering what precisely data is, but for now, we will focus on the key
properties of the datasets that we will be concerned with. Generally, we are concerned with
a collection of examples. In order to work with data usefully, we typically need to come
up with a suitable numerical representation. Each example (or data point, data instance,
sample) typically consists of a set of attributes called features (sometimes called covariates
or inputs), based on which the model must make its predictions. In supervised learning
problems, our goal is to predict the value of a special attribute, called the label (or target),
that is not part of the model’s input.

If we were working with image data, each example might consist of an individual photo-
graph (the features) and a number indicating the category to which the photograph belongs
(the label). The photograph would be represented numerically as three grids of numerical
values representing the brightness of red, green, and blue light at each pixel location. For
example, a 200 x 200 pixel color photograph would consist of 200 x 200 x 3 = 120000
numerical values.

Alternatively, we might work with electronic health record data and tackle the task of pre-
dicting the likelihood that a given patient will survive the next 30 days. Here, our features
might consist of a collection of readily available attributes and frequently recorded mea-
surements, including age, vital signs, comorbidities, current medications, and recent pro-
cedures. The label available for training would be a binary value indicating whether each
patient in the historical data survived within the 30-day window.

In such cases, when every example is characterized by the same number of numerical fea-
tures, we say that the inputs are fixed-length vectors and we call the (constant) length of
the vectors the dimensionality of the data. As you might imagine, fixed-length inputs can
be convenient, giving us one less complication to worry about. However, not all data can
easily be represented as fixed-length vectors. While we might expect microscope images to
come from standard equipment, we cannot expect images mined from the Internet all to have
the same resolution or shape. For images, we might consider cropping them to a standard
size, but that strategy only gets us so far. We risk losing information in the cropped-out
portions. Moreover, text data resists fixed-length representations even more stubbornly.
Consider the customer reviews left on e-commerce sites such as Amazon, IMDb, and Tri-
pAdvisor. Some are short: “it stinks!”. Others ramble for pages. One major advantage of
deep learning over traditional methods is the comparative grace with which modern models
can handle varying-length data.

Generally, the more data we have, the easier our job becomes. When we have more data, we
can train more powerful models and rely less heavily on preconceived assumptions. The
regime change from (comparatively) small to big data is a major contributor to the success
of modern deep learning. To drive the point home, many of the most exciting models in
deep learning do not work without large datasets. Some others might work in the small
data regime, but are no better than traditional approaches.

Finally, it is not enough to have lots of data and to process it cleverly. We need the right
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data. If the data is full of mistakes, or if the chosen features are not predictive of the target
quantity of interest, learning is going to fail. The situation is captured well by the cliché:
garbage in, garbage out. Moreover, poor predictive performance is not the only poten-
tial consequence. In sensitive applications of machine learning, like predictive policing,
resume screening, and risk models used for lending, we must be especially alert to the con-
sequences of garbage data. One commonly occurring failure mode concerns datasets where
some groups of people are unrepresented in the training data. Imagine applying a skin can-
cer recognition system that had never seen black skin before. Failure can also occur when
the data does not only under-represent some groups but reflects societal prejudices. For ex-
ample, if past hiring decisions are used to train a predictive model that will be used to screen
resumes then machine learning models could inadvertently capture and automate historical
injustices. Note that this can all happen without the data scientist actively conspiring, or
even being aware.

1.2.2 Models

Most machine learning involves transforming the data in some sense. We might want to
build a system that ingests photos and predicts smiley-ness. Alternatively, we might want to
ingest a set of sensor readings and predict how normal vs. anomalous the readings are. By
model, we denote the computational machinery for ingesting data of one type, and spitting
out predictions of a possibly different type. In particular, we are interested in statistical
models that can be estimated from data. While simple models are perfectly capable of ad-
dressing appropriately simple problems, the problems that we focus on in this book stretch
the limits of classical methods. Deep learning is differentiated from classical approaches
principally by the set of powerful models that it focuses on. These models consist of many
successive transformations of the data that are chained together top to bottom, thus the
name deep learning. On our way to discussing deep models, we will also discuss some
more traditional methods.

1.2.3 Objective Functions

Earlier, we introduced machine learning as learning from experience. By learning here, we
mean improving at some task over time. But who is to say what constitutes an improvement?
You might imagine that we could propose updating our model, and some people might
disagree on whether our proposal constituted an improvement or not.

In order to develop a formal mathematical system of learning machines, we need to have
formal measures of how good (or bad) our models are. In machine learning, and optimiza-
tion more generally, we call these objective functions. By convention, we usually define
objective functions so that lower is better. This is merely a convention. You can take any
function for which higher is better, and turn it into a new function that is qualitatively iden-
tical but for which lower is better by flipping the sign. Because we choose lower to be
better, these functions are sometimes called loss functions.

When trying to predict numerical values, the most common loss function is squared error,
i.e., the square of the difference between the prediction and the ground truth target. For
classification, the most common objective is to minimize error rate, i.e., the fraction of
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examples on which our predictions disagree with the ground truth. Some objectives (e.g.,
squared error) are easy to optimize, while others (e.g., error rate) are difficult to optimize
directly, owing to non-differentiability or other complications. In these cases, it is common
instead to optimize a surrogate objective.

During optimization, we think of the loss as a function of the model’s parameters, and treat
the training dataset as a constant. We learn the best values of our model’s parameters by
minimizing the loss incurred on a set consisting of some number of examples collected for
training. However, doing well on the training data does not guarantee that we will do well
on unseen data. So we will typically want to split the available data into two partitions:
the training dataset (or training set), for learning model parameters; and the fest dataset
(or test set), which is held out for evaluation. At the end of the day, we typically report
how our models perform on both partitions. You could think of training performance as
analogous to the scores that a student achieves on the practice exams used to prepare for
some real final exam. Even if the results are encouraging, that does not guarantee success
on the final exam. Over the course of studying, the student might begin to memorize the
practice questions, appearing to master the topic but faltering when faced with previously
unseen questions on the actual final exam. When a model performs well on the training set
but fails to generalize to unseen data, we say that it is overfitting to the training data.

1.2.4 Optimization Algorithms

Once we have got some data source and representation, a model, and a well-defined objec-
tive function, we need an algorithm capable of searching for the best possible parameters
for minimizing the loss function. Popular optimization algorithms for deep learning are
based on an approach called gradient descent. In brief, at each step, this method checks
to see, for each parameter, how that training set loss would change if you perturbed that
parameter by just a small amount. It would then update the parameter in the direction that
lowers the loss.

1.3 Kinds of Machine Learning Problems
. _________________________________________________________________________________________|
The wake word problem in our motivating example is just one among many that machine
learning can tackle. To motivate the reader further and provide us with some common

language that will follow us throughout the book, we now provide a broad overview of the
landscape of machine learning problems.

1.3.1 Supervised Learning

Supervised learning describes tasks where we are given a dataset containing both features
and labels and asked to produce a model that predicts the labels when given input features.
Each feature—label pair is called an example. Sometimes, when the context is clear, we
may use the term examples to refer to a collection of inputs, even when the corresponding
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labels are unknown. The supervision comes into play because, for choosing the parame-
ters, we (the supervisors) provide the model with a dataset consisting of labeled examples.
In probabilistic terms, we typically are interested in estimating the conditional probability
of a label given input features. While it is just one among several paradigms, supervised
learning accounts for the majority of successful applications of machine learning in indus-
try. Partly that is because many important tasks can be described crisply as estimating the
probability of something unknown given a particular set of available data:

e Predict cancer vs. not cancer, given a computer tomography image.
e Predict the correct translation in French, given a sentence in English.
e Predict the price of a stock next month based on this month’s financial reporting data.

While all supervised learning problems are captured by the simple description “predicting
the labels given input features”, supervised learning itself can take diverse forms and require
tons of modeling decisions, depending on (among other considerations) the type, size, and
quantity of the inputs and outputs. For example, we use different models for processing
sequences of arbitrary lengths and fixed-length vector representations. We will visit many
of these problems in depth throughout this book.

Informally, the learning process looks something like the following. First, grab a big col-
lection of examples for which the features are known and select from them a random subset,
acquiring the ground truth labels for each. Sometimes these labels might be available data
that have already been collected (e.g., did a patient die within the following year?) and
other times we might need to employ human annotators to label the data, (e.g., assigning
images to categories). Together, these inputs and corresponding labels comprise the train-
ing set. We feed the training dataset into a supervised learning algorithm, a function that
takes as input a dataset and outputs another function: the learned model. Finally, we can
feed previously unseen inputs to the learned model, using its outputs as predictions of the
corresponding label. The full process is drawn in Fig. 1.3.1.

Training inputs S:Jpen@sed Training labels
u learning u

Input Model Output

Supervised learning.

Regression

Perhaps the simplest supervised learning task to wrap your head around is regression. Con-
sider, for example, a set of data harvested from a database of home sales. We might con-
struct a table, in which each row corresponds to a different house, and each column cor-
responds to some relevant attribute, such as the square footage of a house, the number of
bedrooms, the number of bathrooms, and the number of minutes (walking) to the center
of town. In this dataset, each example would be a specific house, and the corresponding
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feature vector would be one row in the table. If you live in New York or San Francisco, and
you are not the CEO of Amazon, Google, Microsoft, or Facebook, the (sq. footage, no. of
bedrooms, no. of bathrooms, walking distance) feature vector for your home might look
something like: [600, 1, 1,60]. However, if you live in Pittsburgh, it might look more like
[3000, 4, 3, 10]. Fixed-length feature vectors like this are essential for most classic machine
learning algorithms.

What makes a problem a regression is actually the form of the target. Say that you are in the
market for a new home. You might want to estimate the fair market value of a house, given
some features such as above. The data here might consist of historical home listings and the
labels might be the observed sales prices. When labels take on arbitrary numerical values
(even within some interval), we call this a regression problem. The goal is to produce a
model whose predictions closely approximate the actual label values.

Lots of practical problems are easily described as regression problems. Predicting the rating
that a user will assign to a movie can be thought of as a regression problem and if you
designed a great algorithm to accomplish this feat in 2009, you might have won the 1-
million-dollar Netflix prize . Predicting the length of stay for patients in the hospital is
also a regression problem. A good rule of thumb is that any how much? or how many?

=% problem is likely to be regression. For example:

e How many hours will this surgery take?
e How much rainfall will this town have in the next six hours?

Even if you have never worked with machine learning before, you have probably worked
through a regression problem informally. Imagine, for example, that you had your drains re-
paired and that your contractor spent 3 hours removing gunk from your sewage pipes. Then
they sent you a bill of 350 dollars. Now imagine that your friend hired the same contractor
for 2 hours and received a bill of 250 dollars. If someone then asked you how much to
expect on their upcoming gunk-removal invoice you might make some reasonable assump-
tions, such as more hours worked costs more dollars. You might also assume that there is
some base charge and that the contractor then charges per hour. If these assumptions held
true, then given these two data examples, you could already identify the contractor’s pricing
structure: 100 dollars per hour plus 50 dollars to show up at your house. If you followed
that much, then you already understand the high-level idea behind /inear regression.

In this case, we could produce the parameters that exactly matched the contractor’s prices.
Sometimes this is not possible, e.g., if some of the variation arises from factors beyond
your two features. In these cases, we will try to learn models that minimize the distance
between our predictions and the observed values. In most of our chapters, we will focus on
minimizing the squared error loss function. As we will see later, this loss corresponds to
the assumption that our data were corrupted by Gaussian noise.

Classification

While regression models are great for addressing how many? questions, lots of problems do
not fit comfortably in this template. Consider, for example, a bank that wants to develop a
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check scanning feature for its mobile app. Ideally, the customer would simply snap a photo
of a check and the app would automatically recognize the text from the image. Assuming
that we had some ability to segment out image patches corresponding to each handwritten
character, then the primary remaining task would be to determine which character among
some known set is depicted in each image patch. These kinds of which one? problems
are called classification and require a different set of tools from those used for regression,
although many techniques will carry over.

In classification, we want our model to look at features, e.g., the pixel values in an image,
and then predict to which category (sometimes called a class) among some discrete set
of options, an example belongs. For handwritten digits, we might have ten classes, corre-
sponding to the digits O through 9. The simplest form of classification is when there are
only two classes, a problem which we call binary classification. For example, our dataset
could consist of images of animals and our labels might be the classes {cat, dog}. Whereas
in regression we sought a regressor to output a numerical value, in classification we seek a
classifier, whose output is the predicted class assignment.

For reasons that we will get into as the book gets more technical, it can be difficult to opti-
mize a model that can only output a firm categorical assignment, e.g., either “cat” or “dog”.
In these cases, it is usually much easier to express our model in the language of probabili-
ties. Given features of an example, our model assigns a probability to each possible class.
Returning to our animal classification example where the classes are {cat, dog}, a classi-
fier might see an image and output the probability that the image is a cat as 0.9. We can
interpret this number by saying that the classifier is 90% sure that the image depicts a cat.
The magnitude of the probability for the predicted class conveys a notion of uncertainty.
It is not the only one available and we will discuss others in chapters dealing with more
advanced topics.

When we have more than two possible classes, we call the problem multiclass classification.

Common examples include handwritten character recognition {0, 1, 2, ... 9, a, b, c, ...}. While

we attacked regression problems by trying to minimize the squared error loss function, the
common loss function for classification problems is called cross-entropy, whose name will
be demystified when we introduce information theory in later chapters.

Note that the most likely class is not necessarily the one that you are going to use for your
decision. Assume that you find a beautiful mushroom in your backyard as shown in Fig.
1.3.2.

Now, assume that you built a classifier and trained it to predict whether a mushroom is poi-
sonous based on a photograph. Say our poison-detection classifier outputs that the proba-
bility that Fig. 1.3.2 shows a death cap is 0.2. In other words, the classifier is 80% sure that
our mushroom is not a death cap. Still, you would have to be a fool to eat it. That is because
the certain benefit of a delicious dinner is not worth a 20% risk of dying from it. In other
words, the effect of the uncertain risk outweighs the benefit by far. Thus, in order to make
a decision about whether to eat the mushroom, we need to compute the expected detriment
associated with each action which depends both on the likely outcomes and the benefits or
harms associated with each. In this case, the detriment incurred by eating the mushroom
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9t leiei s Death cap - do not eat!

might be 0.2 X 00 4+ 0.8 X 0 = oo, whereas the loss of discarding itis 0.2x0+0.8 x 1 = 0.8.
Our caution was justified: as any mycologist would tell us, the mushroom in Fig. 1.3.2 is
actually a death cap.

Classification can get much more complicated than just binary or multiclass classification.
For instance, there are some variants of classification addressing hierarchically structured
classes. In such cases not all errors are equal—if we must err, we might prefer to misclassify
to a related class rather than a distant class. Usually, this is referred to as hierarchical
classification. For inspiration, you might think of Linnaeus2°, who organized fauna in a
hierarchy.

In the case of animal classification, it might not be so bad to mistake a poodle for a schnauzer,
but our model would pay a huge penalty if it confused a poodle with a dinosaur. Which
hierarchy is relevant might depend on how you plan to use the model. For example, rat-
tlesnakes and garter snakes might be close on the phylogenetic tree, but mistaking a rattler
for a garter could have fatal consequences.

Tagging

Some classification problems fit neatly into the binary or multiclass classification setups.
For example, we could train a normal binary classifier to distinguish cats from dogs. Given
the current state of computer vision, we can do this easily, with off-the-shelf tools. Nonethe-
less, no matter how accurate our model gets, we might find ourselves in trouble when the
classifier encounters an image of the Town Musicians of Bremen, a popular German fairy
tale featuring four animals (Fig. 1.3.3).

As you can see, the photo features a cat, a rooster, a dog, and a donkey, with some trees in
the background. If we anticipate encountering such images, multiclass classification might
not be the right problem formulation. Instead, we might want to give the model the option
of saying the image depicts a cat, a dog, a donkey, and a rooster.
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1ot Beicl A donkey, a dog, a cat, and a rooster.

The problem of learning to predict classes that are not mutually exclusive is called multi-
label classification. Auto-tagging problems are typically best described in terms of multi-
label classification. Think of the tags people might apply to posts on a technical blog, e.g.,
“machine learning”, “technology”, “gadgets”, “programming languages”, “Linux”, “cloud
computing”, “AWS”. A typical article might have 5-10 tags applied. Typically, tags will
exhibit some correlation structure. Posts about “cloud computing” are likely to mention

“AWS” and posts about “machine learning” are likely to mention “GPUs”.

Sometimes such tagging problems draw on enormous label sets. The National Library of
Medicine employs many professional annotators who associate each article to be indexed in
PubMed with a set of tags drawn from the Medical Subject Headings (MeSH) ontology, a
collection of roughly 28,000 tags. Correctly tagging articles is important because it allows
researchers to conduct exhaustive reviews of the literature. This is a time-consuming pro-
cess and typically there is a one-year lag between archiving and tagging. Machine learning
[E55E can provide provisional tags until each article has a proper manual review. Indeed, for

21
EI several years, the BioASQ organization has hosted competitions?® for this task.
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Search

In the field of information retrieval, we often impose ranks on sets of items. Take web
search for example. The goal is less to determine whether a particular page is relevant for a
query, but rather which, among a set of relevant results, should be shown most prominently
to a particular user. One way of doing this might be to first assign a score to every element
in the set and then to retrieve the top-rated elements. PageRank 22, the original secret

. sauce behind the Google search engine, was an early example of such a scoring system.

! Weirdly, the scoring provided by PageRank did not depend on the actual query. Instead,
they relied on a simple relevance filter to identify the set of relevant candidates and then
used PageRank to prioritize the more authoritative pages. Nowadays, search engines use
machine learning and behavioral models to obtain query-dependent relevance scores. There
are entire academic conferences devoted to this subject.

)

EEIE
%
prik
[

e
e

Recommender Systems

Recommender systems are another problem setting that is related to search and ranking.
The problems are similar insofar as the goal is to display a set of items relevant to the user.
The main difference is the emphasis on personalization to specific users in the context of
recommender systems. For instance, for movie recommendations, the results page for a
science fiction fan and the results page for a connoisseur of Peter Sellers comedies might
differ significantly. Similar problems pop up in other recommendation settings, e.g., for
retail products, music, and news recommendation.

In some cases, customers provide explicit feedback, communicating how much they liked a
particular product (e.g., the product ratings and reviews on Amazon, IMDb, or Goodreads).
In other cases, they provide implicit feedback, e.g., by skipping titles on a playlist, which
might indicate dissatisfaction or maybe just indicate that the song was inappropriate in
context. In the simplest formulations, these systems are trained to estimate some score,
such as an expected star rating or the probability that a given user will purchase a particular
1tem.

Given such a model, for any given user, we could retrieve the set of objects with the largest
scores, which could then be recommended to the user. Production systems are consider-
ably more advanced and take detailed user activity and item characteristics into account
when computing such scores. Fig. 1.3.4 displays the deep learning books recommended by
Amazon based on personalization algorithms tuned to capture Aston’s preferences.

Despite their tremendous economic value, recommender systems naively built on top of
predictive models suffer some serious conceptual flaws. To start, we only observe censored
feedback: users preferentially rate movies that they feel strongly about. For example, on
a five-point scale, you might notice that items receive many one- and five-star ratings but
that there are conspicuously few three-star ratings. Moreover, current purchase habits are
often a result of the recommendation algorithm currently in place, but learning algorithms
do not always take this detail into account. Thus it is possible for feedback loops to form
where a recommender system preferentially pushes an item that is then taken to be better
(due to greater purchases) and in turn is recommended even more frequently. Many of
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these problems—about how to deal with censoring, incentives, and feedback loops—are
important open research questions.

Sequence Learning

So far, we have looked at problems where we have some fixed number of inputs and produce
a fixed number of outputs. For example, we considered predicting house prices given a
fixed set of features: square footage, number of bedrooms, number of bathrooms, and the
transit time to downtown. We also discussed mapping from an image (of fixed dimension)
to the predicted probabilities that it belongs to each among a fixed number of classes and
predicting star ratings associated with purchases based on the user ID and product ID alone.
In these cases, once our model is trained, after each test example is fed into our model, it
is immediately forgotten. We assumed that successive observations were independent and
thus there was no need to hold on to this context.

But how should we deal with video snippets? In this case, each snippet might consist of
a different number of frames. And our guess of what is going on in each frame might be
much stronger if we take into account the previous or succeeding frames. The same goes for
language. For example, one popular deep learning problem is machine translation: the task
of ingesting sentences in some source language and predicting their translations in another
language.

Such problems also occur in medicine. We might want a model to monitor patients in the
intensive care unit and to fire off alerts whenever their risk of dying in the next 24 hours
exceeds some threshold. Here, we would not throw away everything that we know about
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the patient history every hour, because we might not want to make predictions based only
on the most recent measurements.

Questions like these are among the most exciting applications of machine learning and
they are instances of sequence learning. They require a model either to ingest sequences
of inputs or to emit sequences of outputs (or both). Specifically, sequence-to-sequence
learning considers problems where both inputs and outputs consist of variable-length se-
quences. Examples include machine translation and speech-to-text transcription. While it
is impossible to consider all types of sequence transformations, the following special cases
are worth mentioning.

Tagging and Parsing. This involves annotating a text sequence with attributes. Here,
the inputs and outputs are aligned, i.e., they are of the same number and occur in a corre-
sponding order. For instance, in part-of-speech (PoS) tagging, we annotate every word in
a sentence with the corresponding part of speech, i.e., “noun” or “direct object”. Alterna-
tively, we might want to know which groups of contiguous words refer to named entities,
like people, places, or organizations. In the cartoonishly simple example below, we might
just want to indicate whether or not any word in the sentence is part of a named entity
(tagged as “Ent”).

Tom has dinner in Washington with Sally
Ent - - - Ent - Ent

Automatic Speech Recognition. With speech recognition, the input sequence is an audio
recording of a speaker (Fig. 1.3.5), and the output is a transcript of what the speaker said.
The challenge is that there are many more audio frames (sound is typically sampled at
8kHz or 16kHz) than text, i.e., there is no 1:1 correspondence between audio and text,
since thousands of samples may correspond to a single spoken word. These are sequence-
to-sequence learning problems, where the output is much shorter than the input. While
humans are remarkably good at recognizing speech, even from low-quality audio, getting
computers to perform the same feat is a formidable challenge.

M"W‘“‘"“"*."" phllhi’uﬂnm1ll'mm b"“w"*‘l'imlﬂll ll"*"M *"' IM““*W

-D-e-e-p- L-ea-r-ni-ng- in an audio recording.

Text to Speech. This is the inverse of automatic speech recognition. Here, the input is text
and the output is an audio file. In this case, the output is much longer than the input.

Machine Translation. Unlike the case of speech recognition, where corresponding inputs
and outputs occur in the same order, in machine translation, unaligned data poses a new
challenge. Here the input and output sequences can have different lengths, and the corre-
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sponding regions of the respective sequences may appear in a different order. Consider the
following illustrative example of the peculiar tendency of Germans to place the verbs at the
end of sentences:

German: Haben Sie sich schon dieses grossartige Lehrwerk angeschaut?
English: Have you already looked at this excellent textbook?
Wrong alignment: Have you yourself already this excellent textbook looked at?

Many related problems pop up in other learning tasks. For instance, determining the order
in which a user reads a webpage is a two-dimensional layout analysis problem. Dialogue
problems exhibit all kinds of additional complications, where determining what to say next
requires taking into account real-world knowledge and the prior state of the conversation
across long temporal distances. Such topics are active areas of research.

1.3.2 Unsupervised and Self-Supervised Learning

The previous examples focused on supervised learning, where we feed the model a giant
dataset containing both the features and corresponding label values. You could think of
the supervised learner as having an extremely specialized job and an extremely dictatorial
boss. The boss stands over the learner’s shoulder and tells them exactly what to do in every
situation until they learn to map from situations to actions. Working for such a boss sounds
pretty lame. On the other hand, pleasing such a boss is pretty easy. You just recognize the
pattern as quickly as possible and imitate the boss’s actions.

Considering the opposite situation, it could be frustrating to work for a boss who has no
idea what they want you to do. However, if you plan to be a data scientist, you had better
get used to it. The boss might just hand you a giant dump of data and tell you to do some
data science with it! This sounds vague because it is vague. We call this class of problems
unsupervised learning, and the type and number of questions we can ask is limited only by
our creativity. We will address unsupervised learning techniques in later chapters. To whet
your appetite for now, we describe a few of the following questions you might ask.

e Can we find a small number of prototypes that accurately summarize the data? Given a
set of photos, can we group them into landscape photos, pictures of dogs, babies, cats,
and mountain peaks? Likewise, given a collection of users’ browsing activities, can
we group them into users with similar behavior? This problem is typically known as
clustering.

e Can we find a small number of parameters that accurately capture the relevant properties
of the data? The trajectories of a ball are well described by velocity, diameter, and
mass of the ball. Tailors have developed a small number of parameters that describe
human body shape fairly accurately for the purpose of fitting clothes. These problems
are referred to as subspace estimation. If the dependence is linear, it is called principal
component analysis.

o [s there a representation of (arbitrarily structured) objects in Euclidean space such that
symbolic properties can be well matched? This can be used to describe entities and
their relations, such as “Rome” — “Italy” + “France” = “Paris”.
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o Isthere a description of the root causes of much of the data that we observe? For instance,
if we have demographic data about house prices, pollution, crime, location, education,
and salaries, can we discover how they are related simply based on empirical data?
The fields concerned with causality and probabilistic graphical models tackle such
questions.

e Another important and exciting recent development in unsupervised learning is the ad-
vent of deep generative models. These models estimate the density of the data, either
explicitly or implicitly. Once trained, we can use a generative model either to score
examples according to how likely they are, or to sample synthetic examples from the
learned distribution. Early deep learning breakthroughs in generative modeling came
with the invention of variational autoencoders (Kingma and Welling, 2014, Rezende
et al., 2014) and continued with the development of generative adversarial networks
(Goodfellow et al., 2014). More recent advances include normalizing flows (Dinh et
al., 2014, Dinh et al., 2017) and diffusion models (Ho et al., 2020, Sohl-Dickstein et
al., 2015, Song and Ermon, 2019, Song et al., 2021).

A further development in unsupervised learning has been the rise of self-supervised learn-
ing, techniques that leverage some aspect of the unlabeled data to provide supervision. For
text, we can train models to “fill in the blanks” by predicting randomly masked words us-
ing their surrounding words (contexts) in big corpora without any labeling effort (Devlin
et al., 2018)! For images, we may train models to tell the relative position between two
cropped regions of the same image (Doersch et al., 2015), to predict an occluded part of an
image based on the remaining portions of the image, or to predict whether two examples
are perturbed versions of the same underlying image. Self-supervised models often learn
representations that are subsequently leveraged by fine-tuning the resulting models on some
downstream task of interest.

1.3.3 Interacting with an Environment

So far, we have not discussed where data actually comes from, or what actually happens
when a machine learning model generates an output. That is because supervised learning
and unsupervised learning do not address these issues in a very sophisticated way. In each
case, we grab a big pile of data upfront, then set our pattern recognition machines in motion
without ever interacting with the environment again. Because all the learning takes place
after the algorithm is disconnected from the environment, this is sometimes called offline
learning. For example, supervised learning assumes the simple interaction pattern depicted
in Fig. 1.3.6.

This simplicity of offline learning has its charms. The upside is that we can worry about
pattern recognition in isolation, with no concern about complications arising from interac-
tions with a dynamic environment. But this problem formulation is limiting. If you grew
up reading Asimov’s Robot novels, then you probably picture artificially intelligent agents
capable not only of making predictions, but also of taking actions in the world. We want
to think about intelligent agents, not just predictive models. This means that we need to
think about choosing actions, not just making predictions. In contrast to mere predictions,
actions actually impact the environment. If we want to train an intelligent agent, we must



18

Introduction

[— Environment ﬁ
Training inputs L» Super\{ised «— Training labels
learning

!

Input Model ——| Output

Collecting data for supervised learning from an environment.

account for the way its actions might impact the future observations of the agent, and so
offline learning is inappropriate.

Considering the interaction with an environment opens a whole set of new modeling ques-
tions. The following are just a few examples.

e Does the environment remember what we did previously?
e Does the environment want to help us, e.g., a user reading text into a speech recognizer?

e Does the environment want to beat us, e.g., spammers adapting their emails to evade
spam filters?

e Does the environment have shifting dynamics? For example, would future data always
resemble the past or would the patterns change over time, either naturally or in re-
sponse to our automated tools?

These questions raise the problem of distribution shift, where training and test data are
different. An example of this, that many of us may have met, is when taking exams written
by a lecturer, while the homework was composed by their teaching assistants. Next, we
briefly describe reinforcement learning, a rich framework for posing learning problems in
which an agent interacts with an environment.

1.3.4 Reinforcement Learning

If you are interested in using machine learning to develop an agent that interacts with an
environment and takes actions, then you are probably going to wind up focusing on re-
inforcement learning. This might include applications to robotics, to dialogue systems,
and even to developing artificial intelligence (Al) for video games. Deep reinforcement
learning, which applies deep learning to reinforcement learning problems, has surged in
popularity. The breakthrough deep Q-network, that beat humans at Atari games using only
the visual input (Mnih et al., 2015), and the AlphaGo program, which dethroned the world
champion at the board game Go (Silver et al., 2016), are two prominent examples.

Reinforcement learning gives a very general statement of a problem in which an agent inter-
acts with an environment over a series of time steps. At each time step, the agent receives
some observation from the environment and must choose an action that is subsequently
transmitted back to the environment via some mechanism (sometimes called an actuator),
when, after each loop, the agent receives a reward from the environment. This process is
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illustrated in Fig. 1.3.7. The agent then receives a subsequent observation, and chooses a
subsequent action, and so on. The behavior of a reinforcement learning agent is governed
by a policy. In brief, a policy is just a function that maps from observations of the environ-
ment to actions. The goal of reinforcement learning is to produce good policies.

—— Action

|

Agent Reward Environment

Observation |e——

The interaction between reinforcement learning and an environment.

It is hard to overstate the generality of the reinforcement learning framework. For example,
supervised learning can be recast as reinforcement learning. Say we had a classification
problem. We could create a reinforcement learning agent with one action corresponding
to each class. We could then create an environment which gave a reward that was exactly
equal to the loss function from the original supervised learning problem.

Further, reinforcement learning can also address many problems that supervised learning
cannot. For example, in supervised learning, we always expect that the training input comes
associated with the correct label. But in reinforcement learning, we do not assume that,
for each observation the environment tells us the optimal action. In general, we just get
some reward. Moreover, the environment may not even tell us which actions led to the
reward.

Consider the game of chess. The only real reward signal comes at the end of the game when
we either win, earning a reward of, say, 1, or when we lose, receiving a reward of, say,
—1. So reinforcement learners must deal with the credit assignment problem: determining
which actions to credit or blame for an outcome. The same goes for an employee who gets
a promotion on October 11. That promotion likely reflects a number of well-chosen actions
over the previous year. Getting promoted in the future requires figuring out which actions
along the way led to the earlier promotions.

Reinforcement learners may also have to deal with the problem of partial observability.
That is, the current observation might not tell you everything about your current state. Say
your cleaning robot found itself trapped in one of many identical closets in your house.
Rescuing the robot involves inferring its precise location which might require considering
earlier observations prior to it entering the closet.

Finally, at any given point, reinforcement learners might know of one good policy, but
there might be many other better policies that the agent has never tried. The reinforcement
learner must constantly choose whether to exploit the best (currently) known strategy as a
policy, or to explore the space of strategies, potentially giving up some short-term reward
in exchange for knowledge.

The general reinforcement learning problem has a very general setting. Actions affect sub-
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sequent observations. Rewards are only observed when they correspond to the chosen ac-
tions. The environment may be either fully or partially observed. Accounting for all this
complexity at once may be asking too much. Moreover, not every practical problem ex-
hibits all this complexity. As a result, researchers have studied a number of special cases
of reinforcement learning problems.

When the environment is fully observed, we call the reinforcement learning problem a
Markov decision process. When the state does not depend on the previous actions, we call
it a contextual bandit problem. When there is no state, just a set of available actions with
initially unknown rewards, we have the classic multi-armed bandit problem.

1.4 Roots
]

We have just reviewed a small subset of problems that machine learning can address. For
a diverse set of machine learning problems, deep learning provides powerful tools for their
solution. Although many deep learning methods are recent inventions, the core ideas be-
hind learning from data have been studied for centuries. In fact, humans have held the
desire to analyze data and to predict future outcomes for ages, and it is this desire that is
at the root of much of natural science and mathematics. Two examples are the Bernoulli
distribution, named after Jacob Bernoulli (1655-1705)23, and the Gaussian distribution
discovered by Carl Friedrich Gauss (1777-1855)2%. Gauss invented, for instance, the least
* mean squares algorithm, which is still used today for a multitude of problems from insur-
ance calculations to medical diagnostics. Such tools enhanced the experimental approach
in the natural sciences—for instance, Ohm’s law relating current and voltage in a resistor
is perfectly described by a linear model.

Even in the middle ages, mathematicians had a keen intuition of estimates. For instance,
the geometry book of Jacob Kébel (1460-1533)2° illustrates averaging the length of 16
¢ adult men’s feet to estimate the typical foot length in the population (Fig. 1.4.1).

As a group of individuals exited a church, 16 adult men were asked to line up in a row
and have their feet measured. The sum of these measurements was then divided by 16 to
obtain an estimate for what now is called one foot. This “algorithm” was later improved to
deal with misshapen feet; The two men with the shortest and longest feet were sent away,
averaging only over the remainder. This is among the earliest examples of a trimmed mean
estimate.

Statistics really took off with the availability and collection of data. One of its pioneers,
Ronald Fisher (1890-1962)26, contributed significantly to its theory and also its applica-
tions in genetics. Many of his algorithms (such as linear discriminant analysis) and con-
cepts (such as the Fisher information matrix) still hold a prominent place in the founda-
tions of modern statistics. Even his data resources had a lasting impact. The Iris dataset
that Fisher released in 1936 is still sometimes used to demonstrate machine learning algo-
rithms. Fisher was also a proponent of eugenics, which should remind us that the morally



https://en.wikipedia.org/wiki/Jacob_Bernoulli
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://www.maa.org/press/periodicals/convergence/mathematical-treasures-jacob-kobels-geometry
https://en.wikipedia.org/wiki/Ronald_Fisher
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Estimating the length of a foot.

dubious use of data science has as long and enduring a history as its productive use in
industry and the natural sciences.

Other influences for machine learning came from the information theory of Claude Shan-
non (1916-2001)27 and the theory of computation proposed by Alan Turing (1912-1954)
# 28 Turing posed the question “can machines think?” in his famous paper Computing Ma-

* chinery and Intelligence (Turing, 1950). Describing what is now known as the Turing test,
he proposed that a machine can be considered intelligent if it is difficult for a human evalu-

08 Egg§ﬁ’-'§l ator to distinguish between the replies from a machine and those of a human, based purely
2
[%

{
Eggs on textual interactions.

Further influences came from neuroscience and psychology. After all, humans clearly ex-
hibit intelligent behavior. Many scholars have asked whether one could explain and pos-
sibly reverse engineer this capacity. One of the first biologically inspired algorithms was
formulated by Donald Hebb (1904-1985)2° . In his groundbreaking book The Organiza-
% tion of Behavior (Hebb, 1949), he posited that neurons learn by positive reinforcement.
* This became known as the Hebbian learning rule. These ideas inspired later work, such

as Rosenblatt’s perceptron learning algorithm, and laid the foundations of many stochastic

gradient descent algorithms that underpin deep learning today: reinforce desirable behav-

ior and diminish undesirable behavior to obtain good settings of the parameters in a neural
network.


https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Donald_O._Hebb
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Biological inspiration is what gave neural networks their name. For over a century (dating
back to the models of Alexander Bain, 1873, and James Sherrington, 1890), researchers
have tried to assemble computational circuits that resemble networks of interacting neurons.
Over time, the interpretation of biology has become less literal, but the name stuck. At its
heart lie a few key principles that can be found in most networks today:

e The alternation of linear and nonlinear processing units, often referred to as layers.

e The use of the chain rule (also known as backpropagation) for adjusting parameters in
the entire network at once.

After initial rapid progress, research in neural networks languished from around 1995 until
2005. This was mainly due to two reasons. First, training a network is computationally
very expensive. While random-access memory was plentiful at the end of the past century,
computational power was scarce. Second, datasets were relatively small. In fact, Fisher’s
Iris dataset from 1936 was still a popular tool for testing the efficacy of algorithms. The
MNIST dataset with its 60,000 handwritten digits was considered huge.

Given the scarcity of data and computation, strong statistical tools such as kernel methods,
decision trees, and graphical models proved empirically superior in many applications.
Moreover, unlike neural networks, they did not require weeks to train and provided pre-
dictable results with strong theoretical guarantees.

1.5 The Road to Deep Learning

Much of this changed with the availability of massive amounts of data, thanks to the World
Wide Web, the advent of companies serving hundreds of millions of users online, a dis-
semination of low-cost, high-quality sensors, inexpensive data storage (Kryder’s law), and
cheap computation (Moore’s law). In particular, the landscape of computation in deep
learning was revolutionized by advances in GPUs that were originally engineered for com-
puter gaming. Suddenly algorithms and models that seemed computationally infeasible
were within reach. This is best illustrated in tab_intro_decade.

:Dataset vs. computer memory and computational power

Table 1.5.1: label:tab_intro_decade
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Decade| Dataset Mem- | Floating point calculations per
ory second
1970 100 (Iris) 1 KB 100 KF (Intel 8080)
1980 1 K (house prices in Boston) 100 1 MF (Intel 80186)
KB
1990 10 K (optical character recog- | 10 MB | 10 MF (Intel 80486)
nition)
2000 10 M (web pages) 100 1 GF (Intel Core)
MB
2010 10 G (advertising) 1 GB 1 TF (NVIDIA C2050)
2020 1 T (social network) 100 1 PF (NVIDIA DGX-2)
GB

Note that random-access memory has not kept pace with the growth in data. At the same
time, increases in computational power have outpaced the growth in datasets. This means
that statistical models need to become more memory efficient, and so they are free to spend
more computer cycles optimizing parameters, thanks to the increased compute budget.
Consequently, the sweet spot in machine learning and statistics moved from (generalized)
linear models and kernel methods to deep neural networks. This is also one of the rea-
sons why many of the mainstays of deep learning, such as multilayer perceptrons (McCul-
loch and Pitts, 1943), convolutional neural networks (LeCun ef al., 1998), long short-term
memory (Hochreiter and Schmidhuber, 1997), and Q-Learning (Watkins and Dayan, 1992),
were essentially “rediscovered” in the past decade, after lying comparatively dormant for
considerable time.

The recent progress in statistical models, applications, and algorithms has sometimes been
likened to the Cambrian explosion: a moment of rapid progress in the evolution of species.
Indeed, the state of the art is not just a mere consequence of available resources applied
to decades-old algorithms. Note that the list of ideas below barely scratches the surface of
what has helped researchers achieve tremendous progress over the past decade.

e Novel methods for capacity control, such as dropout (Srivastava et al., 2014), have helped
to mitigate overfitting. Here, noise is injected (Bishop, 1995) throughout the neural
network during training.

o Attention mechanisms solved a second problem that had plagued statistics for over a
century: how to increase the memory and complexity of a system without increasing
the number of learnable parameters. Researchers found an elegant solution by using
what can only be viewed as a learnable pointer structure (Bahdanau et al., 2014).
Rather than having to remember an entire text sequence, e.g., for machine translation
in a fixed-dimensional representation, all that needed to be stored was a pointer to the
intermediate state of the translation process. This allowed for significantly increased
accuracy for long sequences, since the model no longer needed to remember the entire
sequence before commencing the generation of a new one.

o Built solely on attention mechanisms, the Transformer architecture (Vaswani et al., 2017)
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has demonstrated superior scaling behavior: it performs better with an increase in
dataset size, model size, and amount of training compute (Kaplan et al., 2020). This
architecture has demonstrated compelling success in a wide range of areas, such as
natural language processing (Brown et al., 2020, Devlin et al., 2018), computer vision
(Dosovitskiy et al., 2021, Liu et al., 2021), speech recognition (Gulati et al., 2020),
reinforcement learning (Chen et al., 2021), and graph neural networks (Dwivedi and
Bresson, 2020). For example, a single Transformer pretrained on modalities as diverse
as text, images, joint torques, and button presses can play Atari, caption images, chat,
and control a robot (Reed et al., 2022).

e Modeling probabilities of text sequences, language models can predict text given other
text. Scaling up the data, model, and compute has unlocked a growing number of
capabilities of language models to perform desired tasks via human-like text genera-
tion based on input text (Anil et al., 2023, Brown et al., 2020, Chowdhery et al., 2022,
Hoffmann ez al., 2022, OpenAl, 2023, Rae et al., 2021, Touvron et al., 2023a, Touvron
et al., 2023b). For instance, aligning language models with human intent (Ouyang et
al., 2022), OpenAI's ChatGPT 30 allows users to interact with it in a conversational
way to solve problems, such as code debugging and creative writing.

e Multi-stage designs, e.g., via the memory networks (Sukhbaatar ez al., 2015) and the neu-
ral programmer-interpreter (Reed and De Freitas, 2015) permitted statistical modelers
to describe iterative approaches to reasoning. These tools allow for an internal state of
the deep neural network to be modified repeatedly, thus carrying out subsequent steps
in a chain of reasoning, just as a processor can modify memory for a computation.

e A key development in deep generative modeling was the invention of generative adver-
sarial networks (Goodfellow et al., 2014). Traditionally, statistical methods for density
estimation and generative models focused on finding proper probability distributions
and (often approximate) algorithms for sampling from them. As a result, these algo-
rithms were largely limited by the lack of flexibility inherent in the statistical models.
The crucial innovation in generative adversarial networks was to replace the sampler
by an arbitrary algorithm with differentiable parameters. These are then adjusted in
such a way that the discriminator (effectively a two-sample test) cannot distinguish
fake from real data. Through the ability to use arbitrary algorithms to generate data,
density estimation was opened up to a wide variety of techniques. Examples of gal-
loping zebras (Zhu et al., 2017) and of fake celebrity faces (Karras et al., 2017) are
each testimony to this progress. Even amateur doodlers can produce photorealistic
images just based on sketches describing the layout of a scene (Park et al., 2019).

o Furthermore, while the diffusion process gradually adds random noise to data samples,
diffusion models (Ho et al., 2020, Sohl-Dickstein et al., 2015) learn the denoising pro-
cess to gradually construct data samples from random noise, reversing the diffusion
process. They have started to replace generative adversarial networks in more recent
deep generative models, such as in DALL-E 2 (Ramesh et al., 2022) and Imagen (Sa-
haria et al., 2022) for creative art and image generation based on text descriptions.

e In many cases, a single GPU is insufficient for processing the large amounts of data


https://chat.openai.com/
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Success Stories

available for training. Over the past decade the ability to build parallel and distributed
training algorithms has improved significantly. One of the key challenges in designing
scalable algorithms is that the workhorse of deep learning optimization, stochastic
gradient descent, relies on relatively small minibatches of data to be processed. At
the same time, small batches limit the efficiency of GPUs. Hence, training on 1,024
GPUs with a minibatch size of, say, 32 images per batch amounts to an aggregate
minibatch of about 32,000 images. Work, first by Li (2017) and subsequently by You
et al. (2017) and Jia et al. (2018) pushed the size up to 64,000 observations, reducing
training time for the ResNet-50 model on the ImageNet dataset to less than 7 minutes.
By comparison, training times were initially of the order of days.

e The ability to parallelize computation has also contributed to progress in reinforcement
learning. This has led to significant progress in computers achieving superhuman
performance on tasks like Go, Atari games, Starcraft, and in physics simulations (e.g.,
using MuJoCo) where environment simulators are available. See, e.g., Silver et al.
(2016) for a description of such achievements in AlphaGo. In a nutshell, reinforcement
learning works best if plenty of (state, action, reward) tuples are available. Simulation
provides such an avenue.

e Deep learning frameworks have played a crucial role in disseminating ideas. The first
generation of open-source frameworks for neural network modeling consisted of Caffe
31 Torch®?, and Theano 3. Many seminal papers were written using these tools.
These have now been superseded by TensorFlow3* (often used via its high-level API
Keras 3° ), CNTK 36, Caffe 237, and Apache MXNet 3® . The third generation of
frameworks consists of so-called imperative tools for deep learning, a trend that was
arguably ignited by Chainer 3, which used a syntax similar to Python NumPy to
describe models. This idea was adopted by both PyTorch4?, the Gluon API*! of
MXNet, and JAX42.

The division of labor between system researchers building better tools and statistical mod-
elers building better neural networks has greatly simplified things. For instance, training a
linear logistic regression model used to be a nontrivial homework problem, worthy to give
to new machine learning Ph.D. students at Carnegie Mellon University in 2014. By now,
this task can be accomplished with under 10 lines of code, putting it firmly within the reach
of any programmer.

1.6 Success Stories
]

Artificial intelligence has a long history of delivering results that would be difficult to ac-
complish otherwise. For instance, mail sorting systems using optical character recognition
have been deployed since the 1990s. This is, after all, the source of the famous MNIST
dataset of handwritten digits. The same applies to reading checks for bank deposits and
scoring creditworthiness of applicants. Financial transactions are checked for fraud auto-


https://github.com/BVLC/caffe
https://github.com/torch
https://github.com/Theano/Theano
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras
https://github.com/Microsoft/CNTK
https://github.com/caffe2/caffe2
https://github.com/apache/incubator-mxnet
https://github.com/chainer/chainer
https://github.com/pytorch/pytorch
https://github.com/apache/incubator-mxnet
https://github.com/google/jax
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matically. This forms the backbone of many e-commerce payment systems, such as PayPal,
Stripe, AliPay, WeChat, Apple, Visa, and MasterCard. Computer programs for chess have
been competitive for decades. Machine learning feeds search, recommendation, personal-
ization, and ranking on the Internet. In other words, machine learning is pervasive, albeit
often hidden from sight.

It is only recently that Al has been in the limelight, mostly due to solutions to problems that
were considered intractable previously and that are directly related to consumers. Many of
such advances are attributed to deep learning.

o Intelligent assistants, such as Apple’s Siri, Amazon’s Alexa, and Google’s assistant, are
able to respond to spoken requests with a reasonable degree of accuracy. This in-
cludes menial jobs, like turning on light switches, and more complex tasks, such as
arranging barber’s appointments and offering phone support dialog. This is likely the
most noticeable sign that Al is affecting our lives.

e A key ingredient in digital assistants is their ability to recognize speech accurately. The
accuracy of such systems has gradually increased to the point of achieving parity with
humans for certain applications (Xiong et al., 2018).

e Object recognition has likewise come a long way. Identifying the object in a picture was
a fairly challenging task in 2010. On the ImageNet benchmark researchers from NEC
Labs and University of Illinois at Urbana-Champaign achieved a top-five error rate
of 28% (Lin et al., 2010). By 2017, this error rate was reduced to 2.25% (Hu et al.,
2018). Similarly, stunning results have been achieved for identifying birdsong and for
diagnosing skin cancer.

e Prowess in games used to provide a measuring stick for human ability. Starting from
TD-Gammon, a program for playing backgammon using temporal difference rein-
forcement learning, algorithmic and computational progress has led to algorithms for
a wide range of applications. Compared with backgammon, chess has a much more
complex state space and set of actions. DeepBlue beat Garry Kasparov using mas-
sive parallelism, special-purpose hardware and efficient search through the game tree
(Campbell et al., 2002). Go is more difficult still, due to its huge state space. AlphaGo
reached human parity in 2015, using deep learning combined with Monte Carlo tree
sampling (Silver et al., 2016). The challenge in Poker was that the state space is large
and only partially observed (we do not know the opponents’ cards). Libratus exceeded
human performance in Poker using efficiently structured strategies (Brown and Sand-
holm, 2017).

e Another indication of progress in Al is the advent of self-driving vehicles. While full
autonomy is not yet within reach, excellent progress has been made in this direction,
with companies such as Tesla, NVIDIA, and Waymo shipping products that enable
partial autonomy. What makes full autonomy so challenging is that proper driving
requires the ability to perceive, to reason and to incorporate rules into a system. At
present, deep learning is used primarily in the visual aspect of these problems. The
rest is heavily tuned by engineers.



27

The Essence of Deep Learning

This barely scratches the surface of significant applications of machine learning. For in-
stance, robotics, logistics, computational biology, particle physics, and astronomy owe
some of their most impressive recent advances at least in parts to machine learning, which
is thus becoming a ubiquitous tool for engineers and scientists.

Frequently, questions about a coming Al apocalypse and the plausibility of a singularity
have been raised in non-technical articles. The fear is that somehow machine learning
systems will become sentient and make decisions, independently of their programmers,
that directly impact the lives of humans. To some extent, Al already affects the livelihood
of humans in direct ways: creditworthiness is assessed automatically, autopilots mostly
navigate vehicles, decisions about whether to grant bail use statistical data as input. More
frivolously, we can ask Alexa to switch on the coffee machine.

Fortunately, we are far from a sentient Al system that could deliberately manipulate its
human creators. First, Al systems are engineered, trained, and deployed in a specific, goal-
oriented manner. While their behavior might give the illusion of general intelligence, it is a
combination of rules, heuristics and statistical models that underlie the design. Second, at
present, there are simply no tools for artificial general intelligence that are able to improve
themselves, reason about themselves, and that are able to modify, extend, and improve their
own architecture while trying to solve general tasks.

A much more pressing concern is how Al is being used in our daily lives. It is likely that
many routine tasks, currently fulfilled by humans, can and will be automated. Farm robots
will likely reduce the costs for organic farmers but they will also automate harvesting op-
erations. This phase of the industrial revolution may have profound consequences for large
swaths of society, since menial jobs provide much employment in many countries. Fur-
thermore, statistical models, when applied without care, can lead to racial, gender, or age
bias and raise reasonable concerns about procedural fairness if automated to drive conse-
quential decisions. It is important to ensure that these algorithms are used with care. With
what we know today, this strikes us as a much more pressing concern than the potential of
malevolent superintelligence for destroying humanity.

1.7 The Essence of Deep Learning
- _______________________________________________________________________________________|

Thus far, we have talked in broad terms about machine learning. Deep learning is the subset
of machine learning concerned with models based on many-layered neural networks. It is
deep in precisely the sense that its models learn many layers of transformations. While this
might sound narrow, deep learning has given rise to a dizzying array of models, techniques,
problem formulations, and applications. Many intuitions have been developed to explain
the benefits of depth. Arguably, all machine learning has many layers of computation, the
first consisting of feature processing steps. What differentiates deep learning is that the
operations learned at each of the many layers of representations are learned jointly from
data.
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The problems that we have discussed so far, such as learning from the raw audio signal, the
raw pixel values of images, or mapping between sentences of arbitrary lengths and their
counterparts in foreign languages, are those where deep learning excels and traditional
methods falter. It turns out that these many-layered models are capable of addressing low-
level perceptual data in a way that previous tools could not. Arguably the most significant
commonality in deep learning methods is end-to-end training. That is, rather than assem-
bling a system based on components that are individually tuned, one builds the system and
then tunes their performance jointly. For instance, in computer vision scientists used to
separate the process of feature engineering from the process of building machine learn-
ing models. The Canny edge detector (Canny, 1987) and Lowe’s SIFT feature extractor
(Lowe, 2004) reigned supreme for over a decade as algorithms for mapping images into
feature vectors. In bygone days, the crucial part of applying machine learning to these
problems consisted of coming up with manually-engineered ways of transforming the data
into some form amenable to shallow models. Unfortunately, there is only so much that
humans can accomplish by ingenuity in comparison with a consistent evaluation over mil-
lions of choices carried out automatically by an algorithm. When deep learning took over,
these feature extractors were replaced by automatically tuned filters that yielded superior
accuracy.

Thus, one key advantage of deep learning is that it replaces not only the shallow models at
the end of traditional learning pipelines, but also the labor-intensive process of feature engi-
neering. Moreover, by replacing much of the domain-specific preprocessing, deep learning
has eliminated many of the boundaries that previously separated computer vision, speech
recognition, natural language processing, medical informatics, and other application areas,
thereby offering a unified set of tools for tackling diverse problems.

Beyond end-to-end training, we are experiencing a transition from parametric statistical
descriptions to fully nonparametric models. When data is scarce, one needs to rely on sim-
plifying assumptions about reality in order to obtain useful models. When data is abundant,
these can be replaced by nonparametric models that better fit the data. To some extent, this
mirrors the progress that physics experienced in the middle of the previous century with
the availability of computers. Rather than solving by hand parametric approximations of
how electrons behave, one can now resort to numerical simulations of the associated par-
tial differential equations. This has led to much more accurate models, albeit often at the
expense of interpretation.

Another difference from previous work is the acceptance of suboptimal solutions, dealing
with nonconvex nonlinear optimization problems, and the willingness to try things before
proving them. This new-found empiricism in dealing with statistical problems, combined
with a rapid influx of talent has led to rapid progress in the development of practical algo-
rithms, albeit in many cases at the expense of modifying and re-inventing tools that existed
for decades.

In the end, the deep learning community prides itself on sharing tools across academic and
corporate boundaries, releasing many excellent libraries, statistical models, and trained
networks as open source. It is in this spirit that the notebooks forming this book are freely
available for distribution and use. We have worked hard to lower the barriers of access for
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Summary

anyone wishing to learn about deep learning and we hope that our readers will benefit from
this.

1.8 Summary
. _________________________________________________________________________________________|

Machine learning studies how computer systems can leverage experience (often data) to
improve performance at specific tasks. It combines ideas from statistics, data mining, and
optimization. Often, it is used as a means of implementing Al solutions. As a class of
machine learning, representational learning focuses on how to automatically find the ap-
propriate way to represent data. Considered as multi-level representation learning through
learning many layers of transformations, deep learning replaces not only the shallow mod-
els at the end of traditional machine learning pipelines, but also the labor-intensive process
of feature engineering. Much of the recent progress in deep learning has been triggered
by an abundance of data arising from cheap sensors and Internet-scale applications, and
by significant progress in computation, mostly through GPUs. Furthermore, the availabil-
ity of efficient deep learning frameworks has made design and implementation of whole
system optimization significantly easier, and this is a key component in obtaining high
performance.

1.9 Exercises
|

1. Which parts of code that you are currently writing could be “learned”, i.e., improved
by learning and automatically determining design choices that are made in your code?
Does your code include heuristic design choices? What data might you need to learn
the desired behavior?

2. Which problems that you encounter have many examples for their solution, yet no spe-
cific way for automating them? These may be prime candidates for using deep learning.

3. Describe the relationships between algorithms, data, and computation. How do char-
acteristics of the data and the current available computational resources influence the
appropriateness of various algorithms?

4. Name some settings where end-to-end training is not currently the default approach but
where it might be useful.

Discussions*3 .


https://discuss.d2l.ai/t/22
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To prepare for your dive into deep learning, you will need a few survival skills: (i) tech-
niques for storing and manipulating data; (ii) libraries for ingesting and preprocessing data
from a variety of sources; (iii) knowledge of the basic linear algebraic operations that we
apply to high-dimensional data elements; (iv) just enough calculus to determine which di-
rection to adjust each parameter in order to decrease the loss function; (v) the ability to
automatically compute derivatives so that you can forget much of the calculus you just
learned; (vi) some basic fluency in probability, our primary language for reasoning under
uncertainty; and (vii) some aptitude for finding answers in the official documentation when
you get stuck.

In short, this chapter provides a rapid introduction to the basics that you will need to follow
most of the technical content in this book.

2.1 Data Manipulation
. _________________________________________________________________________________________|

In order to get anything done, we need some way to store and manipulate data. Generally,
there are two important things we need to do with data: (i) acquire them; and (ii) process
them once they are inside the computer. There is no point in acquiring data without some
way to store it, so to start, let’s get our hands dirty with n-dimensional arrays, which we
also call rensors. If you already know the NumPy scientific computing package, this will be
a breeze. For all modern deep learning frameworks, the fensor class (ndarray in MXNet,
Tensor in PyTorch and TensorFlow) resembles NumPy’s ndarray, with a few killer fea-
tures added. First, the tensor class supports automatic differentiation. Second, it leverages
GPUs to accelerate numerical computation, whereas NumPy only runs on CPUs. These
properties make neural networks both easy to code and fast to run.

2.1.1 Getting Started

To start, we import the np (numpy) and npx (numpy_extension) modules from MXNet.
Here, the np module includes functions supported by NumPy, while the npx module con-
tains a set of extensions developed to empower deep learning within a NumPy-like envir-
onment. When using tensors, we almost always invoke the set_np function: this is for
compatibility of tensor processing by other components of MXNet.
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from mxnet import np, npx

npx.set_np()

A tensor represents a (possibly multidimensional) array of numerical values. In the one-
dimensional case, i.e., when only one axis is needed for the data, a tensor is called a vector.
With two axes, a tensor is called a matrix. With k > 2 axes, we drop the specialized names
and just refer to the object as a k™-order tensor.

MXNet provides a variety of functions for creating new tensors prepopulated with values.
For example, by invoking arange(n), we can create a vector of evenly spaced values, start-
ing at 0 (included) and ending at n (not included). By default, the interval size is 1. Unless
otherwise specified, new tensors are stored in main memory and designated for CPU-based
computation.

X = np.arange(12)
X

[21:58:20] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

array([ ©., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.1)

Each of these values is called an element of the tensor. The tensor x contains 12 elements.
We can inspect the total number of elements in a tensor via its size attribute.

X.size

12

We can access a tensor’s shape (the length along each axis) by inspecting its shape attribute.
Because we are dealing with a vector here, the shape contains just a single element and is
identical to the size.

x.shape

1z,

‘We can change the shape of a tensor without altering its size or values, by invoking reshape.
For example, we can transform our vector x whose shape is (12,) to a matrix X with shape
(3, 4). This new tensor retains all elements but reconfigures them into a matrix. Notice that
the elements of our vector are laid out one row at a time and thus x[3] == X[, 3].
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X = x.reshape(3, 4)
X

array([[L 0., 1., 2., 3.1,
[ 4., 5., 6., 7.1,
[8., 9., 10., 11.1D)

Note that specifying every shape component to reshape is redundant. Because we already
know our tensor’s size, we can work out one component of the shape given the rest. For
example, given a tensor of size n and target shape (h, w), we know that w = n/h. To
automatically infer one component of the shape, we can place a -1 for the shape component
that should be inferred automatically. In our case, instead of calling x. reshape (3, 4), we
could have equivalently called x.reshape(-1, 4) or x.reshape(3, -1).

Practitioners often need to work with tensors initialized to contain all Os or 1s. We can

construct a tensor with all elements set to 0 and a shape of (2, 3, 4) via the zeros func-
tion.

np.zeros((2, 3, 4))

array([[[0., 0., 0., 0.7,

[0., 0., 0., 0.7,
[0., 0., 0., 0.]],
[([e., 0., 0., 0.1,
[0., 0., 0., 0.7,
[0., 0., 0., 0.11])

Similarly, we can create a tensor with all 1s by invoking ones.

np.ones((2, 3, 4))

array([[[1., 1., 1., 1.1,
[(1., 1., 1., 1.1,
(1., 1., 1., 1.13,

[ci., 1., 1., 1.1,
[1., 1., 1., 1.1,
[1., 1., 1., 1.11D

We often wish to sample each element randomly (and independently) from a given prob-
ability distribution. For example, the parameters of neural networks are often initialized
randomly. The following snippet creates a tensor with elements drawn from a standard
Gaussian (normal) distribution with mean 0 and standard deviation 1.



33

Data Manipulation

np.random.normal (@, 1, size=(3, 4))

array([[ 2.2122064 , 1.1630787 , ©.7740038 , 0.4838046 1,
[ 1.0434403 , 0.29956347, 1.1839255 , 0.15302546],
[ 1.8917114 , -1.1688148 , -1.2347414 , 1.5580711 11)

Finally, we can construct tensors by supplying the exact values for each element by sup-
plying (possibly nested) Python list(s) containing numerical literals. Here, we construct a
matrix with a list of lists, where the outermost list corresponds to axis 0, and the inner list
corresponds to axis 1.

np.array([[2, 1, 4, 31, [1, 2, 3, 41, [4, 3, 2, 111)

array([[2., 1., 4., 3.]
(1., 2., 3., 4.1
[4., 3., 2., 1.1

2.1.2 Indexing and Slicing

As with Python lists, we can access tensor elements by indexing (starting with 0). To access
an element based on its position relative to the end of the list, we can use negative indexing.
Finally, we can access whole ranges of indices via slicing (e.g., X[start:stop]), where
the returned value includes the first index (start) but not the last (stop). Finally, when
only one index (or slice) is specified for a k™-order tensor, it is applied along axis 0. Thus,
in the following code, [-1] selects the last row and [1:3] selects the second and third
rOWS.

X[-11, X[1:3]

(array([ 8., 9., l1o., 11.1),
array([[ 4., 5., 6., 7.1,
8., 9., 10., 11.11)

Beyond reading them, we can also wrife elements of a matrix by specifying indices.

X[1, 21 = 17

Lo 2., 3.1,
[4., 5.,17., 7.1,
[8., 9., 10., 11.1])

If we want to assign multiple elements the same value, we apply the indexing on the left-
hand side of the assignment operation. For instance, [:2, :] accesses the first and second
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rows, where : takes all the elements along axis 1 (column). While we discussed indexing
for matrices, this also works for vectors and for tensors of more than two dimensions.

array([[12., 12., 12., 12.1],
[12., 12., 12., 12.17,
£s8., 9., 10, 11.1D

2.1.3 Operations

Now that we know how to construct tensors and how to read from and write to their ele-
ments, we can begin to manipulate them with various mathematical operations. Among the
most useful of these are the elementwise operations. These apply a standard scalar opera-
tion to each element of a tensor. For functions that take two tensors as inputs, elementwise
operations apply some standard binary operator on each pair of corresponding elements.
We can create an elementwise function from any function that maps from a scalar to a
scalar.

In mathematical notation, we denote such unary scalar operators (taking one input) by the
signature f : R — R. This just means that the function maps from any real number onto
some other real number. Most standard operators, including unary ones like e*, can be
applied elementwise.

np.exp(x)

array([1.0000000e+00, 2.7182817e+00, 7.3890562e+00, 2.0085537e+01,
5.4598148e+01, 1.4841316e+02, 4.0342880e+02, 1.0966332e+03,
2.9809580e+03, 8.1030840e+03, 2.2026465e+04, 5.9874141e+04])

Likewise, we denote binary scalar operators, which map pairs of real numbers to a (single)
real number via the signature f : R,R — R. Given any two vectors u and v of the
same shape, and a binary operator f, we can produce a vector ¢ = F(u,Vv) by setting
¢; <« f(u;,v;) for all i, where c;, u;, and v; are the i™ elements of vectors ¢, u, and v.
Here, we produced the vector-valued F : RY, R? — R by lifting the scalar function to an
elementwise vector operation. The common standard arithmetic operators for addition (+),
subtraction (-), multiplication (), division (/), and exponentiation (x*) have all been lifted
to elementwise operations for identically-shaped tensors of arbitrary shape.

x = np.array([1, 2, 4, 8])
= np.array([2, 2, 2, 21
y,x—y,x*y,x/y,X**y

X <
+ |
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(array([ 3., 4., 6., 10.1),
array([-1., 0., 2., 6.1),
array([ 2., 4., 8., 16.1),
array([0.5, 1. , 2. , 4. 1),
array([ 1., 4., 16., 64.1))

In addition to elementwise computations, we can also perform linear algebraic operations,
such as dot products and matrix multiplications. We will elaborate on these in Section
2.3.

We can also concatenate multiple tensors, stacking them end-to-end to form a larger one.
We just need to provide a list of tensors and tell the system along which axis to concatenate.
The example below shows what happens when we concatenate two matrices along rows
(axis 0) instead of columns (axis 1). We can see that the first output’s axis-0 length (6) is
the sum of the two input tensors’ axis-0 lengths (3 + 3); while the second output’s axis-1
length (8) is the sum of the two input tensors’ axis-1 lengths (4 + 4).

X = np.arange(12).reshape(3, 4)
Y = np.array([[2, 1, 4, 31, [1, 2, 3, 41, [4, 3, 2, 111
np.concatenate([X, Y], axis=0), np.concatenate([X, Y], axis=1)

(array(fL 0., 1., 2., 3.],
[ 4., 5., 6., 7.1,
[ 8., 9., 10., 11.],
[2., 1., 4., 3.1,
[1., 2., 3., 4.1,
[4., 3., 2., 1.1D,
array([[ ., 1., 2., 3., 2., 1., 4., 3.1,
4., 5., 6., 7., 1., 2., 3., 4.1,
[8., 9.,10., 11., 4., 3., 2., 1.11»
Sometimes, we want to construct a binary tensor via logical statements. Take X == Y as an

example. For each position i, j,if X[i, jland Y[i, j] are equal, then the corresponding
entry in the result takes value 1, otherwise it takes value @.

X ==

array([[False, True, False, Truel,
[False, False, False, Falsel],
[False, False, False, False]l)

Summing all the elements in the tensor yields a tensor with only one element.

X.sum()

array(66.)
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2.1.4 Broadcasting

By now, you know how to perform elementwise binary operations on two tensors of the
same shape. Under certain conditions, even when shapes differ, we can still perform ele-
mentwise binary operations by invoking the broadcasting mechanism. Broadcasting works
according to the following two-step procedure: (i) expand one or both arrays by copying
elements along axes with length 1 so that after this transformation, the two tensors have the
same shape; (ii) perform an elementwise operation on the resulting arrays.

a = np.arange(3).reshape(3, 1)
b = np.arange(2).reshape(l, 2)
a, b

(array([[0.1],
[1.1,
[2.11),
array([[0., 1.11))

Since a and b are 3 X 1 and 1 X 2 matrices, respectively, their shapes do not match up.
Broadcasting produces a larger 3 X 2 matrix by replicating matrix a along the columns and
matrix b along the rows before adding them elementwise.

a+b

array(L[o., 1.1,
[1., 2.7,
[2., 3.1

2.1.5 Saving Memory

Running operations can cause new memory to be allocated to host results. For example, if
we write Y = X + Y, we dereference the tensor that Y used to point to and instead point Y at
the newly allocated memory. We can demonstrate this issue with Python’s id() function,
which gives us the exact address of the referenced object in memory. Note that after we
runY = Y + X, id(Y) points to a different location. That is because Python first evaluates
Y + X, allocating new memory for the result and then points Y to this new location in
memory.

before = id(Y)
Y=Y+X
id(Y) == before

False

This might be undesirable for two reasons. First, we do not want to run around allocat-
ing memory unnecessarily all the time. In machine learning, we often have hundreds of
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megabytes of parameters and update all of them multiple times per second. Whenever
possible, we want to perform these updates in place. Second, we might point at the same
parameters from multiple variables. If we do not update in place, we must be careful to
update all of these references, lest we spring a memory leak or inadvertently refer to stale
parameters.

Fortunately, performing in-place operations is easy. We can assign the result of an oper-
ation to a previously allocated array Y by using slice notation: Y[:] = <expression>.
To illustrate this concept, we overwrite the values of tensor Z, after initializing it, using
zeros_like, to have the same shape as Y.

Z = np.zeros_like(Y)
print('id(z):"', id(Z))
Z[:1 =X +Y
print('id(z):"', id(Z))

id(Z): 139767554095872
id(2): 139767554095872

If the value of X is not reused in subsequent computations, we can alsouse X[:] = X + Y
or X += Y to reduce the memory overhead of the operation.

before = id(X)
X +=Y
id(X) == before

True

2.1.6 Conversion to Other Python Objects

Converting to a NumPy tensor (ndarray), or vice versa, is easy. The converted result
does not share memory. This minor inconvenience is actually quite important: when you
perform operations on the CPU or on GPUs, you do not want to halt computation, waiting
to see whether the NumPy package of Python might want to be doing something else with
the same chunk of memory.

A = X.asnumpy ()
B = np.array(A)
type(A), type(B)

(numpy .ndarray, mxnet.numpy.ndarray)

To convert a size-1 tensor to a Python scalar, we can invoke the item function or Python’s
built-in functions.
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a = np.array([3.5])
a, a.item(), float(a), int(a)

(array([3.5]1), 3.5, 3.5, 3)

2.1.7 Summary

The tensor class is the main interface for storing and manipulating data in deep learning li-
braries. Tensors provide a variety of functionalities including construction routines; index-
ing and slicing; basic mathematics operations; broadcasting; memory-efficient assignment;
and conversion to and from other Python objects.

2.1.8 Exercises

1. Run the code in this section. Change the conditional statement X == Yto X < YorX >
Y, and then see what kind of tensor you can get.

2. Replace the two tensors that operate by element in the broadcasting mechanism with
other shapes, e.g., 3-dimensional tensors. Is the result the same as expected?

Discussions*?.

2.2 Data Preprocessing
- _______________________________________________________________________________________|

So far, we have been working with synthetic data that arrived in ready-made tensors. How-
ever, to apply deep learning in the wild we must extract messy data stored in arbitrary
formats, and preprocess it to suit our needs. Fortunately, the pandas library*® can do much
of the heavy lifting. This section, while no substitute for a proper pandas tutorial 5 | will
give you a crash course on some of the most common routines.

2.2.1 Reading the Dataset

Comma-separated values (CSV) files are ubiquitous for the storing of tabular (spreadsheet-
like) data. In them, each line corresponds to one record and consists of several (comma-
separated) fields, e.g., “Albert Einstein,March 14 1879,Ulm,Federal polytechnic school,field
of gravitational physics”. To demonstrate how to load CSV files with pandas, we create a
CSV file below . ./data/house_tiny.csv. This file represents a dataset of homes, where
each row corresponds to a distinct home and the columns correspond to the number of
rooms (NumRooms), the roof type (RoofType), and the price (Price).


https://discuss.d2l.ai/t/26
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
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import os
os.makedirs(os.path.join('.."', 'data’'), exist_ok=True)
data_file = os.path.join('..', 'data’, 'house_tiny.csv')

with open(data_file, 'w') as f:
f.write('' 'NumRooms,RoofType,Price

NA,NA, 127500

2,NA, 106000

4,Slate, 178100

NA,NA, 140000 ' ")

Now let’s import pandas and load the dataset with read_csv.

import pandas as pd

data = pd.read_csv(data_file)
print(data)

NumRooms RoofType Price

0 NaN NaN 127500
1 2.0 NaN 106000
2 4.0 Slate 178100
3 NaN NaN 140000

2.2.2 Data Preparation

In supervised learning, we train models to predict a designated target value, given some
set of input values. Our first step in processing the dataset is to separate out columns cor-
responding to input versus target values. We can select columns either by name or via
integer-location based indexing (iloc).

You might have noticed that pandas replaced all CSV entries with value NA with a spe-
cial NaN (not a number) value. This can also happen whenever an entry is empty, e.g.,
“3,,,270000”. These are called missing values and they are the “bed bugs” of data science,
a persistent menace that you will confront throughout your career. Depending upon the
context, missing values might be handled either via imputation or deletion. Imputation re-
places missing values with estimates of their values while deletion simply discards either
those rows or those columns that contain missing values.

Here are some common imputation heuristics. For categorical input fields, we can treat NaN
as a category. Since the RoofType column takes values Slate and NaN, pandas can convert
this column into two columns Roof Type_Slate and RoofType_nan. A row whose roof type
is Slate will set values of RoofType_Slate and RoofType_nan to 1 and 0, respectively.
The converse holds for a row with a missing RoofType value.

inputs, targets = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
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NumRooms RoofType_Slate RoofType_nan

0 NaN False True
1 2.0 False True
2 4.0 True False
3 NaN False True

For missing numerical values, one common heuristic is to replace the NaN entries with the
mean value of the corresponding column.

inputs = inputs.fillna(inputs.mean())
print(inputs)

NumRooms RoofType_Slate RoofType_nan

0 3.0 False True
1 2.0 False True
2 4.0 True False
3 3.0 False True

2.2.3 Conversion to the Tensor Format

Now that all the entries in inputs and targets are numerical, we can load them into a
tensor (recall Section 2.1).

from mxnet import np

X, y = np.array(inputs.to_numpy(dtype=float)), np.array(targets.to_
—numpy (dtype=float))
X,y

[22:09:02] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

(array([[3., 0., 1.1,
[2., 0., 1.7,
[4., 1., 0.1,
[3., 0., 1.]], dtype=float64),
array([127500., 106000., 178100., 140000.], dtype=float64))

2.2.4 Discussion

You now know how to partition data columns, impute missing variables, and load pan-
das data into tensors. In Section 5.7, you will pick up some more data processing skills.
While this crash course kept things simple, data processing can get hairy. For example,
rather than arriving in a single CSV file, our dataset might be spread across multiple files
extracted from a relational database. For instance, in an e-commerce application, customer
addresses might live in one table and purchase data in another. Moreover, practitioners face
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myriad data types beyond categorical and numeric, for example, text strings, images, audio
data, and point clouds. Oftentimes, advanced tools and efficient algorithms are required
in order to prevent data processing from becoming the biggest bottleneck in the machine
learning pipeline. These problems will arise when we get to computer vision and natural
language processing. Finally, we must pay attention to data quality. Real-world datasets are
often plagued by outliers, faulty measurements from sensors, and recording errors, which
must be addressed before feeding the data into any model. Data visualization tools such as
L seaborn”, Bokeh*®, or matplotlib® can help you to manually inspect the data and develop
47 Egﬂ?z‘?ﬂ intuitions about the type of problems you may need to address.

i

2.2.5 Exercises

T[]
48 _“r "ﬁ
F_Fg__‘q 1. Try loading datasets, e.g., Abalone from the UCI Machine Learning Repository° and

inspect their properties. What fraction of them has missing values? What fraction of

1o EiRE the variables is numerical, categorical, or text?
P e )

“"?!:3. i
E]:tﬁ! 2. Try indexing and selecting data columns by name rather than by column number. The
pandas documentation on indexing®! has further details on how to do this.

3 3. How large a dataset do you think you could load this way? What might be the limita-
' tions? Hint: consider the time to read the data, representation, processing, and memory
footprint. Try this out on your laptop. What happens if you try it out on a server?

4. How would you deal with data that has a very large number of categories? What if the
category labels are all unique? Should you include the latter?

5. What alternatives to pandas can you think of? How about loading NumPy tensors from
a file®?? Check out Pillow >3, the Python Imaging Library.

" Discussions®?.

2.3 Linear Algebra

" B
GE

|
T
!

By now, we can load datasets into tensors and manipulate these tensors with basic math-
ematical operations. To start building sophisticated models, we will also need a few tools
from linear algebra. This section offers a gentle introduction to the most essential concepts,
starting from scalar arithmetic and ramping up to matrix multiplication.

from mxnet import np, npx

npx.set_np()

2.3.1 Scalars


https://seaborn.pydata.org/
https://docs.bokeh.org/
https://matplotlib.org/
https://archive.ics.uci.edu/ml/datasets.php
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
https://numpy.org/doc/stable/reference/generated/numpy.load.html
https://numpy.org/doc/stable/reference/generated/numpy.load.html
https://python-pillow.org/
https://discuss.d2l.ai/t/28
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Most everyday mathematics consists of manipulating numbers one at a time. Formally, we
call these values scalars. For example, the temperature in Palo Alto is a balmy 72 degrees
Fahrenheit. If you wanted to convert the temperature to Celsius you would evaluate the
expression ¢ = %( f —32), setting f to 72. In this equation, the values 5, 9, and 32 are
constant scalars. The variables ¢ and f in general represent unknown scalars.

We denote scalars by ordinary lower-cased letters (e.g., x, y, and z) and the space of all
(continuous) real-valued scalars by R. For expedience, we will skip past rigorous defini-
tions of spaces: just remember that the expression x € R is a formal way to say that x is
a real-valued scalar. The symbol € (pronounced “in”) denotes membership in a set. For
example, x,y € {0, 1} indicates that x and y are variables that can only take values O or
1.

Scalars are implemented as tensors that contain only one element. Below, we assign two
scalars and perform the familiar addition, multiplication, division, and exponentiation op-
erations.

X = np.array(3.0)
= np.array(2.0)

<
1

X ty, x*xy, x/y, x*xy

[21:50:12] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

(array(5.), array(6.), array(l.5), array(9.))

2.3.2 Vectors

For current purposes, you can think of a vector as a fixed-length array of scalars. As with
their code counterparts, we call these scalars the elements of the vector (synonyms include
entries and components). When vectors represent examples from real-world datasets, their
values hold some real-world significance. For example, if we were training a model to
predict the risk of a loan defaulting, we might associate each applicant with a vector whose
components correspond to quantities like their income, length of employment, or number of
previous defaults. If we were studying the risk of heart attack, each vector might represent
a patient and its components might correspond to their most recent vital signs, cholesterol
levels, minutes of exercise per day, etc. We denote vectors by bold lowercase letters, (e.g.,
X, y, and z).

Vectors are implemented as 1%-order tensors. In general, such tensors can have arbitrary
lengths, subject to memory limitations. Caution: in Python, as in most programming lan-
guages, vector indices start at 0, also known as zero-based indexing, whereas in linear
algebra subscripts begin at 1 (one-based indexing).
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X = np.arange(3)
X

array([0., 1., 2.0)

We can refer to an element of a vector by using a subscript. For example, x, denotes the
second element of x. Since x; is a scalar, we do not bold it. By default, we visualize vectors
by stacking their elements vertically.

X
x=|:], (2.3.1)

Xn
Here xy,...,x, are elements of the vector. Later on, we will distinguish between such

column vectors and row vectors whose elements are stacked horizontally. Recall that we
access a tensor’s elements via indexing.

x[2]

array(2.)

To indicate that a vector contains n elements, we write x € R". Formally, we call n the
dimensionality of the vector. In code, this corresponds to the tensor’s length, accessible via
Python’s built-in 1en function.

len(x)

We can also access the length via the shape attribute. The shape is a tuple that indicates
a tensor’s length along each axis. Tensors with just one axis have shapes with just one
element.

X . shape

(3’)

Oftentimes, the word “dimension” gets overloaded to mean both the number of axes and the
length along a particular axis. To avoid this confusion, we use order to refer to the number
of axes and dimensionality exclusively to refer to the number of components.

2.3.3 Matrices
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Just as scalars are 0™-order tensors and vectors are 1%t-order tensors, matrices are 2"-order
tensors. We denote matrices by bold capital letters (e.g., X, Y, and Z), and represent them
in code by tensors with two axes. The expression A € R™*" indicates that a matrix A
contains m X n real-valued scalars, arranged as m rows and n columns. When m = n, we
say that a matrix is square. Visually, we can illustrate any matrix as a table. To refer to an
individual element, we subscript both the row and column indices, e.g., a;; is the value that
belongs to A’s i™ row and j™ column:

airi apn e ain
ani ann e azn

A= . . . - (2.3.2)
aAml dm2 - Amn

In code, we represent a matrix A € R™*" by a 2™-order tensor with shape (m, n). We can
convert any appropriately sized m X n tensor into an m X n matrix by passing the desired
shape to reshape:

A = np.arange(6).reshape(3, 2)
A

array([[0., 1.]
(2., 3.1,
[4., 5.1

’

Sometimes we want to flip the axes. When we exchange a matrix’s rows and columns, the
result is called its transpose. Formally, we signify a matrix A’s transpose by AT and if
B = AT, then bij = aj; for all i and j. Thus, the transpose of an m X n matrix is an n X m
matrix:

all any oo aAml

T aln an e aAm2
AT=| o . (2.3.3)

alp dop oo Amn

In code, we can access any matrix’s transpose as follows:
AT

array(L[0., 2., 4.1,
[1., 3., 5.1

Symmetric matrices are the subset of square matrices that are equal to their own transposes:
A = A" The following matrix is symmetric:

A = np.array([[1, 2, 31, [2, o, 41, [3, 4, 511)
A ==AT
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array([[ True, True, True],
[ True, True, Truel,
[ True, True, Truell)

Matrices are useful for representing datasets. Typically, rows correspond to individual
records and columns correspond to distinct attributes.

2.3.4 Tensors

While you can go far in your machine learning journey with only scalars, vectors, and
matrices, eventually you may need to work with higher-order tensors. Tensors give us
a generic way of describing extensions to n'"-order arrays. We call software objects of
the tensor class “tensors” precisely because they too can have arbitrary numbers of axes.
While it may be confusing to use the word fensor for both the mathematical object and its
realization in code, our meaning should usually be clear from context. We denote general
tensors by capital letters with a special font face (e.g., X, Y, and Z) and their indexing
mechanism (e.g., x;jx and [X]1,2;-1,3) follows naturally from that of matrices.

Tensors will become more important when we start working with images. Each image
arrives as a 3"-order tensor with axes corresponding to the height, width, and channel. At
each spatial location, the intensities of each color (red, green, and blue) are stacked along the
channel. Furthermore, a collection of images is represented in code by a 4"-order tensor,
where distinct images are indexed along the first axis. Higher-order tensors are constructed,
as were vectors and matrices, by growing the number of shape components.

np.arange(24) .reshape(2, 3, 4)

array([[[ 0., 1., 2., 3.7,
[ 4., 5., 6., 7.1,
[8., 9., 10., 11.11,

[[12., 13., 14., 15.1,
[16., 17., 18., 19.1,
[20., 21., 22., 23.711)

2.3.5 Basic Properties of Tensor Arithmetic

Scalars, vectors, matrices, and higher-order tensors all have some handy properties. For ex-
ample, elementwise operations produce outputs that have the same shape as their operands.

= np.arange(6).reshape(2, 3)
A.copy() # Assign a copy of A to B by allocating new memory
, A+B

A
B
A
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(array([[0., 1., 2.1,
[3., 4., 5.1,
array([[ 0., 2., 4.1,
[ 6., 8., 10.11))

The elementwise product of two matrices is called their Hadamard product (denoted ©).
We can spell out the entries of the Hadamard product of two matrices A, B € R™*":

anbyr  apbp ... aubi
arnbyr  axpby ... axby

AoB=| : . . (2.3.4)
amlbml ammeZ ‘e amnbmn

array([[ 0., 1., 4.1,
[ 9., 16., 25.11)

Adding or multiplying a scalar and a tensor produces a result with the same shape as
the original tensor. Here, each element of the tensor is added to (or multiplied by) the
scalar.

a=2
X = np.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape

(array([LL 2., 3., 4., 5.1,
Le6., 7., 8., 9.7,
[10., 11., 12., 13.1],

[[14., 15., 16., 17.1,

[18., 19., 20., 21.],

[22., 23., 24., 25.11D),
(2, 3, 4))

2.3.6 Reduction

Often, we wish to calculate the sum of a tensor’s elements. To express the sum of the
elements in a vector x of length n, we write 37", x;. There is a simple function for it:

X = np.arange(3)
X, x.sum()

(array([0., 1., 2.1), array(3.))
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To express sums over the elements of tensors of arbitrary shape, we simply sum over all
its axes. For example, the sum of the elements of an m X n matrix A could be written

m n
i=1 2]':1 daij.

A.shape, A.sum()

(2, 3), array(15.))

By default, invoking the sum function reduces a tensor along all of its axes, eventually
producing a scalar. Our libraries also allow us to specify the axes along which the tensor
should be reduced. To sum over all elements along the rows (axis 0), we specify axis=0 in
sum. Since the input matrix reduces along axis 0 to generate the output vector, this axis is
missing from the shape of the output.

A.shape, A.sum(axis=0).shape

(2, 3, 3,0

Specifying axis=1 will reduce the column dimension (axis 1) by summing up elements of
all the columns.

A.shape, A.sum(axis=1).shape

((2) 3)’ (2’))

Reducing a matrix along both rows and columns via summation is equivalent to summing
up all the elements of the matrix.

A.sum(axis=[0, 1]) == A.sum() # Same as A.sum()

array(True)

A related quantity is the mean, also called the average. We calculate the mean by dividing
the sum by the total number of elements. Because computing the mean is so common, it
gets a dedicated library function that works analogously to sum.

A.mean(), A.sum() / A.size

(array(2.5), array(2.5))

Likewise, the function for calculating the mean can also reduce a tensor along specific
axes.
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A.mean(axis=0), A.sum(axis=0) / A.shape[0]

(array([1.5, 2.5, 3.51), array([1.5, 2.5, 3.51))

2.3.7 Non-Reduction Sum

Sometimes it can be useful to keep the number of axes unchanged when invoking the func-
tion for calculating the sum or mean. This matters when we want to use the broadcast
mechanism.

sum_A = A.sum(axis=1, keepdims=True)
sum_A, sum_A.shape

(array([[ 3.7,
[12.1D),
2, 1)

For instance, since sum_A keeps its two axes after summing each row, we can divide A by
sum_A with broadcasting to create a matrix where each row sums up to 1.

A / sum_A
array([[0. , 0.33333334, 0.6666667 1,
[0.25 , ©0.33333334, 0.4166666611)

If we want to calculate the cumulative sum of elements of A along some axis, say axis=0
(row by row), we can call the cumsum function. By design, this function does not reduce
the input tensor along any axis.

A.cumsum(axis=0)

array([[0., 1., 2.7,
3., 5., 7.1D

2.3.8 Dot Products

So far, we have only performed elementwise operations, sums, and averages. And if this was
all we could do, linear algebra would not deserve its own section. Fortunately, this is where
things get more interesting. One of the most fundamental operations is the dot product.
Given two vectors x,y € R?, their dot product x™y (also known as inner product, (x,y))
is a sum over the products of the elements at the same position: x'y = Zl‘il XiVi-
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y = np.ones(3)
X, Yy, np.dot(x, y)

(array([0., 1., 2.1), array([1l., 1., 1.1), array(3.))

Equivalently, we can calculate the dot product of two vectors by performing an elementwise
multiplication followed by a sum:

np.sum(x * y)

array(3.)

Dot products are useful in a wide range of contexts. For example, given some set of val-
ues, denoted by a vector x € R", and a set of weights, denoted by w € R", the weighted
sum of the values in x according to the weights w could be expressed as the dot product
x'w. When the weights are nonnegative and sum to 1, i.e., (X", w; = 1), the dot prod-
uct expresses a weighted average. After normalizing two vectors to have unit length, the
dot products express the cosine of the angle between them. Later in this section, we will
formally introduce this notion of length.

2.3.9 Matrix—Vector Products

Now that we know how to calculate dot products, we can begin to understand the product
between an m X n matrix A and an n-dimensional vector x. To start off, we visualize our
matrix in terms of its row vectors

A= , (2.3.5)

where each a] € R” is a row vector representing the i row of the matrix A.

The matrix—vector product Ax is simply a column vector of length m, whose i" element
is the dot product a x:

T T
aj ajx
a) alx
2 2
Ax=| "|x=| " |. (2.3.6)
a, a) x

We can think of multiplication with a matrix A € R™*" as a transformation that projects
vectors from R to R™. These transformations are remarkably useful. For example, we can
represent rotations as multiplications by certain square matrices. Matrix—vector products
also describe the key calculation involved in computing the outputs of each layer in a neural
network given the outputs from the previous layer.
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To express a matrix—vector product in code, we use the same dot function. The operation
is inferred based on the type of the arguments. Note that the column dimension of A (its
length along axis 1) must be the same as the dimension of x (its length).

A.shape, x.shape, np.dot(A, x)

(2, 3), (3,), array(L 5., 14.1))

2.3.10 Matrix—Matrix Multiplication

Once you have gotten the hang of dot products and matrix—vector products, then matrix—
matrix multiplication should be straightforward.

Say that we have two matrices A € R”** and B € RF*™:

an app - Ak by by -+ bim
a» axp - ax by by -+ by

A= . . .|, B=|. . - (2.3.7)
anl Ap2 -+ dApk by bra -+ bim

Leta € R* denote the row vector representing the i row of the matrix A and let b i € R¥
denote the column vector from the j column of the matrix B:

A=|7|, B=|b; by -+ byl. (2.3.8)

To form the matrix product C € R™™, we simply compute each element c;; as the dot
product between the i row of A and the jth column of B, i.e., al.Tb IS

aj a/b; a/by --- alb,
al alb; alb, --- alb,

C=AB=| ’|[bi by -+ bu|=|". : 2 (2.3.9)
a, arb; a by -+ alby,

We can think of the matrix—matrix multiplication AB as performing m matrix—vector prod-
ucts or m X n dot products and stitching the results together to form an n X m matrix. In the
following snippet, we perform matrix multiplication on A and B. Here, A is a matrix with
two rows and three columns, and B is a matrix with three rows and four columns. After
multiplication, we obtain a matrix with two rows and four columns.

B = np.ones(shape=(3, 4))
np.dot(A, B)
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array([[ 3., 3., 3., 3.1,
[12., 12., 12., 12.1D)

The term matrix—matrix multiplication is often simplified to matrix multiplication, and
should not be confused with the Hadamard product.

2.3.11 Norms

Some of the most useful operators in linear algebra are norms. Informally, the norm of a
vector tells us how big it is. For instance, the £, norm measures the (Euclidean) length of a
vector. Here, we are employing a notion of size that concerns the magnitude of a vector’s
components (not its dimensionality).

A norm is a function || - || that maps a vector to a scalar and satisfies the following three
properties:

1. Given any vector X, if we scale (all elements of) the vector by a scalar @ € R, its norm
scales accordingly:

llax|l = |e|llx]|. (2.3.10)

2. For any vectors x and y: norms satisfy the triangle inequality:

Ix+yll < lIxll + 1yl (2.3.11)

3. The norm of a vector is nonnegative and it only vanishes if the vector is zero:

|x|| > O for all x # 0. (2.3.12)

Many functions are valid norms and different norms encode different notions of size. The
Euclidean norm that we all learned in elementary school geometry when calculating the
hypotenuse of a right triangle is the square root of the sum of squares of a vector’s elements.
Formally, this is called the £, norm and expressed as

lIxll2 = (2.3.13)

The method norm calculates the £, norm.

u = np.array([3, -41)
np.linalg.norm(u)

array(5.)
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The ¢; norm is also common and the associated measure is called the Manhattan distance.
By definition, the £; norm sums the absolute values of a vector’s elements:

n
Il =" bl (2.3.14)
i=1

Compared to the £, norm, it is less sensitive to outliers. To compute the £; norm, we
compose the absolute value with the sum operation.

np.abs(u).sum()

array(7.)

Both the £, and ¢; norms are special cases of the more general £, norms:

n I/p
Ixllp = (Z Ixi|1’) : (2.3.15)
i=1

In the case of matrices, matters are more complicated. After all, matrices can be viewed
both as collections of individual entries and as objects that operate on vectors and transform
them into other vectors. For instance, we can ask by how much longer the matrix—vector
product Xv could be relative to v. This line of thought leads to what is called the spectral
norm. For now, we introduce the Frobenius norm, which is much easier to compute and
defined as the square root of the sum of the squares of a matrix’s elements:

I1Xle = (2.3.16)

The Frobenius norm behaves as if it were an £, norm of a matrix-shaped vector. Invoking
the following function will calculate the Frobenius norm of a matrix.

np.linalg.norm(np.ones((4, 9)))

array(6.)

While we do not want to get too far ahead of ourselves, we already can plant some intu-
ition about why these concepts are useful. In deep learning, we are often trying to solve
optimization problems: maximize the probability assigned to observed data; maximize the
revenue associated with a recommender model; minimize the distance between predictions
and the ground truth observations; minimize the distance between representations of photos
of the same person while maximizing the distance between representations of photos of dif-
ferent people. These distances, which constitute the objectives of deep learning algorithms,
are often expressed as norms.
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2.3.12 Discussion

In this section, we have reviewed all the linear algebra that you will need to understand a
significant chunk of modern deep learning. There is a lot more to linear algebra, though,
and much of it is useful for machine learning. For example, matrices can be decomposed
into factors, and these decompositions can reveal low-dimensional structure in real-world
datasets. There are entire subfields of machine learning that focus on using matrix decom-
positions and their generalizations to high-order tensors to discover structure in datasets
and solve prediction problems. But this book focuses on deep learning. And we believe
you will be more inclined to learn more mathematics once you have gotten your hands dirty
applying machine learning to real datasets. So while we reserve the right to introduce more
mathematics later on, we wrap up this section here.

If you are eager to learn more linear algebra, there are many excellent books and online
resources. For a more advanced crash course, consider checking out Strang (1993), Kolter
(2008), and Petersen and Pedersen (2008).

To recap:

e Scalars, vectors, matrices, and tensors are the basic mathematical objects used in linear
algebra and have zero, one, two, and an arbitrary number of axes, respectively.

Tensors can be sliced or reduced along specified axes via indexing, or operations such
as sum and mean, respectively.

Elementwise products are called Hadamard products. By contrast, dot products, matrix—
vector products, and matrix—matrix products are not elementwise operations and in
general return objects having shapes that are different from the the operands.

Compared to Hadamard products, matrix—matrix products take considerably longer to
compute (cubic rather than quadratic time).

e Norms capture various notions of the magnitude of a vector (or matrix), and are com-
monly applied to the difference of two vectors to measure their distance apart.

e Common vector norms include the ¢; and ¢, norms, and common matrix norms include
the spectral and Frobenius norms.

2.3.13 Exercises

1. Prove that the transpose of the transpose of a matrix is the matrix itself: (AT)T = A.

2. Given two matrices A and B, show that sum and transposition commute: AT + BT =
(A+B)".

3. Given any square matrix A, is A + AT always symmetric? Can you prove the result by
using only the results of the previous two exercises?

4. We defined the tensor X of shape (2, 3, 4) in this section. What is the output of 1en(X)?
Write your answer without implementing any code, then check your answer using code.
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5. For a tensor X of arbitrary shape, does len(X) always correspond to the length of a
certain axis of X? What is that axis?

6. Run A / A.sum(axis=1) and see what happens. Can you analyze the results?

7. When traveling between two points in downtown Manhattan, what is the distance that
you need to cover in terms of the coordinates, i.e., in terms of avenues and streets? Can
you travel diagonally?

8. Consider a tensor of shape (2, 3, 4). What are the shapes of the summation outputs
along axes 0, 1, and 2?

9. Feed a tensor with three or more axes to the 1inalg.norm function and observe its
output. What does this function compute for tensors of arbitrary shape?

10. Consider three large matrices, say A € R210X216, B e R¥*? and C e RZSXZM, ini-
tialized with Gaussian random variables. You want to compute the product ABC. Is

there any difference in memory footprint and speed, depending on whether you compute
(AB)C or A(BC). Why?

11. Consider three large matrices, say A € R?"*2°, B € R2**?’ and C € R?*2"_ Is there
any difference in speed depending on whether you compute AB or ACT? Why? What
changes if you initialize C = BT without cloning memory? Why?

12. Consider three matrices, say A, B, C € R100x200 - Construct a tensor with three axes by
stacking [A, B, C]. What is the dimensionality? Slice out the second coordinate of the
third axis to recover B. Check that your answer is correct.

maarm Discussions .
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2.4 Calculus

For a long time, how to calculate the area of a circle remained a mystery. Then, in Ancient
Greece, the mathematician Archimedes came up with the clever idea to inscribe a series of
polygons with increasing numbers of vertices on the inside of a circle (Fig. 2.4.1). For a
polygon with n vertices, we obtain n triangles. The height of each triangle approaches the
radius r as we partition the circle more finely. At the same time, its base approaches 27r /n,
since the ratio between arc and secant approaches 1 for a large number of vertices. Thus,

the area of the polygon approaches n - r - %(27rr /n) = nr?.

~ %
N /
. /

Finding the area of a circle as a limit procedure.
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This limiting procedure is at the root of both differential calculus and integral calculus. The
former can tell us how to increase or decrease a function’s value by manipulating its argu-
ments. This comes in handy for the optimization problems that we face in deep learning,
where we repeatedly update our parameters in order to decrease the loss function. Opti-
mization addresses how to fit our models to training data, and calculus is its key prerequisite.
However, do not forget that our ultimate goal is to perform well on previously unseen data.
That problem is called generalization and will be a key focus of other chapters.

%matplotlib inline

from matplotlib_inline import backend_inline
from mxnet import np, npx

from d21 import mxnet as d21

npx.set_np()

2.4.1 Derivatives and Differentiation

Put simply, a derivative is the rate of change in a function with respect to changes in its
arguments. Derivatives can tell us how rapidly a loss function would increase or decrease
were we to increase or decrease each parameter by an infinitesimally small amount. For-
mally, for functions f : R — R, that map from scalars to scalars, the derivative of f at a
point x is defined as
N A C e A )

S0 = lim T (2.4.1)
This term on the right hand side is called a limit and it tells us what happens to the value of
an expression as a specified variable approaches a particular value. This limit tells us what
the ratio between a perturbation & and the change in the function value f(x + h) — f(x)
converges to as we shrink its size to zero.

When f’(x) exists, f is said to be differentiable at x; and when f’(x) exists for all x on a
set, e.g., the interval [a, b], we say that f is differentiable on this set. Not all functions are
differentiable, including many that we wish to optimize, such as accuracy and the area under
the receiving operating characteristic (AUC). However, because computing the derivative
of the loss is a crucial step in nearly all algorithms for training deep neural networks, we
often optimize a differentiable surrogate instead.

We can interpret the derivative f’(x) as the instantaneous rate of change of f(x) with
respect to x. Let’s develop some intuition with an example. Define u = f(x) = 3x* —

4x.

def f(x):
return 3 * x ** 2 - 4 % x

Setting x = 1, we see that w approaches 2 as h approaches 0. While this ex-

periment lacks the rigor of a mathematical proof, we can quickly see that indeed f’(1) =
2.
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for h in 10.0**np.arange(-1, -6, -1):
print(f'h={h:.5f}, numerical limit={(f(1+h)-f(1))/h:.5f}")

h=0.10000, numerical limit=2.30000

h=0.01000, numerical 1limit=2.02999

h=0.00100, numerical 1imit=2.00295

h=0.00010, numerical 1imit=2.00033

h=0.00001, numerical 1imit=2.00272

[21:50:15] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

There are several equivalent notational conventions for derivatives. Given y = f(x), the
following expressions are equivalent:
dy df d
ff@x)=y'=—=—"=—f(x)=Df(x) =Dif(x), (2.4.2)
dx dx dx
where the symbols % and D are differentiation operators. Below, we present the deriva-
tives of some common functions:

d
—C=0 for any constant C
dx
dix" =nx"' forn#0
* (2.4.3)
iex =~
dx
o Inx =x"".

Functions composed from differentiable functions are often themselves differentiable. The
following rules come in handy for working with compositions of any differentiable func-
tions f and g, and constant C.

% [Cfx)] = C%f (x) Constant multiple rule
d d d
—[f(x)+g()] = —f(x) + —g(x) Sum rule
dx dx dx
d d d (2.4.4)
P [f(x)g(x)] = f(x)ag(x) + g(x)af(x) Product rule
X)L fx) - fx)Leg(x
%Jgjg; = 8 g/ ( g)z(;;( )ax8 ) Quotient rule
Using this, we can apply the rules to find the derivative of 3x? — 4x via
4 [3x? —4x] = 390 49y o (2.4.5)

dx dx dx

Plugging in x = 1 shows that, indeed, the derivative equals 2 at this location. Note that
derivatives tell us the slope of a function at a particular location.
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2.4.2 Visualization Utilities

We can visualize the slopes of functions using the matplotlib library. We need to de-
fine a few functions. As its name indicates, use_svg_display tells matplotlib to output
graphics in SVG format for crisper images. The comment #@save is a special modifier that
allows us to save any function, class, or other code block to the d21 package so that we can
invoke it later without repeating the code, e.g., via d21.use_svg_display().

def use_svg_display(): #@save
"""Use the svg format to display a plot in Jupyter.
backend_inline.set_matplotlib_formats('svg')

nnn

Conveniently, we can set figure sizes with set_figsize. Since the import statement from
matplotlib import pyplot as plt was marked via #@save in the d21 package, we can
call d21.plt.

def set_figsize(figsize=(3.5, 2.5)): #@save
"""Set the figure size for matplotlib.”""
use_svg_display()
d21.plt.rcParams['figure.figsize'] = figsize

The set_axes function can associate axes with properties, including labels, ranges, and
scales.

#@save

def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""Set the axes for matplotlib.”""
axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)
axes.set_xscale(xscale), axes.set_yscale(yscale)
axes.set_xlim(xlim), axes.set_ylim(ylim)
if legend:

axes.legend(legend)

axes.grid()

With these three functions, we can define a plot function to overlay multiple curves. Much
of the code here is just ensuring that the sizes and shapes of inputs match.

#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None,
ylim=None, xscale='linear', yscale='linear’,
fmts=('-", 'm—-', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""Plot data points."""

def has_one_axis(X): # True if X (tensor or list) has 1 axis
return (hasattr(X, "ndim”) and X.ndim == 1 or isinstance(X, list)
and not hasattr(X[0], "__len__"))

if has_one_axis(X): X = [X]
if Y is None:
X, Y = [[1] * len(X), X

(continues on next page)
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(continued from previous page)

elif has_one_axis(Y):
Y = [Y]

if len(X) != len(Y):
X = X x len(Y)

set_figsize(figsize)
if axes is None:
axes = d2l.plt.gca()
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
axes.plot(x,y,fmt) if len(x) else axes.plot(y,fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

Now we can plot the function # = f(x) and its tangent line y = 2x — 3 at x = 1, where the
coefficient 2 is the slope of the tangent line.

X = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', '"f(x)', legend=['f(x)', 'Tangent line (x=1)'1])

— f(x)
| ==- Tangent line (x=1)

f(x)

2.4.3 Partial Derivatives and Gradients

Thus far, we have been differentiating functions of just one variable. In deep learning, we
also need to work with functions of many variables. We briefly introduce notions of the
derivative that apply to such multivariate functions.

Lety = f(x1,x2,...,x,) be a function with n variables. The partial derivative of y with
respect to its i parameter x; is

dy lim FO, e xis, Xi X1, oo Xn) = f(X1, e Xy e oo Xp) (2.4.6)
6x,~ h—0 h ' o
i) .
To calculate a—)f_, we cantreatxy,...,X;_1,Xi+1, .. ., X as constants and calculate the deriva-
4

tive of y with respect to x;. The following notational conventions for partial derivatives are
all common and all mean the same thing:

dy _of _ A f —f D f
a_xi— aXi —axif—alf—fx,- —fl —le—Dxif' (247)

We can concatenate partial derivatives of a multivariate function with respect to all its



59

Calculus

variables to obtain a vector that is called the gradient of the function. Suppose that the
input of function f : R” — R is an n-dimensional vector x = [x1,X2,...,x,]" and the
output is a scalar. The gradient of the function f with respect to x is a vector of n partial
derivatives:

Vaef (%) = [9x, f(X), 0, f (%) ... O, f(2)] . (24.8)

When there is no ambiguity, V, f (x) is typically replaced by V f(x). The following rules
come in handy for differentiating multivariate functions:

e Forall A € R™" we have V4Ax = AT and VoxT A = A.

e For square matrices A € R™™" we have that V,x"Ax = (A + AT)x and in particular
Villx||? = VexTx = 2x.

Similarly, for any matrix X, we have VXI|X||12: =2X.

2.4.4 Chain Rule

In deep learning, the gradients of concern are often difficult to calculate because we are
working with deeply nested functions (of functions (of functions...)). Fortunately, the chain
rule takes care of this. Returning to functions of a single variable, suppose that y = f(g(x))
and that the underlying functions y = f(u) and u = g(x) are both differentiable. The chain
rule states that

dy dydu

dx  dudx’
Turning back to multivariate functions, suppose that y = f(u) has variables uy, uy, . . . , iy,
where each u; = g;(x) has variables xi,x2, ..., Xy, i.e., u = g(x). Then the chain rule
states that

(2.4.9)

dy 0y du; 9y Oup ay duy,

— =——+——=4 ...+ ———— andso Vyy=AV,y, 2.4.10

ox; Ouy 0x; Oup 0x; ou,y, Ox; andso Y u) ( )
where A € R™™ is a matrix that contains the derivative of vector u with respect to vector
x. Thus, evaluating the gradient requires computing a vector—matrix product. This is one
of the key reasons why linear algebra is such an integral building block in building deep

learning systems.

2.4.5 Discussion

While we have just scratched the surface of a deep topic, a number of concepts already come
into focus: first, the composition rules for differentiation can be applied routinely, enabling
us to compute gradients automatically. This task requires no creativity and thus we can
focus our cognitive powers elsewhere. Second, computing the derivatives of vector-valued
functions requires us to multiply matrices as we trace the dependency graph of variables
from output to input. In particular, this graph is traversed in a forward direction when
we evaluate a function and in a backwards direction when we compute gradients. Later
chapters will formally introduce backpropagation, a computational procedure for applying
the chain rule.
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From the viewpoint of optimization, gradients allow us to determine how to move the pa-
rameters of a model in order to lower the loss, and each step of the optimization algorithms
used throughout this book will require calculating the gradient.

2.4.6 Exercises

1. So far we took the rules for derivatives for granted. Using the definition and limits prove
the properties for (i) f(x) = ¢, (i) f(x) = x", (iii) f(x) = e* and (iv) f(x) = logx.

2. In the same vein, prove the product, sum, and quotient rule from first principles.
3. Prove that the constant multiple rule follows as a special case of the product rule.

4. Calculate the derivative of f(x) = x*.

0

What does it mean that f”(x) = 0 for some x? Give an example of a function f and a
location x for which this might hold.

Plot the function y = f(x) = x> — % and plot its tangent line at x = 1.
Find the gradient of the function f(x) = 3x% + 5¢*2.

What is the gradient of the function f(x) = ||x||»? What happens for x = 0?

© =2

Can you write out the chain rule for the case where u = f(x,y,z) and x = x(a, b),
y =y(a,b),and z = z(a, b)?

10. Given a function f(x) that is invertible, compute the derivative of its inverse f~!(x).
Here we have that f~!(f(x)) = x and conversely f(f~!(y)) = y. Hint: use these
properties in your derivation.

uggiﬁﬂ;] Discussions®® .

.
2.5 Automatic Differentiation
|

Recall from Section 2.4 that calculating derivatives is the crucial step in all the optimization
algorithms that we will use to train deep networks. While the calculations are straightfor-
ward, working them out by hand can be tedious and error-prone, and these issues only grow
as our models become more complex.

Fortunately all modern deep learning frameworks take this work off our plates by offering
automatic differentiation (often shortened to autograd). As we pass data through each
successive function, the framework builds a computational graph that tracks how each value
depends on others. To calculate derivatives, automatic differentiation works backwards
through this graph applying the chain rule. The computational algorithm for applying the
chain rule in this fashion is called backpropagation.

While autograd libraries have become a hot concern over the past decade, they have a
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long history. In fact the earliest references to autograd date back over half of a century
(Wengert, 1964). The core ideas behind modern backpropagation date to a PhD thesis
from 1980 (Speelpenning, 1980) and were further developed in the late 1980s (Griewank,
1989). While backpropagation has become the default method for computing gradients,
it is not the only option. For instance, the Julia programming language employs forward
propagation (Revels et al., 2016). Before exploring methods, let’s first master the autograd
package.

from mxnet import autograd, np, npx

npx.set_np()

2.5.1 A Simple Function

Let’s assume that we are interested in differentiating the function y = 2x " x with respect to
the column vector x. To start, we assign x an initial value.

X = np.arange(4.0)
X

[22:07:05] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager..
—for CPU

array([0., 1., 2., 3.1)

Before we calculate the gradient of y with respect to x, we need a place to store it. In
general, we avoid allocating new memory every time we take a derivative because deep
learning requires successively computing derivatives with respect to the same parameters
a great many times, and we might risk running out of memory. Note that the gradient of
a scalar-valued function with respect to a vector x is vector-valued with the same shape as
X.

We allocate memory for a tensor's gradient by invoking ‘attach_grad®
.attach_grad()

After we calculate a gradient taken with respect to ‘x', we will be able to
access it via the ‘grad' attribute, whose values are initialized with @s
.grad

X HoH X

array([0., 0., 0., 0.1)

We now calculate our function of x and assign the result to y.

# Our code is inside an ‘autograd.record' scope to build the computational
# graph

(continues on next page)
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(continued from previous page)

with autograd.record():
y = 2 * np.dot(x, x)
y

array(28.)

We can now take the gradient of y with respect to x by calling its backward method. Next,
we can access the gradient via x’s grad attribute.

y.backward()
x.grad

[22:07:05] ../src/base.cc:48: GPU context requested, but no GPUs found.

array([ 0., 4., 8., 12.1)

We already know that the gradient of the function y = 2x"x with respect to x should be
4x. We can now verify that the automatic gradient computation and the expected result are
identical.

x.grad == 4 * x

array([ True, True, True, Truel)

Now let’s calculate another function of x and take its gradient. Note that MXNet resets the
gradient buffer whenever we record a new gradient.

with autograd.record():
y = x.sum()
y.backward()
x.grad # Overwritten by the newly calculated gradient

array([1., 1., 1., 1.1)

2.5.2 Backward for Non-Scalar Variables

When y is a vector, the most natural representation of the derivative of y with respect
to a vector x is a matrix called the Jacobian that contains the partial derivatives of each
component of y with respect to each component of x. Likewise, for higher-order y and x,
the result of differentiation could be an even higher-order tensor.

While Jacobians do show up in some advanced machine learning techniques, more com-
monly we want to sum up the gradients of each component of y with respect to the full
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vector X, yielding a vector of the same shape as x. For example, we often have a vector
representing the value of our loss function calculated separately for each example among a
batch of training examples. Here, we just want to sum up the gradients computed individ-
ually for each example.

MXNet handles this problem by reducing all tensors to scalars by summing before com-
puting a gradient. In other words, rather than returning the Jacobian dyy, it returns the
gradient of the sum 0x ;; y;.

with autograd.record():
y = X * X
y.backward()
x.grad # Equals the gradient of y = sum(x * x)

array([0., 2., 4., 6.1)

2.5.3 Detaching Computation

Sometimes, we wish to move some calculations outside of the recorded computational
graph. For example, say that we use the input to create some auxiliary intermediate terms
for which we do not want to compute a gradient. In this case, we need to detach the re-
spective computational graph from the final result. The following toy example makes this
clearer: suppose we have z = x * yandy = x * x but we want to focus on the direct
influence of x on z rather than the influence conveyed via y. In this case, we can create a
new variable u that takes the same value as y but whose provenance (how it was created)
has been wiped out. Thus u has no ancestors in the graph and gradients do not flow through
u to x. For example, taking the gradient of z = x * u will yield the result u, (not 3 * x
* x as you might have expected since z = x * x * X).

with autograd.record():

y = X % X

u = y.detach()

Z = U * X
z.backward()
x.grad == u

array([ True, True, True, Truel)

Note that while this procedure detaches y’s ancestors from the graph leading to z, the com-
putational graph leading to y persists and thus we can calculate the gradient of y with
respect to x.

y.backward()
x.grad == 2 * x
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array([ True, True, True, Truel)

2.5.4 Gradients and Python Control Flow

So far we reviewed cases where the path from input to output was well defined via a func-
tion such as z = x * x * x. Programming offers us a lot more freedom in how we
compute results. For instance, we can make them depend on auxiliary variables or condi-
tion choices on intermediate results. One benefit of using automatic differentiation is that
even if building the computational graph of a function required passing through a maze
of Python control flow (e.g., conditionals, loops, and arbitrary function calls), we can still
calculate the gradient of the resulting variable. To illustrate this, consider the following
code snippet where the number of iterations of the while loop and the evaluation of the if
statement both depend on the value of the input a.

def f(a):

b=a=*?2

while np.linalg.norm(b) < 1000:
b=Db=x*x?2

if b.sum() > 0:
c=b

else:
c =100 * b

return c

Below, we call this function, passing in a random value, as input. Since the input is a
random variable, we do not know what form the computational graph will take. However,
whenever we execute f(a) on a specific input, we realize a specific computational graph
and can subsequently run backward.

a = np.random.normal()

a.attach_grad()

with autograd.record():
d = f(a)

d.backward()

Even though our function f is, for demonstration purposes, a bit contrived, its dependence
on the input is quite simple: it is a linear function of a with piecewise defined scale. As
such, f(a) / ais a vector of constant entries and, moreover, f(a) / aneeds to match the
gradient of f(a) with respect to a.

a.grad ==d / a
array(True)

Dynamic control flow is very common in deep learning. For instance, when processing
text, the computational graph depends on the length of the input. In these cases, automatic
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differentiation becomes vital for statistical modeling since it is impossible to compute the
gradient a priori.

2.5.5 Discussion

You have now gotten a taste of the power of automatic differentiation. The development of
libraries for calculating derivatives both automatically and efficiently has been a massive
productivity booster for deep learning practitioners, liberating them so they can focus on
less menial. Moreover, autograd lets us design massive models for which pen and paper
gradient computations would be prohibitively time consuming. Interestingly, while we use
autograd to optimize models (in a statistical sense) the optimization of autograd libraries
themselves (in a computational sense) is a rich subject of vital interest to framework design-
ers. Here, tools from compilers and graph manipulation are leveraged to compute results
in the most expedient and memory-efficient manner.

For now, try to remember these basics: (i) attach gradients to those variables with respect
to which we desire derivatives; (ii) record the computation of the target value; (iii) execute
the backpropagation function; and (iv) access the resulting gradient.

2.5.6 Exercises

1. Why is the second derivative much more expensive to compute than the first derivative?

2. After running the function for backpropagation, immediately run it again and see what
happens. Investigate.

3. In the control flow example where we calculate the derivative of d with respect to a,
what would happen if we changed the variable a to a random vector or a matrix? At
this point, the result of the calculation f (a) is no longer a scalar. What happens to the
result? How do we analyze this?

4. Let f(x) = sin(x). Plot the graph of f and of its derivative f’. Do not exploit the fact
that f”(x) = cos(x) but rather use automatic differentiation to get the result.

5. Let f(x) = ((logx?) - sinx) + x~'. Write out a dependency graph tracing results from
xto f(x).
df

6. Use the chain rule to compute the derivative
each term on the dependency graph that you constructed previously.

of the aforementioned function, placing

7. Given the graph and the intermediate derivative results, you have a number of options
when computing the gradient. Evaluate the result once starting from x to f and once
from f tracing back to x. The path from x to f is commonly known as forward differ-
entiation, whereas the path from f to x is known as backward differentiation.

8. When might you want to use forward, and when backward, differentiation? Hint: con-
sider the amount of intermediate data needed, the ability to parallelize steps, and the
size of matrices and vectors involved.

Discussions®7 .


https://discuss.d2l.ai/t/34
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2.6 Probability and Statistics
____________________________________________________________________________________________

One way or another, machine learning is all about uncertainty. In supervised learning, we
want to predict something unknown (the target) given something known (the features). De-
pending on our objective, we might attempt to predict the most likely value of the target.
Or we might predict the value with the smallest expected distance from the target. And
sometimes we wish not only to predict a specific value but to quantify our uncertainty. For
example, given some features describing a patient, we might want to know how likely they
are to suffer a heart attack in the next year. In unsupervised learning, we often care about
uncertainty. To determine whether a set of measurements are anomalous, it helps to know
how likely one is to observe values in a population of interest. Furthermore, in reinforce-
ment learning, we wish to develop agents that act intelligently in various environments.
This requires reasoning about how an environment might be expected to change and what
rewards one might expect to encounter in response to each of the available actions.

Probability is the mathematical field concerned with reasoning under uncertainty. Given a
probabilistic model of some process, we can reason about the likelihood of various events.
The use of probabilities to describe the frequencies of repeatable events (like coin tosses) is
fairly uncontroversial. In fact, frequentist scholars adhere to an interpretation of probability
that applies only to such repeatable events. By contrast Bayesian scholars use the language
of probability more broadly to formalize reasoning under uncertainty. Bayesian probability
is characterized by two unique features: (i) assigning degrees of belief to non-repeatable
events, e.g., what is the probability that a dam will collapse?; and (ii) subjectivity. While
Bayesian probability provides unambiguous rules for how one should update their beliefs in
light of new evidence, it allows for different individuals to start off with different prior be-
liefs. Statistics helps us to reason backwards, starting off with collection and organization
of data and backing out to what inferences we might draw about the process that generated
the data. Whenever we analyze a dataset, hunting for patterns that we hope might charac-
terize a broader population, we are employing statistical thinking. Many courses, majors,
theses, careers, departments, companies, and institutions have been devoted to the study of
probability and statistics. While this section only scratches the surface, we will provide the
foundation that you need to begin building models.

%matplotlib inline

import random

from mxnet import np, npx

from mxnet.numpy.random import multinomial
from d21 import mxnet as d21

npx.set_np()

2.6.1 A Simple Example: Tossing Coins

Imagine that we plan to toss a coin and want to quantify how likely we are to see heads
(vs. tails). If the coin is fair, then both outcomes (heads and tails), are equally likely.
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Moreover if we plan to toss the coin n times then the fraction of heads that we expect to
see should exactly match the expected fraction of tails. One intuitive way to see this is
by symmetry: for every possible outcome with ny heads and n; = (n — ny) tails, there is
an equally likely outcome with n¢ heads and ny, tails. Note that this is only possible if on
average we expect to see 1/2 of tosses come up heads and 1/2 come up tails. Of course, if
you conduct this experiment many times with n = 1000000 tosses each, you might never
see a trial where ny, = n¢ exactly.

Formally, the quantity 1/2 is called a probability and here it captures the certainty with
which any given toss will come up heads. Probabilities assign scores between 0 and 1 to
outcomes of interest, called events. Here the event of interest is heads and we denote the
corresponding probability P(heads). A probability of 1 indicates absolute certainty (imag-
ine a trick coin where both sides were heads) and a probability of 0 indicates impossibility
(e.g., if both sides were tails). The frequencies ny, /n and n¢/n are not probabilities but rather
statistics. Probabilities are theoretical quantities that underly the data generating process.
Here, the probability 1/2 is a property of the coin itself. By contrast, statistics are empirical
quantities that are computed as functions of the observed data. Our interests in probabilis-
tic and statistical quantities are inextricably intertwined. We often design special statistics
called estimators that, given a dataset, produce estimates of model parameters such as prob-
abilities. Moreover, when those estimators satisfy a nice property called consistency, our
estimates will converge to the corresponding probability. In turn, these inferred probabili-
ties tell about the likely statistical properties of data from the same population that we might
encounter in the future.

Suppose that we stumbled upon a real coin for which we did not know the true P(heads).
To investigate this quantity with statistical methods, we need to (i) collect some data; and
(ii) design an estimator. Data acquisition here is easy; we can toss the coin many times
and record all the outcomes. Formally, drawing realizations from some underlying random
process is called sampling. As you might have guessed, one natural estimator is the ratio
of the number of observed heads to the total number of tosses.

Now, suppose that the coin was in fact fair, i.e., P(heads) = 0.5. To simulate tosses of a
fair coin, we can invoke any random number generator. There are some easy ways to draw
samples of an event with probability 0.5. For example Python’s random. random yields
numbers in the interval [0, 1] where the probability of lying in any sub-interval [a, b] C
[0, 1] is equal to b — a. Thus we can get out @ and 1 with probability @.5 each by testing
whether the returned float number is greater than 0. 5:

num_tosses = 100

heads = sum([random.random() > 0.5 for _ in range(num_tosses)])
tails = num_tosses - heads

print(”"heads, tails: ", [heads, tails])

heads, tails: [48, 52]

More generally, we can simulate multiple draws from any variable with a finite number
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of possible outcomes (like the toss of a coin or roll of a die) by calling the multinomial
function, setting the first argument to the number of draws and the second as a list of prob-
abilities associated with each of the possible outcomes. To simulate ten tosses of a fair coin,
we assign probability vector [0.5, 0.5], interpreting index O as heads and index 1 as tails.
The function returns a vector with length equal to the number of possible outcomes (here,
2), where the first component tells us the number of occurrences of heads and the second
component tells us the number of occurrences of tails.

fair_probs = [0.5, 0.5]
multinomial (100, fair_probs)

[22:11:28] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

array([46, 54], dtype=int64)

Each time you run this sampling process, you will receive a new random value that may
differ from the previous outcome. Dividing by the number of tosses gives us the frequency
of each outcome in our data. Note that these frequencies, just like the probabilities that they
are intended to estimate, sum to 1.

multinomial (100, fair_probs) / 100

array([0.53, 0.471)

Here, even though our simulated coin is fair (we ourselves set the probabilities [0.5, 0.
51), the counts of heads and tails may not be identical. That is because we only drew a
relatively small number of samples. If we did not implement the simulation ourselves, and
only saw the outcome, how would we know if the coin were slightly unfair or if the possible
deviation from 1/2 was just an artifact of the small sample size? Let’s see what happens
when we simulate 10,000 tosses.

counts = multinomial(10000, fair_probs).astype(np.float32)
counts / 10000

array([0.4952, 0.50481])

In general, for averages of repeated events (like coin tosses), as the number of repetitions
grows, our estimates are guaranteed to converge to the true underlying probabilities. The
mathematical formulation of this phenomenon is called the law of large numbers and the
central limit theorem tells us that in many situations, as the sample size n grows, these
errors should go down at a rate of (1/+4/n). Let’s get some more intuition by studying how
our estimate evolves as we grow the number of tosses from 1 to 10,000.
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counts = multinomial(1l, fair_probs, size=10000)
cum_counts = counts.astype(np.float32).cumsum(axis=0)
estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True)

d21.set_figsize((4.5, 3.5))

d21.plt.plot(estimates[:, 0], label=("P(coin=heads)"))
d21.plt.plot(estimates[:, 1], label=("P(coin=tails)"))
d21.plt.axhline(y=0.5, color='black', linestyle='dashed’)
d21.plt.gca().set_xlabel('Samples’)
d21.plt.gca().set_ylabel('Estimated probability')
d21.plt.legend();
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Each solid curve corresponds to one of the two values of the coin and gives our estimated
probability that the coin turns up that value after each group of experiments. The dashed
black line gives the true underlying probability. As we get more data by conducting more
experiments, the curves converge towards the true probability. You might already begin to
see the shape of some of the more advanced questions that preoccupy statisticians: How
quickly does this convergence happen? If we had already tested many coins manufactured
at the same plant, how might we incorporate this information?

2.6.2 A More Formal Treatment

We have already gotten pretty far: posing a probabilistic model, generating synthetic data,
running a statistical estimator, empirically assessing convergence, and reporting error met-
rics (checking the deviation). However, to go much further, we will need to be more pre-
cise.

When dealing with randomness, we denote the set of possible outcomes S and call it the
sample space or outcome space. Here, each element is a distinct possible outcome. In
the case of rolling a single coin, S = {heads, tails}. For a single die, S = {1, 2, 3,4, 5, 6}.

When flipping two coins, possible outcomes are {(heads, heads), (heads, tails), (tails, heads), (tails, tails) }.

Events are subsets of the sample space. For instance, the event “the first coin toss comes
up heads” corresponds to the set {(heads, heads), (heads, tails)}. Whenever the outcome
z of a random experiment satisfies z € A, then event A has occurred. For a single roll
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of a die, we could define the events “seeing a 5” (A = {5}) and “seeing an odd number”
(B ={1,3,5}). Inthis case, if the die came up 5, we would say that both A and B occurred.
On the other hand, if z = 3, then A did not occur but B did.

A probability function maps events onto real values P : A C S — [0, 1]. The probabil-
ity, denoted P(A), of an event A in the given sample space S, has the following proper-
ties:

e The probability of any event A is a nonnegative real number, i.e., P(A) > 0;
e The probability of the entire sample space is 1, i.e., P(S) = 1;

e For any countable sequence of events Ay, Ay, . .. that are mutually exclusive (i.e., A; N
Aj =0 foralli # j), the probability that any of them happens is equal to the sum of
their individual probabilities, i.e., P(Uj2; A;) = X2 P(A;).

These axioms of probability theory, proposed by Kolmogorov (1933), can be applied to
rapidly derive a number of important consequences. For instance, it follows immediately
that the probability of any event A or its complement A’ occurring is 1 (because AUA’ =
S). We can also prove that P(0) = 0 because | = P(SUS’) = P(SUD) = P(S)+P(0) =
1 + P(0). Consequently, the probability of any event A and its complement A’ occurring
simultaneously is P(ANA’) = 0. Informally, this tells us that impossible events have zero
probability of occurring.

2.6.3 Random Variables

When we spoke about events like the roll of a die coming up odds or the first coin toss
coming up heads, we were invoking the idea of a random variable. Formally, random
variables are mappings from an underlying sample space to a set of (possibly many) values.
You might wonder how a random variable is different from the sample space, since both are
collections of outcomes. Importantly, random variables can be much coarser than the raw
sample space. We can define a binary random variable like “greater than 0.5” even when
the underlying sample space is infinite, e.g., points on the line segment between 0 and 1.
Additionally, multiple random variables can share the same underlying sample space. For
example “whether my home alarm goes off” and “whether my house was burgled” are both
binary random variables that share an underlying sample space. Consequently, knowing the
value taken by one random variable can tell us something about the likely value of another
random variable. Knowing that the alarm went off, we might suspect that the house was
likely burgled.

Every value taken by a random variable corresponds to a subset of the underlying sample
space. Thus the occurrence where the random variable X takes value v, denoted by X = v,
is an event and P(X = v) denotes its probability. Sometimes this notation can get clunky,
and we can abuse notation when the context is clear. For example, we might use P(X) to
refer broadly to the distribution of X, i.e., the function that tells us the probability that X
takes any given value. Other times we write expressions like P(X,Y) = P(X)P(Y), as a
shorthand to express a statement that is true for all of the values that the random variables
X and Y can take, i.e., for all 7, j it holds that P(X =iand Y = j) = P(X =i)P(Y = j).
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Other times, we abuse notation by writing P(v) when the random variable is clear from the
context. Since an event in probability theory is a set of outcomes from the sample space,
we can specify a range of values for a random variable to take. For example, P(1 < X < 3)
denotes the probability of the event {1 < X < 3}.

Note that there is a subtle difference between discrete random variables, like flips of a coin
or tosses of a die, and continuous ones, like the weight and the height of a person sampled
at random from the population. In this case we seldom really care about someone’s exact
height. Moreover, if we took precise enough measurements, we would find that no two
people on the planet have the exact same height. In fact, with fine enough measurements,
you would never have the same height when you wake up and when you go to sleep. There
is little point in asking about the exact probability that someone is 1.801392782910287192
meters tall. Instead, we typically care more about being able to say whether someone’s
height falls into a given interval, say between 1.79 and 1.81 meters. In these cases we work
with probability densities. The height of exactly 1.80 meters has no probability, but nonzero
density. To work out the probability assigned to an interval, we must take an infegral of the
density over that interval.

2.6.4 Multiple Random Variables

You might have noticed that we could not even make it through the previous section without
making statements involving interactions among multiple random variables (recall P(X,Y) =
P(X)P(Y)). Most of machine learning is concerned with such relationships. Here, the sam-
ple space would be the population of interest, say customers who transact with a business,
photographs on the Internet, or proteins known to biologists. Each random variable would
represent the (unknown) value of a different attribute. Whenever we sample an individual
from the population, we observe a realization of each of the random variables. Because
the values taken by random variables correspond to subsets of the sample space that could
be overlapping, partially overlapping, or entirely disjoint, knowing the value taken by one
random variable can cause us to update our beliefs about which values of another random
variable are likely. If a patient walks into a hospital and we observe that they are having
trouble breathing and have lost their sense of smell, then we believe that they are more
likely to have COVID-19 than we might if they had no trouble breathing and a perfectly
ordinary sense of smell.

When working with multiple random variables, we can construct events corresponding to
every combination of values that the variables can jointly take. The probability function
that assigns probabilities to each of these combinations (e.g. A = a and B = b) is called the
Jjoint probability function and simply returns the probability assigned to the intersection
of the corresponding subsets of the sample space. The joint probability assigned to the
event where random variables A and B take values a and b, respectively, is denoted P(A =
a, B = b), where the comma indicates “and”. Note that for any values a and b, it follows
that

P(A=a,B=b)<P(A=a)and P(A=a,B=b) < P(B=b), (2.6.1)

since for A = a and B = b to happen, A = a has to happen and B = b also has to
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happen. Interestingly, the joint probability tells us all that we can know about these random
variables in a probabilistic sense, and can be used to derive many other useful quantities,
including recovering the individual distributions P(A) and P(B). To recover P(A = a)
we simply sum up P(A = a, B = v) over all values v that the random variable B can take:
P(A=a)=),P(A=a,B=v).

The ratio % < 1 turns out to be extremely important. It is called the conditional
probability, and is denoted via the “|” symbol:
P(B=b|A=a)=P(A=a,B=b)/P(A =a). (2.6.2)

It tells us the new probability associated with the event B = b, once we condition on the
fact A = a took place. We can think of this conditional probability as restricting attention
only to the subset of the sample space associated with A = a and then renormalizing so that
all probabilities sum to 1. Conditional probabilities are in fact just ordinary probabilities
and thus respect all of the axioms, as long as we condition all terms on the same event and
thus restrict attention to the same sample space. For instance, for disjoint events 8 and B’,
we have that P(BUB’ |A=a)=P(B|A=a)+P(B' | A=a).

Using the definition of conditional probabilities, we can derive the famous result called
Bayes’ theorem. By construction, we have that P(A, B) = P(B | A)P(A) and P(A, B) =
P(A | B)P(B). Combining both equations yields P(B | A)P(A) = P(A | B)P(B) and
hence

P(B| A)P(A)

P(B)

This simple equation has profound implications because it allows us to reverse the order of
conditioning. If we know how to estimate P(B | A), P(A), and P(B), then we can estimate
P(A | B). We often find it easier to estimate one term directly but not the other and Bayes’
theorem can come to the rescue here. For instance, if we know the prevalence of symptoms
for a given disease, and the overall prevalences of the disease and symptoms, respectively,
we can determine how likely someone is to have the disease based on their symptoms. In
some cases we might not have direct access to P(B), such as the prevalence of symptoms.
In this case a simplified version of Bayes’ theorem comes in handy:

P(A|B) = (2.6.3)

P(A | B) < P(B| A)P(A). (2.6.4)

Since we know that P(A | B) must be normalized to 1, i.e., ., P(A =a | B) = 1, we can
use it to compute
P(B | A)P(A)

Y.P(B|A=a)P(A=a)
In Bayesian statistics, we think of an observer as possessing some (subjective) prior be-
liefs about the plausibility of the available hypotheses encoded in the prior P(H), and a
likelihood function that says how likely one is to observe any value of the collected evi-
dence for each of the hypotheses in the class P(E | H). Bayes’ theorem is then interpreted
as telling us how to update the initial prior P(H) in light of the available evidence E to
produce posterior beliefs P(H | E) = %. Informally, this can be stated as “pos-
terior equals prior times likelihood, divided by the evidence”. Now, because the evidence

P(A|B) =

(2.6.5)
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P(E) is the same for all hypotheses, we can get away with simply normalizing over the
hypotheses.

Note that };, P(A = a | B) = 1 also allows us to marginalize over random variables.
That is, we can drop variables from a joint distribution such as P(A, B). After all, we have
that

D P(BIA=a)P(A=a)= ) P(B,A=a)=P(B). (2.6.6)

Independence is another fundamentally important concept that forms the backbone of many
important ideas in statistics. In short, two variables are independent if conditioning on the
value of A does not cause any change to the probability distribution associated with B and
vice versa. More formally, independence, denoted A L B, requires that P(A | B) = P(A)
and, consequently, that P(A,B) = P(A | B)P(B) = P(A)P(B). Independence is often
an appropriate assumption. For example, if the random variable A represents the outcome
from tossing one fair coin and the random variable B represents the outcome from tossing
another, then knowing whether A came up heads should not influence the probability of B
coming up heads.

Independence is especially useful when it holds among the successive draws of our data
from some underlying distribution (allowing us to make strong statistical conclusions) or
when it holds among various variables in our data, allowing us to work with simpler models
that encode this independence structure. On the other hand, estimating the dependencies
among random variables is often the very aim of learning. We care to estimate the probabil-
ity of disease given symptoms specifically because we believe that diseases and symptoms
are not independent.

Note that because conditional probabilities are proper probabilities, the concepts of inde-
pendence and dependence also apply to them. Two random variables A and B are condition-
ally independent given a third variable C if and only if P(A,B | C) = P(A | C)P(B | C).
Interestingly, two variables can be independent in general but become dependent when
conditioning on a third. This often occurs when the two random variables A and B cor-
respond to causes of some third variable C. For example, broken bones and lung cancer
might be independent in the general population but if we condition on being in the hospital
then we might find that broken bones are negatively correlated with lung cancer. That is
because the broken bone explains away why some person is in the hospital and thus lowers
the probability that they are hospitalized because of having lung cancer.

And conversely, two dependent random variables can become independent upon condition-
ing on a third. This often happens when two otherwise unrelated events have a common
cause. Shoe size and reading level are highly correlated among elementary school students,
but this correlation disappears if we condition on age.

2.6.5 An Example

Let’s put our skills to the test. Assume that a doctor administers an HIV test to a patient.
This test is fairly accurate and fails only with 1% probability if the patient is healthy but
reported as diseased, i.e., healthy patients test positive in 1% of cases. Moreover, it never
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fails to detect HIV if the patient actually has it. We use D € {0, 1} to indicate the diagnosis
(0 if negative and 1 if positive) and H € {0, 1} to denote the HIV status.

P(D; =1]| H) 0.01
P(D; =0 H) 0.99

Conditional probability | H=1 | H=0
1
0

Note that the column sums are all 1 (but the row sums do not), since they are conditional
probabilities. Let’s compute the probability of the patient having HIV if the test comes
back positive, i.e., P(H = 1 | D} = 1). Intuitively this is going to depend on how common
the disease is, since it affects the number of false alarms. Assume that the population is
fairly free of the disease, e.g., P(H = 1) = 0.0015. To apply Bayes’ theorem, we need to
apply marginalization to determine

P(D =1)=P(D;=1,H=0)+P(D,=1,H=1)
=P(D;=1|H=0P(H=0)+P(D,=1|H=1)PH=1) (2.6.7)
=0.011485.

This leads us to

P(Di=1|H=1)PH=1)

PH=1|D =1)= OIS

=0.1306. (2.6.8)

In other words, there is only a 13.06% chance that the patient actually has HIV, despite the
test being pretty accurate. As we can see, probability can be counterintuitive. What should a
patient do upon receiving such terrifying news? Likely, the patient would ask the physician
to administer another test to get clarity. The second test has different characteristics and it
is not as good as the first one.

Conditional probability | H=1 | H=0
P(D,=11H) 0.98 [0.03
P(D>=0|H) 0.02 |0.97

Unfortunately, the second test comes back positive, too. Let’s calculate the requisite prob-
abilities to invoke Bayes’ theorem by assuming conditional independence:

P(Di=1,D,=1|H=0)=P(D;=1|H=0)P(D,=1|H=0)=0.0003,
P(Di=1,D,=1|H=1)=P(D;=1|H=1)P(D>=1|H=1)=  0.98.
(2.6.9)

Now we can apply marginalization to obtain the probability that both tests come back pos-
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itive:
P(D;=1,D;=1)
=P(D1=1,D,=1,H=0)+P(D1=1,D=1,H=1)
=P(D;=1,D,=1H=0)P(H=0)+P(D1=1,D,=1|H=1)P(H=1)
=0.00176955.
(2.6.10)
Finally, the probability of the patient having HIV given that both tests are positive is

P(Di=1,D,=1|H=1)P(H=1)
P(Di=1,D,=1)

P(H=1|D;=1,D,=1)= =0.8307. (2.6.11)
That is, the second test allowed us to gain much higher confidence that not all is well. De-
spite the second test being considerably less accurate than the first one, it still significantly
improved our estimate. The assumption of both tests being conditionally independent of
each other was crucial for our ability to generate a more accurate estimate. Take the ex-
treme case where we run the same test twice. In this situation we would expect the same
outcome both times, hence no additional insight is gained from running the same test again.
The astute reader might have noticed that the diagnosis behaved like a classifier hiding in
plain sight where our ability to decide whether a patient is healthy increases as we obtain
more features (test outcomes).

2.6.6 Expectations

Often, making decisions requires not just looking at the probabilities assigned to individ-
ual events but composing them together into useful aggregates that can provide us with
guidance. For example, when random variables take continuous scalar values, we often
care about knowing what value to expect on average. This quantity is formally called an
expectation. If we are making investments, the first quantity of interest might be the return
we can expect, averaging over all the possible outcomes (and weighting by the appropri-
ate probabilities). For instance, say that with 50% probability, an investment might fail
altogether, with 40% probability it might provide a 2x return, and with 10% probability
it might provide a 10x return 10x. To calculate the expected return, we sum over all re-
turns, multiplying each by the probability that they will occur. This yields the expectation
0.5:-0+0.4-2+0.1-10 = 1.8. Hence the expected return is 1.8x.

In general, the expectation (or average) of the random variable X is defined as

E[X] = Ex-plx] = ) xP(X =x). (2.6.12)

X

Likewise, for densities we obtain E[X] = f x dp(x). Sometimes we are interested in the
expected value of some function of x. We can calculate these expectations as

Evplf@)] =) f()P() and Ex_p[f(x)] = / FOp(x) dx (2.6.13)

for discrete probabilities and densities, respectively. Returning to the investment exam-
ple from above, f might be the utility (happiness) associated with the return. Behavior
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economists have long noted that people associate greater disutility with losing money than
the utility gained from earning one dollar relative to their baseline. Moreover, the value
of money tends to be sub-linear. Possessing 100k dollars versus zero dollars can make the
difference between paying the rent, eating well, and enjoying quality healthcare versus suf-
fering through homelessness. On the other hand, the gains due to possessing 200k versus
100k are less dramatic. Reasoning like this motivates the cliché that “the utility of money
is logarithmic”.

If the utility associated with a total loss were —1, and the utilities associated with returns of
1, 2, and 10 were 1, 2 and 4, respectively, then the expected happiness of investing would
be 0.5-(—=1)+0.4-2+0.1-4 = 0.7 (an expected loss of utility of 30%). If indeed this were
your utility function, you might be best off keeping the money in the bank.

For financial decisions, we might also want to measure how risky an investment is. Here, we
care not just about the expected value but how much the actual values tend to vary relative
to this value. Note that we cannot just take the expectation of the difference between the
actual and expected values. This is because the expectation of a difference is the difference
of the expectations, i.e., E[X — E[X]] = E[X] — E[E[X]] = 0. However, we can look at
the expectation of any non-negative function of this difference. The variance of a random
variable is calculated by looking at the expected value of the squared differences:

Var[X] = E [(X - E[X])?] = E[X?] - E[X]*. (2.6.14)

Here the equality follows by expanding (X — E[X])? = X?> = 2XE[X] + E[X]? and taking
expectations for each term. The square root of the variance is another useful quantity called
the standard deviation. While this and the variance convey the same information (either can
be calculated from the other), the standard deviation has the nice property that it is expressed
in the same units as the original quantity represented by the random variable.

Lastly, the variance of a function of a random variable is defined analogously as

Varep[£()] = Exep[f2(0)] = Ex-p[f(0)]* (2.6.15)

Returning to our investment example, we can now compute the variance of the investment.
It is given by 0.5 -0+ 0.4 - 22 + 0.1 - 10?> — 1.8% = 8.36. For all intents and purposes this
is a risky investment. Note that by mathematical convention mean and variance are often
referenced as u and o?. This is particularly the case whenever we use it to parametrize a
Gaussian distribution.

In the same way as we introduced expectations and variance for scalar random variables,
we can do so for vector-valued ones. Expectations are easy, since we can apply them el-
ementwise. For instance, u def Ex-p[x] has coordinates y; = Ex-p|[x;]. Covariances
are more complicated. We define them by taking expectations of the outer product of the
difference between random variables and their mean:

L € Covenp[x] = Exep [(x— ) (x - )] (2.6.16)

This matrix X is referred to as the covariance matrix. An easy way to see its effect is to
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consider some vector v of the same size as x. It follows that
v'Ev=Ex.p [VT(X - (x- [l)TV] = Var,.p[v'x]. (2.6.17)

As such, X allows us to compute the variance for any linear function of x by a simple
matrix multiplication. The off-diagonal elements tell us how correlated the coordinates
are: a value of 0 means no correlation, where a larger positive value means that they are
more strongly correlated.

2.6.7 Discussion

In machine learning, there are many things to be uncertain about! We can be uncertain
about the value of a label given an input. We can be uncertain about the estimated value of
a parameter. We can even be uncertain about whether data arriving at deployment is even
from the same distribution as the training data.

By aleatoric uncertainty, we mean uncertainty that is intrinsic to the problem, and due to
genuine randomness unaccounted for by the observed variables. By epistemic uncertainty,
we mean uncertainty over a model’s parameters, the sort of uncertainty that we can hope
to reduce by collecting more data. We might have epistemic uncertainty concerning the
probability that a coin turns up heads, but even once we know this probability, we are left
with aleatoric uncertainty about the outcome of any future toss. No matter how long we
watch someone tossing a fair coin, we will never be more or less than 50% certain that
the next toss will come up heads. These terms come from mechanical modeling, (see e.g.,
Der Kiureghian and Ditlevsen (2009) for a review on this aspect of uncertainty quantifica-
tion®®). It is worth noting, however, that these terms constitute a slight abuse of language.

The term epistemic refers to anything concerning knowledge and thus, in the philosophical
* sense, all uncertainty is epistemic.

We saw that sampling data from some unknown probability distribution can provide us with
information that can be used to estimate the parameters of the data generating distribution.
That said, the rate at which this is possible can be quite slow. In our coin tossing example
(and many others) we can do no better than to design estimators that converge at a rate of
1/+/n, where n is the sample size (e.g., the number of tosses). This means that by going
from 10 to 1000 observations (usually a very achievable task) we see a tenfold reduction of
uncertainty, whereas the next 1000 observations help comparatively little, offering only a
1.41 times reduction. This is a persistent feature of machine learning: while there are often
easy gains, it takes a very large amount of data, and often with it an enormous amount of
computation, to make further gains. For an empirical review of this fact for large scale
language models see Revels et al. (2016).

We also sharpened our language and tools for statistical modeling. In the process of that
we learned about conditional probabilities and about one of the most important equations
in statistics—Bayes’ theorem. It is an effective tool for decoupling information conveyed
by data through a likelihood term P(B | A) that addresses how well observations B match
a choice of parameters A, and a prior probability P(A) which governs how plausible a par-
ticular choice of A was in the first place. In particular, we saw how this rule can be applied
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to assign probabilities to diagnoses, based on the efficacy of the test and the prevalence of
the disease itself (i.e., our prior).

Lastly, we introduced a first set of nontrivial questions about the effect of a specific proba-
bility distribution, namely expectations and variances. While there are many more than just
linear and quadratic expectations for a probability distribution, these two already provide
a good deal of knowledge about the possible behavior of the distribution. For instance,
Chebyshev’s inequality °° states that P(|X — u| > ko) < 1/k?, where u is the expecta-
tion, o2 is the variance of the distribution, and k > 1 is a confidence parameter of our

choosing. It tells us that draws from a distribution lie with at least 50% probability within
a [-V20, V20] interval centered on the expectation.

2.6.8 Exercises

1. Give an example where observing more data can reduce the amount of uncertainty about
the outcome to an arbitrarily low level.

2. Give an example where observing more data will only reduce the amount of uncertainty
up to a point and then no further. Explain why this is the case and where you expect this
point to occur.

3. We empirically demonstrated convergence to the mean for the toss of a coin. Calculate
the variance of the estimate of the probability that we see a head after drawing n samples.

1. How does the variance scale with the number of observations?
2. Use Chebyshev’s inequality to bound the deviation from the expectation.
3. How does it relate to the central limit theorem?

4. Assume that we draw m samples x; from a probability distribution with zero mean and

. . def ,
unit variance. Compute the averages z, = m! o, x;. Can we apply Chebyshev’s

inequality for every z,, independently? Why not?

60 Egéggﬂgg 5. Given two events with probability P(A) and P(B), compute upper and lower bounds
Hoeeos T it
Eﬂ??tu;’ﬁ on P(A U B) and P(A N B). Hint: graph the situation using a Venn diagram 5,

o g;lil 6. Assume that we have a sequence of random variables, say A, B, and C, where B only de-

! rra pends on A, and C only depends on B, can you simplify the joint probability P(A, B, C)?

Ll E S

EHES‘EE Hint: this is a Markov chain®!.

7. In Section 2.6.5, assume that the outcomes of the two tests are not independent. In
particular assume that either test on its own has a false positive rate of 10% and a false
negative rate of 1%. That is, assume that P(D = 1 | H = 0) = 0.1 and that P(D =
0| H =1) = 0.01. Moreover, assume that for H = 1 (infected) the test outcomes are
conditionally independent, i.e., that P(D{,D, | H=1) = P(Dy | H=1)P(D, | H =
1) but that for healthy patients the outcomes are coupled via P(D; = D, =1 | H =
0) =0.02.
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1. Work out the joint probability table for D and D,, given H = 0 based on the infor-
mation you have so far.

2. Derive the probability that the patient is diseased (H = 1) after one test returns
positive. You can assume the same baseline probability P(H = 1) = 0.0015 as
before.

3. Derive the probability that the patient is diseased (H = 1) after both tests return
positive.

8. Assume that you are an asset manager for an investment bank and you have a choice of
stocks s; to invest in. Your portfolio needs to add up to 1 with weights a; for each stock.
The stocks have an average return g = Eg.p[s] and covariance £ = Covg-p|[s].

1. Compute the expected return for a given portfolio .

2. If you wanted to maximize the return of the portfolio, how should you choose your
investment?

3. Compute the variance of the portfolio.

4. Formulate an optimization problem of maximizing the return while keeping the vari-
ance constrained to an upper bound. This is the Nobel-Prize winning Markovitz port-
folio%? (Mangram, 2013). To solve it you will need a quadratic programming solver,
something way beyond the scope of this book.

Discussions %3 .

2.7 Documentation
1

While we cannot possibly introduce every single MXNet function and class (and the infor-
mation might become outdated quickly), the API documentation®* and additional tutorials
65 and examples provide such documentation. This section provides some guidance for
how to explore the MXNet API.

65
et from mxnet import np

2.7.1 Functions and Classes in a Module

To know which functions and classes can be called in a module, we invoke the dir func-
tion. For instance, we can query all properties in the module for generating random num-
bers:

print(dir(np.random))
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['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__",
—'__name__"', '__package__', '__spec__', '_mx_nd_np', 'beta', 'chisquare’,
—'choice', 'exponential’, 'gamma’', 'gumbel’, 'logistic’, 'lognormal’,
—'multinomial’, 'multivariate_normal', 'normal’, 'pareto', 'power’', 'rand’,
—'randint', 'randn’, 'rayleigh', 'shuffle’, 'uniform’', 'weibull’]

Generally, we can ignore functions that start and end with __ (special objects in Python) or
functions that start with a single _(usually internal functions). Based on the remaining func-
tion or attribute names, we might hazard a guess that this module offers various methods for
generating random numbers, including sampling from the uniform distribution (uniform),
normal distribution (normal), and multinomial distribution (multinomial).

2.7.2 Specific Functions and Classes

For specific instructions on how to use a given function or class, we can invoke the help
function. As an example, let’s explore the usage instructions for tensors’ ones function.

help(np.ones)

Help on function ones in module mxnet.numpy:

ones(shape, dtype=<class 'numpy.float32'>, order='C’', ctx=None)
Return a new array of given shape and type, filled with ones.
This function currently only supports storing multi-dimensional data
in row-major (C-style).

Parameters

shape : int or tuple of int
The shape of the empty array.

dtype : str or numpy.dtype, optional
An optional value type. Default is numpy.float32. Note that this
behavior is different from NumPy's ones function where float64
is the default value, because float32 is considered as the default
data type in deep learning.

order : {'C'}, optional, default: 'C’
How to store multi-dimensional data in memory, currently only row-major
(C-style) is supported.

ctx : Context, optional
An optional device context (default is the current default context).

Returns

out : ndarray
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Array of ones with the given shape, dtype, and ctx.

Examples
>>> np.ones(5)
array([1., 1., 1., 1., 1.1

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 11, dtype=int64)

>>> np.ones((2, 1))
array([[1.],
[1.1D

>>> s = (2,2)

>>> np.ones(s)

array([[1., 1.7,
(1., 1.1

From the documentation, we can see that the ones function creates a new tensor with the
specified shape and sets all the elements to the value of 1. Whenever possible, you should
run a quick test to confirm your interpretation:

np.ones(4)

[22:07:42] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

array([1., 1., 1., 1.1)

In the Jupyter notebook, we can use ? to display the document in another window. For
example, 1ist? will create content that is almost identical to help(list), displaying it
in a new browser window. In addition, if we use two question marks, such as 1ist??, the
Python code implementing the function will also be displayed.

The official documentation provides plenty of descriptions and examples that are beyond
this book. We emphasize important use cases that will get you started quickly with prac-
tical problems, rather than completeness of coverage. We also encourage you to study the
source code of the libraries to see examples of high-quality implementations of production
code. By doing this you will become a better engineer in addition to becoming a better
scientist.

Discussions %6 .
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Before we worry about making our neural networks deep, it will be helpful to implement
some shallow ones, for which the inputs connect directly to the outputs. This will prove im-
portant for a few reasons. First, rather than getting distracted by complicated architectures,
we can focus on the basics of neural network training, including parametrizing the output
layer, handling data, specifying a loss function, and training the model. Second, this class
of shallow networks happens to comprise the set of linear models, which subsumes many
classical methods of statistical prediction, including linear and softmax regression. Un-
derstanding these classical tools is pivotal because they are widely used in many contexts
and we will often need to use them as baselines when justifying the use of fancier archi-
tectures. This chapter will focus narrowly on linear regression and the next one will extend
our modeling repertoire by developing linear neural networks for classification.

3.1 Linear Regression
____________________________________________________________________________________________

Regression problems pop up whenever we want to predict a numerical value. Common ex-
amples include predicting prices (of homes, stocks, etc.), predicting the length of stay (for
patients in the hospital), forecasting demand (for retail sales), among numerous others. Not
every prediction problem is one of classical regression. Later on, we will introduce classifi-
cation problems, where the goal is to predict membership among a set of categories.

As a running example, suppose that we wish to estimate the prices of houses (in dollars)
based on their area (in square feet) and age (in years). To develop a model for predicting
house prices, we need to get our hands on data, including the sales price, area, and age for
each home. In the terminology of machine learning, the dataset is called a training dataset
or training set, and each row (containing the data corresponding to one sale) is called an
example (or data point, instance, sample). The thing we are trying to predict (price) is
called a label (or target). The variables (age and area) upon which the predictions are
based are called features (or covariates).

%matplotlib inline
import math
import time

(continues on next page)
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(continued from previous page)

from mxnet import np
from d21 import mxnet as d21

3.1.1 Basics

Linear regression is both the simplest and most popular among the standard tools for tack-
ling regression problems. Dating back to the dawn of the 19th century (Gauss, 1809, Leg-
endre, 1805), linear regression flows from a few simple assumptions. First, we assume that
the relationship between features x and target y is approximately linear, i.e., that the con-
ditional mean E[Y | X = x] can be expressed as a weighted sum of the features x. This
setup allows that the target value may still deviate from its expected value on account of
observation noise. Next, we can impose the assumption that any such noise is well behaved,
following a Gaussian distribution. Typically, we will use n to denote the number of exam-
ples in our dataset. We use superscripts to enumerate samples and targets, and subscripts
to index coordinates. More concretely, x'*) denotes the i sample and x;.i) denotes its j
coordinate.

Model

At the heart of every solution is a model that describes how features can be transformed
into an estimate of the target. The assumption of linearity means that the expected value of
the target (price) can be expressed as a weighted sum of the features (area and age):

Price = Wareq - area + wyg - age + b. (3.1.1)

Here warea and wage are called weights, and b is called a bias (or offset or intercept). The
weights determine the influence of each feature on our prediction. The bias determines the
value of the estimate when all features are zero. Even though we will never see any newly-
built homes with precisely zero area, we still need the bias because it allows us to express
all linear functions of our features (rather than restricting us to lines that pass through the
origin). Strictly speaking, (3.1.1) is an affine transformation of input features, which is
characterized by a linear transformation of features via a weighted sum, combined with a
translation via the added bias. Given a dataset, our goal is to choose the weights w and
the bias b that, on average, make our model’s predictions fit the true prices observed in the
data as closely as possible.

In disciplines where it is common to focus on datasets with just a few features, explicitly
expressing models long-form, as in (3.1.1), is common. In machine learning, we usually
work with high-dimensional datasets, where it is more convenient to employ compact lin-
ear algebra notation. When our inputs consist of d features, we can assign each an index
(between 1 and d) and express our prediction y (in general the “hat” symbol denotes an
estimate) as

P=wixy+- - +wgxg +b. (3.1.2)
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Collecting all features into a vector x € R? and all weights into a vector w € R4, we can
express our model compactly via the dot product between w and x:

§=w'x+b. (3.1.3)

In (3.1.3), the vector x corresponds to the features of a single example. We will often
find it convenient to refer to features of our entire dataset of n examples via the design
matrix X € R4 Here, X contains one row for every example and one column for every
feature. For a collection of features X, the predictions ¥ € R" can be expressed via the
matrix—vector product:

¥ =Xw+b, (3.1.4)

where broadcasting (Section 2.1.4) is applied during the summation. Given features of a
training dataset X and corresponding (known) labels y, the goal of linear regression is to
find the weight vector w and the bias term b such that, given features of a new data example
sampled from the same distribution as X, the new example’s label will (in expectation) be
predicted with the smallest error.

Even if we believe that the best model for predicting y given x is linear, we would not
expect to find a real-world dataset of n examples where y() exactly equals w™x) + b
for all 1 < i < n. For example, whatever instruments we use to observe the features X
and labels y, there might be a small amount of measurement error. Thus, even when we
are confident that the underlying relationship is linear, we will incorporate a noise term to
account for such errors.

Before we can go about searching for the best parameters (or model parameters) w and b,
we will need two more things: (i) a measure of the quality of some given model; and (ii) a
procedure for updating the model to improve its quality.

Loss Function

Naturally, fitting our model to the data requires that we agree on some measure of fitness
(or, equivalently, of unfitness). Loss functions quantify the distance between the real and
predicted values of the target. The loss will usually be a nonnegative number where smaller
values are better and perfect predictions incur a loss of 0. For regression problems, the most
common loss function is the squared error. When our prediction for an example i is $*)
and the corresponding true label is y(*), the squared error is given by:

. 1/ 1\ 2
(i) = (@ O} 3.1.5
1" (w, b) > (y y ) ( )

The constant % makes no real difference but proves to be notationally convenient, since it
cancels out when we take the derivative of the loss. Because the training dataset is given
to us, and thus is out of our control, the empirical error is only a function of the model
parameters. In Fig. 3.1.1, we visualize the fit of a linear regression model in a problem
with one-dimensional inputs.

Note that large differences between estimates $() and targets y(*) lead to even larger contri-
butions to the loss, due to its quadratic form (this quadraticity can be a double-edge sword;
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Fitting a linear regression model to one-dimensional data.

while it encourages the model to avoid large errors it can also lead to excessive sensitivity
to anomalous data). To measure the quality of a model on the entire dataset of n examples,
we simply average (or equivalently, sum) the losses on the training set:

1 11 4 )2
L(w.b) =~ D10 (w,b) = - > 3 (wa<'> +b- y<'>) : (3.1.6)
i=1

When training the model, we seek parameters (w*, b*) that minimize the total loss across
all training examples:

w*, b* = argmin L(w, b). (3.1.7)
w,b

Analytic Solution

Unlike most of the models that we will cover, linear regression presents us with a surpris-
ingly easy optimization problem. In particular, we can find the optimal parameters (as
assessed on the training data) analytically by applying a simple formula as follows. First,
we can subsume the bias b into the parameter w by appending a column to the design ma-
trix consisting of all 1s. Then our prediction problem is to minimize ||y — Xw]|?. As long
as the design matrix X has full rank (no feature is linearly dependent on the others), then
there will be just one critical point on the loss surface and it corresponds to the minimum
of the loss over the entire domain. Taking the derivative of the loss with respect to w and
setting it equal to zero yields:

dwlly — Xw|*> = 2XT(Xw —y) = 0 and hence X"y = X" Xw. (3.1.8)

Solving for w provides us with the optimal solution for the optimization problem. Note
that this solution

w'=(XTX)"'XTy (3.1.9)

will only be unique when the matrix X" X is invertible, i.e., when the columns of the design
matrix are linearly independent (Golub and Van Loan, 1996).

While simple problems like linear regression may admit analytic solutions, you should
not get used to such good fortune. Although analytic solutions allow for nice mathematical
analysis, the requirement of an analytic solution is so restrictive that it would exclude almost
all exciting aspects of deep learning.
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Minibatch Stochastic Gradient Descent

Fortunately, even in cases where we cannot solve the models analytically, we can still of-
ten train models effectively in practice. Moreover, for many tasks, those hard-to-optimize
models turn out to be so much better that figuring out how to train them ends up being well
worth the trouble.

The key technique for optimizing nearly every deep learning model, and which we will
call upon throughout this book, consists of iteratively reducing the error by updating the
parameters in the direction that incrementally lowers the loss function. This algorithm is
called gradient descent.

The most naive application of gradient descent consists of taking the derivative of the loss
function, which is an average of the losses computed on every single example in the dataset.
In practice, this can be extremely slow: we must pass over the entire dataset before making
a single update, even if the update steps might be very powerful (Liu and Nocedal, 1989).
Even worse, if there is a lot of redundancy in the training data, the benefit of a full update
is limited.

The other extreme is to consider only a single example at a time and to take update steps
based on one observation at a time. The resulting algorithm, stochastic gradient descent
(SGD) can be an effective strategy (Bottou, 2010), even for large datasets. Unfortunately,
SGD has drawbacks, both computational and statistical. One problem arises from the fact
that processors are a lot faster multiplying and adding numbers than they are at moving data
from main memory to processor cache. It is up to an order of magnitude more efficient
to perform a matrix—vector multiplication than a corresponding number of vector—vector
operations. This means that it can take a lot longer to process one sample at a time compared
to a full batch. A second problem is that some of the layers, such as batch normalization
(to be described in Section 8.5), only work well when we have access to more than one
observation at a time.

The solution to both problems is to pick an intermediate strategy: rather than taking a full
batch or only a single sample at a time, we take a minibatch of observations (Li et al., 2014).
The specific choice of the size of the said minibatch depends on many factors, such as the
amount of memory, the number of accelerators, the choice of layers, and the total dataset
size. Despite all that, a number between 32 and 256, preferably a multiple of a large power
of 2, is a good start. This leads us to minibatch stochastic gradient descent.

In its most basic form, in each iteration ¢, we first randomly sample a minibatch B; consist-
ing of a fixed number |B)| of training examples. We then compute the derivative (gradient)
of the average loss on the minibatch with respect to the model parameters. Finally, we mul-
tiply the gradient by a predetermined small positive value 7, called the learning rate, and
subtract the resulting term from the current parameter values. We can express the update
as follows:

n i
(w,b) (W, b) = 7 iGZB: vy [ (W, b). (3.1.10)

In summary, minibatch SGD proceeds as follows: (i) initialize the values of the model
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parameters, typically at random; (ii) iteratively sample random minibatches from the data,
updating the parameters in the direction of the negative gradient. For quadratic losses and
affine transformations, this has a closed-form expansion:

w<—w—|;f|26wl(i)(w,b) —w - Zx(i) (WTX([)+b—y(i))

A 18] .
" s " < . , (3.1.11)
beb-o 3 910 (w.b)  =b- L (WTX<’)+b—y(’)).
|B| i€eB; |B| i€eB;

Since we pick a minibatch 8 we need to normalize by its size |8|. Frequently minibatch
size and learning rate are user-defined. Such tunable parameters that are not updated in the
training loop are called hyperparameters. They can be tuned automatically by a number
of techniques, such as Bayesian optimization (Frazier, 2018). In the end, the quality of the
solution is typically assessed on a separate validation dataset (or validation set).

After training for some predetermined number of iterations (or until some other stopping
criterion is met), we record the estimated model parameters, denoted W, b. Note that even if
our function is truly linear and noiseless, these parameters will not be the exact minimizers
of the loss, nor even deterministic. Although the algorithm converges slowly towards the
minimizers it typically will not find them exactly in a finite number of steps. Moreover,
the minibatches B used for updating the parameters are chosen at random. This breaks
determinism.

Linear regression happens to be a learning problem with a global minimum (whenever X
is full rank, or equivalently, whenever X" X is invertible). However, the loss surfaces for
deep networks contain many saddle points and minima. Fortunately, we typically do not
care about finding an exact set of parameters but merely any set of parameters that leads
to accurate predictions (and thus low loss). In practice, deep learning practitioners seldom
struggle to find parameters that minimize the loss on training sets (Frankle and Carbin,
2018, Izmailov et al., 2018). The more formidable task is to find parameters that lead
to accurate predictions on previously unseen data, a challenge called generalization. We
return to these topics throughout the book.

Predictions

Given the model W' x + b, we can now make predictions for a new example, e.g., pre-
dicting the sales price of a previously unseen house given its area x; and age x,. Deep
learning practitioners have taken to calling the prediction phase inference but this is a bit of
a misnomer—inference refers broadly to any conclusion reached on the basis of evidence,
including both the values of the parameters and the likely label for an unseen instance. If
anything, in the statistics literature inference more often denotes parameter inference and
this overloading of terminology creates unnecessary confusion when deep learning prac-
titioners talk to statisticians. In the following we will stick to prediction whenever possi-
ble.

3.1.2 Vectorization for Speed
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When training our models, we typically want to process whole minibatches of examples si-
multaneously. Doing this efficiently requires that we vectorize the calculations and leverage
fast linear algebra libraries rather than writing costly for-loops in Python.

To see why this matters so much, let’s consider two methods for adding vectors. To start, we
instantiate two 10,000-dimensional vectors containing all 1s. In the first method, we loop
over the vectors with a Python for-loop. In the second, we rely on a single call to +.

= 10000
= np.ones(n)
= np.ones(n)

T L >
| |

[22:06:52] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

Now we can benchmark the workloads. First, we add them, one coordinate at a time, using
a for-loop.

c = np.zeros(n)
t = time.time()
for i in range(n):
cli] = alil + b[i]
f'{time.time() - t:.5f} sec’

'4.71889 sec’

Alternatively, we rely on the reloaded + operator to compute the elementwise sum.

t = time.time()

d=a+b

f'{time.time() - t:.5f} sec’
'0.00053 sec'’

The second method is dramatically faster than the first. Vectorizing code often yields order-
of-magnitude speedups. Moreover, we push more of the mathematics to the library so we
do not have to write as many calculations ourselves, reducing the potential for errors and
increasing portability of the code.

3.1.3 The Normal Distribution and Squared Loss

So far we have given a fairly functional motivation of the squared loss objective: the optimal
parameters return the conditional expectation E[Y | X| whenever the underlying pattern
is truly linear, and the loss assigns large penalties for outliers. We can also provide a more
formal motivation for the squared loss objective by making probabilistic assumptions about
the distribution of noise.
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Linear regression was invented at the turn of the 19th century. While it has long been
debated whether Gauss or Legendre first thought up the idea, it was Gauss who also dis-
covered the normal distribution (also called the Gaussian). It turns out that the normal
distribution and linear regression with squared loss share a deeper connection than com-
mon parentage.

To begin, recall that a normal distribution with mean u and variance o2 (standard deviation
o) is given as

p(x) = exp (—#(x - u)z) ) (3.1.12)

202

Below we define a function to compute the normal distribution.

def normal(x, mu, sigma):
p =1/ math.sqrt(2 * math.pi * sigma**2)
return p * np.exp(-0.5 * (x - mu)**2 / sigmax*2)

‘We can now visualize the normal distributions.

# Use NumPy again for visualization
X = np.arange(-7, 7, 0.01)

# Mean and standard deviation pairs
params = [(0, 1), (0, 2), (3, 1]
d21.plot(x.asnumpy(), [normal(x, mu, sigma).asnumpy() for mu, sigma in params],
— xlabel="x",
ylabel="p(x) ", figsize=(4.5, 2.5),
legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])

041 meano, std 1 JA
—--- mean 0, std 2 ;o\
—-= mean 3,std 1 ]

Note that changing the mean corresponds to a shift along the x-axis, and increasing the
variance spreads the distribution out, lowering its peak.

One way to motivate linear regression with squared loss is to assume that observations arise
from noisy measurements, where the noise € follows the normal distribution N (0, 0'2) :

y =w'x+b+e where € ~ N(0,0?). (3.1.13)

Thus, we can now write out the likelihood of seeing a particular y for a given x via

P(y|x) =

1 1 T 2
o exp —F(y—w x-b)"|. (3.1.14)
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As such, the likelihood factorizes. According to the principle of maximum likelihood, the
best values of parameters w and b are those that maximize the likelihood of the entire
dataset:

Py | X) =] [P 1x). (3.1.15)
i=1

The equality follows since all pairs (x?, y(?) were drawn independently of each other. Es-
timators chosen according to the principle of maximum likelihood are called maximum like-
lihood estimators. While, maximizing the product of many exponential functions, might
look difficult, we can simplify things significantly, without changing the objective, by max-
imizing the logarithm of the likelihood instead. For historical reasons, optimizations are
more often expressed as minimization rather than maximization. So, without changing any-
thing, we can minimize the negative log-likelihood, which we can express as follows:

o 1 2 (0 @ Tx® _p)
~logP(y | X) = ) > log(2n0r )+—(y —wTx —b) . (3.1.16)
— 2 202
If we assume that o is fixed, we can ignore the first term, because it does not depend on w
or b. The second term is identical to the squared error loss introduced earlier, except for
the multiplicative constant ﬁ Fortunately, the solution does not depend on o either. It
follows that minimizing the mean squared error is equivalent to the maximum likelihood
estimation of a linear model under the assumption of additive Gaussian noise.

3.1.4 Linear Regression as a Neural Network

While linear models are not sufficiently rich to express the many complicated networks
that we will introduce in this book, (artificial) neural networks are rich enough to subsume
linear models as networks in which every feature is represented by an input neuron, all of
which are connected directly to the output.

Fig. 3.1.2 depicts linear regression as a neural network. The diagram highlights the con-
nectivity pattern, such as how each input is connected to the output, but not the specific
values taken by the weights or biases.

Output layer

Input layer

Linear regression is a single-layer neural network.

The inputs are x1, . .., xy. We refer to d as the number of inputs or the feature dimensional-
ity in the input layer. The output of the network is 0. Because we are just trying to predict
a single numerical value, we have only one output neuron. Note that the input values are all
given. There is just a single computed neuron. In summary, we can think of linear regres-
sion as a single-layer fully connected neural network. We will encounter networks with far
more layers in later chapters.
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Biology

Because linear regression predates computational neuroscience, it might seem anachro-
nistic to describe linear regression in terms of neural networks. Nonetheless, they were a
natural place to start when the cyberneticists and neurophysiologists Warren McCulloch
and Walter Pitts began to develop models of artificial neurons. Consider the cartoonish
picture of a biological neuron in Fig. 3.1.3, consisting of dendrites (input terminals), the
nucleus (CPU), the axon (output wire), and the axon terminals (output terminals), enabling
connections to other neurons via synapses.

Dendrite

Axon Terminal

Node of
Ranvier ¢

Schwann cell

Myelin sheath
Nucleus

The real neuron (source: “Anatomy and Physiology” by the US National Cancer
Institute’s Surveillance, Epidemiology and End Results (SEER) Program).

Information x; arriving from other neurons (or environmental sensors) is received in the
dendrites. In particular, that information is weighted by synaptic weights w;, determining
the effect of the inputs, e.g., activation or inhibition via the product x;w;. The weighted
inputs arriving from multiple sources are aggregated in the nucleus as a weighted sum y =
i Xiw; + b, possibly subject to some nonlinear postprocessing via a function o-(y). This
information is then sent via the axon to the axon terminals, where it reaches its destination
(e.g., an actuator such as a muscle) or it is fed into another neuron via its dendrites.

Certainly, the high-level idea that many such units could be combined, provided they have
the correct connectivity and learning algorithm, to produce far more interesting and com-
plex behavior than any one neuron alone could express arises from our study of real bi-
ological neural systems. At the same time, most research in deep learning today draws
inspiration from a much wider source. We invoke Russell and Norvig (2016) who pointed
out that although airplanes might have been inspired by birds, ornithology has not been
the primary driver of aeronautics innovation for some centuries. Likewise, inspiration in
deep learning these days comes in equal or greater measure from mathematics, linguistics,
psychology, statistics, computer science, and many other fields.

3.1.5 Summary

In this section, we introduced traditional linear regression, where the parameters of a linear
function are chosen to minimize squared loss on the training set. We also motivated this
choice of objective both via some practical considerations and through an interpretation
of linear regression as maximimum likelihood estimation under an assumption of linearity
and Gaussian noise. After discussing both computational considerations and connections to
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statistics, we showed how such linear models could be expressed as simple neural networks
where the inputs are directly wired to the output(s). While we will soon move past linear
models altogether, they are sufficient to introduce most of the components that all of our
models require: parametric forms, differentiable objectives, optimization via minibatch
stochastic gradient descent, and ultimately, evaluation on previously unseen data.

3.1.6 Exercises

1. Assume that we have some data x|, ...,x, € R. Our goal is to find a constant b such
that 3", (x; — b)? is minimized.

1. Find an analytic solution for the optimal value of b.
2. How does this problem and its solution relate to the normal distribution?

3. What if we change the loss from ; (x; —b)? to 3, |x; — b|? Can you find the optimal
solution for b?

2. Prove that the affine functions that can be expressed by x"w + b are equivalent to linear
functions on (x, 1).

3. Assume that you want to find quadratic functions of x, i.e., f(x) = b + X; wix; +
2 j<i wijxix;. How would you formulate this in a deep network?

4. Recall that one of the conditions for the linear regression problem to be solvable was
that the design matrix X7 X has full rank.

1. What happens if this is not the case?

2. How could you fix it? What happens if you add a small amount of coordinate-wise
independent Gaussian noise to all entries of X?

3. What is the expected value of the design matrix X" X in this case?
4. What happens with stochastic gradient descent when XX does not have full rank?

5. Assume that the noise model governing the additive noise € is the exponential distribu-
tion. That is, p(€) = %exp(—lel).

1. Write out the negative log-likelihood of the data under the model —log P(y | X).
2. Can you find a closed form solution?

3. Suggest a minibatch stochastic gradient descent algorithm to solve this problem.
What could possibly go wrong (hint: what happens near the stationary point as we
keep on updating the parameters)? Can you fix this?

6. Assume that we want to design a neural network with two layers by composing two
linear layers. That is, the output of the first layer becomes the input of the second layer.
Why would such a naive composition not work?

7. What happens if you want to use regression for realistic price estimation of houses or
stock prices?
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1. Show that the additive Gaussian noise assumption is not appropriate. Hint: can we
have negative prices? What about fluctuations?

2. Why would regression to the logarithm of the price be much better, i.e., y = log price?

3. What do you need to worry about when dealing with pennystock, i.e., stock with very
low prices? Hint: can you trade at all possible prices? Why is this a bigger problem
for cheap stock? For more information review the celebrated Black—Scholes model
for option pricing (Black and Scholes, 1973).

8. Suppose we want to use regression to estimate the number of apples sold in a grocery
store.

1. What are the problems with a Gaussian additive noise model? Hint: you are selling
apples, not oil.

2. The Poisson distribution %" captures distributions over counts. It is given by p(k |
1) = A%e=1/k!. Here A is the rate function and k is the number of events you see.
Prove that A is the expected value of counts k.

3. Design a loss function associated with the Poisson distribution.

4. Design a loss function for estimating log A instead.

¥
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3.2 Object-Oriented Design for Implementation
. _________________________________________________________________________________________|

In our introduction to linear regression, we walked through various components including
the data, the model, the loss function, and the optimization algorithm. Indeed, linear re-
gression is one of the simplest machine learning models. Training it, however, uses many of
the same components that other models in this book require. Therefore, before diving into
the implementation details it is worth designing some of the APIs that we use throughout.
Treating components in deep learning as objects, we can start by defining classes for these
objects and their interactions. This object-oriented design for implementation will greatly
streamline the presentation and you might even want to use it in your projects.

'*’*%Fﬂ

g

e Inspired by open-source libraries such as PyTorch Lightning ®°, at a high level we wish
to have three classes: (i) Module contains models, losses, and optimization methods; (ii)
DataModule provides data loaders for training and validation; (iii) both classes are com-
bined using the Trainer class, which allows us to train models on a variety of hardware
platforms. Most code in this book adapts Module and DataModule. We will touch upon
the Trainer class only when we discuss GPUs, CPUs, parallel training, and optimization

algorithms.


https://en.wikipedia.org/wiki/Poisson_distribution
https://discuss.d2l.ai/t/40
https://www.pytorchlightning.ai/
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import time

import numpy as np

from mxnet.gluon import nn
from d21 import mxnet as d21

3.2.1 Utilities

We need a few utilities to simplify object-oriented programming in Jupyter notebooks. One
of the challenges is that class definitions tend to be fairly long blocks of code. Notebook
readability demands short code fragments, interspersed with explanations, a requirement
incompatible with the style of programming common for Python libraries. The first utility
function allows us to register functions as methods in a class after the class has been created.
In fact, we can do so even after we have created instances of the class! It allows us to split
the implementation of a class into multiple code blocks.

def add_to_class(Class): #@save
"""Register functions as methods in created class.
def wrapper(obj):
setattr(Class, obj.__name
return wrapper

nnn

obj)

—

Let’s have a quick look at how to use it. We plan to implement a class A with a method do.
Instead of having code for both A and do in the same code block, we can first declare the
class A and create an instance a.

class A:
def __init__(self):
self.b =1
a = AQ

Next we define the method do as we normally would, but not in class A’s scope. Instead,
we decorate this method by add_to_class with class A as its argument. In doing so, the
method is able to access the member variables of A just as we would expect had it been
included as part of A’s definition. Let’s see what happens when we invoke it for the instance
a.

@add_to_class(A)
def do(self):
print(’'Class attribute "b" is', self.b)

a.do()

Class attribute "b" is 1

The second one is a utility class that saves all arguments in a class’s __init__ method
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as class attributes. This allows us to extend constructor call signatures implicitly without
additional code.

class HyperParameters: #@save
"""The base class of hyperparameters.
def save_hyperparameters(self, ignore=[]):
raise NotImplemented

nnn

We defer its implementation into Section B.7. To use it, we define our class that inherits
from HyperParameters and calls save_hyperparametersinthe __init__ method.

# Call the fully implemented HyperParameters class saved in d21
class B(d2l.HyperParameters):
def __init__(self, a, b, c):
self.save_hyperparameters(ignore=['c’'])
print('self.a =', self.a, 'self.b =', self.b)
print('There is no self.c =', not hasattr(self, 'c'))

b = B(a=1, b=2, c=3)

self.a = 1 self.b =2
There is no self.c = True

The final utility allows us to plot experiment progress interactively while it is going on.

In deference to the much more powerful (and complex) TensorBoard "’ we name it Pro-
., gressBoard. The implementation is deferred to Section B.7. For now, let’s simply see it
¢ in action.

The draw method plots a point (x, y) in the figure, with label specified in the legend.
The optional every_n smooths the line by only showing 1/n points in the figure. Their
values are averaged from the n neighbor points in the original figure.

class ProgressBoard(d2l.HyperParameters): #@save
"""The board that plots data points in animation."""
def __init__(self, xlabel=None, ylabel=None, xlim=None,
ylim=None, xscale='linear', yscale='linear’,
1s=['-", '-=', '=.', ':']1, colors=[’'C0’, 'Cl’', 'C2', 'C3'],
fig=None, axes=None, figsize=(3.5, 2.5), display=True):
self.save_hyperparameters()

def draw(self, x, y, label, every_n=1):
raise NotImplemented

In the following example, we draw sin and cos with a different smoothness. If you run this
code block, you will see the lines grow in animation.

board = d21.ProgressBoard('x")

for x in np.arange(0, 10, 0.1):
board.draw(x, np.sin(x), 'sin’', every_n=2)
board.draw(x, np.cos(x), 'cos', every_n=10)


https://www.tensorflow.org/tensorboard
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3.2.2 Models

The Module class is the base class of all models we will implement. At the very least

we need three methods. The first, __init stores the learnable parameters, the train-
ing_step method accepts a data batch to return the loss value, and finally, configure_optimizers
returns the optimization method, or a list of them, that is used to update the learnable pa-
rameters. Optionally we can define validation_step to report the evaluation measures.
Sometimes we put the code for computing the output into a separate forward method to

make it more reusable.

J—}

class Module(nn.Block, d2l.HyperParameters): #@save

"""The base class of models."""

def __init__(self, plot_train_per_epoch=2, plot_valid_per_epoch=1):
super().__init__Q)
self.save_hyperparameters()
self.board = ProgressBoard()

def loss(self, y_hat, y):
raise NotImplementedError

def forward(self, X):
assert hasattr(self, 'net'), 'Neural network is defined’
return self.net(X)

def plot(self, key, value, train):
"""Plot a point in animation."""
assert hasattr(self, 'trainer'), 'Trainer is not inited'’
self.board.xlabel = 'epoch’
if train:
x = self.trainer.train_batch_idx / \
self.trainer.num_train_batches
n = self.trainer.num_train_batches / \
self.plot_train_per_epoch
else:
x = self.trainer.epoch + 1
n = self.trainer.num_val_batches / \
self.plot_valid_per_epoch
self.board.draw(x, value.asnumpy(), (
"train_' if train else 'val_') + key, every_n=int(n))
def training_step(self, batch):
1 = self.loss(self(*batch[:-1]), batch[-1])
self.plot('loss’, 1, train=True)

(continues on next page)
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(continued from previous page)

return 1

def validation_step(self, batch):
1 = self.loss(self(*batch[:-1]), batch[-1])
self.plot('loss’', 1, train=False)

def configure_optimizers(self):
raise NotImplementedError

You may notice that Module is a subclass of nn.Block, the base class of neural networks
in Gluon. It provides convenient features for handling neural networks. For example, if
we define a forward method, such as forward(self, X), then for an instance a we can
invoke this method by a(X). This works since it calls the forward method in the built-in
__call__ method. You can find more details and examples about nn.Block in Section
6.1.

3.2.3 Data

The DataModule class is the base class for data. Quite frequently the __init__ method is
used to prepare the data. This includes downloading and preprocessing if needed. The
train_dataloader returns the data loader for the training dataset. A data loader is a
(Python) generator that yields a data batch each time it is used. This batch is then fed
into the training_step method of Module to compute the loss. There is an optional
val_dataloader to return the validation dataset loader. It behaves in the same manner,
except that it yields data batches for the validation_step method in Module.

class DataModule(d2l.HyperParameters): #@save
"""The base class of data.”""
def __init__(self, root='../data’, num_workers=4):
self.save_hyperparameters()

def get_dataloader(self, train):
raise NotImplementedError

def train_dataloader(self):
return self.get_dataloader(train=True)

def val_dataloader(self):
return self.get_dataloader(train=False)

3.2.4 Training

The Trainer class trains the learnable parameters in the Module class with data specified
in DataModule. The key method is fit, which accepts two arguments: model, an instance
of Module, and data, an instance of DataModule. It then iterates over the entire dataset
max_epochs times to train the model. As before, we will defer the implementation of this
method to later chapters.
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class Trainer(d2l.HyperParameters): #@save
"""The base class for training models with data.
def __init__(self, max_epochs, num_gpus=0, gradient_clip_val=0):
self.save_hyperparameters()
assert num_gpus == @, 'No GPU support yet'’

nnn

def prepare_data(self, data):
self.train_dataloader = data.train_dataloader()
self.val_dataloader = data.val_dataloader()
self.num_train_batches = len(self.train_dataloader)
self.num_val_batches = (len(self.val_dataloader)
if self.val_dataloader is not None else 0)

def prepare_model(self, model):
model.trainer = self
model .board.x1lim = [0, self.max_epochs]
self.model = model

def fit(self, model, data):
self.prepare_data(data)
self.prepare_model (model)
self.optim = model.configure_optimizers()
self.epoch = 0
self.train_batch_idx = 0
self.val_batch_idx = 0
for self.epoch in range(self.max_epochs):

self.fit_epoch()

def fit_epoch(self):
raise NotImplementedError

3.2.5 Summary

To highlight the object-oriented design for our future deep learning implementation, the

above classes simply show how their objects store data and interact with each other. We

will keep enriching implementations of these classes, such as via @add_to_class, in the
B rest of the book. Moreover, these fully implemented classes are saved in the D2L library 7!
, a lightweight toolkit that makes structured modeling for deep learning easy. In particular,
it facilitates reusing many components between projects without changing much at all. For
instance, we can replace just the optimizer, just the model, just the dataset, etc.; this degree
of modularity pays dividends throughout the book in terms of conciseness and simplicity
(this is why we added it) and it can do the same for your own projects.

3.2.6 Exercises

1. Locate full implementations of the above classes that are saved in the D2L library 72
. We strongly recommend that you look at the implementation in detail once you have
gained some more familiarity with deep learning modeling.

2. Remove the save_hyperparameters statement in the B class. Can you still print self.a


https://github.com/d2l-ai/d2l-en/tree/master/d2l
https://github.com/d2l-ai/d2l-en/tree/master/d2l
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and self.b? Optional: if you have dived into the full implementation of the HyperPa-
rameters class, can you explain why?

Discussions 2.

3.3 Synthetic Regression Data

Machine learning is all about extracting information from data. So you might wonder,
what could we possibly learn from synthetic data? While we might not care intrinsically
about the patterns that we ourselves baked into an artificial data generating model, such
datasets are nevertheless useful for didactic purposes, helping us to evaluate the properties
of our learning algorithms and to confirm that our implementations work as expected. For
example, if we create data for which the correct parameters are known a priori, then we
can check that our model can in fact recover them.

%matplotlib inline

import random

from mxnet import gluon, np, npx
from d21 import mxnet as d21

npx.set_np()

3.3.1 Generating the Dataset

For this example, we will work in low dimension for succinctness. The following code
snippet generates 1000 examples with 2-dimensional features drawn from a standard nor-
mal distribution. The resulting design matrix X belongs to R'%%0%2_ We generate each label
by applying a ground truth linear function, corrupting them via additive noise €, drawn in-
dependently and identically for each example:

y=Xw+b+e. (3.3.1)

For convenience we assume that € is drawn from a normal distribution with mean u = 0
and standard deviation o~ = 0.01. Note that for object-oriented design we add the code to
the __init__ method of a subclass of d21.DataModule (introduced in Section 3.2.3). It is
good practice to allow the setting of any additional hyperparameters. We accomplish this
with save_hyperparameters(). The batch_size will be determined later.

class SyntheticRegressionData(d2l.DataModule): #@save
"""Synthetic data for linear regression.”""
def __init__(self, w, b, noise=0.01, num_train=1000, num_val=1000,
batch_size=32):
super().__init__()
self.save_hyperparameters()
n = num_train + num_val

(continues on next page)
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(continued from previous page)

self.X = np.random.randn(n, len(w))
noise = np.random.randn(n, 1) * noise
self.y = np.dot(self.X, w.reshape((-1, 1))) + b + noise

Below, we set the true parameters to w = [2,-3.4]" and b = 4.2. Later, we can check our
estimated parameters against these ground truth values.

data = SyntheticRegressionData(w=np.array([2, -3.41), b=4.2)

[22:03:54] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

Each row in features consists of a vector in R? and each row in labels is a scalar. Let’s
have a look at the first entry.

print('features:', data.X[0], '\nlabel:', data.y[@])

features: [2.2122064 1.1630787]
label: [4.684836]

3.3.2 Reading the Dataset

Training machine learning models often requires multiple passes over a dataset, grabbing
one minibatch of examples at a time. This data is then used to update the model. To
illustrate how this works, we implement the get_dataloader method, registering it in
the SyntheticRegressionData class via add_to_class (introduced in Section 3.2.1). It
takes a batch size, a matrix of features, and a vector of labels, and generates minibatches of
size batch_size. As such, each minibatch consists of a tuple of features and labels. Note
that we need to be mindful of whether we’re in training or validation mode: in the former,
we will want to read the data in random order, whereas for the latter, being able to read data
in a pre-defined order may be important for debugging purposes.

@d21.add_to_class(SyntheticRegressionData)
def get_dataloader(self, train):
if train:
indices = list(range(@, self.num_train))
# The examples are read in random order
random. shuffle(indices)
elliser:
indices = list(range(self.num_train, self.num_train+self.num_val))
for i in range(@, len(indices), self.batch_size):
batch_indices = np.array(indices[i: it+self.batch_size])
yield self.X[batch_indices], self.y[batch_indices]

To build some intuition, let’s inspect the first minibatch of data. Each minibatch of fea-
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tures provides us with both its size and the dimensionality of input features. Likewise, our
minibatch of labels will have a matching shape given by batch_size.

X, y = next(iter(data.train_dataloader()))
print('X shape:', X.shape, '\ny shape:', y.shape)

X shape: (32, 2)
y shape: (32, 1)

While seemingly innocuous, the invocation of iter(data.train_dataloader()) illus-
trates the power of Python’s object-oriented design. Note that we added a method to the
SyntheticRegressionData class after creating the data object. Nonetheless, the object
benefits from the ex post facto addition of functionality to the class.

Throughout the iteration we obtain distinct minibatches until the entire dataset has been
exhausted (try this). While the iteration implemented above is good for didactic purposes,
it is inefficient in ways that might get us into trouble with real problems. For example, it
requires that we load all the data in memory and that we perform lots of random memory
access. The built-in iterators implemented in a deep learning framework are considerably
more efficient and they can deal with sources such as data stored in files, data received via
a stream, and data generated or processed on the fly. Next let’s try to implement the same
method using built-in iterators.

3.3.3 Concise Implementation of the Data Loader

Rather than writing our own iterator, we can call the existing API in a framework to load
data. As before, we need a dataset with features X and labels y. Beyond that, we set
batch_size in the built-in data loader and let it take care of shuffling examples effi-
ciently.

@d21.add_to_class(d2l.DataModule) #@save
def get_tensorloader(self, tensors, train, indices=slice(@, None)):
tensors = tuple(alindices] for a in tensors)
dataset = gluon.data.ArrayDataset(*tensors)
return gluon.data.DatalLoader(dataset, self.batch_size,
shuffle=train)

@d2].add_to_class(SyntheticRegressionData) #@save

def get_dataloader(self, train):
i = slice(@, self.num_train) if train else slice(self.num_train, None)
return self.get_tensorloader((self.X, self.y), train, i)

The new data loader behaves just like the previous one, except that it is more efficient and
has some added functionality.

X, y = next(iter(data.train_dataloader()))
print('X shape:', X.shape, '\ny shape:', y.shape)
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X shape: (32, 2)
y shape: (32, 1)

For instance, the data loader provided by the framework API supports the built-in __len_
method, so we can query its length, i.e., the number of batches.

len(data.train_dataloader())

32

3.3.4 Summary

Data loaders are a convenient way of abstracting out the process of loading and manipu-
lating data. This way the same machine learning algorithm is capable of processing many
different types and sources of data without the need for modification. One of the nice things
about data loaders is that they can be composed. For instance, we might be loading images
and then have a postprocessing filter that crops them or modifies them in other ways. As
such, data loaders can be used to describe an entire data processing pipeline.

As for the model itself, the two-dimensional linear model is about the simplest we might
encounter. It lets us test out the accuracy of regression models without worrying about
having insufficient amounts of data or an underdetermined system of equations. We will
put this to good use in the next section.

3.3.5 Exercises

1. What will happen if the number of examples cannot be divided by the batch size. How
would you change this behavior by specifying a different argument by using the frame-
work’s API?

2. Suppose that we want to generate a huge dataset, where both the size of the parameter
vector w and the number of examples num_examples are large.

1. What happens if we cannot hold all data in memory?

2. How would you shuffle the data if it is held on disk? Your task is to design an efficient
algorithm that does not require too many random reads or writes. Hint: pseudoran-
dom permutation generators "4 allow you to design a reshuffle without the need to
store the permutation table explicitly (Naor and Reingold, 1999).

3. Implement a data generator that produces new data on the fly, every time the iterator is
called.

4. How would you design a random data generator that generates the same data each time
it is called?

]
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3.4 Linear Regression Implementation from Scratch
____________________________________________________________________________________________

We are now ready to work through a fully functioning implementation of linear regression.
In this section, we will implement the entire method from scratch, including (i) the model;
(ii) the loss function; (iii) a minibatch stochastic gradient descent optimizer; and (iv) the
training function that stitches all of these pieces together. Finally, we will run our synthetic
data generator from Section 3.3 and apply our model on the resulting dataset. While modern
deep learning frameworks can automate nearly all of this work, implementing things from
scratch is the only way to make sure that you really know what you are doing. Moreover,
when it is time to customize models, defining our own layers or loss functions, understand-
ing how things work under the hood will prove handy. In this section, we will rely only
on tensors and automatic differentiation. Later, we will introduce a more concise imple-
mentation, taking advantage of the bells and whistles of deep learning frameworks while
retaining the structure of what follows below.

%matplotlib inline
from mxnet import autograd, np, npx
from d21 import mxnet as d21

npx.set_np()

3.4.1 Defining the Model

Before we can begin optimizing our model’s parameters by minibatch SGD, we need to

have some parameters in the first place. In the following we initialize weights by drawing
random numbers from a normal distribution with mean O and a standard deviation of 0.01.
The magic number 0.01 often works well in practice, but you can specify a different value
through the argument sigma. Moreover we set the bias to 0. Note that for object-oriented
design we add the code to the __init__ method of a subclass of d21.Module (introduced
in Section 3.2.2).

class LinearRegressionScratch(d2l.Module): #@save

"""The linear regression model implemented from scratch."""

def __init__(self, num_inputs, 1lr, sigma=0.01):
super().__init__()
self.save_hyperparameters()
self.w = np.random.normal(@, sigma, (num_inputs, 1))
self.b = np.zeros(1l)
self.w.attach_grad()
self.b.attach_grad()

Next we must define our model, relating its input and parameters to its output. Using the
same notation as (3.1.4) for our linear model we simply take the matrix—vector product of
the input features X and the model weights w, and add the offset b to each example. The
product Xw is a vector and b is a scalar. Because of the broadcasting mechanism (see
Section 2.1.4), when we add a vector and a scalar, the scalar is added to each component of
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the vector. The resulting forward method is registered in the LinearRegressionScratch
class via add_to_class (introduced in Section 3.2.1).

@d21.add_to_class(LinearRegressionScratch) #@save
def forward(self, X):
return np.dot(X, self.w) + self.b

3.4.2 Defining the Loss Function

Since updating our model requires taking the gradient of our loss function, we ought to
define the loss function first. Here we use the squared loss function in (3.1.5). In the
implementation, we need to transform the true value y into the predicted value’s shape
y_hat. The result returned by the following method will also have the same shape as y_hat.
We also return the averaged loss value among all examples in the minibatch.

@d21.add_to_class(LinearRegressionScratch) #@save
def loss(self, y_hat, y):

1 = (y_hat - y) #* 2 / 2

return 1.mean()

3.4.3 Defining the Optimization Algorithm

As discussed in Section 3.1, linear regression has a closed-form solution. However, our
goal here is to illustrate how to train more general neural networks, and that requires that
we teach you how to use minibatch SGD. Hence we will take this opportunity to introduce
your first working example of SGD. At each step, using a minibatch randomly drawn from
our dataset, we estimate the gradient of the loss with respect to the parameters. Next, we
update the parameters in the direction that may reduce the loss.

The following code applies the update, given a set of parameters, a learning rate 1r. Since
our loss is computed as an average over the minibatch, we do not need to adjust the learning
rate against the batch size. In later chapters we will investigate how learning rates should
be adjusted for very large minibatches as they arise in distributed large-scale learning. For
now, we can ignore this dependency.

We define our SGD class, a subclass of d21.HyperParameters (introduced in Section 3.2.1),
to have a similar API as the built-in SGD optimizer. We update the parameters in the step
method. It accepts a batch_size argument that can be ignored.

class SGD(d21.HyperParameters): #@save
"""Minibatch stochastic gradient descent.
def __init__(self, params, 1lr):
self.save_hyperparameters()

nnn

def step(self, _):
for param in self.params:
param -= self.lr * param.grad
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We next define the configure_optimizers method, which returns an instance of the SGD
class.

@d21.add_to_class(LinearRegressionScratch) #@save
def configure_optimizers(self):
return SGD([self.w, self.b], self.lr)

3.4.4 Training

Now that we have all of the parts in place (parameters, loss function, model, and optimizer),
we are ready to implement the main training loop. It is crucial that you understand this
code fully since you will employ similar training loops for every other deep learning model
covered in this book. In each epoch, we iterate through the entire training dataset, passing
once through every example (assuming that the number of examples is divisible by the
batch size). In each iferation, we grab a minibatch of training examples, and compute its
loss through the model’s training_step method. Then we compute the gradients with
respect to each parameter. Finally, we will call the optimization algorithm to update the
model parameters. In summary, we will execute the following loop:

e Initialize parameters (w, b)

e Repeat until done
- Compute gradient g « 9(w,») ﬁ iegl(xD,yD w, b)
— Update parameters (w, b) «— (w,b) — ng

Recall that the synthetic regression dataset that we generated in Section 3.3 does not provide
a validation dataset. In most cases, however, we will want a validation dataset to measure
our model quality. Here we pass the validation dataloader once in each epoch to mea-
sure the model performance. Following our object-oriented design, the prepare_batch
and fit_epoch methods are registered in the d21.Trainer class (introduced in Section
3.2.4).

@d21.add_to_class(d21l.Trainer) #@save
def prepare_batch(self, batch):
return batch

@d21.add_to_class(d21l.Trainer) #@save
def fit_epoch(self):
for batch in self.train_dataloader:
with autograd.record():
loss = self.model.training_step(self.prepare_batch(batch))
loss.backward()
if self.gradient_clip_val > 0:
self.clip_gradients(self.gradient_clip_val, self.model)
self.optim.step(1)
self.train_batch_idx += 1
if self.val_dataloader is None:

(continues on next page)
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(continued from previous page)

return

for batch in self.val_dataloader:
self.model.validation_step(self.prepare_batch(batch))
self.val_batch_idx += 1

We are almost ready to train the model, but first we need some training data. Here we use
the SyntheticRegressionData class and pass in some ground truth parameters. Then
we train our model with the learning rate 1r=0.03 and set max_epochs=3. Note that in
general, both the number of epochs and the learning rate are hyperparameters. In general,
setting hyperparameters is tricky and we will usually want to use a three-way split, one
set for training, a second for hyperparameter selection, and the third reserved for the final
evaluation. We elide these details for now but will revise them later.

model = LinearRegressionScratch(2, 1r=0.03)

data = d2l1.SyntheticRegressionData(w=np.array([2, -3.4]), b=4.2)
trainer = d21.Trainer(max_epochs=3)

trainer.fit(model, data)

—— train_loss
10.01 val_loss
7.5 1
5.0 1
2.5 A
0.0 1 \"%

00 05 10 15 20 25 3.0
epoch

Because we synthesized the dataset ourselves, we know precisely what the true parameters
are. Thus, we can evaluate our success in training by comparing the true parameters with
those that we learned through our training loop. Indeed they turn out to be very close to
each other.

print(f'error in estimating w: {data.w - model.w.reshape(data.w.shape)}"')
print(f'error in estimating b: {data.b - model.b}")

error in estimating w: [ 0.11080897 -0.12691855]
error in estimating b: [0.19214153]

We should not take the ability to exactly recover the ground truth parameters for granted.
In general, for deep models unique solutions for the parameters do not exist, and even
for linear models, exactly recovering the parameters is only possible when no feature is
linearly dependent on the others. However, in machine learning, we are often less concerned
with recovering true underlying parameters, but rather with parameters that lead to highly
accurate prediction (Vapnik, 1992). Fortunately, even on difficult optimization problems,
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stochastic gradient descent can often find remarkably good solutions, owing partly to the
fact that, for deep networks, there exist many configurations of the parameters that lead to
highly accurate prediction.

3.4.5 Summary

In this section, we took a significant step towards designing deep learning systems by im-
plementing a fully functional neural network model and training loop. In this process, we
built a data loader, a model, a loss function, an optimization procedure, and a visualization
and monitoring tool. We did this by composing a Python object that contains all relevant
components for training a model. While this is not yet a professional-grade implementation
it is perfectly functional and code like this could already help you to solve small problems
quickly. In the coming sections, we will see how to do this both more concisely (avoiding
boilerplate code) and more efficiently (using our GPUs to their full potential).

3.4.6 Exercises

1. What would happen if we were to initialize the weights to zero. Would the algorithm
still work? What if we initialized the parameters with variance 1000 rather than 0.01?

N

Assume that you are Georg Simon Ohm "% trying to come up with a model for resis-
tance that relates voltage and current. Can you use automatic differentiation to learn the
parameters of your model?

. Can you use Planck’s Law 77 to determine the temperature of an object using spectral

energy density? For reference, the spectral density B of radiation emanating from a
-1

black body is B(4,T) = 2%2 . (exp /{}fT - 1) . Here A is the wavelength, T is the

temperature, ¢ is the speed of light, & is Planck’s constant, and k is the Boltzmann

constant. You measure the energy for different wavelengths 4 and you now need to fit

the spectral density curve to Planck’s law.

4. What are the problems you might encounter if you wanted to compute the second deriva-
tives of the loss? How would you fix them?

5. Why is the reshape method needed in the loss function?

6. Experiment using different learning rates to find out how quickly the loss function value
drops. Can you reduce the error by increasing the number of epochs of training?

7. If the number of examples cannot be divided by the batch size, what happens to data_iter
at the end of an epoch?

8. Try implementing a different loss function, such as the absolute value loss (y_hat -
d21.reshape(y, y_hat.shape)).abs().sum().

1. Check what happens for regular data.

2. Check whether there is a difference in behavior if you actively perturb some entries,
such as y5 = 10000, of y.


https://en.wikipedia.org/wiki/Georg_Ohm
https://en.wikipedia.org/wiki/Planck%27s_law
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3. Can you think of a cheap solution for combining the best aspects of squared loss and
absolute value loss? Hint: how can you avoid really large gradient values?

9. Why do we need to reshuffle the dataset? Can you design a case where a maliciously
constructed dataset would break the optimization algorithm otherwise?

Discussions 8.

- 5
s

3.5 Concise Implementation of Linear Regression

Deep learning has witnessed a sort of Cambrian explosion over the past decade. The sheer
number of techniques, applications and algorithms by far surpasses the progress of pre-
vious decades. This is due to a fortuitous combination of multiple factors, one of which
is the powerful free tools offered by a number of open-source deep learning frameworks.
Theano (Bergstra et al., 2010), DistBelief (Dean et al., 2012), and Caffe (Jia et al., 2014)
arguably represent the first generation of such models that found widespread adoption.
In contrast to earlier (seminal) works like SN2 (Simulateur Neuristique) (Bottou and Le
Cun, 1988), which provided a Lisp-like programming experience, modern frameworks of-
fer automatic differentiation and the convenience of Python. These frameworks allow us
to automate and modularize the repetitive work of implementing gradient-based learning
algorithms.

In Section 3.4, we relied only on (i) tensors for data storage and linear algebra; and (ii)
automatic differentiation for calculating gradients. In practice, because data iterators, loss
functions, optimizers, and neural network layers are so common, modern libraries imple-
ment these components for us as well. In this section, we will show you how to implement
the linear regression model from Section 3.4 concisely by using high-level APIs of deep
learning frameworks.

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

3.5.1 Defining the Model

When we implemented linear regression from scratch in Section 3.4, we defined our model
parameters explicitly and coded up the calculations to produce output using basic linear
algebra operations. You should know how to do this. But once your models get more
complex, and once you have to do this nearly every day, you will be glad of the assistance.
The situation is similar to coding up your own blog from scratch. Doing it once or twice
is rewarding and instructive, but you would be a lousy web developer if you spent a month
reinventing the wheel.


https://discuss.d2l.ai/t/42
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For standard operations, we can use a framework’s predefined layers, which allow us to
focus on the layers used to construct the model rather than worrying about their implemen-
tation. Recall the architecture of a single-layer network as described in Fig. 3.1.2. The
layer is called fully connected, since each of its inputs is connected to each of its outputs
by means of a matrix—vector multiplication.

In Gluon, the fully connected layer is defined in the Dense class. Since we only want
to generate a single scalar output, we set that number to 1. It is worth noting that, for
convenience, Gluon does not require us to specify the input shape for each layer. Hence
we do not need to tell Gluon how many inputs go into this linear layer. When we first pass
data through our model, e.g., when we execute net (X) later, Gluon will automatically infer
the number of inputs to each layer and thus instantiate the correct model. We will describe
how this works in more detail later.

class LinearRegression(d2l.Module): #@save
"""The linear regression model implemented with high-level APIs.
def __init__(self, 1lr):
super().__init__()
self.save_hyperparameters()
self.net = nn.Dense(1)
self.net.initialize(init.Normal(sigma=0.01))

nnn

In the forward method we just invoke the built-in __call__ method of the predefined
layers to compute the outputs.

@d21.add_to_class(LinearRegression) #@save
def forward(self, X):
return self.net(X)

3.5.2 Defining the Loss Function

The loss module defines many useful loss functions. For speed and convenience, we forgo
implementing our own and choose the built-in loss.L2Loss instead. Because the loss
that it returns is the squared error for each example, we use meanto average the loss across
over the minibatch.

@d21.add_to_class(LinearRegression) #@save
def loss(self, y_hat, y):

fn = gluon.loss.L2Loss()

return fn(y_hat, y).mean()

3.5.3 Defining the Optimization Algorithm

Minibatch SGD is a standard tool for optimizing neural networks and thus Gluon supports
it alongside a number of variations on this algorithm through its Trainer class. Note that
Gluon’s Trainer class stands for the optimization algorithm, while the Trainer class we
created in Section 3.2 contains the training method, i.e., repeatedly call the optimizer to
update the model parameters. When we instantiate Trainer, we specify the parameters to
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optimize over, obtainable from our model net via net.collect_params(), the optimiza-
tion algorithm we wish to use (sgd), and a dictionary of hyperparameters required by our
optimization algorithm.

@d21.add_to_class(LinearRegression) #@save
def configure_optimizers(self):
return gluon.Trainer(self.collect_params(),
'sgd’', {'learning_rate': self.lr})

3.5.4 Training

You might have noticed that expressing our model through high-level APIs of a deep learn-
ing framework requires fewer lines of code. We did not have to allocate parameters indi-
vidually, define our loss function, or implement minibatch SGD. Once we start working
with much more complex models, the advantages of the high-level API will grow consid-
erably.

Now that we have all the basic pieces in place, the training loop itself is the same as the
one we implemented from scratch. So we just call the fit method (introduced in Section
3.2.4), which relies on the implementation of the fit_epoch method in Section 3.4, to train
our model.

model = LinearRegression(1lr=0.03)

data = d2l1.SyntheticRegressionData(w=np.array([2, -3.4]), b=4.2)
trainer = d21.Trainer(max_epochs=3)

trainer.fit(model, data)

—— train_loss
10.0 1 val_loss
7.5 A
5.0
2.5
0.0- D —
00 05 1.0 15 20 25 3.0

epoch

Below, we compare the model parameters learned by training on finite data and the actual
parameters that generated our dataset. To access parameters, we access the weights and bias
of the layer that we need. As in our implementation from scratch, note that our estimated
parameters are close to their true counterparts.

@d21.add_to_class(LinearRegression) #@save
def get_w_b(self):

return (self.net.weight.data(), self.net.bias.data())
w, b = model.get_w_b()
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3.5.5 Summary

This section contains the first implementation of a deep network (in this book) to tap into
the conveniences afforded by modern deep learning frameworks, such as MXNet (Chen
et al., 2015), JAX (Frostig et al., 2018), PyTorch (Paszke et al., 2019), and Tensorflow
(Abadi et al., 2016). We used framework defaults for loading data, defining a layer, a loss
function, an optimizer and a training loop. Whenever the framework provides all necessary
features, it is generally a good idea to use them, since the library implementations of these
components tend to be heavily optimized for performance and properly tested for reliability.
At the same time, try not to forget that these modules can be implemented directly. This is
especially important for aspiring researchers who wish to live on the leading edge of model
development, where you will be inventing new components that cannot possibly exist in
any current library.

In Gluon, the data module provides tools for data processing, the nn module defines a
large number of neural network layers, and the loss module defines many common loss
functions. Moreover, the initializer gives access to many choices for parameter initial-
ization. Conveniently for the user, dimensionality and storage are automatically inferred.
A consequence of this lazy initialization is that you must not attempt to access parameters
before they have been instantiated (and initialized).

3.5.6 Exercises

1. How would you need to change the learning rate if you replace the aggregate loss over
the minibatch with an average over the loss on the minibatch?

2. Review the framework documentation to see which loss functions are provided. In par-
ticular, replace the squared loss with Huber’s robust loss function. That is, use the loss
function

3.5.1
% y—y')? otherwise ( )

, ly=y1-5 ifly-y|>c
l(y,y)={ 2

3. How do you access the gradient of the weights of the model?

4. What is the effect on the solution if you change the learning rate and the number of
epochs? Does it keep on improving?

5. How does the solution change as you vary the amount of data generated?

1. Plot the estimation error for W — w and b — b as a function of the amount of data.
Hint: increase the amount of data logarithmically rather than linearly, i.e., 5, 10, 20,
50, ..., 10,000 rather than 1000, 2000, ..., 10,000.

mianE
& E%.‘g&:';ﬁ 2. Why is the suggestion in the hint appropriate?

e T
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3.6 Generalization
]

Consider two college students diligently preparing for their final exam. Commonly, this
preparation will consist of practicing and testing their abilities by taking exams adminis-
tered in previous years. Nonetheless, doing well on past exams is no guarantee that they will
excel when it matters. For instance, imagine a student, Extraordinary Ellie, whose prepara-
tion consisted entirely of memorizing the answers to previous years’ exam questions. Even
if Ellie were endowed with an extraordinary memory, and thus could perfectly recall the an-
swer to any previously seen question, she might nevertheless freeze when faced with a new
(previously unseen) question. By comparison, imagine another student, Inductive Irene,
with comparably poor memorization skills, but a knack for picking up patterns. Note that
if the exam truly consisted of recycled questions from a previous year, Ellie would handily
outperform Irene. Even if Irene’s inferred patterns yielded 90% accurate predictions, they
could never compete with Ellie’s 100% recall. However, even if the exam consisted entirely
of fresh questions, Irene might maintain her 90% average.

As machine learning scientists, our goal is to discover patterns. But how can we be sure that
we have truly discovered a general pattern and not simply memorized our data? Most of the
time, our predictions are only useful if our model discovers such a pattern. We do not want
to predict yesterday’s stock prices, but tomorrow’s. We do not need to recognize already
diagnosed diseases for previously seen patients, but rather previously undiagnosed ailments
in previously unseen patients. This problem—how to discover patterns that generalize—is
the fundamental problem of machine learning, and arguably of all of statistics. We might
cast this problem as just one slice of a far grander question that engulfs all of science:
when are we ever justified in making the leap from particular observations to more general
statements?

In real life, we must fit our models using a finite collection of data. The typical scales
of that data vary wildly across domains. For many important medical problems, we can
only access a few thousand data points. When studying rare diseases, we might be lucky to
access hundreds. By contrast, the largest public datasets consisting of labeled photographs,
e.g., ImageNet (Deng et al., 2009), contain millions of images. And some unlabeled image
collections such as the Flickr YFC100M dataset can be even larger, containing over 100
million images (Thomee et al., 2016). However, even at this extreme scale, the number of
available data points remains infinitesimally small compared to the space of all possible
images at a megapixel resolution. Whenever we work with finite samples, we must keep in
mind the risk that we might fit our training data, only to discover that we failed to discover
a generalizable pattern.

The phenomenon of fitting closer to our training data than to the underlying distribution is
called overfitting, and techniques for combatting overfitting are often called regularization
methods. While it is no substitute for a proper introduction to statistical learning theory
(see Boucheron et al. (2005), Vapnik (1998)), we will give you just enough intuition to get
going. We will revisit generalization in many chapters throughout the book, exploring both
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what is known about the principles underlying generalization in various models, and also
heuristic techniques that have been found (empirically) to yield improved generalization on
tasks of practical interest.

3.6.1 Training Error and Generalization Error

In the standard supervised learning setting, we assume that the training data and the test
data are drawn independently from identical distributions. This is commonly called the
IID assumption. While this assumption is strong, it is worth noting that, absent any such
assumption, we would be dead in the water. Why should we believe that training data
sampled from distribution P(X,Y) should tell us how to make predictions on test data
generated by a different distribution Q (X, Y)? Making such leaps turns out to require strong
assumptions about how P and Q are related. Later on we will discuss some assumptions
that allow for shifts in distribution but first we need to understand the IID case, where

P() =00).

To begin with, we need to differentiate between the training error Remp, which is a statistic
calculated on the training dataset, and the generalization error R, which is an expectation
taken with respect to the underlying distribution. You can think of the generalization error
as what you would see if you applied your model to an infinite stream of additional data
examples drawn from the same underlying data distribution. Formally the training error is
expressed as a sum (with the same notation as Section 3.1):

1< ) . )
Remp[X.y. f1= = 3 1Dy D, f(x)), (3.6.1)

i=1

while the generalization error is expressed as an integral:

RIp. f1 = Eqyyor[1(x. v, f())] = / / I(x.y. fG)p(x.y) dxdy.  (3.6.2)

Problematically, we can never calculate the generalization error R exactly. Nobody ever
tells us the precise form of the density function p(x,y). Moreover, we cannot sample
an infinite stream of data points. Thus, in practice, we must estimate the generalization
error by applying our model to an independent test set constituted of a random selection
of examples X’ and labels y’ that were withheld from our training set. This consists of
applying the same formula that was used for calculating the empirical training error but to
atestset X', y’.

Crucially, when we evaluate our classifier on the test set, we are working with a fixed classi-
fier (it does not depend on the sample of the test set), and thus estimating its error is simply
the problem of mean estimation. However the same cannot be said for the training set. Note
that the model we wind up with depends explicitly on the selection of the training set and
thus the training error will in general be a biased estimate of the true error on the underly-
ing population. The central question of generalization is then when should we expect our
training error to be close to the population error (and thus the generalization error).
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Model Complexity

In classical theory, when we have simple models and abundant data, the training and gen-
eralization errors tend to be close. However, when we work with more complex models
and/or fewer examples, we expect the training error to go down but the generalization gap
to grow. This should not be surprising. Imagine a model class so expressive that for any
dataset of n examples, we can find a set of parameters that can perfectly fit arbitrary labels,
even if randomly assigned. In this case, even if we fit our training data perfectly, how can
we conclude anything about the generalization error? For all we know, our generalization
error might be no better than random guessing.

In general, absent any restriction on our model class, we cannot conclude, based on fitting
the training data alone, that our model has discovered any generalizable pattern (Vapnik et
al., 1994). On the other hand, if our model class was not capable of fitting arbitrary labels,
then it must have discovered a pattern. Learning-theoretic ideas about model complexity
derived some inspiration from the ideas of Karl Popper, an influential philosopher of sci-
ence, who formalized the criterion of falsifiability. According to Popper, a theory that can
explain any and all observations is not a scientific theory at all! After all, what has it told us
about the world if it has not ruled out any possibility? In short, what we want is a hypothesis
that could not explain any observations we might conceivably make and yet nevertheless
happens to be compatible with those observations that we in fact make.

Now what precisely constitutes an appropriate notion of model complexity is a complex
matter. Often, models with more parameters are able to fit a greater number of arbitrarily
assigned labels. However, this is not necessarily true. For instance, kernel methods operate
in spaces with infinite numbers of parameters, yet their complexity is controlled by other
means (Scholkopf and Smola, 2002). One notion of complexity that often proves useful
is the range of values that the parameters can take. Here, a model whose parameters are
permitted to take arbitrary values would be more complex. We will revisit this idea in the
next section, when we introduce weight decay, your first practical regularization technique.
Notably, it can be difficult to compare complexity among members of substantially different
model classes (say, decision trees vs. neural networks).

At this point, we must stress another important point that we will revisit when introducing
deep neural networks. When a model is capable of fitting arbitrary labels, low training
error does not necessarily imply low generalization error. However, it does not necessarily
imply high generalization error either! All we can say with confidence is that low training
error alone is not enough to certify low generalization error. Deep neural networks turn
out to be just such models: while they generalize well in practice, they are too powerful
to allow us to conclude much on the basis of training error alone. In these cases we must
rely more heavily on our holdout data to certify generalization after the fact. Error on the
holdout data, i.e., validation set, is called the validation error.

3.6.2 Underfitting or Overfitting?

When we compare the training and validation errors, we want to be mindful of two com-
mon situations. First, we want to watch out for cases when our training error and validation
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error are both substantial but there is a little gap between them. If the model is unable to
reduce the training error, that could mean that our model is too simple (i.e., insufficiently
expressive) to capture the pattern that we are trying to model. Moreover, since the gener-
alization gap (Remp — R) between our training and generalization errors is small, we have
reason to believe that we could get away with a more complex model. This phenomenon is
known as underfitting.

On the other hand, as we discussed above, we want to watch out for the cases when our
training error is significantly lower than our validation error, indicating severe overfitting.
Note that overfitting is not always a bad thing. In deep learning especially, the best pre-
dictive models often perform far better on training data than on holdout data. Ultimately,
we usually care about driving the generalization error lower, and only care about the gap
insofar as it becomes an obstacle to that end. Note that if the training error is zero, then the
generalization gap is precisely equal to the generalization error and we can make progress
only by reducing the gap.

Polynomial Curve Fitting

To illustrate some classical intuition about overfitting and model complexity, consider the
following: given training data consisting of a single feature x and a corresponding real-
valued label y, we try to find the polynomial of degree d

d
9= xw; (3.6.3)
i=0

for estimating the label y. This is just a linear regression problem where our features are
given by the powers of x, the model’s weights are given by w;, and the bias is given by w
since x = 1 for all x. Since this is just a linear regression problem, we can use the squared
error as our loss function.

A higher-order polynomial function is more complex than a lower-order polynomial func-
tion, since the higher-order polynomial has more parameters and the model function’s selec-
tion range is wider. Fixing the training dataset, higher-order polynomial functions should
always achieve lower (at worst, equal) training error relative to lower-degree polynomials.
In fact, whenever each data example has a distinct value of x, a polynomial function with
degree equal to the number of data examples can fit the training set perfectly. We compare
the relationship between polynomial degree (model complexity) and both underfitting and
overfitting in Fig. 3.6.1.

Dataset Size

As the above bound already indicates, another big consideration to bear in mind is dataset
size. Fixing our model, the fewer samples we have in the training dataset, the more likely
(and more severely) we are to encounter overfitting. As we increase the amount of training
data, the generalization error typically decreases. Moreover, in general, more data never
hurts. For a fixed task and data distribution, model complexity should not increase more
rapidly than the amount of data. Given more data, we might attempt to fit a more complex
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nem classification®? and optical character recognition®? .
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Generalization loss
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Influence of model complexity on underfitting and overfitting.

model. Absent sufficient data, simpler models may be more difficult to beat. For many
tasks, deep learning only outperforms linear models when many thousands of training ex-
amples are available. In part, the current success of deep learning owes considerably to the
abundance of massive datasets arising from Internet companies, cheap storage, connected
devices, and the broad digitization of the economy.

3.6.3 Model Selection

Typically, we select our final model only after evaluating multiple models that differ in vari-
ous ways (different architectures, training objectives, selected features, data preprocessing,
learning rates, etc.). Choosing among many models is aptly called model selection.

In principle, we should not touch our test set until after we have chosen all our hyperpa-
rameters. Were we to use the test data in the model selection process, there is a risk that we
might overfit the test data. Then we would be in serious trouble. If we overfit our training
data, there is always the evaluation on test data to keep us honest. But if we overfit the test
data, how would we ever know? See Ong et al. (2005) for an example of how this can lead
to absurd results even for models where the complexity can be tightly controlled.

Thus, we should never rely on the test data for model selection. And yet we cannot rely
solely on the training data for model selection either because we cannot estimate the gen-
eralization error on the very data that we use to train the model.

In practical applications, the picture gets muddier. While ideally we would only touch the
test data once, to assess the very best model or to compare a small number of models with
each other, real-world test data is seldom discarded after just one use. We can seldom
afford a new test set for each round of experiments. In fact, recycling benchmark data for

decades can have a significant impact on the development of algorithms, e.g., for image
81

The common practice for addressing the problem of training on the test set is to split our
data three ways, incorporating a validation set in addition to the training and test datasets.
The result is a murky business where the boundaries between validation and test data are
worryingly ambiguous. Unless explicitly stated otherwise, in the experiments in this book
we are really working with what should rightly be called training data and validation data,


https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
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with no true test sets. Therefore, the accuracy reported in each experiment of the book is
really the validation accuracy and not a true test set accuracy.

Cross-Validation

When training data is scarce, we might not even be able to afford to hold out enough data to
constitute a proper validation set. One popular solution to this problem is to employ K-fold
cross-validation. Here, the original training data is split into K non-overlapping subsets.
Then model training and validation are executed K times, each time training on K — 1
subsets and validating on a different subset (the one not used for training in that round).
Finally, the training and validation errors are estimated by averaging over the results from
the K experiments.

3.6.4 Summary

This section explored some of the underpinnings of generalization in machine learning.
Some of these ideas become complicated and counterintuitive when we get to deeper mod-
els; here, models are capable of overfitting data badly, and the relevant notions of complex-
ity can be both implicit and counterintuitive (e.g., larger architectures with more parameters
generalizing better). We leave you with a few rules of thumb:

1. Use validation sets (or K-fold cross-validation) for model selection;
2. More complex models often require more data;

3. Relevant notions of complexity include both the number of parameters and the range of
values that they are allowed to take;

4. Keeping all else equal, more data almost always leads to better generalization;

5. This entire talk of generalization is all predicated on the IID assumption. If we relax
this assumption, allowing for distributions to shift between the train and testing peri-
ods, then we cannot say anything about generalization absent a further (perhaps milder)
assumption.

3.6.5 Exercises

1. When can you solve the problem of polynomial regression exactly?

2. Give at least five examples where dependent random variables make treating the problem
as [ID data inadvisable.

3. Can you ever expect to see zero training error? Under which circumstances would you
see zero generalization error?

4. Why is K-fold cross-validation very expensive to compute?
5. Why is the K-fold cross-validation error estimate biased?

6. The VC dimension is defined as the maximum number of points that can be classified
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with arbitrary labels {+1} by a function of a class of functions. Why might this not be
a good idea for measuring how complex the class of functions is? Hint: consider the
magnitude of the functions.

7. Your manager gives you a difficult dataset on which your current algorithm does not
perform so well. How would you justify to him that you need more data? Hint: you
cannot increase the data but you can decrease it.

. . 82
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3.7 Weight Decay
I —

Now that we have characterized the problem of overfitting, we can introduce our first reg-
ularization technique. Recall that we can always mitigate overfitting by collecting more
training data. However, that can be costly, time consuming, or entirely out of our control,
making it impossible in the short run. For now, we can assume that we already have as
much high-quality data as our resources permit and focus the tools at our disposal when the
dataset is taken as a given.

Recall that in our polynomial regression example (Section 3.6.2) we could limit our model’s
capacity by tweaking the degree of the fitted polynomial. Indeed, limiting the number of
features is a popular technique for mitigating overfitting. However, simply tossing aside
features can be too blunt an instrument. Sticking with the polynomial regression example,
consider what might happen with high-dimensional input. The natural extensions of poly-
nomials to multivariate data are called monomials, which are simply products of powers
of variables. The degree of a monomial is the sum of the powers. For example, x%xz, and
x3x§ are both monomials of degree 3.

Note that the number of terms with degree d blows up rapidly as d grows larger. Given k
variables, the number of monomials of degree d is (k;qd). Even small changes in degree,
say from 2 to 3, dramatically increase the complexity of our model. Thus we often need a

more fine-grained tool for adjusting function complexity.

%»matplotlib inline

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn

from d21 import mxnet as d21

npx.set_np()

3.7.1 Norms and Weight Decay

Rather than directly manipulating the number of parameters, weight decay, operates by
restricting the values that the parameters can take. More commonly called ¢, regularization
outside of deep learning circles when optimized by minibatch stochastic gradient descent,
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weight decay might be the most widely used technique for regularizing parametric machine
learning models. The technique is motivated by the basic intuition that among all functions
f, the function f = 0 (assigning the value 0 to all inputs) is in some sense the simplest, and
that we can measure the complexity of a function by the distance of its parameters from
zero. But how precisely should we measure the distance between a function and zero?
There is no single right answer. In fact, entire branches of mathematics, including parts
of functional analysis and the theory of Banach spaces, are devoted to addressing such
issues.

One simple interpretation might be to measure the complexity of a linear function f(x) =
w T x by some norm of its weight vector, e.g., ||w]||?. Recall that we introduced the > norm
and ¢; norm, which are special cases of the more general £, norm, in Section 2.3.11. The
most common method for ensuring a small weight vector is to add its norm as a penalty
term to the problem of minimizing the loss. Thus we replace our original objective, min-
imizing the prediction loss on the training labels, with new objective, minimizing the sum
of the prediction loss and the penalty term. Now, if our weight vector grows too large, our
learning algorithm might focus on minimizing the weight norm ||w||? rather than minimiz-
ing the training error. That is exactly what we want. To illustrate things in code, we revive
our previous example from Section 3.1 for linear regression. There, our loss was given
by

1 n 1 . 2
L(w,b) = - Z 3 (WTX(’) +b- y(l)) . (3.7.1)
i=1

Recall that x¥) are the features, y() is the label for any data example i, and (w, b) are
the weight and bias parameters, respectively. To penalize the size of the weight vector,
we must somehow add ||w/||? to the loss function, but how should the model trade off the
standard loss for this new additive penalty? In practice, we characterize this trade-off via
the regularization constant A, a nonnegative hyperparameter that we fit using validation
data:

A
L(w,b) + §||w||2. (3.7.2)

For A = 0, we recover our original loss function. For 4 > 0, we restrict the size of |w]|.
We divide by 2 by convention: when we take the derivative of a quadratic function, the
2 and 1/2 cancel out, ensuring that the expression for the update looks nice and simple.
The astute reader might wonder why we work with the squared norm and not the standard
norm (i.e., the Euclidean distance). We do this for computational convenience. By squaring
the £, norm, we remove the square root, leaving the sum of squares of each component of
the weight vector. This makes the derivative of the penalty easy to compute: the sum of
derivatives equals the derivative of the sum.

Moreover, you might ask why we work with the £, norm in the first place and not, say,
the £; norm. In fact, other choices are valid and popular throughout statistics. While £5-
regularized linear models constitute the classic ridge regression algorithm, {;-regularized
linear regression is a similarly fundamental method in statistics, popularly known as lasso
regression. One reason to work with the £, norm is that it places an outsize penalty on large
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components of the weight vector. This biases our learning algorithm towards models that
distribute weight evenly across a larger number of features. In practice, this might make
them more robust to measurement error in a single variable. By contrast, £; penalties lead
to models that concentrate weights on a small set of features by clearing the other weights
to zero. This gives us an effective method for feature selection, which may be desirable for
other reasons. For example, if our model only relies on a few features, then we may not
need to collect, store, or transmit data for the other (dropped) features.

Using the same notation in (3.1.11), minibatch stochastic gradient descent updates for £>-
regularized regression as follows:

n i i '
W(—(l—n/l)w—@Zx()(WTX()+b—y(’)). (3.7.3)
i€B

As before, we update w based on the amount by which our estimate differs from the ob-
servation. However, we also shrink the size of w towards zero. That is why the method is
sometimes called “weight decay”: given the penalty term alone, our optimization algorithm
decays the weight at each step of training. In contrast to feature selection, weight decay
offers us a mechanism for continuously adjusting the complexity of a function. Smaller
values of A correspond to less constrained w, whereas larger values of A constrain w more
considerably. Whether we include a corresponding bias penalty 5% can vary across imple-
mentations, and may vary across layers of a neural network. Often, we do not regularize
the bias term. Besides, although ¢, regularization may not be equivalent to weight decay
for other optimization algorithms, the idea of regularization through shrinking the size of
weights still holds true.

3.7.2 High-Dimensional Linear Regression

We can illustrate the benefits of weight decay through a simple synthetic example.

First, we generate some data as before:

d
y=0.05+ Z 0.01x; + € where € ~ N(0,0.01%). (3.7.4)
i=1
In this synthetic dataset, our label is given by an underlying linear function of our inputs,
corrupted by Gaussian noise with zero mean and standard deviation 0.01. For illustrative
purposes, we can make the effects of overfitting pronounced, by increasing the dimen-
sionality of our problem to d = 200 and working with a small training set with only 20
examples.

class Data(d2l.DataModule):
def __init__(self, num_train, num_val, num_inputs, batch_size):

self.save_hyperparameters()
n = num_train + num_val
self.X = np.random.randn(n, num_inputs)
noise = np.random.randn(n, 1) * 0.01
w, b = np.ones((num_inputs, 1)) * 0.01, 0.05
self.y = np.dot(self.X, w) + b + noise

(continues on next page)
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(continued from previous page)

def get_dataloader(self, train):
i = slice(@, self.num_train) if train else slice(self.num_train, None)
return self.get_tensorloader([self.X, self.y], train, i)

3.7.3 Implementation from Scratch

Now, let’s try implementing weight decay from scratch. Since minibatch stochastic gradient
descent is our optimizer, we just need to add the squared £, penalty to the original loss
function.

Defining £, Norm Penalty

Perhaps the most convenient way of implementing this penalty is to square all terms in
place and sum them.

def 12_penalty(w):
return (w ** 2).sum() / 2

Defining the Model

In the final model, the linear regression and the squared loss have not changed since Section
3.4, so we will just define a subclass of d21.LinearRegressionScratch. The only change
here is that our loss now includes the penalty term.

class WeightDecayScratch(d2l.LinearRegressionScratch):
def __init__(self, num_inputs, lambd, 1lr, sigma=0.01):
super().__init__(num_inputs, 1lr, sigma)
self.save_hyperparameters()

def loss(self, y_hat, y):
return (super().loss(y_hat, y) +
self.lambd * 12_penalty(self.w))

The following code fits our model on the training set with 20 examples and evaluates it on
the validation set with 100 examples.

data = Data(num_train=20, num_val=100, num_inputs=200, batch_size=5)
trainer = d21.Trainer(max_epochs=10)

def train_scratch(lambd):
model = WeightDecayScratch(num_inputs=200, lambd=lambd, 1r=0.01)
model .board.yscale="log’
trainer.fit(model, data)
print('L2 norm of w:', float(l2_penalty(model.w)))
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[22:08:21] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

Training without Regularization

We now run this code with lambd = 0, disabling weight decay. Note that we overfit
badly, decreasing the training error but not the validation error—a textbook case of over-
fitting.

train_scratch(0)

L2 norm of w: ©.009325511753559113

1072 4

1073 4

1074 4

—— train_loss

107° 5 val_loss
0 2 4 6 8 10
epoch
Using Weight Decay

Below, we run with substantial weight decay. Note that the training error increases but
the validation error decreases. This is precisely the effect we expect from regulariza-
tion.

train_scratch(3)

L2 norm of w: 0.0012076478451490402

—— train_loss
val_loss

10—2 4
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3.7.4 Concise Implementation

Because weight decay is ubiquitous in neural network optimization, the deep learning
framework makes it especially convenient, integrating weight decay into the optimization
algorithm itself for easy use in combination with any loss function. Moreover, this integra-
tion serves a computational benefit, allowing implementation tricks to add weight decay
to the algorithm, without any additional computational overhead. Since the weight decay
portion of the update depends only on the current value of each parameter, the optimizer
must touch each parameter once anyway.

Below, we specify the weight decay hyperparameter directly through wd when instantiating
our Trainer. By default, Gluon decays both weights and biases simultaneously. Note that
the hyperparameter wd will be multiplied by wd_mult when updating model parameters.
Thus, if we set wd_mult to zero, the bias parameter b will not decay.

class WeightDecay(d2l.LinearRegression):
def __init__(self, wd, 1r):
super().__init__(1r)
self.save_hyperparameters()
self.wd = wd

def configure_optimizers(self):
self.collect_params('.*bias').setattr('wd_mult’', 0)
return gluon.Trainer(self.collect_params(),
'sgd’,
{'learning_rate': self.lr, 'wd': self.wd})

The plot looks similar to that when we implemented weight decay from scratch. How-
ever, this version runs faster and is easier to implement, benefits that will become more
pronounced as you address larger problems and this work becomes more routine.

model = WeightDecay(wd=3, 1r=0.01)
model .board.yscale="log’
trainer.fit(model, data)

print('L2 norm of w:', float(l2_penalty(model.get_w_b()[0])))

L2 norm of w: 0.0013100637588649988

1072 4

—— train_loss

val_loss
1073 4
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So far, we have touched upon one notion of what constitutes a simple linear function. How-
ever, even for simple nonlinear functions, the situation can be much more complex. To see
this, the concept of reproducing kernel Hilbert space (RKHS)®3 allows one to apply tools
introduced for linear functions in a nonlinear context. Unfortunately, RKHS-based algo-
rithms tend to scale poorly to large, high-dimensional data. In this book we will often
adopt the common heuristic whereby weight decay is applied to all layers of a deep net-
work.

3.7.5 Summary

Regularization is a common method for dealing with overfitting. Classical regularization
techniques add a penalty term to the loss function (when training) to reduce the complexity
of the learned model. One particular choice for keeping the model simple is using an £,
penalty. This leads to weight decay in the update steps of the minibatch stochastic gradient
descent algorithm. In practice, the weight decay functionality is provided in optimizers
from deep learning frameworks. Different sets of parameters can have different update
behaviors within the same training loop.

3.7.6 Exercises

. Experiment with the value of A in the estimation problem in this section. Plot training

and validation accuracy as a function of 2. What do you observe?

. Use a validation set to find the optimal value of A. Is it really the optimal value? Does

this matter?

. What would the update equations look like if instead of ||w||*> we used Y; |w;| as our

penalty of choice (¢£; regularization)?

. We know that ||w||> = w™w. Can you find a similar equation for matrices (see the

Frobenius norm in Section 2.3.11)?

. Review the relationship between training error and generalization error. In addition to

weight decay, increased training, and the use of a model of suitable complexity, what
other ways might help us deal with overfitting?

. In Bayesian statistics we use the product of prior and likelihood to arrive at a posterior

via P(w | x) oc P(x | w)P(w). How can you identify P(w) with regularization?
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Now that you have worked through all of the mechanics you are ready to apply the skills
you have learned to broader kinds of tasks. Even as we pivot towards classification, most
of the plumbing remains the same: loading the data, passing it through the model, generat-
ing output, calculating the loss, taking gradients with respect to weights, and updating the
model. However, the precise form of the targets, the parametrization of the output layer,
and the choice of loss function will adapt to suit the classification setting.

4.1 Softmax Regression
- _______________________________________________________________________________________|

In Section 3.1, we introduced linear regression, working through implementations from
scratch in Section 3.4 and again using high-level APIs of a deep learning framework in
Section 3.5 to do the heavy lifting.

Regression is the hammer we reach for when we want to answer how much? or how many?
questions. If you want to predict the number of dollars (price) at which a house will be sold,
or the number of wins a baseball team might have, or the number of days that a patient will
remain hospitalized before being discharged, then you are probably looking for a regression
model. However, even within regression models, there are important distinctions. For
instance, the price of a house will never be negative and changes might often be relative
to its baseline price. As such, it might be more effective to regress on the logarithm of the
price. Likewise, the number of days a patient spends in hospital is a discrete nonnegative
random variable. As such, least mean squares might not be an ideal approach either. This
sort of time-to-event modeling comes with a host of other complications that are dealt with
in a specialized subfield called survival modeling.

The point here is not to overwhelm you but just to let you know that there is a lot more
to estimation than simply minimizing squared errors. And more broadly, there is a lot
more to supervised learning than regression. In this section, we focus on classification
problems where we put aside how much? questions and instead focus on which category?
questions.

e Does this email belong in the spam folder or the inbox?

o [s this customer more likely to sign up or not to sign up for a subscription service?
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e Does this image depict a donkey, a dog, a cat, or a rooster?
e Which movie is Aston most likely to watch next?
e Which section of the book are you going to read next?

Colloquially, machine learning practitioners overload the word classification to describe
two subtly different problems: (i) those where we are interested only in hard assignments
of examples to categories (classes); and (ii) those where we wish to make soft assignments,
i.e., to assess the probability that each category applies. The distinction tends to get blurred,
in part, because often, even when we only care about hard assignments, we still use models
that make soft assignments.

Even more, there are cases where more than one label might be true. For instance, a news
article might simultaneously cover the topics of entertainment, business, and space flight,
but not the topics of medicine or sports. Thus, categorizing it into one of the above cate-
gories on their own would not be very useful. This problem is commonly known as multi-
label classification3®. See Tsoumakas and Katakis (2007) for an overview and Huang et
" al. (2015) for an effective algorithm when tagging images.

4.1.1 Classification

To get our feet wet, let’s start with a simple image classification problem. Here, each input
consists of a 2 X 2 grayscale image. We can represent each pixel value with a single scalar,
giving us four features x1, x2, x3, x4. Further, let’s assume that each image belongs to one

CLINNT3

among the categories “cat”, “chicken”, and “dog”.

Next, we have to choose how to represent the labels. We have two obvious choices. Per-

haps the most natural impulse would be to choose y € {1, 2, 3}, where the integers represent

{dog, cat, chicken} respectively. This is a great way of storing such information on a com-

puter. If the categories had some natural ordering among them, say if we were trying to

% predict {baby, toddler, adolescent, young adult, adult, geriatric}, then it might even make
sense to cast this as an ordinal regression® problem and keep the labels in this format.
See Moon et al. (2010) for an overview of different types of ranking loss functions and
Beutel et al. (2014) for a Bayesian approach that addresses responses with more than one
mode.

In general, classification problems do not come with natural orderings among the classes.
Fortunately, statisticians long ago invented a simple way to represent categorical data: the
one-hot encoding. A one-hot encoding is a vector with as many components as we have
categories. The component corresponding to a particular instance’s category is set to 1 and
all other components are set to 0. In our case, a label y would be a three-dimensional vector,
with (1,0, 0) corresponding to “cat”, (0, 1, 0) to “chicken”, and (0, 0, 1) to “dog”:

y €{(1,0,0), (0, 1,0), (0,0, 1)}. (4.1.1)


https://en.wikipedia.org/wiki/Multi-label_classification
https://en.wikipedia.org/wiki/Multi-label_classification
https://en.wikipedia.org/wiki/Ordinal_regression
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Linear Model

In order to estimate the conditional probabilities associated with all the possible classes,
we need a model with multiple outputs, one per class. To address classification with lin-
ear models, we will need as many affine functions as we have outputs. Strictly speaking,
we only need one fewer, since the final category has to be the difference between 1 and
the sum of the other categories, but for reasons of symmetry we use a slightly redundant
parametrization. Each output corresponds to its own affine function. In our case, since
we have 4 features and 3 possible output categories, we need 12 scalars to represent the
weights (w with subscripts), and 3 scalars to represent the biases (b with subscripts). This
yields:

01 =X1Wi1 +X2Wi2 + X3w 13 + x4wig + by,
02 = X{Wa1 + XoW2o + X3Wa3 + XaWo4 + b2, (4.1.2)
03 = X|W3] + XpW3p + X3W33 + X4W34 + b3.

The corresponding neural network diagram is shown in Fig. 4.1.1. Just as in linear regres-
sion, we use a single-layer neural network. And since the calculation of each output, 01, 02,
and o3, depends on every input, x|, x2, x3, and x4, the output layer can also be described as
a fully connected layer.

Output layer

Input layer

Softmax regression is a single-layer neural network.

For a more concise notation we use vectors and matrices: o = Wx+b is much better suited
for mathematics and code. Note that we have gathered all of our weights into a 3 X4 matrix
and all biases b € R3 in a vector.

The Softmax

Assuming a suitable loss function, we could try, directly, to minimize the difference be-
tween o and the labels y. While it turns out that treating classification as a vector-valued
regression problem works surprisingly well, it is nonetheless unsatisfactory in the following
ways:

e There is no guarantee that the outputs o; sum up to 1 in the way we expect probabilities
to behave.

e There is no guarantee that the outputs o; are even nonnegative, even if their outputs sum
up to 1, or that they do not exceed 1.

Both aspects render the estimation problem difficult to solve and the solution very brittle
to outliers. For instance, if we assume that there is a positive linear dependency between
the number of bedrooms and the likelihood that someone will buy a house, the probability
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might exceed 1 when it comes to buying a mansion! As such, we need a mechanism to
“squish” the outputs.

There are many ways we might accomplish this goal. For instance, we could assume that
the outputs o are corrupted versions of y, where the corruption occurs by means of adding
noise € drawn from a normal distribution. In other words, y = o+ €, where ; ~ N (0, o).
This is the so-called probit model®7, first introduced by Fechner (1860). While appealing,
it does not work quite as well nor lead to a particularly nice optimization problem, when
compared to the softmax.

Another way to accomplish this goal (and to ensure nonnegativity) is to use an exponential
function P(y = i) « expo;. This does indeed satisfy the requirement that the conditional
class probability increases with increasing o;, it is monotonic, and all probabilities are
nonnegative. We can then transform these values so that they add up to 1 by dividing each
by their sum. This process is called normalization. Putting these two pieces together gives
us the softmax function:

¥ = softmax(o) where J; = _oplo) (4.1.3)

Yjexp(o))
Note that the largest coordinate of o corresponds to the most likely class according to §.
Moreover, because the softmax operation preserves the ordering among its arguments, we
do not need to compute the softmax to determine which class has been assigned the highest
probability. Thus,

argmax y; = argmax o;. (4.1.4)
J J

The idea of a softmax dates back to Gibbs (1902), who adapted ideas from physics. Dating
even further back, Boltzmann, the father of modern statistical physics, used this trick to
model a distribution over energy states in gas molecules. In particular, he discovered that
the prevalence of a state of energy in a thermodynamic ensemble, such as the molecules in a
gas, is proportional to exp(—E/kT). Here, E is the energy of a state, T is the temperature,
and k is the Boltzmann constant. When statisticians talk about increasing or decreasing
the “temperature” of a statistical system, they refer to changing 7" in order to favor lower
or higher energy states. Following Gibbs’ idea, energy equates to error. Energy-based
models (Ranzato er al., 2007) use this point of view when describing problems in deep
learning.

Vectorization

To improve computational efficiency, we vectorize calculations in minibatches of data. As-
sume that we are given a minibatch X € R"*¢ of n examples with dimensionality (number
of inputs) d. Moreover, assume that we have g categories in the output. Then the weights
satisfy W € R?*4 and the bias satisfies b € R4,

O=XW +b,
N (4.1.5)
Y = softmax(QO).


https://en.wikipedia.org/wiki/Probit_model
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This accelerates the dominant operation into a matrix—matrix product XW. Moreover,
since each row in X represents a data example, the softmax operation itself can be computed
rowwise: for each row of O, exponentiate all entries and then normalize them by the sum.
Note, though, that care must be taken to avoid exponentiating and taking logarithms of large
numbers, since this can cause numerical overflow or underflow. Deep learning frameworks
take care of this automatically.

4.1.2 Loss Function

Now that we have a mapping from features x to probabilities ¥, we need a way to optimize
the accuracy of this mapping. We will rely on maximum likelihood estimation, the very
same method that we encountered when providing a probabilistic justification for the mean
squared error loss in Section 3.1.3.

Log-Likelihood

The softmax function gives us a vector §, which we can interpret as the (estimated) con-
ditional probabilities of each class, given any input x, such as §; = P(y = cat | x). In the
following we assume that for a dataset with features X the labels Y are represented using
a one-hot encoding label vector. We can compare the estimates with reality by checking
how probable the actual classes are according to our model, given the features:

n
PY | X) = [P 1 xD). (4.1.6)
i=1
We are allowed to use the factorization since we assume that each label is drawn indepen-
dently from its respective distribution P(y | x(?)). Since maximizing the product of terms
is awkward, we take the negative logarithm to obtain the equivalent problem of minimizing
the negative log-likelihood:
—log P(Y | X) = Y —log Py | x) = > iy, 59), (4.1.7)
i=1 i=1
where for any pair of label y and model prediction ¥ over g classes, the loss function /
is

q
y.9) = _Z)’j logy;. (4.1.8)
j=1

For reasons explained later on, the loss function in (4.1.8) is commonly called the cross-
entropy loss. Since y is a one-hot vector of length ¢, the sum over all its coordinates j van-
ishes for all but one term. Note that the loss /(y, ¥) is bounded from below by 0 whenever §
is a probability vector: no single entry is larger than 1, hence their negative logarithm can-
not be lower than 0; [(yy, ¥) = 0 only if we predict the actual label with certainty. This can
never happen for any finite setting of the weights because taking a softmax output towards
1 requires taking the corresponding input o; to infinity (or all other outputs o; for j # i
to negative infinity). Even if our model could assign an output probability of 0, any error
made when assigning such high confidence would incur infinite loss (—log 0 = o).
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Softmax and Cross-Entropy Loss

Since the softmax function and the corresponding cross-entropy loss are so common, it is
worth understanding a bit better how they are computed. Plugging (4.1.3) into the defini-
tion of the loss in (4.1.8) and using the definition of the softmax we obtain

(0)
ly.§) =~ Zy/ exix(;j(()k)

q
Z logZexp(ok) nyo/ (4.1.9)

Jj=1

q
= OgZeXp(Ok) - Zyj0j~
=1

k=1

To understand a bit better what is going on, consider the derivative with respect to any logit
0;. We get

exp(o;)

3o, 1(y.9) =
o 7_ exp(ox)

— yj = softmax(o); — y;. (4.1.10)

In other words, the derivative is the difference between the probability assigned by our
model, as expressed by the softmax operation, and what actually happened, as expressed
by elements in the one-hot label vector. In this sense, it is very similar to what we saw in
regression, where the gradient was the difference between the observation y and estimate
9. This is not a coincidence. In any exponential family model, the gradients of the log-
likelihood are given by precisely this term. This fact makes computing gradients easy in
practice.

Now consider the case where we observe not just a single outcome but an entire distribution
over outcomes. We can use the same representation as before for the label y. The only dif-
ference is that rather than a vector containing only binary entries, say (0, 0, 1), we now have
a generic probability vector, say (0.1, 0.2,0.7). The math that we used previously to define
the loss [ in (4.1.8) still works well, just that the interpretation is slightly more general. It
is the expected value of the loss for a distribution over labels. This loss is called the cross-
entropy loss and it is one of the most commonly used losses for classification problems. We
can demystify the name by introducing just the basics of information theory. In a nutshell,
it measures the number of bits needed to encode what we see, y, relative to what we predict
that should happen, ¥. We provide a very basic explanation in the following. For further
details on information theory see Cover and Thomas (1999) or MacKay (2003).

4.1.3 Information Theory Basics

Many deep learning papers use intuition and terms from information theory. To make sense
of them, we need some common language. This is a survival guide. Information theory
deals with the problem of encoding, decoding, transmitting, and manipulating information
(also known as data).
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Entropy

The central idea in information theory is to quantify the amount of information contained
in data. This places a limit on our ability to compress data. For a distribution P its entropy,
H|[P], is defined as:

H[P] = ) =P(j)log P()). (4.1.11)

J

One of the fundamental theorems of information theory states that in order to encode data
drawn randomly from the distribution P, we need at least H[P] “nats” to encode it (Shan-
non, 1948). If you wonder what a “nat” is, it is the equivalent of bit but when using a code
with base e rather than one with base 2. Thus, one nat is @ ~ 1.44 bit.

Surprisal

You might be wondering what compression has to do with prediction. Imagine that we have
a stream of data that we want to compress. If it is always easy for us to predict the next
token, then this data is easy to compress. Take the extreme example where every token in
the stream always takes the same value. That is a very boring data stream! And not only
it is boring, but it is also easy to predict. Because the tokens are always the same, we do
not have to transmit any information to communicate the contents of the stream. Easy to
predict, easy to compress.

However if we cannot perfectly predict every event, then we might sometimes be surprised.
Our surprise is greater when an event is assigned lower probability. Claude Shannon settled
onlog ﬁ = —log P(j) to quantify one’s surprisal at observing an event j having assigned
it a (subjective) probability P(j). The entropy defined in (4.1.11) is then the expected
surprisal when one assigned the correct probabilities that truly match the data-generating
process.

Cross-Entropy Revisited

So if entropy is the level of surprise experienced by someone who knows the true proba-
bility, then you might be wondering, what is cross-entropy? The cross-entropy from P to
Q, denoted H(P, Q), is the expected surprisal of an observer with subjective probabilities

O upon seeing data that was actually generated according to probabilities P. This is given

by H(P, Q) def 2 —P(j)logQ(j). The lowest possible cross-entropy is achieved when

P = Q. In this case, the cross-entropy from P to Q is H(P, P) = H(P).

In short, we can think of the cross-entropy classification objective in two ways: (i) as max-
imizing the likelihood of the observed data; and (ii) as minimizing our surprisal (and thus
the number of bits) required to communicate the labels.

4.1.4 Summary and Discussion

In this section, we encountered the first nontrivial loss function, allowing us to optimize over
discrete output spaces. Key in its design was that we took a probabilistic approach, treating
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discrete categories as instances of draws from a probability distribution. As a side effect,
we encountered the softmax, a convenient activation function that transforms outputs of an
ordinary neural network layer into valid discrete probability distributions. We saw that the
derivative of the cross-entropy loss when combined with softmax behaves very similarly
to the derivative of squared error; namely by taking the difference between the expected
behavior and its prediction. And, while we were only able to scratch the very surface of it,
we encountered exciting connections to statistical physics and information theory.

While this is enough to get you on your way, and hopefully enough to whet your appetite,
we hardly dived deep here. Among other things, we skipped over computational con-
siderations. Specifically, for any fully connected layer with d inputs and g outputs, the
parametrization and computational cost is O(dq), which can be prohibitively high in prac-
tice. Fortunately, this cost of transforming d inputs into g outputs can be reduced through
approximation and compression. For instance Deep Fried Convnets (Yang et al., 2015)
uses a combination of permutations, Fourier transforms, and scaling to reduce the cost
from quadratic to log-linear. Similar techniques work for more advanced structural matrix
approximations (Sindhwani ez al., 2015). Lastly, we can use quaternion-like decomposi-
tions to reduce the cost to O(dT"), again if we are willing to trade off a small amount of
accuracy for computational and storage cost (Zhang et al., 2021) based on a compression
factor n. This is an active area of research. What makes it challenging is that we do not
necessarily strive for the most compact representation or the smallest number of floating
point operations but rather for the solution that can be executed most efficiently on modern
GPUs.

4.1.5 Exercises

1. We can explore the connection between exponential families and softmax in some more
depth.

1. Compute the second derivative of the cross-entropy loss [(y, ¥) for softmax.

2. Compute the variance of the distribution given by softmax (o) and show that it matches
the second derivative computed above.

2. Assume that we have three classes which occur with equal probability, i.e., the proba-
bility vector is (_%, % %).
1. What is the problem if we try to design a binary code for it?

2. Can you design a better code? Hint: what happens if we try to encode two indepen-
dent observations? What if we encode n observations jointly?

. When encoding signals transmitted over a physical wire, engineers do not always use
binary codes. For instance, PAM-33® uses three signal levels {—1,0, 1} as opposed to
two levels {0, 1}. How many ternary units do you need to transmit an integer in the
range {0, ...,7}? Why might this be a better idea in terms of electronics?

. The Bradley—Terry model®® uses a logistic model to capture preferences. For a user to


https://en.wikipedia.org/wiki/Ternary_signal
https://en.wikipedia.org/wiki/Bradley%E2%80%93Terry_model
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choose between apples and oranges one assumes SCores Ogapple and Ogrange. Our require-
ments are that larger scores should lead to a higher likelihood in choosing the associated
item and that the item with the largest score is the most likely one to be chosen (Bradley
and Terry, 1952).

1. Prove that softmax satisfies this requirement.

2. What happens if you want to allow for a default option of choosing neither apples
nor oranges? Hint: now the user has three choices.

5. Softmax gets its name from the following mapping: RealSoftMax(a, b) = log(exp(a) +
exp(b)).

1. Prove that RealSoftMax(a, b) > max(a, b).

2. How small can you make the difference between both functions? Hint: without loss
of generality youcanset b =0 and a > b.

3. Prove that this holds for 1~'RealSoftMax(Aa, Ab), provided that A > 0.
4. Show that for 1 — co we have 1~'RealSoftMax(1a, Ab) — max(a, b).
5. Construct an analogous softmin function.

6. Extend this to more than two numbers.

. def . . .
. The function g(x) = log Y; exp x; is sometimes also referred to as the log-partition

function?.

1. Prove that the function is convex. Hint: to do so, use the fact that the first derivative
amounts to the probabilities from the softmax function and show that the second
derivative is the variance.

2. Show that g is translation invariant, i.e., g(x + b) = g(x).

3. What happens if some of the coordinates x; are very large? What happens if they’re
all very small?

4. Show that if we choose b = max;x; we end up with a numerically stable implemen-
tation.

7. Assume that we have some probability distribution P. Suppose we pick another distri-
bution Q with Q (i) « P(i)¢ for a > 0.

1. Which choice of @ corresponds to doubling the temperature? Which choice corre-
sponds to halving it?

2. What happens if we let the temperature approach 0?

o B

e

intlE]
'ﬁ%{ﬁ 3. What happens if we let the temperature approach co?

Discussions??.


https://en.wikipedia.org/wiki/Partition_function_(mathematics)
https://en.wikipedia.org/wiki/Partition_function_(mathematics)
https://discuss.d2l.ai/t/46
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4.2 The Image Classification Dataset

One widely used dataset for image classification is the MNIST dataset °2 (LeCun et al.,

& 1998) of handwritten digits. At the time of its release in the 1990s it posed a formidable
™ challenge to most machine learning algorithms, consisting of 60,000 images of 28 x 28

pixels resolution (plus a test dataset of 10,000 images). To put things into perspective, back
in 1995, a Sun SPARCStation 5 with a whopping 64MB of RAM and a blistering 5 MFLOPs
was considered state of the art equipment for machine learning at AT&T Bell Laboratories.
Achieving high accuracy on digit recognition was a key component in automating letter
sorting for the USPS in the 1990s. Deep networks such as LeNet-5 (LeCun et al., 1995),
support vector machines with invariances (Scholkopf et al., 1996), and tangent distance
classifiers (Simard et al., 1998) all could reach error rates below 1%.

For over a decade, MNIST served as the point of reference for comparing machine learn-
ing algorithms. While it had a good run as a benchmark dataset, even simple models by
today’s standards achieve classification accuracy over 95%, making it unsuitable for distin-
guishing between strong models and weaker ones. Even more, the dataset allows for very
high levels of accuracy, not typically seen in many classification problems. This skewed
algorithmic development towards specific families of algorithms that can take advantage
of clean datasets, such as active set methods and boundary-seeking active set algorithms.
Today, MNIST serves as more of a sanity check than as a benchmark. ImageNet (Deng et
al., 2009) poses a much more relevant challenge. Unfortunately, ImageNet is too large for
many of the examples and illustrations in this book, as it would take too long to train to
make the examples interactive. As a substitute we will focus our discussion in the coming
sections on the qualitatively similar, but much smaller Fashion-MNIST dataset (Xiao et al.,
2017) which was released in 2017. It contains images of 10 categories of clothing at 28 x28
pixels resolution.

%matplotlib inline

import time

from mxnet import gluon, npx

from mxnet.gluon.data.vision import transforms
from d21 import mxnet as d21

npx.set_np()

d21.use_svg_display()

4.2.1 Loading the Dataset

Since the Fashion-MNIST dataset is so useful, all major frameworks provide preprocessed
versions of it. We can download and read it into memory using built-in framework utili-
ties.


https://en.wikipedia.org/wiki/MNIST_database
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class FashionMNIST(d2l.DataModule): #@save
"""The Fashion-MNIST dataset.”""
def __init__(self, batch_size=64, resize=(28, 28)):
super().__init__()
self.save_hyperparameters()
trans = transforms.Compose([transforms.Resize(resize),
transforms.ToTensor()])
self.train = gluon.data.vision.FashionMNIST(
train=True) .transform_first(trans)
self.val = gluon.data.vision.FashionMNIST(
train=False).transform_first(trans)

Fashion-MNIST consists of images from 10 categories, each represented by 6000 images
in the training dataset and by 1000 in the test dataset. A fest dataset is used for evaluating
model performance (it must not be used for training). Consequently the training set and the
test set contain 60,000 and 10,000 images, respectively.

data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)

[22:09:46] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

(60000, 10000)

The images are grayscale and upscaled to 32 x 32 pixels in resolution above. This is similar
to the original MNIST dataset which consisted of (binary) black and white images. Note,
though, that most modern image data has three channels (red, green, blue) and that hyper-
spectral images can have in excess of 100 channels (the HyMap sensor has 126 channels).
By convention we store an image as a ¢ X h X w tensor, where ¢ is the number of color
channels, £ is the height and w is the width.

data.train[@][0].shape

(1, 32, 32)

The categories of Fashion-MNIST have human-understandable names. The following con-
venience method converts between numeric labels and their names.

@d21.add_to_class(FashionMNIST) #@save
def text_labels(self, indices):
"""Return text labels."""
labels = ['t-shirt’, 'trouser', 'pullover', 'dress’', 'coat’,
'sandal’, 'shirt’, 'sneaker', 'bag', 'ankle boot']
return [labels[int(i)] for i in indices]
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4.2.2 Reading a Minibatch

To make our life easier when reading from the training and test sets, we use the built-in data
iterator rather than creating one from scratch. Recall that at each iteration, a data iterator
reads a minibatch of data with size batch_size. We also randomly shuffle the examples
for the training data iterator.

@d21.add_to_class(FashionMNIST) #@save
def get_dataloader(self, train):
data = self.train if train else self.val
return gluon.data.DatalLoader(data, self.batch_size, shuffle=train,
num_workers=self.num_workers)

To see how this works, let’s load a minibatch of images by invoking the train_dataloader
method. It contains 64 images.

X, y = next(iter(data.train_dataloader()))
print(X.shape, X.dtype, y.shape, y.dtype)

(64, 1, 32, 32) float32 (64,) int32

Let’s look at the time it takes to read the images. Even though it is a built-in loader, it is not
blazingly fast. Nonetheless, this is sufficient since processing images with a deep network
takes quite a bit longer. Hence it is good enough that training a network will not be I/O
constrained.

tic = time.time()

for X, y in data.train_dataloader():
continue

f'{time.time() - tic:.2f} sec

'

'4.60 sec'’

4.2.3 Visualization

We will often be using the Fashion-MNIST dataset. A convenience function show_images
can be used to visualize the images and the associated labels. Skipping implementation
details, we just show the interface below: we only need to know how to invoke d21.
show_images rather than how it works for such utility functions.

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""Plot a list of images."""
raise NotImplementedError

Let’s put it to good use. In general, it is a good idea to visualize and inspect data that you are
training on. Humans are very good at spotting oddities and because of that, visualization
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The Image Classification Dataset

serves as an additional safeguard against mistakes and errors in the design of experiments.
Here are the images and their corresponding labels (in text) for the first few examples in the
training dataset.

@d21.add_to_class(FashionMNIST) #@save
def visualize(self, batch, nrows=1, ncols=8, labels=[]):

X, y = batch

if not labels:

labels = self.text_labels(y)

d21.show_images(X.squeeze(1l), nrows, ncols, titles=labels)
batch = next(iter(data.val_dataloader()))
data.visualize(batch)

t-shirt trouser pullover

‘We are now ready to work with the Fashion-MNIST dataset in the sections that follow.

pullover dress pullover

4.2.4 Summary

We now have a slightly more realistic dataset to use for classification. Fashion-MNIST is an
apparel classification dataset consisting of images representing 10 categories. We will use
this dataset in subsequent sections and chapters to evaluate various network designs, from
a simple linear model to advanced residual networks. As we commonly do with images,
we read them as a tensor of shape (batch size, number of channels, height, width). For now,
we only have one channel as the images are grayscale (the visualization above uses a false
color palette for improved visibility).

Lastly, data iterators are a key component for efficient performance. For instance, we might
use GPUs for efficient image decompression, video transcoding, or other preprocessing.
Whenever possible, you should rely on well-implemented data iterators that exploit high-
performance computing to avoid slowing down your training loop.

4.2.5 Exercises

1. Does reducing the batch_size (for instance, to 1) affect the reading performance?

2. The data iterator performance is important. Do you think the current implementation
is fast enough? Explore various options to improve it. Use a system profiler to find out
where the bottlenecks are.

3. Check out the framework’s online API documentation. Which other datasets are avail-
able?

93
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4.3 The Base Classification Model

You may have noticed that the implementations from scratch and the concise implementa-
tion using framework functionality were quite similar in the case of regression. The same
is true for classification. Since many models in this book deal with classification, it is worth
adding functionalities to support this setting specifically. This section provides a base class
for classification models to simplify future code.

from mxnet import autograd, gluon, np, npx
from d21 import mxnet as d21

npx.set_np()

4.3.1 The Classifier Class

We define the Classifier class below. In the validation_step we report both the loss
value and the classification accuracy on a validation batch. We draw an update for every
num_val_batches batches. This has the benefit of generating the averaged loss and ac-
curacy on the whole validation data. These average numbers are not exactly correct if the
final batch contains fewer examples, but we ignore this minor difference to keep the code
simple.

class Classifier(d2l.Module): #@save
"""The base class of classification models.
def validation_step(self, batch):
Y_hat = self(*batch[:-1])
self.plot('loss’, self.loss(Y_hat, batch[-1]), train=False)
self.plot('acc’, self.accuracy(Y_hat, batch[-1]), train=False)

nnn

By default we use a stochastic gradient descent optimizer, operating on minibatches, just
as we did in the context of linear regression.

@d21.add_to_class(d21.Module) #@save
def configure_optimizers(self):
params = self.parameters()
if isinstance(params, list):
return d21.SGD(params, self.1lr)
return gluon.Trainer(params, 'sgd’', {'learning_rate': self.lr})

4.3.2 Accuracy

Given the predicted probability distribution y_hat, we typically choose the class with the
highest predicted probability whenever we must output a hard prediction. Indeed, many
applications require that we make a choice. For instance, Gmail must categorize an email

into “Primary”, “Social”, “Updates”, “Forums”, or “Spam”. It might estimate probabilities
internally, but at the end of the day it has to choose one among the classes.
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When predictions are consistent with the label class y, they are correct. The classification
accuracy is the fraction of all predictions that are correct. Although it can be difficult to
optimize accuracy directly (it is not differentiable), it is often the performance measure that
we care about the most. It is often ke relevant quantity in benchmarks. As such, we will
nearly always report it when training classifiers.

Accuracy is computed as follows. First, if y_hat is a matrix, we assume that the second di-
mension stores prediction scores for each class. We use argmax to obtain the predicted class
by the index for the largest entry in each row. Then we compare the predicted class with
the ground truth y elementwise. Since the equality operator == is sensitive to data types,
we convert y_hat’s data type to match that of y. The result is a tensor containing entries
of 0 (false) and 1 (true). Taking the sum yields the number of correct predictions.

@d21.add_to_class(Classifier) #@save

def accuracy(self, Y_hat, Y, averaged=True):
"""Compute the number of correct predictions.
Y_hat = Y_hat.reshape((-1, Y_hat.shape[-1]))
preds = Y_hat.argmax(axis=1).astype(Y.dtype)
compare = (preds == Y.reshape(-1)).astype(np.float32)
return compare.mean() if averaged else compare

nnn

@d21.add_to_class(d21.Module) #@save
def get_scratch_params(self):
params = []
for attr in dir(self):
a = getattr(self, attr)
if isinstance(a, np.ndarray):
params. append(a)
if isinstance(a, d21.Module):
params.extend(a.get_scratch_params())
return params

@d21.add_to_class(d21l.Module) #@save
def parameters(self):
params = self.collect_params()
return params if isinstance(params, gluon.parameter.ParameterDict) and len(
params.keys()) else self.get_scratch_params()

4.3.3 Summary

Classification is a sufficiently common problem that it warrants its own convenience func-
tions. Of central importance in classification is the accuracy of the classifier. Note that
while we often care primarily about accuracy, we train classifiers to optimize a variety of
other objectives for statistical and computational reasons. However, regardless of which
loss function was minimized during training, it is useful to have a convenience method for
assessing the accuracy of our classifier empirically.

4.3.4 Exercises
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1. Denote by L, the validation loss, and let L{ be its quick and dirty estimate computed
by the loss function averaging in this section. Lastly, denote by I° the loss on the last

minibatch. Express Ly in terms of LY, I2, and the sample and minibatch sizes.

2. Show that the quick and dirty estimate L\ is unbiased. That is, show that E[L,] =
E[LY}]. Why would you still want to use L, instead?

3. Given a multiclass classification loss, denoting by /(y, y’) the penalty of estimating
y’ when we see y and given a probabilty p(y | x), formulate the rule for an optimal
selection of y’. Hint: express the expected loss, using / and p(y | x).

Discussions 4.
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4.4 Softmax Regression Implementation from
Scratch

Because softmax regression is so fundamental, we believe that you ought to know how to
implement it yourself. Here, we limit ourselves to defining the softmax-specific aspects of
the model and reuse the other components from our linear regression section, including the
training loop.

from mxnet import autograd, gluon, np, npx
from d21 import mxnet as d21

npx.set_np()

4.4.1 The Softmax

Let’s begin with the most important part: the mapping from scalars to probabilities. For a
refresher, recall the operation of the sum operator along specific dimensions in a tensor, as
discussed in Section 2.3.6 and Section 2.3.7. Given a matrix X we can sum over all elements
(by default) or only over elements in the same axis. The axis variable lets us compute row
and column sums:

X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(@, keepdims=True), X.sum(l, keepdims=True)

[22:09:48] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

(array([[5., 7., 9.1D),
array([[ 6.1,
[15.11))
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Computing the softmax requires three steps: (i) exponentiation of each term; (ii) a sum

over each row to compute the normalization constant for each example; (iii) division of

each row by its normalization constant, ensuring that the result sums to 1:
exp(Xi;)

S exp(Xik)

The (logarithm of the) denominator is called the (log) partition function. It was introduced

in statistical physics?® to sum over all possible states in a thermodynamic ensemble. The

softmax(X);; = (4.4.1)

i implementation is straightforward:

def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1l, keepdims=True)
return X_exp / partition # The broadcasting mechanism is applied here

For any input X, we turn each element into a nonnegative number. Each row sums up to
1, as is required for a probability. Caution: the code above is not robust against very large
or very small arguments. While it is sufficient to illustrate what is happening, you should
not use this code verbatim for any serious purpose. Deep learning frameworks have such
protections built in and we will be using the built-in softmax going forward.

X = np.random.rand(2, 5)
X_prob = softmax(X)
X_prob, X_prob.sum(1)

(array([[0.17777154, ©.1857739 , ©.20995119, 0.23887765, 0.18762572],
[0.24042214, ©.1757977 , ©.23786479, ©.15572716, ©.1901882611),
array([1., 1.1))

4.4.2 The Model

We now have everything that we need to implement the softmax regression model. As in
our linear regression example, each instance will be represented by a fixed-length vector.
Since the raw data here consists of 28 x 28 pixel images, we flatten each image, treating
them as vectors of length 784. In later chapters, we will introduce convolutional neural
networks, which exploit the spatial structure in a more satisfying way.

In softmax regression, the number of outputs from our network should be equal to the
number of classes. Since our dataset has 10 classes, our network has an output dimension
of 10. Consequently, our weights constitute a 784 X 10 matrix plus a 1 X 10 row vector for
the biases. As with linear regression, we initialize the weights W with Gaussian noise. The
biases are initialized as zeros.

class SoftmaxRegressionScratch(d2l.Classifier):
def __init__(self, num_inputs, num_outputs, lr, sigma=0.01):
super().__init__()

(continues on next page)
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(continued from previous page)

self.save_hyperparameters()

self.W = np.random.normal (@, sigma, (num_inputs, num_outputs))
self.b = np.zeros(num_outputs)

self.W.attach_grad()

self.b.attach_grad()

def collect_params(self):
return [self.W, self.b]

The code below defines how the network maps each input to an output. Note that we flatten
each 28 x 28 pixel image in the batch into a vector using reshape before passing the data
through our model.

@d21.add_to_class(SoftmaxRegressionScratch)
def forward(self, X):
X = X.reshape((-1, self.W.shape[0]))
return softmax(np.dot(X, self.W) + self.b)

4.4.3 The Cross-Entropy Loss

Next we need to implement the cross-entropy loss function (introduced in Section 4.1.2).
This may be the most common loss function in all of deep learning. At the moment, appli-
cations of deep learning easily cast as classification problems far outnumber those better
treated as regression problems.

Recall that cross-entropy takes the negative log-likelihood of the predicted probability as-
signed to the true label. For efficiency we avoid Python for-loops and use indexing instead.
In particular, the one-hot encoding in y allows us to select the matching terms in .

To see this in action we create sample data y_hat with 2 examples of predicted probabilities
over 3 classes and their corresponding labels y. The correct labels are 0 and 2 respectively
(i.e., the first and third class). Using y as the indices of the probabilities in y_hat, we can
pick out terms efficiently.

y = np.array([0, 21)
y_hat = np.array([[0.1, 0.3, 0.6]1, [0.3, 0.2, ©0.5]1)
y_hat[[0, 1], y]

array([0.1, 0.5])

Now we can implement the cross-entropy loss function by averaging over the logarithms of
the selected probabilities.

def cross_entropy(y_hat, y):
return -np.log(y_hat[list(range(len(y_hat))), y1).mean()

cross_entropy(y_hat, y)
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array(1.4978662)

@d21.add_to_class(SoftmaxRegressionScratch)
def loss(self, y_hat, y):
return cross_entropy(y_hat, y)

4.4.4 Training

We reuse the fit method defined in Section 3.4 to train the model with 10 epochs. Note that
the number of epochs (max_epochs), the minibatch size (batch_size), and learning rate
(1r) are adjustable hyperparameters. That means that while these values are not learned
during our primary training loop, they still influence the performance of our model, both
vis-a-vis training and generalization performance. In practice you will want to choose these
values based on the validation split of the data and then, ultimately, to evaluate your final
model on the fest split. As discussed in Section 3.6.3, we will regard the test data of Fashion-
MNIST as the validation set, thus reporting validation loss and validation accuracy on this
split.

data = d21.FashionMNIST(batch_size=256)

model = SoftmaxRegressionScratch(num_inputs=784, num_outputs=10, 1lr=0.1)
trainer = d21.Trainer(max_epochs=10)

trainer.fit(model, data)

0.9
p———— o 8 o e e ]
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4.4.5 Prediction

Now that training is complete, our model is ready to classify some images.

X, vy = next(iter(data.val_dataloader()))
preds = model(X).argmax(axis=1)
preds. shape

(256,)

We are more interested in the images we label incorrectly. We visualize them by comparing
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their actual labels (first line of text output) with the predictions from the model (second line
of text output).

wrong = preds.astype(y.dtype) !=y

X, y, preds = X[wrong], y[wrong]l, preds[wrong]

labels = [a+'\n'+b for a, b in zip(
data.text_labels(y), data.text_labels(preds))]

data.visualize([X, y], labels=labels)

dress pullover coat shirt shirt sneaker sandal bag
coat shirt pullover coat pullover ankle boot sneaker shirt

HEONEEE0

By now we are starting to get some experience with solving linear regression and classifi-
cation problems. With it, we have reached what would arguably be the state of the art of
1960-1970s of statistical modeling. In the next section, we will show you how to leverage
deep learning frameworks to implement this model much more efficiently.

4.4.6 Summary

4.4.7 Exercises

1. Inthis section, we directly implemented the softmax function based on the mathematical
definition of the softmax operation. As discussed in Section 4.1 this can cause numerical
instabilities.

1. Test whether softmax still works correctly if an input has a value of 100.

2. Test whether softmax still works correctly if the largest of all inputs is smaller than
-1007?

3. Implement a fix by looking at the value relative to the largest entry in the argument.

2. Implement a cross_entropy function that follows the definition of the cross-entropy
loss function };; y; log §;.

1. Try it out in the code example of this section.

2. Why do you think it runs more slowly?

3. Should you use it? When would it make sense to?

4. What do you need to be careful of? Hint: consider the domain of the logarithm.

3. Isit always a good idea to return the most likely label? For example, would you do this
for medical diagnosis? How would you try to address this?

4. Assume that we want to use softmax regression to predict the next word based on some

features. What are some problems that might arise from a large vocabulary?
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5. Experiment with the hyperparameters of the code in this section. In particular:
1. Plot how the validation loss changes as you change the learning rate.

2. Do the validation and training loss change as you change the minibatch size? How
large or small do you need to go before you see an effect?

Discussions 26 .

4.5 Concise Implementation of Softmax Regression
I —

Just as high-level deep learning frameworks made it easier to implement linear regression
(see Section 3.5), they are similarly convenient here.

from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

4.5.1 Defining the Model

As in Section 3.5, we construct our fully connected layer using the built-in layer. The built-
in __call__ method then invokes forward whenever we need to apply the network to some
input.

Even though the input X is a fourth-order tensor, the built-in Dense layer will automati-
cally convert X into a second-order tensor by keeping the dimensionality along the first axis
unchanged.

class SoftmaxRegression(d2l.Classifier): #@save

"""The softmax regression model."""

def __init__(self, num_outputs, 1r):
super().__init__()
self.save_hyperparameters()
self.net = nn.Dense(num_outputs)
self.net.initialize()

def forward(self, X):
return self.net(X)

4.5.2 Softmax Revisited

In Section 4.4 we calculated our model’s output and applied the cross-entropy loss. While
this is perfectly reasonable mathematically, it is risky computationally, because of numer-
ical underflow and overflow in the exponentiation.

(o) £ some of the

Recall that the softmax function computes probabilities via y ; = Sexplon)
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oy are very large, i.e., very positive, then exp(oy) might be larger than the largest number
we can have for certain data types. This is called overflow. Likewise, if every argument is
a very large negative number, we will get underflow. For instance, single precision floating
point numbers approximately cover the range of 10738 to 1038, As such, if the largest term
in o lies outside the interval [-90,90], the result will not be stable. A way round this

. _ def .
problem is to subtract o = maxy oy from all entries:

R expo; exp(o; —0)expo exp(o; — 0)
;= 5 = — -~ = —. (4.5.1)
keXpok Xy exp(ox —0)expo X exp(ok — 0)

By construction we know that o; — 0 < 0 for all j. As such, for a g-class classification
problem, the denominator is contained in the interval [1,g]. Moreover, the numerator
never exceeds 1, thus preventing numerical overflow. Numerical underflow only occurs
when exp(o; — ¢) numerically evaluates as 0. Nonetheless, a few steps down the road we
might find ourselves in trouble when we want to compute log §; as log 0. In particular, in
backpropagation, we might find ourselves faced with a screenful of the dreaded NaN (Not a
Number) results.

Fortunately, we are saved by the fact that even though we are computing exponential func-
tions, we ultimately intend to take their log (when calculating the cross-entropy loss). By
combining softmax and cross-entropy, we can escape the numerical stability issues alto-
gether. We have:

. exp(o; — 0) i} }
IOg yj = log m =0j—0— longl exp(()k - 0). (452)

This avoids both overflow and underflow. We will want to keep the conventional softmax
function handy in case we ever want to evaluate the output probabilities by our model. But
instead of passing softmax probabilities into our new loss function, we just pass the logits
and compute the softmax and its log all at once inside the cross-entropy loss function, which

Bt does smart things like the “LogSumExp trick” 7.
&
Eiaa @d21.add_to_class(d2l.Classifier) #@save
def loss(self, Y_hat, Y, averaged=True):
Y_hat = Y_hat.reshape((-1, Y_hat.shape[-11))
Y = Y.reshape((-1,))
fn = gluon.loss.SoftmaxCrossEntropyLoss()
1 = fn(Y_hat, Y)
return 1.mean() if averaged else 1

4.5.3 Training

Next we train our model. We use Fashion-MNIST images, flattened to 784-dimensional
feature vectors.

data = d21.FashionMNIST(batch_size=256)

model = SoftmaxRegression(num_outputs=10, 1lr=0.1)
trainer = d21.Trainer(max_epochs=10)
trainer.fit(model, data)
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As before, this algorithm converges to a solution that is reasonably accurate, albeit this time
with fewer lines of code than before.

4.5.4 Summary

High-level APIs are very convenient at hiding from their user potentially dangerous aspects,
such as numerical stability. Moreover, they allow users to design models concisely with
very few lines of code. This is both a blessing and a curse. The obvious benefit is that it
makes things highly accessible, even to engineers who never took a single class of statistics
in their life (in fact, they are part of the target audience of the book). But hiding the sharp
edges also comes with a price: a disincentive to add new and different components on your
own, since there is little muscle memory for doing it. Moreover, it makes it more difficult
to fix things whenever the protective padding of a framework fails to cover all the corner
cases entirely. Again, this is due to lack of familiarity.

As such, we strongly urge you to review both the bare bones and the elegant versions of
many of the implementations that follow. While we emphasize ease of understanding, the
implementations are nonetheless usually quite performant (convolutions are the big excep-
tion here). It is our intention to allow you to build on these when you invent something new
that no framework can give you.

4.5.5 Exercises

1. Deep learning uses many different number formats, including FP64 double precision
(used extremely rarely), FP32 single precision, BFLOAT16 (good for compressed rep-
resentations), FP16 (very unstable), TF32 (a new format from NVIDIA), and INTS.
Compute the smallest and largest argument of the exponential function for which the
result does not lead to numerical underflow or overflow.

2. INT8 is a very limited format consisting of nonzero numbers from 1 to 255. How could
you extend its dynamic range without using more bits? Do standard multiplication and
addition still work?

3. Increase the number of epochs for training. Why might the validation accuracy decrease
after a while? How could we fix this?

4. What happens as you increase the learning rate? Compare the loss curves for several
learning rates. Which one works better? When?
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4.6 Generalization in Classification

]

So far, we have focused on how to tackle multiclass classification problems by training
(linear) neural networks with multiple outputs and softmax functions. Interpreting our
model’s outputs as probabilistic predictions, we motivated and derived the cross-entropy
loss function, which calculates the negative log likelihood that our model (for a fixed set
of parameters) assigns to the actual labels. And finally, we put these tools into practice
by fitting our model to the training set. However, as always, our goal is to learn general
patterns, as assessed empirically on previously unseen data (the test set). High accuracy
on the training set means nothing. Whenever each of our inputs is unique (and indeed this
is true for most high-dimensional datasets), we can attain perfect accuracy on the training
set by just memorizing the dataset on the first training epoch, and subsequently looking up
the label whenever we see a new image. And yet, memorizing the exact labels associated
with the exact training examples does not tell us how to classify new examples. Absent
further guidance, we might have to fall back on random guessing whenever we encounter
new examples.

A number of burning questions demand immediate attention:

1. How many test examples do we need to give a good estimate of the accuracy of our
classifiers on the underlying population?

2. What happens if we keep evaluating models on the same test repeatedly?

3. Why should we expect that fitting our linear models to the training set should fare any
better than our naive memorization scheme?

Whereas Section 3.6 introduced the basics of overfitting and generalization in the context of
linear regression, this chapter will go a little deeper, introducing some of the foundational
ideas of statistical learning theory. It turns out that we often can guarantee generalization
a priori: for many models, and for any desired upper bound on the generalization gap e,
we can often determine some required number of samples # such that if our training set
contains at least n samples, our empirical error will lie within € of the true error, for any
data generating distribution. Unfortunately, it also turns out that while these sorts of guar-
antees provide a profound set of intellectual building blocks, they are of limited practical
utility to the deep learning practitioner. In short, these guarantees suggest that ensuring
generalization of deep neural networks a priori requires an absurd number of examples
(perhaps trillions or more), even when we find that, on the tasks we care about, deep neural
networks typically generalize remarkably well with far fewer examples (thousands). Thus
deep learning practitioners often forgo a priori guarantees altogether, instead employing
methods that have generalized well on similar problems in the past, and certifying gen-
eralization post hoc through empirical evaluations. When we get to Chapter 5, we will
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revisit generalization and provide a light introduction to the vast scientific literature that
has sprung in attempts to explain why deep neural networks generalize in practice.

4.6.1 The Test Set

Since we have already begun to rely on test sets as the gold standard method for assessing
generalization error, let’s get started by discussing the properties of such error estimates.
Let’s focus on a fixed classifier f, without worrying about how it was obtained. Moreover
suppose that we possess a fresh dataset of examples D = (x(?), y(i))?:l that were not used
to train the classifier f. The empirical error of our classifier f on D is simply the fraction
of instances for which the prediction f(x?)) disagrees with the true label y(*), and is given
by the following expression:

1 ¢ : :
en(f) =~ > 1(FD) #yD). (4.6.1)
e
By contrast, the population error is the expected fraction of examples in the underlying pop-
ulation (some distribution P(X,Y) characterized by probability density function p(x,y))
for which our classifier disagrees with the true label:

€(f) = Eenyopl(f(x) % y) = / / 1(f(x) # y)p(x.y) dxdy. (46.2)

While e(f) is the quantity that we actually care about, we cannot observe it directly, just
as we cannot directly observe the average height in a large population without measuring
every single person. We can only estimate this quantity based on samples. Because our
test set D is statistically representative of the underlying population, we can view e (f)
as a statistical estimator of the population error €(f). Moreover, because our quantity of
interest e(f) is an expectation (of the random variable 1( f (X) # Y)) and the corresponding
estimator eg (f) is the sample average, estimating the population error is simply the classic
problem of mean estimation, which you may recall from Section 2.6.

An important classical result from probability theory called the central limit theorem guar-
antees that whenever we possess n random samples ay, ..., a, drawn from any distribution
with mean y and standard deviation o, then, as the number of samples n approaches infin-
ity, the sample average (i approximately tends towards a normal distribution centered at the
true mean and with standard deviation o /+/n. Already, this tells us something important:
as the number of examples grows large, our test error €4, (/) should approach the true error
€(f) at a rate of O(1/+/n). Thus, to estimate our test error twice as precisely, we must
collect four times as large a test set. To reduce our test error by a factor of one hundred, we
must collect ten thousand times as large a test set. In general, such a rate of O(1/+/n) is
often the best we can hope for in statistics.

Now that we know something about the asymptotic rate at which our test error e (f)
converges to the true error €(f), we can zoom in on some important details. Recall that
the random variable of interest 1(f(X) # Y) can only take values 0 and 1 and thus is
a Bernoulli random variable, characterized by a parameter indicating the probability that
it takes value 1. Here, 1 means that our classifier made an error, so the parameter of our
random variable is actually the true error rate e(f). The variance o2 of a Bernoulli depends



150

Linear Neural Networks for Classification

on its parameter (here, €(f)) according to the expression e(f)(1 — €(f)). While e(f) is
initially unknown, we know that it cannot be greater than 1. A little investigation of this
function reveals that our variance is highest when the true error rate is close to 0.5 and can
be far lower when it is close to O or close to 1. This tells us that the asymptotic standard
deviation of our estimate €4 (f) of the error €( f) (over the choice of the n test samples)

cannot be any greater than +/0.25/n.

If we ignore the fact that this rate characterizes behavior as the test set size approaches
infinity rather than when we possess finite samples, this tells us that if we want our test
error €5 (f) to approximate the population error €(f) such that one standard deviation
corresponds to an interval of +0.01, then we should collect roughly 2500 samples. If we
want to fit two standard deviations in that range and thus be 95% confident that e (f) €
€(f) =0.01, then we will need 10,000 samples!

This turns out to be the size of the test sets for many popular benchmarks in machine learn-
ing. You might be surprised to find out that thousands of applied deep learning papers get
published every year making a big deal out of error rate improvements of 0.01 or less. Of
course, when the error rates are much closer to 0, then an improvement of 0.01 can indeed
be a big deal.

One pesky feature of our analysis thus far is that it really only tells us about asymptotics,
i.e., how the relationship between €y and € evolves as our sample size goes to infinity.
Fortunately, because our random variable is bounded, we can obtain valid finite sample
bounds by applying an inequality due to Hoeffding (1963):

Plen(f) - (f) 2 1) < exp (-2n%). (4.6.3)

Solving for the smallest dataset size that would allow us to conclude with 95% confidence
that the distance ¢ between our estimate € ( f) and the true error rate €( f) does not exceed
0.01, you will find that roughly 15,000 examples are required as compared to the 10,000
examples suggested by the asymptotic analysis above. If you go deeper into statistics you
will find that this trend holds generally. Guarantees that hold even in finite samples are
typically slightly more conservative. Note that in the scheme of things, these numbers
are not so far apart, reflecting the general usefulness of asymptotic analysis for giving us
ballpark figures even if they are not guarantees we can take to court.

4.6.2 Test Set Reuse

In some sense, you are now set up to succeed at conducting empirical machine learning

research. Nearly all practical models are developed and validated based on test set perfor-
mance and you are now a master of the test set. For any fixed classifier f, you know how
to evaluate its test error €g (f), and know precisely what can (and cannot) be said about its
population error €( f).

So let’s say that you take this knowledge and prepare to train your first model f. Knowing
just how confident you need to be in the performance of your classifier’s error rate you apply
our analysis above to determine an appropriate number of examples to set aside for the test
set. Moreover, let’s assume that you took the lessons from Section 3.6 to heart and made
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sure to preserve the sanctity of the test set by conducting all of your preliminary analysis,
hyperparameter tuning, and even selection among multiple competing model architectures
on a validation set. Finally you evaluate your model f; on the test set and report an unbiased
estimate of the population error with an associated confidence interval.

So far everything seems to be going well. However, that night you wake up at 3am with
a brilliant idea for a new modeling approach. The next day, you code up your new model,
tune its hyperparameters on the validation set and not only are you getting your new model
f> to work but its error rate appears to be much lower than f;’s. However, the thrill of
discovery suddenly fades as you prepare for the final evaluation. You do not have a test
set!

Even though the original test set D is still sitting on your server, you now face two formidable
problems. First, when you collected your test set, you determined the required level of pre-
cision under the assumption that you were evaluating a single classifier f. However, if
you get into the business of evaluating multiple classifiers fi, ..., fi on the same test set,
you must consider the problem of false discovery. Before, you might have been 95% sure
that e (f) € €(f) = 0.01 for a single classifier f and thus the probability of a misleading
result was a mere 5%. With k classifiers in the mix, it can be hard to guarantee that there
is not even one among them whose test set performance is misleading. With 20 classifiers
under consideration, you might have no power at all to rule out the possibility that at least
one among them received a misleading score. This problem relates to multiple hypothesis
testing, which despite a vast literature in statistics, remains a persistent problem plaguing
scientific research.

If that is not enough to worry you, there is a special reason to distrust the results that you
get on subsequent evaluations. Recall that our analysis of test set performance rested on
the assumption that the classifier was chosen absent any contact with the test set and thus
we could view the test set as drawn randomly from the underlying population. Here, not
only are you testing multiple functions, the subsequent function f, was chosen after you
observed the test set performance of fj. Once information from the test set has leaked
to the modeler, it can never be a true test set again in the strictest sense. This problem is
called adaptive overfitting and has recently emerged as a topic of intense interest to learning
theorists and statisticians (Dwork et al., 2015). Fortunately, while it is possible to leak all
information out of a holdout set, and the theoretical worst case scenarios are bleak, these
analyses may be too conservative. In practice, take care to create real test sets, to consult
them as infrequently as possible, to account for multiple hypothesis testing when reporting
confidence intervals, and to dial up your vigilance more aggressively when the stakes are
high and your dataset size is small. When running a series of benchmark challenges, it is
often good practice to maintain several test sets so that after each round, the old test set can
be demoted to a validation set.

4.6.3 Statistical Learning Theory

Put simply, test sets are all that we really have, and yet this fact seems strangely unsatisfy-
ing. First, we seldom possess a true test set—unless we are the ones creating the dataset,
someone else has probably already evaluated their own classifier on our ostensible “test
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set”. And even when we have first dibs, we soon find ourselves frustrated, wishing we
could evaluate our subsequent modeling attempts without the gnawing feeling that we can-
not trust our numbers. Moreover, even a true test set can only tell us post hoc whether a
classifier has in fact generalized to the population, not whether we have any reason to expect
a priori that it should generalize.

With these misgivings in mind, you might now be sufficiently primed to see the appeal of
statistical learning theory, the mathematical subfield of machine learning whose practi-
tioners aim to elucidate the fundamental principles that explain why/when models trained
on empirical data can/will generalize to unseen data. One of the primary aims of statistical
learning researchers has been to bound the generalization gap, relating the properties of the
model class to the number of samples in the dataset.

Learning theorists aim to bound the difference between the empirical error es(fs) of a
learned classifier fs, both trained and evaluated on the training set S, and the true error
€(fs) of that same classifier on the underlying population. This might look similar to
the evaluation problem that we just addressed but there is a major difference. Earlier, the
classifier f was fixed and we only needed a dataset for evaluative purposes. And indeed,
any fixed classifier does generalize: its error on a (previously unseen) dataset is an unbiased
estimate of the population error. But what can we say when a classifier is trained and
evaluated on the same dataset? Can we ever be confident that the training error will be
close to the testing error?

Suppose that our learned classifier fs must be chosen from some pre-specified set of func-
tions ¥ . Recall from our discussion of test sets that while it is easy to estimate the error of a
single classifier, things get hairy when we begin to consider collections of classifiers. Even
if the empirical error of any one (fixed) classifier will be close to its true error with high
probability, once we consider a collection of classifiers, we need to worry about the possi-
bility that just one of them will receive a badly estimated error. The worry is that we might
pick such a classifier and thereby grossly underestimate the population error. Moreover,
even for linear models, because their parameters are continuously valued, we are typically
choosing from an infinite class of functions (|| = o).

One ambitious solution to the problem is to develop analytic tools for proving uniform
convergence, i.e., that with high probability, the empirical error rate for every classifier
in the class f € F will simultaneously converge to its true error rate. In other words,
we seek a theoretical principle that would allow us to state that with probability at least
1 — ¢ (for some small §) no classifier’s error rate €(f) (among all classifiers in the class
) will be misestimated by more than some small amount «. Clearly, we cannot make
such statements for all model classes 7. Recall the class of memorization machines that
always achieve empirical error O but never outperform random guessing on the underlying
population.

In a sense the class of memorizers is too flexible. No such a uniform convergence result
could possibly hold. On the other hand, a fixed classifier is useless—it generalizes perfectly,
but fits neither the training data nor the test data. The central question of learning has
thus historically been framed as a trade-off between more flexible (higher variance) model
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classes that better fit the training data but risk overfitting, versus more rigid (higher bias)
model classes that generalize well but risk underfitting. A central question in learning
theory has been to develop the appropriate mathematical analysis to quantify where a model
sits along this spectrum, and to provide the associated guarantees.

In a series of seminal papers, Vapnik and Chervonenkis extended the theory on the con-
vergence of relative frequencies to more general classes of functions (Vapnik and Cher-
vonenkis, 1964, Vapnik and Chervonenkis, 1968, Vapnik and Chervonenkis, 1971, Vap-
nik and Chervonenkis, 1981, Vapnik and Chervonenkis, 1991, Vapnik and Chervonenkis,
1974). One of the key contributions of this line of work is the Vapnik—Chervonenkis (VC)
dimension, which measures (one notion of) the complexity (flexibility) of a model class.
Moreover, one of their key results bounds the difference between the empirical error and
the population error as a function of the VC dimension and the number of samples:

P (R[p, f]1 - Remp[X, Y, f]1 <) 2 1 =6 for @ > cy/(VC —logé)/n.  (4.6.4)

Here 6 > 0 is the probability that the bound is violated, « is the upper bound on the
generalization gap, and n is the dataset size. Lastly, ¢ > 0 is a constant that depends only
on the scale of the loss that can be incurred. One use of the bound might be to plug in
desired values of ¢ and @ to determine how many samples to collect. The VC dimension
quantifies the largest number of data points for which we can assign any arbitrary (binary)
labeling and for each find some model f in the class that agrees with that labeling. For
example, linear models on d-dimensional inputs have VC dimension d + 1. It is easy to
see that a line can assign any possible labeling to three points in two dimensions, but not
to four. Unfortunately, the theory tends to be overly pessimistic for more complex models
and obtaining this guarantee typically requires far more examples than are actually needed
to achieve the desired error rate. Note also that fixing the model class and ¢, our error rate
again decays with the usual O(1/+/n) rate. It seems unlikely that we could do better in
terms of n. However, as we vary the model class, VC dimension can present a pessimistic
picture of the generalization gap.

4.6.4 Summary

The most straightforward way to evaluate a model is to consult a test set comprised of pre-
viously unseen data. Test set evaluations provide an unbiased estimate of the true error
and converge at the desired O(1/+/n) rate as the test set grows. We can provide approx-
imate confidence intervals based on exact asymptotic distributions or valid finite sample
confidence intervals based on (more conservative) finite sample guarantees. Indeed test
set evaluation is the bedrock of modern machine learning research. However, test sets are
seldom true test sets (used by multiple researchers again and again). Once the same test set
is used to evaluate multiple models, controlling for false discovery can be difficult. This
can cause huge problems in theory. In practice, the significance of the problem depends on
the size of the holdout sets in question and whether they are merely being used to choose
hyperparameters or if they are leaking information more directly. Nevertheless, it is good
practice to curate real test sets (or multiple) and to be as conservative as possible about how
often they are used.
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Hoping to provide a more satisfying solution, statistical learning theorists have developed
methods for guaranteeing uniform convergence over a model class. If indeed every model’s
empirical error simultaneously converges to its true error, then we are free to choose the
model that performs best, minimizing the training error, knowing that it too will perform
similarly well on the holdout data. Crucially, any one of such results must depend on some
property of the model class. Vladimir Vapnik and Alexey Chernovenkis introduced the VC
dimension, presenting uniform convergence results that hold for all models in a VC class.
The training errors for all models in the class are (simultaneously) guaranteed to be close
to their true errors, and guaranteed to grow even closer at O(1/+/n) rates. Following the
revolutionary discovery of VC dimension, numerous alternative complexity measures have
been proposed, each facilitating an analogous generalization guarantee. See Boucheron
et al. (2005) for a detailed discussion of several advanced ways of measuring function
complexity. Unfortunately, while these complexity measures have become broadly useful
tools in statistical theory, they turn out to be powerless (as straightforwardly applied) for
explaining why deep neural networks generalize. Deep neural networks often have millions
of parameters (or more), and can easily assign random labels to large collections of points.
Nevertheless, they generalize well on practical problems and, surprisingly, they often gen-
eralize better, when they are larger and deeper, despite incurring higher VC dimensions. In
the next chapter, we will revisit generalization in the context of deep learning.

4.6.5 Exercises

1. If we wish to estimate the error of a fixed model f to within 0.0001 with probability
greater than 99.9%, how many samples do we need?

2. Suppose that somebody else possesses a labeled test set 9 and only makes available the
unlabeled inputs (features). Now suppose that you can only access the test set labels by
running a model f (with no restrictions placed on the model class) on each of the un-
labeled inputs and receiving the corresponding error €4 (). How many models would
you need to evaluate before you leak the entire test set and thus could appear to have
error 0, regardless of your true error?

3. What is the VC dimension of the class of fifth-order polynomials?
4. What is the VC dimension of axis-aligned rectangles on two-dimensional data?

Discussions??.

4.7 Environment and Distribution Shift

In the previous sections, we worked through a number of hands-on applications of machine
learning, fitting models to a variety of datasets. And yet, we never stopped to contemplate
either where data came from in the first place or what we ultimately plan to do with the
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outputs from our models. Too often, machine learning developers in possession of data
rush to develop models without pausing to consider these fundamental issues.

Many failed machine learning deployments can be traced back to this failure. Sometimes
models appear to perform marvelously as measured by test set accuracy but fail catastroph-
ically in deployment when the distribution of data suddenly shifts. More insidiously, some-
times the very deployment of a model can be the catalyst that perturbs the data distribution.
Say, for example, that we trained a model to predict who will repay rather than default on a
loan, finding that an applicant’s choice of footwear was associated with the risk of default
(Oxfords indicate repayment, sneakers indicate default). We might be inclined thereafter
to grant a loan to any applicant wearing Oxfords and to deny all applicants wearing sneak-
ers.

In this case, our ill-considered leap from pattern recognition to decision-making and our
failure to critically consider the environment might have disastrous consequences. For
starters, as soon as we began making decisions based on footwear, customers would catch
on and change their behavior. Before long, all applicants would be wearing Oxfords, with-
out any coincident improvement in credit-worthiness. Take a minute to digest this because
similar issues abound in many applications of machine learning: by introducing our model-
based decisions to the environment, we might break the model.

While we cannot possibly give these topics a complete treatment in one section, we aim here
to expose some common concerns, and to stimulate the critical thinking required to detect
such situations early, mitigate damage, and use machine learning responsibly. Some of the
solutions are simple (ask for the “right” data), some are technically difficult (implement a
reinforcement learning system), and others require that we step outside the realm of sta-
tistical prediction altogether and grapple with difficult philosophical questions concerning
the ethical application of algorithms.

4.7.1 Types of Distribution Shift

To begin, we stick with the passive prediction setting considering the various ways that data
distributions might shift and what might be done to salvage model performance. In one clas-
sic setup, we assume that our training data was sampled from some distribution pg(x, y)
but that our test data will consist of unlabeled examples drawn from some different distri-
bution pr(x,y). Already, we must confront a sobering reality. Absent any assumptions on
how ps and pr relate to each other, learning a robust classifier is impossible.

Consider a binary classification problem, where we wish to distinguish between dogs and
cats. If the distribution can shift in arbitrary ways, then our setup permits the pathological
case in which the distribution over inputs remains constant: ps(x) = p7r(x), but the labels
are all flipped: ps(y | x) = 1 — pr(y | x). In other words, if God can suddenly decide that
in the future all “cats” are now dogs and what we previously called “dogs” are now cats—
without any change in the distribution of inputs p(x), then we cannot possibly distinguish
this setting from one in which the distribution did not change at all.

Fortunately, under some restricted assumptions on the ways our data might change in the fu-
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ture, principled algorithms can detect shift and sometimes even adapt on the fly, improving
on the accuracy of the original classifier.

Covariate Shift

Among categories of distribution shift, covariate shift may be the most widely studied.
Here, we assume that while the distribution of inputs may change over time, the labeling
function, i.e., the conditional distribution P(y | x) does not change. Statisticians call this
covariate shift because the problem arises due to a shift in the distribution of the covari-
ates (features). While we can sometimes reason about distribution shift without invoking
causality, we note that covariate shift is the natural assumption to invoke in settings where
we believe that x causes y.

Consider the challenge of distinguishing cats and dogs. Our training data might consist of
images of the kind in Fig. 4.7.1.

cat cat dog dog

Training data for distinguishing cats and dogs (illustrations: Lafeez Hossain / 500px /
Getty Images; ilkermetinkursova / iStock / Getty Images Plus; GlobalP / iStock / Getty
Images Plus; Musthafa Aboobakuru / 500px / Getty Images).

At test time we are asked to classify the images in Fig. 4.7.2.

cat cat dog dog

& = G U

Test data for distinguishing cats and dogs (illustrations: SIBAS_minich / iStock / Getty
Images Plus; Ghrzuzudu / iStock / Getty Images Plus; id-work / Digital Vision Vectors /
Getty Images; Yime / iStock / Getty Images Plus).

The training set consists of photos, while the test set contains only cartoons. Training on a



157

Environment and Distribution Shift

dataset with substantially different characteristics from the test set can spell trouble absent
a coherent plan for how to adapt to the new domain.

Label Shift

Label shift describes the converse problem. Here, we assume that the label marginal P(y)
can change but the class-conditional distribution P(x | y) remains fixed across domains.
Label shift is a reasonable assumption to make when we believe that y causes x. For ex-
ample, we may want to predict diagnoses given their symptoms (or other manifestations),
even as the relative prevalence of diagnoses are changing over time. Label shift is the ap-
propriate assumption here because diseases cause symptoms. In some degenerate cases the
label shift and covariate shift assumptions can hold simultaneously. For example, when the
label is deterministic, the covariate shift assumption will be satisfied, even when y causes
x. Interestingly, in these cases, it is often advantageous to work with methods that flow
from the label shift assumption. That is because these methods tend to involve manipulat-
ing objects that look like labels (often low-dimensional), as opposed to objects that look
like inputs, which tend to be high-dimensional in deep learning.

Concept Shift

We may also encounter the related problem of concept shift, which arises when the very
definitions of labels can change. This sounds weird—a cat is a cat, no? However, other
categories are subject to changes in usage over time. Diagnostic criteria for mental illness,
what passes for fashionable, and job titles, are all subject to considerable amounts of con-
cept shift. It turns out that if we navigate around the United States, shifting the source of
our data by geography, we will find considerable concept shift regarding the distribution of
names for soft drinks as shown in Fig. 4.7.3.

If we were to build a machine translation system, the distribution P(y | x) might be dif-
ferent depending on our location. This problem can be tricky to spot. We might hope to
exploit knowledge that shift only takes place gradually either in a temporal or geographic
sense.

4.7.2 Examples of Distribution Shift

Before delving into formalism and algorithms, we can discuss some concrete situations
where covariate or concept shift might not be obvious.

Medical Diagnostics

Imagine that you want to design an algorithm to detect cancer. You collect data from healthy
and sick people and you train your algorithm. It works fine, giving you high accuracy and
you conclude that you are ready for a successful career in medical diagnostics. Not so

fast.

The distributions that gave rise to the training data and those you will encounter in the wild
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no data other pop coke

CC-BY: Alan McConchie, PopVsSoda.com

18t fsl - Concept shift for soft drink names in the United States (CC-BY: Alan McConchie,
PopVsSoda.com).

might differ considerably. This happened to an unfortunate startup that some of we authors
worked with years ago. They were developing a blood test for a disease that predominantly
affects older men and hoped to study it using blood samples that they had collected from
patients. However, it is considerably more difficult to obtain blood samples from healthy
men than from sick patients already in the system. To compensate, the startup solicited
blood donations from students on a university campus to serve as healthy controls in de-
veloping their test. Then they asked whether we could help them to build a classifier for
detecting the disease.

As we explained to them, it would indeed be easy to distinguish between the healthy and
sick cohorts with near-perfect accuracy. However, that is because the test subjects differed
in age, hormone levels, physical activity, diet, alcohol consumption, and many more fac-
tors unrelated to the disease. This was unlikely to be the case with real patients. Due to
their sampling procedure, we could expect to encounter extreme covariate shift. Moreover,
this case was unlikely to be correctable via conventional methods. In short, they wasted a
significant sum of money.

Self-Driving Cars

Say a company wanted to leverage machine learning for developing self-driving cars. One
key component here is a roadside detector. Since real annotated data is expensive to get,
they had the (smart and questionable) idea to use synthetic data from a game rendering
engine as additional training data. This worked really well on “test data” drawn from the
rendering engine. Alas, inside a real car it was a disaster. As it turned out, the roadside had
been rendered with a very simplistic texture. More importantly, all the roadside had been
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rendered with the same texture and the roadside detector learned about this “feature” very
quickly.

A similar thing happened to the US Army when they first tried to detect tanks in the forest.
They took aerial photographs of the forest without tanks, then drove the tanks into the forest
and took another set of pictures. The classifier appeared to work perfectly. Unfortunately, it
had merely learned how to distinguish trees with shadows from trees without shadows—the
first set of pictures was taken in the early morning, the second set at noon.

Nonstationary Distributions

A much more subtle situation arises when the distribution changes slowly (also known
as nonstationary distribution) and the model is not updated adequately. Below are some
typical cases.

e We train a computational advertising model and then fail to update it frequently (e.g., we
forget to incorporate that an obscure new device called an iPad was just launched).

We build a spam filter. It works well at detecting all spam that we have seen so far. But
then the spammers wise up and craft new messages that look unlike anything we have
seen before.

We build a product recommendation system. It works throughout the winter but then
continues to recommend Santa hats long after Christmas.

More Anecdotes

We build a face detector. It works well on all benchmarks. Unfortunately it fails on test
data—the offending examples are close-ups where the face fills the entire image (no
such data was in the training set).

We build a web search engine for the US market and want to deploy it in the UK.

We train an image classifier by compiling a large dataset where each among a large set
of classes is equally represented in the dataset, say 1000 categories, represented by
1000 images each. Then we deploy the system in the real world, where the actual
label distribution of photographs is decidedly non-uniform.

4.7.3 Correction of Distribution Shift

As we have discussed, there are many cases where training and test distributions P(x, y)
are different. In some cases, we get lucky and the models work despite covariate, label,
or concept shift. In other cases, we can do better by employing principled strategies to
cope with the shift. The remainder of this section grows considerably more technical. The
impatient reader could continue on to the next section as this material is not prerequisite to
subsequent concepts.
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Empirical Risk and Risk

Let’s first reflect on what exactly is happening during model training: we iterate over fea-
tures and associated labels of training data {(x1, y1), ..., (Xn, ¥»)} and update the param-
eters of a model f after every minibatch. For simplicity we do not consider regularization,
so we largely minimize the loss on the training:

1 n
minimize — I(f(x), i), 4.7.1
i n; (£, v) (47.1)

where [ is the loss function measuring “how bad” the prediction f(x;) is given the associ-
ated label y,. Statisticians call the term in (4.7.1) empirical risk. The empirical risk is an
average loss over the training data for approximating the risk, which is the expectation of
the loss over the entire population of data drawn from their true distribution p(x, y):

E i [1(F().3)] = / / 1 (). y)p(x. y) dxdy. (4.7.2)

However, in practice we typically cannot obtain the entire population of data. Thus, em-
pirical risk minimization, which is minimizing the empirical risk in (4.7.1), is a practical
strategy for machine learning, with the hope of approximately minimizing the risk.

Covariate Shift Correction

Assume that we want to estimate some dependency P(y | x) for which we have labeled data
(x4, yi). Unfortunately, the observations x; are drawn from some source distribution q(x)
rather than the target distribution p(x). Fortunately, the dependency assumption means
that the conditional distribution does not change: p(y | x) = ¢g(y | x). If the source
distribution g(x) is “wrong”, we can correct for that by using the following simple identity
in the risk:

/ / 1(F () 9)p(y | X)p(x) dxdy = / / l(f(X),y)q(yIX)q(X);% dxdy.
(4.7.3)

In other words, we need to reweigh each data example by the ratio of the probability that it
would have been drawn from the correct distribution to that from the wrong one:

o pGi).

q(xi)
Plugging in the weight B; for each data example (x;,y;) we can train our model using
weighted empirical risk minimization:

(4.7.4)

N e
mlngmze;;ﬁ,-l(f(xi),yi). (4.7.5)

Alas, we do not know that ratio, so before we can do anything useful we need to estimate
it. Many methods are available, including some fancy operator-theoretic approaches that
attempt to recalibrate the expectation operator directly using a minimum-norm or a maxi-
mum entropy principle. Note that for any such approach, we need samples drawn from both
distributions—the “true” p, e.g., by access to test data, and the one used for generating the
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training set ¢ (the latter is trivially available). Note however, that we only need features
X ~ p(x); we do not need to access labels y ~ p(y).

In this case, there exists a very effective approach that will give almost as good results
as the original: namely, logistic regression, which is a special case of softmax regression
(see Section 4.1) for binary classification. This is all that is needed to compute estimated
probability ratios. We learn a classifier to distinguish between data drawn from p(x) and
data drawn from ¢(x). If it is impossible to distinguish between the two distributions then
it means that the associated instances are equally likely to come from either one of those
two distributions. On the other hand, any instances that can be well discriminated should
be significantly overweighted or underweighted accordingly.

For simplicity’s sake assume that we have an equal number of instances from both distribu-
tions p(x) and g(x), respectively. Now denote by z labels that are 1 for data drawn from p
and —1 for data drawn from g. Then the probability in a mixed dataset is given by

p(x) P(z=1]|x) p(x)
P+ 400 M BT T T g

Pz=1|x)= (4.7.6)

Thus, if we use a logistic regression approach, where P(z = 1 | x) = m (hisa
parametrized function), it follows that

1/(1 +exp(-h(xi)))

Pi = () (1 + exp(=h(x))

= exp(h(x;)). (4.7.7)

As a result, we need to solve two problems: the first, to distinguish between data drawn
from both distributions, and then a weighted empirical risk minimization problemin (4.7.5)
where we weigh terms by ;.

Now we are ready to describe a correction algorithm. Suppose that we have a training set
{(x1,y1),...,(Xn,yn)} and an unlabeled test set {uy,...,u,}. For covariate shift, we
assume that x; for all 1 < i < n are drawn from some source distribution and u; for all
1 < i < m are drawn from the target distribution. Here is a prototypical algorithm for
correcting covariate shift:

1. Create a binary-classification training set: {(x,—1),..., (X,,—1), (u;, 1),..., (U, 1)}
2. Train a binary classifier using logistic regression to get the function 4.

3. Weigh training data using 3; = exp(h(x;)) or better 8; = min(exp(£(x;)), ¢) for some
constant c.

4. Use weights g; for training on {(X1, y1), . - ., (Xn, yn)} in (4.7.5).

Note that the above algorithm relies on a crucial assumption. For this scheme to work, we
need that each data example in the target (e.g., test time) distribution had nonzero proba-
bility of occurring at training time. If we find a point where p(x) > 0 but g(x) = 0, then
the corresponding importance weight should be infinity.
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Label Shift Correction

Assume that we are dealing with a classification task with k categories. Using the same
notation in Section 4.7.3, g and p are the source distribution (e.g., training time) and target
distribution (e.g., test time), respectively. Assume that the distribution of labels shifts over
time: g(y) # p(y), but the class-conditional distribution stays the same: g(x | y) = p(x |
y). If the source distribution ¢(y) is “wrong”, we can correct for that according to the
following identity in the risk as defined in (4.7.2):

/ / 1(F () y)p(x | Y)p(y) dxdy = / / 10 a(x | a2 axdy.

q(y)
(4.7.8)
Here, our importance weights will correspond to the label likelihood ratios:
def P (¥i)
Bi = —/=. 4.7.9
Y oq) (4.7.9)

One nice thing about label shift is that if we have a reasonably good model on the source
distribution, then we can get consistent estimates of these weights without ever having to
deal with the ambient dimension. In deep learning, the inputs tend to be high-dimensional
objects like images, while the labels are often simpler objects like categories.

To estimate the target label distribution, we first take our reasonably good off-the-shelf
classifier (typically trained on the training data) and compute its “confusion” matrix using
the validation set (also from the training distribution). The confusion matrix, C, is simply a
k X k matrix, where each column corresponds to the label category (ground truth) and each
row corresponds to our model’s predicted category. Each cell’s value c;; is the fraction of
total predictions on the validation set where the true label was j and our model predicted
i

Now, we cannot calculate the confusion matrix on the target data directly because we do
not get to see the labels for the examples that we see in the wild, unless we invest in a
complex real-time annotation pipeline. What we can do, however, is average all of our
model’s predictions at test time together, yielding the mean model outputs u(9) € R,
where the i element y(§;) is the fraction of the total predictions on the test set where our
model predicted i.

It turns out that under some mild conditions—if our classifier was reasonably accurate in
the first place, and if the target data contains only categories that we have seen before, and
if the label shift assumption holds in the first place (the strongest assumption here)—we
can estimate the test set label distribution by solving a simple linear system

Cp(y) = n(3), (4.7.10)

because as an estimate Zf‘:l cijp(yj) = u(9;) holds for all 1 < i < k, where p(y;) is
the j™ element of the k-dimensional label distribution vector p(y). If our classifier is
sufficiently accurate to begin with, then the confusion matrix C will be invertible, and we
get a solution p(y) = C™'u(¥).

Because we observe the labels on the source data, it is easy to estimate the distribution
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q(y). Then, for any training example i with label y;, we can take the ratio of our esti-
mated p(y;)/q(y;) to calculate the weight 3;, and plug this into weighted empirical risk
minimization in (4.7.5).

Concept Shift Correction

Concept shift is much harder to fix in a principled manner. For instance, in a situation where
suddenly the problem changes from distinguishing cats from dogs to one of distinguishing
white from black animals, it will be unreasonable to assume that we can do much better
than just collecting new labels and training from scratch. Fortunately, in practice, such
extreme shifts are rare. Instead, what usually happens is that the task keeps on changing
slowly. To make things more concrete, here are some examples:

¢ In computational advertising, new products are launched, old products become less pop-
ular. This means that the distribution over ads and their popularity changes gradually
and any click-through rate predictor needs to change gradually with it.

e Traffic camera lenses degrade gradually due to environmental wear, affecting image
quality progressively.

e News content changes gradually (i.e., most of the news remains unchanged but new sto-
ries appear).

In such cases, we can use the same approach that we used for training networks to make
them adapt to the change in the data. In other words, we use the existing network weights
and simply perform a few update steps with the new data rather than training from scratch.

4.7.4 A Taxonomy of Learning Problems

Armed with knowledge about how to deal with changes in distributions, we can now con-
sider some other aspects of machine learning problem formulation.

Batch Learning

In batch learning, we have access to training features and labels {(x1, ¥1), ..., (Xn, ¥n)},
which we use to train a model f(x). Later on, we deploy this model to score new data (x, y)
drawn from the same distribution. This is the default assumption for any of the problems
that we discuss here. For instance, we might train a cat detector based on lots of pictures
of cats and dogs. Once we have trained it, we ship it as part of a smart catdoor computer
vision system that lets only cats in. This is then installed in a customer’s home and is never
updated again (barring extreme circumstances).

Online Learning

Now imagine that the data (x;, y;) arrives one sample at a time. More specifically, assume
that we first observe x;, then we need to come up with an estimate f(x;). Only once
we have done this do we observe y; and so receive a reward or incur a loss, given our
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decision. Many real problems fall into this category. For example, we need to predict
tomorrow’s stock price, which allows us to trade based on that estimate and at the end
of the day we find out whether our estimate made us a profit. In other words, in online
learning, we have the following cycle where we are continuously improving our model
given new observations:

model f; — data x; — estimate f;(x;) — (4.7.11)
observation y; — loss [(y;, f;(x;)) — model f;4 o

Bandits

Bandits are a special case of the problem above. While in most learning problems we have
a continuously parametrized function f where we want to learn its parameters (e.g., a deep
network), in a bandit problem we only have a finite number of arms that we can pull, i.e.,
a finite number of actions that we can take. It is not very surprising that for this simpler
problem stronger theoretical guarantees in terms of optimality can be obtained. We list
it mainly since this problem is often (confusingly) treated as if it were a distinct learning
setting.

Control

In many cases the environment remembers what we did. Not necessarily in an adversarial
manner but it will just remember and the response will depend on what happened before.
For instance, a coffee boiler controller will observe different temperatures depending on
whether it was heating the boiler previously. PID (proportional-integral-derivative) con-
troller algorithms are a popular choice there. Likewise, a user’s behavior on a news site
will depend on what we showed them previously (e.g., they will read most news only once).
Many such algorithms form a model of the environment in which they act so as to make
their decisions appear less random. Recently, control theory (e.g., PID variants) has also
been used to automatically tune hyperparameters to achieve better disentangling and recon-
struction quality, and improve the diversity of generated text and the reconstruction quality
of generated images (Shao et al., 2020).

Reinforcement Learning

In the more general case of an environment with memory, we may encounter situations
where the environment is trying to cooperate with us (cooperative games, in particular
for non-zero-sum games), or others where the environment will try to win. Chess, Go,
Backgammon, or StarCraft are some of the cases in reinforcement learning. Likewise, we
might want to build a good controller for autonomous cars. Other cars are likely to respond
to the autonomous car’s driving style in nontrivial ways, e.g., trying to avoid it, trying to
cause an accident, or trying to cooperate with it.
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Considering the Environment

One key distinction between the different situations above is that a strategy that might have
worked throughout in the case of a stationary environment, might not work throughout in
an environment that can adapt. For instance, an arbitrage opportunity discovered by a trader
is likely to disappear once it is exploited. The speed and manner at which the environment
changes determines to a large extent the type of algorithms that we can bring to bear. For
instance, if we know that things may only change slowly, we can force any estimate to
change only slowly, too. If we know that the environment might change instantaneously,
but only very infrequently, we can make allowances for that. These types of knowledge are
crucial for the aspiring data scientist in dealing with concept shift, i.e., when the problem
that is being solved can change over time.

4.7.5 Fairness, Accountability, and Transparency in Machine
Learning

Finally, it is important to remember that when you deploy machine learning systems you
are not merely optimizing a predictive model—you are typically providing a tool that will
be used to (partially or fully) automate decisions. These technical systems can impact the
lives of individuals who are subject to the resulting decisions. The leap from considering
predictions to making decisions raises not only new technical questions, but also a slew of
ethical questions that must be carefully considered. If we are deploying a medical diagnos-
tic system, we need to know for which populations it may work and for which it may not.
Overlooking foreseeable risks to the welfare of a subpopulation could cause us to adminis-
ter inferior care. Moreover, once we contemplate decision-making systems, we must step
back and reconsider how we evaluate our technology. Among other consequences of this
change of scope, we will find that accuracy is seldom the right measure. For instance, when
translating predictions into actions, we will often want to take into account the potential cost
sensitivity of erring in various ways. If one way of misclassifying an image could be per-
ceived as a racial sleight of hand, while misclassification to a different category would be
harmless, then we might want to adjust our thresholds accordingly, accounting for societal
values in designing the decision-making protocol. We also want to be careful about how
prediction systems can lead to feedback loops. For example, consider predictive policing
systems, which allocate patrol officers to areas with high forecasted crime. It is easy to see
how a worrying pattern can emerge:

1. Neighborhoods with more crime get more patrols.

2. Consequently, more crimes are discovered in these neighborhoods, entering the training
data available for future iterations.

3. Exposed to more positives, the model predicts yet more crime in these neighborhoods.

4. In the next iteration, the updated model targets the same neighborhood even more heav-
ily leading to yet more crimes discovered, etc.

Often, the various mechanisms by which a model’s predictions become coupled to its train-
ing data are unaccounted for in the modeling process. This can lead to what researchers
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call runaway feedback loops. Additionally, we want to be careful about whether we are
addressing the right problem in the first place. Predictive algorithms now play an outsize
role in mediating the dissemination of information. Should the news that an individual en-
counters be determined by the set of Facebook pages they have Liked? These are just a few
among the many pressing ethical dilemmas that you might encounter in a career in machine
learning.

4.7.6 Summary

In many cases training and test sets do not come from the same distribution. This is called
distribution shift. The risk is the expectation of the loss over the entire population of data
drawn from their true distribution. However, this entire population is usually unavailable.
Empirical risk is an average loss over the training data to approximate the risk. In practice,
we perform empirical risk minimization.

Under the corresponding assumptions, covariate and label shift can be detected and cor-
rected for at test time. Failure to account for this bias can become problematic at test time.
In some cases, the environment may remember automated actions and respond in surprising
ways. We must account for this possibility when building models and continue to moni-
tor live systems, open to the possibility that our models and the environment will become
entangled in unanticipated ways.

4.7.7 Exercises

1. What could happen when we change the behavior of a search engine? What might the
users do? What about the advertisers?

2. Implement a covariate shift detector. Hint: build a classifier.
3. Implement a covariate shift corrector.
4. Besides distribution shift, what else could affect how the empirical risk approximates

the risk?

Discussions 100,
100
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Multilayer Perceptrons

In this chapter, we will introduce your first truly deep network. The simplest deep networks
are called multilayer perceptrons, and they consist of multiple layers of neurons each fully
connected to those in the layer below (from which they receive input) and those above
(which they, in turn, influence). Although automatic differentiation significantly simplifies
the implementation of deep learning algorithms, we will dive deep into how these gradi-
ents are calculated in deep networks. Then we will be ready to discuss issues relating to
numerical stability and parameter initialization that are key to successfully training deep
networks. When we train such high-capacity models we run the risk of overfitting. Thus,
we will revisit regularization and generalization for deep networks. Throughout, we aim to
give you a firm grasp not just of the concepts but also of the practice of using deep networks.
At the end of this chapter, we apply what we have introduced so far to a real case: house
price prediction. We punt matters relating to the computational performance, scalability,
and efficiency of our models to subsequent chapters.

5.1 Multilayer Perceptrons
I —

In Section 4.1, we introduced softmax regression, implementing the algorithm from scratch
(Section 4.4) and using high-level APIs (Section 4.5). This allowed us to train classifiers ca-
pable of recognizing 10 categories of clothing from low-resolution images. Along the way,
we learned how to wrangle data, coerce our outputs into a valid probability distribution,
apply an appropriate loss function, and minimize it with respect to our model’s parameters.
Now that we have mastered these mechanics in the context of simple linear models, we
can launch our exploration of deep neural networks, the comparatively rich class of models
with which this book is primarily concerned.

%matplotlib inline
from mxnet import autograd, np, npx
from d21 import mxnet as d21

npx.set_np()

5.1.1 Hidden Layers
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We described affine transformations in Section 3.1.1 as linear transformations with added
bias. To begin, recall the model architecture corresponding to our softmax regression ex-
ample, illustrated in Fig. 4.1.1. This model maps inputs directly to outputs via a single
affine transformation, followed by a softmax operation. If our labels truly were related to
the input data by a simple affine transformation, then this approach would be sufficient.
However, linearity (in affine transformations) is a strong assumption.

Limitations of Linear Models

For example, linearity implies the weaker assumption of monotonicity, i.e., that any in-
crease in our feature must either always cause an increase in our model’s output (if the
corresponding weight is positive), or always cause a decrease in our model’s output (if
the corresponding weight is negative). Sometimes that makes sense. For example, if we
were trying to predict whether an individual will repay a loan, we might reasonably assume
that all other things being equal, an applicant with a higher income would always be more
likely to repay than one with a lower income. While monotonic, this relationship likely
is not linearly associated with the probability of repayment. An increase in income from
$0 to $50,000 likely corresponds to a bigger increase in likelihood of repayment than an
increase from $1 million to $1.05 million. One way to handle this might be to postprocess
our outcome such that linearity becomes more plausible, by using the logistic map (and
thus the logarithm of the probability of outcome).

Note that we can easily come up with examples that violate monotonicity. Say for example
that we want to predict health as a function of body temperature. For individuals with a
normal body temperature above 37°C (98.6°F), higher temperatures indicate greater risk.
However, if the body temperatures drops below 37°C, lower temperatures indicate greater
risk! Again, we might resolve the problem with some clever preprocessing, such as using
the distance from 37°C as a feature.

But what about classifying images of cats and dogs? Should increasing the intensity of the
pixel at location (13, 17) always increase (or always decrease) the likelihood that the image
depicts a dog? Reliance on a linear model corresponds to the implicit assumption that the
only requirement for differentiating cats and dogs is to assess the brightness of individual
pixels. This approach is doomed to fail in a world where inverting an image preserves the
category.

And yet despite the apparent absurdity of linearity here, as compared with our previous
examples, it is less obvious that we could address the problem with a simple preprocessing
fix. That is, because the significance of any pixel depends in complex ways on its context
(the values of the surrounding pixels). While there might exist a representation of our data
that would take into account the relevant interactions among our features, on top of which
a linear model would be suitable, we simply do not know how to calculate it by hand. With
deep neural networks, we used observational data to jointly learn both a representation via
hidden layers and a linear predictor that acts upon that representation.

This problem of nonlinearity has been studied for at least a century (Fisher, 1925). For
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instance, decision trees in their most basic form use a sequence of binary decisions to de-
cide upon class membership (Quinlan, 1993). Likewise, kernel methods have been used
for many decades to model nonlinear dependencies (Aronszajn, 1950). This has found its
way into nonparametric spline models (Wahba, 1990) and kernel methods (Scholkopf and
Smola, 2002). It is also something that the brain solves quite naturally. After all, neu-
rons feed into other neurons which, in turn, feed into other neurons again (Ramén y Cajal
and Azoulay, 1894). Consequently we have a sequence of relatively simple transforma-
tions.

Incorporating Hidden Layers

We can overcome the limitations of linear models by incorporating one or more hidden
layers. The easiest way to do this is to stack many fully connected layers on top of one
another. Each layer feeds into the layer above it, until we generate outputs. We can think of
the first L — 1 layers as our representation and the final layer as our linear predictor. This
architecture is commonly called a multilayer perceptron, often abbreviated as MLP (Fig.
5.1.1).

Output layer

Hidden layer

Input layer

An MLP with a hidden layer of five hidden units.

This MLP has four inputs, three outputs, and its hidden layer contains five hidden units.
Since the input layer does not involve any calculations, producing outputs with this network
requires implementing the computations for both the hidden and output layers; thus, the
number of layers in this MLP is two. Note that both layers are fully connected. Every
input influences every neuron in the hidden layer, and each of these in turn influences every
neuron in the output layer. Alas, we are not quite done yet.

From Linear to Nonlinear

As before, we denote by the matrix X € R"*¢ a minibatch of n examples where each exam-
ple has d inputs (features). For a one-hidden-layer MLP whose hidden layer has & hidden
units, we denote by H € R the outputs of the hidden layer, which are hidden represen-
tations. Since the hidden and output layers are both fully connected, we have hidden-layer
weights WD e R?*" and biases b(!) € R'*" and output-layer weights W (?) € R"*4 and
biases b(?) € R!*4. This allows us to calculate the outputs O € R"*4 of the one-hidden-
layer MLP as follows:

H=XW +bM),

0=HW® +p®, (5.1.1)
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Note that after adding the hidden layer, our model now requires us to track and update
additional sets of parameters. So what have we gained in exchange? You might be surprised
to find out that—in the model defined above—we gain nothing for our troubles! The reason
is plain. The hidden units above are given by an affine function of the inputs, and the outputs
(pre-softmax) are just an affine function of the hidden units. An affine function of an affine
function is itself an affine function. Moreover, our linear model was already capable of
representing any affine function.

To see this formally we can just collapse out the hidden layer in the above definition, yielding
an equivalent single-layer model with parameters W = W)W ® and b = b(WW®@ 4+
b®:

0=XWD 4+pM)yw®? 1 p? = XWHW® 1 bW 1 pb?) = XW +b.
(5.1.2)

In order to realize the potential of multilayer architectures, we need one more key ingre-
dient: a nonlinear activation function o to be applied to each hidden unit following the
affine transformation. For instance, a popular choice is the ReLU (rectified linear unit) ac-
tivation function (Nair and Hinton, 2010) o (x) = max(0,x) operating on its arguments
elementwise. The outputs of activation functions o (-) are called activations. In general,
with activation functions in place, it is no longer possible to collapse our MLP into a linear
model:

H=0cXWD +b0),

0=HW® +b®, (5:1.3)

Since each row in X corresponds to an example in the minibatch, with some abuse of
notation, we define the nonlinearity o to apply to its inputs in a rowwise fashion, i.e., one
example at a time. Note that we used the same notation for softmax when we denoted a
rowwise operation in Section 4.1.1. Quite frequently the activation functions we use apply
not merely rowwise but elementwise. That means that after computing the linear portion of
the layer, we can calculate each activation without looking at the values taken by the other
hidden units.

To build more general MLPs, we can continue stacking such hidden layers, e.g., H(!) =
a(XWO +bM)yand H? = o (HDW @) +b?)), one atop another, yielding ever more
expressive models.

Universal Approximators

We know that the brain is capable of very sophisticated statistical analysis. As such, it is
worth asking, just how powerful a deep network could be. This question has been answered
multiple times, e.g., in Cybenko (1989) in the context of MLPs, and in Micchelli (1984) in
the context of reproducing kernel Hilbert spaces in a way that could be seen as radial basis
function (RBF) networks with a single hidden layer. These (and related results) suggest that
even with a single-hidden-layer network, given enough nodes (possibly absurdly many),
and the right set of weights, we can model any function. Actually learning that function
is the hard part, though. You might think of your neural network as being a bit like the
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C programming language. The language, like any other modern language, is capable of
expressing any computable program. But actually coming up with a program that meets
your specifications is the hard part.

Moreover, just because a single-hidden-layer network can learn any function does not mean
that you should try to solve all of your problems with one. In fact, in this case kernel
methods are way more effective, since they are capable of solving the problem exactly even
in infinite dimensional spaces (Kimeldorf and Wahba, 1971, Scholkopf et al., 2001). In
fact, we can approximate many functions much more compactly by using deeper (rather
than wider) networks (Simonyan and Zisserman, 2014). We will touch upon more rigorous
arguments in subsequent chapters.

5.1.2 Activation Functions

Activation functions decide whether a neuron should be activated or not by calculating the
weighted sum and further adding bias to it. They are differentiable operators for trans-
forming input signals to outputs, while most of them add nonlinearity. Because activation
functions are fundamental to deep learning, let’s briefly survey some common ones.

ReLU Function

The most popular choice, due to both simplicity of implementation and its good perfor-
mance on a variety of predictive tasks, is the rectified linear unit (ReLU) (Nair and Hinton,
2010). ReLU provides a very simple nonlinear transformation. Given an element x, the
function is defined as the maximum of that element and 0:

ReLU(x) = max(x, 0). (5.1.4)

Informally, the ReLU function retains only positive elements and discards all negative el-
ements by setting the corresponding activations to 0. To gain some intuition, we can plot
the function. As you can see, the activation function is piecewise linear.

X = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():
y = npx.relu(x)
d21l.plot(x, y, 'x', 'relu(x)', figsize=(5, 2.5))

[21:54:14] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

When the input is negative, the derivative of the ReLU function is 0, and when the input
is positive, the derivative of the ReLU function is 1. Note that the ReLU function is not
differentiable when the input takes value precisely equal to 0. In these cases, we default to
the left-hand-side derivative and say that the derivative is O when the input is 0. We can
get away with this because the input may never actually be zero (mathematicians would say
that it is nondifferentiable on a set of measure zero). There is an old adage that if subtle
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relu(x)
Y

boundary conditions matter, we are probably doing (real) mathematics, not engineering.
That conventional wisdom may apply here, or at least, the fact that we are not performing
constrained optimization (Mangasarian, 1965, Rockafellar, 1970). We plot the derivative
of the ReLU function below.

y.backward()
d21.plot(x, x.grad, 'x', 'grad of relu', figsize=(5, 2.5))

[21:54:14] ../src/base.cc:48: GPU context requested, but no GPUs found.

1.0 A

0.8

0.6

grad of relu

0.4 4

0.2 1

0.0 A

The reason for using ReLU is that its derivatives are particularly well behaved: either they
vanish or they just let the argument through. This makes optimization better behaved and
it mitigated the well-documented problem of vanishing gradients that plagued previous
versions of neural networks (more on this later).

Note that there are many variants to the ReLU function, including the parametrized ReLU
(pReLU) function (He et al., 2015). This variation adds a linear term to ReLU, so some
information still gets through, even when the argument is negative:

pReLU(x) = max(0, x) + @ min(0, x). (5.1.5)

Sigmoid Function

The sigmoid function transforms those inputs whose values lie in the domain R, to outputs
that lie on the interval (0, 1). For that reason, the sigmoid is often called a squashing func-
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tion: it squashes any input in the range (-inf, inf) to some value in the range (0, 1):

1

SlngId(X) = m .

(5.1.6)
In the earliest neural networks, scientists were interested in modeling biological neurons
that either fire or do not fire. Thus the pioneers of this field, going all the way back to
McCulloch and Pitts, the inventors of the artificial neuron, focused on thresholding units
(McCulloch and Pitts, 1943). A thresholding activation takes value 0 when its input is
below some threshold and value 1 when the input exceeds the threshold.

When attention shifted to gradient-based learning, the sigmoid function was a natural choice
because it is a smooth, differentiable approximation to a thresholding unit. Sigmoids are
still widely used as activation functions on the output units when we want to interpret the
outputs as probabilities for binary classification problems: you can think of the sigmoid as a
special case of the softmax. However, the sigmoid has largely been replaced by the simpler
and more easily trainable ReLU for most use in hidden layers. Much of this has to do with
the fact that the sigmoid poses challenges for optimization (LeCun et al., 1998) since its
gradient vanishes for large positive and negative arguments. This can lead to plateaus that
are difficult to escape from. Nonetheless sigmoids are important. In later chapters (e.g.,
Section 10.1) on recurrent neural networks, we will describe architectures that leverage
sigmoid units to control the flow of information across time.

Below, we plot the sigmoid function. Note that when the input is close to 0, the sigmoid
function approaches a linear transformation.

with autograd.record():
y = npx.sigmoid(x)
d21.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5))

sigmoid(x)
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The derivative of the sigmoid function is given by the following equation:

exp(—x)

d . : =
— sigmoid(x) = (1 +exp(—x))?

= = sigmoid(x) (1 — sigmoid(x)) . (5.1.7)

The derivative of the sigmoid function is plotted below. Note that when the input is 0, the
derivative of the sigmoid function reaches a maximum of 0.25. As the input diverges from
0 in either direction, the derivative approaches 0.
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y.backward()
d21.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))
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Tanh Function

Like the sigmoid function, the tanh (hyperbolic tangent) function also squashes its inputs,
transforming them into elements on the interval between —1 and 1:

1 — exp(—2x)

tanh(x) = ————.
anh(x) 1 +exp(—2x)

(5.1.8)
We plot the tanh function below. Note that as input nears 0, the tanh function approaches a
linear transformation. Although the shape of the function is similar to that of the sigmoid

function, the tanh function exhibits point symmetry about the origin of the coordinate sys-
tem (Kalman and Kwasny, 1992).

with autograd.record():
y = np.tanh(x)
d21.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5))
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The derivative of the tanh function is:

4 tanh(x) = 1 — tanh?(x). (5.1.9)
dx

It is plotted below. As the input nears 0, the derivative of the tanh function approaches a
maximum of 1. And as we saw with the sigmoid function, as input moves away from 0 in
either direction, the derivative of the tanh function approaches 0.
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y.backward()
d21.plot(x, x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))
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5.1.3 Summary and Discussion

We now know how to incorporate nonlinearities to build expressive multilayer neural net-
work architectures. As a side note, your knowledge already puts you in command of a sim-
ilar toolkit to a practitioner circa 1990. In some ways, you have an advantage over anyone
working back then, because you can leverage powerful open-source deep learning frame-
works to build models rapidly, using only a few lines of code. Previously, training these
networks required researchers to code up layers and derivatives explicitly in C, Fortran, or
even Lisp (in the case of LeNet).

A secondary benefit is that ReLU is significantly more amenable to optimization than the
sigmoid or the tanh function. One could argue that this was one of the key innovations that
helped the resurgence of deep learning over the past decade. Note, though, that research in
activation functions has not stopped. For instance, the GELU (Gaussian error linear unit)
activation function x®(x) by Hendrycks and Gimpel (2016) (®(x) is the standard Gaussian
cumulative distribution function) and the Swish activation function o (x) = x sigmoid(Bx)
as proposed in Ramachandran et al. (2017) can yield better accuracy in many cases.

5.1.4 Exercises

1. Show that adding layers to a linear deep network, i.e., a network without nonlinearity
o can never increase the expressive power of the network. Give an example where it
actively reduces it.

2. Compute the derivative of the pReLU activation function.
3. Compute the derivative of the Swish activation function x sigmoid(8x).

4. Show that an MLP using only ReLU (or pReLU) constructs a continuous piecewise
linear function.

5. Sigmoid and tanh are very similar.

1. Show that tanh(x) + 1 = 2 sigmoid(2x).
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2. Prove that the function classes parametrized by both nonlinearities are identical.
Hint: affine layers have bias terms, too.

6. Assume that we have a nonlinearity that applies to one minibatch at a time, such as the
batch normalization (Ioffe and Szegedy, 2015). What kinds of problems do you expect
this to cause?

7. Provide an example where the gradients vanish for the sigmoid activation function.
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5.2 Implementation of Multilayer Perceptrons
____________________________________________________________________________________________

Multilayer perceptrons (MLPs) are not much more complex to implement than simple linear
models. The key conceptual difference is that we now concatenate multiple layers.

from mxnet import np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

5.2.1 Implementation from Scratch

Let’s begin again by implementing such a network from scratch.

Initializing Model Parameters

Recall that Fashion-MNIST contains 10 classes, and that each image consists of a 28 X
28 = 784 grid of grayscale pixel values. As before we will disregard the spatial structure
among the pixels for now, so we can think of this as a classification dataset with 784 input
features and 10 classes. To begin, we will implement an MLP with one hidden layer and 256
hidden units. Both the number of layers and their width are adjustable (they are considered
hyperparameters). Typically, we choose the layer widths to be divisible by larger powers of
2. This is computationally efficient due to the way memory is allocated and addressed in
hardware.

Again, we will represent our parameters with several tensors. Note that for every layer, we
must keep track of one weight matrix and one bias vector. As always, we allocate memory
for the gradients of the loss with respect to these parameters.

In the code below, we first define and initialize the parameters and then enable gradient
tracking.
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class MLPScratch(d2l.Classifier):
def __init__(self, num_inputs, num_outputs, num_hiddens, 1lr, sigma=0.01):
super().__init__()
self.save_hyperparameters()
self.W1 = np.random.randn(num_inputs, num_hiddens) * sigma
self.bl = np.zeros(num_hiddens)
self.W2 = np.random.randn(num_hiddens, num_outputs) * sigma
self.b2 = np.zeros(num_outputs)
for param in self.get_scratch_params():
param.attach_grad()

Model

To make sure we know how everything works, we will implement the ReL.U activation
ourselves rather than invoking the built-in relu function directly.

def relu(X):
return np.maximum(X, @)

Since we are disregarding spatial structure, we reshape each two-dimensional image into
a flat vector of length num_inputs. Finally, we implement our model with just a few lines
of code. Since we use the framework built-in autograd this is all that it takes.

@d21.add_to_class(MLPScratch)

def forward(self, X):
X = X.reshape((-1, self.num_inputs))
H = relu(np.dot(X, self.Wl) + self.bl)
return np.dot(H, self.W2) + self.b2

Training

Fortunately, the training loop for MLPs is exactly the same as for softmax regression.
We define the model, data, and trainer, then finally invoke the fit method on model and
data.

model = MLPScratch(num_inputs=784, num_outputs=10, num_hiddens=256, 1lr=0.1)
data = d21.FashionMNIST(batch_size=256)

trainer = d21.Trainer(max_epochs=10)

trainer.fit(model, data)

5.2.2 Concise Implementation

As you might expect, by relying on the high-level APIs, we can implement MLPs even
more concisely.
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Model

Compared with our concise implementation of softmax regression implementation (Section
4.5), the only difference is that we add rwo fully connected layers where we previously added
only one. The first is the hidden layer, the second is the output layer.

class MLP(d21.Classifier):
def __init__(self, num_outputs, num_hiddens, 1r):
super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(nn.Dense(num_hiddens, activation='relu’),
nn.Dense(num_outputs))

self.net.initialize()

Previously, we defined forward methods for models to transform input using the model
parameters. These operations are essentially a pipeline: you take an input and apply a
transformation (e.g., matrix multiplication with weights followed by bias addition), then
repetitively use the output of the current transformation as input to the next transforma-
tion. However, you may have noticed that no forward method is defined here. In fact,
MLP inherits the forward method from the Module class (Section 3.2.2) to simply invoke
self.net(X) (X is input), which is now defined as a sequence of transformations via the
Sequential class. The Sequential class abstracts the forward process enabling us to fo-
cus on the transformations. We will further discuss how the Sequential class works in
Section 6.1.2.

Training

The training loop is exactly the same as when we implemented softmax regression. This
modularity enables us to separate matters concerning the model architecture from orthog-
onal considerations.

model = MLP(num_outputs=10, num_hiddens=256, 1lr=0.1)
trainer.fit(model, data)

5.2.3 Summary
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Now that we have more practice in designing deep networks, the step from a single to mul-
tiple layers of deep networks does not pose such a significant challenge any longer. In
particular, we can reuse the training algorithm and data loader. Note, though, that imple-
menting MLPs from scratch is nonetheless messy: naming and keeping track of the model
parameters makes it difficult to extend models. For instance, imagine wanting to insert
another layer between layers 42 and 43. This might now be layer 42b, unless we are willing
to perform sequential renaming. Moreover, if we implement the network from scratch, it
is much more difficult for the framework to perform meaningful performance optimiza-
tions.

Nonetheless, you have now reached the state of the art of the late 1980s when fully con-
nected deep networks were the method of choice for neural network modeling. Our next
conceptual step will be to consider images. Before we do so, we need to review a number
of statistical basics and details on how to compute models efficiently.

5.2.4 Exercises

1. Change the number of hidden units num_hiddens and plot how its number affects the
accuracy of the model. What is the best value of this hyperparameter?

2. Try adding a hidden layer to see how it affects the results.
3. Why isitabad ideato insert a hidden layer with a single neuron? What could go wrong?

4. How does changing the learning rate alter your results? With all other parameters fixed,
which learning rate gives you the best results? How does this relate to the number of
epochs?

5. Let’s optimize over all hyperparameters jointly, i.e., learning rate, number of epochs,
number of hidden layers, and number of hidden units per layer.

1. What is the best result you can get by optimizing over all of them?
2. Why it is much more challenging to deal with multiple hyperparameters?
3. Describe an efficient strategy for optimizing over multiple parameters jointly.

6. Compare the speed of the framework and the from-scratch implementation for a chal-
lenging problem. How does it change with the complexity of the network?
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7. Measure the speed of tensor—matrix multiplications for well-aligned and misaligned
matrices. For instance, test for matrices with dimension 1024, 1025, 1026, 1028, and
1032.

1. How does this change between GPUs and CPUs?
2. Determine the memory bus width of your CPU and GPU.
8. Try out different activation functions. Which one works best?

9. Is there a difference between weight initializations of the network? Does it matter?

Discussions 102,

5.3 Forward Propagation, Backward Propagation,
and Computational Graphs

So far, we have trained our models with minibatch stochastic gradient descent. However,
when we implemented the algorithm, we only worried about the calculations involved in
forward propagation through the model. When it came time to calculate the gradients, we
justinvoked the backpropagation function provided by the deep learning framework.

The automatic calculation of gradients profoundly simplifies the implementation of deep
learning algorithms. Before automatic differentiation, even small changes to complicated
models required recalculating complicated derivatives by hand. Surprisingly often, aca-
demic papers had to allocate numerous pages to deriving update rules. While we must
continue to rely on automatic differentiation so we can focus on the interesting parts, you
ought to know how these gradients are calculated under the hood if you want to go beyond
a shallow understanding of deep learning.

In this section, we take a deep dive into the details of backward propagation (more com-
monly called backpropagation). To convey some insight for both the techniques and their
implementations, we rely on some basic mathematics and computational graphs. To start,
we focus our exposition on a one-hidden-layer MLP with weight decay (¢, regularization,
to be described in subsequent chapters).

5.3.1 Forward Propagation

Forward propagation (or forward pass) refers to the calculation and storage of intermediate
variables (including outputs) for a neural network in order from the input layer to the output
layer. We now work step-by-step through the mechanics of a neural network with one
hidden layer. This may seem tedious but in the eternal words of funk virtuoso James Brown,
you must “pay the cost to be the boss”.

For the sake of simplicity, let’s assume that the input example is x € R? and that our hidden
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layer does not include a bias term. Here the intermediate variable is:
z=WWx, (5.3.1)

where W) € R"*4 i5 the weight parameter of the hidden layer. After running the inter-
mediate variable z € R” through the activation function ¢ we obtain our hidden activation
vector of length h:

h = ¢(z). (5.3.2)

The hidden layer output h is also an intermediate variable. Assuming that the parameters
of the output layer possess only a weight of W(?) € R9*”, we can obtain an output layer
variable with a vector of length ¢g:

0=W%h, (5.3.3)

Assuming that the loss function is / and the example label is y, we can then calculate the
loss term for a single data example,

L=1(o,y). (5.3.4)

As we will see the definition of ¢, regularization to be introduced later, given the hyperpa-
rameter A, the regularization term is

A
s= 5 (WO R+ W@ ). (5.3.5)

where the Frobenius norm of the matrix is simply the £, norm applied after flattening the
matrix into a vector. Finally, the model’s regularized loss on a given data example is:

J=L+s. (5.3.6)

We refer to J as the objective function in the following discussion.

5.3.2 Computational Graph of Forward Propagation

Plotting computational graphs helps us visualize the dependencies of operators and vari-
ables within the calculation. Fig. 5.3.1 contains the graph associated with the simple net-
work described above, where squares denote variables and circles denote operators. The
lower-left corner signifies the input and the upper-right corner is the output. Notice that
the directions of the arrows (which illustrate data flow) are primarily rightward and up-

ward.
s
wo F ‘. ?

OO OO

Computational graph of forward propagation.




182

Multilayer Perceptrons

5.3.3 Backpropagation

Backpropagation refers to the method of calculating the gradient of neural network param-
eters. In short, the method traverses the network in reverse order, from the output to the
input layer, according to the chain rule from calculus. The algorithm stores any interme-
diate variables (partial derivatives) required while calculating the gradient with respect to
some parameters. Assume that we have functions Y = f(X) and Z = g(Y), in which the
input and the output X, Y, Z are tensors of arbitrary shapes. By using the chain rule, we can
compute the derivative of Z with respect to X via

oz (az av) | (537

6_X =pr0d a—Y,a—X

Here we use the prod operator to multiply its arguments after the necessary operations,
such as transposition and swapping input positions, have been carried out. For vectors,
this is straightforward: it is simply matrix—matrix multiplication. For higher dimensional
tensors, we use the appropriate counterpart. The operator prod hides all the notational
overhead.

Recall that the parameters of the simple network with one hidden layer, whose computa-
tional graph is in Fig. 5.3.1, are W(!) and W?). The objective of backpropagation is to
calculate the gradients J/dW 1) and 8J/dW ®). To accomplish this, we apply the chain
rule and calculate, in turn, the gradient of each intermediate variable and parameter. The
order of calculations are reversed relative to those performed in forward propagation, since
we need to start with the outcome of the computational graph and work our way towards
the parameters. The first step is to calculate the gradients of the objective function J = L+s
with respect to the loss term L and the regularization term s:

— =1land — =1. (5.3.8)

Next, we compute the gradient of the objective function with respect to variable of the
output layer o according to the chain rule:

aoJ (6] BL) oL
— =prod =

il IS - L
o 3L 90 = 39 © RY. (5.3.9)

Next, we calculate the gradients of the regularization term with respect to both parame-
ters:

ds Js
- 1 9 @
W = AW and W AW, (5.3.10)
Now we are able to calculate the gradient J/0W ) € R?*" of the model parameters
closest to the output layer. Using the chain rule yields:

oJ (6] do ) (6] as ) aJ
pro o =

v oy _Te A P P (2)
WD T 70’ WD + prod 75 WD Boh + AW, (5.3.11)

To obtain the gradient with respect to W) we need to continue backpropagation along
the output layer to the hidden layer. The gradient with respect to the hidden layer output
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dJ/dh € R" is given by

@79/

.3.12
7o (5.3.12)

a—J = prod 8_] 6_0
oh do’ oh
Since the activation function ¢ applies elementwise, calculating the gradient 9.J/dz € R"

of the intermediate variable z requires that we use the elementwise multiplication operator,
which we denote by ©:

oJ 0J oh oJ ,
& = I'Od(a—h,g) = a—h@¢ (Z) (5313)

Finally, we can obtain the gradient 8J/d0W 1) € R"*4 of the model parameters closest to
the input layer. According to the chain rule, we get

a5 dJ Oz aJ  ds \ 4 - )
BW(I) —prOd(g,—aW(l))+pf0d(a,m)—ax + AW, (5314)

5.3.4 Training Neural Networks

When training neural networks, forward and backward propagation depend on each other.
In particular, for forward propagation, we traverse the computational graph in the direc-
tion of dependencies and compute all the variables on its path. These are then used for
backpropagation where the compute order on the graph is reversed.

Take the aforementioned simple network as an illustrative example. On the one hand, com-
puting the regularization term (5.3.5) during forward propagation depends on the current
values of model parameters W) and W(?). They are given by the optimization algorithm
according to backpropagation in the most recent iteration. On the other hand, the gradient
calculation for the parameter (5.3.11) during backpropagation depends on the current value
of the hidden layer output h, which is given by forward propagation.

Therefore when training neural networks, once model parameters are initialized, we alter-
nate forward propagation with backpropagation, updating model parameters using gradi-
ents given by backpropagation. Note that backpropagation reuses the stored intermediate
values from forward propagation to avoid duplicate calculations. One of the consequences
is that we need to retain the intermediate values until backpropagation is complete. This is
also one of the reasons why training requires significantly more memory than plain predic-
tion. Besides, the size of such intermediate values is roughly proportional to the number of
network layers and the batch size. Thus, training deeper networks using larger batch sizes
more easily leads to out-of-memory errors.

5.3.5 Summary

Forward propagation sequentially calculates and stores intermediate variables within the
computational graph defined by the neural network. It proceeds from the input to the out-
put layer. Backpropagation sequentially calculates and stores the gradients of intermediate
variables and parameters within the neural network in the reversed order. When training
deep learning models, forward propagation and backpropagation are interdependent, and
training requires significantly more memory than prediction.
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5.3.6 Exercises

1. Assume that the inputs X to some scalar function f are n X m matrices. What is the
dimensionality of the gradient of f with respect to X?

2. Add a bias to the hidden layer of the model described in this section (you do not need
to include bias in the regularization term).

1. Draw the corresponding computational graph.
2. Derive the forward and backward propagation equations.

3. Compute the memory footprint for training and prediction in the model described in this
section.

4. Assume that you want to compute second derivatives. What happens to the computa-
tional graph? How long do you expect the calculation to take?

5. Assume that the computational graph is too large for your GPU.
1. Can you partition it over more than one GPU?

2. What are the advantages and disadvantages over training on a smaller minibatch?
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5.4 Numerical Stability and Initialization
____________________________________________________________________________________________

Thus far, every model that we have implemented required that we initialize its parameters
according to some pre-specified distribution. Until now, we took the initialization scheme
for granted, glossing over the details of how these choices are made. You might have even
gotten the impression that these choices are not especially important. On the contrary, the
choice of initialization scheme plays a significant role in neural network learning, and it
can be crucial for maintaining numerical stability. Moreover, these choices can be tied up
in interesting ways with the choice of the nonlinear activation function. Which function
we choose and how we initialize parameters can determine how quickly our optimization
algorithm converges. Poor choices here can cause us to encounter exploding or vanishing
gradients while training. In this section, we delve into these topics in greater detail and
discuss some useful heuristics that you will find useful throughout your career in deep
learning.

%matplotlib inline
from mxnet import autograd, np, npx
from d21 import mxnet as d21

npx.set_np()
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5.4.1 Vanishing and Exploding Gradients

Consider a deep network with L layers, input x and output o. With each layer / defined by
a transformation f; parametrized by weights W), whose hidden layer output is h(") (let
h(® = x), our network can be expressed as:

h® = f;(h" V) andthuso = fi o --- o fi(x). (5.4.1)

If all the hidden layer output and the input are vectors, we can write the gradient of o with
respect to any set of parameters W () as follows:

Owwo = dye-nh® .5, o h*D o0 h @D

M@ % MEDE oS

In other words, this gradient is the product of L — [ matrices M%) ... MU+ and the
gradient vector v(!). Thus we are susceptible to the same problems of numerical underflow
that often crop up when multiplying together too many probabilities. When dealing with
probabilities, a common trick is to switch into log-space, i.e., shifting pressure from the
mantissa to the exponent of the numerical representation. Unfortunately, our problem above
is more serious: initially the matrices MY} may have a wide variety of eigenvalues. They
might be small or large, and their product might be very large or very small.

The risks posed by unstable gradients go beyond numerical representation. Gradients of
unpredictable magnitude also threaten the stability of our optimization algorithms. We may
be facing parameter updates that are either (i) excessively large, destroying our model (the
exploding gradient problem); or (ii) excessively small (the vanishing gradient problem),
rendering learning impossible as parameters hardly move on each update.

Vanishing Gradients

One frequent culprit causing the vanishing gradient problem is the choice of the activation
function o that is appended following each layer’s linear operations. Historically, the sig-
moid function 1/(1+exp(—x)) (introduced in Section 5.1) was popular because it resembles
a thresholding function. Since early artificial neural networks were inspired by biological
neural networks, the idea of neurons that fire either fully or not at all (like biological neu-
rons) seemed appealing. Let’s take a closer look at the sigmoid to see why it can cause
vanishing gradients.

X = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():

y = npx.sigmoid(x)
y.backward()

d21.plot(x, L[y, x.gradl, legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))
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[21:56:14] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU
[21:56:14] ../src/base.cc:48: GPU context requested, but no GPUs found.

EL p— sigmoid

0.8 4 ——- gradient

0.6 1
0.4

0.2 1

~—_

0.0 1

As you can see, the sigmoid’s gradient vanishes both when its inputs are large and when
they are small. Moreover, when backpropagating through many layers, unless we are in the
Goldilocks zone, where the inputs to many of the sigmoids are close to zero, the gradients
of the overall product may vanish. When our network boasts many layers, unless we are
careful, the gradient will likely be cut off at some layer. Indeed, this problem used to plague
deep network training. Consequently, ReLUs, which are more stable (but less neurally
plausible), have emerged as the default choice for practitioners.

Exploding Gradients

The opposite problem, when gradients explode, can be similarly vexing. To illustrate this
a bit better, we draw 100 Gaussian random matrices and multiply them with some initial
matrix. For the scale that we picked (the choice of the variance o> = 1), the matrix product
explodes. When this happens because of the initialization of a deep network, we have no
chance of getting a gradient descent optimizer to converge.

M = np.random.normal (size=(4, 4))
print('a single matrix’', M)
for i in range(100):
M = np.dot(M, np.random.normal(size=(4, 4)))
print('after multiplying 100 matrices', M)

a single matrix [[ 2.2122064 1.1630787 ©.7740038  0.4838046 1]

[ 1.0434403 0.29956347 1.1839255 0.15302546]

[ 1.8917114 -1.1688148 -1.2347414 1.5580711 1]

[-1.771029 -0.5459446 -0.45138445 -2.3556297 1]

after multiplying 100 matrices [[ 3.4459747e+23 -7.8040759e+23 5.9973355e+23 _
—4.5230040e+23]

[ 2.5275059e+23 -5.7240258e+23 4.3988419e+23 3.3174704e+23]

[ 1.3731275e+24 -3.1097129e+24 2.3897754e+24 1.8022945e+24]

[-4.4951091e+23 1.0180045e+24 -7.8232368e+23 -5.9000419e+23]]
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Breaking the Symmetry

Another problem in neural network design is the symmetry inherent in their parametriza-
tion. Assume that we have a simple MLP with one hidden layer and two units. In this case,
we could permute the weights W (1) of the first layer and likewise permute the weights of
the output layer to obtain the same function. There is nothing special differentiating the
first and second hidden units. In other words, we have permutation symmetry among the
hidden units of each layer.

This is more than just a theoretical nuisance. Consider the aforementioned one-hidden-
layer MLP with two hidden units. For illustration, suppose that the output layer transforms
the two hidden units into only one output unit. Imagine what would happen if we initialized
all the parameters of the hidden layer as W (1) = ¢ for some constant c. In this case, during
forward propagation either hidden unit takes the same inputs and parameters producing the
same activation which is fed to the output unit. During backpropagation, differentiating the
output unit with respect to parameters W 1) gives a gradient all of whose elements take
the same value. Thus, after gradient-based iteration (e.g., minibatch stochastic gradient de-
scent), all the elements of W (1) still take the same value. Such iterations would never break
the symmetry on their own and we might never be able to realize the network’s expressive
power. The hidden layer would behave as if it had only a single unit. Note that while mini-
batch stochastic gradient descent would not break this symmetry, dropout regularization
(to be introduced later) would!

5.4.2 Parameter Initialization

One way of addressing—or at least mitigating—the issues raised above is through care-
ful initialization. As we will see later, additional care during optimization and suitable
regularization can further enhance stability.

Default Initialization

In the previous sections, e.g., in Section 3.5, we used a normal distribution to initialize the
values of our weights. If we do not specify the initialization method, the framework will
use a default random initialization method, which often works well in practice for moderate
problem sizes.

Xavier Initialization

Let’s look at the scale distribution of an output o; for some fully connected layer without
nonlinearities. With ny, inputs x; and their associated weights w;; for this layer, an output
is given by
Nin
0; = Z WijXj. (5.4.3)
J=1
The weights w;; are all drawn independently from the same distribution. Furthermore, let’s
assume that this distribution has zero mean and variance 2. Note that this does not mean
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that the distribution has to be Gaussian, just that the mean and variance need to exist. For
now, let’s assume that the inputs to the layer x; also have zero mean and variance ¥? and that
they are independent of w;; and independent of each other. In this case, we can compute
the mean of o;:

Hin
Eloi] = )" E[wijx;]

j=1
o, (5.4.4)

= > E[wy]E[x)]
Jj=1

=0,

and the variance:

Var[o;] = E[0?] - (E[0:])?

Nin
— 227
= E E[w;x31-0
J=1

Min

= > EIW;IE[x]]
j=1

(5.4.5)

2.2
= npoy”.

One way to keep the variance fixed is to set nj;0> = 1. Now consider backpropagation.
There we face a similar problem, albeit with gradients being propagated from the layers
closer to the output. Using the same reasoning as for forward propagation, we see that the
gradients’ variance can blow up unless Hout02 = 1, where ngy is the number of outputs
of this layer. This leaves us in a dilemma: we cannot possibly satisfy both conditions
simultaneously. Instead, we simply try to satisfy:

! [ 2
= (1tin + now) 0> = 1 or equivalently & = | ————. (5.4.6)
2 Nin + Noyt

This is the reasoning underlying the now-standard and practically beneficial Xavier initial-
ization, named after the first author of its creators (Glorot and Bengio, 2010). Typically, the
Xavier initialization samples weights from a Gaussian distribution with zero mean and vari-

ance 0° = —=—. We can also adapt this to choose the variance when sampling weights

from a uniform distribution. Note that the uniform distribution U(~a, a) has variance %-.

Plugging %- into our condition on o2 prompts us to initialize according to

6 6
Ul - S . (5.4.7)
Nin + Nout Nin + Nout

Though the assumption for nonexistence of nonlinearities in the above mathematical rea-
soning can be easily violated in neural networks, the Xavier initialization method turns out
to work well in practice.
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Beyond

The reasoning above barely scratches the surface of modern approaches to parameter ini-
tialization. A deep learning framework often implements over a dozen different heuristics.
Moreover, parameter initialization continues to be a hot area of fundamental research in
deep learning. Among these are heuristics specialized for tied (shared) parameters, super-
resolution, sequence models, and other situations. For instance, Xiao et al. (2018) demon-
strated the possibility of training 10,000-layer neural networks without architectural tricks
by using a carefully-designed initialization method.

If the topic interests you we suggest a deep dive into this module’s offerings, reading the
papers that proposed and analyzed each heuristic, and then exploring the latest publications
on the topic. Perhaps you will stumble across or even invent a clever idea and contribute
an implementation to deep learning frameworks.

5.4.3 Summary

Vanishing and exploding gradients are common issues in deep networks. Great care in
parameter initialization is required to ensure that gradients and parameters remain well
controlled. Initialization heuristics are needed to ensure that the initial gradients are neither
too large nor too small. Random initialization is key to ensuring that symmetry is broken
before optimization. Xavier initialization suggests that, for each layer, variance of any
output is not affected by the number of inputs, and variance of any gradient is not affected by
the number of outputs. ReLU activation functions mitigate the vanishing gradient problem.
This can accelerate convergence.

5.4.4 Exercises

1. Can you design other cases where a neural network might exhibit symmetry that needs
breaking, besides the permutation symmetry in an MLP’s layers?

2. Can we initialize all weight parameters in linear regression or in softmax regression to
the same value?

3. Look up analytic bounds on the eigenvalues of the product of two matrices. What does
this tell you about ensuring that gradients are well conditioned?

4. If we know that some terms diverge, can we fix this after the fact? Look at the paper on
layerwise adaptive rate scaling for inspiration (You et al., 2017).

Discussions 104,
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In Chapter 3 and Chapter 4, we tackled regression and classification problems by fitting
linear models to training data. In both cases, we provided practical algorithms for finding
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the parameters that maximized the likelihood of the observed training labels. And then,
towards the end of each chapter, we recalled that fitting the training data was only an in-
termediate goal. Our real quest all along was to discover general patterns on the basis
of which we can make accurate predictions even on new examples drawn from the same
underlying population. Machine learning researchers are consumers of optimization algo-
rithms. Sometimes, we must even develop new optimization algorithms. But at the end
of the day, optimization is merely a means to an end. At its core, machine learning is a
statistical discipline and we wish to optimize training loss only insofar as some statistical
principle (known or unknown) leads the resulting models to generalize beyond the training
set.

On the bright side, it turns out that deep neural networks trained by stochastic gradient de-
scent generalize remarkably well across myriad prediction problems, spanning computer
vision; natural language processing; time series data; recommender systems; electronic
health records; protein folding; value function approximation in video games and board
games; and numerous other domains. On the downside, if you were looking for a straight-
forward account of either the optimization story (why we can fit them to training data) or
the generalization story (why the resulting models generalize to unseen examples), then you
might want to pour yourself a drink. While our procedures for optimizing linear models
and the statistical properties of the solutions are both described well by a comprehensive
body of theory, our understanding of deep learning still resembles the wild west on both
fronts.

Both the theory and practice of deep learning are rapidly evolving, with theorists adopting
new strategies to explain what’s going on, even as practitioners continue to innovate at
a blistering pace, building arsenals of heuristics for training deep networks and a body of
intuitions and folk knowledge that provide guidance for deciding which techniques to apply
in which situations.

The summary of the present moment is that the theory of deep learning has produced
promising lines of attack and scattered fascinating results, but still appears far from a com-
prehensive account of both (i) why we are able to optimize neural networks and (ii) how
models learned by gradient descent manage to generalize so well, even on high-dimensional
tasks. However, in practice, (i) is seldom a problem (we can always find parameters that will
fit all of our training data) and thus understanding generalization is far the bigger problem.
On the other hand, even absent the comfort of a coherent scientific theory, practitioners
have developed a large collection of techniques that may help you to produce models that
generalize well in practice. While no pithy summary can possibly do justice to the vast
topic of generalization in deep learning, and while the overall state of research is far from
resolved, we hope, in this section, to present a broad overview of the state of research and
practice.

5.5.1 Revisiting Overfitting and Regularization

According to the “no free lunch” theorem of Wolpert and Macready (1995), any learn-
ing algorithm generalizes better on data with certain distributions, and worse with other
distributions. Thus, given a finite training set, a model relies on certain assumptions: to
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achieve human-level performance it may be useful to identify inductive biases that reflect
how humans think about the world. Such inductive biases show preferences for solutions
with certain properties. For example, a deep MLP has an inductive bias towards building
up a complicated function by the composition of simpler functions.

With machine learning models encoding inductive biases, our approach to training them
typically consists of two phases: (i) fit the training data; and (ii) estimate the generalization
error (the true error on the underlying population) by evaluating the model on holdout data.
The difference between our fit on the training data and our fit on the test data is called the
generalization gap and when this is large, we say that our models overfit to the training data.
In extreme cases of overfitting, we might exactly fit the training data, even when the test
error remains significant. And in the classical view, the interpretation is that our models are
too complex, requiring that we either shrink the number of features, the number of nonzero
parameters learned, or the size of the parameters as quantified. Recall the plot of model
complexity compared with loss (Fig. 3.6.1) from Section 3.6.

However deep learning complicates this picture in counterintuitive ways. First, for classifi-
cation problems, our models are typically expressive enough to perfectly fit every training
example, even in datasets consisting of millions (Zhang et al., 2021). In the classical pic-
ture, we might think that this setting lies on the far right extreme of the model complexity
axis, and that any improvements in generalization error must come by way of regulariza-
tion, either by reducing the complexity of the model class, or by applying a penalty, severely
constraining the set of values that our parameters might take. But that is where things start
to get weird.

Strangely, for many deep learning tasks (e.g., image recognition and text classification) we
are typically choosing among model architectures, all of which can achieve arbitrarily low
training loss (and zero training error). Because all models under consideration achieve
zero training error, the only avenue for further gains is to reduce overfitting. Even stranger,
it is often the case that despite fitting the training data perfectly, we can actually reduce
the generalization error further by making the model even more expressive, e.g., adding
layers, nodes, or training for a larger number of epochs. Stranger yet, the pattern relating
the generalization gap to the complexity of the model (as captured, for example, in the depth
or width of the networks) can be non-monotonic, with greater complexity hurting at first
but subsequently helping in a so-called “double-descent” pattern (Nakkiran et al., 2021).
Thus the deep learning practitioner possesses a bag of tricks, some of which seemingly
restrict the model in some fashion and others that seemingly make it even more expressive,
and all of which, in some sense, are applied to mitigate overfitting.

Complicating things even further, while the guarantees provided by classical learning the-
ory can be conservative even for classical models, they appear powerless to explain why
it is that deep neural networks generalize in the first place. Because deep neural networks
are capable of fitting arbitrary labels even for large datasets, and despite the use of famil-
iar methods such as ¢, regularization, traditional complexity-based generalization bounds,
e.g., those based on the VC dimension or Rademacher complexity of a hypothesis class
cannot explain why neural networks generalize.
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5.5.2 Inspiration from Nonparametrics

Approaching deep learning for the first time, it is tempting to think of them as parametric
models. After all, the models do have millions of parameters. When we update the models,
we update their parameters. When we save the models, we write their parameters to disk.
However, mathematics and computer science are riddled with counterintuitive changes of
perspective, and surprising isomorphisms between seemingly different problems. While
neural networks clearly have parameters, in some ways it can be more fruitful to think of
them as behaving like nonparametric models. So what precisely makes a model nonpara-
metric? While the name covers a diverse set of approaches, one common theme is that
nonparametric methods tend to have a level of complexity that grows as the amount of
available data grows.

Perhaps the simplest example of a nonparametric model is the k-nearest neighbor algorithm
(we will cover more nonparametric models later, for example in Section 11.2). Here, at
training time, the learner simply memorizes the dataset. Then, at prediction time, when
confronted with a new point x, the learner looks up the k nearest neighbors (the k points
x; that minimize some distance d(x,x})). When k = 1, this algorithm is called 1-nearest
neighbors, and the algorithm will always achieve a training error of zero. That however,
does not mean that the algorithm will not generalize. In fact, it turns out that under some
mild conditions, the 1-nearest neighbor algorithm is consistent (eventually converging to
the optimal predictor).

Note that 1-nearest neighbor requires that we specify some distance function d, or equiva-
lently, that we specify some vector-valued basis function ¢(x) for featurizing our data. For
any choice of the distance metric, we will achieve zero training error and eventually reach
an optimal predictor, but different distance metrics d encode different inductive biases and
with a finite amount of available data will yield different predictors. Different choices of
the distance metric d represent different assumptions about the underlying patterns and the
performance of the different predictors will depend on how compatible the assumptions are
with the observed data.

In a sense, because neural networks are over-parametrized, possessing many more parame-
ters than are needed to fit the training data, they tend to interpolate the training data (fitting
it perfectly) and thus behave, in some ways, more like nonparametric models. More re-
cent theoretical research has established deep connection between large neural networks
and nonparametric methods, notably kernel methods. In particular, Jacot et al. (2018)
demonstrated that in the limit, as multilayer perceptrons with randomly initialized weights
grow infinitely wide, they become equivalent to (nonparametric) kernel methods for a spe-
cific choice of the kernel function (essentially, a distance function), which they call the
neural tangent kernel. While current neural tangent kernel models may not fully explain
the behavior of modern deep networks, their success as an analytical tool underscores the
usefulness of nonparametric modeling for understanding the behavior of over-parametrized
deep networks.

5.5.3 Early Stopping
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While deep neural networks are capable of fitting arbitrary labels, even when labels are
assigned incorrectly or randomly (Zhang ef al., 2021), this capability only emerges over
many iterations of training. A new line of work (Rolnick et al., 2017) has revealed that
in the setting of label noise, neural networks tend to fit cleanly labeled data first and only
subsequently to interpolate the mislabeled data. Moreover, it has been established that this
phenomenon translates directly into a guarantee on generalization: whenever a model has
fitted the cleanly labeled data but not randomly labeled examples included in the training
set, it has in fact generalized (Garg et al., 2021).

Together these findings help to motivate early stopping, a classic technique for regularizing
deep neural networks. Here, rather than directly constraining the values of the weights, one
constrains the number of epochs of training. The most common way to determine the
stopping criterion is to monitor validation error throughout training (typically by checking
once after each epoch) and to cut off training when the validation error has not decreased
by more than some small amount € for some number of epochs. This is sometimes called a
patience criterion. As well as the potential to lead to better generalization in the setting of
noisy labels, another benefit of early stopping is the time saved. Once the patience criterion
is met, one can terminate training. For large models that might require days of training
simultaneously across eight or more GPUs, well-tuned early stopping can save researchers
days of time and can save their employers many thousands of dollars.

Notably, when there is no label noise and datasets are realizable (the classes are truly sep-
arable, e.g., distinguishing cats from dogs), early stopping tends not to lead to significant
improvements in generalization. On the other hand, when there is label noise, or intrinsic
variability in the label (e.g., predicting mortality among patients), early stopping is crucial.
Training models until they interpolate noisy data is typically a bad idea.

5.5.4 Classical Regularization Methods for Deep Networks

In Chapter 3, we described several classical regularization techniques for constraining the
complexity of our models. In particular, Section 3.7 introduced a method called weight
decay, which consists of adding a regularization term to the loss function in order to penalize
large values of the weights. Depending on which weight norm is penalized this technique
is known either as ridge regularization (for £, penalty) or lasso regularization (for an ¢;
penalty). In the classical analysis of these regularizers, they are considered as sufficiently
restrictive on the values that the weights can take to prevent the model from fitting arbitrary
labels.

In deep learning implementations, weight decay remains a popular tool. However, re-
searchers have noted that typical strengths of ¢, regularization are insufficient to prevent the
networks from interpolating the data (Zhang et al., 2021) and thus the benefits if interpreted
as regularization might only make sense in combination with the early stopping criterion.
Absent early stopping, it is possible that just like the number of layers or number of nodes
(in deep learning) or the distance metric (in 1-nearest neighbor), these methods may lead to
better generalization not because they meaningfully constrain the power of the neural net-
work but rather because they somehow encode inductive biases that are better compatible
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with the patterns found in datasets of interests. Thus, classical regularizers remain popular
in deep learning implementations, even if the theoretical rationale for their efficacy may be
radically different.

Notably, deep learning researchers have also built on techniques first popularized in classi-
cal regularization contexts, such as adding noise to model inputs. In the next section we will
introduce the famous dropout technique (invented by Srivastava et al. (2014)), which has
become a mainstay of deep learning, even as the theoretical basis for its efficacy remains
similarly mysterious.

5.5.5 Summary

Unlike classical linear models, which tend to have fewer parameters than examples, deep
networks tend to be over-parametrized, and for most tasks are capable of perfectly fitting
the training set. This interpolation regime challenges many hard fast-held intuitions. Func-
tionally, neural networks look like parametric models. But thinking of them as nonpara-
metric models can sometimes be a more reliable source of intuition. Because it is often
the case that all deep networks under consideration are capable of fitting all of the train-
ing labels, nearly all gains must come by mitigating overfitting (closing the generalization
gap). Paradoxically, the interventions that reduce the generalization gap sometimes appear
to increase model complexity and at other times appear to decrease complexity. However,
these methods seldom decrease complexity sufficiently for classical theory to explain the
generalization of deep networks, and why certain choices lead to improved generalization
remains for the most part a massive open question despite the concerted efforts of many
brilliant researchers.

5.5.6 Exercises

1. In what sense do traditional complexity-based measures fail to account for generalization
of deep neural networks?

2. Why might early stopping be considered a regularization technique?
3. How do researchers typically determine the stopping criterion?

4. What important factor seems to differentiate cases when early stopping leads to big
improvements in generalization?

5. Beyond generalization, describe another benefit of early stopping.
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5.6 Dropout
. _________________________________________________________________________________________|

Let’s think briefly about what we expect from a good predictive model. We want it to pe-
form well on unseen data. Classical generalization theory suggests that to close the gap
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between train and test performance, we should aim for a simple model. Simplicity can
come in the form of a small number of dimensions. We explored this when discussing the
monomial basis functions of linear models in Section 3.6. Additionally, as we saw when
discussing weight decay (¢, regularization) in Section 3.7, the (inverse) norm of the param-
eters also represents a useful measure of simplicity. Another useful notion of simplicity
is smoothness, i.e., that the function should not be sensitive to small changes to its inputs.
For instance, when we classify images, we would expect that adding some random noise to
the pixels should be mostly harmless.

Bishop (1995) formalized this idea when he proved that training with input noise is equiva-
lent to Tikhonov regularization. This work drew a clear mathematical connection between
the requirement that a function be smooth (and thus simple), and the requirement that it be
resilient to perturbations in the input.

Then, Srivastava et al. (2014) developed a clever idea for how to apply Bishop’s idea to the
internal layers of a network, too. Their idea, called dropout, involves injecting noise while
computing each internal layer during forward propagation, and it has become a standard
technique for training neural networks. The method is called dropout because we literally
drop out some neurons during training. Throughout training, on each iteration, standard
dropout consists of zeroing out some fraction of the nodes in each layer before calculating
the subsequent layer.

To be clear, we are imposing our own narrative with the link to Bishop. The original pa-
per on dropout offers intuition through a surprising analogy to sexual reproduction. The
authors argue that neural network overfitting is characterized by a state in which each layer
relies on a specific pattern of activations in the previous layer, calling this condition co-
adaptation. Dropout, they claim, breaks up co-adaptation just as sexual reproduction is
argued to break up co-adapted genes. While such an justification of this theory is cer-
tainly up for debate, the dropout technique itself has proved enduring, and various forms of
dropout are implemented in most deep learning libraries.

The key challenge is how to inject this noise. One idea is to inject it in an unbiased manner
so that the expected value of each layer—while fixing the others—equals the value it would
have taken absent noise. In Bishop’s work, he added Gaussian noise to the inputs to a linear
model. At each training iteration, he added noise sampled from a distribution with mean
zero € ~ N(0,0?) to the input x, yielding a perturbed point x” = x + €. In expectation,
E[x'] =x.

In standard dropout regularization, one zeros out some fraction of the nodes in each layer
and then debiases each layer by normalizing by the fraction of nodes that were retained (not
dropped out). In other words, with dropout probability p, each intermediate activation £ is
replaced by a random variable 4’ as follows:

0 with probabilit
W= { P yp (5.6.1)

—  otherwise

By design, the expectation remains unchanged, i.e., E[A'] = h.
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from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

5.6.1 Dropout in Practice

Recall the MLP with a hidden layer and five hidden units from Fig. 5.1.1. When we apply
dropout to a hidden layer, zeroing out each hidden unit with probability p, the result can
be viewed as a network containing only a subset of the original neurons. In Fig. 5.6.1, hy
and hs are removed. Consequently, the calculation of the outputs no longer depends on /;
or hs and their respective gradient also vanishes when performing backpropagation. In this
way, the calculation of the output layer cannot be overly dependent on any one element of
hi,..., hs.

Before dropout After dropout

MLP before and after dropout.

Typically, we disable dropout at test time. Given a trained model and a new example,
we do not drop out any nodes and thus do not need to normalize. However, there are
some exceptions: some researchers use dropout at test time as a heuristic for estimating the
uncertainty of neural network predictions: if the predictions agree across many different
dropout outputs, then we might say that the network is more confident.

5.6.2 Implementation from Scratch

To implement the dropout function for a single layer, we must draw as many samples from a
Bernoulli (binary) random variable as our layer has dimensions, where the random variable
takes value 1 (keep) with probability 1 — p and O (drop) with probability p. One easy way
to implement this is to first draw samples from the uniform distribution U [0, 1]. Then we
can keep those nodes for which the corresponding sample is greater than p, dropping the
rest.

In the following code, we implement a dropout_layer function that drops out the elements
in the tensor input X with probability dropout, rescaling the remainder as described above:
dividing the survivors by 1.0-dropout.
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def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
if dropout == 1: return np.zeros_like(X)
mask = np.random.uniform(@, 1, X.shape) > dropout
return mask.astype(np.float32) = X / (1.0 - dropout)

We can test out the dropout_layer function on a few examples. In the following lines of
code, we pass our input X through the dropout operation, with probabilities 0, 0.5, and 1,
respectively.

X = np.arange(16).reshape(2, 8)

print('dropout_p = @:', dropout_layer(X, 0))
print('dropout_p = ©0.5:', dropout_layer(X, 0.5))
print('dropout_p = 1:', dropout_layer(X, 1))

dropout_p = 0: [[ @. 1. 2. 3. 4. 5. 6. 7.]
[ 8. 9. 10. 11. 12. 13. 14. 15.7]
dropout_p = 0.5: [[ . ©. ©. ©. 8. 10. 12. 0.]
[16. ©. 20. 22. 0. 0. 0. 30.1]
dropout_p = 1: [[0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0.1]
[21:50:21] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

Defining the Model

The model below applies dropout to the output of each hidden layer (following the activation
function). We can set dropout probabilities for each layer separately. A common choice is
to set a lower dropout probability closer to the input layer. We ensure that dropout is only
active during training.

class DropoutMLPScratch(d2l.Classifier):
def __init__(self, num_outputs, num_hiddens_1, num_hiddens_2,
dropout_1, dropout_2, 1lr):
super().__init__Q)
self.save_hyperparameters()
self.linl = nn.Dense(num_hiddens_1, activation='relu')
self.1lin2 = nn.Dense(num_hiddens_2, activation='relu')
self.1lin3 = nn.Dense(num_outputs)
self.initialize()

def forward(self, X):
H1 = self.1lin1(X)
if autograd.is_training():
H1 = dropout_layer(H1l, self.dropout_1)
H2 = self.lin2(H1)
if autograd.is_training():
H2 = dropout_layer(H2, self.dropout_2)
return self.1lin3(H2)
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Training
The following is similar to the training of MLPs described previously.

hparams = {'num_outputs’:10, 'num_hiddens_1':256, 'num_hiddens_2':256,
"dropout_1':0.5, 'dropout_2':0.5, 'lr':0.1}

model = DropoutMLPScratch(*xhparams)

data = d21.FashionMNIST (batch_size=256)

trainer = d21.Trainer(max_epochs=10)

trainer.fit(model, data)

—— train_loss
1.2 1 val_loss
—-= val_acc

1.0 A

5.6.3 Concise Implementation

With high-level APIs, all we need to do is add a Dropout layer after each fully connected
layer, passing in the dropout probability as the only argument to its constructor. During
training, the Dropout layer will randomly drop out outputs of the previous layer (or equiv-
alently, the inputs to the subsequent layer) according to the specified dropout probability.
When not in training mode, the Dropout layer simply passes the data through during test-

ing.

class DropoutMLP(d2l.Classifier):
def __init__(self, num_outputs, num_hiddens_1, num_hiddens_2,
dropout_1, dropout_2, 1r):
super().__init__Q)
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(nn.Dense(num_hiddens_1, activation="relu"),
nn.Dropout (dropout_1),
nn.Dense(num_hiddens_2, activation="relu"),
nn.Dropout (dropout_2),
nn.Dense(num_outputs))
self.net.initialize()

Next, we train the model.

model = DropoutMLP(**hparams)
trainer.fit(model, data)

5.6.4 Summary
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—— train_loss
1.21 val_loss
—-= val_acc

Beyond controlling the number of dimensions and the size of the weight vector, dropout is
yet another tool for avoiding overfitting. Often tools are used jointly. Note that dropout is
used only during training: it replaces an activation /# with a random variable with expected
value h.

5.6.5 Exercises

1. What happens if you change the dropout probabilities for the first and second layers?
In particular, what happens if you switch the ones for both layers? Design an experi-
ment to answer these questions, describe your results quantitatively, and summarize the
qualitative takeaways.

2. Increase the number of epochs and compare the results obtained when using dropout
with those when not using it.

3. What is the variance of the activations in each hidden layer when dropout is and is not
applied? Draw a plot to show how this quantity evolves over time for both models.

4. Why is dropout not typically used at test time?

5. Using the model in this section as an example, compare the effects of using dropout and
weight decay. What happens when dropout and weight decay are used at the same time?
Are the results additive? Are there diminished returns (or worse)? Do they cancel each
other out?

6. What happens if we apply dropout to the individual weights of the weight matrix rather
than the activations?

7. Invent another technique for injecting random noise at each layer that is different from
the standard dropout technique. Can you develop a method that outperforms dropout on
the Fashion-MNIST dataset (for a fixed architecture)?
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5.7 Predicting House Prices on Kaggle
____________________________________________________________________________________________

Now that we have introduced some basic tools for building and training deep networks and
regularizing them with techniques including weight decay and dropout, we are ready to
put all this knowledge into practice by participating in a Kaggle competition. The house
price prediction competition is a great place to start. The data is fairly generic and do not
exhibit exotic structure that might require specialized models (as audio or video might).
This dataset, collected by De Cock (2011), covers house prices in Ames, Iowa from the
period 2006-2010. It is considerably larger than the famous Boston housing dataset 7 of
Harrison and Rubinfeld (1978), boasting both more examples and more features.

In this section, we will walk you through details of data preprocessing, model design, and
hyperparameter selection. We hope that through a hands-on approach, you will gain some
intuitions that will guide you in your career as a data scientist.

%matplotlib inline

import pandas as pd

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn

from d21 import mxnet as d21

npx.set_np()

5.7.1 Downloading Data

Throughout the book, we will train and test models on various downloaded datasets. Here,
we implement two utility functions for downloading and extracting zip or tar files. Again,
we skip implementation details of such utility functions.

def download(url, folder, shal_hash=None):
"""Download a file to folder and return the local filepath."""

def extract(filename, folder):
"""Extract a zip/tar file into folder.

nnn

5.7.2 Kaggle

Kaggle 198 is a popular platform that hosts machine learning competitions. Each com-

petition centers on a dataset and many are sponsored by stakeholders who offer prizes to
the winning solutions. The platform helps users to interact via forums and shared code,
fostering both collaboration and competition. While leaderboard chasing often spirals out
of control, with researchers focusing myopically on preprocessing steps rather than asking
fundamental questions, there is also tremendous value in the objectivity of a platform that
facilitates direct quantitative comparisons among competing approaches as well as code
sharing so that everyone can learn what did and did not work. If you want to participate in
a Kaggle competition, you will first need to register for an account (see Fig. 5.7.1).
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Search kaggle Q Competitions Datasets Kernels Discussion Learn -«

Kaggle is the place to do data
science projects Signup with just one click:

We won't share anything without your permission
See how it works &

[ Google ’Facebook ‘ Yahoo ‘

Manually create an account:

Email

Password

gt sigft s The Kaggle website.

On the house price prediction competition page, as illustrated in Fig. 5.7.2, you can find
the dataset (under the “Data” tab), submit predictions, and see your ranking, The URL is
right here:

https://www kaggle.com/c/house-prices-advanced-regression-techniques

House Prices: Advanced Regression Techniques

Predict sales prices and practice feature engineering, RFs, and gradient boosting
‘ 5,012 teams - Ongoing

Overview Data Kernels Discussion Leaderboard Rules Team My Submissions Submit Predictions

Overview

Description Start here if...

Evaluation You have some experience with R or Python and machine learning basics. This is a perfect competition
Frequently Asked for data science students who have completed an online course in machine learning and are looking to
Questions expand their skill set before trying a featured competition.

Tutorials Competition Description

151 51707 The house price prediction competition page.

5.7.3 Accessing and Reading the Dataset

Note that the competition data is separated into training and test sets. Each record includes
the property value of the house and attributes such as street type, year of construction, roof
type, basement condition, etc. The features consist of various data types. For example,
the year of construction is represented by an integer, the roof type by discrete categorical
assignments, and other features by floating point numbers. And here is where reality com-
plicates things: for some examples, some data is altogether missing with the missing value
marked simply as “na”. The price of each house is included for the training set only (it is
a competition after all). We will want to partition the training set to create a validation set,
but we only get to evaluate our models on the official test set after uploading predictions to
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Kaggle. The “Data” tab on the competition tab in Fig. 5.7.2 has links for downloading the
data.

To get started, we will read in and process the data using pandas, which we introduced
in Section 2.2. For convenience, we can download and cache the Kaggle housing dataset.
If a file corresponding to this dataset already exists in the cache directory and its SHA-1
matches shal_hash, our code will use the cached file to avoid clogging up your Internet
with redundant downloads.

class KaggleHouse(d21l.DataModule):
def __init__(self, batch_size, train=None, val=None):
super().__init__()
self.save_hyperparameters()
if self.train is None:
self.raw_train = pd.read_csv(d21l.download(
d21.DATA_URL + 'kaggle_house_pred_train.csv', self.root,
shal_hash="585e9cc93e70b39160e7921475f9bcd7d31219ce"’))
self.raw_val = pd.read_csv(d21.download(
d21.DATA_URL + 'kaggle_house_pred_test.csv', self.root,
shal_hash="fal19780a7b011d9b009e8bff8e99922a8ee2eb90'))

The training dataset includes 1460 examples, 80 features, and one label, while the validation
data contains 1459 examples and 80 features.

data = KaggleHouse(batch_size=64)
print(data.raw_train.shape)
print(data.raw_val.shape)

Downloading ../data/kaggle_house_pred_train.csv from http://d21-data.s3-
—accelerate.amazonaws.com/kaggle_house_pred_train.csv. ..

Downloading ../data/kaggle_house_pred_test.csv from http://d21l-data.s3-
—accelerate.amazonaws.com/kaggle_house_pred_test.csv. ..

(1460, 81)

(1459, 80)

5.7.4 Data Preprocessing

Let’s take a look at the first four and final two features as well as the label (SalePrice) from
the first four examples.

print(data.raw_train.iloc[:4, [0, 1, 2, 3, -3, -2, -111)

Id MSSubClass MSZoning LotFrontage SaleType SaleCondition SalePrice
Q 1 60 RL 65.0 WD Normal 208500
1 2 20 RL 80.0 WD Normal 181500
2 3 60 RL 68.0 WD Normal 223500
3 4 70 RL 60.0 WD Abnorml 140000

We can see that in each example, the first feature is the identifier. This helps the model



203

Predicting House Prices on Kaggle

determine each training example. While this is convenient, it does not carry any information
for prediction purposes. Hence, we will remove it from the dataset before feeding the data
into the model. Furthermore, given a wide variety of data types, we will need to preprocess
the data before we can start modeling.

Let’s start with the numerical features. First, we apply a heuristic, replacing all missing
values by the corresponding feature’s mean. Then, to put all features on a common scale,
we standardize the data by rescaling features to zero mean and unit variance:
XU
o

X

, (5.7.1)

where u and o denote mean and standard deviation, respectively. To verify that this indeed
transforms our feature (variable) such that it has zero mean and unit variance, note that
E[=E] = ££ = 0 and that E[(x — p)?] = (02 + p?) — 2u* + p* = o, Intuitively, we
standardize the data for two reasons. First, it proves convenient for optimization. Second,
because we do not know a priori which features will be relevant, we do not want to penalize
coeflicients assigned to one feature more than any other.

Next we deal with discrete values. These include features such as “MSZoning”. We replace
them by a one-hot encoding in the same way that we earlier transformed multiclass labels
into vectors (see Section 4.1.1). For instance, “MSZoning” assumes the values “RL” and
“RM”. Dropping the “MSZoning” feature, two new indicator features “MSZoning RL”
and “MSZoning_RM” are created with values being either O or 1. According to one-hot
encoding, if the original value of “MSZoning” is “RL”, then “MSZoning_RL” is 1 and
“MSZoning_RM?” is 0. The pandas package does this automatically for us.

@d21.add_to_class(KaggleHouse)
def preprocess(self):
# Remove the ID and label columns
label = 'SalePrice’
features = pd.concat(
(self.raw_train.drop(columns=["Id’, labell),
self.raw_val.drop(columns=["'Id"])))
# Standardize numerical columns
numeric_features = features.dtypes[features.dtypes!="object'].index
features[numeric_features] = features[numeric_features].apply(
lambda x: (x - x.mean()) / (x.std()))
# Replace NAN numerical features by 0
features[numeric_features] = features[numeric_features].fillna(@)
# Replace discrete features by one-hot encoding
features = pd.get_dummies(features, dummy_na=True)
# Save preprocessed features
self.train = features[:self.raw_train.shape[0]].copy()
self.train[label] = self.raw_train[label]
self.val = features[self.raw_train.shape[0]:].copy()

You can see that this conversion increases the number of features from 79 to 331 (excluding
ID and label columns).

data.preprocess()
data.train.shape
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(1460, 331)

5.7.5 Error Measure

To get started we will train a linear model with squared loss. Not surprisingly, our linear
model will not lead to a competition-winning submission but it does provide a sanity check
to see whether there is meaningful information in the data. If we cannot do better than
random guessing here, then there might be a good chance that we have a data processing
bug. And if things work, the linear model will serve as a baseline giving us some intuition
about how close the simple model gets to the best reported models, giving us a sense of
how much gain we should expect from fancier models.

With house prices, as with stock prices, we care about relative quantities more than ab-
solute quantities. Thus we tend to care more about the relative error % than about the
absolute error y — §. For instance, if our prediction is off by $100,000 when estimating the
price of a house in rural Ohio, where the value of a typical house is $125,000, then we are
probably doing a horrible job. On the other hand, if we err by this amount in Los Altos
Hills, California, this might represent a stunningly accurate prediction (there, the median
house price exceeds $4 million).

One way to address this problem is to measure the discrepancy in the logarithm of the price
estimates. In fact, this is also the official error measure used by the competition to evaluate
the quality of submissions. After all, a small value § for | log y — log §| < ¢ translates into
e %< % < e9. This leads to the following root-mean-squared-error between the logarithm
of the predicted price and the logarithm of the label price:

1 ¢ .
- Z (logy; —log 9:)°. (5.7.2)
i=1

@d21.add_to_class(KaggleHouse)
def get_dataloader(self, train):
label = 'SalePrice’
data = self.train if train else self.val
if label not in data: return
get_tensor = lambda x: np.array(x.values.astype(float),
dtype=np.float32)
# Logarithm of prices
tensors = (get_tensor(data.drop(columns=[labell])), # X
np.log(get_tensor(datallabell)).reshape((-1, 1))) # Y
return self.get_tensorloader(tensors, train)

5.7.6 K-Fold Cross-Validation

You might recall that we introduced cross-validation in Section 3.6.3, where we discussed
how to deal with model selection. We will put this to good use to select the model design
and to adjust the hyperparameters. We first need a function that returns the i fold of the
data in a K-fold cross-validation procedure. It proceeds by slicing out the i/ segment as
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validation data and returning the rest as training data. Note that this is not the most efficient
way of handling data and we would definitely do something much smarter if our dataset was
considerably larger. But this added complexity might obfuscate our code unnecessarily so
we can safely omit it here owing to the simplicity of our problem.

def k_fold_data(data, k):

rets = []

fold_size = data.train.shapel[0] // k

for j in range(k):
idx = range(j * fold_size, (j+1) * fold_size)
rets.append(KaggleHouse(data.batch_size, data.train.drop(index=idx),

data.train.loc[idx]))
return rets

The average validation error is returned when we train K times in the K-fold cross-validation.

def k_fold(trainer, data, k, 1lr):

val_loss, models = [], []

for i, data_fold in enumerate(k_fold_data(data, k)):
model = d2l.LinearRegression(lr)
model .board.yscale="log’
if i != 0: model.board.display = False
trainer.fit(model, data_fold)
val_loss.append(float(model.board.datal 'val_loss'J[-11.y))
models. append(model)

print(f'average validation log mse = {sum(val_loss)/len(val_loss)}')

return models

5.7.7 Model Selection

In this example, we pick an untuned set of hyperparameters and leave it up to the reader to
improve the model. Finding a good choice can take time, depending on how many variables
one optimizes over. With a large enough dataset, and the normal sorts of hyperparameters,
K-fold cross-validation tends to be reasonably resilient against multiple testing. However,
if we try an unreasonably large number of options we might find that our validation perfor-
mance is no longer representative of the true error.

trainer = d21.Trainer(max_epochs=10)
models = k_fold(trainer, data, k=5, 1r=0.01)

average validation log mse = 0.12402758479118345

Notice that sometimes the number of training errors for a set of hyperparameters can be very
low, even as the number of errors on K-fold cross-validation grows considerably higher.
This indicates that we are overfitting. Throughout training you will want to monitor both
numbers. Less overfitting might indicate that our data can support a more powerful model.
Massive overfitting might suggest that we can gain by incorporating regularization tech-
niques.
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5.7.8 Submitting Predictions on Kaggle

Now that we know what a good choice of hyperparameters should be, we might calculate
the average predictions on the test set by all the K models. Saving the predictions in a csv
file will simplify uploading the results to Kaggle. The following code will generate a file
called submission.csv.

preds = [model(np.array(data.val.values.astype(float), dtype=np.float32))
for model in models]
# Taking exponentiation of predictions in the logarithm scale
ensemble_preds = np.exp(np.concatenate(preds, 1)).mean(1)
submission = pd.DataFrame({'Id’':data.raw_val.Id,
'SalePrice’:ensemble_preds.asnumpy()})
submission.to_csv('submission.csv', index=False)

Next, as demonstrated in Fig. 5.7.3, we can submit our predictions on Kaggle and see how
they compare with the actual house prices (labels) on the test set. The steps are quite
simple:

e Log in to the Kaggle website and visit the house price prediction competition page.
e Click the “Submit Predictions” or “Late Submission” button.

e Click the “Upload Submission File” button in the dashed box at the bottom of the page
and select the prediction file you wish to upload.

o Click the “Make Submission” button at the bottom of the page to view your results.

5.7.9 Summary and Discussion

Real data often contains a mix of different data types and needs to be preprocessed. Rescal-
ing real-valued data to zero mean and unit variance is a good default. So is replacing miss-
ing values with their mean. Furthermore, transforming categorical features into indicator
features allows us to treat them like one-hot vectors. When we tend to care more about the
relative error than about the absolute error, we can measure the discrepancy in the loga-
rithm of the prediction. To select the model and adjust the hyperparameters, we can use
K-fold cross-validation .

5.7.10 Exercises
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Step 1
Upload submission file

"

Upload Submission File

File Format Number of Predictions
YYour submission should be in CSV format. We expect the solution file to have 1459 prediction rows. This file
You can upload this in a zip/gz/rar/7z should have a header row. Please see sample submission file on
archive, if you prefer. the data page.
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Describe submission

I si7isl . Submitting data to Kaggle

1. Submit your predictions for this section to Kaggle. How good are they?

2. Is it always a good idea to replace missing values by a mean? Hint: can you construct a
situation where the values are not missing at random?

3. Improve the score by tuning the hyperparameters through K-fold cross-validation.
4. Improve the score by improving the model (e.g., layers, weight decay, and dropout).

5. What happens if we do not standardize the continuous numerical features as we have
done in this section?
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Alongside giant datasets and powerful hardware, great software tools have played an in-
dispensable role in the rapid progress of deep learning. Starting with the pathbreaking
Theano library released in 2007, flexible open-source tools have enabled researchers to
rapidly prototype models, avoiding repetitive work when recycling standard components
while still maintaining the ability to make low-level modifications. Over time, deep learn-
ing’s libraries have evolved to offer increasingly coarse abstractions. Just as semiconductor
designers went from specifying transistors to logical circuits to writing code, neural net-
works researchers have moved from thinking about the behavior of individual artificial neu-
rons to conceiving of networks in terms of whole layers, and now often design architectures
with far coarser blocks in mind.

So far, we have introduced some basic machine learning concepts, ramping up to fully-
functional deep learning models. In the last chapter, we implemented each component of
an MLP from scratch and even showed how to leverage high-level APIs to roll out the
same models effortlessly. To get you that far that fast, we called upon the libraries, but
skipped over more advanced details about how they work. In this chapter, we will peel
back the curtain, digging deeper into the key components of deep learning computation,
namely model construction, parameter access and initialization, designing custom layers
and blocks, reading and writing models to disk, and leveraging GPUs to achieve dramatic
speedups. These insights will move you from end user to power user, giving you the tools
needed to reap the benefits of a mature deep learning library while retaining the flexibility to
implement more complex models, including those you invent yourself! While this chapter
does not introduce any new models or datasets, the advanced modeling chapters that follow
rely heavily on these techniques.

6.1 Layers and Modules
. _________________________________________________________________________________________|

When we first introduced neural networks, we focused on linear models with a single out-
put. Here, the entire model consists of just a single neuron. Note that a single neuron (i)
takes some set of inputs; (ii) generates a corresponding scalar output; and (iii) has a set of
associated parameters that can be updated to optimize some objective function of interest.
Then, once we started thinking about networks with multiple outputs, we leveraged vec-
torized arithmetic to characterize an entire layer of neurons. Just like individual neurons,
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layers (i) take a set of inputs, (ii) generate corresponding outputs, and (iii) are described by
a set of tunable parameters. When we worked through softmax regression, a single layer
was itself the model. However, even when we subsequently introduced MLPs, we could
still think of the model as retaining this same basic structure.

Interestingly, for MLPs, both the entire model and its constituent layers share this structure.
The entire model takes in raw inputs (the features), generates outputs (the predictions), and
possesses parameters (the combined parameters from all constituent layers). Likewise,
each individual layer ingests inputs (supplied by the previous layer) generates outputs (the
inputs to the subsequent layer), and possesses a set of tunable parameters that are updated
according to the signal that flows backwards from the subsequent layer.

While you might think that neurons, layers, and models give us enough abstractions to go
about our business, it turns out that we often find it convenient to speak about components
that are larger than an individual layer but smaller than the entire model. For example, the
ResNet-152 architecture, which is wildly popular in computer vision, possesses hundreds of
layers. These layers consist of repeating patterns of groups of layers. Implementing such
a network one layer at a time can grow tedious. This concern is not just hypothetical—
such design patterns are common in practice. The ResNet architecture mentioned above
won the 2015 ImageNet and COCO computer vision competitions for both recognition and
detection (He et al., 2016) and remains a go-to architecture for many vision tasks. Similar
architectures in which layers are arranged in various repeating patterns are now ubiquitous
in other domains, including natural language processing and speech.

To implement these complex networks, we introduce the concept of a neural network mod-
ule. A module could describe a single layer, a component consisting of multiple layers,
or the entire model itself! One benefit of working with the module abstraction is that they
can be combined into larger artifacts, often recursively. This is illustrated in Fig. 6.1.1.
By defining code to generate modules of arbitrary complexity on demand, we can write
surprisingly compact code and still implement complex neural networks.

Multiple layers are combined into modules, forming repeating patterns of larger models.

From a programming standpoint, a module is represented by a class. Any subclass of it
must define a forward propagation method that transforms its input into output and must
store any necessary parameters. Note that some modules do not require any parameters at
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all. Finally a module must possess a backpropagation method, for purposes of calculating
gradients. Fortunately, due to some behind-the-scenes magic supplied by the auto differen-
tiation (introduced in Section 2.5) when defining our own module, we only need to worry
about parameters and the forward propagation method.

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

To begin, we revisit the code that we used to implement MLPs (Section 5.1). The follow-
ing code generates a network with one fully connected hidden layer with 256 units and
ReLU activation, followed by a fully connected output layer with ten units (no activation
function).

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))

net.initialize()

X = np.random.uniform(size=(2, 20))
net(X) .shape

[21:53:59] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

(2, 10)

In this example, we constructed our model by instantiating an nn.Sequential, assigning
the returned object to the net variable. Next, we repeatedly call its add method, appending
layers in the order that they should be executed. In short, nn.Sequential defines a special
kind of Block, the class that presents a module in Gluon. It maintains an ordered list
of constituent Blocks. The add method simply facilitates the addition of each successive
Block to the list. Note that each layer is an instance of the Dense class which is itself a
subclass of Block. The forward propagation (forward) method is also remarkably simple:
it chains each Block in the list together, passing the output of each as input to the next.
Note that until now, we have been invoking our models via the construction net(X) to
obtain their outputs. This is actually just shorthand for net.forward(X), a slick Python
trick achieved via the Block class’s __call__ method.

6.1.1 A Custom Module

Perhaps the easiest way to develop intuition about how a module works is to implement
one ourselves. Before we do that, we briefly summarize the basic functionality that each
module must provide:

1. Ingest input data as arguments to its forward propagation method.
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2. Generate an output by having the forward propagation method return a value. Note
that the output may have a different shape from the input. For example, the first fully
connected layer in our model above ingests an input of arbitrary dimension but returns
an output of dimension 256.

3. Calculate the gradient of its output with respect to its input, which can be accessed via
its backpropagation method. Typically this happens automatically.

4. Store and provide access to those parameters necessary for executing the forward prop-
agation computation.

5. Initialize model parameters as needed.

In the following snippet, we code up a module from scratch corresponding to an MLP
with one hidden layer with 256 hidden units, and a 10-dimensional output layer. Note that
the MLP class below inherits the class that represents a module. We will heavily rely on
the parent class’s methods, supplying only our own constructor (the __init__ method in
Python) and the forward propagation method.

class MLP(nn.Block):
def __init__(self):
# Call the constructor of the MLP parent class nn.Block to perform
# the necessary initialization
super().__init__()
self.hidden = nn.Dense(256, activation='relu')
self.out = nn.Dense(10)

# Define the forward propagation of the model, that is, how to return the
# required model output based on the input X
def forward(self, X):

return self.out(self.hidden(X))

Let’s first focus on the forward propagation method. Note that it takes X as input, calcu-
lates the hidden representation with the activation function applied, and outputs its logits.
In this MLP implementation, both layers are instance variables. To see why this is reason-
able, imagine instantiating two MLPs, net1 and net2, and training them on different data.
Naturally, we would expect them to represent two different learned models.

We instantiate the MLP’s layers in the constructor and subsequently invoke these layers on
each call to the forward propagation method. Note a few key details. First, our customized
__init__ method invokes the parent class’s __init__ method via super().__init__()
sparing us the pain of restating boilerplate code applicable to most modules. We then
instantiate our two fully connected layers, assigning them to self.hidden and self.out.
Note that unless we implement a new layer, we need not worry about the backpropagation
method or parameter initialization. The system will generate these methods automatically.
Let’s try this out.

net = MLP()
net.initialize()
net (X) .shape
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(2, 10)

A key virtue of the module abstraction is its versatility. We can subclass a module to create
layers (such as the fully connected layer class), entire models (such as the MLP class above),
or various components of intermediate complexity. We exploit this versatility throughout
the coming chapters, such as when addressing convolutional neural networks.

6.1.2 The Sequential Module

We can now take a closer look at how the Sequential class works. Recall that Sequen-
tial was designed to daisy-chain other modules together. To build our own simplified
MySequential, we just need to define two key methods:

1. A method for appending modules one by one to a list.

2. A forward propagation method for passing an input through the chain of modules, in the
same order as they were appended.

The following MySequential class delivers the same functionality of the default Sequen-
tial class.

class MySequential(nn.Block):
def add(self, block):

# Here, block is an instance of a Block subclass, and we assume that
# it has a unique name. We save it in the member variable _children of
# the Block class, and its type is OrderedDict. When the MySequential
# instance calls the initialize method, the system automatically
# initializes all members of _children
self._children[block.name] = block

def forward(self, X):
# OrderedDict guarantees that members will be traversed in the order
# they were added
for block in self._children.values():
X = block(X)
return X

The add method adds a single block to the ordered dictionary _children. You might
wonder why every Gluon Block possesses a _children attribute and why we used it rather
than just define a Python list ourselves. In short the chief advantage of _children is that
during our block’s parameter initialization, Gluon knows to look inside the _children
dictionary to find sub-blocks whose parameters also need to be initialized.

When our MySequential’s forward propagation method is invoked, each added module is
executed in the order in which they were added. We can now reimplement an MLP using
our MySequential class.

net = MySequential()
net.add(nn.Dense (256, activation='relu'))

(continues on next page)
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(continued from previous page)

net.add(nn.Dense(10))
net.initialize()
net (X) .shape

(2, 10)

Note that this use of MySequential is identical to the code we previously wrote for the
Sequential class (as described in Section 5.1).

6.1.3 Executing Code in the Forward Propagation Method

The Sequential class makes model construction easy, allowing us to assemble new archi-
tectures without having to define our own class. However, not all architectures are simple
daisy chains. When greater flexibility is required, we will want to define our own blocks.
For example, we might want to execute Python’s control flow within the forward propaga-
tion method. Moreover, we might want to perform arbitrary mathematical operations, not
simply relying on predefined neural network layers.

You may have noticed that until now, all of the operations in our networks have acted upon
our network’s activations and its parameters. Sometimes, however, we might want to in-
corporate terms that are neither the result of previous layers nor updatable parameters. We
call these constant parameters. Say for example that we want a layer that calculates the
function f(x, w) = ¢ - w'x, where x is the input, w is our parameter, and c is some speci-
fied constant that is not updated during optimization. So we implement a FixedHiddenMLP
class as follows.

class FixedHiddenMLP(nn.Block):
def __init__(self):
super().__init__Q)
# Random weight parameters created with the get_constant method
# are not updated during training (i.e., constant parameters)
self.rand_weight = self.params.get_constant(
'rand_weight', np.random.uniform(size=(20, 20)))

self.dense = nn.Dense(20, activation='relu')

def forward(self, X):
X = self.dense(X)
# Use the created constant parameters, as well as the relu and dot
# functions
X = npx.relu(np.dot(X, self.rand_weight.data()) + 1)
# Reuse the fully connected layer. This is equivalent to sharing
# parameters with two fully connected layers
X = self.dense(X)
# Control flow
while np.abs(X).sum() > 1:
X /=2
return X.sum()

In this model, we implement a hidden layer whose weights (self.rand_weight) are ini-



214

Builders’ Guide

tialized randomly at instantiation and are thereafter constant. This weight is not a model
parameter and thus it is never updated by backpropagation. The network then passes the
output of this “fixed” layer through a fully connected layer.

Note that before returning the output, our model did something unusual. We ran a while-
loop, testing on the condition its ¢; norm is larger than 1, and dividing our output vector
by 2 until it satisfied the condition. Finally, we returned the sum of the entries in X. To our
knowledge, no standard neural network performs this operation. Note that this particular
operation may not be useful in any real-world task. Our point is only to show you how to
integrate arbitrary code into the flow of your neural network computations.

net = FixedHiddenMLP()
net.initialize()
net(X)

array(0.52637565)

We can mix and match various ways of assembling modules together. In the following
example, we nest modules in some creative ways.

class NestMLP(nn.Block):
def __init__(self, =**kwargs):
super().__init__(**kwargs)
self.net = nn.Sequential()
self.net.add(nn.Dense(64, activation="relu'),
nn.Dense(32, activation='relu'))
self.dense = nn.Dense(16, activation='relu')

def forward(self, X):
return self.dense(self.net(X))

chimera = nn.Sequential()
chimera.add(NestMLP(), nn.Dense(20), FixedHiddenMLP())

chimera.initialize()
chimera(X)

array(0.97720534)

6.1.4 Summary

Individual layers can be modules. Many layers can comprise a module. Many modules can
comprise a module.

A module can contain code. Modules take care of lots of housekeeping, including param-
eter initialization and backpropagation. Sequential concatenations of layers and modules
are handled by the Sequential module.

6.1.5 Exercises
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Parameter Management

1. What kinds of problems will occur if you change MySequential to store modules in a
Python list?

2. Implement a module that takes two modules as an argument, say netl and net2 and
returns the concatenated output of both networks in the forward propagation. This is
also called a parallel module.

3. Assume that you want to concatenate multiple instances of the same network. Imple-
ment a factory function that generates multiple instances of the same module and build
a larger network from it.

Discussions 0.

6.2 Parameter Management
I —

Once we have chosen an architecture and set our hyperparameters, we proceed to the train-
ing loop, where our goal is to find parameter values that minimize our loss function. After
training, we will need these parameters in order to make future predictions. Additionally,
we will sometimes wish to extract the parameters perhaps to reuse them in some other
context, to save our model to disk so that it may be executed in other software, or for ex-
amination in the hope of gaining scientific understanding.

Most of the time, we will be able to ignore the nitty-gritty details of how parameters are
declared and manipulated, relying on deep learning frameworks to do the heavy lifting.
However, when we move away from stacked architectures with standard layers, we will
sometimes need to get into the weeds of declaring and manipulating parameters. In this
section, we cover the following:

e Accessing parameters for debugging, diagnostics, and visualizations.

e Sharing parameters across different model components.

from mxnet import init, np, npx
from mxnet.gluon import nn

npx.set_np()

We start by focusing on an MLP with one hidden layer.

net = nn.Sequential()

net.add(nn.Dense(8, activation='relu’))
net.add(nn.Dense(1))

net.initialize() # Use the default initialization method

X = np.random.uniform(size=(2, 4))
net (X) .shape
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[21:49:32] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

2, 1

6.2.1 Parameter Access

Let’s start with how to access parameters from the models that you already know.

When a model is defined via the Sequential class, we can first access any layer by indexing
into the model as though it were a list. Each layer’s parameters are conveniently located in
its attribute.

We can inspect the parameters of the second fully connected layer as follows.

net[1].params

densel_ (
Parameter densel_weight (shape=(1, 8), dtype=float32)
Parameter densel_bias (shape=(1,), dtype=float32)

)

We can see that this fully connected layer contains two parameters, corresponding to that
layer’s weights and biases, respectively.

Targeted Parameters

Note that each parameter is represented as an instance of the parameter class. To do any-
thing useful with the parameters, we first need to access the underlying numerical values.
There are several ways to do this. Some are simpler while others are more general. The
following code extracts the bias from the second neural network layer, which returns a
parameter class instance, and further accesses that parameter’s value.

type(net[1].bias), net[1].bias.data()

(mxnet.gluon.parameter.Parameter, array([0.]))

Parameters are complex objects, containing values, gradients, and additional information.
That is why we need to request the value explicitly.

In addition to the value, each parameter also allows us to access the gradient. Because we
have not invoked backpropagation for this network yet, it is in its initial state.

net[1].weight.grad()
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array([[0., 0., 0., 0., 0., 0., 0., 0.11)

All Parameters at Once

When we need to perform operations on all parameters, accessing them one-by-one can
grow tedious. The situation can grow especially unwieldy when we work with more com-
plex, e.g., nested, modules, since we would need to recurse through the entire tree to extract
each sub-module’s parameters. Below we demonstrate accessing the parameters of all lay-
ers.

net.collect_params()

sequential@_ (
Parameter dense@_weight (shape=(8, 4), dtype=float32)
Parameter dense@_bias (shape=(8,), dtype=float32)
Parameter densel_weight (shape=(1, 8), dtype=float32)
Parameter densel_bias (shape=(1,), dtype=float32)

)

6.2.2 Tied Parameters

Often, we want to share parameters across multiple layers. Let’s see how to do this elegantly.
In the following we allocate a fully connected layer and then use its parameters specifically
to set those of another layer. Here we need to run the forward propagation net (X) before
accessing the parameters.

net = nn.Sequential()
# We need to give the shared layer a name so that we can refer to its
# parameters
shared = nn.Dense(8, activation='relu')
net.add(nn.Dense(8, activation='relu'),
shared,
nn.Dense(8, activation='relu’, params=shared.params),
nn.Dense(10))
net.initialize()

X = np.random.uniform(size=(2, 20))

net (X)

# Check whether the parameters are the same

print(net[1].weight.data()[0] == net[2].weight.data()[0])
net[1].weight.data()[0, @] = 100

# Make sure that they are actually the same object rather than just having the
# same value

print(net[1].weight.data()[0] == net[2].weight.data()[0])

[ True True True True True True True Truel]
[ True True True True True True True True]
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This example shows that the parameters of the second and third layer are tied. They are
not just equal, they are represented by the same exact tensor. Thus, if we change one of the
parameters, the other one changes, too.

You might wonder, when parameters are tied what happens to the gradients? Since the
model parameters contain gradients, the gradients of the second hidden layer and the third
hidden layer are added together during backpropagation.

6.2.3 Summary

We have several ways of accessing and tying model parameters.

6.2.4 Exercises

1. Use the NestMLP model defined in Section 6.1 and access the parameters of the various
layers.

2. Construct an MLP containing a shared parameter layer and train it. During the training
process, observe the model parameters and gradients of each layer.

3. Why is sharing parameters a good idea?

Discussions 1.

6.3 Parameter Initialization

Now that we know how to access the parameters, let’s look at how to initialize them prop-
erly. We discussed the need for proper initialization in Section 5.4. The deep learning
framework provides default random initializations to its layers. However, we often want to
initialize our weights according to various other protocols. The framework provides most
commonly used protocols, and also allows to create a custom initializer.

from mxnet import init, np, npx
from mxnet.gluon import nn

npx.set_np()

By default, MXNet initializes weight parameters by randomly drawing from a uniform dis-
tribution U (-0.07, 0.07), clearing bias parameters to zero. MXNet’s init module provides
a variety of preset initialization methods.

net = nn.Sequential()

net.add(nn.Dense(8, activation='relu'))
net.add(nn.Dense(1))

net.initialize() # Use the default initialization method

(continues on next page)
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(continued from previous page)
X = np.random.uniform(size=(2, 4))

net (X) .shape

[22:10:04] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

2, D

6.3.1 Built-in Initialization

Let’s begin by calling on built-in initializers. The code below initializes all weight parame-
ters as Gaussian random variables with standard deviation 0.01, while bias parameters are
cleared to zero.

# Here force_reinit ensures that parameters are freshly initialized even if
# they were already initialized previously
net.initialize(init=init.Normal(sigma=0.01), force_reinit=True)
net[0].weight.data()[0]

array([ 0.00354961, -0.00614133, 0.0107317 , ©.018307651)

We can also initialize all the parameters to a given constant value (say, 1).

net.initialize(init=init.Constant(1l), force_reinit=True)
net[0].weight.data()[0]

array([1., 1., 1., 1.1)

We can also apply different initializers for certain blocks. For example, below we initialize
the first layer with the Xavier initializer and initialize the second layer to a constant value
of 42.

net[0].weight.initialize(init=init.Xavier(), force_reinit=True)
net[1].initialize(init=init.Constant(42), force_reinit=True)
print(net[0].weight.data()[0])

print(net[1].weight.data())

[-0.26102373 0.15249556 -0.19274211 -0.24742058]
[[42. 42. 42. 42. 42. 42. 42. 42.]]
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Custom Initialization

Sometimes, the initialization methods we need are not provided by the deep learning frame-
work. In the example below, we define an initializer for any weight parameter w using the

following strange distribution:

U(5,10) with probability
w~10 with probability
U(-10,-5) with probability

Al— RI— A=

(6.3.1)

Here we define a subclass of the Initializer class. Usually, we only need to implement
the _init_weight function which takes a tensor argument (data) and assigns to it the

desired initialized values.

class MyInit(init.Initializer):
def _init_weight(self, name, data):
print('Init’, name, data.shape)
datal:] = np.random.uniform(-10, 10, data.shape)
data *= np.abs(data) >= 5

net.initialize(MyInit(), force_reinit=True)
net[0].weight.data()[:2]

Init dense@_weight (8, 4)
Init densel_weight (1, 8)

array([[-6.0683527, 8.991421 , -0. , O. 1,
[ 6.4198647, -9.728567 , -8.057975 , 0. 1D

Note that we always have the option of setting parameters directly.

net[0].weight.data()[:] += 1
net[0].weight.data()[0, 0] = 42
net[0].weight.data()[0]

array([42. , 9.991421, 1. , 1. D

6.3.2 Summary

We can initialize parameters using built-in and custom initializers.

6.3.3 Exercises

Look up the online documentation for more built-in initializers.

Discussions 12,


https://discuss.d2l.ai/t/8089

221

Lazy Initialization

6.4 Lazy Initialization
____________________________________________________________________________________________

So far, it might seem that we got away with being sloppy in setting up our networks. Specif-
ically, we did the following unintuitive things, which might not seem like they should
work:

e We defined the network architectures without specifying the input dimensionality.
e We added layers without specifying the output dimension of the previous layer.

e We even “initialized” these parameters before providing enough information to deter-
mine how many parameters our models should contain.

You might be surprised that our code runs at all. After all, there is no way the deep learning
framework could tell what the input dimensionality of a network would be. The trick here
is that the framework defers initialization, waiting until the first time we pass data through
the model, to infer the sizes of each layer on the fly.

Later on, when working with convolutional neural networks, this technique will become
even more convenient since the input dimensionality (e.g., the resolution of an image) will
affect the dimensionality of each subsequent layer. Hence the ability to set parameters
without the need to know, at the time of writing the code, the value of the dimension can
greatly simplify the task of specifying and subsequently modifying our models. Next, we
go deeper into the mechanics of initialization.

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

To begin, let’s instantiate an MLP.

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))

At this point, the network cannot possibly know the dimensions of the input layer’s weights
because the input dimension remains unknown.

Consequently the framework has not yet initialized any parameters. We confirm by at-
tempting to access the parameters below.

print(net.collect_params)
print(net.collect_params())
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<bound method Block.collect_params of Sequential(
(0): Dense(-1 -> 256, Activation(relu))
(1): Dense(-1 -> 10, linear)

)>

sequential@d_ (
Parameter dense@_weight (shape=(256, -1), dtype=float32)
Parameter dense@_bias (shape=(256,), dtype=float32)
Parameter densel_weight (shape=(10, -1), dtype=float32)
Parameter densel_bias (shape=(10,), dtype=float32)

)

Note that while the parameter objects exist, the input dimension to each layer is listed as
-1. MXNet uses the special value -1 to indicate that the parameter dimension remains un-
known. At this point, attempts to access net[0].weight.data() would trigger a runtime
error stating that the network must be initialized before the parameters can be accessed.
Now let’s see what happens when we attempt to initialize parameters via the initialize
method.

net.initialize()
net.collect_params()

[22:11:11] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

sequential@d_ (
Parameter dense@_weight (shape=(256, -1), dtype=float32)
Parameter dense@_bias (shape=(256,), dtype=float32)
Parameter densel_weight (shape=(10, -1), dtype=float32)
Parameter densel_bias (shape=(10,), dtype=float32)

)

As we can see, nothing has changed. When input dimensions are unknown, calls to initialize
do not truly initialize the parameters. Instead, this call registers to MXNet that we wish (and
optionally, according to which distribution) to initialize the parameters.

Next let’s pass data through the network to make the framework finally initialize parame-
ters.

X = np.random.uniform(size=(2, 20))
net (X)

net.collect_params()

sequentiale_ (
Parameter dense@_weight (shape=(256, 20), dtype=float32)
Parameter dense@_bias (shape=(256,), dtype=float32)
Parameter densel_weight (shape=(10, 256), dtype=float32)

(continues on next page)
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Parameter densel_bias (shape=(10,), dtype=float32)
)

As soon as we know the input dimensionality, 20, the framework can identify the shape of
the first layer’s weight matrix by plugging in the value of 20. Having recognized the first
layer’s shape, the framework proceeds to the second layer, and so on through the computa-
tional graph until all shapes are known. Note that in this case, only the first layer requires
lazy initialization, but the framework initializes sequentially. Once all parameter shapes
are known, the framework can finally initialize the parameters.

6.4.1 Summary

Lazy initialization can be convenient, allowing the framework to infer parameter shapes
automatically, making it easy to modify architectures and eliminating one common source
of errors. We can pass data through the model to make the framework finally initialize
parameters.

6.4.2 Exercises

1. What happens if you specify the input dimensions to the first layer but not to subsequent
layers? Do you get immediate initialization?

2. What happens if you specify mismatching dimensions?

3. What would you need to do if you have input of varying dimensionality? Hint: look at
the parameter tying.

Discussions 113

6.5 Custom Layers
____________________________________________________________________________________________

One factor behind deep learning’s success is the availability of a wide range of layers that
can be composed in creative ways to design architectures suitable for a wide variety of
tasks. For instance, researchers have invented layers specifically for handling images, text,
looping over sequential data, and performing dynamic programming. Sooner or later, you
will need a layer that does not exist yet in the deep learning framework. In these cases, you
must build a custom layer. In this section, we show you how.

from mxnet import np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()
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6.5.1 Layers without Parameters

To start, we construct a custom layer that does not have any parameters of its own. This
should look familiar if you recall our introduction to modules in Section 6.1. The following
CenteredLayer class simply subtracts the mean from its input. To build it, we simply need
to inherit from the base layer class and implement the forward propagation function.

class CenteredLayer(nn.Block):
def __init__(self, xxkwargs):
super().__init__(x*kwargs)
def forward(self, X):
return X - X.mean()

Let’s verify that our layer works as intended by feeding some data through it.

layer = CenteredLayer()
layer(np.array([1.0, 2, 3, 4, 51))

[21:49:18] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

array([-2., -1., ©o., 1., 2.1

We can now incorporate our layer as a component in constructing more complex mod-
els.

net = nn.Sequential()
net.add(nn.Dense(128), CenteredLayer())
net.initialize()

As an extra sanity check, we can send random data through the network and check that the
mean is in fact 0. Because we are dealing with floating point numbers, we may still see a
very small nonzero number due to quantization.

Y = net(np.random.rand(4, 8))

Y.mean()

array(3.783498e-10)

6.5.2 Layers with Parameters

Now that we know how to define simple layers, let’s move on to defining layers with pa-
rameters that can be adjusted through training. We can use built-in functions to create
parameters, which provide some basic housekeeping functionality. In particular, they gov-
ern access, initialization, sharing, saving, and loading model parameters. This way, among
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other benefits, we will not need to write custom serialization routines for every custom
layer.

Now let’s implement our own version of the fully connected layer. Recall that this layer
requires two parameters, one to represent the weight and the other for the bias. In this im-
plementation, we bake in the ReLLU activation as a default. This layer requires two input
arguments: in_units and units, which denote the number of inputs and outputs, respec-
tively.

class MyDense(nn.Block):
def __init__(self, units, in_units, #*xkwargs):
super().__init__(x*kwargs)
self.weight = self.params.get('weight’, shape=(in_units, units))

self.bias = self.params.get('bias’, shape=(units,))

def forward(self, x):
linear = np.dot(x, self.weight.data(ctx=x.ctx)) + self.bias.data(
ctx=x.ctx)
return npx.relu(linear)

Next, we instantiate the MyDense class and access its model parameters.

dense = MyDense(units=3, in_units=5)
dense.params

mydense@_ (
Parameter mydense@_weight (shape=(5, 3), dtype=<class 'numpy.float32'>)
Parameter mydense@_bias (shape=(3,), dtype=<class 'numpy.float32'>)

)

We can directly carry out forward propagation calculations using custom layers.

dense.initialize()
dense(np.random.uniform(size=(2, 5)))

array([[0. , 0.01633355, 0. 1,
[0. , 0.01581812, 0. 1D

We can also construct models using custom layers. Once we have that we can use it just
like the built-in fully connected layer.

net = nn.Sequential()
net.add(MyDense(8, in_units=64),
MyDense(1l, in_units=8))
net.initialize()
net(np.random.uniform(size=(2, 64)))
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array([[0.065085177,
[0.0615553 ]1)

6.5.3 Summary

We can design custom layers via the basic layer class. This allows us to define flexible
new layers that behave differently from any existing layers in the library. Once defined,
custom layers can be invoked in arbitrary contexts and architectures. Layers can have local
parameters, which can be created through built-in functions.

6.5.4 Exercises

1. Design a layer that takes an input and computes a tensor reduction, i.e., it returns yg =
Zi,j Wijkxl'.x]'.
2. Design a layer that returns the leading half of the Fourier coefficients of the data.

Discussions 114,

6.6 File I/0
_____________________________________________________________________________________

So far we have discussed how to process data and how to build, train, and test deep learn-
ing models. However, at some point we will hopefully be happy enough with the learned
models that we will want to save the results for later use in various contexts (perhaps even
to make predictions in deployment). Additionally, when running a long training process,
the best practice is to periodically save intermediate results (checkpointing) to ensure that
we do not lose several days’ worth of computation if we trip over the power cord of our
server. Thus it is time to learn how to load and store both individual weight vectors and
entire models. This section addresses both issues.

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

6.6.1 Loading and Saving Tensors

For individual tensors, we can directly invoke the load and save functions to read and
write them respectively. Both functions require that we supply a name, and save requires
as input the variable to be saved.

X = np.arange(4)
npx.save('x-file', x)
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[21:49:50] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

We can now read the data from the stored file back into memory.

x2 = npx.load('x-file")
X2

[array([0., 1., 2., 3.D)]

We can store a list of tensors and read them back into memory.

y = np.zeros(4)
npx.save('x-files', [x, yl)
X2, y2 = npx.load('x-files")
(x2, y2)

(array([0., 1., 2., 3.1), array([0., 0., 0., 0.1))

We can even write and read a dictionary that maps from strings to tensors. This is conve-
nient when we want to read or write all the weights in a model.

mydict = {'x': x, 'y': y}
npx.save( 'mydict’, mydict)
mydict2 = npx.load('mydict"’)
mydict2

{'x": array([0., 1., 2., 3.1), 'y': array([0., 0., 0., 0.1)}

6.6.2 Loading and Saving Model Parameters

Saving individual weight vectors (or other tensors) is useful, but it gets very tedious if we
want to save (and later load) an entire model. After all, we might have hundreds of param-
eter groups sprinkled throughout. For this reason the deep learning framework provides
built-in functionalities to load and save entire networks. An important detail to note is that
this saves model parameters and not the entire model. For example, if we have a 3-layer
MLP, we need to specify the architecture separately. The reason for this is that the models
themselves can contain arbitrary code, hence they cannot be serialized as naturally. Thus,
in order to reinstate a model, we need to generate the architecture in code and then load the
parameters from disk. Let’s start with our familiar MLP.

class MLP(nn.Block):
def __init__(self, xxkwargs):
super(MLP, self).__init__(**kwargs)

(continues on next page)
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(continued from previous page)

self.hidden = nn.Dense(256, activation='relu")
self.output = nn.Dense(10)

def forward(self, x):
return self.output(self.hidden(x))

net = MLP()

net.initialize()

X = np.random.uniform(size=(2, 20))
net(X)

<
[l

Next, we store the parameters of the model as a file with the name “mlp.params”.

net.save_parameters('mlp.params’)

To recover the model, we instantiate a clone of the original MLP model. Instead of ran-
domly initializing the model parameters, we read the parameters stored in the file directly.

clone = MLP()
clone.load_parameters('mlp.params")

Since both instances have the same model parameters, the computational result of the same
input X should be the same. Let’s verify this.

Y_clone = clone(X)
Y_clone ==

array([[ True, True, True, True, True, True, True, True, True,
True],
[ True, True, True, True, True, True, True, True, True,
Truell)

6.6.3 Summary

The save and load functions can be used to perform file I/O for tensor objects. We can
save and load the entire sets of parameters for a network via a parameter dictionary. Saving
the architecture has to be done in code rather than in parameters.

6.6.4 Exercises

1. Even if there is no need to deploy trained models to a different device, what are the
practical benefits of storing model parameters?

2. Assume that we want to reuse only parts of a network to be incorporated into a network
having a different architecture. How would you go about using, say the first two layers
from a previous network in a new network?
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3. How would you go about saving the network architecture and parameters? What restric-
tions would you impose on the architecture?

Discussions 12

6.7 GPUs

In tab_intro_decade, we illustrated the rapid growth of computation over the past two
decades. In a nutshell, GPU performance has increased by a factor of 1000 every decade
since 2000. This offers great opportunities but it also suggests that there was significant
demand for such performance.

In this section, we begin to discuss how to harness this computational performance for your
research. First by using a single GPU and at a later point, how to use multiple GPUs and
multiple servers (with multiple GPUs).

Specifically, we will discuss how to use a single NVIDIA GPU for calculations. First,
make sure you have at least one NVIDIA GPU installed. Then, download the NVIDIA
driver and CUDA 16 and follow the prompts to set the appropriate path. Once these prepa-
rations are complete, the nvidia-smi command can be used to view the graphics card
information.

You might have noticed that a MXNet tensor looks almost identical to a NumPy ndarray.
But there are a few crucial differences. One of the key features that distinguishes MXNet
from NumPy is its support for diverse hardware devices.

In MXNet, every array has a context. So far, by default, all variables and associated com-
putation have been assigned to the CPU. Typically, other contexts might be various GPUs.
Things can get even hairier when we deploy jobs across multiple servers. By assigning
arrays to contexts intelligently, we can minimize the time spent transferring data between
devices. For example, when training neural networks on a server with a GPU, we typically
prefer for the model’s parameters to live on the GPU.

Next, we need to confirm that the GPU version of MXNet is installed. If a CPU version of
MXNet is already installed, we need to uninstall it first. For example, use the pip unin-
stall mxnet command, then install the corresponding MXNet version according to your
CUDA version. Assuming you have CUDA 10.0 installed, you can install the MXNet ver-
sion that supports CUDA 10.0 via pip install mxnet-cule@.

To run the programs in this section, you need at least two GPUs. Note that this might
be extravagant for most desktop computers but it is easily available in the cloud, e.g., by
using the AWS EC2 multi-GPU instances. Almost all other sections do not require multiple
GPUs, but here we simply wish to illustrate data flow between different devices.
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from mxnet import np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

6.7.1 Computing Devices

We can specify devices, such as CPUs and GPUs, for storage and calculation. By default,
tensors are created in the main memory and then the CPU is used for calculations.

In MXNet, the CPU and GPU can be indicated by cpu() and gpu(). It should be noted that
cpu() (or any integer in the parentheses) means all physical CPUs and memory. This means
that MXNet’s calculations will try to use all CPU cores. However, gpu() only represents
one card and the corresponding memory. If there are multiple GPUs, we use gpu(i) to
represent the i™ GPU (i starts from 0). Also, gpu(@) and gpu() are equivalent.

def cpu(): #@save
"""Get the CPU device.”"""
return npx.cpu()

def gpu(i=Q): #@save
"""Get a GPU device."""
return npx.gpu(i)

cpu(), gpu(), gpu(l)

(cpu(@), gpu(@), gpu(l))

We can query the number of available GPUs.

def num_gpus(): #@save
"""Get the number of available GPUs."""
return npx.num_gpus()

num_gpus ()

Now we define two convenient functions that allow us to run code even if the requested
GPUs do not exist.

def try_gpu(i=0): #@save
"""Return gpu(i) if exists, otherwise return cpu().
if num_gpus() >= i + 1:
return gpu(i)
return cpu()

nnn

def try_all_gpus(): #@save
"""Return all available GPUs, or [cpu(),] if no GPU exists.”"""

(continues on next page)
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return [gpu(i) for i in range(num_gpus())]

try_gpu(), try_gpu(10), try_all_gpus()

(gpu(@), cpu(@), [gpu(@), gpu(l)D

6.7.2 Tensors and GPUs

By default, tensors are created on the CPU. We can query the device where the tensor is
located.

x = np.array([1, 2, 31)
X.ctx

[22:01:52] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

cpu(0)

It is important to note that whenever we want to operate on multiple terms, they need to be
on the same device. For instance, if we sum two tensors, we need to make sure that both
arguments live on the same device—otherwise the framework would not know where to
store the result or even how to decide where to perform the computation.

Storage on the GPU

There are several ways to store a tensor on the GPU. For example, we can specify a stor-
age device when creating a tensor. Next, we create the tensor variable X on the first gpu.
The tensor created on a GPU only consumes the memory of this GPU. We can use the
nvidia-smi command to view GPU memory usage. In general, we need to make sure that
we do not create data that exceeds the GPU memory limit.

X = np.ones((2, 3), ctx=try_gpu())
X

[22:01:53] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for GPU

array([[1., 1., 1.7,
[1., 1., 1.1, ctx=gpu(0))

Assuming that you have at least two GPUs, the following code will create a random tensor,
Y, on the second GPU.



232 Builders’ Guide

Y = np.random.uniform(size=(2, 3), ctx=try_gpu(l))
Y

[22:01:54] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for GPU

array([[0.67478997, 0.07540122, ©.9956977 1,
[0.09488854, 0.415456 , 0.112317361], ctx=gpu(l))

Copying

If we want to compute X + Y, we need to decide where to perform this operation. For
instance, as shown in Fig. 6.7.1, we can transfer X to the second GPU and perform the
operation there. Do not simply add X and Y, since this will result in an exception. The
runtime engine would not know what to do: it cannot find data on the same device and it
fails. Since Y lives on the second GPU, we need to move X there before we can add the
two.

X copy

gpu(0) gpu(1)

Copy data to perform an operation on the same device.

Z = X.copyto(try_gpu(l))

print(X)

print(2)

[[1. 1. 1.]

(1. 1. 1.1] egpu(@)
[[1. 1. 1.]

(1. 1. 1.1] egpu(l)

Now that the data (both Z and Y) are on the same GPU), we can add them up.

Y+ Z

array([[1.6747899, 1.0754012, 1.99569771,
[1.0948886, 1.415456 , 1.11231731], ctx=gpu(l))

Imagine that your variable Z already lives on your second GPU. What happens if we still
call Z.copyto(gpu(1))? It will make a copy and allocate new memory, even though that
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variable already lives on the desired device. There are times where, depending on the
environment our code is running in, two variables may already live on the same device.
So we want to make a copy only if the variables currently live in different devices. In
these cases, we can call as_in_ctx. If the variable already live in the specified device then
this is a no-op. Unless you specifically want to make a copy, as_in_ctx is the method of
choice.

Z.as_in_ctx(try_gpu(l)) is Z

True

Side Notes

People use GPUs to do machine learning because they expect them to be fast. But trans-
ferring variables between devices is slow: much slower than computation. So we want you
to be 100% certain that you want to do something slow before we let you do it. If the deep
learning framework just did the copy automatically without crashing then you might not
realize that you had written some slow code.

Transferring data is not only slow, it also makes parallelization a lot more difficult, since
we have to wait for data to be sent (or rather to be received) before we can proceed with
more operations. This is why copy operations should be taken with great care. As a rule of
thumb, many small operations are much worse than one big operation. Moreover, several
operations at a time are much better than many single operations interspersed in the code
unless you know what you are doing. This is the case since such operations can block if
one device has to wait for the other before it can do something else. It is a bit like ordering
your coffee in a queue rather than pre-ordering it by phone and finding out that it is ready
when you are.

Last, when we print tensors or convert tensors to the NumPy format, if the data is not in the
main memory, the framework will copy it to the main memory first, resulting in additional
transmission overhead. Even worse, it is now subject to the dreaded global interpreter lock
that makes everything wait for Python to complete.

6.7.3 Neural Networks and GPUs

Similarly, a neural network model can specify devices. The following code puts the model
parameters on the GPU.

net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(ctx=try_gpu())

We will see many more examples of how to run models on GPUs in the following chapters,
simply because the models will become somewhat more computationally intensive.
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For example, when the input is a tensor on the GPU, the model will calculate the result on
the same GPU.

net (X)

array([[0.04995865],
[0.04995865]], ctx=gpu(0))

Let’s confirm that the model parameters are stored on the same GPU.

net[0].weight.data().ctx

gpu(0)

Let the trainer support GPU.

@d21.add_to_class(d21l.Module) #@save
def set_scratch_params_device(self, device):
for attr in dir(self):
a = getattr(self, attr)
if isinstance(a, np.ndarray):
with autograd.record():
setattr(self, attr, a.as_in_ctx(device))
getattr(self, attr).attach_grad()
if isinstance(a, d21.Module):
a.set_scratch_params_device(device)
if isinstance(a, list):
for elem in a:
elem.set_scratch_params_device(device)

@d21.add_to_class(d21l.Trainer) #@save

def __init__(self, max_epochs, num_gpus=0, gradient_clip_val=0):
self.save_hyperparameters()
self.gpus = [d2l.gpu(i) for i in range(min(num_gpus, d21.num_gpus()))]

@d21.add_to_class(d2l.Trainer) #@save
def prepare_batch(self, batch):
if self.gpus:
batch = [a.as_in_context(self.gpus[0]) for a in batch]
return batch

@d21.add_to_class(d2l.Trainer) #@save
def prepare_model(self, model):
model . trainer = self
model .board.xlim = [0, self.max_epochs]
if self.gpus:
model.collect_params().reset_ctx(self.gpus[0])
model . set_scratch_params_device(self.gpus[0])
self.model = model
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In short, as long as all data and parameters are on the same device, we can learn models
efficiently. In the following chapters we will see several such examples.

6.7.4 Summary

We can specify devices for storage and calculation, such as the CPU or GPU. By default,
data is created in the main memory and then uses the CPU for calculations. The deep
learning framework requires all input data for calculation to be on the same device, be it
CPU or the same GPU. You can lose significant performance by moving data without care.
A typical mistake is as follows: computing the loss for every minibatch on the GPU and
reporting it back to the user on the command line (or logging it in a NumPy ndarray) will
trigger a global interpreter lock which stalls all GPUs. It is much better to allocate memory
for logging inside the GPU and only move larger logs.

6.7.5 Exercises

1. Try a larger computation task, such as the multiplication of large matrices, and see the
difference in speed between the CPU and GPU. What about a task with a small number
of calculations?

2. How should we read and write model parameters on the GPU?

3. Measure the time it takes to compute 1000 matrix—matrix multiplications of 100 x 100
matrices and log the Frobenius norm of the output matrix one result at a time. Compare
it with keeping a log on the GPU and transferring only the final result.

4. Measure how much time it takes to perform two matrix—matrix multiplications on two
GPUs at the same time. Compare it with computing in in sequence on one GPU. Hint:
you should see almost linear scaling.

Discussions 117
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Image data is represented as a two-dimensional grid of pixels, be the image monochro-
matic or in color. Accordingly each pixel corresponds to one or multiple numerical values
respectively. So far we have ignored this rich structure and treated images as vectors of
numbers by flattening them, irrespective of the spatial relation between pixels. This deeply
unsatisfying approach was necessary in order to feed the resulting one-dimensional vectors
through a fully connected MLP.

Because these networks are invariant to the order of the features, we could get similar
results regardless of whether we preserve an order corresponding to the spatial structure
of the pixels or if we permute the columns of our design matrix before fitting the MLP’s
parameters. Ideally, we would leverage our prior knowledge that nearby pixels are typically
related to each other, to build efficient models for learning from image data.

This chapter introduces convolutional neural networks (CNNs) (LeCun et al., 1995), a
powerful family of neural networks that are designed for precisely this purpose. CNN-
based architectures are now ubiquitous in the field of computer vision. For instance, on the
Imagnet collection (Deng et al., 2009) it was only the use of convolutional neural networks,
in short Convnets, that provided significant performance improvements (Krizhevsky et al.,
2012).

Modern CNN:ss, as they are called colloquially, owe their design to inspirations from biol-
ogy, group theory, and a healthy dose of experimental tinkering. In addition to their sample
efficiency in achieving accurate models, CNNs tend to be computationally efficient, both
because they require fewer parameters than fully connected architectures and because con-
volutions are easy to parallelize across GPU cores (Chetlur ez al., 2014). Consequently,
practitioners often apply CNNs whenever possible, and increasingly they have emerged
as credible competitors even on tasks with a one-dimensional sequence structure, such as
audio (Abdel-Hamid er al., 2014), text (Kalchbrenner et al., 2014), and time series analy-
sis (LeCun et al., 1995), where recurrent neural networks are conventionally used. Some
clever adaptations of CNNs have also brought them to bear on graph-structured data (Kipf
and Welling, 2016) and in recommender systems.

First, we will dive more deeply into the motivation for convolutional neural networks. This
is followed by a walk through the basic operations that comprise the backbone of all con-
volutional networks. These include the convolutional layers themselves, nitty-gritty details
including padding and stride, the pooling layers used to aggregate information across ad-
jacent spatial regions, the use of multiple channels at each layer, and a careful discussion



237

From Fully Connected Layers to Convolutions

of the structure of modern architectures. We will conclude the chapter with a full working
example of LeNet, the first convolutional network successfully deployed, long before the
rise of modern deep learning. In the next chapter, we will dive into full implementations of
some popular and comparatively recent CNN architectures whose designs represent most
of the techniques commonly used by modern practitioners.

7.1 From Fully Connected Layers to Convolutions
. _________________________________________________________________________________________|

To this day, the models that we have discussed so far remain appropriate options when we
are dealing with tabular data. By tabular, we mean that the data consist of rows corre-
sponding to examples and columns corresponding to features. With tabular data, we might
anticipate that the patterns we seek could involve interactions among the features, but we
do not assume any structure a priori concerning how the features interact.

Sometimes, we truly lack the knowledge to be able to guide the construction of fancier
architectures. In these cases, an MLP may be the best that we can do. However, for high-
dimensional perceptual data, such structureless networks can grow unwieldy.

For instance, let’s return to our running example of distinguishing cats from dogs. Say that
we do a thorough job in data collection, collecting an annotated dataset of one-megapixel
photographs. This means that each input to the network has one million dimensions. Even
an aggressive reduction to one thousand hidden dimensions would require a fully connected
layer characterized by 10°x 103 = 10° parameters. Unless we have lots of GPUs, a talent for
distributed optimization, and an extraordinary amount of patience, learning the parameters
of this network may turn out to be infeasible.

A careful reader might object to this argument on the basis that one megapixel resolution
may not be necessary. However, while we might be able to get away with one hundred
thousand pixels, our hidden layer of size 1000 grossly underestimates the number of hid-
den units that it takes to learn good representations of images, so a practical system will
still require billions of parameters. Moreover, learning a classifier by fitting so many pa-
rameters might require collecting an enormous dataset. And yet today both humans and
computers are able to distinguish cats from dogs quite well, seemingly contradicting these
intuitions. That is because images exhibit rich structure that can be exploited by humans
and machine learning models alike. Convolutional neural networks (CNNs) are one cre-
ative way that machine learning has embraced for exploiting some of the known structure
in natural images.

7.1.1 Invariance

Imagine that we want to detect an object in an image. It seems reasonable that whatever
method we use to recognize objects should not be overly concerned with the precise location
of the object in the image. Ideally, our system should exploit this knowledge. Pigs usually
do not fly and planes usually do not swim. Nonetheless, we should still recognize a pig



238 Convolutional Neural Networks

were one to appear at the top of the image. We can draw some inspiration here from the
children’s game “Where’s Waldo” (which itself has inspired many real-life imitations, such
as that depicted in Fig. 7.1.1). The game consists of a number of chaotic scenes bursting
with activities. Waldo shows up somewhere in each, typically lurking in some unlikely
location. The reader’s goal is to locate him. Despite his characteristic outfit, this can be
surprisingly difficult, due to the large number of distractions. However, what Waldo looks
like does not depend upon where Waldo is located. We could sweep the image with a Waldo
detector that could assign a score to each patch, indicating the likelihood that the patch
contains Waldo. In fact, many object detection and segmentation algorithms are based
on this approach (Long et al., 2015). CNNs systematize this idea of spatial invariance,
exploiting it to learn useful representations with fewer parameters.

N \ e ’ N g ‘
1|30 (ageg N N gl s [0 R (TP RN
Can you find Waldo (image courtesy of William Murphy (Infomatique))?

Fig. 7.1.1

‘We can now make these intuitions more concrete by enumerating a few desiderata to guide
our design of a neural network architecture suitable for computer vision:

1. In the earliest layers, our network should respond similarly to the same patch, regardless
of where it appears in the image. This principle is called translation invariance (or
translation equivariance).

2. The earliest layers of the network should focus on local regions, without regard for the
contents of the image in distant regions. This is the locality principle. Eventually, these
local representations can be aggregated to make predictions at the whole image level.

3. As we proceed, deeper layers should be able to capture longer-range features of the
image, in a way similar to higher level vision in nature.

Let’s see how this translates into mathematics.

7.1.2 Constraining the MLP

To start off, we can consider an MLP with two-dimensional images X as inputs and their im-
mediate hidden representations H similarly represented as matrices (they are two-dimensional
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tensors in code), where both X and H have the same shape. Let that sink in. We now
imagine that not only the inputs but also the hidden representations possess spatial struc-
ture.

Let [X];,; and [H]; ; denote the pixel at location (i, j) in the input image and hidden rep-
resentation, respectively. Consequently, to have each of the hidden units receive input from
each of the input pixels, we would switch from using weight matrices (as we did previously
in MLPs) to representing our parameters as fourth-order weight tensors W. Suppose that
U contains biases, we could formally express the fully connected layer as

[HI; ;= [Ulij+ >0 > (Wi jea (Xl
k1

(7.1.1)
= [U]i’j + Z Z[V]i,j,a,b [X]i+a,j+b-
a b

The switch from W to V is entirely cosmetic for now since there is a one-to-one correspon-
dence between coefficients in both fourth-order tensors. We simply re-index the subscripts
(k,1) such that k =i +aand [ = j + b. In other words, we set [V]; j a.p = [Wli j.iva, j+b-
The indices a and b run over both positive and negative offsets, covering the entire image.
For any given location (i, j) in the hidden representation [H]; ;, we compute its value by
summing over pixels in x, centered around (i, j) and weighted by [V]; j «.». Before we
carry on, let’s consider the total number of parameters required for a single layer in this
parametrization: a 1000 x 1000 image (1 megapixel) is mapped to a 1000 x 1000 hidden
representation. This requires 10'? parameters, far beyond what computers currently can
handle.

Translation Invariance

Now let’s invoke the first principle established above: translation invariance (Zhang et al.,
1988). This implies that a shift in the input X should simply lead to a shift in the hidden
representation H. This is only possible if V and U do not actually depend on (7, j). As
such, we have [V]; j a.b = [V]a,» and U is a constant, say u. As a result, we can simplify
the definition for H:

[H]i = u+ ) > [Vies [Xlisa,js- (7.1.2)
a b

This is a convolution! We are effectively weighting pixels at (i + a, j + b) in the vicinity of
location (i, j) with coeflicients [ V], 5 to obtain the value [H]; ;. Note that [V], ; needs
many fewer coefficients than [V]; ; .5 since it no longer depends on the location within
the image. Consequently, the number of parameters required is no longer 10'? but a much
more reasonable 4 x 10°: we still have the dependency on a, b € (—1000, 1000). In short,
we have made significant progress. Time-delay neural networks (TDNN5s) are some of the
first examples to exploit this idea (Waibel et al., 1989).

Locality

Now let’s invoke the second principle: locality. As motivated above, we believe that we
should not have to look very far away from location (i, j) in order to glean relevant infor-
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mation to assess what is going on at [H]; ;. This means that outside some range |a| > A
or |b| > A, we should set [V], 5 = 0. Equivalently, we can rewrite [H]; ; as

A A

[Hlij=u+ > > (Vs Xliva e (7.1.3)

a=—A b=—A

This reduces the number of parameters from 4x 10° to 4A2, where A is typically smaller than
10. As such, we reduced the number of parameters by another four orders of magnitude.
Note that (7.1.3), is what is called, in a nutshell, a convolutional layer. Convolutional
neural networks (CNN5s) are a special family of neural networks that contain convolutional
layers. In the deep learning research community, V is referred to as a convolution kernel,
a filter, or simply the layer’s weights that are learnable parameters.

While previously, we might have required billions of parameters to represent just a single
layer in an image-processing network, we now typically need just a few hundred, without
altering the dimensionality of either the inputs or the hidden representations. The price
paid for this drastic reduction in parameters is that our features are now translation invariant
and that our layer can only incorporate local information, when determining the value of
each hidden activation. All learning depends on imposing inductive bias. When that bias
agrees with reality, we get sample-efficient models that generalize well to unseen data. But
of course, if those biases do not agree with reality, e.g., if images turned out not to be
translation invariant, our models might struggle even to fit our training data.

This dramatic reduction in parameters brings us to our last desideratum, namely that deeper
layers should represent larger and more complex aspects of an image. This can be achieved
by interleaving nonlinearities and convolutional layers repeatedly.

7.1.3 Convolutions

Let’s briefly review why (7.1.3) is called a convolution. In mathematics, the convolution
between two functions (Rudin, 1973), say f, g : R4 — R is defined as

(f *§)(x) = / F(2)g(x - 7)da. (7.1.4)

That is, we measure the overlap between f and g when one function is “flipped” and shifted
by x. Whenever we have discrete objects, the integral turns into a sum. For instance, for
vectors from the set of square-summable infinite-dimensional vectors with index running
over Z we obtain the following definition:

(f+8)(D) = ). fla)g(i—a). (7.1.5)

For two-dimensional tensors, we have a corresponding sum with indices (a, b) for f and
(i —a, j — b) for g, respectively:
(f*8)i.j)= ), ) fla.b)gli=a,j=b). (7.1.6)
a b

This looks similar to (7.1.3), with one major difference. Rather than using (i + a, j + D),
we are using the difference instead. Note, though, that this distinction is mostly cosmetic
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since we can always match the notation between (7.1.3) and (7.1.6). Our original definition
in (7.1.3) more properly describes a cross-correlation. We will come back to this in the
following section.

7.1.4 Channels

Returning to our Waldo detector, let’s see what this looks like. The convolutional layer picks
windows of a given size and weighs intensities according to the filter V, as demonstrated
in Fig. 7.1.2. We might aim to learn a model so that wherever the “waldoness” is highest,
we should find a peak in the hidden layer representations.

2
_

Detect Waldo (image courtesy of William Murphy (Infomatique)).

There is just one problem with this approach. So far, we blissfully ignored that images
consist of three channels: red, green, and blue. In sum, images are not two-dimensional
objects but rather third-order tensors, characterized by a height, width, and channel, e.g.,
with shape 1024 x 1024 x 3 pixels. While the first two of these axes concern spatial relation-
ships, the third can be regarded as assigning a multidimensional representation to each pixel
location. We thus index X as [X]; ; x. The convolutional filter has to adapt accordingly.
Instead of [V],.5, we now have [V], p.c.

Moreover, just as our input consists of a third-order tensor, it turns out to be a good idea
to similarly formulate our hidden representations as third-order tensors H. In other words,
rather than just having a single hidden representation corresponding to each spatial location,
we want an entire vector of hidden representations corresponding to each spatial location.
We could think of the hidden representations as comprising a number of two-dimensional
grids stacked on top of each other. As in the inputs, these are sometimes called channels.
They are also sometimes called feature maps, as each provides a spatialized set of learned
features for the subsequent layer. Intuitively, you might imagine that at lower layers that are
closer to inputs, some channels could become specialized to recognize edges while others
could recognize textures.

To support multiple channels in both inputs (X) and hidden representations (H), we can add
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a fourth coordinate to V: [V] 4 p.c.q- Putting everything together we have:

A A
Hlija= D, D, D NVabealXlivajsoes (7.1.7)

a=—Ab=-A ¢
where d indexes the output channels in the hidden representations H. The subsequent con-
volutional layer will go on to take a third-order tensor, H, as input. We take (7.1.7), because
of its generality, as the definition of a convolutional layer for multiple channels, where V
is a kernel or filter of the layer.

There are still many operations that we need to address. For instance, we need to figure out
how to combine all the hidden representations to a single output, e.g., whether there is a
Waldo anywhere in the image. We also need to decide how to compute things efficiently,
how to combine multiple layers, appropriate activation functions, and how to make reason-
able design choices to yield networks that are effective in practice. We turn to these issues
in the remainder of the chapter.

7.1.5 Summary and Discussion

In this section we derived the structure of convolutional neural networks from first prin-
ciples. While it is unclear whether this was the route taken to the invention of CNNs, it
is satisfying to know that they are the right choice when applying reasonable principles
to how image processing and computer vision algorithms should operate, at least at lower
levels. In particular, translation invariance in images implies that all patches of an image
will be treated in the same manner. Locality means that only a small neighborhood of pix-
els will be used to compute the corresponding hidden representations. Some of the earliest
references to CNNSs are in the form of the Neocognitron (Fukushima, 1982).

A second principle that we encountered in our reasoning is how to reduce the number of
parameters in a function class without limiting its expressive power, at least, whenever
certain assumptions on the model hold. We saw a dramatic reduction of complexity as a
result of this restriction, turning computationally and statistically infeasible problems into
tractable models.

Adding channels allowed us to bring back some of the complexity that was lost due to the re-
strictions imposed on the convolutional kernel by locality and translation invariance. Note
that it is quite natural to add channels other than just red, green, and blue. Many satellite
images, in particular for agriculture and meteorology, have tens to hundreds of channels,
generating hyperspectral images instead. They report data on many different wavelengths.
In the following we will see how to use convolutions effectively to manipulate the dimen-
sionality of the images they operate on, how to move from location-based to channel-based
representations, and how to deal with large numbers of categories efficiently.

7.1.6 Exercises

1. Assume that the size of the convolution kernel is A = 0. Show that in this case the
convolution kernel implements an MLP independently for each set of channels. This
leads to the Network in Network architectures (Lin et al., 2013).
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2. Audio data is often represented as a one-dimensional sequence.
1. When might you want to impose locality and translation invariance for audio?
2. Derive the convolution operations for audio.

3. Can you treat audio using the same tools as computer vision? Hint: use the spectro-
gram.

3. Why might translation invariance not be a good idea after all? Give an example.

4. Do you think that convolutional layers might also be applicable for text data? Which
problems might you encounter with language?

5. What happens with convolutions when an object is at the boundary of an image?

6. Prove that the convolution is symmetric, i.e., f * g = g = f.

: - 118
118 Discussions**°.
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=i 7.2 Convolutions for Images

Now that we understand how convolutional layers work in theory, we are ready to see how
they work in practice. Building on our motivation of convolutional neural networks as
efficient architectures for exploring structure in image data, we stick with images as our
running example.

from mxnet import autograd, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

7.2.1 The Cross-Correlation Operation

Recall that strictly speaking, convolutional layers are a misnomer, since the operations they
express are more accurately described as cross-correlations. Based on our descriptions of
convolutional layers in Section 7.1, in such a layer, an input tensor and a kernel tensor are
combined to produce an output tensor through a cross-correlation operation.

Let’s ignore channels for now and see how this works with two-dimensional data and hidden
representations. In Fig. 7.2.1, the input is a two-dimensional tensor with a height of 3 and
width of 3. We mark the shape of the tensor as 3 x 3 or (3, 3). The height and width of the
kernel are both 2. The shape of the kernel window (or convolution window) is given by the
height and width of the kernel (here it is 2 X 2).

In the two-dimensional cross-correlation operation, we begin with the convolution window
positioned at the upper-left corner of the input tensor and slide it across the input tensor,
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Two-dimensional cross-correlation operation. The shaded portions are the first output
element as well as the input and kernel tensor elements used for the output computation:
Ox0+1x1+3x2+4x3=19.

both from left to right and top to bottom. When the convolution window slides to a certain
position, the input subtensor contained in that window and the kernel tensor are multiplied
elementwise and the resulting tensor is summed up yielding a single scalar value. This
result gives the value of the output tensor at the corresponding location. Here, the output
tensor has a height of 2 and width of 2 and the four elements are derived from the two-
dimensional cross-correlation operation:

O0x0+1x1+3%x2+4x3=19,
IX0+2Xx14+4%X2+5%x3=25,
3x0+4x1+6%x2+7%x3=37,
4x0+5X1+7%x2+8x%x3=43.

(7.2.1)

Note that along each axis, the output size is slightly smaller than the input size. Because
the kernel has width and height greater than 1, we can only properly compute the cross-
correlation for locations where the kernel fits wholly within the image, the output size is
given by the input size ny X ny, minus the size of the convolution kernel ky, X ky, via

(nh — kn + 1) X (ny — ky + 1). (7.2.2)

This is the case since we need enough space to “shift” the convolution kernel across the
image. Later we will see how to keep the size unchanged by padding the image with zeros
around its boundary so that there is enough space to shift the kernel. Next, we implement
this process in the corr2d function, which accepts an input tensor X and a kernel tensor K
and returns an output tensor Y.

def corr2d(X, K): #@save
"""Compute 2D cross-correlation.
h, w = K.shape
Y = np.zeros((X.shape[0] - h + 1, X.shape[l1l] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j1 = (X[i:i + h, j:3 + wl * K).sum()
return Y

nnn

We can construct the input tensor X and the kernel tensor K from Fig. 7.2.1 to validate
the output of the above implementation of the two-dimensional cross-correlation opera-
tion.
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X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.011)
K = np.array([[0.0, 1.0]1, [2.0, 3.0]1])
corr2d(X, K)

[22:11:22] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

array(L[19., 25.1,
[37., 43.1D)

7.2.2 Convolutional Layers

A convolutional layer cross-correlates the input and kernel and adds a scalar bias to produce
an output. The two parameters of a convolutional layer are the kernel and the scalar bias.
When training models based on convolutional layers, we typically initialize the kernels
randomly, just as we would with a fully connected layer.

We are now ready to implement a two-dimensional convolutional layer based on the corr2d
function defined above. In the __init__ constructor method, we declare weight and bias
as the two model parameters. The forward propagation method calls the corr2d function
and adds the bias.

class Conv2D(nn.Block):
def __init__(self, kernel_size, **kwargs):
super().__init__(**kwargs)
self.weight = self.params.get('weight’', shape=kernel_size)
self.bias = self.params.get('bias’, shape=(1,))

def forward(self, x):
return corr2d(x, self.weight.data()) + self.bias.data()

In 2 Xw convolution or an 7 X w convolution kernel, the height and width of the convolution
kernel are i and w, respectively. We also refer to a convolutional layer with an & X w
convolution kernel simply as an & X w convolutional layer.

7.2.3 Object Edge Detection in Images

Let’s take a moment to parse a simple application of a convolutional layer: detecting the
edge of an object in an image by finding the location of the pixel change. First, we construct
an “image” of 6 X 8 pixels. The middle four columns are black (0) and the rest are white

(D).

X = np.ones((6, 8))
X[:, 2:6] =0
X
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array([[1., 1., 0., 0., 0., 0., 1., 1.1,
[1., 1., 0., 0., 0., 0., 1., 1.1,
[1., 1., 0., 0.,0.,0., 1., 1.1,
[1., 1., 0., 0., 0., 0., 1., 1.1,
[1., 1., 0., 0.,0.,0., 1., 1.1,
[1., 1., 0., 0., 0., 0., 1., 1.1D

Next, we construct a kernel K with a height of 1 and a width of 2. When we perform
the cross-correlation operation with the input, if the horizontally adjacent elements are
the same, the output is 0. Otherwise, the output is nonzero. Note that this kernel is a
special case of a finite difference operator. At location (7, j) it computes x; ; — X(i+1), ;>
i.e., it computes the difference between the values of horizontally adjacent pixels. This is
a discrete approximation of the first derivative in the horizontal direction. After all, for
a function f(i, j) its derivative —0; f (i, j) = lime_ w
works in practice.

. Let’s see how this

K = np.array([[1.0, -1.01])

We are ready to perform the cross-correlation operation with arguments X (our input) and
K (our kernel). As you can see, we detect 1 for the edge from white to black and —1 for the
edge from black to white. All other outputs take value 0.

Y = corr2d(X, K)
Y

array([[ ., 1., ©o., 0., 0., -1., 0.1,
[e., 1., 0., ©., 0., -1., 0.1,
[e., 1., o., 0., 0., -1., 0.1,
[e., 1., 0., ©., 0., -1., 0.1,
[e., 1., o., 0., 0., -1., 0.1,
[o., 1., ©., 0., 0., -1., 0.1

We can now apply the kernel to the transposed image. As expected, it vanishes. The kernel
K only detects vertical edges.

corr2d(d2l.transpose(X), K)

array([[0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.1])

7.2.4 Learning a Kernel
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Designing an edge detector by finite differences [1, -1] is neat if we know this is precisely
what we are looking for. However, as we look at larger kernels, and consider successive
layers of convolutions, it might be impossible to specify precisely what each filter should
be doing manually.

Now let’s see whether we can learn the kernel that generated Y from X by looking at the
input—output pairs only. We first construct a convolutional layer and initialize its kernel as
arandom tensor. Next, in each iteration, we will use the squared error to compare Y with the
output of the convolutional layer. We can then calculate the gradient to update the kernel.
For the sake of simplicity, in the following we use the built-in class for two-dimensional
convolutional layers and ignore the bias.

# Construct a two-dimensional convolutional layer with 1 output channel and a
# kernel of shape (1, 2). For the sake of simplicity, we ignore the bias here
conv2d = nn.Conv2D(1, kernel_size=(1, 2), use_bias=False)
conv2d.initialize()

# The two-dimensional convolutional layer uses four-dimensional input and

# output in the format of (example, channel, height, width), where the batch

# size (number of examples in the batch) and the number of channels are both 1
X = X.reshape(1l, 1, 6, 8)

Y = Y.reshape(1l, 1, 6, 7)

lr = 3e-2 # Learning rate

for i in range(10):
with autograd.record():
Y_hat = conv2d(X)
1 = (Y_hat - Y) *x 2
1.backward()
# Update the kernel
conv2d.weight.data()[:] -= 1r * conv2d.weight.grad()
if (i +1)%2==o0:
print(f'epoch {i + 1}, loss {float(l.sum()):.3f}")

epoch 2, loss 4.949

epoch 4, loss 0.831

epoch 6, loss 0.140

epoch 8, loss 0.024

epoch 10, loss 0.004

[22:11:22] ../src/base.cc:48: GPU context requested, but no GPUs found.

Note that the error has dropped to a small value after 10 iterations. Now we will take a look
at the kernel tensor we learned.

conv2d.weight.data().reshape((1, 2))

array([[ ©.9895 , -0.98737051])

Indeed, the learned kernel tensor is remarkably close to the kernel tensor K we defined
earlier.
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7.2.5 Cross-Correlation and Convolution

Recall our observation from Section 7.1 of the correspondence between the cross-correlation
and convolution operations. Here let’s continue to consider two-dimensional convolutional
layers. What if such layers perform strict convolution operations as defined in (7.1.6) in-
stead of cross-correlations? In order to obtain the output of the strict convolution operation,
we only need to flip the two-dimensional kernel tensor both horizontally and vertically, and
then perform the cross-correlation operation with the input tensor.

It is noteworthy that since kernels are learned from data in deep learning, the outputs of
convolutional layers remain unaffected no matter such layers perform either the strict con-
volution operations or the cross-correlation operations.

To illustrate this, suppose that a convolutional layer performs cross-correlation and learns
the kernel in Fig. 7.2.1, which is here denoted as the matrix K. Assuming that other con-
ditions remain unchanged, when this layer instead performs strict convolution, the learned
kernel K’ will be the same as K after K’ is flipped both horizontally and vertically. That
is to say, when the convolutional layer performs strict convolution for the input in Fig.
7.2.1 and K’, the same output in Fig. 7.2.1 (cross-correlation of the input and K) will be
obtained.

In keeping with standard terminology in deep learning literature, we will continue to refer to
the cross-correlation operation as a convolution even though, strictly-speaking, it is slightly
different. Furthermore, we use the term element to refer to an entry (or component) of any
tensor representing a layer representation or a convolution kernel.

7.2.6 Feature Map and Receptive Field

As described in Section 7.1.4, the convolutional layer output in Fig. 7.2.1 is sometimes
called a feature map, as it can be regarded as the learned representations (features) in the
spatial dimensions (e.g., width and height) to the subsequent layer. In CNNs, for any el-
ement x of some layer, its receptive field refers to all the elements (from all the previous
layers) that may affect the calculation of x during the forward propagation. Note that the
receptive field may be larger than the actual size of the input.

Let’s continue to use Fig. 7.2.1 to explain the receptive field. Given the 2 X 2 convolution
kernel, the receptive field of the shaded output element (of value 19) is the four elements
in the shaded portion of the input. Now let’s denote the 2 x 2 output as Y and consider a
deeper CNN with an additional 2Xx?2 convolutional layer that takes Y as its input, outputting
a single element z. In this case, the receptive field of z on Y includes all the four elements
of Y, while the receptive field on the input includes all the nine input elements. Thus, when
any element in a feature map needs a larger receptive field to detect input features over a
broader area, we can build a deeper network.

Receptive fields derive their name from neurophysiology. A series of experiments on a
range of animals using different stimuli (Hubel and Wiesel, 1959, Hubel and Wiesel, 1962,
Hubel and Wiesel, 1968) explored the response of what is called the visual cortex on said
stimuli. By and large they found that lower levels respond to edges and related shapes.
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Later on, Field (1987) illustrated this effect on natural images with, what can only be called,
convolutional kernels. We reprint a key figure in Fig. 7.2.2 to illustrate the striking simi-
larities.

Figure and caption taken from Field (1987): An example of coding with six different
channels. (Left) Examples of the six types of sensor associated with each channel. (Right)
Convolution of the image in (Middle) with the six sensors shown in (Left). The response
of the individual sensors is determined by sampling these filtered images at a distance
proportional to the size of the sensor (shown with dots). This diagram shows the response
of only the even symmetric sensors.

As it turns out, this relation even holds for the features computed by deeper layers of net-
works trained on image classification tasks, as demonstrated in, for example, Kuzovkin et
al. (2018). Suffice it to say, convolutions have proven to be an incredibly powerful tool for
computer vision, both in biology and in code. As such, it is not surprising (in hindsight)
that they heralded the recent success in deep learning.

7.2.7 Summary

The core computation required for a convolutional layer is a cross-correlation operation.
We saw that a simple nested for-loop is all that is required to compute its value. If we
have multiple input and multiple output channels, we are performing a matrix—matrix op-
eration between channels. As can be seen, the computation is straightforward and, most
importantly, highly local. This affords significant hardware optimization and many recent
results in computer vision are only possible because of that. After all, it means that chip
designers can invest in fast computation rather than memory when it comes to optimizing
for convolutions. While this may not lead to optimal designs for other applications, it does
open the door to ubiquitous and affordable computer vision.
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In terms of convolutions themselves, they can be used for many purposes, for example
detecting edges and lines, blurring images, or sharpening them. Most importantly, it is
not necessary that the statistician (or engineer) invents suitable filters. Instead, we can
simply learn them from data. This replaces feature engineering heuristics by evidence-
based statistics. Lastly, and quite delightfully, these filters are not just advantageous for
building deep networks but they also correspond to receptive fields and feature maps in the
brain. This gives us confidence that we are on the right track.

7.2.8 Exercises

1. Construct an image X with diagonal edges.
1. What happens if you apply the kernel K in this section to it?
2. What happens if you transpose X?
3. What happens if you transpose K?

2. Design some kernels manually.

1. Given a directional vector v = (v, v3), derive an edge-detection kernel that detects
edges orthogonal to v, i.e., edges in the direction (v, —vy).

2. Derive a finite difference operator for the second derivative. What is the minimum
size of the convolutional kernel associated with it? Which structures in images re-
spond most strongly to it?

3. How would you design a blur kernel? Why might you want to use such a kernel?
4. What is the minimum size of a kernel to obtain a derivative of order d?

3. When you try to automatically find the gradient for the Conv2D class we created, what
kind of error message do you see?

4. How do you represent a cross-correlation operation as a matrix multiplication by chang-
ing the input and kernel tensors?

Discussions 19,

7.3 Padding and Stride
. _________________________________________________________________________________________|

Recall the example of a convolution in Fig. 7.2.1. The input had both a height and width of
3 and the convolution kernel had both a height and width of 2, yielding an output represen-
tation with dimension 2 X 2. Assuming that the input shape is ny, X n,, and the convolution
kernel shape is ky X ky, the output shape will be (ny, — ky + 1) X (ny — ky + 1): we can
only shift the convolution kernel so far until it runs out of pixels to apply the convolution
to.


https://discuss.d2l.ai/t/65

251

Padding and Stride

In the following we will explore a number of techniques, including padding and strided
convolutions, that offer more control over the size of the output. As motivation, note that
since kernels generally have width and height greater than 1, after applying many successive
convolutions, we tend to wind up with outputs that are considerably smaller than our input.
If we start with a 240 x 240 pixel image, ten layers of 5 X 5 convolutions reduce the image
to 200 x 200 pixels, slicing off 30% of the image and with it obliterating any interesting
information on the boundaries of the original image. Padding is the most popular tool for
handling this issue. In other cases, we may want to reduce the dimensionality drastically,
e.g., if we find the original input resolution to be unwieldy. Strided convolutions are a
popular technique that can help in these instances.

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

7.3.1 Padding

As described above, one tricky issue when applying convolutional layers is that we tend
to lose pixels on the perimeter of our image. Consider Fig. 7.3.1 that depicts the pixel
utilization as a function of the convolution kernel size and the position within the image.
The pixels in the corners are hardly used at all.

1 2 1 3

1 2 1 3

Pixel utilization for convolutions of size 1 X 1, 2 X 2, and 3 X 3 respectively.

Since we typically use small kernels, for any given convolution we might only lose a few
pixels but this can add up as we apply many successive convolutional layers. One straight-
forward solution to this problem is to add extra pixels of filler around the boundary of our
input image, thus increasing the effective size of the image. Typically, we set the values of
the extra pixels to zero. In Fig. 7.3.2, we pad a 3 X 3 input, increasing its size to 5 X 5. The
corresponding output then increases to a 4 x4 matrix. The shaded portions are the first out-
put element as well as the input and kernel tensor elements used for the output computation:
0x0+0x1+0x2+0x3=0.

In general, if we add a total of py, rows of padding (roughly half on top and half on bottom)
and a total of py, columns of padding (roughly half on the left and half on the right), the
output shape will be

(nh—kn+pn+1) X (ny — ky + py + 1). (7.3.1)

This means that the height and width of the output will increase by py and py, respec-
tively.
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Two-dimensional cross-correlation with padding.

In many cases, we will want to set p, = ky — 1 and py, = ky — 1 to give the input and
output the same height and width. This will make it easier to predict the output shape of
each layer when constructing the network. Assuming that ky, is odd here, we will pad py,/2
rows on both sides of the height. If ky, is even, one possibility is to pad [py/2] rows on the
top of the input and | py, /2] rows on the bottom. We will pad both sides of the width in the
same way.

CNNs commonly use convolution kernels with odd height and width values, such as 1, 3,
5, or 7. Choosing odd kernel sizes has the benefit that we can preserve the dimensionality
while padding with the same number of rows on top and bottom, and the same number of
columns on left and right.

Moreover, this practice of using odd kernels and padding to precisely preserve dimension-
ality offers a clerical benefit. For any two-dimensional tensor X, when the kernel’s size is
odd and the number of padding rows and columns on all sides are the same, thereby pro-
ducing an output with the same height and width as the input, we know that the output Y[i,
j1is calculated by cross-correlation of the input and convolution kernel with the window
centered on X[i, jJ.

In the following example, we create a two-dimensional convolutional layer with a height
and width of 3 and apply 1 pixel of padding on all sides. Given an input with a height and
width of 8, we find that the height and width of the output is also 8.

# We define a helper function to calculate convolutions. It initializes
# the convolutional layer weights and performs corresponding dimensionality
# elevations and reductions on the input and output
def comp_conv2d(conv2d, X):
conv2d.initialize()
# (1, 1) indicates that batch size and the number of channels are both 1
X = X.reshape((1l, 1) + X.shape)
Y = conv2d(X)
# Strip the first two dimensions: examples and channels
return Y.reshape(Y.shape[2:])

# 1 row and column is padded on either side, so a total of 2 rows or columns.
—are added

conv2d = nn.Conv2D(1l, kernel_size=3, padding=1)

X = np.random.uniform(size=(8, 8))

comp_conv2d(conv2d, X).shape
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[22:06:32] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

8, 8

When the height and width of the convolution kernel are different, we can make the output
and input have the same height and width by setting different padding numbers for height
and width.

# We use a convolution kernel with height 5 and width 3. The padding on
# either side of the height and width are 2 and 1, respectively

conv2d = nn.Conv2D(1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

8, 8

7.3.2 Stride

When computing the cross-correlation, we start with the convolution window at the upper-
left corner of the input tensor, and then slide it over all locations both down and to the
right. In the previous examples, we defaulted to sliding one element at a time. However,
sometimes, either for computational efficiency or because we wish to downsample, we
move our window more than one element at a time, skipping the intermediate locations.
This is particularly useful if the convolution kernel is large since it captures a large area of
the underlying image.

We refer to the number of rows and columns traversed per slide as stride. So far, we have
used strides of 1, both for height and width. Sometimes, we may want to use a larger stride.
Fig. 7.3.3 shows a two-dimensional cross-correlation operation with a stride of 3 vertically
and 2 horizontally. The shaded portions are the output elements as well as the input and
kernel tensor elements used for the output computation: 0 X 0+0x 1 +1X2+2x3 =8,
0x0+6x1+0x2+0x3 = 6. We can see that when the second element of the first column is
generated, the convolution window slides down three rows. The convolution window slides
two columns to the right when the second element of the first row is generated. When the
convolution window continues to slide two columns to the right on the input, there is no
output because the input element cannot fill the window (unless we add another column of
padding).

In general, when the stride for the height is sy and the stride for the width is sy, the output
shape is

|_(nh — ky +pnt Sh)/shJ X |_(nw —ky +pwt+ Sw)/st~ (732)

If we set py, = ky — 1 and py = ky — 1, then the output shape can be simplified to | (ny +
sh— 1)/sn] X | (ny + sw — 1)/sw]. Going a step further, if the input height and width are
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Cross-correlation with strides of 3 and 2 for height and width, respectively.

divisible by the strides on the height and width, then the output shape will be (ny/sy) X
(nw/sw)-

Below, we set the strides on both the height and width to 2, thus halving the input height
and width.

conv2d = nn.Conv2D(1, kernel_size=3, padding=1, strides=2)
comp_conv2d(conv2d, X).shape

4, 4

Let’s look at a slightly more complicated example.
conv2d = nn.Conv2D(1, kernel_size=(3, 5), padding=(0, 1), strides=(3, 4))

comp_conv2d(conv2d, X).shape

2, 2)

7.3.3 Summary and Discussion

Padding can increase the height and width of the output. This is often used to give the
output the same height and width as the input to avoid undesirable shrinkage of the output.
Moreover, it ensures that all pixels are used equally frequently. Typically we pick symmetric
padding on both sides of the input height and width. In this case we refer to (pp, pw)
padding. Most commonly we set py = pyw, in which case we simply state that we choose
padding p.

A similar convention applies to strides. When horizontal stride s and vertical stride sy,
match, we simply talk about stride s. The stride can reduce the resolution of the output, for
example reducing the height and width of the output to only 1/n of the height and width of
the input for n > 1. By default, the padding is 0 and the stride is 1.

So far all padding that we discussed simply extended images with zeros. This has signif-
icant computational benefit since it is trivial to accomplish. Moreover, operators can be
engineered to take advantage of this padding implicitly without the need to allocate addi-
tional memory. At the same time, it allows CNNs to encode implicit position information
within an image, simply by learning where the “whitespace” is. There are many alternatives
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to zero-padding. Alsallakh er al. (2020) provided an extensive overview of those (albeit
without a clear case for when to use nonzero paddings unless artifacts occur).

7.3.4 Exercises

1. Given the final code example in this section with kernel size (3, 5), padding (0, 1), and
stride (3, 4), calculate the output shape to check if it is consistent with the experimental
result.

2. For audio signals, what does a stride of 2 correspond to?

3. Implement mirror padding, i.e., padding where the border values are simply mirrored
to extend tensors.

4. What are the computational benefits of a stride larger than 1?
5. What might be statistical benefits of a stride larger than 1?

6. How would you implement a stride of %? What does it correspond to? When would this
120 be useful?
Ol 0|
,;ggé % 120

& ,Es'i Discussions <"
[OFHEE

7.4 Multiple Input and Multiple Output Channels

While we described the multiple channels that comprise each image (e.g., color images
have the standard RGB channels to indicate the amount of red, green and blue) and con-
volutional layers for multiple channels in Section 7.1.4, until now, we simplified all of our
numerical examples by working with just a single input and a single output channel. This
allowed us to think of our inputs, convolution kernels, and outputs each as two-dimensional
tensors.

When we add channels into the mix, our inputs and hidden representations both become
three-dimensional tensors. For example, each RGB input image has shape 3 X h x w. We
refer to this axis, with a size of 3, as the channel dimension. The notion of channels is
as old as CNNs themselves: for instance LeNet-5 (LeCun et al., 1995) uses them. In this
section, we will take a deeper look at convolution kernels with multiple input and multiple
output channels.

from mxnet import np, npx
from d21 import mxnet as d21

npx.set_np()
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7.4.1 Multiple Input Channels

When the input data contains multiple channels, we need to construct a convolution kernel
with the same number of input channels as the input data, so that it can perform cross-
correlation with the input data. Assuming that the number of channels for the input data
is ¢j, the number of input channels of the convolution kernel also needs to be c;. If our
convolution kernel’s window shape is ky X ky, then, when ¢; = 1, we can think of our
convolution kernel as just a two-dimensional tensor of shape ky X ky,.

However, when ¢; > 1, we need a kernel that contains a tensor of shape ky X ky, for ev-
ery input channel. Concatenating these c; tensors together yields a convolution kernel of
shape cj X ky X ky. Since the input and convolution kernel each have c¢; channels, we can
perform a cross-correlation operation on the two-dimensional tensor of the input and the
two-dimensional tensor of the convolution kernel for each channel, adding the c; results
together (summing over the channels) to yield a two-dimensional tensor. This is the result
of a two-dimensional cross-correlation between a multi-channel input and a multi-input-
channel convolution kernel.

Fig. 7.4.1 provides an example of a two-dimensional cross-correlation with two input chan-
nels. The shaded portions are the first output element as well as the input and kernel tensor
elements used for the output computation: (1 X 1+2x2+4x3+5x4)+(0x0+1x1+
3x2+4x3)=56.

Input Kernel Input Kernel Output
11213
112
4156 |*
T 3[4
0|1]2 71819 56 | 72
* [0 = + =
3|45 - 104|120
213 0of[1]2
6|78 01
3|14|5]|%*
213
61718

Cross-correlation computation with two input channels.

To make sure we really understand what is going on here, we can implement cross-correlation
operations with multiple input channels ourselves. Notice that all we are doing is perform-
ing a cross-correlation operation per channel and then adding up the results.

def corr2d_multi_in(X, K):
# Iterate through the 0th dimension (channel) of K first, then add them up
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

We can construct the input tensor X and the kernel tensor K corresponding to the values in
Fig. 7.4.1 to validate the output of the cross-correlation operation.

X = np.array([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]11,
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]1, [7.0, 8.0, 9.0111)
K = np.array([[[0.0, 1.0], [2.0, 3.011, [[1.0, 2.0], [3.0, 4.0111)

(continues on next page)
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(continued from previous page)

corr2d_multi_in(X, K)

[22:10:49] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

array([[ 56., 72.17,
[104., 120.11)

7.4.2 Multiple Output Channels

Regardless of the number of input channels, so far we always ended up with one output
channel. However, as we discussed in Section 7.1.4, it turns out to be essential to have
multiple channels at each layer. In the most popular neural network architectures, we actu-
ally increase the channel dimension as we go deeper in the neural network, typically down-
sampling to trade off spatial resolution for greater channel depth. Intuitively, you could
think of each channel as responding to a different set of features. The reality is a bit more
complicated than this. A naive interpretation would suggest that representations are learned
independently per pixel or per channel. Instead, channels are optimized to be jointly useful.
This means that rather than mapping a single channel to an edge detector, it may simply
mean that some direction in channel space corresponds to detecting edges.

Denote by c; and ¢, the number of input and output channels, respectively, and by ky, and &,
the height and width of the kernel. To get an output with multiple channels, we can create
a kernel tensor of shape c; X ky, X ky, for every output channel. We concatenate them on the
output channel dimension, so that the shape of the convolution kernel is ¢, X ¢j X kn X ky.
In cross-correlation operations, the result on each output channel is calculated from the
convolution kernel corresponding to that output channel and takes input from all channels
in the input tensor.

We implement a cross-correlation function to calculate the output of multiple channels as
shown below.

def corr2d_multi_in_out(X, K):
# Iterate through the 0th dimension of K, and each time, perform
# cross-correlation operations with input X. All of the results are
# stacked together
return np.stack([corr2d_multi_in(X, k) for k in KJ, 0)

We construct a trivial convolution kernel with three output channels by concatenating the
kernel tensor for K with K+1 and K+2.

K = np.stack((K, K + 1, K + 2), 0)
K.shape
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3,2,2, 2

Below, we perform cross-correlation operations on the input tensor X with the kernel tensor
K. Now the output contains three channels. The result of the first channel is consistent with
the result of the previous input tensor X and the multi-input channel, single-output channel
kernel.

corr2d_multi_in_out(X, K)

array([LL[ 56., 72.1,

[104., 120.11,
[[ 76., 100.1,
[148., 172.11,
(L 96., 128.1,

[192., 224.111)

7.4.3 1 x 1 Convolutional Layer

At first, a 1 X 1 convolution, i.e., k, = kyw = 1, does not seem to make much sense.
After all, a convolution correlates adjacent pixels. A 1 X 1 convolution obviously does
not. Nonetheless, they are popular operations that are sometimes included in the designs
of complex deep networks (Lin et al., 2013, Szegedy et al., 2017). Let’s see in some detail
what it actually does.

Because the minimum window is used, the 1 X 1 convolution loses the ability of larger con-
volutional layers to recognize patterns consisting of interactions among adjacent elements
in the height and width dimensions. The only computation of the 1 X 1 convolution occurs
on the channel dimension.

Fig. 7.4.2 shows the cross-correlation computation using the 1 x 1 convolution kernel with 3
input channels and 2 output channels. Note that the inputs and outputs have the same height
and width. Each element in the output is derived from a linear combination of elements at
the same position in the input image. You could think of the 1 X 1 convolutional layer as
constituting a fully connected layer applied at every single pixel location to transform the
ci corresponding input values into ¢, output values. Because this is still a convolutional
layer, the weights are tied across pixel location. Thus the 1 x 1 convolutional layer requires
co X ci weights (plus the bias). Also note that convolutional layers are typically followed
by nonlinearities. This ensures that 1 X 1 convolutions cannot simply be folded into other
convolutions.

Let’s check whether this works in practice: we implement a 1 X 1 convolution using a fully
connected layer. The only thing is that we need to make some adjustments to the data shape
before and after the matrix multiplication.
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Input Kernel Output

The cross-correlation computation uses the 1 x 1 convolution kernel with three input
channels and two output channels. The input and output have the same height and width.

def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape

c_o = K.shape[0]

X = X.reshape((c_i, h * w))

K = K.reshape((c_o, c_i))

# Matrix multiplication in the fully connected layer
Y = np.dot(K, X)

return Y.reshape((c_o, h, w))

When performing 1 x 1 convolutions, the above function is equivalent to the previously im-
plemented cross-correlation function corr2d_multi_in_out. Let’s check this with some
sample data.

X = np.random.normal(@, 1, (3, 3, 3))

K = np.random.normal(e, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)

Y2 = corr2d_multi_in_out(X, K)

assert float(np.abs(Y1l - Y2).sum()) < le-6

7.4.4 Discussion

Channels allow us to combine the best of both worlds: MLPs that allow for significant
nonlinearities and convolutions that allow for localized analysis of features. In particular,
channels allow the CNN to reason with multiple features, such as edge and shape detec-
tors at the same time. They also offer a practical trade-off between the drastic parameter
reduction arising from translation invariance and locality, and the need for expressive and
diverse models in computer vision.

Note, though, that this flexibility comes at a price. Given an image of size (& X w), the cost
for computing a k X k convolution is O(h - w - k?). For c; and ¢, input and output channels
respectively this increases to O(h - w - k% - ¢; - ¢,). For a 256 x 256 pixel image with a
5 x5 kernel and 128 input and output channels respectively this amounts to over 53 billion
operations (we count multiplications and additions separately). Later on we will encounter
effective strategies to cut down on the cost, e.g., by requiring the channel-wise operations
to be block-diagonal, leading to architectures such as ResNeXt (Xie et al., 2017).

7.4.5 Exercises
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1. Assume that we have two convolution kernels of size k| and k,, respectively (with no
nonlinearity in between).

1. Prove that the result of the operation can be expressed by a single convolution.
2. What is the dimensionality of the equivalent single convolution?

3. Is the converse true, i.e., can you always decompose a convolution into two smaller
ones?

2. Assume an input of shape c¢; X h X w and a convolution kernel of shape ¢, X ¢j X ki X kv,
padding of (py, pw), and stride of (sp, sy).

1. What is the computational cost (multiplications and additions) for the forward prop-
agation?

2. What is the memory footprint?
3. What is the memory footprint for the backward computation?
4. What is the computational cost for the backpropagation?

3. By what factor does the number of calculations increase if we double both the number
of input channels ¢; and the number of output channels ¢,? What happens if we double
the padding?

4. Are the variables Y1 and Y2 in the final example of this section exactly the same? Why?

5. Express convolutions as a matrix multiplication, even when the convolution window is
not 1 x 1.

6. Your task is to implement fast convolutions with a k X k kernel. One of the algorithm
candidates is to scan horizontally across the source, reading a k-wide strip and comput-
ing the 1-wide output strip one value at a time. The alternative is to read a k + A wide
strip and compute a A-wide output strip. Why is the latter preferable? Is there a limit to
how large you should choose A?

7. Assume that we have a ¢ X ¢ matrix.

1. How much faster is it to multiply with a block-diagonal matrix if the matrix is broken
up into b blocks?

2. What is the downside of having b blocks? How could you fix it, at least partly?
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In many cases our ultimate task asks some global question about the image, e.g., does it
contain a cat? Consequently, the units of our final layer should be sensitive to the entire
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input. By gradually aggregating information, yielding coarser and coarser maps, we ac-
complish this goal of ultimately learning a global representation, while keeping all of the
advantages of convolutional layers at the intermediate layers of processing. The deeper
we go in the network, the larger the receptive field (relative to the input) to which each
hidden node is sensitive. Reducing spatial resolution accelerates this process, since the
convolution kernels cover a larger effective area.

Moreover, when detecting lower-level features, such as edges (as discussed in Section 7.2),
we often want our representations to be somewhat invariant to translation. For instance,
if we take the image X with a sharp delineation between black and white and shift the
whole image by one pixel to the right, i.e., Z[i, j1 = X[i, j + 11, then the output
for the new image Z might be vastly different. The edge will have shifted by one pixel. In
reality, objects hardly ever occur exactly at the same place. In fact, even with a tripod and
a stationary object, vibration of the camera due to the movement of the shutter might shift
everything by a pixel or so (high-end cameras are loaded with special features to address
this problem).

This section introduces pooling layers, which serve the dual purposes of mitigating the
sensitivity of convolutional layers to location and of spatially downsampling representa-
tions.

from mxnet import np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

7.5.1 Maximum Pooling and Average Pooling

Like convolutional layers, pooling operators consist of a fixed-shape window that is slid
over all regions in the input according to its stride, computing a single output for each lo-
cation traversed by the fixed-shape window (sometimes known as the pooling window).
However, unlike the cross-correlation computation of the inputs and kernels in the con-
volutional layer, the pooling layer contains no parameters (there is no kernel). Instead,
pooling operators are deterministic, typically calculating either the maximum or the aver-
age value of the elements in the pooling window. These operations are called maximum
pooling (max-pooling for short) and average pooling, respectively.

Average pooling is essentially as old as CNNs. The idea is akin to downsampling an image.
Rather than just taking the value of every second (or third) pixel for the lower resolution
image, we can average over adjacent pixels to obtain an image with better signal-to-noise
ratio since we are combining the information from multiple adjacent pixels. Max-pooling
was introduced in Riesenhuber and Poggio (1999) in the context of cognitive neuroscience
to describe how information aggregation might be aggregated hierarchically for the purpose
of object recognition; there already was an earlier version in speech recognition (Yamaguchi
et al., 1990). In almost all cases, max-pooling, as it is also referred to, is preferable to
average pooling.
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In both cases, as with the cross-correlation operator, we can think of the pooling window
as starting from the upper-left of the input tensor and sliding across it from left to right and
top to bottom. At each location that the pooling window hits, it computes the maximum or
average value of the input subtensor in the window, depending on whether max or average
pooling is employed.

Input Output
of[1]2
4|5
3[a]s 2x2
Max-pooling 718
6[7]8

Max-pooling with a pooling window shape of 2 x 2. The shaded portions are the first
output element as well as the input tensor elements used for the output computation:
max (0, 1,3,4) = 4.

The output tensor in Fig. 7.5.1 has a height of 2 and a width of 2. The four elements are
derived from the maximum value in each pooling window:

max (0, 1,3,4) = 4,
max(1,2,4,5) =5,
max(3,4,6,7) =7,
max(4,5,7,8) = 8.

(7.5.1)

More generally, we can define a p X g pooling layer by aggregating over a region of said
size. Returning to the problem of edge detection, we use the output of the convolutional
layer as input for 2 X 2 max-pooling. Denote by X the input of the convolutional layer input
and Y the pooling layer output. Regardless of whether or not the values of X[i, jI1, X[i,
j + 11, X[i+1, jland X[i+1l, j + 1] are different, the pooling layer always outputs
Y[i, j] = 1. Thatis to say, using the 2 X 2 max-pooling layer, we can still detect if the
pattern recognized by the convolutional layer moves no more than one element in height or
width.

In the code below, we implement the forward propagation of the pooling layer in the pool2d
function. This function is similar to the corr2d function in Section 7.2. However, no kernel
is needed, computing the output as either the maximum or the average of each region in the
input.

def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = np.zeros((X.shape[@] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shapel[1]):

if mode == 'max’:
YLi, j1 = X[i: i + p_h, j: j + p_wl.max()
elif mode == 'avg':

Y[i, j1 = X[i: i + p_h, j: j + p_w]l.mean()
return Y
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We can construct the input tensor X in Fig. 7.5.1 to validate the output of the two-dimensional
max-pooling layer.

X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]1]1)
pool2d(X, (2, 2))

[22:02:56] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

array([[4., 5.1,
[7., 8.1

Also, we can experiment with the average pooling layer.

pool2d(X, (2, 2), 'avg')

array([[2., 3.1,
[5., 6.1

7.5.2 Padding and Stride

As with convolutional layers, pooling layers change the output shape. And as before, we can
adjust the operation to achieve a desired output shape by padding the input and adjusting the
stride. We can demonstrate the use of padding and strides in pooling layers via the built-in
two-dimensional max-pooling layer from the deep learning framework. We first construct
an input tensor X whose shape has four dimensions, where the number of examples (batch
size) and number of channels are both 1.

X = np.arange(16, dtype=np.float32).reshape((1, 1, 4, 4))
X

array([LLL ©., 1., 2., 3.1,
[ 4., 5., 6., 7.1,
[ 8., 9., 10., 11.],
[12., 13., 14., 15.111D)

Since pooling aggregates information from an area, deep learning frameworks default to
matching pooling window sizes and stride. For instance, if we use a pooling window of
shape (3, 3) we get a stride shape of (3, 3) by default.

pool2d = nn.MaxPool2D(3)
# Pooling has no model parameters, hence it needs no initialization
pool2d(X)
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array([[[[10.]11D)

Needless to say, the stride and padding can be manually specified to override framework
defaults if required.

pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)

array(CCCL 5., 7.1,
[13., 15.111D)

Of course, we can specify an arbitrary rectangular pooling window with arbitrary height
and width respectively, as the example below shows.

pool2d = nn.MaxPool2D((2, 3), padding=(0, 1), strides=(2, 3))
pool2d(X)

array(LLLL 5., 7.1,
[13., 15.111D)

7.5.3 Multiple Channels

When processing multi-channel input data, the pooling layer pools each input channel sep-
arately, rather than summing the inputs up over channels as in a convolutional layer. This
means that the number of output channels for the pooling layer is the same as the number of
input channels. Below, we will concatenate tensors X and X + 1 on the channel dimension
to construct an input with two channels.

X = np.concatenate((X, X + 1), 1)
X

array([LLLL 0., 1., 2., 3.1,
[ 4., 5., 6., 7.1,
[ 8., 9., l0., 11.],
[12., 13., 14., 15.11,
[ci., 2., 3., 4.1,
[5., 6., 7., 8.1,
[ 9., 10., 11., 12.1,
[13., 14., 15., 16.111D)

As we can see, the number of output channels is still two after pooling.

pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)
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array([LLLL 5., 7.1,
[13., 15.]1,

[C6., 8.1,
[14., 16.111D

7.5.4 Summary

Pooling is an exceedingly simple operation. It does exactly what its name indicates, ag-
gregate results over a window of values. All convolution semantics, such as strides and
padding apply in the same way as they did previously. Note that pooling is indifferent to
channels, i.e., it leaves the number of channels unchanged and it applies to each channel
separately. Lastly, of the two popular pooling choices, max-pooling is preferable to average
pooling, as it confers some degree of invariance to output. A popular choice is to pick a
pooling window size of 2 X 2 to quarter the spatial resolution of output.

Note that there are many more ways of reducing resolution beyond pooling. For instance, in
stochastic pooling (Zeiler and Fergus, 2013) and fractional max-pooling (Graham, 2014)
aggregation is combined with randomization. This can slightly improve the accuracy in
some cases. Lastly, as we will see later with the attention mechanism, there are more
refined ways of aggregating over outputs, e.g., by using the alignment between a query and
representation vectors.

7.5.5 Exercises

1. Implement average pooling through a convolution.

2. Prove that max-pooling cannot be implemented through a convolution alone.

3. Max-pooling can be accomplished using ReLLU operations, i.e., ReLU(x) = max(0, x).
1. Express max(a, b) by using only ReLU operations.
2. Use this to implement max-pooling by means of convolutions and ReL.U layers.

3. How many channels and layers do you need for a 2 x 2 convolution? How many for
a 3 X 3 convolution?

4. What is the computational cost of the pooling layer? Assume that the input to the pooling
layer is of size ¢ X h X w, the pooling window has a shape of py, X p,, with a padding of
(pn, pw) and a stride of (sp, Sw).

5. Why do you expect max-pooling and average pooling to work differently?

6. Do we need a separate minimum pooling layer? Can you replace it with another opera-

tion?
122
EEIEE&-EH 7. We could use the softmax operation for pooling. Why might it not be so popular?
el
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7.6 Convolutional Neural Networks (LeNet)
1 ——

We now have all the ingredients required to assemble a fully-functional CNN. In our earlier
encounter with image data, we applied a linear model with softmax regression (Section 4.4)
and an MLP (Section 5.2) to pictures of clothing in the Fashion-MNIST dataset. To make
such data amenable we first flattened each image from a 28 X 28 matrix into a fixed-length
784-dimensional vector, and thereafter processed them in fully connected layers. Now that
we have a handle on convolutional layers, we can retain the spatial structure in our images.
As an additional benefit of replacing fully connected layers with convolutional layers, we
will enjoy more parsimonious models that require far fewer parameters.

In this section, we will introduce LeNet, among the first published CNNs to capture wide
attention for its performance on computer vision tasks. The model was introduced by (and
named for) Yann LeCun, then a researcher at AT&T Bell Labs, for the purpose of rec-
ognizing handwritten digits in images (LeCun et al., 1998). This work represented the
culmination of a decade of research developing the technology; LeCun’s team published
the first study to successfully train CNNs via backpropagation (LeCun et al., 1989).

At the time LeNet achieved outstanding results matching the performance of support vector
machines, then a dominant approach in supervised learning, achieving an error rate of less
than 1% per digit. LeNet was eventually adapted to recognize digits for processing deposits
in ATM machines. To this day, some ATMs still run the code that Yann LeCun and his
colleague Leon Bottou wrote in the 1990s!

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

7.6.1 LeNet

At a high level, LeNet (LeNet-5) consists of two parts: (i) a convolutional encoder consist-
ing of two convolutional layers; and (ii) a dense block consisting of three fully connected
layers. The architecture is summarized in Fig. 7.6.1.

The basic units in each convolutional block are a convolutional layer, a sigmoid activation
function, and a subsequent average pooling operation. Note that while ReLUs and max-
pooling work better, they had not yet been discovered. Each convolutional layer uses a 5x5
kernel and a sigmoid activation function. These layers map spatially arranged inputs to a
number of two-dimensional feature maps, typically increasing the number of channels. The
first convolutional layer has 6 output channels, while the second has 16. Each 2 X 2 pooling
operation (stride 2) reduces dimensionality by a factor of 4 via spatial downsampling. The
convolutional block emits an output with shape given by (batch size, number of channel,
height, width).
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convolution convolution pooling dense
_ pooling dense
| dense
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Data flow in LeNet. The input is a handwritten digit, the output is a probability over 10
possible outcomes.

In order to pass output from the convolutional block to the dense block, we must flatten each
example in the minibatch. In other words, we take this four-dimensional input and transform
it into the two-dimensional input expected by fully connected layers: as a reminder, the two-
dimensional representation that we desire uses the first dimension to index examples in the
minibatch and the second to give the flat vector representation of each example. LeNet’s
dense block has three fully connected layers, with 120, 84, and 10 outputs, respectively.
Because we are still performing classification, the 10-dimensional output layer corresponds
to the number of possible output classes.

While getting to the point where you truly understand what is going on inside LeNet may
have taken a bit of work, we hope that the following code snippet will convince you that
implementing such models with modern deep learning frameworks is remarkably simple.
We need only to instantiate a Sequential block and chain together the appropriate layers,
using Xavier initialization as introduced in Section 5.4.2.

class LeNet(d2l.Classifier): #@save
"""The LeNet-5 model."""
def __init__(self, 1lr=0.1, num_classes=10):
super().__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(
nn.Conv2D(channels=6, kernel_size=5, padding=2,
activation='sigmoid"),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense (120, activation='sigmoid'),
nn.Dense(84, activation='sigmoid'),
nn.Dense(num_classes))
self.net.initialize(init.Xavier())

We have taken some liberty in the reproduction of LeNet insofar as we have replaced the
Gaussian activation layer by a softmax layer. This greatly simplifies the implementation,
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not least due to the fact that the Gaussian decoder is rarely used nowadays. Other than that,
this network matches the original LeNet-5 architecture.

Let’s see what happens inside the network. By passing a single-channel (black and white)
28x28 image through the network and printing the output shape at each layer, we can inspect
the model to ensure that its operations line up with what we expect from Fig. 7.6.2.

| FC (10) |

(
t
(
t

| FC (84) |

| FC (120) |

t

| 2 x 2 AvgPool, stride 2 |

t

| 5x 5 Conv (16) |

t

| 2 x 2 AvgPool, stride 2 |

t

| 5 x 5 Conv (6), pad 2 |

t

| Image (28 x 28) |

Compressed notation for LeNet-5.

@d21.add_to_class(d2l.Classifier) #@save
def layer_summary(self, X_shape):
X = np.random.randn(*X_shape)
for layer in self.net:
X = layer(X)

print(layer.__class name__, 'output shape:\t', X.shape)

model = LeNet()
model . layer_summary((1, 1, 28, 28))

Conv2D output shape: (1, 6, 28, 28)
AvgPool2D output shape: (1, 6, 14, 14)
Conv2D output shape: (1, 16, 10, 10)
AvgPool2D output shape: (1, 16, 5, 5)

Dense output shape: (1, 120)

Dense output shape: (1, 84)

Dense output shape: (1, 10)

[22:57:59] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

Note that the height and width of the representation at each layer throughout the convolu-
tional block is reduced (compared with the previous layer). The first convolutional layer
uses two pixels of padding to compensate for the reduction in height and width that would
otherwise result from using a 5 X 5 kernel. As an aside, the image size of 28 x 28 pixels in
the original MNIST OCR dataset is a result of trimming two pixel rows (and columns) from
the original scans that measured 32 x 32 pixels. This was done primarily to save space (a
30% reduction) at a time when megabytes mattered.
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In contrast, the second convolutional layer forgoes padding, and thus the height and width
are both reduced by four pixels. As we go up the stack of layers, the number of channels
increases layer-over-layer from 1 in the input to 6 after the first convolutional layer and
16 after the second convolutional layer. However, each pooling layer halves the height and
width. Finally, each fully connected layer reduces dimensionality, finally emitting an output
whose dimension matches the number of classes.

7.6.2 Training

Now that we have implemented the model, let’s run an experiment to see how the LeNet-5
model fares on Fashion-MNIST.

While CNNs have fewer parameters, they can still be more expensive to compute than
similarly deep MLPs because each parameter participates in many more multiplications.
If you have access to a GPU, this might be a good time to put it into action to speed up
training. Note that the d21.Trainer class takes care of all details. By default, it initializes
the model parameters on the available devices. Just as with MLPs, our loss function is
cross-entropy, and we minimize it via minibatch stochastic gradient descent.

trainer = d21.Trainer(max_epochs=10, num_gpus=1)
data = d21.FashionMNIST(batch_size=128)

model = LeNet(lr=0.1)

trainer.fit(model, data)

—— train_loss
2.01 \ val_loss

—-= val_acc
1.5 ‘\
1.0 4 \\

0.5 - ’

0.0 T T T T

7.6.3 Summary

We have made significant progress in this chapter. We moved from the MLPs of the 1980s
to the CNNs of the 1990s and early 2000s. The architectures proposed, e.g., in the form
of LeNet-5 remain meaningful, even to this day. It is worth comparing the error rates on
Fashion-MNIST achievable with LeNet-5 both to the very best possible with MLPs (Section
5.2) and those with significantly more advanced architectures such as ResNet (Section 8.6).
LeNet is much more similar to the latter than to the former. One of the primary differences,
as we shall see, is that greater amounts of computation enabled significantly more complex
architectures.

A second difference is the relative ease with which we were able to implement LeNet. What
used to be an engineering challenge worth months of C++ and assembly code, engineering
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to improve SN, an early Lisp-based deep learning tool (Bottou and Le Cun, 1988), and fi-
nally experimentation with models can now be accomplished in minutes. It is this incredible
productivity boost that has democratized deep learning model development tremendously.
In the next chapter we will journey down this rabbit to hole to see where it takes us.

7.6.4 Exercises

1. Let’s modernize LeNet. Implement and test the following changes:

1.
2.

Replace average pooling with max-pooling.

Replace the softmax layer with ReLU.

2. Try to change the size of the LeNet style network to improve its accuracy in addition to
max-pooling and ReLU.

L.

2
3
4.
5

Adjust the convolution window size.

. Adjust the number of output channels.

. Adjust the number of convolution layers.

Adjust the number of fully connected layers.

. Adjust the learning rates and other training details (e.g., initialization and number of

epochs).

3. Try out the improved network on the original MNIST dataset.

4. Display the activations of the first and second layer of LeNet for different inputs (e.g.,
sweaters and coats).

5. What happens to the activations when you feed significantly different images into the
network (e.g., cats, cars, or even random noise)?

123
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Now that we understand the basics of wiring together CNNGs, let’s take a tour of modern
CNN architectures. This tour is, by necessity, incomplete, thanks to the plethora of excit-
ing new designs being added. Their importance derives from the fact that not only can they
be used directly for vision tasks, but they also serve as basic feature generators for more
advanced tasks such as tracking (Zhang et al., 2021), segmentation (Long et al., 2015), ob-
ject detection (Redmon and Farhadi, 2018), or style transformation (Gatys et al., 2016). In
this chapter, most sections correspond to a significant CNN architecture that was at some
point (or currently) the base model upon which many research projects and deployed sys-
tems were built. Each of these networks was briefly a dominant architecture and many were
winners or runners-up in the ImageNet competition 124 which has served as a barometer
of progress on supervised learning in computer vision since 2010. It is only recently that
Transformers have begun to displace CNNs, starting with Dosovitskiy et al. (2021) and
followed by the Swin Transformer (Liu ef al., 2021). We will cover this development later
in Chapter 11.

While the idea of deep neural networks is quite simple (stack together a bunch of layers),
performance can vary wildly across architectures and hyperparameter choices. The neural
networks described in this chapter are the product of intuition, a few mathematical insights,
and a lot of trial and error. We present these models in chronological order, partly to convey
a sense of the history so that you can form your own intuitions about where the field is
heading and perhaps develop your own architectures. For instance, batch normalization and
residual connections described in this chapter have offered two popular ideas for training
and designing deep models, both of which have since also been applied to architectures
beyond computer vision.

We begin our tour of modern CNNs with AlexNet (Krizhevsky et al., 2012), the first large-
scale network deployed to beat conventional computer vision methods on a large-scale vi-
sion challenge; the VGG network (Simonyan and Zisserman, 2014), which makes use of a
number of repeating blocks of elements; the network in network (NiN) that convolves whole
neural networks patch-wise over inputs (Lin et al., 2013); GoogLeNet that uses networks
with multi-branch convolutions (Szegedy et al., 2015); the residual network (ResNet) (He
et al.,2016), which remains one of the most popular off-the-shelf architectures in computer
vision; ResNeXt blocks (Xie et al., 2017) for sparser connections; and DenseNet (Huang
et al., 2017) for a generalization of the residual architecture. Over time many special opti-
mizations for efficient networks have been developed, such as coordinate shifts (ShiftNet)
(Wu et al., 2018). This culminated in the automatic search for efficient architectures such
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as MobileNet v3 (Howard ez al., 2019). It also includes the semi-automatic design explo-
ration of Radosavovic et al. (2020) that led to the RegNetX/Y which we will discuss later
in this chapter. The work is instructive insofar as it offers a path for marrying brute force
computation with the ingenuity of an experimenter in the search for efficient design spaces.
Of note is also the work of Liu et al. (2022) as it shows that training techniques (e.g., op-
timizers, data augmentation, and regularization) play a pivotal role in improving accuracy.
It also shows that long-held assumptions, such as the size of a convolution window, may
need to be revisited, given the increase in computation and data. We will cover this and
many more questions in due course throughout this chapter.

8.1 Deep Convolutional Neural Networks (AlexNet)

Although CNNs were well known in the computer vision and machine learning commu-
nities following the introduction of LeNet (LeCun et al., 1995), they did not immediately
dominate the field. Although LeNet achieved good results on early small datasets, the per-
formance and feasibility of training CNNs on larger, more realistic datasets had yet to be
established. In fact, for much of the intervening time between the early 1990s and the wa-
tershed results of 2012 (Krizhevsky et al., 2012), neural networks were often surpassed
by other machine learning methods, such as kernel methods (Scholkopf and Smola, 2002),
ensemble methods (Freund and Schapire, 1996), and structured estimation (Taskar et al.,
2004).

For computer vision, this comparison is perhaps not entirely accurate. That is, although
the inputs to convolutional networks consist of raw or lightly-processed (e.g., by center-
ing) pixel values, practitioners would never feed raw pixels into traditional models. In-
stead, typical computer vision pipelines consisted of manually engineering feature extrac-
tion pipelines, such as SIFT (Lowe, 2004), SURF (Bay et al., 2006), and bags of visual
words (Sivic and Zisserman, 2003). Rather than learning the features, the features were
crafted. Most of the progress came from having more clever ideas for feature extraction on
the one hand and deep insight into geometry (Hartley and Zisserman, 2000) on the other.
The learning algorithm was often considered an afterthought.

Although some neural network accelerators were available in the 1990s, they were not yet
sufficiently powerful to make deep multichannel, multilayer CNNs with a large number
of parameters. For instance, NVIDIA’s GeForce 256 from 1999 was able to process at
most 480 million floating-point operations, such as additions and multiplications, per sec-
ond (MFLOPS), without any meaningful programming framework for operations beyond
games. Today’s accelerators are able to perform in excess of 1000 TFLOPs per device.
Moreover, datasets were still relatively small: OCR on 60,000 low-resolution 28 x 28 pixel
images was considered a highly challenging task. Added to these obstacles, key tricks for
training neural networks including parameter initialization heuristics (Glorot and Bengio,
2010), clever variants of stochastic gradient descent (Kingma and Ba, 2014), non-squashing
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activation functions (Nair and Hinton, 2010), and effective regularization techniques (Sri-
vastava et al., 2014) were still missing.

Thus, rather than training end-fo-end (pixel to classification) systems, classical pipelines
looked more like this:

1. Obtain an interesting dataset. In the early days, these datasets required expensive sen-
sors. For instance, the Apple QuickTake 100 125 of 1994 sported a whopping 0.3
megapixel (VGA) resolution, capable of storing up to 8 images, all for the price of $1000.

2. Preprocess the dataset with hand-crafted features based on some knowledge of optics,
geometry, other analytic tools, and occasionally on the serendipitous discoveries by
lucky graduate students.

3. Feed the data through a standard set of feature extractors such as the SIFT (scale-
invariant feature transform) (Lowe, 2004), the SURF (speeded up robust features) (Bay
et al., 2006), or any number of other hand-tuned pipelines. OpenCV still provides SIFT
extractors to this day!

4. Dump the resulting representations into your favorite classifier, likely a linear model or
kernel method, to train a classifier.

If you spoke to machine learning researchers, they would reply that machine learning was
both important and beautiful. Elegant theories proved the properties of various classifiers
(Boucheron et al., 2005) and convex optimization (Boyd and Vandenberghe, 2004) had
become the mainstay for obtaining them. The field of machine learning was thriving, rig-
orous, and eminently useful. However, if you spoke to a computer vision researcher, you
would hear a very different story. The dirty truth of image recognition, they would tell
you, is that features, geometry (Hartley and Zisserman, 2000, Hartley and Kahl, 2009),
and engineering, rather than novel learning algorithms, drove progress. Computer vision
researchers justifiably believed that a slightly bigger or cleaner dataset or a slightly im-
proved feature-extraction pipeline mattered far more to the final accuracy than any learning
algorithm.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

8.1.1 Representation Learning

Another way to cast the state of affairs is that the most important part of the pipeline was the
representation. And up until 2012 the representation was calculated mostly mechanically.
In fact, engineering a new set of feature functions, improving results, and writing up the
method all featured prominently in papers. SIFT (Lowe, 2004), SURF (Bay et al., 2006),
HOG (histograms of oriented gradient) (Dalal and Triggs, 2005), bags of visual words
(Sivic and Zisserman, 2003), and similar feature extractors ruled the roost.


https://en.wikipedia.org/wiki/Apple_QuickTake

274 Modern Convolutional Neural Networks

Another group of researchers, including Yann LeCun, Geoff Hinton, Yoshua Bengio, An-
drew Ng, Shun-ichi Amari, and Juergen Schmidhuber, had different plans. They believed
that features themselves ought to be learned. Moreover, they believed that to be reasonably
complex, the features ought to be hierarchically composed with multiple jointly learned
layers, each with learnable parameters. In the case of an image, the lowest layers might
come to detect edges, colors, and textures, by analogy with how the visual system in ani-
mals processes its input. In particular, the automatic design of visual features such as those
obtained by sparse coding (Olshausen and Field, 1996) remained an open challenge until
the advent of modern CNNSs. It was not until Dean ef al. (2012), Le (2013) that the idea of
generating features from image data automatically gained significant traction.

The first modern CNN (Krizhevsky et al., 2012), named AlexNet after one of its inventors,
Alex Krizhevsky, is largely an evolutionary improvement over LeNet. It achieved excellent
performance in the 2012 ImageNet challenge.

gt B Tmage filters learned by the first layer of AlexNet. Reproduction courtesy of Krizhevsky
etal. (2012).

Interestingly, in the lowest layers of the network, the model learned feature extractors that
resembled some traditional filters. Fig. 8.1.1 shows lower-level image descriptors. Higher
layers in the network might build upon these representations to represent larger structures,
like eyes, noses, blades of grass, and so on. Even higher layers might represent whole
objects like people, airplanes, dogs, or frisbees. Ultimately, the final hidden state learns a
compact representation of the image that summarizes its contents such that data belonging
to different categories can be easily separated.

AlexNet (2012) and its precursor LeNet (1995) share many architectural elements. This
begs the question: why did it take so long? A key difference was that, over the previous two
decades, the amount of data and the computing power available had increased significantly.
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As such AlexNet was much larger: it was trained on much more data, and on much faster
GPUs compared to the CPUs available in 1995.

Missing Ingredient: Data

Deep models with many layers require large amounts of data in order to enter the regime
where they significantly outperform traditional methods based on convex optimizations
(e.g., linear and kernel methods). However, given the limited storage capacity of computers,
the relative expense of (imaging) sensors, and the comparatively tighter research budgets
in the 1990s, most research relied on tiny datasets. Numerous papers relied on the UCI
collection of datasets, many of which contained only hundreds or (a few) thousands of
images captured in low resolution and often with an artificially clean background.

In 2009, the ImageNet dataset was released (Deng et al., 2009), challenging researchers
to learn models from 1 million examples, 1000 each from 1000 distinct categories of ob-
jects. The categories themselves were based on the most popular noun nodes in WordNet
(Miller, 1995). The ImageNet team used Google Image Search to prefilter large candidate
sets for each category and employed the Amazon Mechanical Turk crowdsourcing pipeline
to confirm for each image whether it belonged to the associated category. This scale was un-
precedented, exceeding others by over an order of magnitude (e.g., CIFAR-100 has 60,000
images). Another aspect was that the images were at relatively high resolution of 224 x 224
pixels, unlike the 80 million-sized Tinylmages dataset (Torralba et al., 2008), consisting
of 32 x 32 pixel thumbnails. This allowed for the formation of higher-level features. The
associated competition, dubbed the ImageNet Large Scale Visual Recognition Challenge
(Russakovsky et al., 2015), pushed computer vision and machine learning research for-
ward, challenging researchers to identify which models performed best at a greater scale
than academics had previously considered. The largest vision datasets, such as LAION-5B
(Schuhmann et al., 2022) contain billions of images with additional metadata.

Missing Ingredient: Hardware

Deep learning models are voracious consumers of compute cycles. Training can take hun-
dreds of epochs, and each iteration requires passing data through many layers of compu-
tationally expensive linear algebra operations. This is one of the main reasons why in the
1990s and early 2000s, simple algorithms based on the more-efficiently optimized convex
objectives were preferred.

Graphical processing units (GPUs) proved to be a game changer in making deep learn-
ing feasible. These chips had earlier been developed for accelerating graphics processing
to benefit computer games. In particular, they were optimized for high throughput 4 x 4
matrix—vector products, which are needed for many computer graphics tasks. Fortunately,
the math is strikingly similar to that required for calculating convolutional layers. Around
that time, NVIDIA and ATI had begun optimizing GPUs for general computing opera-
tions (Fernando, 2004), going as far as to market them as general-purpose GPUs (GPG-
PUs).
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To provide some intuition, consider the cores of a modern microprocessor (CPU). Each
of the cores is fairly powerful running at a high clock frequency and sporting large caches
(up to several megabytes of L3). Each core is well-suited to executing a wide range of in-
structions, with branch predictors, a deep pipeline, specialized execution units, speculative
execution, and many other bells and whistles that enable it to run a large variety of pro-
grams with sophisticated control flow. This apparent strength, however, is also its Achilles
heel: general-purpose cores are very expensive to build. They excel at general-purpose
code with lots of control flow. This requires lots of chip area, not just for the actual ALU
(arithmetic logical unit) where computation happens, but also for all the aforementioned
bells and whistles, plus memory interfaces, caching logic between cores, high-speed in-
terconnects, and so on. CPUs are comparatively bad at any single task when compared
with dedicated hardware. Modern laptops have 48 cores, and even high-end servers rarely
exceed 64 cores per socket, simply because it is not cost-effective.

By comparison, GPUs can consist of thousands of small processing elements (NIVIDA’s
latest Ampere chips have up to 6912 CUDA cores), often grouped into larger groups (NVIDIA
calls them warps). The details differ somewhat between NVIDIA, AMD, ARM and other
chip vendors. While each core is relatively weak, running at about 1GHz clock frequency,
it is the total number of such cores that makes GPUs orders of magnitude faster than
CPUs. For instance, NVIDIA’s recent Ampere A100 GPU offers over 300 TFLOPs per
chip for specialized 16-bit precision (BFLOAT16) matrix-matrix multiplications, and up
to 20 TFLOPs for more general-purpose floating point operations (FP32). At the same
time, floating point performance of CPUs rarely exceeds 1 TFLOPs. For instance, Ama-
zon’s Graviton 3 reaches 2 TFLOPs peak performance for 16-bit precision operations, a
number similar to the GPU performance of Apple’s M1 processor.

There are many reasons why GPUs are much faster than CPUs in terms of FLOPs. First,
power consumption tends to grow quadratically with clock frequency. Hence, for the power
budget of a CPU core that runs four times faster (a typical number), you can use 16 GPU
cores at th the speed, which yields 16><% = 4 times the performance. Second, GPU cores are
much simpler (in fact, for a long time they were not even able to execute general-purpose
code), which makes them more energy efficient. For instance, (i) they tend not to support
speculative evaluation, (ii) it typically is not possible to program each processing element
individually, and (iii) the caches per core tend to be much smaller. Last, many operations
in deep learning require high memory bandwidth. Again, GPUs shine here with buses that
are at least 10 times as wide as many CPUs.

Back to 2012. A major breakthrough came when Alex Krizhevsky and Ilya Sutskever im-
plemented a deep CNN that could run on GPUs. They realized that the computational bot-
tlenecks in CNNs, convolutions and matrix multiplications, are all operations that could be
parallelized in hardware. Using two NVIDIA GTX 580s with 3GB of memory, either of
126 which was capable of 1.5 TFLOPs (still a challenge for most CPUs a decade later), they im-
plemented fast convolutions. The cuda-convnet!? code was good enough that for several

years it was the industry standard and powered the first couple of years of the deep learning
boom.


https://code.google.com/archive/p/cuda-convnet/
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8.1.2 AlexNet

AlexNet, which employed an 8-layer CNN, won the ImageNet Large Scale Visual Recog-
nition Challenge 2012 by a large margin (Russakovsky et al., 2013). This network showed,
for the first time, that the features obtained by learning can transcend manually-designed
features, breaking the previous paradigm in computer vision.

The architectures of AlexNet and LeNet are strikingly similar, as Fig. 8.1.2 illustrates. Note
that we provide a slightly streamlined version of AlexNet removing some of the design
quirks that were needed in 2012 to make the model fit on two small GPUs.

| FC (1000) |
1

| FC (4096) |
1

| FC (4096) |
1

| 3 x 3 MaxPool, stride 2 |
1

| FC (10) | | 3x 3 Conv (256), pad 1 |
1 1

| FC (84) | | 3x 3 Conv (384), pad 1 |
1 1

| FC (120) | | 3x 3 Conv (384), pad 1 |
1 1

| 2 x 2 AvgPool, stride 2 | | 3 x 3 MaxPool, stride 2 |
t 1

| 5x 5 Conv (16) | | 5x 5 Conv (256), pad 2 |
1

| 2 x 2 AvgPool, stride 2 | | 3 x 3 MaxPool, stride 2 |

| 5x 5 Conv (6), pad 2 | | 11 x 11 Conv (96), stride 4 |
t 1

| Image (28 x 28) | | Image (3 x 224 x 224) |

From LeNet (left) to AlexNet (right).

There are also significant differences between AlexNet and LeNet. First, AlexNet is much
deeper than the comparatively small LeNet-5. AlexNet consists of eight layers: five con-
volutional layers, two fully connected hidden layers, and one fully connected output layer.
Second, AlexNet used the ReLU instead of the sigmoid as its activation function. Let’s
delve into the details below.

Architecture

In AlexNet’s first layer, the convolution window shape is 11 X 11. Since the images in
ImageNet are eight times taller and wider than the MNIST images, objects in ImageNet
data tend to occupy more pixels with more visual detail. Consequently, a larger convolution
window is needed to capture the object. The convolution window shape in the second
layer is reduced to 5 x 5, followed by 3 x 3. In addition, after the first, second, and fifth
convolutional layers, the network adds max-pooling layers with a window shape of 3 x
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3 and a stride of 2. Moreover, AlexNet has ten times more convolution channels than
LeNet.

After the final convolutional layer, there are two huge fully connected layers with 4096 out-
puts. These layers require nearly 1GB model parameters. Because of the limited memory
in early GPUs, the original AlexNet used a dual data stream design, so that each of their
two GPUs could be responsible for storing and computing only its half of the model. Fortu-
nately, GPU memory is comparatively abundant now, so we rarely need to break up models
across GPUs these days (our version of the AlexNet model deviates from the original paper
in this aspect).

Activation Functions

Furthermore, AlexNet changed the sigmoid activation function to a simpler ReLU activa-
tion function. On the one hand, the computation of the ReLLU activation function is simpler.
For example, it does not have the exponentiation operation found in the sigmoid activation
function. On the other hand, the ReLLU activation function makes model training easier
when using different parameter initialization methods. This is because, when the output
of the sigmoid activation function is very close to O or 1, the gradient of these regions is
almost 0, so that backpropagation cannot continue to update some of the model parameters.
By contrast, the gradient of the ReLLU activation function in the positive interval is always 1
(Section 5.1.2). Therefore, if the model parameters are not properly initialized, the sigmoid
function may obtain a gradient of almost 0 in the positive interval, meaning that the model
cannot be effectively trained.

Capacity Control and Preprocessing

AlexNet controls the model complexity of the fully connected layer by dropout (Section
5.6), while LeNet only uses weight decay. To augment the data even further, the training
loop of AlexNet added a great deal of image augmentation, such as flipping, clipping, and
color changes. This makes the model more robust and the larger sample size effectively
reduces overfitting. See Buslaev er al. (2020) for an in-depth review of such preprocessing
steps.

class AlexNet(d2l.Classifier):
def __init__(self, 1r=0.1, num_classes=10):

super().__init__()

self.save_hyperparameters()

self.net = nn.Sequential()

self.net.add(
nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),

(continues on next page)



279 Deep Convolutional Neural Networks (AlexNet)

(continued from previous page)

nn.Dense (4096, activation='relu'), nn.Dropout(0.5),

nn.Dense (4096, activation='relu'), nn.Dropout(0.5),

nn.Dense(num_classes))
self.net.initialize(init.Xavier())

We construct a single-channel data example with both height and width of 224 to observe
the output shape of each layer. It matches the AlexNet architecture in Fig. 8.1.2.

AlexNet().layer_summary((1l, 1, 224, 224))

Conv2D output shape: (1, 96, 54, 54)
MaxPool2D output shape: (1, 96, 26, 26)
Conv2D output shape: (1, 256, 26, 26)
MaxPool2D output shape: (1, 256, 12, 12)
Conv2D output shape: (1, 384, 12, 12)
Conv2D output shape: (1, 384, 12, 12)
Conv2D output shape: (1, 256, 12, 12)
MaxPool2D output shape: (1, 256, 5, 5)
Dense output shape: (1, 4096)

Dropout output shape: (1, 4096)

Dense output shape: (1, 4096)

Dropout output shape: (1, 4096)

Dense output shape: (1, 10)
[22:28:16] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

8.1.3 Training

Although AlexNet was trained on ImageNet in Krizhevsky et al. (2012), we use Fashion-
MNIST here since training an ImageNet model to convergence could take hours or days
even on a modern GPU. One of the problems with applying AlexNet directly on Fashion-
MNIST is that its images have lower resolution (28 X 28 pixels) than ImageNet images. To
make things work, we upsample them to 224 x224. This is generally not a smart practice, as
it simply increases the computational complexity without adding information. Nonetheless,
we do it here to be faithful to the AlexNet architecture. We perform this resizing with the
resize argument in the d21.FashionMNIST constructor.

Now, we can start training AlexNet. Compared to LeNet in Section 7.6, the main change
here is the use of a smaller learning rate and much slower training due to the deeper and
wider network, the higher image resolution, and the more costly convolutions.

model = AlexNet(1lr=0.01)

data = d21.FashionMNIST(batch_size=128, resize=(224, 224))
trainer = d21.Trainer(max_epochs=10, num_gpus=1)
trainer.fit(model, data)

8.1.4 Discussion
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—— train_loss
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AlexNet’s structure bears a striking resemblance to LeNet, with a number of critical im-
provements, both for accuracy (dropout) and for ease of training (ReLU). What is equally
striking is the amount of progress that has been made in terms of deep learning tooling.
What was several months of work in 2012 can now be accomplished in a dozen lines of
code using any modern framework.

Reviewing the architecture, we see that AlexNet has an Achilles heel when it comes to effi-
ciency: the last two hidden layers require matrices of size 6400x 4096 and 4096 x 4096, re-
spectively. This corresponds to 164 MB of memory and 81 MFLOPs of computation, both
of which are a nontrivial outlay, especially on smaller devices, such as mobile phones. This
is one of the reasons why AlexNet has been surpassed by much more effective architectures
that we will cover in the following sections. Nonetheless, it is a key step from shallow to
deep networks that are used nowadays. Note that even though the number of parameters
exceeds by far the amount of training data in our experiments (the last two layers have more
than 40 million parameters, trained on a datasets of 60 thousand images), there is hardly
any overfitting: training and validation loss are virtually identical throughout training. This
is due to the improved regularization, such as dropout, inherent in modern deep network
designs.

Although it seems that there are only a few more lines in AlexNet’s implementation than
in LeNet’s, it took the academic community many years to embrace this conceptual change
and take advantage of its excellent experimental results. This was also due to the lack of
efficient computational tools. At the time neither DistBelief (Dean et al., 2012) nor Caffe
(Jiaetal.,2014) existed, and Theano (Bergstra et al., 2010) still lacked many distinguishing
features. It was the availability of TensorFlow (Abadi et al., 2016) that dramatically changed
the situation.

8.1.5 Exercises

1. Following up on the discussion above, analyze the computational properties of AlexNet.

1. Compute the memory footprint for convolutions and fully connected layers, respec-
tively. Which one dominates?

2. Calculate the computational cost for the convolutions and the fully connected layers.
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3. How does the memory (read and write bandwidth, latency, size) affect computation?
Is there any difference in its effects for training and inference?

2. You are a chip designer and need to trade off computation and memory bandwidth.
For example, a faster chip requires more power and possibly a larger chip area. More
memory bandwidth requires more pins and control logic, thus also more area. How do
you optimize?

3. Why do engineers no longer report performance benchmarks on AlexNet?

4. Try increasing the number of epochs when training AlexNet. Compared with LeNet,
how do the results differ? Why?

5. AlexNet may be too complex for the Fashion-MNIST dataset, in particular due to the
low resolution of the initial images.

1. Try simplifying the model to make the training faster, while ensuring that the accu-
racy does not drop significantly.

2. Design a better model that works directly on 28 x 28 images.

6. Modify the batch size, and observe the changes in throughput (images/s), accuracy, and
GPU memory.

7. Apply dropout and ReLLU to LeNet-5. Does it improve? Can you improve things further
by preprocessing to take advantage of the invariances inherent in the images?

8. Can you make AlexNet overfit? Which feature do you need to remove or change to break

training?
127 Discussions 127 .
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8.2 Networks Using Blocks (VGG)
. _________________________________________________________________________________________|

While AlexNet offered empirical evidence that deep CNNs can achieve good results, it did
not provide a general template to guide subsequent researchers in designing new networks.
In the following sections, we will introduce several heuristic concepts commonly used to
design deep networks.

Progress in this field mirrors that of VLSI (very large scale integration) in chip design where
engineers moved from placing transistors to logical elements to logic blocks (Mead, 1980).
Similarly, the design of neural network architectures has grown progressively more abstract,
with researchers moving from thinking in terms of individual neurons to whole layers,
and now to blocks, repeating patterns of layers. A decade later, this has now progressed
to researchers using entire trained models to repurpose them for different, albeit related,
tasks. Such large pretrained models are typically called foundation models (Bommasani et
al., 2021).


https://discuss.d2l.ai/t/75
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Back to network design. The idea of using blocks first emerged from the Visual Geometry
Group (VGG) at Oxford University, in their eponymously-named VGG network (Simonyan
and Zisserman, 2014). It is easy to implement these repeated structures in code with any
modern deep learning framework by using loops and subroutines.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

8.2.1 VGG Blocks

The basic building block of CNNss is a sequence of the following: (i) a convolutional layer
with padding to maintain the resolution, (ii) a nonlinearity such as a ReLU, (iii) a pooling
layer such as max-pooling to reduce the resolution. One of the problems with this approach
is that the spatial resolution decreases quite rapidly. In particular, this imposes a hard limit
of log, d convolutional layers on the network before all dimensions (d) are used up. For
instance, in the case of ImageNet, it would be impossible to have more than 8 convolutional
layers in this way.

The key idea of Simonyan and Zisserman (2014) was to use multiple convolutions in be-
tween downsampling via max-pooling in the form of a block. They were primarily in-
terested in whether deep or wide networks perform better. For instance, the successive
application of two 3 X 3 convolutions touches the same pixels as a single 5 X 5 convolution
does. At the same time, the latter uses approximately as many parameters (25 - c2) as three
3% 3 convolutions do (3-9-¢?). In a rather detailed analysis they showed that deep and nar-
row networks significantly outperform their shallow counterparts. This set deep learning
on a quest for ever deeper networks with over 100 layers for typical applications. Stacking
3 x 3 convolutions has become a gold standard in later deep networks (a design decision
only to be revisited recently by Liu ez al. (2022)). Consequently, fast implementations for
small convolutions have become a staple on GPUs (Lavin and Gray, 2016).

Back to VGG: a VGG block consists of a sequence of convolutions with 3 X 3 kernels with
padding of 1 (keeping height and width) followed by a 2 X 2 max-pooling layer with stride
of 2 (halving height and width after each block). In the code below, we define a function
called vgg_block to implement one VGG block.

The function below takes two arguments, corresponding to the number of convolutional
layers num_convs and the number of output channels num_channels.

def vgg_block(num_convs, num_channels):
blk = nn.Sequential()
for _ in range(num_convs):
blk.add(nn.Conv2D(num_channels, kernel_size=3,
padding=1, activation='relu’))
blk.add(nn.MaxPool2D(pool_size=2, strides=2))
return blk
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8.2.2 VGG Network

Like AlexNet and LeNet, the VGG Network can be partitioned into two parts: the first
consisting mostly of convolutional and pooling layers and the second consisting of fully
connected layers that are identical to those in AlexNet. The key difference is that the con-
volutional layers are grouped in nonlinear transformations that leave the dimensonality un-
changed, followed by a resolution-reduction step, as depicted in Fig. 8.2.1.

AlexNet
| FC (1000) |
| FC (4096) | VGG
| FC (4096) | | FC (1000) |
| 3 x 3 MaxPool, stride 2 | | Fc (‘;096) |
| 3 x 3 Conv (384), pad 1 | | Fc (‘;O%) |
| 3 x 3 Conv (384), pad 1 | L . ]
t VGG block | . |
| 3 x 3 Conv (384), pad 1 | *
[ ]
1 | 2 x 2 MaxPool, stride 2 |
| 3 x 3 MaxPool, stride 2 | 1 1
t | 3x 3 Conv, pad 1 | }
| 5 x 5 Conv (256), pad 2 | T
t )
| 3 x 3 MaxPool, stride 2 | 1 r
i | 3% 3 Conv, pad 1 | A
| 11 x 11 Conv (96), stride 4 | [ ]

From AlexNet to VGG. The key difference is that VGG consists of blocks of layers,
whereas AlexNet’s layers are all designed individually.

The convolutional part of the network connects several VGG blocks from Fig. 8.2.1 (also
defined in the vgg_block function) in succession. This grouping of convolutions is a pat-
tern that has remained almost unchanged over the past decade, although the specific choice
of operations has undergone considerable modifications. The variable arch consists of a
list of tuples (one per block), where each contains two values: the number of convolutional
layers and the number of output channels, which are precisely the arguments required to
call the vgg_block function. As such, VGG defines a family of networks rather than just a
specific manifestation. To build a specific network we simply iterate over arch to compose
the blocks.

class VGG(d21.Classifier):
def __init__(self, arch, 1lr=0.1, num_classes=10):
super().__init__()
self.save_hyperparameters()

(continues on next page)
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(continued from previous page)

self.net = nn.Sequential()
for (num_convs, num_channels) in arch:
self.net.add(vgg_block(num_convs, num_channels))
self.net.add(nn.Dense (4096, activation='relu’), nn.Dropout(0.5),
nn.Dense (4096, activation='relu’), nn.Dropout(0.5),
nn.Dense(num_classes))
self.net.initialize(init.Xavier())

The original VGG network had five convolutional blocks, among which the first two have
one convolutional layer each and the latter three contain two convolutional layers each. The
first block has 64 output channels and each subsequent block doubles the number of output
channels, until that number reaches 512. Since this network uses eight convolutional layers
and three fully connected layers, it is often called VGG-11.

VGG(arch=((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))).layer_summary(
(1, 1, 224, 224))

Sequential output shape: (1, 64, 112, 112)
Sequential output shape: (1, 128, 56, 56)
Sequential output shape: (1, 256, 28, 28)
Sequential output shape: (1, 512, 14, 14)
Sequential output shape: (1, 512, 7, 7)
Dense output shape: (1, 4096)

Dropout output shape: (1, 4096)

Dense output shape: (1, 4096)

Dropout output shape: (1, 4096)

Dense output shape: (1, 10)
[22:40:53] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

As you can see, we halve height and width at each block, finally reaching a height and width
of 7 before flattening the representations for processing by the fully connected part of the
network. Simonyan and Zisserman (2014) described several other variants of VGG. In
fact, it has become the norm to propose families of networks with different speed—accuracy
trade-off when introducing a new architecture.

8.2.3 Training

Since VGG-11 is computationally more demanding than AlexNet we construct a network
with a smaller number of channels. This is more than sufficient for training on Fashion-
MNIST. The model training process is similar to that of AlexNet in Section 8.1. Again ob-
serve the close match between validation and training loss, suggesting only a small amount
of overfitting.

model = VGG(arch=((1, 16), (1, 32), (2, 64), (2, 128), (2, 128)), 1lr=0.01)
trainer = d21.Trainer(max_epochs=10, num_gpus=1)

data = d21.FashionMNIST(batch_size=128, resize=(224, 224))
trainer.fit(model, data)
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8.2.4 Summary

One might argue that VGG is the first truly modern convolutional neural network. While
AlexNet introduced many of the components of what make deep learning effective at scale,
it is VGG that arguably introduced key properties such as blocks of multiple convolutions
and a preference for deep and narrow networks. It is also the first network that is actually
an entire family of similarly parametrized models, giving the practitioner ample trade-off
between complexity and speed. This is also the place where modern deep learning frame-
works shine. It is no longer necessary to generate XML configuration files to specify a
network but rather, to assemble said networks through simple Python code.

More recently ParNet (Goyal et al., 2021) demonstrated that it is possible to achieve com-
petitive performance using a much more shallow architecture through a large number of
parallel computations. This is an exciting development and there is hope that it will influ-
ence architecture designs in the future. For the remainder of the chapter, though, we will
follow the path of scientific progress over the past decade.

8.2.5 Exercises

1. Compared with AlexNet, VGG is much slower in terms of computation, and it also needs
more GPU memory.

1. Compare the number of parameters needed for AlexNet and VGG.

2. Compare the number of floating point operations used in the convolutional layers
and in the fully connected layers.

3. How could you reduce the computational cost created by the fully connected layers?

2. When displaying the dimensions associated with the various layers of the network, we
only see the information associated with eight blocks (plus some auxiliary transforms),
even though the network has 11 layers. Where did the remaining three layers go?

3. Use Table 1 in the VGG paper (Simonyan and Zisserman, 2014) to construct other com-
mon models, such as VGG-16 or VGG-19.

4. Upsampling the resolution in Fashion-MNIST eight-fold from 28 x 28 to 224 x 224
dimensions is very wasteful. Try modifying the network architecture and resolution
conversion, e.g., to 56 or to 84 dimensions for its input instead. Can you do so without
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reducing the accuracy of the network? Consult the VGG paper (Simonyan and Zisser-
man, 2014) for ideas on adding more nonlinearities prior to downsampling.

Discussions 128

8.3 Network in Network (NiN)
|

LeNet, AlexNet, and VGG all share a common design pattern: extract features exploiting
spatial structure via a sequence of convolutions and pooling layers and post-process the
representations via fully connected layers. The improvements upon LeNet by AlexNet and
VGG mainly lie in how these later networks widen and deepen these two modules.

This design poses two major challenges. First, the fully connected layers at the end of
the architecture consume tremendous numbers of parameters. For instance, even a simple
model such as VGG-11 requires a monstrous matrix, occupying almost 400MB of RAM
in single precision (FP32). This is a significant impediment to computation, in particular
on mobile and embedded devices. After all, even high-end mobile phones sport no more
than 8GB of RAM. At the time VGG was invented, this was an order of magnitude less
(the iPhone 4S had 512MB). As such, it would have been difficult to justify spending the
majority of memory on an image classifier.

Second, it is equally impossible to add fully connected layers earlier in the network to
increase the degree of nonlinearity: doing so would destroy the spatial structure and require
potentially even more memory.

The network in network (NiN) blocks (Lin et al., 2013) offer an alternative, capable of
solving both problems in one simple strategy. They were proposed based on a very simple
insight: (i) use 1 X 1 convolutions to add local nonlinearities across the channel activations
and (ii) use global average pooling to integrate across all locations in the last representation
layer. Note that global average pooling would not be effective, were it not for the added
nonlinearities. Let’s dive into this in detail.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

8.3.1 NiN Blocks

Recall Section 7.4.3. In it we said that the inputs and outputs of convolutional layers consist
of four-dimensional tensors with axes corresponding to the example, channel, height, and
width. Also recall that the inputs and outputs of fully connected layers are typically two-
dimensional tensors corresponding to the example and feature. The idea behind NiN is
to apply a fully connected layer at each pixel location (for each height and width). The



https://discuss.d2l.ai/t/77

287

Network in Network (NiN)

resulting 1x 1 convolution can be thought of as a fully connected layer acting independently

on each pixel location.

Fig. 8.3.1 illustrates the main structural differences between VGG and NiN, and their blocks.
Note both the difference in the NiN blocks (the initial convolution is followed by 1 x 1 con-
volutions, whereas VGG retains 3 X 3 convolutions) and at the end where we no longer
require a giant fully connected layer.

VGG block

VGG

FC (1000)

FC (4096)

FC (4096)

NiN

Global AvgPool

t

i

I

[ 3x3Conv (10), pad 1

t

| 3 x 3 MaxPool, stride 2

t

1

1

| 3x3Conv (384), pad 1

t

| 3 x 3 MaxPool, stride 2

t

1

1

| 3 x 3 Conv, pad 1 |

il

Conv

NiN block [ 5x5 Conv (256), pad 2
| 3 x 3 MaxPool, stride 2 | T
: e
| 3x 3 Conv, pad 1 | * S aXTOO,SrIe
1x 1 Conv I
t
t ‘ |

T
[ 11x 11 Conv (96), stride 4

Comparing the architectures of VGG and NiN, and of their blocks.

def nin_block(num_channels, kernel_size, strides, padding):

blk = nn.Sequential()
blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding,

activation='relu’),

nn.Conv2D(num_channels, kernel_size=1, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'))

return blk

8.3.2 NiN Model
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NiN uses the same initial convolution sizes as AlexNet (it was proposed shortly thereafter).
The kernel sizes are 11 X 11, 5 X 5, and 3 X 3, respectively, and the numbers of output
channels match those of AlexNet. Each NiN block is followed by a max-pooling layer with
a stride of 2 and a window shape of 3 x 3.

The second significant difference between NiN and both AlexNet and VGG is that NiN
avoids fully connected layers altogether. Instead, NiN uses a NiN block with a number of
output channels equal to the number of label classes, followed by a global average pooling
layer, yielding a vector of logits. This design significantly reduces the number of required
model parameters, albeit at the expense of a potential increase in training time.

class NiN(d21.Classifier):
def __init__(self, 1lr=0.1, num_classes=10):

super().__init__()

self.save_hyperparameters()

self.net = nn.Sequential()

self.net.add(
nin_block(96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Dropout(0.5),
nin_block(num_classes, kernel_size=3, strides=1, padding=1),
nn.GlobalAvgPool2D(),
nn.Flatten())

self.net.initialize(init.Xavier())

We create a data example to see the output shape of each block.

NiN().layer_summary((1, 1, 224, 224))

Sequential output shape: (1, 96, 54, 54)
MaxPool2D output shape: (1, 96, 26, 26)
Sequential output shape: (1, 256, 26, 26)
MaxPool2D output shape: (1, 256, 12, 12)
Sequential output shape: (1, 384, 12, 12)
MaxPool2D output shape: (1, 384, 5, 5)
Dropout output shape: (1, 384, 5, 5)
Sequential output shape: (1, 10, 5, 5)
GlobalAvgPool2D output shape: (1, 10, 1, 1)
Flatten output shape: (1, 10)

[22:45:22] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

8.3.3 Training

As before we use Fashion-MNIST to train the model using the same optimizer that we used
for AlexNet and VGG.
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model = NiN(1r=0.05)
trainer = d21.Trainer(max_epochs=10, num_gpus=1)
data = d21.FashionMNIST(batch_size=128, resize=(224, 224))

trainer.fit(model, data)
—— train_loss
2.0 val_loss
—-= val_acc
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8.3.4 Summary

NiN has dramatically fewer parameters than AlexNet and VGG. This stems primarily from
the fact that it needs no giant fully connected layers. Instead, it uses global average pooling
to aggregate across all image locations after the last stage of the network body. This obvi-
ates the need for expensive (learned) reduction operations and replaces them by a simple
average. What surprised researchers at the time was the fact that this averaging operation
did not harm accuracy. Note that averaging across a low-resolution representation (with
many channels) also adds to the amount of translation invariance that the network can han-
dle.

Choosing fewer convolutions with wide kernels and replacing them by 1 X 1 convolutions
aids the quest for fewer parameters further. It can cater for a significant amount of non-
linearity across channels within any given location. Both 1 X 1 convolutions and global
average pooling significantly influenced subsequent CNN designs.

8.3.5 Exercises

1. Why are there two 1 X 1 convolutional layers per NiN block? Increase their number to
three. Reduce their number to one. What changes?

2. What changes if you replace the 1 X 1 convolutions by 3 X 3 convolutions?

3. What happens if you replace the global average pooling by a fully connected layer
(speed, accuracy, number of parameters)?

4. Calculate the resource usage for NiN.
1. What is the number of parameters?
2. What is the amount of computation?

3. What is the amount of memory needed during training?
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4. What is the amount of memory needed during prediction?

5. What are possible problems with reducing the 384 x 5 X 5 representation toa 10X 5x 5
representation in one step?

6. Use the structural design decisions in VGG that led to VGG-11, VGG-16, and VGG-19
to design a family of NiN-like networks.
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8.4 Multi-Branch Networks (Googl.eNet)

In 2014, GoogLeNet won the ImageNet Challenge (Szegedy et al., 2015), using a structure
that combined the strengths of NiN (Lin et al., 2013), repeated blocks (Simonyan and Zis-
serman, 2014), and a cocktail of convolution kernels. It was arguably also the first network
that exhibited a clear distinction among the stem (data ingest), body (data processing), and
head (prediction) in a CNN. This design pattern has persisted ever since in the design of
deep networks: the stem is given by the first two or three convolutions that operate on the
image. They extract low-level features from the underlying images. This is followed by a
body of convolutional blocks. Finally, the head maps the features obtained so far to the
required classification, segmentation, detection, or tracking problem at hand.

The key contribution in GoogLeNet was the design of the network body. It solved the prob-
lem of selecting convolution kernels in an ingenious way. While other works tried to iden-
tify which convolution, ranging from 1 x 1 to 11 x 11 would be best, it simply concatenated
multi-branch convolutions. In what follows we introduce a slightly simplified version of
GoogLeNet: the original design included a number of tricks for stabilizing training through
intermediate loss functions, applied to multiple layers of the network. They are no longer
necessary due to the availability of improved training algorithms.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

8.4.1 Inception Blocks

The basic convolutional block in GoogLeNet is called an Inception block, stemming from
the meme “we need to go deeper” from the movie Inception.

As depicted in Fig. 8.4.1, the inception block consists of four parallel branches. The first
three branches use convolutional layers with window sizes of 1 X 1,3 X 3, and 5 X 5 to
extract information from different spatial sizes. The middle two branches also add a 1 x 1
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Structure of the Inception block.

convolution of the input to reduce the number of channels, reducing the model’s complex-
ity. The fourth branch uses a 3 X 3 max-pooling layer, followed by a 1 X 1 convolutional
layer to change the number of channels. The four branches all use appropriate padding
to give the input and output the same height and width. Finally, the outputs along each
branch are concatenated along the channel dimension and comprise the block’s output. The
commonly-tuned hyperparameters of the Inception block are the number of output channels
per layer, i.e., how to allocate capacity among convolutions of different size.

class Inception(nn.Block):
# cl--c4 are the number of output channels for each branch
def __init__(self, cl, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)

# Branch 1

self.bl_1 = nn.Conv2D(cl, kernel_size=1, activation='relu')

# Branch 2

self.b2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')

self.b2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1,
activation='relu")

# Branch 3

self.b3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')

self.b3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2,
activation='relu")

# Branch 4

self.b4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)

self.b4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')

def forward(self, x):
bl = self.bl_1(x)

b2 = self.b2_2(self.b2_1(x))
b3 = self.b3_2(self.b3_1(x))
b4 = self.b4_2(self.b4_1(x))

return np.concatenate((bl, b2, b3, b4), axis=1)

To gain some intuition for why this network works so well, consider the combination of
the filters. They explore the image in a variety of filter sizes. This means that details at
different extents can be recognized efficiently by filters of different sizes. At the same time,
we can allocate different amounts of parameters for different filters.

8.4.2 Googl.eNet Model

As shown in Fig. 8.4.2, GoogLeNet uses a stack of a total of 9 inception blocks, arranged
into three groups with max-pooling in between, and global average pooling in its head to
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generate its estimates. Max-pooling between inception blocks reduces the dimensionality.
At its stem, the first module is similar to AlexNet and LeNet.
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The GooglLeNet architecture.

We can now implement GoogLeNet piece by piece. Let’s begin with the stem. The first
module uses a 64-channel 7 x 7 convolutional layer.

class GoogleNet(d2l.Classifier):
def bl(self):
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3,
activation="relu’),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
return net

The second module uses two convolutional layers: first, a 64-channel 1 X 1 convolutional
layer, followed by a 3 x 3 convolutional layer that triples the number of channels. This
corresponds to the second branch in the Inception block and concludes the design of the
body. At this point we have 192 channels.

@d21.add_to_class(GoogleNet)
def b2(self):
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=1, activation='relu'),
nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
return net

The third module connects two complete Inception blocks in series. The number of output
channels of the first Inception block is 64 + 128 + 32 4+ 32 = 256. This amounts to a ratio of
the number of output channels among the four branches of 2 : 4 : 1 : 1. To achieve this, we
first reduce the input dimensions by % and by 1—12 in the second and third branch respectively
to arrive at 96 = 192/2 and 16 = 192/12 channels respectively.

The number of output channels of the second Inception block is increased to 128 + 192 +
96 + 64 = 480, yielding aratio of 128 : 192: 96 : 64 =4 : 6 : 3 : 2. As before, we need to
reduce the number of intermediate dimensions in the second and third channel. A scale of
% and % respectively suffices, yielding 128 and 32 channels respectively. This is captured
by the arguments of the following Inception block constructors.

@d21.add_to_class(GoogleNet)

(continues on next page)
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(continued from previous page)

def b3(self):
net = nn.Sequential()
net.add(Inception(64, (96, 128), (16, 32), 32),
Inception(128, (128, 192), (32, 96), 64),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
return net

The fourth module is more complicated. It connects five Inception blocks in series, and
they have 192 +208 +48 + 64 = 512, 160+224 + 64 + 64 = 512, 128 +256 + 64 + 64 = 512,
112 +288 + 64 + 64 = 528, and 256 + 320 + 128 + 128 = 832 output channels, respectively.
The number of channels assigned to these branches is similar to that in the third module:
the second branch with the 3 x 3 convolutional layer outputs the largest number of channels,
followed by the first branch with only the 1 X 1 convolutional layer, the third branch with
the 5 X 5 convolutional layer, and the fourth branch with the 3 X 3 max-pooling layer. The
second and third branches will first reduce the number of channels according to the ratio.
These ratios are slightly different in different Inception blocks.

@d21.add_to_class(GoogleNet)
def b4(self):
net = nn.Sequential()
net.add(Inception(192, (96, 208), (16, 48), 64),
Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
return net

The fifth module has two Inception blocks with 256+320+ 128+ 128 = 832 and 384 +384 +
128 + 128 = 1024 output channels. The number of channels assigned to each branch is the
same as that in the third and fourth modules, but differs in specific values. It should be
noted that the fifth block is followed by the output layer. This block uses the global average
pooling layer to change the height and width of each channel to 1, just as in NiN. Finally,
we turn the output into a two-dimensional array followed by a fully connected layer whose
number of outputs is the number of label classes.

@d21.add_to_class(GoogleNet)
def b5(self):
net = nn.Sequential()
net.add(Inception(256, (160, 320), (32, 128), 128),
Inception(384, (192, 384), (48, 128), 128),
nn.GlobalAvgPool2D())
return net

Now that we defined all blocks b1 through b5, it is just a matter of assembling them all into
a full network.
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@d21.add_to_class(GoogleNet)
def __init__(self, 1r=0.1, num_classes=10):

super(GoogleNet, self).__init__()

self.save_hyperparameters()

self.net = nn.Sequential()

self.net.add(self.bl(), self.b2(), self.b3(), self.b4(), self.b5(),
nn.Dense(num_classes))

self.net.initialize(init.Xavier())

The GooglLeNet model is computationally complex. Note the large number of relatively
arbitrary hyperparameters in terms of the number of channels chosen, the number of blocks
prior to dimensionality reduction, the relative partitioning of capacity across channels, etc.
Much of it is due to the fact that at the time when GoogLeNet was introduced, automatic
tools for network definition or design exploration were not yet available. For instance, by
now we take it for granted that a competent deep learning framework is capable of inferring
dimensionalities of input tensors automatically. At the time, many such configurations had
to be specified explicitly by the experimenter, thus often slowing down active experimen-
tation. Moreover, the tools needed for automatic exploration were still in flux and initial
experiments largely amounted to costly brute-force exploration, genetic algorithms, and
similar strategies.

For now the only modification we will carry out is to reduce the input height and width
from 224 to 96 to have a reasonable training time on Fashion-MNIST. This simplifies the
computation. Let’s have a look at the changes in the shape of the output between the various
modules.

model = GoogleNet().layer_summary((1l, 1, 96, 96))

[22:26:25] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

Sequential output shape: (1, 64, 24, 24)
Sequential output shape: (1, 192, 12, 12)
Sequential output shape: (1, 480, 6, 6)
Sequential output shape: (1, 832, 3, 3)
Sequential output shape: (1, 1024, 1, 1)

Dense output shape: (1, 10)

8.4.3 Training

As before, we train our model using the Fashion-MNIST dataset. We transform it to 96 x96
pixel resolution before invoking the training procedure.

model = GoogleNet(1lr=0.01)

trainer = d21.Trainer(max_epochs=10, num_gpus=1)

data = d21.FashionMNIST(batch_size=128, resize=(96, 96))
trainer.fit(model, data)
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8.4.4 Discussion

A key feature of GoogLeNet is that it is actually cheaper to compute than its predecessors
while simultaneously providing improved accuracy. This marks the beginning of a much
more deliberate network design that trades off the cost of evaluating a network with a reduc-
tion in errors. It also marks the beginning of experimentation at a block level with network
design hyperparameters, even though it was entirely manual at the time. We will revisit this
topic in Section 8.8 when discussing strategies for network structure exploration.

Over the following sections we will encounter a number of design choices (e.g., batch nor-
malization, residual connections, and channel grouping) that allow us to improve networks
significantly. For now, you can be proud to have implemented what is arguably the first
truly modern CNN.

8.4.5 Exercises

1. GoogLeNet was so successful that it went through a number of iterations, progressively
improving speed and accuracy. Try to implement and run some of them. They include
the following:

1. Add a batch normalization layer (Ioffe and Szegedy, 2015), as described later in
Section 8.5.

2. Make adjustments to the Inception block (width, choice and order of convolutions),
as described in Szegedy ez al. (2016).

3. Use label smoothing for model regularization, as described in Szegedy et al. (2016).

4. Make further adjustments to the Inception block by adding residual connection (Szegedy
et al., 2017), as described later in Section 8.6.

2. What is the minimum image size needed for GoogLeNet to work?

3. Can you design a variant of GoogLeNet that works on Fashion-MNIST’s native resolu-
tion of 28 x 28 pixels? How would you need to change the stem, the body, and the head
of the network, if anything at all?

4. Compare the model parameter sizes of AlexNet, VGG, NiN, and GooglL.eNet. How do
the latter two network architectures significantly reduce the model parameter size?
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5. Compare the amount of computation needed in Googl.eNet and AlexNet. How does this
affect the design of an accelerator chip, e.g., in terms of memory size, memory band-
width, cache size, the amount of computation, and the benefit of specialized operations?

Discussions 130,

8.5 Batch Normalization

Training deep neural networks is difficult. Getting them to converge in a reasonable amount
of time can be tricky. In this section, we describe batch normalization, a popular and
effective technique that consistently accelerates the convergence of deep networks (Ioffe
and Szegedy, 2015). Together with residual blocks—covered later in Section 8.6—batch
normalization has made it possible for practitioners to routinely train networks with over
100 layers. A secondary (serendipitous) benefit of batch normalization lies in its inherent
regularization.

from mxnet import autograd, init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

8.5.1 Training Deep Networks

When working with data, we often preprocess before training. Choices regarding data pre-
processing often make an enormous difference in the final results. Recall our application of
MLPs to predicting house prices (Section 5.7). Our first step when working with real data
was to standardize our input features to have zero mean u = 0 and unit variance £ = 1 across
multiple observations (Friedman, 1987), frequently rescaling the latter so that the diagonal
is unity, i.e., X;; = 1. Yet another strategy is to rescale vectors to unit length, possibly
zero mean per observation. This can work well, e.g., for spatial sensor data. These pre-
processing techniques and many others, are beneficial for keeping the estimation problem
well controlled. For a review of feature selection and extraction see the article of Guyon et
al. (2008), for example. Standardizing vectors also has the nice side-effect of constraining
the function complexity of functions that act upon it. For instance, the celebrated radius-
margin bound (Vapnik, 1995) in support vector machines and the Perceptron Convergence
Theorem (Novikoff, 1962) rely on inputs of bounded norm.

Intuitively, this standardization plays nicely with our optimizers since it puts the parameters
a priori on a similar scale. As such, it is only natural to ask whether a corresponding
normalization step inside a deep network might not be beneficial. While this is not quite
the reasoning that led to the invention of batch normalization (Ioffe and Szegedy, 2015),
it is a useful way of understanding it and its cousin, layer normalization (Ba et al., 2016),
within a unified framework.
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Second, for a typical MLP or CNN, as we train, the variables in intermediate layers (e.g.,
affine transformation outputs in MLP) may take values with widely varying magnitudes:
whether along the layers from input to output, across units in the same layer, and over
time due to our updates to the model parameters. The inventors of batch normalization
postulated informally that this drift in the distribution of such variables could hamper the
convergence of the network. Intuitively, we might conjecture that if one layer has variable
activations that are 100 times that of another layer, this might necessitate compensatory
adjustments in the learning rates. Adaptive solvers such as AdaGrad (Duchi et al., 2011),
Adam (Kingma and Ba, 2014), Yogi (Zaheer et al., 2018), or Distributed Shampoo (Anil
et al., 2020) aim to address this from the viewpoint of optimization, e.g., by adding aspects
of second-order methods. The alternative is to prevent the problem from occurring, simply
by adaptive normalization.

Third, deeper networks are complex and tend to be more liable to overfitting. This means
that regularization becomes more critical. A common technique for regularization is noise
injection. This has been known for a long time, e.g., with regard to noise injection for
the inputs (Bishop, 1995). It also forms the basis of dropout in Section 5.6. As it turns
out, quite serendipitously, batch normalization conveys all three benefits: preprocessing,
numerical stability, and regularization.

Batch normalization is applied to individual layers, or optionally, to all of them: In each
training iteration, we first normalize the inputs (of batch normalization) by subtracting their
mean and dividing by their standard deviation, where both are estimated based on the statis-
tics of the current minibatch. Next, we apply a scale coefficient and an offset to recover the
lost degrees of freedom. It is precisely due to this normalization based on batch statistics
that batch normalization derives its name.

Note that if we tried to apply batch normalization with minibatches of size 1, we would not
be able to learn anything. That is because after subtracting the means, each hidden unit
would take value 0. As you might guess, since we are devoting a whole section to batch
normalization, with large enough minibatches the approach proves effective and stable.
One takeaway here is that when applying batch normalization, the choice of batch size is
even more significant than without batch normalization, or at least, suitable calibration is
needed as we might adjust batch size.

Denote by B a minibatch and let x € B be an input to batch normalization (BN). In this
case the batch normalization is defined as follows:

BN(x)=yo~_H8,p (8.5.1)
]

In (8.5.1), fi14 is the sample mean and J g is the sample standard deviation of the minibatch
8. After applying standardization, the resulting minibatch has zero mean and unit variance.
The choice of unit variance (rather than some other magic number) is arbitrary. We recover
this degree of freedom by including an elementwise scale parameter y and shift parameter
B that have the same shape as x. Both are parameters that need to be learned as part of
model training.

The variable magnitudes for intermediate layers cannot diverge during training since batch
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normalization actively centers and rescales them back to a given mean and size (via fig and
6 g). Practical experience confirms that, as alluded to when discussing feature rescaling,
batch normalization seems to allow for more aggressive learning rates. We calculate fig
and ¢ g in (8.5.1) as follows:

o o | A
fig == > xand 6y = > (x—fig)’ +e. (8.5.2)
8] 24 1]

Note that we add a small constant € > 0 to the variance estimate to ensure that we never
attempt division by zero, even in cases where the empirical variance estimate might be
very small or vanish. The estimates fi g and 6 g counteract the scaling issue by using noisy
estimates of mean and variance. You might think that this noisiness should be a problem.
On the contrary, it is actually beneficial.

This turns out to be a recurring theme in deep learning. For reasons that are not yet well-
characterized theoretically, various sources of noise in optimization often lead to faster
training and less overfitting: this variation appears to act as a form of regularization. Teye
etal. (2018) and Luo et al. (2018) related the properties of batch normalization to Bayesian
priors and penalties, respectively. In particular, this sheds some light on the puzzle of why
batch normalization works best for moderate minibatch sizes in the 50-100 range. This
particular size of minibatch seems to inject just the “right amount” of noise per layer, both
in terms of scale via -, and in terms of offset via fi: a larger minibatch regularizes less due
to the more stable estimates, whereas tiny minibatches destroy useful signal due to high
variance. Exploring this direction further, considering alternative types of preprocessing
and filtering may yet lead to other effective types of regularization.

Fixing a trained model, you might think that we would prefer using the entire dataset to
estimate the mean and variance. Once training is complete, why would we want the same
image to be classified differently, depending on the batch in which it happens to reside?
During training, such exact calculation is infeasible because the intermediate variables for
all data examples change every time we update our model. However, once the model is
trained, we can calculate the means and variances of each layer’s variables based on the
entire dataset. Indeed this is standard practice for models employing batch normalization;
thus batch normalization layers function differently in training mode (normalizing by mini-
batch statistics) than in prediction mode (normalizing by dataset statistics). In this form they
closely resemble the behavior of dropout regularization of Section 5.6, where noise is only
injected during training.

8.5.2 Batch Normalization Layers

Batch normalization implementations for fully connected layers and convolutional layers
are slightly different. One key difference between batch normalization and other layers is
that because the former operates on a full minibatch at a time, we cannot just ignore the
batch dimension as we did before when introducing other layers.
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Fully Connected Layers

When applying batch normalization to fully connected layers, loffe and Szegedy (2015), in
their original paper inserted batch normalization after the affine transformation and before
the nonlinear activation function. Later applications experimented with inserting batch
normalization right after activation functions. Denoting the input to the fully connected
layer by x, the affine transformation by Wx + b (with the weight parameter W and the
bias parameter b), and the activation function by ¢, we can express the computation of a
batch-normalization-enabled, fully connected layer output h as follows:

h = ¢(BN(Wx +b)). (8.5.3)

Recall that mean and variance are computed on the same minibatch on which the transfor-
mation is applied.

Convolutional Layers

Similarly, with convolutional layers, we can apply batch normalization after the convolution
but before the nonlinear activation function. The key difference from batch normalization
in fully connected layers is that we apply the operation on a per-channel basis across all
locations. This is compatible with our assumption of translation invariance that led to
convolutions: we assumed that the specific location of a pattern within an image was not
critical for the purpose of understanding.

Assume that our minibatches contain m examples and that for each channel, the output
of the convolution has height p and width g. For convolutional layers, we carry out each
batch normalization over the m - p - g elements per output channel simultaneously. Thus,
we collect the values over all spatial locations when computing the mean and variance and
consequently apply the same mean and variance within a given channel to normalize the
value at each spatial location. Each channel has its own scale and shift parameters, both of
which are scalars.

Layer Normalization

Note that in the context of convolutions the batch normalization is well defined even for
minibatches of size 1: after all, we have all the locations across an image to average. Con-
sequently, mean and variance are well defined, even if it is just within a single observation.
This consideration led Ba er al. (2016) to introduce the notion of layer normalization. It
works just like a batch norm, only that it is applied to one observation at a time. Conse-
quently both the offset and the scaling factor are scalars. For an n-dimensional vector x,
layer norms are given by

PN

x — LN(x) = —*#, (8.5.4)
(on

where scaling and offset are applied coefficient-wise and given by

def 1 - .o def 1 - )
= — i d = — i — . LO.
A=- ) xiandd - i;(x A +e (8.5.5)

i=1
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As before we add a small offset € > 0 to prevent division by zero. One of the major benefits
of using layer normalization is that it prevents divergence. After all, ignoring €, the output
of the layer normalization is scale independent. That is, we have LN(x) ~ LN(ax) for any
choice of @ # 0. This becomes an equality for |@| — oo (the approximate equality is due
to the offset € for the variance).

Another advantage of the layer normalization is that it does not depend on the minibatch
size. It is also independent of whether we are in training or test regime. In other words, it is
simply a deterministic transformation that standardizes the activations to a given scale. This
can be very beneficial in preventing divergence in optimization. We skip further details and
recommend that interested readers consult the original paper.

Batch Normalization During Prediction

As we mentioned earlier, batch normalization typically behaves differently in training mode
than in prediction mode. First, the noise in the sample mean and the sample variance arising
from estimating each on minibatches is no longer desirable once we have trained the model.
Second, we might not have the luxury of computing per-batch normalization statistics. For
example, we might need to apply our model to make one prediction at a time.

Typically, after training, we use the entire dataset to compute stable estimates of the vari-
able statistics and then fix them at prediction time. Hence, batch normalization behaves
differently during training than at test time. Recall that dropout also exhibits this charac-
teristic.

8.5.3 Implementation from Scratch

To see how batch normalization works in practice, we implement one from scratch be-
low.

def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
# Use autograd to determine whether we are in training mode
if not autograd.is_training():
# In prediction mode, use mean and variance obtained by moving average
X_hat = (X - moving_mean) / np.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
# When using a fully connected layer, calculate the mean and
# variance on the feature dimension
mean = X.mean(axis=0)
var = ((X - mean) ** 2).mean(axis=0)
else:
# When using a two-dimensional convolutional layer, calculate the
# mean and variance on the channel dimension (axis=1). Here we
# need to maintain the shape of X, so that the broadcasting
# operation can be carried out later
mean = X.mean(axis=(0, 2, 3), keepdims=True)
var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)
# In training mode, the current mean and variance are used

(continues on next page)



301

Batch Normalization

(continued from previous page)

X_hat = (X - mean) / np.sqgrt(var + eps)
# Update the mean and variance using moving average
moving_mean = (1.0 - momentum) * moving_mean + momentum * mean
moving_var = (1.0 - momentum) * moving_var + momentum * var

Y = gamma * X_hat + beta # Scale and shift

return Y, moving_mean, moving_var

We can now create a proper BatchNormlayer. Our layer will maintain proper parameters for
scale gamma and shift beta, both of which will be updated in the course of training. Addi-
tionally, our layer will maintain moving averages of the means and variances for subsequent
use during model prediction.

Putting aside the algorithmic details, note the design pattern underlying our implementation
of the layer. Typically, we define the mathematics in a separate function, say batch_norm.
We then integrate this functionality into a custom layer, whose code mostly addresses book-
keeping matters, such as moving data to the right device context, allocating and initializing
any required variables, keeping track of moving averages (here for mean and variance),
and so on. This pattern enables a clean separation of mathematics from boilerplate code.
Also note that for the sake of convenience we did not worry about automatically inferring
the input shape here; thus we need to specify the number of features throughout. By now
all modern deep learning frameworks offer automatic detection of size and shape in the
high-level batch normalization APIs (in practice we will use this instead).

class BatchNorm(nn.Block):
# ‘num_features': the number of outputs for a fully connected layer
# or the number of output channels for a convolutional layer. ‘num_dims":
# 2 for a fully connected layer and 4 for a convolutional layer
def __init__(self, num_features, num_dims, **kwargs):
super().__init__(*xkwargs)
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
# The scale parameter and the shift parameter (model parameters) are
# initialized to 1 and @, respectively
self.gamma = self.params.get('gamma’, shape=shape, init=init.One())
self.beta = self.params.get('beta’, shape=shape, init=init.Zero())
# The variables that are not model parameters are initialized to @ and
#1
self.moving_mean = np.zeros(shape)
self.moving_var = np.ones(shape)

def forward(self, X):

# If 'X' is not on the main memory, copy ‘moving_mean' and

# ‘moving_var' to the device where ‘X' is located

if self.moving_mean.ctx != X.ctx:
self.moving_mean = self.moving_mean.copyto(X.ctx)
self.moving_var = self.moving_var.copyto(X.ctx)

# Save the updated ‘moving_mean‘' and ‘moving_var®

Y, self.moving_mean, self.moving_var = batch_norm(

(continues on next page)
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(continued from previous page)

X, self.gamma.data(), self.beta.data(), self.moving_mean,
self.moving_var, eps=le-12, momentum=0.1)
return Y

We used momentum to govern the aggregation over past mean and variance estimates. This
is somewhat of a misnomer as it has nothing whatsoever to do with the momentum term of
optimization. Nonetheless, it is the commonly adopted name for this term and in deference
to API naming convention we use the same variable name in our code.

8.5.4 LeNet with Batch Normalization

To see how to apply BatchNorm in context, below we apply it to a traditional LeNet model
(Section 7.6). Recall that batch normalization is applied after the convolutional layers or
fully connected layers but before the corresponding activation functions.

class BNLeNetScratch(d2l.Classifier):
def __init__(self, 1lr=0.1, num_classes=10):

super().__init__()

self.save_hyperparameters()

self.net = nn.Sequential()

self.net.add(
nn.Conv2D(6, kernel_size=5), BatchNorm(6, num_dims=4),
nn.Activation('sigmoid"),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5), BatchNorm(16, num_dims=4),
nn.Activation('sigmoid’),
nn.AvgPool2D(pool_size=2, strides=2), nn.Dense(120),
BatchNorm(120, num_dims=2), nn.Activation('sigmoid"),
nn.Dense(84), BatchNorm(84, num_dims=2),
nn.Activation('sigmoid’'), nn.Dense(num_classes))

self.initialize()

As before, we will train our network on the Fashion-MNIST dataset. This code is virtually
identical to that when we first trained LeNet.

trainer = d21.Trainer(max_epochs=10, num_gpus=1)
data = d21.FashionMNIST(batch_size=128)

model = BNLeNetScratch(lr=0.1)
trainer.fit(model, data)

Let’s have a look at the scale parameter gamma and the shift parameter beta learned from
the first batch normalization layer.

model.net[1].gamma.data().reshape(-1,), model.net[1].beta.data().reshape(-1,)

(array([2.130113 , 1.560813 , 1.461431 , 1.9807949, 2.2318861, 1.551563 1],.
—ctx=gpu(@)),

(continues on next page)
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(continued from previous page)
array([ 1.2277379 , 1.514598 , -1.014917 , ©.19028394, 0.6355166 ,

0.5642359 ], ctx=gpu(@)))

8.5.5 Concise Implementation

Compared with the BatchNorm class, which we just defined ourselves, we can use the
BatchNorm class defined in high-level APIs from the deep learning framework directly.
The code looks virtually identical to our implementation above, except that we no longer
need to provide additional arguments for it to get the dimensions right.

class BNLeNet(d2l.Classifier):
def __init__(self, 1r=0.1, num_classes=10):

super().__init__()

self.save_hyperparameters()

self.net = nn.Sequential()

self.net.add(
nn.Conv2D(6, kernel_size=5), nn.BatchNorm(),
nn.Activation('sigmoid’),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5), nn.BatchNorm(),
nn.Activation('sigmoid’),
nn.AvgPool2D(pool_size=2, strides=2),
nn.Dense(120), nn.BatchNorm(), nn.Activation('sigmoid'),
nn.Dense(84), nn.BatchNorm(), nn.Activation('sigmoid'),
nn.Dense(num_classes))

self.initialize()

Below, we use the same hyperparameters to train our model. Note that as usual, the high-
level API variant runs much faster because its code has been compiled to C++ or CUDA
while our custom implementation must be interpreted by Python.

trainer = d21.Trainer(max_epochs=10, num_gpus=1)
data = d21.FashionMNIST(batch_size=128)

model = BNLeNet(1lr=0.1)

trainer.fit(model, data)

8.5.6 Discussion



304

Modern Convolutional Neural Networks

—— train_loss
1.0 A val_loss
_ —- val_acc A

Intuitively, batch normalization is thought to make the optimization landscape smoother.
However, we must be careful to distinguish between speculative intuitions and true expla-
nations for the phenomena that we observe when training deep models. Recall that we do
not even know why simpler deep neural networks (MLPs and conventional CNNs) general-
ize well in the first place. Even with dropout and weight decay, they remain so flexible that
their ability to generalize to unseen data likely needs significantly more refined learning-
theoretic generalization guarantees.

The original paper proposing batch normalization (Ioffe and Szegedy, 2015), in addition to
introducing a powerful and useful tool, offered an explanation for why it works: by reducing
internal covariate shift. Presumably by internal covariate shift they meant something like
the intuition expressed above—the notion that the distribution of variable values changes
over the course of training. However, there were two problems with this explanation: i) This
drift is very different from covariate shift, rendering the name a misnomer. If anything, it
is closer to concept drift. ii) The explanation offers an under-specified intuition but leaves
the question of why precisely this technique works an open question wanting for a rigorous
explanation. Throughout this book, we aim to convey the intuitions that practitioners use to
guide their development of deep neural networks. However, we believe that it is important
to separate these guiding intuitions from established scientific fact. Eventually, when you
master this material and start writing your own research papers you will want to be clear to
delineate between technical claims and hunches.

Following the success of batch normalization, its explanation in terms of internal covariate
shift has repeatedly surfaced in debates in the technical literature and broader discourse
about how to present machine learning research. In a memorable speech given while ac-
cepting a Test of Time Award at the 2017 NeurIPS conference, Ali Rahimi used internal
covariate shift as a focal point in an argument likening the modern practice of deep learning
to alchemy. Subsequently, the example was revisited in detail in a position paper outlining
troubling trends in machine learning (Lipton and Steinhardt, 2018). Other authors have
proposed alternative explanations for the success of batch normalization, some (Santurkar
et al., 2018) claiming that batch normalization’s success comes despite exhibiting behavior
that is in some ways opposite to those claimed in the original paper.

We note that the internal covariate shift is no more worthy of criticism than any of thou-
sands of similarly vague claims made every year in the technical machine learning literature.
Likely, its resonance as a focal point of these debates owes to its broad recognizability for
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the target audience. Batch normalization has proven an indispensable method, applied in
nearly all deployed image classifiers, earning the paper that introduced the technique tens of
thousands of citations. We conjecture, though, that the guiding principles of regularization
through noise injection, acceleration through rescaling and lastly preprocessing may well
lead to further inventions of layers and techniques in the future.

On a more practical note, there are a number of aspects worth remembering about batch
normalization:

e During model training, batch normalization continuously adjusts the intermediate output
of the network by utilizing the mean and standard deviation of the minibatch, so that
the values of the intermediate output in each layer throughout the neural network are
more stable.

Batch normalization is slightly different for fully connected layers than for convolutional
layers. In fact, for convolutional layers, layer normalization can sometimes be used as
an alternative.

Like a dropout layer, batch normalization layers have different behaviors in training mode
than in prediction mode.

Batch normalization is useful for regularization and improving convergence in optimiza-
tion. By contrast, the original motivation of reducing internal covariate shift seems
not to be a valid explanation.

For more robust models that are less sensitive to input perturbations, consider removing
batch normalization (Wang et al., 2022).

8.5.7 Exercises

1. Should we remove the bias parameter from the fully connected layer or the convolutional
layer before the batch normalization? Why?

2. Compare the learning rates for LeNet with and without batch normalization.

1. Plot the increase in validation accuracy.

2. How large can you make the learning rate before the optimization fails in both cases?
3. Do we need batch normalization in every layer? Experiment with it.

4. Implement a “lite” version of batch normalization that only removes the mean, or alter-
natively one that only removes the variance. How does it behave?

5. Fix the parameters beta and gamma. Observe and analyze the results.
6. Can you replace dropout by batch normalization? How does the behavior change?
7. Research ideas: think of other normalization transforms that you can apply:

1. Can you apply the probability integral transform?

2. Can you use a full-rank covariance estimate? Why should you probably not do that?
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3. Can you use other compact matrix variants (block-diagonal, low-displacement rank,
Monarch, etc.)?

4. Does a sparsification compression act as a regularizer?

5. Are there other projections (e.g., convex cone, symmetry group-specific transforms)
that you can use?

Discussions 3.

8.6 Residual Networks (ResNet) and ResNeXt

As we design ever deeper networks it becomes imperative to understand how adding layers
can increase the complexity and expressiveness of the network. Even more important is
the ability to design networks where adding layers makes networks strictly more expressive
rather than just different. To make some progress we need a bit of mathematics.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

8.6.1 Function Classes

Consider 7, the class of functions that a specific network architecture (together with learn-
ing rates and other hyperparameter settings) can reach. That is, for all f € F there exists
some set of parameters (e.g., weights and biases) that can be obtained through training on
a suitable dataset. Let’s assume that f* is the “truth” function that we really would like to
find. If it is in ¥, we are in good shape but typically we will not be quite so lucky. Instead,
we will try to find some f; which is our best bet within ¥ For instance, given a dataset
with features X and labels y, we might try finding it by solving the following optimization
problem:

£5 < argmin L(X, y, f) subject to f € F. (8.6.1)
S

We know that regularization (Morozov, 1984, Tikhonov and Arsenin, 1977) may control
complexity of # and achieve consistency, so a larger size of training data generally leads to
better fz. It is only reasonable to assume that if we design a different and more powerful
architecture ¥’ we should arrive at a better outcome. In other words, we would expect
that fz, is “better” than fz. However, if ¥ ¢ # there is no guarantee that this should
even happen. In fact, f7, might well be worse. As illustrated by Fig. 8.6.1, for non-nested
function classes, a larger function class does not always move closer to the “truth” function
7. For instance, on the left of Fig. 8.6.1, though 3 is closer to f* than 77, ¥ moves away
and there is no guarantee that further increasing the complexity can reduce the distance
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from f*. With nested function classes where 1 C --- C ¥ on the right of Fig. 8.6.1, we
can avoid the aforementioned issue from the non-nested function classes.

Non-nested function classes Nested function classes

For non-nested function classes, a larger (indicated by area) function class does not
guarantee we will get closer to the “truth” function (f*). This does not happen in nested
function classes.

Thus, only if larger function classes contain the smaller ones are we guaranteed that increas-
ing them strictly increases the expressive power of the network. For deep neural networks,
if we can train the newly-added layer into an identity function f(x) = x, the new model
will be as effective as the original model. As the new model may get a better solution to fit
the training dataset, the added layer might make it easier to reduce training errors.

This is the question that He ef al. (2016) considered when working on very deep com-
puter vision models. At the heart of their proposed residual network (ResNet) is the idea
that every additional layer should more easily contain the identity function as one of its
elements. These considerations are rather profound but they led to a surprisingly simple
solution, a residual block. With it, ResNet won the ImageNet Large Scale Visual Recogni-
tion Challenge in 2015. The design had a profound influence on how to build deep neural
networks. For instance, residual blocks have been added to recurrent networks (Kim et al.,
2017, Prakash et al., 2016). Likewise, Transformers (Vaswani et al., 2017) use them to
stack many layers of networks efficiently. It is also used in graph neural networks (Kipf
and Welling, 2016) and, as a basic concept, it has been used extensively in computer vision
(Redmon and Farhadi, 2018, Ren et al., 2015). Note that residual networks are predated by
highway networks (Srivastava et al., 2015) that share some of the motivation, albeit without
the elegant parametrization around the identity function.

8.6.2 Residual Blocks

Let’s focus on a local part of a neural network, as depicted in Fig. 8.6.2. Denote the input
by x. We assume that f(x), the desired underlying mapping we want to obtain by learning,
is to be used as input to the activation function on the top. On the left, the portion within the
dotted-line box must directly learn f(x). On the right, the portion within the dotted-line
box needs to learn the residual mapping g(x) = f(x) — x, which is how the residual block
derives its name. If the identity mapping f(x) = x is the desired underlying mapping, the
residual mapping amounts to g (x) = 0 and it is thus easier to learn: we only need to push the
weights and biases of the upper weight layer (e.g., fully connected layer and convolutional
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layer) within the dotted-line box to zero. The right figure illustrates the residual block of
ResNet, where the solid line carrying the layer input x to the addition operator is called
a residual connection (or shortcut connection). With residual blocks, inputs can forward
propagate faster through the residual connections across layers. In fact, the residual block
can be thought of as a special case of the multi-branch Inception block: it has two branches
one of which is the identity mapping.

Activation function Activation function

fx) =3g(x) +x X
—

8(x)

Weight layer
Activation function
Weight layer

______________

In a regular block (left), the portion within the dotted-line box must directly learn the
mapping f(x). In a residual block (right), the portion within the dotted-line box needs to
learn the residual mapping g(x) = f(x) — x, making the identity mapping f(x) = x easier
to learn.

ResNet has VGG’s full 3 X 3 convolutional layer design. The residual block has two 3 x 3
convolutional layers with the same number of output channels. Each convolutional layer
is followed by a batch normalization layer and a ReLU activation function. Then, we skip
these two convolution operations and add the input directly before the final ReLLU activation
function. This kind of design requires that the output of the two convolutional layers has to
be of the same shape as the input, so that they can be added together. If we want to change
the number of channels, we need to introduce an additional 1 X 1 convolutional layer to
transform the input into the desired shape for the addition operation. Let’s have a look at
the code below.

class Residual(nn.Block): #@save
"""The Residual block of ResNet models.”""
def __init__(self, num_channels, use_lxlconv=False, strides=1, **kwargs):
super().__init__(*xkwargs)
self.convl = nn.Conv2D(num_channels, kernel_size=3, padding=1,
strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_lxlconv:
self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
strides=strides)
else:
self.conv3 = None
self.bnl = nn.BatchNorm()
self.bn2 = nn.BatchNorm()

(continues on next page)



309

Residual Networks (ResNet) and ResNeXt
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def forward(self, X):
Y = npx.relu(self.bnl(self.convl(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
return npx.relu(Y + X)

This code generates two types of networks: one where we add the input to the output before
applying the ReLU nonlinearity whenever use_1x1lconv=False; and one where we adjust
channels and resolution by means of a 1 X 1 convolution before adding. Fig. 8.6.3 illustrates

this.
® ®
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ResNet block with and without 1 X 1 convolution, which transforms the input into the
desired shape for the addition operation.

Now let’s look at a situation where the input and output are of the same shape, where 1 x 1
convolution is not needed.

blk = Residual(3)
blk.initialize()

X = np.random.randn(4, 3, 6, 6)
blk(X) .shape

[22:49:23] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

(47 37 67 6)

We also have the option to halve the output height and width while increasing the number
of output channels. In this case we use 1 X 1 convolutions via use_1x1lconv=True. This
comes in handy at the beginning of each ResNet block to reduce the spatial dimensionality
via strides=2.
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blk = Residual(6, use_lxlconv=True, strides=2)
blk.initialize()
blk(X) .shape

(4, 6, 3, 3

8.6.3 ResNet Model

The first two layers of ResNet are the same as those of the GoogLeNet we described before:
the 7 x 7 convolutional layer with 64 output channels and a stride of 2 is followed by the
3 x 3 max-pooling layer with a stride of 2. The difference is the batch normalization layer
added after each convolutional layer in ResNet.

class ResNet(d2l.Classifier):
def bl(self):
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
nn.BatchNorm(), nn.Activation('relu’),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
return net

GoogLeNet uses four modules made up of Inception blocks. However, ResNet uses four
modules made up of residual blocks, each of which uses several residual blocks with the
same number of output channels. The number of channels in the first module is the same
as the number of input channels. Since a max-pooling layer with a stride of 2 has already
been used, it is not necessary to reduce the height and width. In the first residual block for
each of the subsequent modules, the number of channels is doubled compared with that of
the previous module, and the height and width are halved.

@d21.add_to_class(ResNet)
def block(self, num_residuals, num_channels, first_block=False):
blk = nn.Sequential()
for i in range(num_residuals):
if i == 0 and not first_block:
blk.add(Residual (num_channels, use_lxlconv=True, strides=2))
else:
blk.add(Residual (num_channels))
return blk

Then, we add all the modules to ResNet. Here, two residual blocks are used for each mod-
ule. Lastly, just like GoogleNet, we add a global average pooling layer, followed by the
fully connected layer output.

@d21.add_to_class(ResNet)

def __init__(self, arch, 1lr=0.1, num_classes=10):
super(ResNet, self).__init__()
self.save_hyperparameters()

(continues on next page)
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self.net = nn.Sequential()
self.net.add(self.bl1())
for i, b in enumerate(arch):

self.net.add(self.block(*b, first_block=(i==0)))
self.net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
self.net.initialize(init.Xavier())

There are four convolutional layers in each module (excluding the 1x 1 convolutional layer).
Together with the first 7 x 7 convolutional layer and the final fully connected layer, there are
18 layers in total. Therefore, this model is commonly known as ResNet-18. By configuring
different numbers of channels and residual blocks in the module, we can create different
ResNet models, such as the deeper 152-layer ResNet-152. Although the main architecture
of ResNet is similar to that of GoogLeNet, ResNet’s structure is simpler and easier to mod-
ify. All these factors have resulted in the rapid and widespread use of ResNet. Fig. 8.6.4
depicts the full ResNet-18.
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The ResNet-18 architecture.

Before training ResNet, let’s observe how the input shape changes across different modules
in ResNet. As in all the previous architectures, the resolution decreases while the number
of channels increases up until the point where a global average pooling layer aggregates all
features.

class ResNet18(ResNet):
def __init__(self, 1r=0.1, num_classes=10):
super().__init__(((2, 64), (2, 128), (2, 256), (2, 512)),
1r, num_classes)

ResNet18() .layer_summary((1, 1, 96, 96))

Sequential output shape: (1, 64, 24, 24)
Sequential output shape: (1, 64, 24, 24)
Sequential output shape: (1, 128, 12, 12)
Sequential output shape: (1, 256, 6, 6)
Sequential output shape: (1, 512, 3, 3)
GlobalAvgPool2D output shape: (1, 512, 1, 1)

Dense output shape: (1, 10)

8.6.4 Training



312

Modern Convolutional Neural Networks

We train ResNet on the Fashion-MNIST dataset, just like before. ResNet is quite a pow-
erful and flexible architecture. The plot capturing training and validation loss illustrates a
significant gap between both graphs, with the training loss being considerably lower. For
a network of this flexibility, more training data would offer distinct benefit in closing the
gap and improving accuracy.

model = ResNetl18(1lr=0.01)

trainer = d21.Trainer(max_epochs=10, num_gpus=1)

data = d21.FashionMNIST(batch_size=128, resize=(96, 96))
trainer.fit(model, data)

T e — o 5 ~. -1
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8.6.5 ResNeXt

One of the challenges one encounters in the design of ResNet is the trade-off between non-
linearity and dimensionality within a given block. That is, we could add more nonlinearity

by increasing the number of layers, or by increasing the width of the convolutions. An al-
ternative strategy is to increase the number of channels that can carry information between
blocks. Unfortunately, the latter comes with a quadratic penalty since the computational
cost of ingesting ¢; channels and emitting ¢, channels is proportional to O(c;j - ¢,) (see our
discussion in Section 7.4).

We can take some inspiration from the Inception block of Fig. 8.4.1 which has informa-
tion flowing through the block in separate groups. Applying the idea of multiple indepen-
dent groups to the ResNet block of Fig. 8.6.3 led to the design of ResNeXt (Xie et al.,
2017). Different from the smorgasbord of transformations in Inception, ResNeXt adopts
the same transformation in all branches, thus minimizing the need for manual tuning of
each branch.

Breaking up a convolution from c¢; to ¢, channels into one of g groups of size cj/g gener-
ating g outputs of size ¢, /g is called, quite fittingly, a grouped convolution. The computa-
tional cost (proportionally) is reduced from O(c;-c,) to O(g-(ci/g)-(co/g)) = O(ci-co/g),
i.e., itis g times faster. Even better, the number of parameters needed to generate the output
is also reduced from a ¢; X ¢, matrix to g smaller matrices of size (¢;/g) X (co/g), again a
g times reduction. In what follows we assume that both ¢; and ¢, are divisible by g.

The only challenge in this design is that no information is exchanged between the g groups.
The ResNeXt block of Fig. 8.6.5 amends this in two ways: the grouped convolution with
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¢ output channels c output channels
1x 1 Conv 1x 1 Conv
b intermediate channels b channels

[ [ 1 3 aC
| 3 x 3 Conv | | 3 x 3 Conv | nam 3 x 3 Conv * onv
(g groups)
b/g channels per group b channels
| 1x 1 Conv | | 1x 1 Conv | O] 1x 1 Conv 1x 1 Conv

i

g groups

¢ input channels ¢ input channels

Simplified diagram

The ResNeXt block. The use of grouped convolution with g groups is ¢ times faster than
a dense convolution. It is a bottleneck residual block when the number of intermediate
channels b is less than c.

a 3 x 3 kernel is sandwiched in between two 1 X 1 convolutions. The second one serves
double duty in changing the number of channels back. The benefit is that we only pay the
O(c - b) cost for 1 x 1 kernels and can make do with an O(b?/g) cost for 3 x 3 kernels.
Similar to the residual block implementation in Section 8.6.2, the residual connection is
replaced (thus generalized) by a 1 X 1 convolution.

The right-hand figure in Fig. 8.6.5 provides a much more concise summary of the resulting
network block. It will also play a major role in the design of generic modern CNNs in
Section 8.8. Note that the idea of grouped convolutions dates back to the implementation
of AlexNet (Krizhevsky et al., 2012). When distributing the network across two GPUs
with limited memory, the implementation treated each GPU as its own channel with no ill
effects.

The following implementation of the ResNeXtBlock class takes as argument groups (g),
with bot_channels (b) intermediate (bottleneck) channels. Lastly, when we need to reduce
the height and width of the representation, we add a stride of 2 by setting use_1x1conv=True,
strides=2.

class ResNeXtBlock(nn.Block): #@save
"""The ResNeXt block."""
def __init__(self, num_channels, groups, bot_mul,
use_1xlconv=False, strides=1, *xkwargs):
super().__init__(**kwargs)
bot_channels = int(round(num_channels * bot_mul))
self.convl = nn.Conv2D(bot_channels, kernel_size=1, padding=0,
strides=1)
self.conv2 = nn.Conv2D(bot_channels, kernel_size=3, padding=1,
strides=strides, groups=bot_channels//groups)
self.conv3 = nn.Conv2D(num_channels, kernel_size=1, padding=0,

(continues on next page)
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strides=1)

self.bnl = nn.BatchNorm()
self.bn2 = nn.BatchNorm()
self.bn3 = nn.BatchNorm()
if use_1lxlconv:

self.conv4 = nn.Conv2D(num_channels, kernel_size=1,

strides=strides)

self.bn4 = nn.BatchNorm()
else:

self.conv4 = None

def forward(self, X):
Y = npx.relu(self.bnl(self.convl(X)))
Y = npx.relu(self.bn2(self.conv2(Y)))
Y = self.bn3(self.conv3(Y))
if self.conv4:
X = self.bn4(self.conv4(X))
return npx.relu(Y + X)

Its use is entirely analogous to that of the ResNetBlock discussed previously. For instance,
when using (use_1lx1lconv=False, strides=1), the input and output are of the same
shape. Alternatively, setting use_1x1lconv=True, strides=2 halves the output height
and width.

blk = ResNeXtBlock(32, 16, 1)
blk.initialize()

X = np.random.randn(4, 32, 96, 96)
b1k (X) .shape

(4, 32, 96, 96)

8.6.6 Summary and Discussion

Nested function classes are desirable since they allow us to obtain strictly more power-
ful rather than also subtly different function classes when adding capacity. One way of
accomplishing this is by letting additional layers to simply pass through the input to the
output. Residual connections allow for this. As a consequence, this changes the inductive
bias from simple functions being of the form f(x) = 0 to simple functions looking like

f(x) =x.

The residual mapping can learn the identity function more easily, such as pushing param-
eters in the weight layer to zero. We can train an effective deep neural network by having
residual blocks. Inputs can forward propagate faster through the residual connections across
layers. As a consequence, we can thus train much deeper networks. For instance, the origi-
nal ResNet paper (He et al., 2016) allowed for up to 152 layers. Another benefit of residual
networks is that it allows us to add layers, initialized as the identity function, during the
training process. After all, the default behavior of a layer is to let the data pass through
unchanged. This can accelerate the training of very large networks in some cases.
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Prior to residual connections, bypassing paths with gating units were introduced to effec-
tively train highway networks with over 100 layers (Srivastava et al., 2015). Using identity
functions as bypassing paths, ResNet performed remarkably well on multiple computer vi-
sion tasks. Residual connections had a major influence on the design of subsequent deep
neural networks, of either convolutional or sequential nature. As we will introduce later,
the Transformer architecture (Vaswani et al., 2017) adopts residual connections (together
with other design choices) and is pervasive in areas as diverse as language, vision, speech,
and reinforcement learning.

ResNeXt is an example for how the design of convolutional neural networks has evolved
over time: by being more frugal with computation and trading it off against the size of the
activations (number of channels), it allows for faster and more accurate networks at lower
cost. An alternative way of viewing grouped convolutions is to think of a block-diagonal
matrix for the convolutional weights. Note that there are quite a few such “tricks” that lead
to more efficient networks. For instance, ShiftNet (Wu et al., 2018) mimicks the effects of
a 3% 3 convolution, simply by adding shifted activations to the channels, offering increased
function complexity, this time without any computational cost.

A common feature of the designs we have discussed so far is that the network design is
fairly manual, primarily relying on the ingenuity of the designer to find the “right” network
hyperparameters. While clearly feasible, it is also very costly in terms of human time and
there is no guarantee that the outcome is optimal in any sense. In Section 8.8 we will discuss
a number of strategies for obtaining high quality networks in a more automated fashion. In
particular, we will review the notion of network design spaces that led to the RegNetX/Y
models (Radosavovic et al., 2020).

8.6.7 Exercises

1. What are the major differences between the Inception block in Fig. 8.4.1 and the residual
block? How do they compare in terms of computation, accuracy, and the classes of
functions they can describe?

2. Refer to Table 1 in the ResNet paper (He et al., 2016) to implement different variants of
the network.

3. For deeper networks, ResNet introduces a “bottleneck” architecture to reduce model
complexity. Try to implement it.

4. In subsequent versions of ResNet, the authors changed the “convolution, batch normal-
ization, and activation” structure to the ‘“batch normalization, activation, and convolu-
tion” structure. Make this improvement yourself. See Figure 1 in He et al. (2016) for
details.

5. Why can’t we just increase the complexity of functions without bound, even if the func-

132 .
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8.7 Densely Connected Networks (DenseNet)
1 ——

ResNet significantly changed the view of how to parametrize the functions in deep net-
works. DenseNet (dense convolutional network) is to some extent the logical extension of
this (Huang et al., 2017). DenseNet is characterized by both the connectivity pattern where
each layer connects to all the preceding layers and the concatenation operation (rather than
the addition operator in ResNet) to preserve and reuse features from earlier layers. To un-
derstand how to arrive at it, let’s take a small detour to mathematics.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

npx.set_np()

8.7.1 From ResNet to DenseNet

Recall the Taylor expansion for functions. At the point x = 0 it can be written as

OO H (8.7.1)

ZTR Y
The key point is that it decomposes a function into terms of increasingly higher order. In a
similar vein, ResNet decomposes functions into

f(x) =x+g(x). (8.7.2)

That is, ResNet decomposes f into a simple linear term and a more complex nonlinear one.

J@) = f(0) +x- | f(0) +x-

What if we wanted to capture (not necessarily add) information beyond two terms? One
such solution is DenseNet (Huang et al., 2017).

The main difference between ResNet (left) and DenseNet (right) in cross-layer
connections: use of addition and use of concatenation.

As shown in Fig. 8.7.1, the key difference between ResNet and DenseNet is that in the
latter case outputs are concatenated (denoted by [, ]) rather than added. As a result, we
perform a mapping from x to its values after applying an increasingly complex sequence
of functions:

x =[x, i(x), 2 ([x fi XD, f (% f (X), o (x4 DD...]. (8.7.3)

In the end, all these functions are combined in MLP to reduce the number of features again.
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In terms of implementation this is quite simple: rather than adding terms, we concatenate
them. The name DenseNet arises from the fact that the dependency graph between variables
becomes quite dense. The final layer of such a chain is densely connected to all previous
layers. The dense connections are shown in Fig. 8.7.2.

fix)

Dense connections in DenseNet. Note how the dimensionality increases with depth.

The main components that comprise a DenseNet are dense blocks and transition layers. The
former define how the inputs and outputs are concatenated, while the latter control the num-

ber of channels so that it is not too large, since the expansion x — [x, f1(x), 2 ([x, fi (X)]),...

can be quite high-dimensional.

8.7.2 Dense Blocks

DenseNet uses the modified “batch normalization, activation, and convolution” structure
of ResNet (see the exercise in Section 8.6). First, we implement this convolution block
structure.

def conv_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(),
nn.Activation('relu’),
nn.Conv2D(num_channels, kernel_size=3, padding=1))
return blk

A dense block consists of multiple convolution blocks, each using the same number of
output channels. In the forward propagation, however, we concatenate the input and output
of each convolution block on the channel dimension. Lazy evaluation allows us to adjust
the dimensionality automatically.

class DenseBlock(nn.Block):
def __init__(self, num_convs, num_channels):
super().__init__()
self.net = nn.Sequential()
for _ in range(num_convs):

self.net.add(conv_block(num_channels))

def forward(self, X):
for blk in self.net:
Y = blk(X)
# Concatenate input and output of each block along the channels
X = np.concatenate((X, Y), axis=1)
return X

In the following example, we define a DenseBlock instance with two convolution blocks of
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10 output channels. When using an input with three channels, we will get an output with
3+ 10+ 10 = 23 channels. The number of convolution block channels controls the growth
in the number of output channels relative to the number of input channels. This is also
referred to as the growth rate.

blk = DenseBlock(2, 10)

X = np.random.uniform(size=(4, 3, 8, 8))
blk.initialize()

Y = blk(X)

Y. shape

[22:30:09] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

(4, 23, 8, 8)

8.7.3 Transition Layers

Since each dense block will increase the number of channels, adding too many of them will
lead to an excessively complex model. A transition layer is used to control the complexity
of the model. It reduces the number of channels by using a 1 X 1 convolution. Moreover, it
halves the height and width via average pooling with a stride of 2.

def transition_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(), nn.Activation('relu’),
nn.Conv2D(num_channels, kernel_size=1),
nn.AvgPool2D(pool_size=2, strides=2))
return blk

Apply a transition layer with 10 channels to the output of the dense block in the previous
example. This reduces the number of output channels to 10, and halves the height and
width.

blk = transition_block(10)
blk.initialize()
blk(Y).shape

(4, 10, 4, 4)

8.7.4 DenseNet Model

Next, we will construct a DenseNet model. DenseNet first uses the same single convolu-
tional layer and max-pooling layer as in ResNet.
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class DenseNet(d2l.Classifier):
def bl(self):
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
nn.BatchNorm(), nn.Activation('relu’),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
return net

Then, similar to the four modules made up of residual blocks that ResNet uses, DenseNet
uses four dense blocks. As with ResNet, we can set the number of convolutional layers used
in each dense block. Here, we set it to 4, consistent with the ResNet-18 model in Section
8.6. Furthermore, we set the number of channels (i.e., growth rate) for the convolutional
layers in the dense block to 32, so 128 channels will be added to each dense block.

In ResNet, the height and width are reduced between each module by a residual block with
a stride of 2. Here, we use the transition layer to halve the height and width and halve the
number of channels. Similar to ResNet, a global pooling layer and a fully connected layer
are connected at the end to produce the output.

@d21.add_to_class(DenseNet)
def __init__(self, num_channels=64, growth_rate=32, arch=(4, 4, 4, 4),
1r=0.1, num_classes=10):
super(DenseNet, self).__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(self.b1())
for i, num_convs in enumerate(arch):
self.net.add(DenseBlock(num_convs, growth_rate))
# The number of output channels in the previous dense block
num_channels += num_convs * growth_rate
# A transition layer that halves the number of channels is added
# between the dense blocks
if i != len(arch) - 1:
num_channels //= 2
self.net.add(transition_block(num_channels))
self.net.add(nn.BatchNorm(), nn.Activation('relu’),
nn.GlobalAvgPool2D(), nn.Dense(num_classes))
self.net.initialize(init.Xavier())

8.7.5 Training

Since we are using a deeper network here, in this section, we will reduce the input height
and width from 224 to 96 to simplify the computation.

model = DenseNet(1lr=0.01)

trainer = d21.Trainer(max_epochs=10, num_gpus=1)

data = d21.FashionMNIST(batch_size=128, resize=(96, 96))
trainer.fit(model, data)

8.7.6 Summary and Discussion
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The main components that comprise DenseNet are dense blocks and transition layers. For
the latter, we need to keep the dimensionality under control when composing the net-
work by adding transition layers that shrink the number of channels again. In terms of
cross-layer connections, in contrast to ResNet, where inputs and outputs are added to-
gether, DenseNet concatenates inputs and outputs on the channel dimension. Although
these concatenation operations reuse features to achieve computational efficiency, unfortu-
nately they lead to heavy GPU memory consumption. As a result, applying DenseNet may
require more memory-efficient implementations that may increase training time (Pleiss e?
al., 2017).

8.7.7 Exercises

1. Why do we use average pooling rather than max-pooling in the transition layer?

2. One of the advantages mentioned in the DenseNet paper is that its model parameters are
smaller than those of ResNet. Why is this the case?

3. One problem for which DenseNet has been criticized is its high memory consumption.

1. Is this really the case? Try to change the input shape to 224 x 224 to compare the
actual GPU memory consumption empirically.

2. Can you think of an alternative means of reducing the memory consumption? How
would you need to change the framework?

s 4. Implement the various DenseNet versions presented in Table 1 of the DenseNet paper

Eiﬁﬁﬁﬂﬁﬂ (Huang et al., 2017).

S

e 5. Design an MLP-based model by applying the DenseNet idea. Apply it to the housing
price prediction task in Section 5.7.
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8.8 Designing Convolution Network Architectures
____________________________________________________________________________________________

The previous sections have taken us on a tour of modern network design for computer
vision. Common to all the work we covered was that it greatly relied on the intuition of
scientists. Many of the architectures are heavily informed by human creativity and to a
much lesser extent by systematic exploration of the design space that deep networks offer.
Nonetheless, this network engineering approach has been tremendously successful.

Ever since AlexNet (Section 8.1) beat conventional computer vision models on ImageNet,
it has become popular to construct very deep networks by stacking blocks of convolutions,
all designed according to the same pattern. In particular, 3 x 3 convolutions were popular-
ized by VGG networks (Section 8.2). NiN (Section 8.3) showed that even 1 X 1 convolu-
tions could be beneficial by adding local nonlinearities. Moreover, NiN solved the problem
of aggregating information at the head of a network by aggregating across all locations.
GoogleNet (Section 8.4) added multiple branches of different convolution width, combin-
ing the advantages of VGG and NiN in its Inception block. ResNets (Section 8.6) changed
the inductive bias towards the identity mapping (from f(x) = 0). This allowed for very
deep networks. Almost a decade later, the ResNet design is still popular, a testament to
its design. Lastly, ResNeXt (Section 8.6.5) added grouped convolutions, offering a better
trade-off between parameters and computation. A precursor to Transformers for vision,
the Squeeze-and-Excitation Networks (SENets) allow for efficient information transfer be-
tween locations (Hu et al., 2018). This was accomplished by computing a per-channel
global attention function.

Up to now we have omitted networks obtained via neural architecture search (NAS) (Liu
et al., 2018, Zoph and Le, 2016). We chose to do so since their cost is usually enormous,
relying on brute-force search, genetic algorithms, reinforcement learning, or some other
form of hyperparameter optimization. Given a fixed search space, NAS uses a search strat-
egy to automatically select an architecture based on the returned performance estimation.
The outcome of NAS is a single network instance. EfficientNets are a notable outcome of
this search (Tan and Le, 2019).

In the following we discuss an idea that is quite different to the quest for the single best
network. It is computationally relatively inexpensive, it leads to scientific insights on the
way, and it is quite effective in terms of the quality of outcomes. Let’s review the strategy
by Radosavovic et al. (2020) to design network design spaces. The strategy combines the
strength of manual design and NAS. It accomplishes this by operating on distributions of
networks and optimizing the distributions in a way to obtain good performance for entire
families of networks. The outcome of it are RegNets, specifically RegNetX and RegNetY,
plus a range of guiding principles for the design of performant CNNs.

from mxnet import init, np, npx
from mxnet.gluon import nn
from d21 import mxnet as d21

(continues on next page)
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(continued from previous page)

npx.set_np()

8.8.1 The AnyNet Design Space

The description below closely follows the reasoning in Radosavovic et al. (2020) with some
abbreviations to make it fit in the scope of the book. To begin, we need a template for the
family of networks to explore. One of the commonalities of the designs in this chapter is
that the networks consist of a stem, a body and a head. The stem performs initial image
processing, often through convolutions with a larger window size. The body consists of
multiple blocks, carrying out the bulk of the transformations needed to go from raw images
to object representations. Lastly, the head converts this into the desired outputs, such as
via a softmax regressor for multiclass classification. The body, in turn, consists of multiple
stages, operating on the image at decreasing resolutions. In fact, both the stem and each
subsequent stage quarter the spatial resolution. Lastly, each stage consists of one or more
blocks. This pattern is common to all networks, from VGG to ResNeXt. Indeed, for the
design of generic AnyNet networks, Radosavovic et al. (2020) used the ResNeXt block of
Fig. 8.6.5.

¢y, 1132 [
Stage 4 Block d,
N e
n, 1 ¢y, 1116 Cpl; c,r,

Head ,Ege 3 b | 1x 1 Cony, stride 1 | | 1x 1 Cony, stride 1 |
¢, 1132 ¢, 1/8 cor; clhor; cfkor; ol
| oy | | S | | e | & g::oz:s,csot:\t;e1 & g?oi:sf:s()tz\(;eZ 1>s<tr1id202nv
Cop 112 ¢y, 14 Cp Ty clk,r,; clk,2r,
Stem | | Stage 1 | | Block 1 | | 1 x 1 Conv, stride 1 | | 1 x 1 Conv, stride 1 |
3,r cy 112 T Cips 2r41 Cur; Cop 21,
AnyNet Body Stage i ResNeXt block ResNeXt block with downsampling

The AnyNet design space. The numbers (¢, r) along each arrow indicate the number of
channels ¢ and the resolution r X r of the images at that point. From left to right: generic
network structure composed of stem, body, and head; body composed of four stages;
detailed structure of a stage; two alternative structures for blocks, one without
downsampling and one that halves the resolution in each dimension. Design choices
include depth d;, the number of output channels c¢;, the number of groups g;, and
bottleneck ratio k; for any stage :.

Let’s review the structure outlined in Fig. 8.8.1 in detail. As mentioned, an AnyNet consists
of a stem, body, and head. The stem takes as its input RGB images (3 channels), using a
3 % 3 convolution with a stride of 2, followed by a batch norm, to halve the resolution from
rXxrtor/2xr/2. Moreover, it generates co channels that serve as input to the body.



323

Designing Convolution Network Architectures

Since the network is designed to work well with ImageNet images of shape 224 x 224 x 3,
the body serves to reduce this to 7 X 7 X c4 through 4 stages (recall that 224/2!** = 7),
each with an eventual stride of 2. Lastly, the head employs an entirely standard design via
global average pooling, similar to NiN (Section 8.3), followed by a fully connected layer to
emit an n-dimensional vector for n-class classification.

Most of the relevant design decisions are inherent to the body of the network. It proceeds in
stages, where each stage is composed of the same type of ResNeXt blocks as we discussed
in Section 8.6.5. The design there is again entirely generic: we begin with a block that
halves the resolution by using a stride of 2 (the rightmost in Fig. 8.8.1). To match this, the
residual branch of the ResNeXt block needs to pass through a 1 x 1 convolution. This block
is followed by a variable number of additional ResNeXt blocks that leave both resolution
and the number of channels unchanged. Note that a common design practice is to add
a slight bottleneck in the design of convolutional blocks. As such, with bottleneck ratio
k; > 1 we afford some number of channels, ¢;/k;, within each block for stage i (as the
experiments show, this is not really effective and should be skipped). Lastly, since we are
dealing with ResNeXt blocks, we also need to pick the number of groups g; for grouped
convolutions at stage i.

This seemingly generic design space provides us nonetheless with many parameters: we
can set the block width (number of channels) cq, . . . c4, the depth (number of blocks) per
stage dy, . . . d4, the bottleneck ratios ki, . .. k4, and the group widths (numbers of groups)
&1, - - - 84. In total this adds up to 17 parameters, resulting in an unreasonably large number
of configurations that would warrant exploring. We need some tools to reduce this huge
design space effectively. This is where the conceptual beauty of design spaces comes in.
Before we do so, let’s implement the generic design first.

class AnyNet(d2l.Classifier):
def stem(self, num_channels):
net = nn.Sequential()
net.add(nn.Conv2D(num_channels, kernel_size=3, padding=1, strides=2),
nn.BatchNorm(), nn.Activation('relu’))
return net

Each stage consists of depth ResNeXt blocks, where num_channels specifies the block
width. Note that the first block halves the height and width of input images.

@d21.add_to_class(AnyNet)
def stage(self, depth, num_channels, groups, bot_mul):
net = nn.Sequential()
for i in range(depth):
if i == 0:
net.add(d21.ResNeXtBlock(
num_channels, groups, bot_mul, use_lxlconv=True, strides=2))
else:
net.add(d21.ResNeXtBlock(
num_channels, num_channels, groups, bot_mul))
return net
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Putting the network stem, body, and head together, we complete the implementation of
AnyNet.

@d21.add_to_class(AnyNet)

def __init__(self, arch, stem_channels, 1r=0.1, num_classes=10):
super (AnyNet, self).__init__()
self.save_hyperparameters()
self.net = nn.Sequential()
self.net.add(self.stem(stem_channels))
for i, s in enumerate(arch):

self.net.add(self.stage(*s))

self.net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
self.net.initialize(init.Xavier())

8.8.2 Distributions and Parameters of Design Spaces

As just discussed in Section 8.8.1, parameters of a design space are hyperparameters of
networks in that design space. Consider the problem of identifying good parameters in the
AnyNet design space. We could try finding the single best parameter choice for a given
amount of computation (e.g., FLOPs and compute time). If we allowed for even only two
possible choices for each parameter, we would have to explore 2!7 = 131072 combinations
to find the best solution. This is clearly infeasible because of its exorbitant cost. Even
worse, we do not really learn anything from this exercise in terms of how one should design
anetwork. Next time we add, say, an X-stage, or a shift operation, or similar, we would need
to start from scratch. Even worse, due to the stochasticity in training (rounding, shuffling,
bit errors), no two runs are likely to produce exactly the same results. A better strategy
would be to try to determine general guidelines of how the choices of parameters should
be related. For instance, the bottleneck ratio, the number of channels, blocks, groups, or
their change between layers should ideally be governed by a collection of simple rules. The
approach in Radosavovic et al. (2019) relies on the following four assumptions:

1. We assume that general design principles actually exist, so that many networks satis-
fying these requirements should offer good performance. Consequently, identifying a
distribution over networks can be a sensible strategy. In other words, we assume that
there are many good needles in the haystack.

2. We need not train networks to convergence before we can assess whether a network is
good. Instead, it is sufficient to use the intermediate results as reliable guidance for
final accuracy. Using (approximate) proxies to optimize an objective is referred to as
multi-fidelity optimization (Forrester et al., 2007). Consequently, design optimization is
carried out, based on the accuracy achieved after only a few passes through the dataset,
reducing the cost significantly.

3. Results obtained at a smaller scale (for smaller networks) generalize to larger ones. Con-
sequently, optimization is carried out for networks that are structurally similar, but with
a smaller number of blocks, fewer channels, etc. Only in the end will we need to verify
that the so-found networks also offer good performance at scale.

4. Aspects of the design can be approximately factorized so that it is possible to infer
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their effect on the quality of the outcome somewhat independently. In other words, the
optimization problem is moderately easy.

These assumptions allow us to test many networks cheaply. In particular, we can sample
uniformly from the space of configurations and evaluate their performance. Subsequently,
we can evaluate the quality of the choice of parameters by reviewing the distribution of
error/accuracy that can be achieved with said networks. Denote by F(e) the cumulative
distribution function (CDF) for errors committed by networks of a given design space,
drawn using probability disribution p. That is,

Fle,p) & Poerople(net) < e}. (8.8.1)

Our goal is now to find a distribution p over networks such that most networks have a very
low error rate and where the support of p is concise. Of course, this is computationally

. . def
infeasible to perform accurately. We resort to a sample of networks Z = {net, ...net,}
(witherrors ey, . .., e,, respectively) from p and use the empirical CDF F (e, Z) instead:

F(e,2Z) = %Z 1(e; <e). (8.8.2)
i=1

Whenever the CDF for one set of choices majorizes (or matches) another CDF it follows
that its choice of parameters is superior (or indifferent). Accordingly Radosavovic et al.
(2020) experimented with a shared network bottleneck ratio k; = k for all stages i of the
network. This gets rid of three of the four parameters governing the bottleneck ratio. To
assess whether this (negatively) affects the performance one can draw networks from the
constrained and from the unconstrained distribution and compare the corresonding CDFs.
It turns out that this constraint does not affect the accuracy of the distribution of networks
at all, as can be seen in the first panel of Fig. 8.8.2. Likewise, we could choose to pick
the same group width g; = g occurring at the various stages of the network. Again, this
does not affect performance, as can be seen in the second panel of Fig. 8.8.2. Both steps
combined reduce the number of free parameters by six.
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Comparing error empirical distribution functions of design spaces. AnyNet 4 is the
original design space; AnyNety ties the bottleneck ratios, AnyNet . also ties group
widths, AnyNet , increases the network depth across stages. From left to right: (i) tying
bottleneck ratios has no effect on performance; (ii) tying group widths has no effect on
performance; (iii) increasing network widths (channels) across stages improves
performance; (iv) increasing network depths across stages improves performance. Figure
courtesy of Radosavovic et al. (2020).

Next we look for ways to reduce the multitude of potential choices for width and depth of the
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stages. It is a reasonable assumption that, as we go deeper, the number of channels should
increase, i.e., ¢; > c;j—1 (w;+1 = w; per their notation in Fig. 8.8.2), yielding AnyNetX,.
Likewise, it is equally reasonable to assume that as the stages progress, they should become
deeper, i.e., d; > d;_1, yielding AnyNetX. This can be experimentally verified in the third
and fourth panel of Fig. 8.8.2, respectively.

8.8.3 RegNet

The resulting AnyNetX; design space consists of simple networks following easy-to-interpret
design principles:

e Share the bottleneck ratio k; = k for all stages i;
o Share the group width g; = g for all stages i;

e Increase network width across stages: ¢; < c¢j41;
o Increase network depth across stages: d; < dj1.

This leaves us with a final set of choices: how to pick the specific values for the above
parameters of the eventual AnyNetXy design space. By studying the best-performing
networks from the distribution in AnyNetX; one can observe the following: the width
of the network ideally increases linearly with the block index across the network, i.e.,
cj = co+cqj, where j is the block index and slope ¢, > 0. Given that we get to choose a
different block width only per stage, we arrive at a piecewise constant function, engineered
to match this dependence. Furthermore, experiments also show that a bottleneck ratio of
k = 1 performs best, i.e., we are advised not to use bottlenecks at all.

We recommend the interested reader reviews further details in the design of specific net-
works for different amounts of computation by perusing Radosavovic et al. (2020). For
instance, an effective 32-layer RegNetX variant is given by £ = 1 (no bottleneck), g = 16
(group width is 16), ¢; = 32 and ¢, = 80 channels for the first and second stage, respec-
tively, chosen to be d; = 4 and d, = 6 blocks deep. The astonishing insight from the
design is that it still applies, even when investigating networks at a larger scale. Even bet-
ter, it even holds for Squeeze-and-Excitation (SE) network designs (RegNetY) that have a
global channel activation (Hu ef al., 2018).

class RegNetX32(AnyNet):
def __init__(self, 1lr=0.1, num_classes=10):
stem_channels, groups, bot_mul = 32, 16, 1
depths, channels = (4, 6), (32, 80)
super().__init__(
((depths[0], channels[0], groups, bot_mul),
(depths[1], channels[1], groups, bot_mul)),
stem_channels, 1r, num_classes)

We can see that each RegNetX stage progressively reduces resolution and increases output
channels.
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RegNetX32().layer_summary((1l, 1, 96, 96))

[22:33:30] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

Sequential output shape: (1, 32, 48, 48)
Sequential output shape: (1, 32, 24, 24)
Sequential output shape: (1, 80, 12, 12)
GlobalAvgPool2D output shape: (1, 80, 1, 1)

Dense output shape: (1, 10)

8.8.4 Training

Training the 32-layer RegNetX on the Fashion-MNIST dataset is just like before.

model = RegNetX32(1lr=0.05)

trainer = d21.Trainer(max_epochs=10, num_gpus=1)

data = d21.FashionMNIST(batch_size=128, resize=(96, 96))
trainer.fit(model, data)

0.8
0.6 —— train_loss
val_loss
0.4+ —-- val_acc
0.2
0.0 T T T T
0 2 4 6 8 10

8.8.5 Discussion

With desirable inductive biases (assumptions or preferences) like locality and translation
invariance (Section 7.1) for vision, CNNs have been the dominant architectures in this area.
This remained the case from LeNet up until Transformers (Section 11.7) (Dosovitskiy ef
al., 2021, Touvron et al., 2021) started surpassing CNNs in terms of accuracy. While much
of the recent progress in terms of vision Transformers can be backported into CNNs (Liu
et al., 2022), it is only possible at a higher computational cost. Just as importantly, recent
hardware optimizations (NVIDIA Ampere and Hopper) have only widened the gap in favor
of Transformers.

It is worth noting that Transformers have a significantly lower degree of inductive bias to-
wards locality and translation invariance than CNNs. That learned structures prevailed is
due, not least, to the availability of large image collections, such as LAION-400m and
LAION-5B (Schuhmann et al., 2022) with up to 5 billion images. Quite surprisingly,
some of the more relevant work in this context even includes MLPs (Tolstikhin et al.,
2021).
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In sum, vision Transformers (sec_vision-transformer) by now lead in terms of state-
of-the-art performance in large-scale image classification, showing that scalability trumps
inductive biases (Dosovitskiy et al., 2021). This includes pretraining large-scale Trans-
formers (Section 11.8) with multi-head self-attention (Section 11.5). We invite the readers
to dive into these chapters for a much more detailed discussion.

8.8.6 Exercises

1. Increase the number of stages to four. Can you design a deeper RegNetX that performs
better?

2. De-ResNeXt-ify RegNets by replacing the ResNeXt block with the ResNet block. How
does your new model perform?

3. Implement multiple instances of a “VioNet” family by violating the design principles of
RegNetX. How do they perform? Which of (d;, ¢;, g;, b;) is the most important factor?

4. Your goal is to design the “perfect” MLP. Can you use the design principles introduced
above to find good architectures? Is it possible to extrapolate from small to large net-
works?

Discussions 134
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Up until now, we have focused primarily on fixed-length data. When introducing linear and
logistic regression in Chapter 3 and Chapter 4 and multilayer perceptrons in Chapter 5, we
were happy to assume that each feature vector x; consisted of a fixed number of components
X1,...,Xq, where each numerical feature x; corresponded to a particular attribute. These
datasets are sometimes called fabular, because they can be arranged in tables, where each
example i gets its own row, and each attribute gets its own column. Crucially, with tabular
data, we seldom assume any particular structure over the columns.

Subsequently, in Chapter 7, we moved on to image data, where inputs consist of the raw
pixel values at each coordinate in an image. Image data hardly fitted the bill of a protypical
tabular dataset. There, we needed to call upon convolutional neural networks (CNNs) to
handle the hierarchical structure and invariances. However, our data were still of fixed
length. Every Fashion-MNIST image is represented as a 28 x 28 grid of pixel values.
Moreover, our goal was to develop a model that looked at just one image and then outputted
a single prediction. But what should we do when faced with a sequence of images, as in a
video, or when tasked with producing a sequentially structured prediction, as in the case of
image captioning?

A great many learning tasks require dealing with sequential data. Image captioning, speech
synthesis, and music generation all require that models produce outputs consisting of se-
quences. In other domains, such as time series prediction, video analysis, and musical
information retrieval, a model must learn from inputs that are sequences. These demands
often arise simultaneously: tasks such as translating passages of text from one natural lan-
guage to another, engaging in dialogue, or controlling a robot, demand that models both
ingest and output sequentially structured data.

Recurrent neural networks (RNNs) are deep learning models that capture the dynamics of
sequences via recurrent connections, which can be thought of as cycles in the network of
nodes. This might seem counterintuitive at first. After all, it is the feedforward nature of
neural networks that makes the order of computation unambiguous. However, recurrent
edges are defined in a precise way that ensures that no such ambiguity can arise. Recurrent
neural networks are unrolled across time steps (or sequence steps), with the same under-
lying parameters applied at each step. While the standard connections are applied syn-
chronously to propagate each layer’s activations to the subsequent layer at the same time
step, the recurrent connections are dynamic, passing information across adjacent time steps.
As the unfolded view in Fig. 9.1 reveals, RNNs can be thought of as feedforward neural
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networks where each layer’s parameters (both conventional and recurrent) are shared across
time steps.

Output Output 1 Output 2 Output ... Output T
] R I
/
[ Hidden Hidden | | Hidden | | | .| Hidden
| layers layers 1 layers 2 layers T
\
Input Input 1 Input 2 Input ... Input T

On the left recurrent connections are depicted via cyclic edges. On the right, we unfold
the RNN over time steps. Here, recurrent edges span adjacent time steps, while
conventional connections are computed synchronously.

Like neural networks more broadly, RNNs have a long discipline-spanning history, origi-
nating as models of the brain popularized by cognitive scientists and subsequently adopted
as practical modeling tools employed by the machine learning community. As we do for
deep learning more broadly, in this book we adopt the machine learning perspective, focus-
ing on RNNs as practical tools that rose to popularity in the 2010s owing to breakthrough
results on such diverse tasks as handwriting recognition (Graves et al., 2008), machine
translation (Sutskever et al., 2014), and recognizing medical diagnoses (Lipton et al., 2016).
We point the reader interested in more background material to a publicly available compre-
hensive review (Lipton et al., 2015). We also note that sequentiality is not unique to RNNs.
For example, the CNNs that we already introduced can be adapted to handle data of varying
length, e.g., images of varying resolution. Moreover, RNNs have recently ceded consider-
able market share to Transformer models, which will be covered in Chapter 11. However,
RNNS rose to prominence as the default models for handling complex sequential structure
in deep learning, and remain staple models for sequential modeling to this day. The stories
of RNNs and of sequence modeling are inextricably linked, and this is as much a chapter
about the ABCs of sequence modeling problems as it is a chapter about RNNs.

One key insight paved the way for a revolution in sequence modeling. While the inputs
and targets for many fundamental tasks in machine learning cannot easily be represented
as fixed-length vectors, they can often nevertheless be represented as varying-length se-
quences of fixed-length vectors. For example, documents can be represented as sequences
of words; medical records can often be represented as sequences of events (encounters,
medications, procedures, lab tests, diagnoses); videos can be represented as varying-length
sequences of still images.

While sequence models have popped up in numerous application areas, basic research in the
area has been driven predominantly by advances on core tasks in natural language process-
ing. Thus, throughout this chapter, we will focus our exposition and examples on text data.
If you get the hang of these examples, then applying the models to other data modalities
should be relatively straightforward. In the next few sections, we introduce basic notation
for sequences and some evaluation measures for assessing the quality of sequentially struc-
tured model outputs. After that, we discuss basic concepts of a language model and use this
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discussion to motivate our first RNN models. Finally, we describe the method for calculat-
ing gradients when backpropagating through RNNs and explore some challenges that are
often encountered when training such networks, motivating the modern RNN architectures
that will follow in Chapter 10.

9.1 Working with Sequences
. _________________________________________________________________________________________|

Up until now, we have focused on models whose inputs consisted of a single feature vector
x € RY. The main change of perspective when developing models capable of processing
sequences is that we now focus on inputs that consist of an ordered list of feature vec-
tors xy, ..., X7, where each feature vector x; is indexed by a time step ¢t € Z* lying in
R4

Some datasets consist of a single massive sequence. Consider, for example, the extremely
long streams of sensor readings that might be available to climate scientists. In such cases,
we might create training datasets by randomly sampling subsequences of some predeter-
mined length. More often, our data arrives as a collection of sequences. Consider the
following examples: (i) a collection of documents, each represented as its own sequence of
words, and each having its own length T;; (ii) sequence representation of patient stays in the
hospital, where each stay consists of a number of events and the sequence length depends
roughly on the length of the stay.

Previously, when dealing with individual inputs, we assumed that they were sampled inde-
pendently from the same underlying distribution P(X). While we still assume that entire
sequences (e.g., entire documents or patient trajectories) are sampled independently, we
cannot assume that the data arriving at each time step are independent of each other. For
example, the words that likely to appear later in a document depend heavily on words oc-
curring earlier in the document. The medicine a patient is likely to receive on the 10th day
of a hospital visit depends heavily on what transpired in the previous nine days.

This should come as no surprise. If we did not believe that the elements in a sequence
were related, we would not have bothered to model them as a sequence in the first place.
Consider the usefulness of the auto-fill features that are popular on search tools and modern
email clients. They are useful precisely because it is often possible to predict (imperfectly,
but better than random guessing) what the likely continuations of a sequence might be,
given some initial prefix. For most sequence models, we do not require independence, or
even stationarity, of our sequences. Instead, we require only that the sequences themselves
are sampled from some fixed underlying distribution over entire sequences.

This flexible approach allows for such phenomena as (i) documents looking significantly
different at the beginning than at the end; or (ii) patient status evolving either towards recov-
ery or towards death over the course of a hospital stay; or (iii) customer taste evolving in pre-
dictable ways over the course of continued interaction with a recommender system.
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We sometimes wish to predict a fixed target y given sequentially structured input (e.g., sen-
timent classification based on a movie review). At other times, we wish to predict a sequen-
tially structured target (yy, . .., yr) given a fixed input (e.g., image captioning). Still other
times, our goal is to predict sequentially structured targets based on sequentially structured
inputs (e.g., machine translation or video captioning). Such sequence-to-sequence tasks
take two forms: (i) aligned: where the input at each time step aligns with a correspond-
ing target (e.g., part of speech tagging); (ii) unaligned: where the input and target do not
necessarily exhibit a step-for-step correspondence (e.g., machine translation).

Before we worry about handling targets of any kind, we can tackle the most straightforward
problem: unsupervised density modeling (also called sequence modeling). Here, given a
collection of sequences, our goal is to estimate the probability mass function that tells us
how likely we are to see any given sequence, i.e., p(X, ..., X7).

%matplotlib inline

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn

from d21 import mxnet as d21

npx.set_np()

9.1.1 Autoregressive Models

Before introducing specialized neural networks designed to handle sequentially structured
data, let’s take a look at some actual sequence data and build up some basic intuitions
and statistical tools. In particular, we will focus on stock price data from the FTSE 100
index (Fig. 9.1.1). At each time step t € Z*, we observe the price, x;, of the index at that
time.

FTSE 100 Index

: qu M\ W

1984 1989 1594 1989 2004 2009 2014

FTSE 100 index over about 30 years.

Now suppose that a trader would like to make short-term trades, strategically getting into
or out of the index, depending on whether they believe that it will rise or decline in the
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subsequent time step. Absent any other features (news, financial reporting data, etc.), the
only available signal for predicting the subsequent value is the history of prices to date.
The trader is thus interested in knowing the probability distribution

P(xy | xi—1,...,x1) (9.1.1)

over prices that the index might take in the subsequent time step. While estimating the entire
distribution over a continuously valued random variable can be difficult, the trader would
be happy to focus on a few key statistics of the distribution, particularly the expected value
and the variance. One simple strategy for estimating the conditional expectation

E[(xe | xe-150 0 x1)], (9.1.2)

would be to apply a linear regression model (recall Section 3.1). Such models that regress
the value of a signal on the previous values of that same signal are naturally called au-
toregressive models. There is just one major problem: the number of inputs, x;_1,...,X]
varies, depending on 7. In other words, the number of inputs increases with the amount of
data that we encounter. Thus if we want to treat our historical data as a training set, we
are left with the problem that each example has a different number of features. Much of
what follows in this chapter will revolve around techniques for overcoming these challenges
when engaging in such autoregressive modeling problems where the object of interest is
P(x; | x,—1,...,x1) or some statistic(s) of this distribution.

A few strategies recur frequently. First of all, we might believe that although long sequences
X¢—1,...,X] are available, it may not be necessary to look back so far in the history when
predicting the near future. In this case we might content ourselves to condition on some
window of length 7 and only use x;_1,...,x;_ observations. The immediate benefit is
that now the number of arguments is always the same, at least for # > 7. This allows us to
train any linear model or deep network that requires fixed-length vectors as inputs. Second,
we might develop models that maintain some summary /4, of the past observations (see
Fig. 9.1.2) and at the same time update 4, in addition to the prediction %;. This leads to
models that estimate not only x; with £, = P(x; | h;) but also updates of the form h, =
g(hs—1,x¢-1). Since h; is never observed, these models are also called latent autoregressive
models.

Output

Hidden
state

A latent autoregressive model.

To construct training data from historical data, one typically creates examples by sampling
windows randomly. In general, we do not expect time to stand still. However, we often
assume that while the specific values of x; might change, the dynamics according to which
each subsequent observation is generated given the previous observations do not. Statisti-
cians call dynamics that do not change stationary.
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9.1.2 Sequence Models

Sometimes, especially when working with language, we wish to estimate the joint probabil-
ity of an entire sequence. This is a common task when working with sequences composed
of discrete tokens, such as words. Generally, these estimated functions are called sequence
models and for natural language data, they are called language models. The field of se-
quence modeling has been driven so much by natural language processing, that we often
describe sequence models as “language models”, even when dealing with non-language
data. Language models prove useful for all sorts of reasons. Sometimes we want to evalu-
ate the likelihood of sentences. For example, we might wish to compare the naturalness of
two candidate outputs generated by a machine translation system or by a speech recognition
system. But language modeling gives us not only the capacity to evaluate likelihood, but
the ability to sample sequences, and even to optimize for the most likely sequences.

While language modeling might not, at first glance, look like an autoregressive problem,
we can reduce language modeling to autoregressive prediction by decomposing the joint
density of a sequence p(xy,...,xr) into the product of conditional densities in a left-to-
right fashion by applying the chain rule of probability:

T
P(xt,...oxr) = POe) [ [ PG L2, x). (9.1.3)
=2

Note that if we are working with discrete signals such as words, then the autoregressive
model must be a probabilistic classifier, outputting a full probability distribution over the
vocabulary for whatever word will come next, given the leftwards context.

Markov Models

Now suppose that we wish to employ the strategy mentioned above, where we condition
only on the 7 previous time steps, i.e., X;_1, . . . , X;—r, rather than the entire sequence history
X¢—1,...,X1. Whenever we can throw away the history beyond the previous 7 steps without
any loss in predictive power, we say that the sequence satisfies a Markov condition, i.e., that
the future is conditionally independent of the past, given the recent history. When 7 = 1,
we say that the data is characterized by a first-order Markov model, and when 7 = k, we
say that the data is characterized by a k"-order Markov model. For when the first-order
Markov condition holds (7 = 1) the factorization of our joint probability becomes a product
of probabilities of each word given the previous word:

T
P(x1,...,x1) = P(x1) l_[P(xt | Xi_1). (9.1.4)
=2

We often find it useful to work with models that proceed as though a Markov condition were
satisfied, even when we know that this is only approximately true. With real text documents
we continue to gain information as we include more and more leftwards context. But these
gains diminish rapidly. Thus, sometimes we compromise, obviating computational and
statistical difficulties by training models whose validity depends on a k™-order Markov
condition. Even today’s massive RNN- and Transformer-based language models seldom
incorporate more than thousands of words of context.
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With discrete data, a true Markov model simply counts the number of times that each word
has occurred in each context, producing the relative frequency estimate of P(x; | x;-1).
Whenever the data assumes only discrete values (as in language), the most likely sequence
of words can be computed efficiently using dynamic programming.

The Order of Decoding

You may be wondering why we represented the factorization of a text sequence P(x1, . .., XT)
as a left-to-right chain of conditional probabilities. Why not right-to-left or some other,
seemingly random order? In principle, there is nothing wrong with unfolding P(x, . .., x7)
in reverse order. The result is a valid factorization:

1
P(xi,....xr) = PGer) [ | PG |3, ooxp). (9.1.5)
1=T-1

However, there are many reasons why factorizing text in the same direction in which we
read it (left-to-right for most languages, but right-to-left for Arabic and Hebrew) is preferred
for the task of language modeling. First, this is just a more natural direction for us to think
about. After all we all read text every day, and this process is guided by our ability to
anticipate which words and phrases are likely to come next. Just think of how many times
you have completed someone else’s sentence. Thus, even if we had no other reason to prefer
such in-order decodings, they would be useful if only because we have better intuitions for
what should be likely when predicting in this order.

Second, by factorizing in order, we can assign probabilities to arbitrarily long sequences
using the same language model. To convert a probability over steps 1 through 7 into one that
extends to word ¢ + 1 we simply multiply by the conditional probability of the additional to-
ken given the previous ones: P(X;41,...,Xx1) = P(xs, ..., x1) - P(xps1 | X5 5 X1)-

Third, we have stronger predictive models for predicting adjacent words than words at ar-
bitrary other locations. While all orders of factorization are valid, they do not necessarily
all represent equally easy predictive modeling problems. This is true not only for language,
but for other kinds of data as well, e.g., when the data is causally structured. For example,
we believe that future events cannot influence the past. Hence, if we change x;, we may be
able to influence what happens for x,,; going forward but not the converse. That is, if we
change x;, the distribution over past events will not change. In some contexts, this makes
it easier to predict P(x,y1 | x;) than to predict P(x; | x;41). For instance, in some cases,
we can find x;+; = f(x;) + € for some additive noise €, whereas the converse is not true
(Hoyer et al., 2009). This is great news, since it is typically the forward direction that we
are interested in estimating. The book by Peters et al. (2017) contains more on this topic.
We barely scratch the surface of it.

9.1.3 Training

Before we focus our attention on text data, let’s first try this out with some continuous-
valued synthetic data.

Here, our 1000 synthetic data will follow the trigonometric sin function, applied to 0.01
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times the time step. To make the problem a little more interesting, we corrupt each sample
with additive noise. From this sequence we extract training examples, each consisting of
features and a label.

class Data(d2l.DataModule):
def __init__(self, batch_size=16, T=1000, num_train=600, tau=4):
self.save_hyperparameters()
self.time = np.arange(l, T + 1, dtype=np.float32)
self.x = np.sin(0.01 * self.time) + np.random.randn(T) * 0.2

data = Data()
d21.plot(data.time, data.x, 'time’, 'x', xlim=[1, 1000], figsize=(6, 3))

[22:06:39] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

-15

200 400 600 800 1000
time

To begin, we try a model that acts as if the data satisfied a 7"-order Markov condition,
and thus predicts x; using only the past T observations. Thus for each time step we have an
example with label y = x; and features x; = [x;—¢,...,x;—1]. The astute reader might have
noticed that this results in 1000—7 examples, since we lack sufficient history for y{, ..., y-.
While we could pad the first T sequences with zeros, to keep things simple, we drop them
for now. The resulting dataset contains 7 — 7 examples, where each input to the model has
sequence length 7. We create a data iterator on the first 600 examples, covering a period of
the sin function.

@d21.add_to_class(Data)

def get_dataloader(self, train):
features = [self.x[i : self.T-self.tau+i] for i in range(self.tau)]
self.features = np.stack(features, 1)
self.labels = self.x[self.tau:].reshape((-1, 1))
i = slice(@, self.num_train) if train else slice(self.num_train, None)
return self.get_tensorloader([self.features, self.labels], train, i)

In this example our model will be a standard linear regression.
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model = d21.LinearRegression(lr=0.01)
trainer = d21.Trainer(max_epochs=5)
trainer.fit(model, data)

0.20 A —— train_loss
—==- val_loss
0.15 A
0.10
0.05 1
0 1 2 3 4 5

9.1.4 Prediction

To evaluate our model, we first check how well it performs at one-step-ahead prediction.

onestep_preds = model(data.features).asnumpy()
d21.plot(data.time[data.tau:], [data.labels, onestep_preds], 'time', 'x’,
legend=["'labels’, '"l-step preds'], figsize=(6, 3))

1.5

1.0 1

0.5 1

0.0 1

—0.51

—-1.04 — labels

—=—= 1-step preds

-1.5 r r T T T T

0 200 400 600 800 1000
time

These predictions look good, even near the end at ¢ = 1000.

But what if we only observed sequence data up until time step 604 (n_train + tau) and
wished to make predictions several steps into the future? Unfortunately, we cannot directly
compute the one-step-ahead prediction for time step 609, because we do not know the cor-
responding inputs, having seen only up to xeo4. We can address this problem by plugging in
our earlier predictions as inputs to our model for making subsequent predictions, projecting
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forward, one step at a time, until reaching the desired time step:

X605 = f (X601, X602 X6035 X604)
%606 = f (X602, X603, X604, £605)

X607 = f (X603, X604 X605, X606)

A o s 9.1.6
f608 = [ (x6045 £605, £6065 £607) (9.1.6)
£609 = f (X605, £606, X607, £608 )

Generally, for an observed sequence x1, . . ., x;, its predicted output £,,4 at time step ¢ + k

is called the k-step-ahead prediction. Since we have observed up to xg4, its k-step-ahead
prediction is X6p4+%. In other words, we will have to keep on using our own predictions to
make multistep-ahead predictions. Let’s see how well this goes.

multistep_preds = np.zeros(data.T)
multistep_preds[:] = data.x
for i in range(data.num_train + data.tau, data.T):
multistep_preds[i] = model(
multistep_preds[i - data.tau:i].reshape((1, -1)))
multistep_preds = multistep_preds.asnumpy()

d21.plot([data.time[data.tau:], data.time[data.num_train+data.tau:]],
[onestep_preds, multistep_preds[data.num_traint+data.tau:J], 'time’,

[

x', legend=['1l-step preds’', 'multistep preds’'], figsize=(6, 3))

1.0 1
0.5 1
x 0011 W py-—————=————
_05 4
—— 1-step preds
=1.0 1 —=- multistep preds
0 200 400 600 800 1000
time

Unfortunately, in this case we fail spectacularly. The predictions decay to a constant pretty
quickly after a few steps. Why did the algorithm perform so much worse when predicting
further into the future? Ultimately, this is down to the fact that errors build up. Let’s say
that after step 1 we have some error €; = €. Now the input for step 2 is perturbed by ¢,
hence we suffer some error in the order of € = € + ce; for some constant ¢, and so on. The
predictions can diverge rapidly from the true observations. You may already be familiar
with this common phenomenon. For instance, weather forecasts for the next 24 hours tend
to be pretty accurate but beyond that, accuracy declines rapidly. We will discuss methods
for improving this throughout this chapter and beyond.
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Let’s take a closer look at the difficulties in k-step-ahead predictions by computing predic-
tions on the entire sequence for k = 1,4, 16, 64.

def k_step_pred(k):

features = []

for i in range(data.tau):
features.append(data.x[i : itdata.T-data.tau-k+1])

# The (i+tau)-th element stores the (i+l)-step-ahead predictions

for i in range(k):
preds = model(np.stack(features[i : it+data.taul, 1))
features. append(preds.reshape(-1))

return features[data.tau:]

steps = (1, 4, 16, 64)
preds = k_step_pred(steps[-11)
d21.plot(data.time[data.taut+steps[-1]1-1:17,
[preds[k - 1].asnumpy() for k in steps], 'time’, 'x',
legend=[f'{k}-step preds’ for k in steps], figsize=(6, 3))

1.0 1
0.5 1
X 0.0
—— 1-step preds
=059 ——- 4-step preds
—-= 16-step preds
=107 ... 64-step preds
200 400 600 800 1000
time

This clearly illustrates how the quality of the prediction changes as we try to predict further
into the future. While the 4-step-ahead predictions still look good, anything beyond that is
almost useless.

9.1.5 Summary

There is quite a difference in difficulty between interpolation and extrapolation. Conse-
quently, if you have a sequence, always respect the temporal order of the data when training,
i.e., never train on future data. Given this kind of data, sequence models require specialized
statistical tools for estimation. Two popular choices are autoregressive models and latent-
variable autoregressive models. For causal models (e.g., time going forward), estimating
the forward direction is typically a lot easier than the reverse direction. For an observed
sequence up to time step ¢, its predicted output at time step ¢ + k is the k-step-ahead predic-
tion. As we predict further in time by increasing k, the errors accumulate and the quality
of the prediction degrades, often dramatically.

9.1.6 Exercises
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1. Improve the model in the experiment of this section.
1. Incorporate more than the past four observations? How many do you really need?

2. How many past observations would you need if there was no noise? Hint: you can
write sin and cos as a differential equation.

3. Can you incorporate older observations while keeping the total number of features
constant? Does this improve accuracy? Why?

4. Change the neural network architecture and evaluate the performance. You may train
the new model with more epochs. What do you observe?

2. An investor wants to find a good security to buy. They look at past returns to decide
which one is likely to do well. What could possibly go wrong with this strategy?

3. Does causality also apply to text? To which extent?

4. Give an example for when a latent autoregressive model might be needed to capture the

dynamic of the data.
135
[E]:%0 [ : : 135
512532"5 Discussions *°°.
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9.2 Converting Raw Text into Sequence Data
I —

Throughout this book, we will often work with text data represented as sequences of words,
characters, or word pieces. To get going, we will need some basic tools for converting raw
text into sequences of the appropriate form. Typical preprocessing pipelines execute the
following steps:

1. Load text as strings into memory.
2. Split the strings into tokens (e.g., words or characters).

3. Build a vocabulary dictionary to associate each vocabulary element with a numerical
index.

4. Convert the text into sequences of numerical indices.

import collections

import random

import re

from mxnet import np, npx
from d21 import mxnet as d21

npx.set_np()
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9.2.1 Reading the Dataset

Here, we will work with H. G. Wells’ The Time Machine 136, a book containing just over
30,000 words. While real applications will typically involve significantly larger datasets,
this is sufficient to demonstrate the preprocessing pipeline. The following _download
method reads the raw text into a string.

class TimeMachine(d21l.DataModule): #@save
"""The Time Machine dataset."""
def _download(self):
fname = d21.download(d21.DATA_URL + 'timemachine.txt', self.root,
'090b5e7€70c295757f55df93chb0al80b9691891a ')
with open(fname) as f:
return f.read()

data = TimeMachine()

raw_text = data._download()
raw_text[:60]

Downloading ../data/timemachine.txt from http://d21-data.s3-accelerate.
—.amazonaws.com/timemachine. txt. ..

'The Time Machine, by H. G. Wells [1898]nnnnnInnnThe Time Tra’

For simplicity, we ignore punctuation and capitalization when preprocessing the raw text.

@d21.add_to_class(TimeMachine) #@save
def _preprocess(self, text):
return re.sub('[*A-Za-z]+', ' ', text).lower()

text = data._preprocess(raw_text)
text[:60]

"the time machine by h g wells i the time traveller for so it’

9.2.2 Tokenization

Tokens are the atomic (indivisible) units of text. Each time step corresponds to 1 token,
but what precisely constitutes a token is a design choice. For example, we could represent
the sentence ‘“Baby needs a new pair of shoes” as a sequence of 7 words, where the set of
all words comprise a large vocabulary (typically tens or hundreds of thousands of words).
Or we would represent the same sentence as a much longer sequence of 30 characters,
using a much smaller vocabulary (there are only 256 distinct ASCII characters). Below, we
tokenize our preprocessed text into a sequence of characters.

@d21.add_to_class(TimeMachine) #@save
def _tokenize(self, text):
return list(text)

(continues on next page)
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(continued from previous page)

tokens = data._tokenize(text)
"' .join(tokens[:30])

't,h,e, ,t,i,m,e, ,m,a,c,h,i,n,e, ,b,y, ,h, ,g, ,w,e,1,1,s,

9.2.3 Vocabulary

These tokens are still strings. However, the inputs to our models must ultimately consist of
numerical inputs. Next, we introduce a class for constructing vocabularies, i.e., objects that
associate each distinct token value with a unique index. First, we determine the set of unique
tokens in our training corpus. We then assign a numerical index to each unique token. Rare
vocabulary elements are often dropped for convenience. Whenever we encounter a token at
training or test time that had not been previously seen or was dropped from the vocabulary,
we represent it by a special “<unk>" token, signifying that this is an unknown value.

class Vocab: #@save
"""Vocabulary for text.
def __init__(self, tokens=[], min_freg=0, reserved_tokens=[]):
# Flatten a 2D list if needed
if tokens and isinstance(tokens[0], list):
tokens = [token for line in tokens for token in line]
# Count token frequencies
counter = collections.Counter(tokens)
self.token_fregs = sorted(counter.items(), key=lambda x: x[1],
reverse=True)
# The list of unique tokens
self.idx_to_token = list(sorted(set(['<unk>'] + reserved_tokens + [
token for token, freq in self.token_freqs if freq >= min_freql)))
self.token_to_idx = {token: idx
for idx, token in enumerate(self.idx_to_token)}

nnn

def __len__(self):
return len(self.idx_to_token)

def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)):
return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens]

def to_tokens(self, indices):
if hasattr(indices, '__len__") and len(indices) > 1:
return [self.idx_to_token[int(index)] for index in indices]
return self.idx_to_token[indices]

@property

def unk(self): # Index for the unknown token
return self.token_to_idx['<unk>"]

We now construct a vocabulary for our dataset, converting the sequence of strings into a
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list of numerical indices. Note that we have not lost any information and can easily convert
our dataset back to its original (string) representation.

vocab = Vocab(tokens)

indices = vocab[tokens[:10]]
print('indices:', indices)

print('words: ', vocab.to_tokens(indices))

indices: [21, 9, 6, 0, 21, 10, 14, 6, 0, 14]

words: ['t', 'h', 'e’, , 't i, 'm', e, , 'm']

9.2.4 Putting It All Together

Using the above classes and methods, we package everything into the following build
method of the TimeMachine class, which returns corpus, a list of token indices, and vocab,
the vocabulary of The Time Machine corpus. The modifications we did here are: (i) we
tokenize text into characters, not words, to simplify the training in later sections; (ii) corpus
is a single list, not a list of token lists, since each text line in The Time Machine dataset is
not necessarily a sentence or paragraph.

@d21.add_to_class(TimeMachine) #@save
def build(self, raw_text, vocab=None):
tokens = self._tokenize(self._preprocess(raw_text))
if vocab is None: vocab = Vocab(tokens)
corpus = [vocab[token] for token in tokens]
return corpus, vocab

corpus, vocab = data.build(raw_text)
len(corpus), len(vocab)

(173428, 28)

9.2.5 Exploratory Language Statistics

Using the real corpus and the Vocab class defined over words, we can inspect basic statistics
concerning word use in our corpus. Below, we construct a vocabulary from words used in
The Time Machine and print the ten most frequently occurring of them.

words = text.split()
vocab = Vocab(words)
vocab. token_freqs[:10]

[('the’, 2261),

(i, 1267),
('and', 1245),
('of", 1155),

(continues on next page)
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(continued from previous page)

('a', 816),
("to’, 695),
('was', 552),
('in', 541),
("that', 443),
('my", 440)]

Note that the ten most frequent words are not all that descriptive. You might even imagine
that we might see a very similar list if we had chosen any book at random. Articles like
“the” and “a”, pronouns like “i” and “my”, and prepositions like “of”’, “to”, and “in” occur
often because they serve common syntactic roles. Such words that are common but not
particularly descriptive are often called sfop words and, in previous generations of text
classifiers based on so-called bag-of-words representations, they were most often filtered
out. However, they carry meaning and it is not necessary to filter them out when working
with modern RNN- and Transformer-based neural models. If you look further down the
list, you will notice that word frequency decays quickly. The 10" most frequent word is
less than 1/5 as common as the most popular. Word frequency tends to follow a power law
distribution (specifically the Zipfian) as we go down the ranks. To get a better idea, we plot
the figure of the word frequency.

freqs = [freq for token, freq in vocab.token_fregs]
d21.plot(fregs, xlabel='token: x', ylabel='frequency: n(x)',
xscale="log', yscale='log')

103 o

102 4

101 4

frequency: n(x)

100 4

10° 10! 102 103
token: x

After dealing with the first few words as exceptions, all the remaining words roughly follow
a straight line on a log—log plot. This phenomenon is captured by Zipf’s law, which states
that the frequency n; of the i most frequent word is:

nj « i, (9.2.1)

i
which is equivalent to
logn; = —alogi +c, (9.2.2)

where « is the exponent that characterizes the distribution and c is a constant. This should
already give us pause for thought if we want to model words by counting statistics. After
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all, we will significantly overestimate the frequency of the tail, also known as the infre-
quent words. But what about the other word combinations, such as two consecutive words
(bigrams), three consecutive words (trigrams), and beyond? Let’s see whether the bigram
frequency behaves in the same manner as the single word (unigram) frequency.

bigram_tokens = ['--'.join(pair) for pair in zip(words[:-1], words[1:]1)]
bigram_vocab = Vocab(bigram_tokens)
bigram_vocab.token_freqs[:10]

[('of--the', 309),
('in--the’, 169),
('i--had', 130),
('i--was', 112),
('and--the', 109),
("the--time', 102),
('it--was', 99),
("to--the', 85),
('as--i', 78),
('of--a", 73)]

One thing is notable here. Out of the ten most frequent word pairs, nine are composed of
both stop words and only one is relevant to the actual book—*"“the time”. Furthermore, let’s
see whether the trigram frequency behaves in the same manner.

trigram_tokens = ['--'.join(triple) for triple in zip(
words[:-2], words[1:-1], words[2:])]

trigram_vocab = Vocab(trigram_tokens)

trigram_vocab.token_freqs[:10]

[('the--time--traveller', 59),
('the--time--machine’, 30),
('the--medical--man', 24),
('it--seemed--to', 16),
('it--was--a', 15),
('here--and--there', 15),
('seemed--to--me', 14),
('i--did--not', 14),
('i--saw--the', 13),
('i--began--to', 13)]

Now, let’s visualize the token frequency among these three models: unigrams, bigrams,
and trigrams.

bigram_freqgs = [freq for token, freq in bigram_vocab.token_freqgs]

trigram_freqs = [freq for token, freq in trigram_vocab.token_freqgs]

d21.plot([freqgs, bigram_freqs, trigram_freqs], xlabel='token: x',
ylabel='frequency: n(x)', xscale='log', yscale='log’,
legend=["'unigram', 'bigram', 'trigram'l])

This figure is quite exciting. First, beyond unigram words, sequences of words also appear
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to be following Zipf’s law, albeit with a smaller exponent « in (9.2.1), depending on the
sequence length. Second, the number of distinct n-grams is not that large. This gives us
hope that there is quite a lot of structure in language. Third, many n-grams occur very
rarely. This makes certain methods unsuitable for language modeling and motivates the
use of deep learning models. We will discuss this in the next section.

9.2.6 Summary

Text is among the most common forms of sequence data encountered in deep learning.
Common choices for what constitutes a token are characters, words, and word pieces. To
preprocess text, we usually (i) split text into tokens; (ii) build a vocabulary to map token
strings to numerical indices; and (iii) convert text data into token indices for models to
manipulate. In practice, the frequency of words tends to follow Zipf’s law. This is true not
just for individual words (unigrams), but also for n-grams.

9.2.7 Exercises

1. In the experiment of this section, tokenize text into words and vary the min_freq argu-
ment value of the Vocab instance. Qualitatively characterize how changes in min_freq
impact the size of the resulting vocabulary.

2. Estimate the exponent of Zipfian distribution for unigrams, bigrams, and trigrams in this
corpus.

3. Find some other sources of data (download a standard machine learning dataset, pick
another public domain book, scrape a website, etc). For each, tokenize the data at both
the word and character levels. How do the vocabulary sizes compare with The Time
Machine corpus at equivalent values of min_freq. Estimate the exponent of the Zipfian
distribution corresponding to the unigram and bigram distributions for these corpora.
How do they compare with the values that you observed for The Time Machine corpus?

Discussions 137 .
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9.3 Language Models
____________________________________________________________________________________________

In Section 9.2, we saw how to map text sequences into tokens, where these tokens can be
viewed as a sequence of discrete observations such as words or characters. Assume that
the tokens in a text sequence of length 7" are in turn x1, X3, . .., x7. The goal of language
models is to estimate the joint probability of the whole sequence:

P(x1,x2, ..., xT), (9.3.1)
where statistical tools in Section 9.1 can be applied.

Language models are incredibly useful. For instance, an ideal language model should
generate natural text on its own, simply by drawing one token at a time x; ~ P(x; |
X¢—1,...,Xx1). Quite unlike the monkey using a typewriter, all text emerging from such
a model would pass as natural language, e.g., English text. Furthermore, it would be suffi-
cient for generating a meaningful dialog, simply by conditioning the text on previous dialog
fragments. Clearly we are still very far from designing such a system, since it would need
to understand the text rather than just generate grammatically sensible content.

Nonetheless, language models are of great service even in their limited form. For instance,
the phrases “to recognize speech” and “to wreck a nice beach” sound very similar. This can
cause ambiguity in speech recognition, which is easily resolved through a language model
that rejects the second translation as outlandish. Likewise, in a document summarization
algorithm it is worthwhile knowing that “dog bites man” is much more frequent than “man
bites dog”, or that “I want to eat grandma” is a rather disturbing statement, whereas “I want
to eat, grandma” is much more benign.

from mxnet import np, npx
from d21 import mxnet as d21

npx.set_np()

9.3.1 Learning Language Models

The obvious question is how we should model a document, or even a sequence of tokens.
Suppose that we tokenize text data at the word level. Let’s start by applying basic probability
rules:

T
P(x1,x2,...,xT) = HP(xt | X1, .., x—1). (9.3.2)
r=1

For example, the probability of a text sequence containing four words would be given
as:
P(deep, learning, is, fun)

9.3.3
=P(deep)P(learning | deep)P(is | deep, learning) P(fun | deep, learning, is). ( )
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Markov Models and n-grams

Among those sequence model analyses in Section 9.1, let’s apply Markov models to lan-
guage modeling. A distribution over sequences satisfies the Markov property of first order
if P(xz41 | X¢,...,%x1) = P(x;41 | x;). Higher orders correspond to longer dependencies.
This leads to a number of approximations that we could apply to model a sequence:

P(x1,x2,x3,x4) = P(x1)P(x2) P(x3) P(x4),
P(x1,x2,x3,x4) = P(x1)P(x2 | x1)P(x3 | x2) P (x4 | x3), (9.3.4)

P(x1,x2,x3,%4) = P(x1)P(x2 | x1)P(x3 | x1,x2) P (x4 | x2,%3).

The probability formulae that involve one, two, and three variables are typically referred
to as unigram, bigram, and trigram models, respectively. In order to compute the language
model, we need to calculate the probability of words and the conditional probability of
a word given the previous few words. Note that such probabilities are language model
parameters.

Word Frequency

Here, we assume that the training dataset is a large text corpus, such as all Wikipedia entries,
Project Gutenberg 133 | and all text posted on the web. The probability of words can be
calculated from the relative word frequency of a given word in the training dataset. For
example, the estimate P(deep) can be calculated as the probability of any sentence starting
with the word “deep”. A slightly less accurate approach would be to count all occurrences
of the word “deep” and divide it by the total number of words in the corpus. This works
fairly well, particularly for frequent words. Moving on, we could attempt to estimate

n(deep, learning)

P(learning | deep) = n(deep)

(9.3.5)
where n(x) and n(x, x") are the number of occurrences of singletons and consecutive word
pairs, respectively. Unfortunately, estimating the probability of a word pair is somewhat
more difficult, since the occurrences of “deep learning” are a lot less frequent. In particular,
for some unusual word combinations it may be tricky to find enough occurrences to get
accurate estimates. As suggested by the empirical results in Section 9.2.5, things take a
turn for the worse for three-word combinations and beyond. There will be many plausible
three-word combinations that we likely will not see in our dataset. Unless we provide some
solution to assign such word combinations a nonzero count, we will not be able to use them
in a language model. If the dataset is small or if the words are very rare, we might not find
even a single one of them.

Laplace Smoothing

A common strategy is to perform some form of Laplace smoothing. The solution is to add
a small constant to all counts. Denote by 7 the total number of words in the training set and
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m the number of unique words. This solution helps with singletons, e.g., via

Bx) = n(x) +e/m
n+e€;
L n(x,x’) + &P(x’)
P = 9.3.6
"1 %) n(x) + e ( )
P( ’” | /) n(x,x',x") +E3p(x”)
x| x,x") =
’ n(x,x’) + e

Here €1, €, and €3 are hyperparameters. Take €| as an example: when €; = 0, no smoothing
is applied; when € approaches positive infinity, P(x) approaches the uniform probability
1/m. The above is a rather primitive variant of what other techniques can accomplish
(Wood et al., 2011).

Unfortunately, models like this get unwieldy rather quickly for the following reasons. First,
as discussed in Section 9.2.5, many n-grams occur very rarely, making Laplace smoothing
rather unsuitable for language modeling. Second, we need to store all counts. Third, this
entirely ignores the meaning of the words. For instance, “cat” and “feline” should occur in
related contexts. It is quite difficult to adjust such models to additional contexts, whereas,
deep learning based language models are well suited to take this into account. Last, long
word sequences are almost certain to be novel, hence a model that simply counts the fre-
quency of previously seen word sequences is bound to perform poorly there. Therefore, we
focus on using neural networks for language modeling in the rest of the chapter.

9.3.2 Perplexity

Next, let’s discuss about how to measure the quality of the language model, which we
will then use to evaluate our models in the subsequent sections. One way is to check how
surprising the text is. A good language model is able to predict, with high accuracy, the
tokens that come next. Consider the following continuations of the phrase “It is raining”,
as proposed by different language models:

1. “It is raining outside”
2. “Itis raining banana tree”
3. “It is raining piouw;kcj pwepoiut”

In terms of quality, Example 1 is clearly the best. The words are sensible and logically co-
herent. While it might not quite accurately reflect which word follows semantically (“in San
Francisco” and “in winter” would have been perfectly reasonable extensions), the model is
able to capture which kind of word follows. Example 2 is considerably worse by producing
a nonsensical extension. Nonetheless, at least the model has learned how to spell words
and some degree of correlation between words. Last, Example 3 indicates a poorly trained
model that does not fit data properly.

We might measure the quality of the model by computing the likelihood of the sequence.
Unfortunately this is a number that is hard to understand and difficult to compare. After all,
shorter sequences are much more likely to occur than the longer ones, hence evaluating the
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model on Tolstoy’s magnum opus War and Peace will inevitably produce a much smaller
likelihood than, say, on Saint-Exupery’s novella The Little Prince. What is missing is the
equivalent of an average.

Information theory comes handy here. We defined entropy, surprisal, and cross-entropy
when we introduced the softmax regression (Section 4.1.3). If we want to compress text,
we can ask about predicting the next token given the current set of tokens. A better language
model should allow us to predict the next token more accurately. Thus, it should allow us to
spend fewer bits in compressing the sequence. So we can measure it by the cross-entropy
loss averaged over all the n tokens of a sequence:

1 n
;Z—logP(xt | X1y ..., x1), (9.3.7)
t=1

where P is given by a language model and x; is the actual token observed at time step ¢ from
the sequence. This makes the performance on documents of different lengths comparable.
For historical reasons, scientists in natural language processing prefer to use a quantity
called perplexity. In a nutshell, it is the exponential of (9.3.7):

1 n
exp —EZIOgP(x, | Xr—1y.vosx1)]- (9.3.8)
1=1
Perplexity can be best understood as the reciprocal of the geometric mean of the number of
real choices that we have when deciding which token to pick next. Let’s look at a number
of cases:

o In the best case scenario, the model always perfectly estimates the probability of the
target token as 1. In this case the perplexity of the model is 1.

o In the worst case scenario, the model always predicts the probability of the target token
as 0. In this situation, the perplexity is positive infinity.

o At the baseline, the model predicts a uniform distribution over all the available tokens of
the vocabulary. In this case, the perplexity equals the number of unique tokens of the
vocabulary. In fact, if we were to store the sequence without any compression, this
would be the best we could do for encoding it. Hence, this provides a nontrivial upper
bound that any useful model must beat.

9.3.3 Partitioning Sequences

We will design language models using neural networks and use perplexity to evaluate how
good the model is at predicting the next token given the current set of tokens in text se-
quences. Before introducing the model, let’s assume that it processes a minibatch of se-
quences with predefined length at a time. Now the question is how to read minibatches of
input sequences and target sequences at random.

Suppose that the dataset takes the form of a sequence of T token indices in corpus. We
will partition it into subsequences, where each subsequence has n tokens (time steps). To
iterate over (almost) all the tokens of the entire dataset for each epoch and obtain all possible
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length-n subsequences, we can introduce randomness. More concretely, at the beginning
of each epoch, discard the first d tokens, where d € [0, n) is uniformly sampled at random.
The rest of the sequence is then partitioned into m = | (T —d)/n| subsequences. Denote by
X; = [X7,...,X+n—1] the length-n subsequence starting from token x; at time step z. The
resulting m partitioned subsequences are X4, Xg4n, - - - » Xd+n(m-1) - Each subsequence will
be used as an input sequence into the language model.

For language modeling, the goal is to predict the next token based on the tokens we have
seen so far; hence the targets (labels) are the original sequence, shifted by one token. The
target sequence for any input sequence X; is x;41 with length n.

Input sequences: thle tinie maclhine Iby h |g wellls
Target sequences: the| timel machline by h o] wellls

Obtaining five pairs of input sequences and target sequences from partitioned length-5
subsequences.

Fig. 9.3.1 shows an example of obtaining five pairs of input sequences and target sequences
withn =5and d = 2.

@d2].add_to_class(d21l.TimeMachine) #@save
def __init__(self, batch_size, num_steps, num_train=10000, num_val=5000):
super(d2l.TimeMachine, self).__init__()
self.save_hyperparameters()
corpus, self.vocab = self.build(self._download())
array = np.array([corpus[i:i+num_steps+1]
for i in range(len(corpus)-num_steps)])
self.X, self.Y = array[:,:-1], array[:,1:]

To train language models, we will randomly sample pairs of input sequences and target
sequences in minibatches. The following data loader randomly generates a minibatch from
the dataset each time. The argument batch_size specifies the number of subsequence
examples in each minibatch and num_steps is the subsequence length in tokens.

@d21.add_to_class(d21.TimeMachine) #@save
def get_dataloader(self, train):
idx = slice(@, self.num_train) if train else slice(
self.num_train, self.num_train + self.num_val)
return self.get_tensorloader([self.X, self.Y], train, idx)

As we can see in the following, a minibatch of target sequences can be obtained by shifting
the input sequences by one token.

data = d21.TimeMachine(batch_size=2, num_steps=10)
for X, Y in data.train_dataloader():

print('X:', X, '\nY:', Y)

break
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X: [L7. 7. 6.19. 6. 15. 4. 6. 0. 3.]

[ 6. 19. ©. 4. 2. 22. 8. 9. 21. 0.71]

Y: [[7. 6.19. 6. 15. 4. 6. 0. 3. 6.]

[19. ©. 4. 2. 22. 8. 9. 21. 0. 21.71]

[22:08:04] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

9.3.4 Summary and Discussion

Language models estimate the joint probability of a text sequence. For long sequences,
n-grams provide a convenient model by truncating the dependence. However, there is a lot
of structure but not enough frequency to deal efficiently with infrequent word combinations
via Laplace smoothing. Thus, we will focus on neural language modeling in subsequent
sections. To train language models, we can randomly sample pairs of input sequences
and target sequences in minibatches. After training, we will use perplexity to measure the
language model quality.

Language models can be scaled up with increased data size, model size, and amount in
training compute. Large language models can perform desired tasks by predicting output
text given input text instructions. As we will discuss later (e.g., Section 11.8), at the present
moment large language models form the basis of state-of-the-art systems across diverse
tasks.

9.3.5 Exercises

1. Suppose there are 100,000 words in the training dataset. How much word frequency
and multi-word adjacent frequency does a four-gram need to store?

2. How would you model a dialogue?
3. What other methods can you think of for reading long sequence data?

4. Consider our method for discarding a uniformly random number of the first few tokens
at the beginning of each epoch.

1. Does it really lead to a perfectly uniform distribution over the sequences on the docu-
ment?

2. What would you have to do to make things even more uniform?

5. If we want a sequence example to be a complete sentence, what kind of problem does
this introduce in minibatch sampling? How can we fix it?

Discussions 139


https://discuss.d2l.ai/t/117

353

Recurrent Neural Networks

9.4 Recurrent Neural Networks
]

In Section 9.3 we described Markov models and n-grams for language modeling, where
the conditional probability of token x; at time step ¢ only depends on the n — 1 previous
tokens. If we want to incorporate the possible effect of tokens earlier than time step ¢ —
(n—1) on x,, we need to increase n. However, the number of model parameters would also
increase exponentially with it, as we need to store |'V|" numbers for a vocabulary set V.
Hence, rather than modeling P(x; | x;—1,...,X;—n+1) itis preferable to use a latent variable
model,

P(x; | xp-1,...,x1) = P(x; | hy—1), (9.4.1)

where h,_1 is a hidden state that stores the sequence information up to time step # — 1. In
general, the hidden state at any time step ¢ could be computed based on both the current
input x; and the previous hidden state h;_;:

he = f(xe, o). (9.4.2)

For a sufficiently powerful function f in (9.4.2), the latent variable model is not an approx-
imation. After all, #; may simply store all the data it has observed so far. However, it could
potentially make both computation and storage expensive.

Recall that we have discussed hidden layers with hidden units in Chapter 5. It is noteworthy
that hidden layers and hidden states refer to two very different concepts. Hidden layers are,
as explained, layers that are hidden from view on the path from input to output. Hidden
states are technically speaking inputs to whatever we do at a given step, and they can only
be computed by looking at data at previous time steps.

Recurrent neural networks (RNNs) are neural networks with hidden states. Before intro-
ducing the RNN model, we first revisit the MLP model introduced in Section 5.1.

from mxnet import np, npx
from d21 import mxnet as d21

npx.set_np()

9.4.1 Neural Networks without Hidden States

Let’s take a look at an MLP with a single hidden layer. Let the hidden layer’s activation
function be ¢. Given a minibatch of examples X € R™*¢ with batch size n and d inputs,
the hidden layer output H € R™*" is calculated as

H = ¢(XWyy, + by). (9.4.3)

In (9.4.3), we have the weight parameter W;, € R4*", the bias parameter b, € R'*", and

the number of hidden units 4, for the hidden layer. So armed, we apply broadcasting (see
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Section 2.1.4) during the summation. Next, the hidden layer output H is used as input of
the output layer, which is given by

O = HWy, + b, (9.4.4)

where O € R"*4 is the output variable, Wy, € R4 is the weight parameter, and by €
R!X4 is the bias parameter of the output layer. If it is a classification problem, we can use
softmax(O) to compute the probability distribution of the output categories.

This is entirely analogous to the regression problem we solved previously in Section 9.1,
hence we omit details. Suffice it to say that we can pick feature-label pairs at random and
learn the parameters of our network via automatic differentiation and stochastic gradient
descent.

9.4.2 Recurrent Neural Networks with Hidden States

Matters are entirely different when we have hidden states. Let’s look at the structure in
some more detail.

Assume that we have a minibatch of inputs X; € R™4 gt time step ¢. In other words, for
a minibatch of n sequence examples, each row of X, corresponds to one example at time
step ¢ from the sequence. Next, denote by H, € R”*" the hidden layer output of time step
t. Unlike with MLP, here we save the hidden layer output H,_; from the previous time step
and introduce a new weight parameter Wiy, € R"*" to describe how to use the hidden layer
output of the previous time step in the current time step. Specifically, the calculation of the
hidden layer output of the current time step is determined by the input of the current time
step together with the hidden layer output of the previous time step:

H; = ¢(X; Wixn + H; 1 Whp + by). (9.4.5)

Compared with (9.4.3), (9.4.5) adds one more term H,_; Wpy, and thus instantiates (9.4.2).
From the relationship between hidden layer outputs H, and H,_; of adjacent time steps,
we know that these variables captured and retained the sequence’s historical information
up to their current time step, just like the state or memory of the neural network’s current
time step. Therefore, such a hidden layer output is called a hidden state. Since the hidden
state uses the same definition of the previous time step in the current time step, the compu-
tation of (9.4.5) is recurrent. Hence, as we said, neural networks with hidden states based
on recurrent computation are named recurrent neural networks. Layers that perform the
computation of (9.4.5) in RNNs are called recurrent layers.

There are many different ways for constructing RNNs. Those with a hidden state defined
by (9.4.5) are very common. For time step 7, the output of the output layer is similar to the
computation in the MLP:

Ot = Htth + bq. (946)

Parameters of the RNN include the weights W, € R¥*" Wy, € R"*"_ and the bias by, €
R!¥" of the hidden layer, together with the weights Wpq € R"*4 and the bias by € R!*¢
of the output layer. It is worth mentioning that even at different time steps, RNNs always
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use these model parameters. Therefore, the parametrization cost of an RNN does not grow
as the number of time steps increases.

Fig. 9.4.1 illustrates the computational logic of an RNN at three adjacent time steps. At
any time step #, the computation of the hidden state can be treated as: (i) concatenating the
input X, at the current time step ¢ and the hidden state H,_ at the previous time step 7 — 1;
(ii) feeding the concatenation result into a fully connected layer with the activation function
¢. The output of such a fully connected layer is the hidden state H; of the current time step
t. In this case, the model parameters are the concatenation of Wy, and Wy, and a bias
of by, all from (9.4.5). The hidden state of the current time step ¢, H,, will participate in
computing the hidden state H,,; of the next time step ¢ + 1. What is more, H; will also be
fed into the fully connected output layer to compute the output O, of the current time step

t.
Output layer I;l I;l ;l

AEN TS -
Hidden state ® I o l | o I ! l ® I
[

Input X X X

FC layer with
activation function —L» Copy Concatenate

An RNN with a hidden state.

We just mentioned that the calculation of X; Wy, + H,_{ Wy, for the hidden state is equiv-
alent to matrix multiplication of the concatenation of X; and H,_; and the concatenation
of Wy, and Wyy,. Though this can be proven mathematically, in the following we just use
a simple code snippet as a demonstration. To begin with, we define matrices X, W_xh, H,
and W_hh, whose shapes are (3, 1), (1, 4), (3, 4), and (4, 4), respectively. Multiplying X by
W_xh, and H by W_hh, and then adding these two products, we obtain a matrix of shape (3,
4).

X, W_xh = np.random.randn(3, 1), np.random.randn(l, 4)
H, W_hh = np.random.randn(3, 4), np.random.randn(4, 4)
np.dot(X, W_xh) + np.dot(H, W_hh)

[22:07:37] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

array([[-0.21952915, 4.256434 , 4.5812645 , -5.344988 1,
[ 3.447858 , -3.0177274 , -1.6777471 , 7.535347 1,
[ 2.2390068 , 1.4199957 , 4.744728 , -8.421293 11)

Now we concatenate the matrices X and H along columns (axis 1), and the matrices W_xh
and W_hh along rows (axis 0). These two concatenations result in matrices of shape (3, 5)
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and of shape (5, 4), respectively. Multiplying these two concatenated matrices, we obtain
the same output matrix of shape (3, 4) as above.

np.dot(np.concatenate((X, H), 1), np.concatenate((W_xh, W_hh), @))

array([[-0.21952918, 4.256434 , 4.5812645 , -5.344988 1,
[ 3.4478583 , -3.0177271 , -1.677747 , 7.535347 1,
[ 2.2390068 , 1.4199957 , 4.744728 , -8.421294 11)

9.4.3 RNN-Based Character-Level Language Models

Recall that for language modeling in Section 9.3, we aim to predict the next token based on
the current and past tokens; thus we shift the original sequence by one token as the targets
(labels). Bengio et al. (2003) first proposed to use a neural network for language modeling.
In the following we illustrate how RNNs can be used to build a language model. Let the
minibatch size be one, and the sequence of the text be “machine”. To simplify training
in subsequent sections, we tokenize text into characters rather than words and consider a
character-level language model. Fig. 9.4.2 demonstrates how to predict the next charac-
ter based on the current and previous characters via an RNN for character-level language
modeling.

Time step 1 2 3 4 5 6
Target sequence a c h i n e

Output
layer

Hidden
layer

Input sequence  m a c h i n

A character-level language model based on the RNN. The input and target sequences are
“machin” and “achine”, respectively.

During the training process, we run a softmax operation on the output from the output layer
for each time step, and then use the cross-entropy loss to compute the error between the
model output and the target. Because of the recurrent computation of the hidden state in the
hidden layer, the output, O3, of time step 3 in Fig. 9.4.2 is determined by the text sequence
“m”, “a”, and “c”. Since the next character of the sequence in the training data is “h”, the
loss of time step 3 will depend on the probability distribution of the next character generated

ELENTPE I TSR L)

based on the feature sequence “m”, “a”, “c” and the target “h” of this time step.

In practice, each token is represented by a d-dimensional vector, and we use a batch size
n > 1. Therefore, the input X, at time step ¢ will be an n X d matrix, which is identical to
what we discussed in Section 9.4.2.

In the following sections, we will implement RNNs for character-level language mod-
els.
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9.4.4 Summary

A neural network that uses recurrent computation for hidden states is called a recurrent
neural network (RNN). The hidden state of an RNN can capture historical information of
the sequence up to the current time step. With recurrent computation, the number of RNN
model parameters does not grow as the number of time steps increases. As for applications,
an RNN can be used to create character-level language models.

9.4.5 Exercises

1. If we use an RNN to predict the next character in a text sequence, what is the required
dimension for any output?

2. Why can RNNs express the conditional probability of a token at some time step based
on all the previous tokens in the text sequence?

3. What happens to the gradient if you backpropagate through a long sequence?

4. What are some of the problems associated with the language model described in this

section?
140
E;Eglﬂgg Discussions 140,
e

9.5 Recurrent Neural Network Implementation
from Scratch

We are now ready to implement an RNN from scratch. In particular, we will train this
RNN to function as a character-level language model (see Section 9.4) and train it on a
corpus consisting of the entire text of H. G. Wells’ The Time Machine, following the data
processing steps outlined in Section 9.2. We start by loading the dataset.

%matplotlib inline

import math

from mxnet import autograd, gluon, np, npx
from d21 import mxnet as d21

npx.set_np()

9.5.1 RNN Model

We begin by defining a class to implement the RNN model (Section 9.4.2). Note that the
number of hidden units num_hiddens is a tunable hyperparameter.
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class RNNScratch(d21l.Module): #@save

"""The RNN model implemented from scratch.”""

def __init__(self, num_inputs, num_hiddens, sigma=0.01):
super().__init__()
self.save_hyperparameters()
self.W_xh = np.random.randn(num_inputs, num_hiddens) * sigma
self.W_hh = np.random.randn(

num_hiddens, num_hiddens) * sigma

self.b_h = np.zeros(num_hiddens)

The forward method below defines how to compute the output and hidden state at any time
step, given the current input and the state of the model at the previous time step. Note that
the RNN model loops through the outermost dimension of inputs, updating the hidden
state one time step at a time. The model here uses a tanh activation function (Section
5.1.2).

@d21.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
if state is None:
# Initial state with shape: (batch_size, num_hiddens)
state = np.zeros((inputs.shape[1], self.num_hiddens),
ctx=inputs.ctx)
else:
state, = state
outputs = []
for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
state = np.tanh(np.dot(X, self.W_xh) +
np.dot(state, self.W_hh) + self.b_h)
outputs.append(state)
return outputs, state

We can feed a minibatch of input sequences into an RNN model as follows.

batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)

X = np.ones((num_steps, batch_size, num_inputs))

outputs, state = rnn(X)

[22:31:16] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

Let’s check whether the RNN model produces results of the correct shapes to ensure that
the dimensionality of the hidden state remains unchanged.

def check_len(a, n): #@save
"""Check the length of a list."""
assert len(a) == n, f'list\’'s length {len(a)} != expected length {n}’

def check_shape(a, shape): #@save
"""Check the shape of a tensor.

nnn

(continues on next page)
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(continued from previous page)

assert a.shape == shape, \
f'tensor\'s shape {a.shape} != expected shape {shape

)

check_len(outputs, num_steps)
check_shape(outputs[@], (batch_size, num_hiddens))
check_shape(state, (batch_size, num_hiddens))

9.5.2 RNN-Based Language Model

The following RNNLMScratch class defines an RNN-based language model, where we pass
in our RNN via the rnn argument of the __init__ method. When training language mod-
els, the inputs and outputs are from the same vocabulary. Hence, they have the same di-
mension, which is equal to the vocabulary size. Note that we use perplexity to evaluate the
model. As discussed in Section 9.3.2, this ensures that sequences of different length are
comparable.

class RNNLMScratch(d2l.Classifier): #@save
"""The RNN-based language model implemented from scratch.""”
def __init__(self, rnn, vocab_size, 1r=0.01):
super().__init__()
self.save_hyperparameters()
self.init_params()

def init_params(self):
self.W_hg = np.random.randn(
self.rnn.num_hiddens, self.vocab_size) * self.rnn.sigma
self.b_g = np.zeros(self.vocab_size)
for param in self.get_scratch_params():
param.attach_grad()
def training_step(self, batch):
1 = self.loss(self(*batch[:-1]), batch[-1])
self.plot('ppl’', np.exp(l), train=True)
return 1

def validation_step(self, batch):
1 = self.loss(self(*batch[:-1]1), batch[-11)
self.plot('ppl’', np.exp(l), train=False)

One-Hot Encoding

Recall that each token is represented by a numerical index indicating the position in the
vocabulary of the corresponding word/character/word piece. You might be tempted to build
a neural network with a single input node (at each time step), where the index could be fed
in as a scalar value. This works when we are dealing with numerical inputs like price or
temperature, where any two values sufficiently close together should be treated similarly.
But this does not quite make sense. The 45" and 46" words in our vocabulary happen to
be “their” and “said”, whose meanings are not remotely similar.

When dealing with such categorical data, the most common strategy is to represent each
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item by a one-hot encoding (recall from Section 4.1.1). A one-hot encoding is a vector
whose length is given by the size of the vocabulary N, where all entries are set to 0, except
for the entry corresponding to our token, which is set to 1. For example, if the vocabulary
had five elements, then the one-hot vectors corresponding to indices 0 and 2 would be the
following.

npx.one_hot(np.array([0, 2]1), 5)

array([[1., ©0., 0., 0.

, 0.1
0., 0., 1., 0., 0.1

B

The minibatches that we sample at each iteration will take the shape (batch size, number
of time steps). Once representing each input as a one-hot vector, we can think of each
minibatch as a three-dimensional tensor, where the length along the third axis is given by
the vocabulary size (1en(vocab)). We often transpose the input so that we will obtain an
output of shape (number of time steps, batch size, vocabulary size). This will allow us to
loop more conveniently through the outermost dimension for updating hidden states of a
minibatch, time step by time step (e.g., in the above forward method).

@d21.add_to_class(RNNLMScratch) #@save

def one_hot(self, X):
# Output shape: (num_steps, batch_size, vocab_size)
return npx.one_hot(X.T, self.vocab_size)

Transforming RNN Outputs

The language model uses a fully connected output layer to transform RNN outputs into
token predictions at each time step.

@d21.add_to_class(RNNLMScratch) #@save

def output_layer(self, rnn_outputs):
outputs = [np.dot(H, self.W_hqg) + self.b_qg for H in rnn_outputs]
return np.stack(outputs, 1)

@d21.add_to_class(RNNLMScratch) #@save
def forward(self, X, state=None):
embs = self.one_hot(X)
rnn_outputs, _ = self.rnn(embs, state)
return self.output_layer(rnn_outputs)

Let’s check whether the forward computation produces outputs with the correct shape.

model = RNNLMScratch(rnn, num_inputs)
outputs = model(np.ones((batch_size, num_steps), dtype=np.int64))
check_shape(outputs, (batch_size, num_steps, num_inputs))

9.5.3 Gradient Clipping
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While you are already used to thinking of neural networks as “deep” in the sense that many
layers separate the input and output even within a single time step, the length of the se-
quence introduces a new notion of depth. In addition to the passing through the network
in the input-to-output direction, inputs at the first time step must pass through a chain of T
layers along the time steps in order to influence the output of the model at the final time
step. Taking the backwards view, in each iteration, we backpropagate gradients through
time, resulting in a chain of matrix-products of length O(T). As mentioned in Section 5.4,
this can result in numerical instability, causing the gradients either to explode or vanish,
depending on the properties of the weight matrices.

Dealing with vanishing and exploding gradients is a fundamental problem when designing
RNNs and has inspired some of the biggest advances in modern neural network architec-
tures. In the next chapter, we will talk about specialized architectures that were designed in
hopes of mitigating the vanishing gradient problem. However, even modern RNNs often
suffer from exploding gradients. One inelegant but ubiquitous solution is to simply clip the
gradients forcing the resulting “clipped” gradients to take smaller values.

Generally speaking, when optimizing some objective by gradient descent, we iteratively
update the parameter of interest, say a vector X, but pushing it in the direction of the negative
gradient g (in stochastic gradient descent, we calculate this gradient on a randomly sampled
minibatch). For example, with learning rate > 0, each update takes the form x «— x—ng.
Let’s further assume that the objective function f is sufficiently smooth. Formally, we say
that the objective is Lipschitz continuous with constant L, meaning that for any x and y,
we have

lf (%) = f(¥)I < LlIx -yl (9-5.1)

As you can see, when we update the parameter vector by subtracting g, the change in
the value of the objective depends on the learning rate, the norm of the gradient and L as
follows:

[f(x) = f(x-ng)l < Lylgll. (9.5.2)

In other words, the objective cannot change by more than Lp||g||. Having a small value for
this upper bound might be viewed as good or bad. On the downside, we are limiting the
speed at which we can reduce the value of the objective. On the bright side, this limits by
just how much we can go wrong in any one gradient step.

When we say that gradients explode, we mean that ||g|| becomes excessively large. In this
worst case, we might do so much damage in a single gradient step that we could undo all
of the progress made over the course of thousands of training iterations. When gradients
can be so large, neural network training often diverges, failing to reduce the value of the
objective. At other times, training eventually converges but is unstable owing to massive
spikes in the loss.

One way to limit the size of Ln||g|| is to shrink the learning rate 7 to tiny values. This
has the advantage that we do not bias the updates. But what if we only rarely get large
gradients? This drastic move slows down our progress at all steps, just to deal with the rare
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exploding gradient events. A popular alternative is to adopt a gradient clipping heuristic
projecting the gradients g onto a ball of some given radius 6 as follows:

g <« min (1, i) g. (9.5.3)
el

This ensures that the gradient norm never exceeds 8 and that the updated gradient is entirely
aligned with the original direction of g. It also has the desirable side-effect of limiting the
influence any given minibatch (and within it any given sample) can exert on the parameter
vector. This bestows a certain degree of robustness to the model. To be clear, it is a hack.
Gradient clipping means that we are not always following the true gradient and it is hard to
reason analytically about the possible side effects. However, it is a very useful hack, and is
widely adopted in RNN implementations in most deep learning frameworks.

Below we define a method to clip gradients, which is invoked by the fit_epoch method
of the d21.Trainer class (see Section 3.4). Note that when computing the gradient norm,
we are concatenating all model parameters, treating them as a single giant parameter vec-
tor.

@d2].add_to_class(d21l.Trainer) #@save
def clip_gradients(self, grad_clip_val, model):
params = model.parameters()
if not isinstance(params, list):
params = [p.data() for p in params.values()]
norm = math.sqrt(sum((p.grad ** 2).sum() for p in params))
if norm > grad_clip_val:
for param in params:
param.grad[:] *= grad_clip_val / norm

9.5.4 Training

Using The Time Machine dataset (data), we train a character-level language model (model)
based on the RNN (rnn) implemented from scratch. Note that we first calculate the gra-
dients, then clip them, and finally update the model parameters using the clipped gradi-
ents.

data = d21.TimeMachine(batch_size=1024, num_steps=32)

rnn = RNNScratch(num_inputs=len(data.vocab), num_hiddens=32)

model = RNNLMScratch(rnn, vocab_size=len(data.vocab), 1lr=1)

trainer = d21.Trainer(max_epochs=100, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

9.5.5 Decoding

Once a language model has been learned, we can use it not only to predict the next token
but to continue predicting each subsequent one, treating the previously predicted token as
though it were the next in the input. Sometimes we will just want to generate text as though
we were starting at the beginning of a document. However, it is often useful to condition the
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val_ppl
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language model on a user-supplied prefix. For example, if we were developing an autocom-
plete feature for a search engine or to assist users in writing emails, we would want to feed
in what they had written so far (the prefix), and then generate a likely continuation.

The following predict method generates a continuation, one character at a time, after
ingesting a user-provided prefix. When looping through the characters in prefix, we
keep passing the hidden state to the next time step but do not generate any output. This is
called the warm-up period. After ingesting the prefix, we are now ready to begin emitting
the subsequent characters, each of which will be fed back into the model as the input at the
next time step.

@d21.add_to_class(RNNLMScratch) #@save
def predict(self, prefix, num_preds, vocab, device=None):
state, outputs = None, [vocab[prefix[0]]]
for i in range(len(prefix) + num_preds - 1):
X = np.array([[outputs[-1]]1], ctx=device)
embs = self.one_hot(X)
rnn_outputs, state = self.rnn(embs, state)
if i < len(prefix) - 1: # Warm-up period
outputs.append(vocabl[prefix[i + 1]1)
else: # Predict num_preds steps
Y = self.output_layer(rnn_outputs)
outputs.append(int(Y.argmax(axis=2).reshape(1)))
".join([vocab.idx_to_token[i] for i in outputs])

return

In the following, we specify the prefix and have it generate 20 additional characters.

model .predict(’'it has', 20, data.vocab, d2l.try_gpu())

'it has in the the prace th'

While implementing the above RNN model from scratch is instructive, it is not convenient.
In the next section, we will see how to leverage deep learning frameworks to whip up RNNs
using standard architectures, and to reap performance gains by relying on highly optimized
library functions.

9.5.6 Summary
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We can train RNN-based language models to generate text following the user-provided text
prefix. A simple RNN language model consists of input encoding, RNN modeling, and
output generation. During training, gradient clipping can mitigate the problem of explod-
ing gradients but does not address the problem of vanishing gradients. In the experiment,
we implemented a simple RNN language model and trained it with gradient clipping on se-
quences of text, tokenized at the character level. By conditioning on a prefix, we can use a
language model to generate likely continuations, which proves useful in many applications,
e.g., autocomplete features.

9.5.7 Exercises

1. Does the implemented language model predict the next token based on all the past tokens
up to the very first token in The Time Machine?

2. Which hyperparameter controls the length of history used for prediction?

3. Show that one-hot encoding is equivalent to picking a different embedding for each
object.

4. Adjust the hyperparameters (e.g., number of epochs, number of hidden units, number
of time steps in a minibatch, and learning rate) to improve the perplexity. How low can
you go while sticking with this simple architecture?

5. Replace one-hot encoding with learnable embeddings. Does this lead to better perfor-
mance?

6. Conduct an experiment to determine how well this language model trained on The Time
Machine works on other books by H. G. Wells, e.g., The War of the Worlds.

7. Conduct another experiment to evaluate the perplexity of this model on books written
by other authors.

8. Modify the prediction method so as to use sampling rather than picking the most likely
next character.

e What happens?

e Bias the model towards more likely outputs, e.g., by sampling from g (x; | x;-1,...,x1)
P(x; | xp-1,...,x1)% fora > 1.
141 9. Run the code in this section without clipping the gradient. What happens?
e e
e
Eﬁﬁiej 10. Replace the activation function used in this section with ReLLU and repeat the experi-

ments in this section. Do we still need gradient clipping? Why?

Discussions 14!
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9.6 Concise Implementation of Recurrent Neural
Networks

Like most of our from-scratch implementations, Section 9.5 was designed to provide in-
sight into how each component works. But when you are using RNNs every day or writing
production code, you will want to rely more on libraries that cut down on both implemen-
tation time (by supplying library code for common models and functions) and computation
time (by optimizing the heck out of these library implementations). This section will show
you how to implement the same language model more efficiently using the high-level API
provided by your deep learning framework. We begin, as before, by loading The Time
Machine dataset.

from mxnet import np, npx
from mxnet.gluon import nn, rnn
from d21 import mxnet as d21

npx.set_np()

9.6.1 Defining the Model
We define the following class using the RNN implemented by high-level APIs.

Specifically, to initialize the hidden state, we invoke the member method begin_state.
This returns a list that contains an initial hidden state for each example in the minibatch,
whose shape is (number of hidden layers, batch size, number of hidden units). For some
models to be introduced later (e.g., long short-term memory), this list will also contain
other information.

class RNN(d21.Module): #@save
"""The RNN model implemented with high-level APIs."""
def __init__(self, num_hiddens):
super().__init__()
self.save_hyperparameters()
self.rnn = rnn.RNN(num_hiddens)

def forward(self, inputs, H=None):
if H is None:
H, = self.rnn.begin_state(inputs.shape[1], ctx=inputs.ctx)
outputs, (H, ) = self.rnn(inputs, (H, ))
return outputs, H

Inheriting from the RNNLMScratch class in Section 9.5, the following RNNLM class defines
a complete RNN-based language model. Note that we need to create a separate fully con-
nected output layer.



366 Recurrent Neural Networks

class RNNLM(d21.RNNLMScratch): #@save
"""The RNN-based language model implemented with high-level APIs.
def init_params(self):
self.linear = nn.Dense(self.vocab_size, flatten=False)
self.initialize()
def output_layer(self, hiddens):
return self.linear(hiddens).swapaxes(@, 1)

nnn

9.6.2 Training and Predicting

Before training the model, let’s make a prediction with a model initialized with random
weights. Given that we have not trained the network, it will generate nonsensical predic-
tions.

data = d21.TimeMachine(batch_size=1024, num_steps=32)
rnn = RNN(num_hiddens=32)

model = RNNLM(rnn, vocab_size=len(data.vocab), lr=1)
model .predict('it has', 20, data.vocab)

[22:52:51] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager.
—for CPU

"it hasxIxIxIxIxIxIxIxIxIxl'

Next, we train our model, leveraging the high-level API.

trainer = d21.Trainer(max_epochs=100, gradient_clip_val=1, num_gpus=1)
trainer.fit(model, data)

25 1 —— train_ppl
val_ppl

20 1

15 A

107 - \M

epoch

Compared with Section 9.5, this model achieves comparable perplexity, but runs faster due
to the optimized implementations. As before, we can generate predicted tokens following
the specified prefix string.

model .predict('it has', 20, data.vocab, d2l.try_gpu())
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"it has and the time the ti’

9.6.3 Summary

High-level APIs in deep learning frameworks provide implementations of standard RNNs.
These libraries help you to avoid wasting time reimplementing standard models. Moreover,
framework implementations are often highly optimized, leading to significant (computa-
tional) performance gains when compared with implementations from scratch.

9.6.4 Exercises

1. Can you make the RNN model overfit using the high-level APIs?

2. Implement the autoregressive model of Section 9.1 using an RNN.

Discussions 142,

9.7 Backpropagation Through Time
. _________________________________________________________________________________________|

If you completed the exercises in Section 9.5, you would have seen that gradient clipping is
vital for preventing the occasional massive gradients from destabilizing training. We hinted
that the exploding gradients stem from backpropagating across long sequences. Before in-
troducing a slew of modern RNN architectures, let’s take a closer look at how backprop-
agation works in sequence models in mathematical detail. Hopefully, this discussion will
bring some precision to the notion of vanishing and exploding gradients. If you recall our
discussion of forward and backward propagation through computational graphs when we
introduced MLPs in Section 5.3, then forward propagation in RNNs should be relatively
straightforward. Applying backpropagation in RNNs is called backpropagation through
time (Werbos, 1990). This procedure requires us to expand (or unroll) the computational
graph of an RNN one time step at a time. The unrolled RNN is essentially a feedforward
neural network with the special property that the same parameters are repeated throughout
the unrolled network, appearing at each time step. Then, just as in any feedforward neural
network, we can apply the chain rule, backpropagating gradients through the unrolled net.
The gradient with respect to each parameter must be summed across all places that the pa-
rameter occurs in the unrolled net. Handling such weight tying should be familiar from our
chapters on convolutional neural networks.

Complications arise because sequences can be rather long. It is not unusual to work with
text sequences consisting of over a thousand tokens. Note that this poses problems both
from a computational (too much memory) and optimization (numerical instability) stand-
point. Input from the first step passes through over 1000 matrix products before arriving
at the output, and another 1000 matrix products are required to compute the gradient. We
now analyze what can go wrong and how to address it in practice.
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9.7.1 Analysis of Gradients in RNNs

We start with a simplified model of how an RNN works. This model ignores details about
the specifics of the hidden state and how it is updated. The mathematical notation here does
not explicitly distinguish scalars, vectors, and matrices. We are just trying to develop some
intuition. In this simplified model, we denote /4, as the hidden state, x; as input, and o; as
output at time step ¢. Recall our discussions in Section 9.4.2 that the input and the hidden
state can be concatenated before being multiplied by one weight variable in the hidden layer.
Thus, we use wy, and w,, to indicate the weights of the hidden layer and the output layer,
respectively. As a result, the hidden states and outputs at each time step are

he = f(x¢, he—t, W),

(9.7.1)
0 = 8(hy, wo),

where f and g are transformations of the hidden layer and the output layer, respectively.
Hence, we have a chain of values {..., (x;-1, i;—1,0¢-1), (X, Ay, 0), .. .} that depend on
each other via recurrent computation. The forward propagation is fairly straightforward.
All we need is to loop through the (x;, h;, 0;) triples one time step at a time. The discrep-
ancy between output o, and the desired target y, is then evaluated by an objective function
across all the T time steps as

T
1
L(Xl,-'-,xT,}’l,-'-7)’T,Wh,Wo) = Tzl()’t,ot)- (972)

t=1

For backpropagation, matters are a bit trickier, especially when we compute the gradients
with regard to the parameters wy, of the objective function L. To be specific, by the chain
rule,

oL _ 1 i 3 (yi. 01)

ow, T P owp
(9.7.3)

T : 9o, oh,  owp

T
1 Z 0l(yr,00) 0g(ht,wo) Oy
=1
The first and the second factors of the product in (9.7.3) are easy to compute. The third
factor dh; /0wy is where things get tricky, since we need to recurrently compute the effect
of the parameter wy, on /. According to the recurrent computation in (9.7.1), &, depends
on both /,_; and wy, where computation of /,_; also depends on wy,. Thus, evaluating the
total derivate of i, with respect to wy, using the chain rule yields

Oh; _ Of (xs, hy—1, wh) " Of (xs, hy—1, wn) Ohy—y
6wh 5Wh aht_l 6Wh ’

(9.7.4)

To derive the above gradient, assume that we have three sequences {a, }, {b;}, {c;} satisfy-

ingag=0and a; = by + cra,—1 fort = 1,2,.... Then for ¢t > 1, it is easy to show

t—1 t

ar=b+ Y | []eilbr (9.7.5)
1

i=1 \ j=i+1
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By substituting a,, b;, and ¢; according to

L
t — aWh’
Of (xs, hy—1, wn)
by = ——-—-——, 9.7.6
! awh ( )
e = Of (xs, hi—1, wn)
t aht_l s

the gradient computation in (9.7.4) satisfies a; = b; + c;a,—;. Thus, per (9.7.5), we can
remove the recurrent computation in (9.7.4) with
Ohy _ Of (e humrown) | Zl 1—[ Of (x hjo1,wn) | f (xir by wh)
0Wh 6Wh ahj,1 (3Wh '

(9.7.7)

i=1 \j=i+l

While we can use the chain rule to compute dh; /dwy, recursively, this chain can get very
long whenever ¢ is large. Let’s discuss a number of strategies for dealing with this prob-
lem.

Full Computation

One idea might be to compute the full sum in (9.7.7). However, this is very slow and
gradients can blow up, since subtle changes in the initial conditions can potentially affect
the outcome a lot. That is, we could see things similar to the butterfly effect, where minimal
changes in the initial conditions lead to disproportionate changes in the outcome. This is
generally undesirable. After all, we are looking for robust estimators that generalize well.
Hence this strategy is almost never used in practice.

Truncating Time Steps

Alternatively, we can truncate the sum in (9.7.7) after 7 steps. This is what we have been
discussing so far. This leads to an approximation of the true gradient, simply by terminating
the sum at 9h;_ . /Owy. In practice this works quite well. It is what is commonly referred
to as truncated backpropgation through time (Jaeger, 2002). One of the consequences of
this is that the model focuses primarily on short-term influence rather than long-term con-
sequences. This is actually desirable, since it biases the estimate towards simpler and more
stable models.

Randomized Truncation

Last, we can replace dh; /0wy by a random variable which is correct in expectation but
truncates the sequence. This is achieved by using a sequence of &, with predefined 0 <
n, < 1, where P(&, =0) = 1 -, and P(¢, = n; ') = m,, thus E[£,] = 1. We use this to
replace the gradient dh; /Owy, in (9.7.4) with

_ Of (x¢, hy—1,wn)

Of(xz, hy—1,wn) Oy
(‘)wh ’

Ohs—y Oowy

+& (9.7.8)

2t
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It follows from the definition of &; that E[z;] = dh; /0wn. Whenever & = 0 the recurrent
computation terminates at that time step 7. This leads to a weighted sum of sequences of
varying lengths, where long sequences are rare but appropriately overweighted. This idea
was proposed by Tallec and Ollivier (2017).

Comparing Strategies

the time machine by h g wells

Comparing strategies for computing gradients in RNNs. From top to bottom: randomized
truncation, regular truncation, and full computation.

Fig. 9.7.1 illustrates the three strategies when analyzing the first few characters of The Time
Machine using backpropagation through time for RNNs:

o The first row is the randomized truncation that partitions the text into segments of varying
lengths.

e The second row is the regular truncation that breaks the text into subsequences of the
same length. This is what we have been doing in RNN experiments.

e The third row is the full backpropagation through time that leads to a computationally
infeasible expression.

Unfortunately, while appealing in theory, randomized truncation does not work much bet-
ter than regular truncation, most likely due to a number of factors. First, the effect of an
observation after a number of backpropagation steps into the past is quite sufficient to cap-
ture dependencies in practice. Second, the increased variance counteracts the fact that the
gradient is more accurate with more steps. Third, we actually want models that have only
a short range of interactions. Hence, regularly truncated backpropagation through time has
a slight regularizing effect that can be desirable.

9.7.2 Backpropagation Through Time in Detail

After discussing the general principle, let’s discuss backpropagation through time in detail.
In contrast to the analysis in Section 9.7.1, in the following we will show how to compute the
gradients of the objective function with respect to all the decomposed model parameters.
To keep things simple, we consider an RNN without bias parameters, whose activation
function in the hidden layer uses the identity mapping (¢(x) = x). For time step ¢, let
the single example input and the target be x, € R? and y,, respectively. The hidden state
h, € R and the output o, € R? are computed as

h; = Wixx; + Winh,_y,

(9.7.9)
0 = thh[a
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where Wiy € RPX4 Wy € R and Wy, € R7*" are the weight parameters. Denote
by /(o;, y,) the loss at time step z. Our objective function, the loss over T time steps from
the beginning of the sequence is thus

T

L= %Z I(0r, ve). (9.7.10)

t=1

In order to visualize the dependencies among model variables and parameters during com-
putation of the RNN, we can draw a computational graph for the model, as shown in Fig.
9.7.2. For example, the computation of the hidden states of time step 3, h3, depends on
the model parameters W and Wy, the hidden state of the previous time step hy, and the
input of the current time step X3.

Computational graph showing dependencies for an RNN model with three time steps.
Boxes represent variables (not shaded) or parameters (shaded) and circles represent
operators.

As just mentioned, the model parameters in Fig. 9.7.2 are Wy, Wy, and W, Gen-
erally, training this model requires gradient computation with respect to these parameters
OL/0Why, dL/0Why, and L/0W g. According to the dependencies in Fig. 9.7.2, we can
traverse in the opposite direction of the arrows to calculate and store the gradients in turn.
To flexibly express the multiplication of matrices, vectors, and scalars of different shapes
in the chain rule, we continue to use the prod operator as described in Section 5.3.

First of all, differentiating the objective function with respect to the model output at any
time step ¢ is fairly straightforward:
OL _ dl(os,yr)
— = ——2 €eRY. 9.7.11
00; T -do; ( )

Now we can calculate the gradient of the objective with respect to the parameter Wy in
the output layer: 0L/0W g, € R9*" Based on Fig. 9.7.2, the objective L depends on Wan
via 0y, ..., or. Using the chain rule yields

oL U L  do, oL
_ oL N 9Ly 712
o Eprod( S0 awqh) > o (9.7.12)

where dL/do; is given by (9.7.11).

Next, as shown in Fig. 9.7.2, at the final time step 7, the objective function L depends on
the hidden state hy only via or. Therefore, we can easily find the gradient dL/dhy € RF
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using the chain rule:

oL 0L Odor oL
—_— d T
i = e i)

—, | =W, —. 9.7.13
60T (9hT gh 00T ( )
It gets trickier for any time step t < T, where the objective function L depends on h, via
h;;) and o;. According to the chain rule, the gradient of the hidden state dL/dh, € R” at
any time step ¢ < T can be recurrently computed as:

oL oL

oL T

oh,

prod( oL 6ht+l)+ rod(aL &

> ) = WT
aht+1 aht aot aht)

hh aht+1

For analysis, expanding the recurrent computation for any time step 1 < ¢ < T gives

T

oL Y
— = . 7.1
am, = 2 (W) Wi O719)

i=t

We can see from (9.7.15) that this simple linear example already exhibits some key prob-
lems of long sequence models: it involves potentially very large powers of W}Th. In it,
eigenvalues smaller than 1 vanish and eigenvalues larger than 1 diverge. This is numer-
ically unstable, which manifests itself in the form of vanishing and exploding gradients.
One way to address this is to truncate the time steps at a computationally convenient size as
discussed in Section 9.7.1. In practice, this truncation can also be effected by detaching the
gradient after a given number of time steps. Later on, we will see how more sophisticated
sequence models such as long short-term memory can alleviate this further.

Finally, Fig. 9.7.2 shows that the objective function L depends on model parameters Wiy
and Wy, in the hidden layer via hidden states hy,...,hy. To compute gradients with
respect to such parameters 0L/0Wy, € R"*? and AL/dWyy, € R"", we apply the chain
rule giving

T
oL dL O, oL
= > prod [, = ]
Wi 2P (éh, awhx) 2%
L < AL  dh, oL
= d|—, = —h' .,
W 2P0 (ah, awhh) Zah, -1

where dL/dh, which is recurrently computed by (9.7.13) and (9.7.14) is the key quantity
that affects the numerical stability.

(9.7.16)

Since backpropagation through time is the application of backpropagation in RNNSs, as we
have explained in Section 5.3, training RNNs alternates forward propagation with back-
propagation through time. Moreover, backpropagation through time computes and stores
the above gradients in turn. Specifically, stored intermediate values are reused to avoid du-
plicate calculations, such as storing dL/dh, to be used in computation of both L/ Wy
and OL/OWhy.

9.7.3 Summary
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Backpropagation through time is merely an application of backpropagation to sequence
models with a hidden state. Truncation, such as regular or randomized, is needed for com-
putational convenience and numerical stability. High powers of matrices can lead to diver-
gent or vanishing eigenvalues. This manifests itself in the form of exploding or vanishing
gradients. For efficient computation, intermediate values are cached during backpropaga-
tion through time.

9.7.4 Exercises

1. Assume that we have a symmetric matrix M € R™" with eigenvalues A; whose cor-
responding eigenvectors are v; (i = 1,...,n). Without loss of generality, assume that
they are ordered in the order |4;| > [2;41].

1. Show that M* has eigenvalues ¥

2. Prove that for a random vector x € R”, with high probability M*x will be very much
aligned with the eigenvector v; of M. Formalize this statement.

3. What does the above result mean for gradients in RNNs?

2. Besides gradient clipping, can you think of any other methods to cope with gradient
explosion in recurrent neural networks?

Discussions 3.
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Modern Recurrent Neural Networks

The previous chapter introduced the key ideas behind recurrent neural networks (RNNs).
However, just as with convolutional neural networks, there has been a tremendous amount
of innovation in RNN architectures, culminating in several complex designs that have
proven successful in practice. In particular, the most popular designs feature mechanisms
for mitigating the notorious numerical instability faced by RNNs, as typified by vanishing
and exploding gradients. Recall that in Chapter 9 we dealt with exploding gradients by ap-
plying a blunt gradient clipping heuristic. Despite the efficacy of this hack, it leaves open
the problem of vanishing gradients.

In this chapter, we introduce the key ideas behind the most successful RNN architectures for
sequences, which stem from two papers. The first, Long Short-Term Memory (Hochreiter
and Schmidhuber, 1997), introduces the memory cell, a unit of computation that replaces
traditional nodes in the hidden layer of a network. With these memory cells, networks
are able to overcome difficulties with training encountered by earlier recurrent networks.
Intuitively, the memory cell avoids the vanishing gradient problem by keeping values in
each memory cell’s internal state cascading along a recurrent edge with weight 1 across
many successive time steps. A set of multiplicative gates help the network to determine not
only the inputs to allow into the memory state, but when the content of the memory state
should influence the model’s output.

The second paper, Bidirectional Recurre