
Microsoft SQL Server 2019 To Amazon Aurora with Post-
greSQL Compatibility (12.4)

Migration Playbook

1.5 April 2021

© 2021 AmazonWeb Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s current product offerings and
practices as of the date of issue of this document, which are subject to change without notice. Customers are
responsible for making their own independent assessment of the information in this document and any use of
AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or
implied. This document does not create anywarranties, representations, contractual commitments, conditions or
assurances fromAWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its cus-
tomers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

- 2 -

Table of Contents

Introduction 8

Tables of Feature Compatibility 10

What's New 18

AWS Schema and Data Migration Tools 20

AWS SchemaConversion Tool (SCT) 21

SCT Action Code Index 30

AWS DatabaseMigration Service (DMS) 41

Amazon RDS onOutposts 43

Amazon RDS Proxy 44

Amazon Aurora Serverless v1 46

Amazon Aurora Backtrack 49

Migration Quick Tips 53

ANSI SQL 55

Case Sensitivity Differences for SQL Server and PostgreSQL 55

SQL Server Constraints vs. PostgreSQL Table Constraints 56

PostgreSQL Usage 59

SQL Server Creating Tables vs. PostgreSQL Creating Tables 65

PostgreSQL Usage 68

SQL Server Common Table Expressions vs. PostgreSQL Common Table Expressions (CTE) 73

PostgreSQL Usage 75

SQL Server Data Types vs. PostgreSQL Data Types 79

PostgreSQL Usage 80

SQL Server Derived Tables vs. PostgreSQL Derived Tables 84

PostgreSQL Usage 85

SQL Server GROUP BY vs. PostgreSQL GROUP BY 85

PostgreSQL Usage 88

SQL Server Table JOIN vs. PostgreSQL Table JOIN 91

PostgreSQLOverview 95

SQL Server Temporal Tables vs. PostgreSQL Triggers (Temporal Tables alternative) 98

PostgreSQL Usage(Temporal Tables alternative) 100

SQL Server Views vs. PostgreSQL Views 100

- 3 -

PostgreSQL Usage 103

SQL Server Window Functions vs. PostgreSQL Window Functions 105

PostgreSQL Usage 107

T-SQL 111

SQL Server Service Broker Essentials vs. PostgreSQL AWS Lambda or DB links 111

PostgreSQL Usage 114

SQL Server Cast and Convert vs. PostgreSQL CAST and CONVERSION 115

PostgreSQL Usage 116

SQL Server Common Library Runtime (CLR) vs. PostgreSQL PL/Perl 118

PostgreSQL Usage 118

SQL Server Collations vs. PostgreSQL Encoding 119

PostgreSQL Usage 121

SQL Server Cursors vs. PostgreSQL Cursors 124

PostgreSQL Usage 126

SQL Server Date and Time Functions vs. PostgreSQL Date and Time Functions 130

PostgreSQL Usage 131

SQL Server String Functions vs. PostgreSQL String Functions 132

PostgreSQL Usage 134

SQL Server Databases and Schemas vs. PostgreSQL Databases and Schemas 136

PostgreSQL Usage 138

SQL Server Dynamic SQL vs. PostgreSQL EXECUTE and PREPARE 140

PostgreSQLOverview 143

SQL Server Transactions vs. PostgreSQL Transactions 145

PostgreSQL Usage 147

SQL Server Synonyms vs. PostgreSQL Views, Types & Functions 152

PostgreSQL Usage 154

SQL Server DELETE and UPDATE FROMvs. PostgreSQL DELETE and UPDATE FROM 155

PostgreSQL Usage 157

SQL Server Stored Procedures vs. PostgreSQL Stored Procedures 159

PostgreSQLOverview 162

SQL Server Error Handling vs. PostgreSQL Error Handling 166

PostgreSQL Usage 170

SQL Server Flow Control vs. PostgreSQL Control Structures 172

- 4 -

PostgreSQL Usage 174

SQL Server Full-Text Search vs. PostgreSQL Full-Text Search 176

PostgreSQL Usage 179

SQLServer Graph vs. PostgreSQL Apache AGE extension 182

PostgreSQLUsage 183

SQL Server JSON and XML vs. PostgreSQL JSON and XML 183

PostgreSQL Usage 186

SQL Server MERGE vs. PostgreSQL MERGE 190

PostgreSQL Usage 192

SQL Server PIVOT and UNPIVOT vs. PostgreSQL PIVOT and UNPIVOT 193

PostgreSQL Usage 197

SQL Server Triggers vs. PostgreSQL Triggers 199

PostgreSQL Usage 202

SQL Server TOP and FETCH vs. PostgreSQL LIMIT andOFFSET (TOP and FETCH Equivalent) 206

PostgreSQL Usage 209

SQL Server User DefinedFunctions vs. PostgreSQL User Defined Functions 211

PostgreSQL Usage 214

SQL Server User Defined Types vs. PostgreSQL User Defined Types 214

PostgreSQL Usage 217

SQL Server Sequences and Identity vs. PostgreSQL Sequences and SERIAL/IDENTITY 219

PostgreSQL Usage 223

Configuration 228

SQL Server Upgrades vs. PostgreSQL Upgrades 228

PostgreSQL Usage 229

SQL Server Session Options vs. PostgreSQL SessionOptions 233

PostgreSQL Usage 235

SQLServer DatabaseOptions vs. PostgreSQL DatabaseOptions 237

PostgreSQL Usage 238

SQL Server Server Options vs. PostgreSQL Aurora Parameter Groups 238

PostgreSQL Usage 239

High Availability and Disaster Recovery (HADR) 243

SQL Server Backup and Restore vs. PostgreSQL Backup and Restore 243

PostgreSQL Usage 246

- 5 -

SQL Server High Availability Essentials vs. PostgreSQL High Availability Essentials 252

PostgreSQL Usage 256

Indexes 261

SQL Server Clustered and NonClustered Indexes vs. PostgreSQL Clustered and NonClustered
Indexes 261

PostgreSQL Usage 265

Management 271

SQL Server Agent vs. PostgreSQL Scheduled Lambda 271

PostgreSQL Usage 271

SQL Server Alerting vs. PostgreSQL Alerting 272

PostgreSQL Usage 273

SQL Server DatabaseMail vs. PostgreSQL DatabaseMail 278

PostgreSQL Usage 280

SQL Server ETL vs. PostgreSQL ETL 288

PostgreSQL Usage 290

SQL Server Export and Import with Text files vs. PostgreSQL pg_dump and pg_restore 306

PostgreSQL Usage 307

SQL Server Viewing Server Logs vs. PostgreSQL Viewing Server Logs 310

PostgreSQL Usage 311

SQL Server Maintenance Plans vs. PostgreSQL Viewing Server Logs 313

PostgreSQL Usage 315

SQL Server Monitoring vs. PostgreSQL Monitoring 318

PostgreSQL Usage 320

SQL Server ResourceGovernor vs. PostgreSQL Dedicated Amazon Aurora Clusters or Aurora Read-
Replicas 322

PostgreSQLUsage 324

SQL Server Linked Servers vs. PostgreSQL DBLink and FDWrapper 327

PostgreSQL Usage 329

SQL Server Scripting vs. PostgreSQL Scripting 331

PostgreSQL Usage 332

Performance Tuning 335

SQL Server Execution Plans vs. PostgreSQL Execution Plans 335

PostgreSQL Usage 336

SQL Server Query Hints and PlanGuides vs. PostgreSQL DB Query Planning 339

- 6 -

PostgreSQL Usage 341

SQL Server Managing Statistics vs. PostgreSQL Table Statistics 342

PostgreSQL Usage 343

Physical Storage 346

SQL Server Columnstore Index vs. PostgreSQL Columnstore 346

PostgreSQL Usage 347

SQL Server Indexed Views vs. PostgreSQL Materialized Views 347

PostgreSQL Usage 348

SQL Server Partitioning vs. PostgreSQL Partitions or Table Inheritance 350

PostgreSQL Usage 351

Security 365

SQL Server Column Encryption vs. PostgreSQL Column Encryption 365

PostgreSQL Usage 367

SQL Server Data Control Language vs. PostgreSQL Data Control Language 368

PostgreSQL Usage 369

SQL Server Transparent Data Encryption vs. PostgreSQL Transparent Data Encryption 372

PostgreSQL Usage 373

SQL Server Users and Roles vs. PostgreSQL Users and Roles 376

PostgreSQL Usage 377

Appendix A: SQL Server 2018 Deprecated Feature List 380

Migration Quick Tips 381

Migration Quick Tips 382

Glossary 384

- 7 -

Introduction
Themigration process from a source database (Oracle or SQL Server) to Amazon Aurora (PostgreSQL or
MySQL) typically involves several stages. The first stage is to use the AWS SchemaConversion Tool (SCT) and
the AWS DatabaseMigration Service (DMS) to convert andmigrate the schema and data. While most of the
migration work can be automated, some aspects requiremanual intervention and adjustments to both database
schema objects and database code.

The purpose of this Playbook is to assist administrators tasked with migrating from source databases to Aurora
with the aspects that can't be automaticallymigrated using the AmazonWeb Services SchemaConversion Tool
(AWS SCT). It focuses on the differences, incompatibilities, and similarities between the source database and
Aurora in a wide range of topics including T-SQL, Configuration, High Availability and Disaster Recovery
(HADR), Indexing, Management, Performance Tuning, Security, and Physical Storage.

The first section of this document provides an overview of AWS SCT and the AWS DataMigration Service
(DMS) tools for automating themigration of schema, objects and data. The remainder of the document contains
individual sections for the source database features and their Aurora counterparts. Each section provides a short
overview of the feature, examples, and potential workaround solutions for incompatibilities.

You can use this playbook either as a reference to investigate the individual action codes generated by the AWS
SCT tool, or to explore a variety of topics where you expect to have some incompatibility issues.When using the
AWS SCT, youmay see a report that lists Action codes , which indicates somemanual conversion is required, or
that amanual verification is recommended. For your convenience, this Playbook includes an SCT Action Code
Index section providing direct links to the relevant topics that discuss themanual conversion tasks needed to
address these action codes. Alternatively, you can explore the Tables of Feature Compatibility section that
provides high-level graphical indicators and descriptions of the feature compatibility between the source data-
base and Aurora. It also includes a graphical compatibility indicator and links to the actual sections in the play-
book.

There is appendix at the end of this playbook: Appendix: Migration Quick Tips provides a list of tips for admin-
istrators or developers who have little experience with Aurora (PostgreSQL or MySQL). It briefly highlights key dif-
ferences between the source database and Aurora that they are likely to encounter.

Note that not all of the source database features are fully compatible with Aurora or have simple workarounds.
From amigration perspective, this document does not yet cover all source database features and capabilities.
This first release focuses on some of themost important features and will be expanded over time.

- 8 -

Disclaimer

The various code snippets, commands, guides, best practices, and scripts included in this document should be
used for reference only and are provided as-is without warranty. Test all of the code, commands, best practices,
and scripts outlined in this document in a non-production environment first. Amazon and its affiliates are not
responsible for any direct or indirect damage that may occur from the information contained in this document.

- 9 -

Tables of Feature Compatibility
Feature Compatibility Legend

Compatibility
Score Symbol Description

Very high compatibility: None or minimal low-risk and low-effort rewrites needed

High compatibility: Some low-risk rewrites needed, easyworkarounds exist for incom-
patible features

Medium compatibility: More involved low-medium risk rewrites needed, some redesign
may be needed for incompatible features

Low compatibility: Medium to high risk rewrites needed, some incompatible features
require redesign and reasonable-effort workarounds exist

Very low compatibility: High risk and/or high-effort rewrites needed, some features
require redesign and workarounds are challenging

Not compatible: No practical workarounds yet, may require an application level archi-
tectural solution to work around incompatibilities

SCT/DMS Automation Level Legend

SCT/DMS Auto-
mation Level Sym-
bol

Description

Full Automation Perform fully automatic conversion, nomanual conversion needed.

High Automation: Minor, simplemanual conversionsmay be needed.

Medium Automation: Low-medium complexitymanual conversionsmay be needed.

Low Automation: Medium-high complexitymanual conversionsmay be needed.

Very Low Automation: High risk or complexmanual conversionsmay be needed.

No Automation: Not currently supported, manual conversion is required for this feature.

- 10 -

ANSI SQL

SQL Server Aurora PostgreSQL Key Differences Compatibility

Constraints Constraints l SET DEFAULT option is
missing

l Check constraint with
subquery.

Creating Tables Creating Tables l Auto generated value
column is different

l Can't use physical attrib-
ute ON

l Missing table variable
andmemory optimized
table

Common Table
Expressions

Common Table Expres-
sions

l Must use RECURSIVE
keyword for recursive
CTE queries

GROUP BY GROUP BY

Table JOIN Table JOIN l OUTER JOIN with com-
mas

l CROSS APPLY and
OUTER APPLY are not
supported

Data Types Data Types l Syntax and handling dif-
ferences

Views Views l Indexed and Partitioned
view are not supported

Windowed Functions Windowed Functions

Derived Tables Derived Tables

- 11 -

SQL Server Aurora PostgreSQL Key Differences Compatibility

Temporal Tables Temporal Tables l Temporal tables are not
supported

T-SQL

SQL Server Aurora PostgreSQL Key Differences Compatibility

Collations Collations l UTF16 and
NCHAR/NVARCHAR
data types are not sup-
ported

Cursors Cursors l Different cursor options

Date and Time Func-
tions

Date and Time Func-
tions

l PostgreSQL is using dif-
ferent function names

String Functions String Functions l Syntax and option dif-
ferences

Databases and
Schemas

Databases and
Schemas

Transactions Transactions l Nested transactions are
not supported

l syntax differences for ini-
tializing a transaction

DELETE and UPDATE
FROM

DELETE and UPDATE
FROM

l DELETE...FROM
from_list is not sup-
ported - rewrite to use
subqueries

Stored Procedures Stored Procedures l Syntax and option dif-
ferences

Error Handling Error Handling l Different paradigm and
syntaxwill require
rewrite of error handling

- 12 -

SQL Server Aurora PostgreSQL Key Differences Compatibility

code

Full Text Search Full Text Search l Different paradigm and
syntaxwill require
application/drivers
rewrite.

Flow Control Flow Control l Postgres does not sup-
port GOTOand
WAITFOR TIME

JSON and XML JSON and XML l Syntax and option dif-
ferences, similar func-
tionality

l Missing FOR XML
clause

PIVOT PIVOT l Straight forward rewrite
to use traditional SQL
syntax

MERGE MERGE l Rewrite to use
INSERT…ON
CONFLICT

Triggers Triggers l Syntax and option dif-
ferences, similar func-
tionality - PostgreSQL
trigger calling a function

User Defined Functions User Defined Functions l Syntax and option dif-
ferences

User Defined Types User Defined Types l Syntax and option dif-
ferences

Sequences and Identity Sequences and Identity l Less optionswith
SERIAL

l Reseeding need to be
rewrited

Synonyms Synonyms l PostgreSQL does not
support Synonym -
there is an available
workaround

- 13 -

SQL Server Aurora PostgreSQL Key Differences Compatibility

TOP and FETCH LIMIT andOFFSET l TOP is not supported

Dynamic SQL Dynamic SQL l Different paradigm and
syntaxwill require
application/drivers
rewrite.

CAST and CONVERT CAST and CONVERT l CONVERT is used only
to convert between col-
lations

l CAST uses different
syntax

Broker Broker l Use Amazon Lambda
for similar functionality

CLR Objects CLR Objects l Migrating CLR objects
will require a full code
rewrite

Configuration

SQL Server Aurora PostgreSQL Key Differences Compatibility

Session Options Session Options l SET options are sig-
nificantly different,
except for trans-
action isolation con-
trol

DatabaseOptions DatabaseOptions l UseCluster and
Database/Cluster
Parameters

Server Options Server Options l UseCluster and
Database/Cluster
Parameters

High Availability and Disaster Recovery (HADR)

SQL Server Aurora PostgreSQL Key Differences Compatibility

Backup and Restore Backup and Restore l Storage level
backupmanaged
by Amazon RDS

- 14 -

SQL Server Aurora PostgreSQL Key Differences Compatibility

High Availability Essen-
tials

High Availability Essen-
tials

l Multi replica, scale
out solution using
Amazon Aurora
clusters and Avail-
ability Zones

Indexes

SQL Server Aurora PostgreSQL Key Differences Compatibility

Clustered and Non
Clustered Indexes

Clustered and Non
Clustered Indexes

l CLUSTERED
INDEX is not sup-
ported

l There are few miss-
ing options

Indexed Views Indexed Views l Different paradigm
and syntaxwill
require applic-
ation/drivers
rewrite.

Columnstore Columnstore l Aurora PostgreSQL
offers no com-
parable feature

Management

SQL Server Aurora PostgreSQL Key Differences Compatibility

SQL Server
Agent

SQL Agent l See Alerting andMaintenance Plans

Alerting Alerting l Use Event Notifications Subscription
with Amazon Simple Notification Ser-
vice (SNS)

ETL ETL l Use AmazonGlue for ETL

DatabaseMail DatabaseMail l Use Lambda Integration

Viewing Server
Logs

Viewing Server Logs l View logs from the Amazon RDS con-
sole, the Amazon RDS API, the AWS
CLI, or the AWS SDKs

Maintenance
Plans

Maintenance Plans l Backups via the RDS services
l Tablemaintenance via SQL

Monitoring Monitoring l Use Amazon CloudWatch service

- 15 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/glue/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html

SQL Server Aurora PostgreSQL Key Differences Compatibility

Resource
Governor

ResourceGovernor l Distribute load/applications/users
acrossmultiple instances

Linked Servers Linked Servers l Syntax and option differences, similar
functionality

Scripting &
PowerShell

Scripting & Power-
Shell

l Non-compatible tool sets and scripting
languages

l Use PostgreSQL pgAdmin, Amazon
RDS API, AWSManagement Con-
sole, and Amazon CLI

Import and
Export

Import and Export l Non-compatible tool

Performance Tuning

SQL Server Aurora PostgreSQL Key Differences Compatibility

Execution Plans Execution Plans l Syntax differences
l Completely different optimizer with
different operators and rules

Query Hints and
PlanGuides

Query Hints and Plan
Guides

l Very limited set of hints - Index hints
and optimizer hints as comments

l Syntax differences

Managing Stat-
istics

Managing Statistics l Syntax and option differences, sim-
ilar functionality

Physical Storage

SQL Server Aurora PostgreSQL Key Differences Compatibility

Partitioning Partitioning l Does not support
LEFT partition or
foreign keys ref-
erencing partitioned
tables

Security

SQL Server Aurora PostgreSQL Key Differences Compatibility

Column Encryption Column Encryption l Syntax and option
differences, similar
functionality

Data Control Language Data Control Language l Similar syntax and
similar functionality

Transparent Data Encryp-
tion

Transparent Data Encryp-
tion

l Storage level
encryptionman-
aged by Amazon
RDS

- 16 -

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/

SQL Server Aurora PostgreSQL Key Differences Compatibility

Users and Roles Users and Roles l Syntax and option
differences, similar
functionality

l There are no users
- only roles

- 17 -

What's New
The previous playbook covered the Aurora PostgreSQL 9.6 compatible and SQL Server 2016, this playbookwill
cover themain updates for Aurora PostgreSQL 12 compatible and SQL Server 2019.

AWS is keep updating all the services, for the open-source databases, AWS is trying to keep up with the releases
of the brand.

In order to provide the complete picture to all users, RDS related information is beingmentioned in this playbook
aswell. Sections formatted in the following way are relevant for RDS only:

RDS ONLY: This paragraph is about the latest db engine version which is supported only in RDS
(and not Aurora)

Update Aspect Link

Updated screen shots AWS AWS SCT

Updated SCT warning lists AWS AWS SCT Error Codes

Amazon RDS onOutposts AWS RDSOutposts

Amazon RDS Proxy AWS RDS Proxy

Amazon Aurora Serverless AWS Aurora Serverless

AWS RDS Backtrack AWS RDS Backtrack

New features for pg_dump

support for extension dependencies

pg_dump dump files can not only be plain text files but also
with custom and compressed format

support for WHERE in COPY

PostgreSQL pg_dump

Rewrite partitioning topic to present declarative partitions PostgreSQL Partitions

Monitoring index creation PostgreSQL Overall Indexes

Monitoring VACUUM FULL and CLUSTER operations

Monitoring index creation

New system views tomonitor sharedmemory usage and
ANALYZE progress

PostgreSQL Information Views

New option AND CHAIN for COMMIT / ROLLBACK PostgreSQL Transactions

Generated columns PostgreSQL Virtual Columns

New supported collation versions PostgreSQL Character Set

New ability to rename view columns PostgreSQL Views

Table storage parameters that can trigger autovacuum PostgreSQL Statistics

Automatic Tuning in SQL Server 2017 SQL Server Execution Plan

Cancel queries automatically PostgreSQL Execution Plans

Case sensitive topic to call out the difference between the two
engines

PostgreSQL Case Sensitive

- 18 -

Update Aspect Link

Graph Features in SQL Server 2017 and updates for 2019 New topic Graph Features

- Availability Groups in SQL Server 2017
- Database Snapshots Databases in SQL Server 2019

SQL Server High Availability

New SystemViews in SQL Server 2017
Lightweight Query Profiling Infrastructure

SQL Server Monitoring

Upgrades New topic Upgrades

Scalar UDF Inline in SQL Server 2019 SQL Server User Defined Functions

ChangesResource governance SQL operations in
SQL Server 2019

SQL Server ResourceGovernor

UTF-8 support in SQL Server 2019 SQL Server Collations

Wewill dive into each change in the relevant topics.

General migration tips topic has been added here: link

For additional details, see: https://www.postgresql.org/docs/13/release-13.html

- 19 -

https://www.postgresql.org/docs/13/release-13.html

AWS Schema and Data Migration Tools

- 20 -

AWS Schema Conversion Tool (SCT)

Usage
The AWS SchemaConversion Tool (SCT) is a Java utility that connects to source and target databases, scans
the source database schema objects (tables, views, indexes, procedures, etc.), and converts them to target data-
base objects.

This section provides a step-by-step process for using AWS SCT tomigrate anOracle database to an Aurora
PostgreSQL database cluster. Since AWS SCT can automaticallymigratemost of the database objects, it greatly
reducesmanual effort.

It is recommended to start everymigration with the process outlined in this section and then use the rest of the
Playbook to further exploremanual solutions for objects that could not bemigrated automatically. For more
information, see
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

Migrating a Database
Note: This walkthrough uses the AWS DMS Sample Database. You can download it from https://-
github.com/aws-samples/aws-database-migration-samples.

Download the Software and Drivers

1. Download and install the AWS SCT from
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html.

2. Download the relevant drivers:

l Oracle
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-
1958347.html

l SQLServer
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774

l PostgreSQL
https://jdbc.postgresql.org/

l MySQL
https://www.mysql.com/products/connector/

l Other link to supported drivers can be found in here:
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.htm-
l#CHAP_Installing.JDBCDrivers

- 21 -

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
https://github.com/aws-samples/aws-database-migration-samples
https://github.com/aws-samples/aws-database-migration-samples
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://jdbc.postgresql.org/download.html
https://www.mysql.com/products/connector/
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers

Configure SCT

Launch SCT. Click the Settings button and select Global Settings.

On the left navigation bar, click Drivers. Enter the paths for the Oracle and PostgreSQL drivers downloaded in
the first step. Click Apply and thenOK.

Create a New Migration Project

Click File > New project wizard. Alternatively, use the keyboard shortcut <Ctrl+W>.

- 22 -

Enter a project name and select a location for the project files. Click Next.

Enter connection details for the sourceOracle database and click Test Connection to verify. Click Next.

- 23 -

Select the schema or database tomigrate and click Next.

The progress bar displays the objects being analyzed.

The DatabaseMigration Assessment Report is displayed when the analysis completes. Read the Executive sum-
mary and other sections. Note that the information on the screen is only partial. To read the full report, including
details of the individual issues, click Save to PDF and open the PDF document.

- 24 -

Scroll down to the section Database objects with conversion actions for Amazon Aurora (PostgreSQL com-
patible).

Scroll further down to the section Detailed recommendations for Amazon Aurora (PostgreSQL compatible)
migrations.

- 25 -

Return to AWS SCT and click Next. Enter the connection details for the target Aurora PostgreSQL database and
click Finish.

Note: The changes have not yet been saved to the target.

When the connection is complete, AWS SCT displays themain window. In this interface, you can explore the indi-
vidual issues and recommendations discovered by AWS SCT.

For example, expand sample database > dms sample > Proceduress > generate_tickets. This issue has a
redmarker indicating it could not be automatically converted and requires amanual code change (issue 811
above). Select the object to highlight the incompatible code section.

- 26 -

Right-click the schema and then click Create Report to create a report tailored for the target database type. It can
be viewed in AWS SCT.

The progress bar updateswhile the report is generated.

The executive summary page displays. Click the Action Items tab.

- 27 -

In this window, you can investigate each issue in detail and view the suggested course of action. For each issue,
drill down to view all instances of that issue.

Right-click the database name and click Convert Schema.

Be sure to uncheck the sys and information_schema system schemas. Aurora PostgreSQL already has an
information_schema schema.

This step does not make any changes to the target database.

On the right pane, the new virtual schema is displayed as if it exists in the target database. Drilling down into indi-
vidual objects displays the actual syntax generated by AWS SCT tomigrate the objects.

- 28 -

Right-click the database on the right pane and choose either Apply to database to automatically execute the con-
version script against the target database, or click Save as SQL to save to an SQL file.

Saving to an SQL file is recommended because it allows you to verify andQA the SCT code. Also, you canmake
the adjustments needed for objects that could not be automatically converted.

Formore information, see https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

- 29 -

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

SCT Action Code Index
Legend

SCT/DMS Automation
Level Symbol Description

Full Automation SCT performs fully automatic conversion, nomanual conversion
needed.

High Automation: Minor, simplemanual conversionsmay be needed.

Medium Automation: Low-medium complexitymanual conversionsmay be needed.

Low Automation: Medium-high complexitymanual conversionsmay be needed.

Very Low Automation: High risk or complexmanual conversionsmay be needed.

No Automation: Not currently supported by SCT, manual conversion is required for
this feature.

The following sections list the SchemaConversion Tool Action codes for topics that are covered in this playbook.

Note: The links in the table point to theMicrosoft SQL Server topic pages, which are immediately fol-
lowed by the PostgreSQL pages for the same topics.

Creating Tables

AWS SCT automatically converts themost commonly used constructs of the CREATE TABLE statement as both
SQL Server and Aurora PostgreSQL support the entry level ANSI compliance. These items include table names,
containing security schema (or database), column names, basic column data types, column and table constraints,
column default values, primary, candidate (UNIQUE), and foreign keys. Some changesmay be required for com-
puted columns and global temporary tables.

Formore details, see Creating Tables.

Action Code Action Message

7659 The scope table-variables and temporary tables is different. Youmust applymanual con-
version, if you are using recursion

7665 PostgreSQL doesn’t support FILESTREAMoption for storing column values

7678 A computed column is replaced by regular column. Automatically fill is not supported

7679 A computed column is replaced by the triggers

7680 PostgreSQL doesn't support global temporary tables

- 30 -

Action Code Action Message

7812 Temporary tablemust be removed before the end of the function

7835 PostgreSQL does not support the Filetable option

Data Types

Data type syntax and rules are very similar between SQLServer and Aurora PostgreSQL andmost are con-
verted automatically by AWS SCT. Note that date and time handling paradigms are different for SQL Server and
Aurora PostgreSQL and requiremanual verifications and/or conversion. Also note that due to differences in data
type behavior between SQLServer and Aurora PostgreSQL , manual verification and strict testing are highly
recommended.

Formore details, see Data Types.

Action Code Action Message

7657 PostgreSQL doesn't support this type. A manual conversion is required

7658 PostgreSQL doesn't support this type. A manual conversion is required

7662 PostgreSQL doesn't support this type. A manual conversion is required

7664 PostgreSQL doesn't support this type. A manual conversion is required

7690 PostgreSQL doesn't support table types

7706 Unable convert the variable declaration of unsupported%s datatype

7707 Unable convert variable reference of unsupported%s datatype

7708 Unable convert complex usage of unsupported%s datatype

7773 Unable to perform an automatedmigration of arithmetic operationswith several dates

7775 Check the data type conversion. Possible loss of accuracy

Collations

The collation paradigms of SQL Server and Aurora PostgreSQL are significantly different. The AWS SCT tool
can not migrate collation automaticly to PostgreSQL

Formore details, see Collations.

Action Code Action Message

7646 Automatic conversion of collation is not supported

- 31 -

PIVOT and UNPIVOT

Aurora PostgreSQL version 10 does not support the PIVOT and UNPIVOT syntax and it cannot be automatically
converted by AWS SCT.

For workarounds using traditional SQL syntax, see PIVOT and UNPIVOT.

Action Code Action Message

7905 PostgreSQL doesn't support the PIVOT clause for the SELECT statement

7906 PostgreSQL doesn't support the UNPIVOT clause for the SELECT statement

TOP and FETCH

Aurora PostgreSQL supports the non-ANSI compliant (but popular with other engines) LIMIT... OFFSET oper-
ator for paging results sets. Some options such asWITH TIES cannot be automatically converted and require
manual conversion.

Formore details, see TOP and FETCH.

Action Code Action Message

7605 PostgreSQL doesn't support theWITH TIES option

7796 PostgreSQL doesn't support TOP option in the operator UPDATE

7798 PostgreSQL doesn't support TOP option in the operator DELETE

7799 PostgreSQL doesn’t support TOP option in the operator INSERT

Cursors

PostgreSQL has PL/pgSQL cursors that enable you to iterate business logic on rows read from the database.
They can encapsulate the query and read the query results a few rows at a time. All access to cursors in PL/p-
gSQL is performed through cursor variables, which are always of the refcursor data type.
There are specific optionswhich are not supported for automatic conversion by SCT.

Formore details, see Cursors.

- 32 -

Action Code Action Message

7637 PostgreSQL doesn't support GLOBALCURSORS. Requiresmanual Conversion

7639 PostgreSQL doesn't support DYNAMIC cursors

7700 Themembership and order of rows never changes for cursors in PostgreSQL, so this
option is skipped

7701 Setting this option corresponds to the typical behavior of cursors in PostgreSQL, so this
option is skipped

7702 All PostgreSQL cursors are read-only, so this option is skipped

7704 PostgreSQL doesn't support the option OPTIMISTIC, so this option is skipped

7705 PostgreSQL doesn't support the option TYPE_WARNING, so this option is skipped

7803 PostgreSQL doesn't support the option FOR UPDATE, so this option is skipped

Flow Control

Although the flow control syntax of SQL Server differs fromAurora PostgreSQL , the AWS SCT can convert
most constructs automatically including loops, command blocks, and delays. Aurora PostgreSQL does not sup-
port the GOTOcommand nor theWAITFOR TIME command, which requiremanual conversion.

Formore details, see Flow Control.

Action Code Action Message

7628 PostgreSQL doesn't support the GOTOoption. Automatic conversion can't be performed

7691 PostgreSQL doesn't support WAITFOR TIME feature

7801 The table can be locked open cursor

7802 A table that is created within the procedure, must be deleted before the end of the pro-
cedure

7810 PostgreSQL doesn’t support the SET NOCOUNT

7821 Automatic conversion operator WAITFOR with a variable is not supported

7826 Check the default value for a DateTime variable

7827 Unable to convert default value

- 33 -

Transaction Isolation

Aurora PostgreSQL supports the four transaction isolation levels specified in the SQL:92 standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE, all of which are auto-
matically converted by AWS SCT. AWS SCT also converts BEGIN / COMMIT and ROLLBACK commands that
use slightly different syntax. Manual conversion is required for named, marked, and delayed durability trans-
actions that are not supported by Aurora PostgreSQL .

Formore details, see Transaction Isolation.

Action Code Action Message

7807 PostgreSQL does not support explicit transactionmanagement in functions

Stored Procedures

Aurora PostgreSQL Stored Procedures (functions) provides very similar functionality to SQL Server stored pro-
cedures and can be automatically converted by AWS SCT. Manual conversion is required for procedures that
use RETURN values and some less common EXECUTE options such as the RECOMPILE and RESULTS
SETS options.

Formore details, see Stored Procedures.

Action Code Action Message

7640 The EXECUTE with RECOMPILE option is ignored

7641 The EXECUTE with RESULT SETS UNDEFINED option is ignored

7642 The EXECUTE with RESULT SETS NONE option is ignored

7643 The EXECUTE with RESULT SETS DEFINITION option is ignored

7672 Automatic conversion of this command is not supported

7695 PostgreSQL doesn't support the execution of a procedure as a variable

7800 PostgreSQL doesn't support result sets in the style of MSSQL

7830 Automatic conversion arithmetic operationswith operand CASE is not supported

7838 The EXECUTE with LOGIN | USER option is ignored

7839 Converted codemight be incorrect because of the parameter names

- 34 -

Triggers

Aurora PostgreSQL supports BEFORE and AFTER triggers for INSERT, UPDATE, and DELETE. However,
Aurora PostgreSQL triggers differ substantially fromSQLServer's triggers, but most common use cases can be
migrated with minimal code changes.

Formore details, see Triggers.

Action Code Action Message

7809 PostgreSQL does not support INSTEAD OF triggers on tables

7832 Unable to convert INSTEAD OF triggers on view

7909 Unable to convert the clause

MERGE

Aurora PostgreSQL version 10 does not support theMERGE statement and it cannot be automatically converted
by AWS SCT. Manual conversion is straight-forward inmost cases.

Formore details and potential workarounds, seeMERGE.

Action Code Action Message

7915 Please check unique(exclude) constraint existence on field%s

7916 Current MERGE statement can not be emulated by INSERTON CONFLICT usage

Query hints

Basic query hints such as index hints can be converted automatically by AWS SCT, except for DML statements.
Note that specific optimizations used for SQL Server may be completely inapplicable to a new query optimizer. It
is recommended to start migration testing with all hints removed. Then, selectively apply hints as a last resort if
other means such as schema, index, and query optimizations have failed. Plan guides are not supported by Aur-
ora PostgreSQL.

Formore details, seeQuery hints and PlanGuides.

- 35 -

Action Code Action Message

7823 PostgreSQL doesn't support table hints in DML statements

Full Text Search

Migrating Full-Text indexes fromSQLServer to Aurora PostgreSQL requires a full rewrite of the code that deals
with both creating, managing, and querying Full-Text indexes. They cannot be automatically converted by AWS
SCT.

Formore details, see Full Text Search.

Action Code Action Message

7688 PostgreSQL doesn't support the FREETEXT predicate

Indexes

Basic non-clustered indexes, which are themost commonly used type of indexes are automaticallymigrated by
AWS SCT. In addition, filtered indexes, indexeswith included columns, and some SQLServer specific index
options can not bemigrated automatically and requiremanual conversion.

Formore details, see Indexes.

Action Code Action Message

7675 PostgreSQL doesn't support sorting options (ASC | DESC) for constraints

7681 PostgreSQL doesn't support clustered indexes

7682 PostgreSQL doesn't support the INCLUDE option in indexes

7781 PostgreSQL doesn't support the PAD_INDEX option in indexes

7782 PostgreSQL doesn't support the SORT_IN_TEMPDB option in indexes

7783 PostgreSQL doesn't support the IGNORE_DUP_KEY option in indexes

7784 PostgreSQL doesn't support the STATISTICS_NORECOMPUTE option in indexes

7785 PostgreSQL doesn't support the STATISTICS_INCREMENTAL option in indexes

7786 PostgreSQL doesn't support the DROP_EXISTINGoption in indexes

7787 PostgreSQL doesn't support the ONLINE option in indexes

7788 PostgreSQL doesn't support the ALLOW_ROW_LOCKS option in indexes

7789 PostgreSQL doesn't support the ALLOW_PAGE_LOCKS option in indexes

7790 PostgreSQL doesn't support theMAXDOP option in indexes

- 36 -

Action Code Action Message

7791 PostgreSQL doesn't support the DATA_COMPRESSION option in indexes

Partitioning

Aurora PostgreSQL uses "table inheritance", some of the physical aspects of partitioning in SQL Server do not
apply to Aurora PostgreSQL . For example, the concept of file groups and assigning partitions to file groups. Aur-
ora PostgreSQL supports amuch richer framework for table partitioning than SQL Server, with many additional
options such as hash partitioning, and sub partitioning.

Formore details, see Partitioning.

Action Code Action Message

7910 NULL columns not supported for partitioning

7911 PostgreSQL does not support foreign keys referencing partitioned tables

7912 PostgreSQL does not support foreign key references from a partitioned table to some other
table

7913 PostgreSQL does not support LEFT partitioning - partition values distribution could vary

7914 Update of the partitioned tablemay lead to errors

Backup

Migrating from a self-managed backup policy to a Platform as a Service (PaaS) environment such as Aurora Post-
greSQL is a complete paradigm shift. You no longer need to worry about transaction logs, file groups, disks run-
ning out of space, and purging old backups. Amazon RDS provides guaranteed continuous backup with point-in-
time restore up to 35 days. Therefor, AWS SCT does not automatically convert backups.

Formore details, see Backup and Restore.

Action Code Action Message

7903 PostgreSQL does not have functionality similar to SQL Server Backup

SQL Server Mail

- 37 -

Aurora PostgreSQL does not provide native support sendingmail from the database.

Formore details and potential workarounds, see DatabaseMail.

Action Code Action Message

7900 PostgreSQL does not have functionality similar to SQL Server DatabaseMail

Graph

Formore details and potential workarounds, seeGraph.

Action Code Action Message

7931 Automaticmigration of sql graph tables not supported

7932 Automaticmigration of DML constructs for SQLGraph Architecture is not supported

SQL Server Agent

Aurora PostgreSQL does not provide functionality similar to SQL Server Agent as an external, cross-instance
scheduler. However, Aurora PostgreSQL does provide a native, in-database scheduler. It is limited to the cluster
scope and can't be used tomanagemultiple clusters. Therefore, AWS SCT can not automatically convert Agent
jobs and alerts.

Formore details, see SQL Server Agent.

Action Code Action Message

7902 PostgreSQL does not have functionality similar to SQL Server Agent

Service Broker

Aurora PostgreSQL does not provide a compatible solution to the SQL Server Service Broker. However, you can
use DB Links and AWS Lambda to achieve similar functionality.

Formore details, see Service Broker.

- 38 -

Action Code Action Message

7901 PostgreSQL does not have functionality similar to SQL Server Service Broker

XML

The XML options and features in Aurora PostgreSQL are similar to SQL Server and themost important functions
(XPATH and XQUERY) or almost identical.
PostgreSQL does not support FOR XML clause, the walkaround for that is using string_agg instead. In some
cases, it might bemore efficient to use JSON instead of XML.

Formore details, see XML.

Action Code Action Message

7816 PostgreSQL doesn't support anymethods for datatype XML

7817 PostgreSQL doesn't support option [for xml path] in the SQL-queries

7920 PostgreSQL doesn’t support FOR XMLmode EXPLICIT

7924 ColumnsXPath expression could returnmultiple elements. PostgreSQL does not support
such functionality, so the error can be occurred

Constraints

Constraints feature is almost fully automated and compatible between SQLServer and Aurora PostgreSQL.
The differences are: missing SET DEFAULT and Check constraint with sub-query.

Formore details, see Constraints.

Action Code Action Message

7606 PostgreSQL doesn’t support foreign keys referencing partitioned tables

7675 PostgreSQL doesn’t support sorting options (ASC | DESC) for constraints

7825 The default value for a DateTime column removed

7915 Please check unique(exclude) constraint existence on field%s

- 39 -

Linked Servers

Aurora PostgreSQL does support remote data access from the database. Connectivity between schemas is
trivial, but connectivity to other instances require an extension installation

Formore details, see Linked Servers.

Action Code Action Message

7645 PostgreSQL doesn't support executing a pass-through command on a linked server

Synonyms

Aurora PostgreSQL does support synonyms, if these are referring to table/views/function then these can be
replaced with views or functions to wrap those. It becomesmore challengeing when these referes to other
objects.

Formore details, see Synonyms.

Action Code Action Message

7792 PostgreSQL doesn’t support synonyms

- 40 -

AWS Database Migration Service (DMS)

Usage
The AWS DatabaseMigration Service (DMS) helps youmigrate databases to AWS quickly and securely. The
source database remains fully operational during themigration, minimizing downtime to applications that rely on
the database. The AWS DatabaseMigration Service canmigrate your data to and frommost widely-used com-
mercial and open-source databases.

The service supports homogenousmigrations such asOracle to Oracle aswell as heterogeneousmigrations
between different database platforms such asOracle to Amazon Aurora or Microsoft SQL Server to MySQL. It
also allows you to stream data to Amazon Redshift, Amazon DynamoDB, and Amazon S3 from any of the sup-
ported sources, which are Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, SAP ASE, SQL
Server, IBMDB2 LUW, andMongoDB, enabling consolidation and easy analysis of data in a petabyte-scale data
warehouse. The AWS DatabaseMigration Service can also be used for continuous data replication with high-
availability.

Whenmigrating databases to Aurora, Redshift or DynamoDB, you can use DMS free for sixmonths.

For all supported sources for DMS, see
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html

For all supported targets for DMS, see
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.html

Migration Tasks Performed by AWS DMS
l In a traditional solution, you need to perform capacity analysis, procure hardware and software, install and
administer systems, and test and debug the installation. AWS DMS automaticallymanages the deploy-
ment, management, andmonitoring of all hardware and software needed for your migration. Your migra-
tion can be up and running within minutes of starting the AWS DMS configuration process.

l With AWS DMS, you can scale up (or scale down) your migration resources as needed tomatch your
actual workload. For example, if you determine that you need additional storage, you can easily increase
your allocated storage and restart your migration, usually within minutes. On the other hand, if you discover
that you aren't using all of the resource capacity you configured, you can easily downsize tomeet your
actual workload.

l AWS DMS uses a pay-as-you-gomodel. You only pay for AWS DMS resourceswhile you use them as
opposed to traditional licensingmodels with up-front purchase costs and ongoingmaintenance charges.

l AWS DMS automaticallymanages all of the infrastructure that supports your migration server including
hardware and software, software patching, and error reporting.

l AWS DMS provides automatic failover. If your primary replication server fails for any reason, a backup rep-
lication server can take over with little or no interruption of service.

l AWS DMS can help you switch to amodern, perhapsmore cost-effective database engine than the one
you are running now. For example, AWS DMS can help you take advantage of themanaged database ser-
vices provided by Amazon RDS or Amazon Aurora. Or, it can help youmove to themanaged data ware-
house service provided by Amazon Redshift, NoSQL platforms like Amazon DynamoDB, or low-cost
storage platforms like Amazon S3. Conversely, if you want to migrate away from old infrastructure but con-
tinue to use the same database engine, AWS DMS also supports that process.

- 41 -

https://aws.amazon.com/dms/free-dms/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.html

l AWS DMS supports nearly all of today’smost popular DBMS engines as data sources, including Oracle,
Microsoft SQL Server, MySQL, MariaDB, PostgreSQL, Db2 LUW, SAP, MongoDB, and Amazon Aurora.

l AWS DMS provides a broad coverage of available target engines including Oracle, Microsoft SQL Server,
PostgreSQL, MySQL, Amazon Redshift, SAP ASE, S3, and Amazon DynamoDB.

l You canmigrate from any of the supported data sources to any of the supported data targets. AWS DMS
supports fully heterogeneous datamigrations between the supported engines.

l AWS DMS ensures that your datamigration is secure. Data at rest is encrypted with AWS KeyMan-
agement Service (AWS KMS) encryption. Duringmigration, you can use Secure Socket Layers (SSL) to
encrypt your in-flight data as it travels from source to target.

How AWS DMS Works
At itsmost basic level, AWS DMS is a server in the AWS Cloud that runs replication software. You create a
source and target connection to tell AWS DMS where to extract from and load to. Then, you schedule a task that
runs on this server to move your data. AWS DMS creates the tables and associated primary keys if they don't
exist on the target. You can pre-create the target tablesmanually if you prefer. Or you can use AWS SCT to cre-
ate some or all of the target tables, indexes, views, triggers, and so on.

The following diagram illustrates the AWS DMS process.

Latest updates
DMS is continuously evolving and supportingmore andmore options, find below some of the updates add since
last edition of this playbook:

l CDC tasks andOracle source tables created using CREATE TABLE AS AWS -DMS now supports both
full-load and CDC andCDC-only tasks running against Oracle source tables created using the CREATE
TABLE AS statement.

- 42 -

l New MySQL version AWS DMS now supportsMySQL version 8.0 as a source except when the trans-
action payload is compressed.

l Support for AWS SecretsManager integration You can store the database connection details (user cre-
dentials) for supported endpoints securely in AWS SecretsManager. You can then submit the cor-
responding secret instead of plain-text credentials to AWS DMS when you create or modify an endpoint.
AWS DMS then connects to the endpoint databases using the secret. For more information on creating
secrets for AWS DMS endpoints see Using secrets to access AWS DatabaseMigration Service end-
points.

l Support for Oracle extended data typesOracle extended data types for both Oracle source and targets are
now supported.

l TLS 1.2 support for MySQLAWS DMS now supports TLS 1.2 for MySQL endpoints.

l TLS 1.2 support for SQL Server AWS DMS now supports TLS 1.2 for SQL Server endpoints.

For a complete guide with a step-by-step walkthrough including all the latest notes for migrating SQL Server to
AuroraMySQL (which is very similar to the Oracle-PostgreSQLmigration process) with DMS, see
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_SQLServer2Aurora.html

Formore information about DMS, see:

l https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

l https://docs.aws.amazon.com/dms/latest/userguide/CHAP_BestPractices.html

Amazon RDS on Outposts

PLEASE NOTE, ENTIRE TOPIC IS RELATED TO RDS
AND IS NOT SUPPORTED WITH AURORA

Usage

Amazon RDS onOutposts is a fullymanaged service that offers the same AWS infrastructure, AWS services,
APIs, and tools to virtually any data center, co-location space, or on-premises facility for a truly consistent hybrid
experience. Amazon RDS onOutposts is ideal for workloads that require low latency access to on-premises sys-
tems, local data processing, data residency, andmigration of applicationswith local system inter-dependencies.

When you deploy Amazon RDS onOutposts, you can run RDS on premises for low latencyworkloads that need
to be run in close proximity to your on-premises data and applications. Amazon RDS onOutposts also enables
automatic backup to an AWS Region. You canmanage RDS databases both in the cloud and on premises using
the same AWSManagement Console, APIs, and CLI. Amazon RDS onOutposts supportsMicrosoft SQL
Server, MySQL, and PostgreSQL database engines, with support for additional database engines coming soon.

- 43 -

https://docs.aws.amazon.com/dms/latest/sbs/CHAP_SQLServer2Aurora.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_BestPractices.html

How it works

Amazon RDS onOutposts lets you run Amazon RDS in your on-premises or co-location site. You can deploy and
scale an RDS database instance in Outposts just as you do in the cloud, using the AWS console, APIs, or CLI.
RDS databases in Outposts are encrypted at rest using AWS KMS keys. RDS automatically stores all automatic
backups andmanual snapshots in the AWS Region.

This option is helpful when you need to run RDS on premises for low latencyworkloads that need to be run in
close proximity to your on-premises data and applications

For more information, see:

l https://aws.amazon.com/outposts/

l https://aws.amazon.com/rds/outposts/

l https://aws.amazon.com/blogs/aws/new-create-amazon-rds-db-instances-on-aws-outposts/

Amazon RDS Proxy
Amazon RDS Proxy is a fullymanaged, highly available database proxy for Amazon Relational Database Ser-
vice (RDS) that makes applicationsmore scalable, more resilient to database failures, andmore secure.

Many applications, including those built onmodern server-less architectures, can havemany open connections to
the database server, andmay open and close database connections at a high rate, exhausting databasememory
and compute resources. Amazon RDS Proxy allows applications to pool and share connections established with
the database, improving database efficiency and application scalability. With RDS Proxy, fail-over times for Aur-
ora and RDS databases are reduced by up to 66% and database credentials, authentication, and access can be
managed through integration with AWS SecretsManager and AWS Identity and AccessManagement (IAM).

- 44 -

https://aws.amazon.com/outposts/
https://aws.amazon.com/rds/outposts/
https://aws.amazon.com/blogs/aws/new-create-amazon-rds-db-instances-on-aws-outposts/

Amazon RDS Proxy can be enabled for most applicationswith no code changes, and you don’t need to provision
or manage any additional infrastructure. Pricing is simple and predictable: you pay per vCPU of the database
instance for which the proxy is enabled. Amazon RDS Proxy is now generally available for AuroraMySQL, Aur-
ora PostgreSQL, RDSMySQL and RDS PostgreSQL.

Benefits

l Improved application performance
Amazon RDS proxymanages a connection pooling which helps with reducing the stress on database com-
pute andmemory resources that typically occurs when new connections are established and it is useful to
efficiently support a large number and frequency of application connections

l Increase application availability
By automatically connecting to a new database instance while preserving application connections Amazon
RDS Proxy can reduce fail-over time by 66%

l Manage application security
RDS Proxy also enables you to centrallymanage database credentials using AWS SecretsManager

l Fullymanaged
Amazon RDS Proxy gives you the benefits of a database proxywithout requiring additional burden of
patching andmanaging your own proxy server.

l Fully compatible with your database
Amazon RDS Proxy is fully compatible with the protocols of supported database engines, so you can
deployRDS Proxy for your application without making changes to your application code.

l Available and durable
Amazon RDS Proxy is highly available and deployed over multiple Availability Zones (AZs) to protect you
from infrastructure failure

How it works

For more information, see:

- 45 -

l https://aws.amazon.com/blogs/aws/amazon-rds-proxy-now-generally-available/

l https://aws.amazon.com/rds/proxy/

Amazon Aurora Serverless v1

Usage
Amazon Aurora Serverless v1 (Amazon Aurora Serverless version 1) is an on-demand autoscaling configuration
for Amazon Aurora. An Aurora ServerlessDB cluster is a DB cluster that scales compute capacity up and down
based on your application's needs. This contrasts with Aurora provisioned DB clusters, for which youmanually
manage capacity. Aurora Serverless v1 provides a relatively simple, cost-effective option for infrequent, inter-
mittent, or unpredictable workloads. It is cost-effective because it automatically starts up, scales compute capa-
city to match your application's usage, and shuts downwhen it's not in use.

To learnmore about pricing, see Serverless Pricing under MySQL-Compatible Edition or PostgreSQL-Com-
patible Edition on the Amazon Aurora pricing page.

Aurora Serverless v1 clusters have the same kind of high-capacity, distributed, and highly available storage
volume that is used by provisioned DB clusters. The cluster volume for an Aurora Serverless v1 cluster is always
encrypted. You can choose the encryption key, but you can't disable encryption. That means that you can per-
form the same operations on an Aurora Serverless v1 that you can on encrypted snapshots. For more inform-
ation, see Aurora Serverless v1 and snapshots.

Aurora Serverless v1 provides the following advantages:

l Simpler than provisioned – Aurora Serverless v1 removesmuch of the complexity of managing DB
instances and capacity.

l Scalable – Aurora Serverless v1 seamlessly scales compute andmemory capacity as needed, with no dis-
ruption to client connections.

l Cost-effective –When you use Aurora Serverless v1, you pay only for the database resources that you con-
sume, on a per-second basis.

l Highly available storage – Aurora Serverless v1 uses the same fault-tolerant, distributed storage system
with six-way replication as Aurora to protect against data loss.

- 46 -

https://aws.amazon.com/blogs/aws/amazon-rds-proxy-now-generally-available/
https://aws.amazon.com/rds/proxy/

Aurora Serverless v1 is designed for the following use cases:

l Infrequently used applications – You have an application that is only used for a few minutes several times
per day or week, such as a low-volume blog site. With Aurora Serverless v1, you pay for only the database
resources that you consume on a per-second basis.

l New applications – You're deploying a new application and you're unsure about the instance size you
need. By using Aurora Serverless v1, you can create a database endpoint and have the database auto-
scale to the capacity requirements of your application.

l Variable workloads – You're running a lightly used application, with peaks of 30minutes to several hours a
few times each day, or several times per year. Examples are applications for human resources, budgeting,
and operational reporting applications.With Aurora Serverless v1, you no longer need to provision for peak
or average capacity.

l Unpredictable workloads – You're running daily workloads that have sudden and unpredictable increases
in activity. An example is a traffic site that sees a surge of activity when it starts raining.With Aurora Server-
less v1, your database autoscales capacity to meet the needs of the application's peak load and scales
back downwhen the surge of activity is over.

l Development and test databases – Your developers use databases during work hours but don't need
them on nights or weekends.With Aurora Serverless v1, your database automatically shuts downwhen it's
not in use.

l Multi-tenant applications –With Aurora Serverless v1, you don't have to individuallymanage database
capacity for each application in your fleet. Aurora Serverless v1manages individual database capacity for
you.

This process takes almost no time and since the storage is shared between nodes Aurora can scale up or down in
seconds for most workloads. The service currently has autoscaling thresholds of 1.5minutes to scale up and 5
minutes to scale down. That meansmetricsmust exceed the limits for 1.5minutes to trigger a scale up or fall
below the limits for 5minutes to trigger a scale down. The cool-down period between scaling activities is 5
minutes to scale up and 15minutes to scale down. Before scaling can happen the service has to find a “scaling
point” whichmay take longer than anticipated if you have long-running transactions. Scaling operations are trans-
parent to the connected clients and applications since existing connections and session state are transferred to
the new nodes. The only difference with pausing and resuming is a higher latency for the first connection, typically
around 25 seconds. You can findmore details in the documentation.

- 47 -

How to provision
Browse to the Databases page and click on "Create database"

Pick "Serverless" capacity type

- 48 -

https://eu-central-1.console.aws.amazon.com/rds/home?#databases:

Choose the capacity properties suite for you use case

For more information, see:

l https://aws.amazon.com/rds/aurora/serverless/

l https://aws.amazon.com/blogs/aws/aurora-serverless-ga/

l https://aws.amazon.com/blogs/aws/amazon-aurora-postgresql-serverless-now-generally-available/

Amazon Aurora Backtrack

Usage
We’ve all been there, you need tomake a quick, seemingly simple fix to an important production database. You
compose the query, give it a once-over, and let it run. Seconds later you realize that you forgot theWHERE
clause, dropped the wrong table, or made another seriousmistake, and interrupt the query, but the damage has
been done. You take a deep breath, whistle through your teeth, wish that reality camewith an Undo option.

Backtracking "rewinds" the DB cluster to the time you specify. Backtracking is not a replacement for backing up
your DB cluster so that you can restore it to a point in time. However, backtracking provides the following advant-
ages over traditional backup and restore:

l You can easily undomistakes. If youmistakenly perform a destructive action, such as a DELETE without a
WHERE clause, you can backtrack the DB cluster to a time before the destructive action with minimal inter-
ruption of service.

l You can backtrack a DB cluster quickly. Restoring a DB cluster to a point in time launches a new DB
cluster and restores it from backup data or a DB cluster snapshot, which can take hours. Backtracking a
DB cluster doesn't require a new DB cluster and rewinds the DB cluster in minutes.

l You can explore earlier data changes. You can repeatedly backtrack a DB cluster back and forth in time to
help determine when a particular data change occurred. For example, you can backtrack a DB cluster
three hours and then backtrack forward in time one hour. In this case, the backtrack time is two hours
before the original time.

Aurora uses a distributed, log-structured storage system (read Design Considerations for High Throughput
Cloud-Native Relational Databases to learn a lot more); each change to your database generates a new log

- 49 -

https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/blogs/aws/aurora-serverless-ga/
https://aws.amazon.com/blogs/aws/amazon-aurora-postgresql-serverless-now-generally-available/

record, identified by a Log Sequence Number (LSN). Enabling the backtrack feature provisions a FIFObuffer in
the cluster for storage of LSNs. This allows for quick access and recovery timesmeasured in seconds.

When you create a new AuroraMySQLDB cluster, backtracking is configured when you choose Enable Back-
track and specify a Target Backtrackwindow value that is greater than zero in the Backtrack section.

To create a DB cluster, follow the instructions in Creating an Amazon Aurora DB cluster. The following image
shows the Backtrack section.

After a production error, you can simply pause your application, open up the Aurora Console, select the cluster,
and click BacktrackDB cluster

Then you select Backtrack and choose the point in time just before your epic fail, and click BacktrackDB cluster:

Then you wait for the rewind to take place, unpause your application and proceed as if nothing had happened.
When you initiate a backtrack, Aurora will pause the database, close any open connections, drop uncommitted
writes, and wait for the backtrack to complete. Then it will resume normal operation and be able to accept
requests. The instance state will be backtracking while the rewind is underway.

- 50 -

Backtrack window

With backtracking, there is a target backtrackwindow and an actual backtrackwindow:

l The target backtrackwindow is the amount of time you want to be able to backtrack your DB cluster. When
you enable backtracking, you specify a target backtrackwindow. For example, youmight specify a target
backtrackwindow of 24 hours if you want to be able to backtrack the DB cluster one day.

l The actual backtrackwindow is the actual amount of time you can backtrack your DB cluster, which can be
smaller than the target backtrackwindow. The actual backtrackwindow is based on your workload and the
storage available for storing information about database changes, called change records.

As youmake updates to your Aurora DB cluster with backtracking enabled, you generate change records. Aur-
ora retains change records for the target backtrackwindow, and you pay an hourly rate for storing them. Both the
target backtrackwindow and the workload on your DB cluster determine the number of change records you
store. The workload is the number of changes youmake to your DB cluster in a given amount of time. If your work-
load is heavy, you storemore change records in your backtrackwindow than you do if your workload is light.

You can think of your target backtrackwindow as the goal for themaximumamount of time you want to be able to
backtrack your DB cluster. In most cases, you can backtrack themaximumamount of time that you specified.
However, in some cases, the DB cluster can't store enough change records to backtrack themaximumamount of
time, and your actual backtrackwindow is smaller than your target. Typically, the actual backtrackwindow is smal-
ler than the target when you have extremely heavyworkload on your DB cluster. When your actual backtrackwin-
dow is smaller than your target, we send you a notification.

When backtracking is enabled for a DB cluster, and you delete a table stored in the DB cluster, Aurora keeps that
table in the backtrack change records. It does this so that you can revert back to a time before you deleted the
table. If you don't have enough space in your backtrackwindow to store the table, the tablemight be removed
from the backtrack change records eventually.

Backtracking limitations

The following limitations apply to backtracking:

l Backtracking an Aurora DB cluster is available in certain AWS Regions and for specific AuroraMySQL ver-
sions only. For more information, see Backtracking in Aurora.

l Backtracking is only available for DB clusters that were created with the Backtrack feature enabled. You
can enable the Backtrack feature when you create a new DB cluster or restore a snapshot of a DB cluster.
For DB clusters that were created with the Backtrack feature enabled, you can create a clone DB cluster
with the Backtrack feature enabled. Currently, you can't perform backtracking on DB clusters that were cre-
ated with the Backtrack feature disabled.

l The limit for a backtrackwindow is 72 hours.

l Backtracking affects the entire DB cluster. For example, you can't selectively backtrack a single table or a
single data update.

- 51 -

l Backtracking isn't supported with binary log (binlog) replication. Cross-Region replicationmust be disabled
before you can configure or use backtracking.

l You can't backtrack a database clone to a time before that database clone was created. However, you can
use the original database to backtrack to a time before the clone was created. For more information about
database cloning, see Cloning an Aurora DB cluster volume.

l Backtracking causes a brief DB instance disruption. Youmust stop or pause your applications before start-
ing a backtrack operation to ensure that there are no new read or write requests. During the backtrack oper-
ation, Aurora pauses the database, closes any open connections, and drops any uncommitted reads and
writes. It then waits for the backtrack operation to complete.

l Backtracking isn't supported for the following AWS Regions:

l Africa (Cape Town)

l China (Ningxia)

l Asia Pacific (Hong Kong)

l Europe (Milan)

l Europe (Stockholm)

l Middle East (Bahrain)

l South America (São Paulo)

l You can't restore a cross-Region snapshot of a backtrack-enabled cluster in an AWS Region that doesn't
support backtracking.

l You can't use Backtrackwith Auroramulti-master clusters.

l If you perform an in-place upgrade for a backtrack-enabled cluster fromAuroraMySQL version 1 to ver-
sion 2, you can't backtrack to a point in time before the upgrade happened

For more information, see: https://aws.amazon.com/blogs/aws/amazon-aurora-backtrack-turn-back-time/

- 52 -

https://aws.amazon.com/blogs/aws/amazon-aurora-backtrack-turn-back-time/

Migration Quick Tips
This section providesmigration tips that can help save time as you transition fromSQLServer to Aurora Post-
greSQL. They addressmany of the challenges faced by administrators new to Aurora PostgreSQL. Some of
these tips describe functional differences in similar features between SQLServer and Aurora PostgreSQL.

Management
l The equivalent of SQL Server's CREATE DATABASE... AS SNAPSHOTOF... resembles Aurora Post-
greSQLDatabase cloning. However, unlike SQL Server snapshots, which are read only, Aurora Post-
greSQL cloned databases are updatable.

l In Aurora PostgreSQL, the term "Database Snapshot" is equivalent to SQL Server's BACKUP
DATABASE... WITH COPY_ONLY.

l Partitioning in Aurora PostgreSQL is called "INHERITS" tables and act completely different in terms of
management

l Unlike SQL Server's statistics, Aurora PostgreSQL does not collect detailed key value distribution; it relies
on selectivity only. When troubleshooting execution, be aware that parameter values are insignificant to
plan choices.

l Manymissing features such as sending emails can be achieved with quick implementations of Amazon's
services (like Lambda).

l Parameters and backups aremanaged by Amazon's RDS. It is very useful in terms of checking para-
meter's value against its default and comparing them to another parameter group.

l High Availability can be implemented in few clicks to create Replicas.

l With Database Links, there are two options. The db_link extension is similar to SQL Server.

SQL
l Triggers work differently in Aurora PostgreSQL. Triggers can be also executed for each row (not just
once). The syntax for inserted and deleted is new and old.

l Aurora PostgreSQL does not support the@@FETCH_STATUS system parameter for cursors. When
declaring cursors in Aurora PostgreSQL, youmust create an explicit HANDLER object.

l To execute a stored procedure (functions), use SELECT instead of EXECUTE.

l To execute a string as a query, use Aurora PostgreSQL Prepared Statements instead of either sp_execut-
esql, or EXECUTE(<String>) syntax.

l In Aurora PostgreSQL, IF blocksmust be terminated with END IF.WHILE..LOOP loopsmust be ter-
minated with END LOOP.

l Aurora PostgreSQL syntax for opening a transaction is START TRANSACTION as opposed to BEGIN
TRANSACTION. COMMIT and ROLLBACK are used without the TRANSACTION keyword.

l Aurora PostgreSQL does not use special data types for UNICODE data. All string typesmay use any char-
acter set and any relevant collation.

l Collations can be defined at the server, database, and column level, similar to SQL Server. They cannot be
defined at the table level.

l SQLServer's DELETE <Table Name> syntax, which allows omitting the FROMkeyword, is invalid in Aur-
ora PostgreSQL. Add the FROMkeyword to all delete statements.

- 53 -

l Aurora PostgreSQL allowsmultiple rowswith NULL for a UNIQUE constraint; SQL Server allows only
one. Aurora PostgreSQL follows the behavior specified in the ANSI standard.

l Aurora PostgreSQL SERIAL column property is similar to IDENTITY in SQL Server. However, there is a
major difference in the way sequences aremaintained.While SQL Server caches a set of values in
memory, the last allocation is recorded on disk. When the service restarts, some valuesmay be lost, but the
sequence continues fromwhere it left off. In Aurora PostgreSQL, each time the service is restarted, the
seed value to SERIAL is reset to one increment interval larger than the largest existing value. Sequence
position is not maintained across service restarts.

l Parameter names in Aurora PostgreSQL do not require a preceding "@". You can declare local variables
such as SET schema.test = 'value' and get the value by SELECT current_setting('username.test');

l Local parameter scope is not limited to an execution scope. You can define or set a parameter in one state-
ment, execute it, and then query it in the following batch.

l Error handling in Aurora PostgreSQL has less features, but for special requirements, you can log or send
alerts by inserting into tables or catching errors.

l Aurora PostgreSQL does not support theMERGE statement. Use the REPLACE statement and the
INSERT... ON DUPLICATE KEY UPDATE statement as alternatives.

l You cannot concatenate strings in Aurora PostgreSQL using the "+" operator. 'A' + 'B' is not a valid expres-
sion. Use the CONCAT function instead. For example, CONCAT('A', 'B').

l Aurora PostgreSQL does not support aliasing in the select list using the 'String Alias' = Expression. Aurora
PostgreSQL treats it as a logical predicate, returns 0 or FALSE, and will alias the columnwith the full
expression. USE the AS syntax instead. Also note that this syntax has been deprecated as of SQL Server
2008 R2.

l Aurora PostgreSQL has a large set of string functions that ismuchmore diverse than SQL Server. Some
of themore useful string functions are:

l TRIM is not limited to full trim or spaces. The syntax is TRIM([{BOTH | LEADING | TRAILING}
[<remove string>] FROM] <source string>)).

l LENGTH in PostgreSQL is equivalent to DATALENGTH in T-SQL. CHAR_LENGTH is the equi-
valent of T-SQL LENGTH.

l SUBSTRING_INDEX returns a substring from a string before the specified number of occurrences
of the delimiter.

l FIELD returns the index (position) of the first argument in the subsequent arguments.

l POSITION returns the index position of the first argument within the second argument.

l REGEXP_MATCHES provides support for regular expressions.

l For more string functions, see https://www.postgresql.org/docs/13/static/functions-string.html

l The Aurora PostgreSQLCAST function is for casting between collation and not other data types. Use
CONVERT for casting data types.

l Aurora PostgreSQL ismuch stricter than SQL Server in terms of statement terminators. Be sure to always
use a semicolon at the end of statements.

l There is no CREATE PROCEDURE syntax; only CREATE FUNCTION. You can create a function that
returns void.

l Beware of control characters when copying and pasting a script to Aurora PostgreSQL clients. Aurora
PostgreSQL ismuchmore sensitive to control characters than SQL Server and they result in frustrating
syntax errors that are hard to find.

- 54 -

https://www.postgresql.org/docs13/static/functions-string.html

ANSI SQL

Case Sensitivity Differences for SQL Server and
PostgreSQL
Object name case sensitivitymight be different for SQL Server and PostgreSQL. SQL Server names are
depended on the used collection and can be either case sensitive or not. PostgreSQL names are case sensitive.

By default, AWS SCT uses object name in lower-case for PostgreSQL. Inmost cases, you'll want to use AWS
DMS transformations to change schema, table, and column names to lower case.

To have an upper-case name, youmust place the objects nameswithin doubles quotes.

For example, to create a table named EMPLOYEES (upper-case) in PostgreSQL, you should use the following:

CREATE TABLE "EMPLOYEES" (
EMP_ID NUMERIC PRIMARY KEY,
EMP_FULL_NAME VARCHAR(60) NOT NULL,
AVG_SALARY NUMERIC NOT NULL);

The command below will create a table named employees (lower-case).

CREATE TABLE EMPLOYEES (
EMP_ID NUMERIC PRIMARY KEY,
EMP_FULL_NAME VARCHAR(60) NOT NULL,
AVG_SALARY NUMERIC NOT NULL);

If doubles quotesweren't used, PostgreSQLwill look for object names in their lower-case form, for CREATE com-
mandswhere doubles quotesweren't used, objects will be created with lower-case names, therefore, to create /
query / manipulate an upper-cased (or mixed) object names youmust use doubles quotes.

- 55 -

SQL Server Constraints vs. PostgreSQL Table Con-
straints
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

Constraints SET DEFAULT option ismiss-
ing
Check constraint with sub-
query

SQL Server Usage
Column and table constraints are defined by the SQL standard and enforce relational data consistency. There
are four types of SQL constraints: CheckConstraints, Unique Constraints, Primary KeyConstraints, and Foreign
KeyConstraints.

Check Constraints

Syntax

CHECK (<Logical Expression>)

CHECK constraints enforce domain integrity by limiting the data values stored in table columns. They are logical
boolean expressions that evaluate to one of three values: TRUE, FALSE, and UNKNOWN.

Note: CHECK constraint expressions behave differently than predicates in other query clauses. For
example, in aWHERE clause, a logical expression that evaluates to UNKNOWN is functionally equi-
valent to FALSE and the row is filtered out. For CHECK constraints, an expression that evaluates to
UNKNOWN is functionally equivalent to TRUE because the value is permitted by the constraint.

Multiple CHECK constraintsmay be assigned to a column. A single CHECK constraint may apply to multiple
columns (in this case, it is known as a Table-Level CheckConstraint).

In ANSI SQL, CHECK constraints can not access other rows as part of the expression. SQL Server allows using
User Defined Functions in constraints to access other rows, tables, or databases.

Unique Constraints

Syntax

UNIQUE [CLUSTERED | NONCLUSTERED] (<Column List>)

UNIQUE constraints should be used for all candidate keys. A candidate key is an attribute or a set of attributes
(columns) that uniquely identify each tuple (row) in the relation (table data).

UNIQUE constraints guarantee that no rowswith duplicate column values exist in a table.

- 56 -

A UNIQUE constraint can be simple or composite. Simple constraints are composed of a single column. Com-
posite constraints are composed of multiple columns. A columnmay be a part of more than one constraint.

Although the ANSI SQL standard allowsmultiple rows having NULL values for UNIQUE constraints, SQL Server
allows a NULL value for only one row. Use a NOT NULL constraint in addition to a UNIQUE constraint to disallow
all NULL values.

To improve efficiency, SQL Server creates a unique index to support UNIQUE constraints. Otherwise, every
INSERT and UPDATE would require a full table scan to verify there are no duplicates. The default index type for
UNIQUE constraints is non- clustered.

Primary Key Constraints

Syntax

PRIMARY KEY [CLUSTERED | NONCLUSTERED] (<Column List>)

A PRIMARY KEY is a candidate key serving as the unique identifier of a table row. PRIMARY KEYSmay consist
of one or more columns. All columns that comprise a primary keymust also have a NOT NULL constraint. Tables
can have one primary key.

The default index type for PRIMARY KEYS is a clustered index.

Foreign Key Constraints

Syntax

FOREIGN KEY (<Referencing Column List>)
REFERENCES <Referenced Table>(<Referenced Column List>)

FOREIGN KEY constraints enforce domain referential integrity. Similar to CHECK constraints, FOREIGN KEYS
limit the values stored in a column or set of columns.

FOREIGN KEYS reference columns in other tables, whichmust be either PRIMARY KEYS or have UNIQUE
constraints. The set of values allowed for the referencing table is the set of values existing the referenced table.

Although the columns referenced in the parent table are indexed (since theymust have either a PRIMARY KEY
or UNIQUE constraint), no indexes are automatically created for the referencing columns in the child table. A best
practice is to create appropriate indexes to support joins and constraint enforcement.

FOREIGN KEY constraints impose DML limitations for the referencing child and parent tables. The purpose of a
constraint is to guarantee that no "orphan" rows (rowswith no correspondingmatching values in the parent table)
exist in the referencing table. The constraint limits INSERT and UPDATE to the child table and UPDATE and
DELETE to the parent table. For example, you can not delete an order having associated order items.

Foreign keys support Cascading Referential Integrity (CRI). CRI can be used to enforce constraints and define
action paths for DML statements that violate the constraints. There are four CRI options:

l NO ACTION: When the constraint is violated due to a DML operation, an error is raised and the operation
is rolled back.

l CASCADE: Values in a child table are updated with values from the parent table when they are updated or
deleted along with the parent.

- 57 -

l SET NULL: All columns that are part of the foreign key are set to NULLwhen the parent is deleted or
updated.

l SET DEFAULT: All columns that are part of the foreign key are set to their DEFAULT value when the par-
ent is deleted or updated.

These actions can be customized independently of others in the same constraint. For example, a cascading con-
straint may have CASCADE for UPDATE, but NOACTION for UPDATE.

Examples
Create a composite non-clustered PRIMARY KEY.

CREATE TABLE MyTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK_MyTable
PRIMARY KEY NONCLUSTERED (Col1, Col2)

);

Create a table-level CHECK constraint.

CREATE TABLE MyTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK_MyTable
PRIMARY KEY NONCLUSTERED (Col1, Col2),

CONSTRAINT CK_MyTableCol1Col2
CHECK (Col2 >= Col1)

);

Create a simple non-null UNIQUE constraint.

CREATE TABLE MyTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK_MyTable
PRIMARY KEY NONCLUSTERED (Col1, Col2),

CONSTRAINT UQ_Col2Col3
UNIQUE (Col2, Col3)

);

Create a FOREIGN KEY withmultiple cascade actions.

CREATE TABLE MyParentTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK_MyTable

- 58 -

PRIMARY KEY NONCLUSTERED (Col1, Col2)
);

CREATE TABLE MyChildTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 INT NOT NULL,
Col3 INT NOT NULL,
CONSTRAINT FK_MyChildTable_MyParentTable
FOREIGN KEY (Col2, Col3)
REFERENCES MyParentTable (Col1, Col2)
ON DELETE NO ACTION
ON UPDATE CASCADE

);

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-con-
straints?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-
server-ver15

PostgreSQL Usage
PostgreSQL supports the following types of table constraints:

l PRIMARY KEY

l FOREIGN KEY

l UNIQUE

l NOTNULL

l EXCLUDE (unique to PostgreSQL)

Similar to constraint declaration in SQL Server, PostgreSQL allows creating constraints in-line or out-of-line
when specifying table columns.

PostgreSQL constraints can be specified using CREATE / ALTER TABLE. Constraints on views are not sup-
ported.

Youmust have privileges (CREATE / ALTER) on the table in which constraints are created. For foreign key con-
straints, youmust also have the REFERENCES privilege.

Primary Key Constraints
l Uniquely identify each row and cannot contain NULL values.

l Use the same ANSI SQL syntax as SQL Server.

l Can be created on a single column or onmultiple columns (composite primary keys) as the only PRIMARY
KEY in a table.

l Creating a PRIMARY KEY constraint automatically creates a unique B-Tree index on the column or group
of columnsmarked as the primary key of the table.

- 59 -

https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-server-ver15

l Constraint names can be generated automatically by PostgreSQL or explicitly specified during constraint
creation.

Examples

Create an inline primary key constraint with a system-generated constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25));

Create an inline primary key constraint with a user-specified constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC CONSTRAINT PK_EMP_ID PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25));

Create an out-of-line primary key constraint.

CREATE TABLE EMPLOYEES(
EMPLOYEE_ID NUMERIC,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25)),
CONSTRAINT PK_EMP_ID PRIMARY KEY (EMPLOYEE_ID));

Add a primary key constraint to an existing table.

ALTER TABLE SYSTEM_EVENTS
ADD CONSTRAINT PK_EMP_ID PRIMARY KEY (EVENT_CODE, EVENT_TIME);

Drop the primary key.

ALTER TABLE SYSTEM_EVENTS DROP CONSTRAINT PK_EMP_ID;

Foreign Key Constraints
l Enforce referential integrity in the database. Values in specific columns or a group of columnsmust match
the values from another table (or column).

l Creating a FOREIGN KEY constraint in PostgreSQL uses the same ANSI SQL syntax as SQL Server.

l Can be created in-line or out-of-line during table creation.

l Use the REFERENCES clause to specify the table referenced by the foreign key constraint.

l When specifying REFERENCES in the absence of a column list in the referenced table, the PRIMARY
KEY of the referenced table is used as the referenced column or columns.

l A table can havemultiple FOREIGN KEY constraints.

l Use theON DELETE clause to handle FOREIGN KEY parent record deletions (such as cascading
deletes).

- 60 -

l Foreign key constraint names are generated automatically by the database or specified explicitly during
constraint creation.

ON DELETE Clause

PostgreSQL provides threemain options to handle caseswhere data is deleted from the parent table and a child
table is referenced by a FOREIGN KEY constraint. By default, without specifying any additional options, Post-
greSQL uses the NOACTION method and raises an error if the referencing rows still exist when the constraint is
verified.

l ON DELETE CASCADE: Any dependent foreign key values in the child table are removed along with the
referenced values from the parent table.

l ON DELETE RESTRICT: Prevents the deletion of referenced values from the parent table and the dele-
tion of dependent foreign key values in the child table.

l ON DELETE NO ACTION: Performs no action (the default). The fundamental difference between
RESTRICT and NOACTION is that NOACTION allows the check to be postponed until later in the trans-
action; RESTRICT does not.

ON UPDATE Clause

Handling updates on FOREIGN KEY columns is also available using theON UPDATE clause, which shares the
same options as theON DELETE clause:

l ON UPDATE CASCADE

l ON UPDATE RESTRICT

l ON UPDATE NOACTION

Examples

Create an inline foreign keywith a user-specified constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25),
DEPARTMENT_ID NUMERIC REFERENCES DEPARTMENTS(DEPARTMENT_ID));

Create an out-of-line foreign key constraint with a system-generated constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25),
DEPARTMENT_ID NUMERIC,
CONSTRAINT FK_FEP_ID
FOREIGN KEY(DEPARTMENT_ID) REFERENCES DEPARTMENTS(DEPARTMENT_ID));

Create a foreign key using theON DELETE CASCADE clause.

- 61 -

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25),
DEPARTMENT_ID NUMERIC,
CONSTRAINT FK_FEP_ID
FOREIGN KEY(DEPARTMENT_ID) REFERENCES DEPARTMENTS(DEPARTMENT_ID)
ON DELETE CASCADE);

Add a foreign key to an existing table.

ALTER TABLE EMPLOYEES ADD CONSTRAINT FK_DEPT
FOREIGN KEY (department_id)
REFERENCES DEPARTMENTS (department_id) NOT VALID;

ALTER TABLE EMPLOYEES VALIDATE CONSTRAINT FK_DEPT;

UNIQUE Constraints
l Ensure that values in a column, or a group of columns, are unique across the entire table.

l PostgreSQLUNIQUE constraint syntax is ANSI SQL compatible.

l Automatically creates a B-Tree index on the respective column, or a group of columns, when creating a
UNIQUE constraint.

l If duplicate values exist in the column(s) on which the constraint was defined during UNIQUE constraint
creation, the UNIQUE constraint creation fails and returns an error message.

l UNIQUE constraints in PostgreSQL accept multiple NULL values (similar to SQL Server).

l UNIQUE constraint naming can be system-generated or explicitly specified.

Example

Create an inline unique constraint ensuring uniqueness of values in the email column.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25) CONSTRAINT UNIQ_EMP_EMAIL UNIQUE,
DEPARTMENT_ID NUMERIC);

CHECK Constraints
l Enforce that values in a column satisfy a specific requirement.

l CHECK constraints in PostgreSQL use the same ANSI SQL syntax as SQL Server.

l Can only be defined using a Boolean data type to evaluate the values of a column.

l CHECK constraints naming can be system-generated or explicitly specified by the user during constraint
creation.

- 62 -

Check constraints are using Boolean data datatype, therefor sub-query can't be used in CHECK constraint. if you
want to use a similar feature you can create a Boolean function that will check the query resulsts and return
TRUE or FALSE values accordingly.

Example

Create an inline CHECK constraint using a regular expression to enforce the email column contains email
addresseswith an “@aws.com” suffix.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25) CHECK(EMAIL ~ '(^[A-Za-z]+@aws.com$)'),
DEPARTMENT_ID NUMERIC);

NOT NULL Constraints
l Enforce that a column cannot accept NULL values. This behavior is different from the default column beha-
vior in PostgreSQLwhere columns can accept NULL values.

l NOTNULL constraints can only be defined inline during table creation.

l You can explicitly specify names for NOT NULL constraints when used with a CHECK constraint.

Example

Define two not null constraints on the FIRST_NAME and LAST_NAME columns. Define a check constraint (with
an explicitly user-specified name) to enforce not null behavior on the EMAIL column.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20) NOT NULL,
LAST_NAME VARCHAR(25) NOT NULL,
EMAIL VARCHAR(25) CONSTRAINT CHK_EMAIL

CHECK(EMAIL IS NOT NULL));

SET Constraints Syntax
SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

PostgreSQL provides controls for certain aspects of constraint behavior:

l DEFERRABLE | NOT DEFERRABLE: Using the PostgreSQL SET CONSTRAINTS statement. Con-
straints can be defined as:

l DEFERRABLE: Allows you to use the SET CONSTRAINTS statement to set the behavior of con-
straint checking within the current transaction until transaction commit.

l IMMEDIATE: Constraints are enforced only at the end of each statement. Note that each constraint
has its own IMMEDIATE or DEFERRED mode.

- 63 -

l NOT DEFERRABLE: This statement always runs as IMMEDIATE and is not affected by the SET
CONSTRAINTS command.

l VALIDATE CONSTRAINT | NOT VALID:

l VALIDATE CONSTRAINT: Validates foreign key or check constraints (only) that were previously
created asNOT VALID. This action performs a validation check by scanning the table to ensure all
records satisfy the constraint definition.

l NOT VALID: Can be used only for foreign key or check constraints. When specified, new records
are not validated with the creation of the constraint. Only when the VALIDATE CONSTRAINT state
is applied is the constraint state enforced on all records.

Using Existing Indexes During Constraint Creation
PostgreSQL can add a new primary key or unique constraints based on an existing unique Index . All index
columns are included in the constraint. When creating constraints using thismethod, the index is owned by the
constraint. When dropping the constraint, the index is also dropped.

Use an existing unique Index to create a primary key constraint.

CREATE UNIQUE INDEX IDX_EMP_ID ON EMPLOYEES(EMPLOYEE_ID);

ALTER TABLE EMPLOYEES
ADD CONSTRAINT PK_CON_UNIQ PRIMARY KEY USING INDEX IDX_EMP_ID;

Summary

The following table identifies similarities, differences, and keymigration considerations.

Feautre SQL Server Aurora PostgreSQL

CHECK constraints CHECK CHECK

UNIQUE constraints UNIQUE UNIQUE

PRIMARY KEY constraints PRIMARY KEY PRIMARY KEY

FOREIGN KEY constraints FOREIGN KEY FOREIGN KEY

Cascaded referential actions NOACTION | CASCADE | SET NULL
| SET DEFAULT

RESTRICT | CASCADE | SET
NULL |
NOACTION

Indexing of referencing columns Not required N/A

Indexing of referenced columns PRIMARY KEY or UNIQUE PRIMARY KEY or UNIQUE

For additional details:

l https://www.postgresql.org/docs/13/static/ddl-constraints.html

l https://www.postgresql.org/docs/13/static/sql-set-constraints.html

l https://www.postgresql.org/docs/13/static/sql-altertable.html

- 64 -

https://www.postgresql.org/docs/13/static/ddl-constraints.html
https://www.postgresql.org/docs/13/static/sql-set-constraints.html
https://www.postgresql.org/docs/13/static/sql-altertable.html

SQL Server Creating Tables vs.
PostgreSQL Creating Tables
Feature Com-
patibility

SCT/DMS Auto-
mation Level SCT Action Code Index Key Differences

SCT Action Codes -
CREATE TABLE

Auto generated value column is dif-
ferent

Can't use physical attribute ON

Missing table variable andmemory
optimized table

SQL Server Usage

ANSI Syntax Conformity

Tables in SQL Server are created using the CREATE TABLE statement and conform to the ANSI/ISOentry level
standard. The basic features of CREATE TABLE are similar for most relational databasemanagement engines
and are well defined in the ANSI/ISO standards.

In itsmost basic form, the CREATE TABLE statement in SQL Server is used to define:

l Table names, the containing security schema, and database

l Column names

l Column data types

l Column and table constraints

l Column default values

l Primary, candidate (UNIQUE), and foreign keys

T-SQL Extensions

SQLServer extends the basic syntax and providesmany additional options for the CREATE TABLE or ALTER
TABLE statements. Themost often used options are:

l Supporting index types for primary keys and unique constraints, clustered or non-clustered, and index prop-
erties such as FILLFACTOR

l Physical table data storage containers using theON <File Group> clause

l Defining IDENTITY auto-enumerator columns

l Encryption

l Compression

l Indexes

For more information, see Data Types, Column Encryption, and Databases and Schemas.

- 65 -

Table Scope

SQLServer provides five scopes for tables:

l Standard tables are created on disk, globally visible, and persist through connection resets and server
restarts.

l Temporary Tables are designated with the "# " prefix. They are persisted in TempDB and are visible to the
execution scope where theywere created (and any sub-scopes). Temporary tables are cleaned up by the
server when the execution scope terminates and when the server restarts.

l Global Temporary Tables are designated by the "## " prefix. They are similar in scope to temporary tables,
but are also visible to concurrent scopes.

l Table Variables are defined with the DECLARE statement, not with CREATE TABLE. They are visible
only to the execution scope where theywere created.

l Memory-Optimized tables are special types of tables used by the In-MemoryOnline Transaction Pro-
cessing (OLTP) engine. They use a non-standard CREATE TABLE syntax.

Creating a Table Based on an Existing Table or Query

SQLServer allows creating new tables based on SELECT queries as an alternate to the CREATE TABLE state-
ment. A SELECT statement that returns a valid set with unique column names can be used to create a new table
and populate data.

SELECT INTO is a combination of DML and DDL. The simplified syntax for SELECT INTO is:

SELECT <Expression List>
INTO <Table Name>
[FROM <Table Source>]
[WHERE <Filter>]
[GROUP BY <Grouping Expressions>...];

When creating a new table using SELECT INTO, the only attributes created for the new table are column names,
column order, and the data types of the expressions. Even a straight forward statement such as SELECT * INTO
<New Table> FROM<Source Table> does not copy constraints, keys, indexes, identity property, default values,
or any other related objects.

TIMESTAMP Syntax for ROWVERSION Deprecated Syntax

The TIMESTAMP syntax synonym for ROWVERSION has been deprecated as of SQL Server 2008R2 in
accordance with https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729
(v=sql.105).

Previously, you could use either the TIMESTAMP or the ROWVERSION keywords to denote a special data type
that exposes an auto-enumerator. The auto-enumerator generates unique eight-byte binary numbers typically
used to version-stamp table rows. Clients read the row, process it, and check the ROWVERSION value against
the current row in the table beforemodifying it. If they are different, the row has beenmodified since the client
read it. The client can then apply different processing logic.

Note that whenmigrating to Aurora PostgreSQL using the Amazon RDS SchemaConversion Tool (SCT),
neither ROWVERSION nor TIMESTAMP are supported. Youmust add customer logic, potentially in the form of
a trigger, to maintain this functionality.

See a full example in Creating Tables.

- 66 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

Syntax
Simplified syntax for CREATE TABLE:

CREATE TABLE [<Database Name>.<Schema Name>].<Table Name> (<Column Definitions>)
[ON{<Partition Scheme Name> (<Partition Column Name>)];

<Column Definition>:
<Column Name> <Data Type>
[CONSTRAINT <Column Constraint>
[DEFAULT <Default Value>]]
[IDENTITY [(<Seed Value>, <Increment Value>)]
[NULL | NOT NULL]
[ENCRYPTED WITH (<Encryption Specifications>)
[<Column Constraints>]
[<Column Index Specifications>]

<Column Constraint>:
[CONSTRAINT <Constraint Name>]
{{PRIMARY KEY | UNIQUE} [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = <Fill Factor>]
| [FOREIGN KEY]
REFERENCES <Referenced Table> (<Referenced Columns>)]

<Column Index Specifications>:
INDEX <Index Name> [CLUSTERED | NONCLUSTERED]
[WITH(<Index Options>]

Examples
Create a basic table.

CREATE TABLE MyTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

Create a table with column constraints and an identity.

CREATE TABLE MyTable
(
Col1 INT NOT NULL PRIMARY KEY IDENTITY (1,1),
Col2 VARCHAR(20) NOT NULL CHECK (Col2 <> ''),
Col3 VARCHAR(100) NULL
REFERENCES MyOtherTable (Col3)

);

Create a table with an additional index.

CREATE TABLE MyTable
(
Col1 INT NOT NULL PRIMARY KEY,

- 67 -

Col2 VARCHAR(20) NOT NULL
INDEX IDX_Col2 NONCLUSTERED

);

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-
server-ver15

PostgreSQL Usage
Like SQL Server, Aurora PostgreSQL provides ANSI/ISO syntax entry level conformity for CREATE TABLE and
custom extensions to support Aurora PostgreSQL specific functionality.

In itsmost basic form, and very similar to SQL Server, the CREATE TABLE statement in Aurora PostgreSQL is
used to define:

l Table names containing security schema and/or database

l Column names

l Column data types

l Column and table constraints

l Column default values

l Primary, candidate (UNIQUE), and foreign keys

Starting with PostgreSQL 12 support for generated columns has been added. Generated columns can be either
calculated from other columns values on the fly or calculated and stored.

CREATE TABLE tst_gen(
n NUMERIC,
n_gen GENERATED ALWAYS AS (n*0.01)
);

Aurora PostgreSQL Extensions

Aurora PostgreSQL extends the basic syntax and allowsmany additional options to be defined as part of the
CREATE TABLE or ALTER TABLE statements. Themost often used option is in-line index definition.

Table Scope

Aurora PostgreSQL provides two table scopes:

l Standard Tables are created on disk, visible globally, and persist through connection resets and server
restarts.

l Temporary Tables are created using the CREATE GLOBAL TEMPORARY TABLE statement. A
TEMPORARY table is visible only to the session that creates it and is dropped automatically when the ses-
sion is closed.

- 68 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15

Creating a Table Based on an Existing Table or Query

Aurora PostgreSQL provides two ways to create standard or temporary tables based on existing tables and quer-
ies:

CREATE TABLE <New Table> LIKE <Source Table> and CREATE TABLE ... AS <Query Expres-
sion>.

CREATE TABLE <New Table> LIKE <Source Table> creates an empty table based on the defin-
ition of another table including any column attributes and indexes defined in the ori-
ginal table.

CREATE TABLE ... AS <Query Expression> is very similar to SQL Server's SELECT INTO. It
allows creating a new table and populating data in a single step.

For example:

CREATE TABLE SourceTable(Col1 INT);

INSERT INTO SourceTable VALUES (1)

CREATE TABLE NewTable(Col1 INT) AS SELECT Col1 AS Col2 FROM SourceTable;

INSERT INTO NewTable (Col1, Col2) VALUES (2,3);

SELECT * FROM NewTable

Col1 Col2
---- ----
NULL 1
2 3

Converting TIMESTAMP and ROWVERSION Columns

SQL server provides an automaticmechanism for stamping row versions for application concurrency control. For
example:

CREATE TABLE WorkItems
(
WorkItemID INT IDENTITY(1,1) PRIMARY KEY,
WorkItemDescription XML NOT NULL,
Status VARCHAR(10) NOT NULL DEFAULT ('Pending'),
-- other columns...
VersionNumber ROWVERSION

);

The VersionNumber column automatically updateswhen a row ismodified. The actual value ismeaningless. Just
the fact that it changed is what indicates a row modification. The client can now read a work item row, process it,
and ensure no other clients updated the row before updating the status.

SELECT @WorkItemDescription = WorkItemDescription,
 @Status = Status,
 @VersionNumber = VersionNumber
FROM WorkItems

- 69 -

WHERE WorkItemID = @WorkItemID;

EXECUTE ProcessWorkItem @WorkItemID, @WorkItemDescription, @Stauts OUTPUT;

IF (
 SELECT VersionNumber
 FROM WorkItems
 WHERE WorkItemID = @WorkItemID
) = @VersionNumber;
EXECUTE UpdateWorkItems @WorkItemID, 'Completed'; -- Success

ELSE
EXECUTE ConcurrencyExceptionWorkItem; -- Row updated while processing

In Aurora PostgreSQL, you can add a trigger to maintain the updated stamp per row.

CREATE OR REPLACE FUNCTION IncByOne()
RETURNS TRIGGER
AS $$
BEGIN

UPDATE WorkItems SET VersionNumber = VersionNumber+1
 WHERE WorkItemID = OLD.WorkItemID;

END; $$
LANGUAGE PLPGSQL;

CREATE TRIGGER MaintainWorkItemVersionNumber
AFTER UPDATE OF WorkItems
FOR EACH ROW
EXECUTE PROCEDURE IncByOne();

Formore information on PostgreSQL triggers, see the Triggers.

Syntax
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name ([

{ column_name data_type [COLLATE collation] [column_constraint [...]]
| table_constraint
| LIKE source_table [like_option ...] }
[, ...]

])
[INHERITS (parent_table [, ...])]
[PARTITION BY { RANGE | LIST } ({ column_name | (expression) } [COLLATE collation
] [opclass] [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name

OF type_name [(
{ column_name [WITH OPTIONS] [column_constraint [...]]

| table_constraint }

- 70 -

[, ...]
)]
[PARTITION BY { RANGE | LIST } ({ column_name | (expression) } [COLLATE collation
] [opclass] [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name

PARTITION OF parent_table [(
{ column_name [WITH OPTIONS] [column_constraint [...]]

| table_constraint }
[, ...]

)] FOR VALUES partition_bound_spec
[PARTITION BY { RANGE | LIST } ({ column_name | (expression) } [COLLATE collation
] [opclass] [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |

NULL |
CHECK (expression) [NO INHERIT] |
DEFAULT default_expr |
GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
UNIQUE index_parameters |
PRIMARY KEY index_parameters |
REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

[ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |

UNIQUE (column_name [, ...]) index_parameters |
PRIMARY KEY (column_name [, ...]) index_parameters |
EXCLUDE [USING index_method] (exclude_element WITH operator [, ...]) index_para-

meters [WHERE (predicate)] |
FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE
action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and like_option is:

{ INCLUDING | EXCLUDING } { COMMENTSDEFAULTS | CONSTRAINTS | DEFAULTS | IDENTITY |
INDEXES | STATISTICS | STORAGE |COMMENTS | ALL }

and partition_bound_spec is:

- 71 -

IN ({ numeric_literal | string_literal | TRUE | FALSE | NULL } [, ...]) |
FROM ({ numeric_literal | string_literal | TRUE | FALSE | MINVALUE | MAXVALUE } [,
...])

TO ({ numeric_literal | string_literal | TRUE | FALSE | MINVALUE | MAXVALUE } [,
...])

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | LAST }]

Examples
Create a basic table.

CREATE TABLE MyTable
(
Col1 INT PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

Create a table with column constraints.

CREATE TABLE MyTable
(
Col1 INT PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
CHECK (Col2 <> ''),

Col3 VARCHAR(100) NULL
REFERENCES MyOtherTable (Col3)

);

Summary
Feature SQL Server Aurora PostgreSQL

ANSI compliance Entry level Entry level

Auto generated enumerator IDENTITY SERIAL

Reseed auto generated value DBCC CHECKIDENT N/A

Index types CLUSTERED /
NONCLUSTERED

See the Clustered and NonClustered
Indexes .

Physical storage location ON <File Group> Not supported

Temporary tables #TempTable CREATE GLOBAL TEMPORARY
TABLE

Global Temporary Tables ##GlobalTempTable CREATE TEMPORARY TABLE

- 72 -

Feature SQL Server Aurora PostgreSQL

Table Variables DECLARE@Table Not supported

Create table as query SELECT... INTO CREATE TABLE... AS

Copy table structure Not supported CREATE TABLE... LIKE

Memory optimized tables Supported N/A

Formore information, see https://www.postgresql.org/docs/13/sql-createtable.html

SQL Server Common Table Expressions vs.
PostgreSQL Common Table Expressions (CTE)
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A Must use RECURSIVE keyword for recursive
CTE queries

SQL Server Usage
Common Table Expressions (CTE), which have been a part of the ANSI standard since SQL:1999, simplify quer-
ies andmake themmore readable by defining a temporary view, or derived table, that a subsequent query can ref-
erence. SQL Server CTEs can be the target of DMLmodification statements. They have similar restrictions as
updateable views.

SQL Server CTEs provide recursive functionality in accordance with the the ANSI 99 standard. Recursive CTEs
can reference themselves and re-execute queries until the data set is exhausted, or themaximumnumber of iter-
ations is exceeded.

CTE Syntax (simplified)
WITH <CTE NAME>
AS
(
SELECT
)
SELECT ...
FROM CTE

Recursive CTE syntax
WITH <CTE NAME>
AS (
 <Anchor SELECT query>
 UNION ALL
 <Recursive SELECT query with reference to <CTE NAME>>
)
SELECT ... FROM <CTE NAME>...

- 73 -

https://www.postgresql.org/docs/13/sql-createtable.html

Examples
Create and populate anOrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Define a CTE to calculate the total quantity in every order and then join to the OrderItems table to obtain the rel-
ative quantity for each item.

WITH AggregatedOrders
AS
(SELECT OrderID, SUM(Quantity) AS TotalQty
 FROM OrderItems
 GROUP BY OrderID
)
SELECT O.OrderID, O.Item,
 O.Quantity,

(O.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O
 INNER JOIN
 AggregatedOrders AS AO
 ON O.OrderID = AO.OrderID;

The example above produces the following results:

OrderID Item Quantity PercentOfOrder
------- ---- -------- -------------
1 M8 Bolt 100 100.0000000000
2 M8 Nut 100 100.0000000000
3 M8 Washer 100 33.3333333300
3 M6 Washer 200 66.6666666600

Using a Recursive CTE, create and populate the Employees table with the DirectManager for each employee.

CREATE TABLE Employees
(
Employee VARCHAR(5) NOT NULL PRIMARY KEY,
DirectManager VARCHAR(5) NULL
);

INSERT INTO Employees(Employee, DirectManager)
VALUES

- 74 -

('John', 'Dave'),
('Jose', 'Dave'),
('Fred', 'John'),
('Dave', NULL);

Use a recursive CTE to display the employee-management hierarchy.

WITH EmpHierarchyCTE AS
(
-- Anchor query retrieves the top manager
SELECT 0 AS LVL,
 Employee,
 DirectManager
FROM Employees AS E
WHERE DirectManager IS NULL
UNION ALL
-- Recursive query gets all Employees managed by the previous level
SELECT LVL + 1 AS LVL,
 E.Employee,
 E.DirectManager
FROM EmpHierarchyCTE AS EH
INNER JOIN
Employees AS E
ON E.DirectManager = EH.Employee
)
SELECT *
FROM EmpHierarchyCTE;

The example above displays the following results:

LVL Employee DirectManager
--- -------- -------------
0 Dave NULL
1 John Dave
1 Jose Dave
2 Fred John

Formore information, see https://technet.microsoft.com/en-us/library/ms186243.aspx

PostgreSQL Usage
PostgreSQL conforms to the ANSI SQL-99 standard and implementing CTEs in PostgreSQL is similar to SQL
Server.

CTE also non asWITH query, this type of query helps you to simplify long queries, it is similar to defining tem-
porary tables that exist only for the running of the query. The statement in aWITH clause can be a SELECT,
INSERT, UPDATE, or DELETE, and theWITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, or DELETE.

- 75 -

https://technet.microsoft.com/en-us/library/ms186243.aspx

CTE Syntax (simplified)
WITH <CTE NAME>
AS
(
SELECT OR DML
)
SELECT OR DML

Recursive CTE syntax
WITH RECURSIVE <CTE NAME>
AS (
 <Anchor SELECT query>
 UNION ALL
 <Recursive SELECT query with reference to <CTE NAME>>
)
SELECT OR DML

Examples
Create and populate anOrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Create a CTE.

WITH DEPT_COUNT
(DEPARTMENT_ID, DEPT_COUNT) AS (

 SELECT DEPARTMENT_ID, COUNT(*) FROM EMPLOYEES GROUP BY DEPARTMENT_ID)
 SELECT E.FIRST_NAME ||' '|| E.LAST_NAME AS EMP_NAME,
 D.DEPT_COUNT AS EMP_DEPT_COUNT
 FROM EMPLOYEES E JOIN DEPT_COUNT D USING (DEPARTMENT_ID) ORDER BY 2;

- 76 -

PostgreSQL provides an additional feature when using a CTE as a recursivemodifier. The following example
uses a recursiveWITH clause to access its own result set.

WITH RECURSIVE t(n) AS (
 VALUES (0)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 5)
 SELECT * FROM t;

WITH RECURSIVE t(n) AS (
VALUES (0)
UNION ALL
SELECT n+1 FROM t WHERE n < 5)

SELECT * FROM t;

n
--
0
...
5

Note that using the SQL Server example will get undesired results:

Define a CTE to calculate the total quantity in every order and then join to the OrderItems table to obtain the rel-
ative quantity for each item.

WITH AggregatedOrders
AS
(SELECT OrderID, SUM(Quantity) AS TotalQty
 FROM OrderItems
 GROUP BY OrderID
)
SELECT O.OrderID, O.Item,
 O.Quantity,

(O.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O
 INNER JOIN
 AggregatedOrders AS AO
 ON O.OrderID = AO.OrderID;

The example above produces the following results:

OrderID Item Quantity PercentOfOrder
------- ---- -------- -------------
1 M8 Bolt 100 100
2 M8 Nut 100 100
3 M8 Washer 100 0
3 M6 Washer 200 0

This is because divide INT by INT will return round result, if another data type is in used such asDECIMAL there
will be no problem, in order to fix the current issue the columns can be casted using '::decimal'.

- 77 -

WITH AggregatedOrders
AS
(SELECT OrderID, SUM(Quantity) AS TotalQty
 FROM OrderItems
 GROUP BY OrderID
)
SELECT O.OrderID, O.Item,
 O.Quantity,
 trunc((O.Quantity::decimal / AO.TotalQty::decimal)*100,2) AS PercentOfOrder
FROM OrderItems AS O
 INNER JOIN
 AggregatedOrders AS AO
 ON O.OrderID = AO.OrderID;

The example above produces the following results:

OrderID Item Quantity PercentOfOrder
------- ---- -------- -------------
1 M8 Bolt 100 100.00
2 M8 Nut 100 100.00
3 M8 Washer 100 66.66
3 M6 Washer 200 33.33

For RECURSIVEWITH query, the 'RECURSIVE' wordmust be used (unlike in SQL Server).

The equivalent query to SQL Server example will be:

Use a recursive CTE to display the employee-management hierarchy.

WITH RECURSIVE EmpHierarchyCTE AS
(
-- Anchor query retrieves the top manager
SELECT 0 AS LVL,
 Employee,
 DirectManager
FROM Employees AS E
WHERE DirectManager IS NULL
UNION ALL
-- Recursive query gets all Employees managed by the previous level
SELECT LVL + 1 AS LVL,
 E.Employee,
 E.DirectManager
FROM EmpHierarchyCTE AS EH
INNER JOIN
Employees AS E
ON E.DirectManager = EH.Employee
)
SELECT *
FROM EmpHierarchyCTE;

The example above displays the following results:

LVL Employee DirectManager
--- -------- -------------
0 Dave
1 John Dave

- 78 -

1 Jose Dave
2 Fred John

For additional details, see: https://www.postgresql.org/docs/13/static/queries-with.html

SQL Server Data Types vs. PostgreSQL Data Types
Feature Com-
patibility

SCT/DMS Automation
Level SCT Action Code Index Key Differences

SCT Action Codes - Data
Types

Syntax and handling dif-
ferences

SQL Server Usage
In SQL Server, each table column, variable, expression, and parameter has an associated data type. SQL Server
provides a rich set of built-in data types as summarized in the following table.

Category Data Types

Numeric BIT, TINYINT, SMALLINT, INT, BIGINT, NUMERIC, DECIMAL, MONEY,
SMALLMONEY, FLOAT, REAL

String and Character CHAR, VARCHAR, NCHAR, NVARCHAR

Temporal DATE, TIME, SMALLDATETIME, DATETIME, DATETIME2,
DATETIMEOFFSET

Binary BINARY, VARBINARY

LargeObject (LOB) TEXT, NTEXT, IMAGE, VARCHAR(MAX), NVARCHAR(MAX),
VARBINARY(MAX)

Cursor CURSOR

GUID UNIQUEIDENTIFIER

Hierarchical identifier HIERARCHYID

Spatial GEOMETRY, GEOGRAPHY

Sets (Table type) TABLE

XML XML

Other Specialty Types ROWVERSION, SQL_VARIANT

Note: You can create custom user defined data types using T-SQL, and the .NET Framework. Custom
data types are based on the built-in system data types and are used to simplify development. For more
information, see User Defined Types.

TEXT, NTEXT, and IMAGE Deprecated Data Types

The TEXT, NTEXT, and IMAGE data types have been deprecated as of SQL Server 2008R2 in accordance with
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105).

- 79 -

https://www.postgresql.org/docs/13/static/queries-with.html
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

These data types are legacy types for storing BLOB andCLOB data. The TEXT data type was used to store
ASCII text CLOBS, the NTEXT data type to store UNICODE CLOBS, and IMAGE was used as a generic data
type for storing all BLOB data. In SQL Server 2005, Microsoft introduced the new and improved VARCHAR
(MAX), NVARCHAR(MAX), and VARBINARY(MAX) data types as the new BLOB andCLOB standard. These
new types support a wider range of functions and operations. They also provide enhanced performance over the
legacy types.

If your code uses TEXT, NTEXT or IMAGE data types, SCT automatically converts them to the appropriate Aur-
ora PostgreSQL BYTEA data type. TEXT and NTEXT are converted to LONGTEXT and image to LONGBLOB.
Make sure you use the proper collations. For more details, see the Collations.

Examples
Define table columns.

CREATE TABLE MyTable
(
Col1 AS INTEGER NOT NULL PRIMARY KEY,
Col2 AS NVARCHAR(100) NOT NULL
);

Define variable types.

DECLARE @MyXMLType AS XML,
 @MyTemporalType AS DATETIME2

DECLARE @MyTableType
AS TABLE
(
Col1 AS BINARY(16) NOT NULL PRIMARY KEY,
Col2 AS XML NULL
);

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-
ver15

PostgreSQL Usage
PostgreSQL providesmultiple data types equivalent to certain SQL Server data types. The following table
provides the full list of PostgreSQL data types:

SQL Server
Data Type
Family

SQL ServerData Type SQL Server Data Type Char-
acteristic

PostgreSQL
Identical Com-
patibility

PostgreSQL
Corresponding
Data Type

Character CHAR Fixed length 1-8,000 Yes CHAR

VARCHAR Variable length 1-8,000 Yes VARCHAR

NCHAR Fixed length 1-4,000 Yes NCHAR

NVARCHAR Variable length 1-4,000 Yes NVARCHAR

Numeric BIT first 8 BIT columnwill consume 1 Yes BIT

- 80 -

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-ver15

SQL Server
Data Type
Family

SQL ServerData Type SQL Server Data Type Char-
acteristic

PostgreSQL
Identical Com-
patibility

PostgreSQL
Corresponding
Data Type

byte, 9 to 16 BIT columnswill be 2
bytes etc..

TINYINT 8-bit unsigned integer, 0 to 255 No SMALLINT

SMALLINT 16-bit integer Yes SMALLINT

INT, INTEGER 32-bit integer Yes INT, INTEGER

BIGINT 64-bit integer Yes BIGINT

NUMERIC Fixed-point number Yes NUMERIC

DECIMAL Fixed-point number Yes DECIMAL

MONEY 64-bit currency amount Yes MONEY

SMALLMONEY 32-bit currency amount No MONEY

FLOAT Floating-point number Yes FLOAT

REAL Single-precision floating-point
number

Yes REAL

Temporal DATE Date (year, month and day) Yes DATE

TIME Time (hour, minute, second and
fraction)

Yes TIME

SMALLDATETIME Date and time No TIMESTAMP(0)

DATETIME Date and time with fraction No TIMESTAMP(3)

DATETIME2 Date and time with fraction No TIMESTAMP(p)

Temporal DATETIMEOFFSET Date and time with fraction and
time zone

No TIMESTAMP(p)
WITH TIME
ZONE

Binary BINARY Fixed-length byte string No BYTEA

VARBINARY Variable length 1-8,000 No BYTEA

LOB TEXT Variable-length character data up
to 2GB

Yes TEXT

NTEXT Variable-length Unicode UCS-2
data up to 2GB

No TEXT

IMAGE Variable-length character data up
to 2GB

No BYTEA

VARCHAR(MAX) Variable-length character data up
to 2GB

Yes TEXT

NVARCHAR(MAX) Variable-length Unicode UCS-2
data up to 2GB

No TEXT

VARBINARY(MAX) Variable-length character data up
to 2GB

No BYTEA

- 81 -

SQL Server
Data Type
Family

SQL ServerData Type SQL Server Data Type Char-
acteristic

PostgreSQL
Identical Com-
patibility

PostgreSQL
Corresponding
Data Type

XML XML XML data Yes XML

GUID UNIQUEIDENTIFIER 16-byte GUID (UUID) No CHAR(16)

Hierarchical
identifier

HIERARCHYID Approximately 5 bytes No NVARCHAR
(4000)

Spatial - For
using with
Aurora Post-
greSQL, see:
AWS Docs

GEOMETRY Euclidean (flat) coordinate system Yes GEOMETRY

GEOGRAPHY Round-earth coordinate system Yes GEOGRAPHY

SQL_VARIANT Maximum length of 8016 No No equivalent

Other ROWVERSION 8 bytes No TIMESTAMP(p)

PostgreSQL Character Column Semantics

PostgreSQL only supports CHAR for column size semantics. If you define a field as VARCHAR (10), Post-
greSQL can store 10 characters regardless of how many bytes it takes to store each non-English character.
VARCHAR(n) stores strings up to n characters (not bytes) in length.

Migration of SQL Server Data Types to PostgreSQL Data Types

Automaticmigration and conversion of SQL Server Tables and Data Types can be performed using Amazon’s
SchemaConversion Tool (Amazon SCT).

Examples
To demonstrate SCT’s capability for migrating SQL Server tables to their PostgreSQL equivalents, a table con-
taining columns representing themajority of SQL Server data typeswas created and converted using Amazon
SCT.

Source SQL Server compatible DDL for creating the DATATYPES table:

CREATE TABLE "DataTypes"(
"BINARY_FLOAT" REAL,

"BINARY_DOUBLE" FLOAT,
"BLOB" VARBINARY(4000),
"CHAR" CHAR(10),
"CHARACTER" CHAR(10),
"CLOB" VARCHAR(4000),
"DATE" DATE,
"DECIMAL" NUMERIC(3,2),
"DOUBLE_PRECISION" FLOAT(52),
"FLOAT" FLOAT(3),
"INTEGER" INTEGER,
"LONG" TEXT,
"NCHAR" NCHAR(10),
"NUMBER" NUMERIC(9,9),
"NUMBER1" NUMERIC(9,0),

- 82 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.PostGIS

"NUMERIC" NUMERIC(9,9),
"RAW" BINARY(10),
"REAL" FLOAT(52),
"SMALLINT" SMALLINT,
"TIMESTAMP" TIMESTAMP,
"TIMESTAMP_WITH_TIME_ZONE" DATETIMEOFFSET(5),
"VARCHAR" VARCHAR(10),
"VARCHAR2" VARCHAR(10),
"XMLTYPE" XML

);

Target PostgreSQL compatible DDL for creating the DATATYPES tablemigrated fromSQLServer with
Amazon SCT:

CREATE TABLE IF NOT EXISTS datatypes(
binary_float real DEFAULT NULL,
binary_double double precision DEFAULT NULL,
blob bytea DEFAULT NULL,
char character(10) DEFAULT NULL,
character character(10) DEFAULT NULL,
clob text DEFAULT NULL,
date TIMESTAMP(0) without time zone DEFAULT NULL,
decimal numeric(3,2) DEFAULT NULL,
dec numeric(3,2) DEFAULT NULL,
double_precision double precision DEFAULT NULL,
float double precision DEFAULT NULL,
integer numeric(38,0) DEFAULT NULL,
long text DEFAULT NULL,
nchar character(10) DEFAULT NULL,
number numeric(9,9) DEFAULT NULL,
number1 numeric(9,0) DEFAULT NULL,
numeric numeric(9,9) DEFAULT NULL,
raw bytea DEFAULT NULL,
real double precision DEFAULT NULL,
smallint numeric(38,0) DEFAULT NULL,
timestamp TIMESTAMP(5) without time zone DEFAULT NULL,
timestamp_with_time_zone TIMESTAMP(5) with time zone DEFAULT NULL,
varchar character varying(10) DEFAULT NULL,
varchar2 character varying(10) DEFAULT NULL,
xmltype xml DEFAULT NULL
)
WITH (
OIDS=FALSE
);

Summary:

All incompatible data type being converted by SCT.

SQL Server CREATE TABLE command:

CREATE TABLE scttest(
SMALLDATETIMEcol SMALLDATETIME,
datetimecol DATETIME,
datetime2col DATETIME2,
datetimeoffsetcol DATETIMEOFFSET,
binarycol BINARY,

- 83 -

varbinarycol VARBINARY,
ntextcol NTEXT,
imagecol IMAGE,
nvarcharmaxcol NVARCHAR(MAX),
varbinarymaxcol VARBINARY(MAX),
uniqueidentifiercol UNIQUEIDENTIFIER,
hierarchyiDcol HIERARCHYID,
sql_variantcol SQL_VARIANT,
rowversioncol ROWVERSION);

The equivalent command that was created using the SCT:

CREATE TABLE scttest(
smalldatetimecol TIMESTAMP WITHOUT TIME ZONE,
datetimecol TIMESTAMP WITHOUT TIME ZONE,
datetime2col TIMESTAMP(6) WITHOUT TIME ZONE,
datetimeoffsetcol TIMESTAMP(6) WITH TIME ZONE,
binarycol BYTEA,
varbinarycol BYTEA,
ntextcol TEXT,
imagecol BYTEA,
nvarcharmaxcol TEXT,
varbinarymaxcol BYTEA,
uniqueidentifiercol UUID,
hierarchyidcol VARCHAR(8000),
sql_variantcol VARCHAR(8000),
rowversioncol VARCHAR(8000) NOT NULL);

For additional details, see:

l https://www.postgresql.org/docs/13/static/ddl-system-columns.html

l https://www.postgresql.org/docs/13/static/datatype.html

l https://aws.amazon.com/documentation/SchemaConversionTool

SQL Server Derived Tables vs. PostgreSQL Derived
Tables
Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

N/A

SQL Server Usage
SQLServer implements Derived Tables as specified in ANSI SQL:2011.A derived tables are similar to a CTE,
but the reference to another query is used inside the FROMclause of a query.

This feature enables you to write more sophisticated, complex join queries.

- 84 -

https://www.postgresql.org/docs/13/static/ddl-system-columns.html
https://www.postgresql.org/docs/13/static/datatype.html
https://aws.amazon.com/documentation/SchemaConversionTool

Examples
SELECT name, salary, average_salary
FROM (SELECT AVG(salary)
 FROM employee) AS workers (average_salary), employee
WHERE salary > average_salary
ORDER BY salary DESC;

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

PostgreSQL Usage
PostgreSQL implements Derived Tables and is fully compatible with SQL Server Derived Tables.

Examples
SELECT name, salary, average_salary
FROM (SELECT AVG(salary)
 FROM employee) AS workers (average_salary), employee
WHERE salary > average_salary
ORDER BY salary DESC;

Formore information, see https://www.postgresql.org/docs/13/static/queries-table-expressions.html

SQL Server GROUP BY vs. PostgreSQL GROUP BY
Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

N/A

SQL Server Usage
GROUP BY is an ANSI SQL query clause used to group individual rows that have passed theWHERE filter
clause into groups to be passed on to the HAVING filter and then to the SELECT list. This grouping supports the
use of aggregate functions such as SUM,MAX, AVG, and others.

Syntax
ANSI compliant GROUP BY Syntax:

GROUP BY
[ROLLUP | CUBE]
<Column Expression> ...n
[GROUPING SETS (<Grouping Set>)...n

- 85 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15
https://www.postgresql.org/docs/13/static/queries-table-expressions.html

Backward compatibility syntax:

GROUP BY
[ALL] <Column Expression> ...n
[WITH CUBE | ROLLUP]

The basic ANSI syntax for GROUP BY supportsmultiple grouping expressions, the CUBE andROLLUP
keywords, and theGROUPINGSETS clause; all used to add super-aggregate rows to the output.

Up to SQL Server 2008 R2, the database engine supported a legacy, proprietary syntax (not ANSI Compliant)
using theWITH CUBE andWITH ROLLUP clauses. These clauses added super-aggregates to the output.

Also, up to SQL Server 2008 R2, SQL Server supported theGROUP BY ALL syntax, which was used to create
an empty group for rows that failed theWHERE clause.

SQL Server supports the following aggregate functions:

AVG, CHECKSUM_AGG, COUNT, COUNT_BIG, GROUPING, GROUPING_ID, STDEV, STDEVP, STRING_AGG,
SUM, MIN, MAX, VAR, VARP

Examples

Legacy CUBE and ROLLUP Syntax

CREATE TABLE Orders
(

OrderID INT IDENTITY(1,1) NOT NULL
PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO Orders(Customer, OrderDate)
VALUES ('John', '20180501'), ('John', '20180502'), ('John', '20180503'),

('Jim', '20180501'), ('Jim', '20180503'), ('Jim', '20180504')

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY Customer, OrderDate
WITH ROLLUP

Customer OrderDate NumOrders
-------------------- ---------- -----------
Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
Jim NULL 3
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1

- 86 -

John NULL 3
NULL NULL 6

The highlighted rowswere added as a result of theWITH ROLLUP clause and contain super aggregates for the
following:

l All orders for Jim and John regardless of OrderDate (Orange).

l A super aggregated for all customers and all dates (Red).

Using CUBE instead of ROLLUP adds super aggregates in all possible combinations, not only in GROUP BY
expression order.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY Customer, OrderDate
WITH CUBE

Customer OrderDate NumOrders
-------------------- ---------- -----------
Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3
John NULL 3

Note the additional four green highlighted rows, which were added by the CUBE. They provide super aggregates
for every date for all customers that were not part of the ROLLUP results above.

Legacy GROUP BY ALL

Use theOrders table from the previous example.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
WHERE OrderDate <= '20180503'
GROUP BY ALL Customer, OrderDate

Customer OrderDate NumOrders
-------------------- ---------- -----------
Jim 2018-05-01 1
John 2018-05-01 1
John 2018-05-02 1

- 87 -

Jim 2018-05-03 1
John 2018-05-03 1
Jim 2018-05-04 0
Warning: Null value is eliminated by an aggregate or other SET operation.

The row highlighted in orange for 2018-05-04 failed theWHERE clause and was returned as an empty group as
indicated by the warning for the empty COUNT(*) = 0.

Use GROUPING SETS

The following query uses the ANSI compliant GROUPINGSETS syntax to provide all possible aggregate com-
binations for the Orders table, similar to the result of the CUBE syntax. This syntax requires specifying each
dimension that needs to be aggregated.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY GROUPING SETS (

(Customer, OrderDate),
(Customer),
(OrderDate),
()

)

Customer OrderDate NumOrders
-------------------- ---------- -----------
Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3
John NULL 3

Formore information, see:

l https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-transact-sql?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL supports the basic ANSI syntax for GROUP BY and also supportsGROUPINGSETS
CUBE, and ROLLUP.

- 88 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql?view=sql-server-ver15

Like SQL Server, Aurora PostgreSQL does allow using ROLLUP andORDER BY clauses in the same query,
but the syntax is a bit different fromSQLServer; there is noWITH clause in the statement.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY ROLLUP (Customer, OrderDate)

Themain difference is the need tomove fromwriting the column to GROUP BY after the ROLLUP.

For the CUBE option, it's the same change:

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY CUBE (Customer, OrderDate);

GROUPINGSET:

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY GROUPING SETS (

(Customer, OrderDate),
(Customer),
(OrderDate),());

Formore information, see https://www.postgresql.org/docs/13/static/queries-table-expressions.html

Syntax
SELECT <Select List>
FROM <Table Source>
WHERE <Row Filter>
GROUP BY

[ROLLUP | CUBE | GROUPING SETS]
<Column Name> | <Expression> | <Position>

Migration Considerations
TheGROUP BY functionality exists (except for the ALL option).

Every querymust be converted to use the column name after the GROUP BY option (CUBE, ROLLUP, or
CUBE).

Examples
Rewrite SQL Server WITH CUBEmodifier for migration. Also, see the example in SQL Server GROUP BY.

- 89 -

https://www.postgresql.org/docs/13/static/queries-table-expressions.html

CREATE TABLE Orders
(

OrderID serial NOT NULL
PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO Orders(Customer, OrderDate)
VALUES ('John', '20180501'), ('John', '20180502'), ('John', '20180503'),

('Jim', '20180501'), ('Jim', '20180503'), ('Jim', '20180504');

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY CUBE (Customer, OrderDate);

Customer OrderDate NumOrders
-------- --------- ---------
Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
Jim NULL 3
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
John NULL 3
NULL NULL 6
NULL 2018-05-01 2
NULL 2018-05-02 1
NULL 2018-05-03 2
NULL 2018-05-04 1

Rewrite SQL Server GROUP BY ALL for migration. Also see the example in SQL Server GROUP BY.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
WHERE OrderDate <= '20180503'
GROUP BY Customer, OrderDate
UNION ALL -- Add the empty groups
SELECT DISTINCT Customer,

OrderDate,
0

FROM Orders AS O
WHERE OrderDate > '20180503';

Customer OrderDate NumOrders
-------- --------- ---------
Jim 2018-05-01 1
Jim 2018-05-03 1
John 2018-05-01 1

- 90 -

John 2018-05-02 1
John 2018-05-03 1
Jim 2018-05-04 0

Summary
Table of similarities, differences, and keymigration considerations.

SQL Server feature Aurora PostgreSQL fea-
ture Comments

MAX, MIN, AVG, COUNT,
COUNT_BIG

MAX, MIN, AVG, COUNT In Aurora PostgreSQL, COUNT returns a BIGINT
and is compatible with SQL Server's COUNT and
COUNT_BIG.

CHECKSUM_AGG N/A Use a loop to calculate checksums.

GROUPING, GROUPING_
ID

GROUPING Reconsider query logic to avoid having NULL
groups that are ambiguouswith the super aggreg-
ates.

STDEV, STDEVP, VAR,
VARP

STDDEV, STDDEV_POP,
VARIANCE, VAR_POP

Rewrite keywords only.

STRING_AGG STRING_AGG

WITH ROLLUP ROLLUP RemoveWITH and change the columns names to
be after the ROLLUP keyword

WITH CUBE CUBE RemoveWITH and change the columns names to
be after the CUBE keyword

GROUPINGSETS GROUPINGSETS

Formore information, see https://www.postgresql.org/docs/13/static/functions-aggregate.html

SQL Server Table JOIN vs. PostgreSQL Table JOIN
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A OUTER JOIN with commas and CROSS APPLY and
OUTER APPLY are not supported

SQL Server Usage
ANSI JOIN

SQLServer supports the standard ANSI join types:

l <Set A> CROSS JOIN <Set B>: Results in a Cartesian product of the two sets. Every JOIN starts as a
Cartesian product.

- 91 -

https://www.postgresql.org/docs/10/static/functions-aggregate.html

l <Set A> INNER JOIN <Set B> ON <Join Condition>: Filters the Cartesian product to only the rows
where the join predicate evaluates to TRUE.

l <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows from
the reserved left set with NULL for all the columns that come from the right set.

l <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows
from the reserved right set with NULL for all the columns that come from the left set.

l <Set A> FULL OUTER JOIN <Set B> ON <Join Condition>: Designates both sets as reserved and
adds nonmatching rows from both, similar to a LEFT OUTER JOIN and a RIGHTOUTER JOIN.

APPLY

SQLServer also supports the APPLY operator, which is somewhat similar to a join. However, APPLY operators
enable the creation of a correlation between <Set A> and <Set B> such that <Set B> may consist of a sub query,
a VALUES row value constructor, or a table valued function that is evaluated per row of <Set A> where the <Set
B> query can reference columns from the current row in <Set A>. This functionality is not possible with any type
of standard JOIN operator.

There are two APPLY types:

l <Set A> CROSS APPLY <Set B>: Similar to a CROSS JOIN in the sense that every row from <Set A> is
matched with every row from <Set B>.

l <Set A> OUTER APPLY <Set B>: Similar to a LEFT OUTER JOIN in the sense that rows from <Set A>
are returned even if the sub query for <Set B> produces an empty set. In that case, NULL is assigned to all
columns of <Set B>.

ANSI SQL 89 JOIN Syntax

Up until version 2008R2, SQL Server also supported the "old style" JOIN syntax including LEFT and
RIGHT OUTER JOIN.

The ANSI syntax for a CROSS JOIN operator was to list the sets in the FROMclause using commas as sep-
arators. For example:

SELECT *
FROM Table1,
 Table2,
 Table3...

To perform an INNER JOIN, you only needed to add the JOIN predicate as part of theWHERE clause. For
example:

SELECT *
FROM Table1,
 Table2
WHERE Table1.Column1 = Table2.Column1

Although the ANSI standard didn't specify outer joins at the time, most RDBMS supported them in one way or
another. T-SQL supported outer joins by adding an asterisk to the left or the right of equality sign of the join pre-
dicate to designate the reserved table. For example:

SELECT *
FROM Table1,

- 92 -

 Table2
WHERE Table1.Column1 *= Table2.Column1

To perform a FULL OUTER JOIN, asterisks were placed on both sides of the equality sign of the join predicate.

As of SQL Server 2008R2, outer joins using this syntax have been deprecated in accordance with https://-
technet.microsoft.com/it-it/library/ms143729(v=sql.105).aspx.

Note: Even though INNER JOINs using the ANSI SQL 89 syntax are still supported, they are highly dis-
couraged due to being notorious for introducing hard-to-catch programming bugs.

Syntax

CROSS JOIN

FROM <Table Source 1>
 CROSS JOIN
 <Table Source 2>

-- ANSI 89
FROM <Table Source 1>,
 <Table Source 2>

INNER / OUTER JOIN

FROM <Table Source 1>
[{ INNER | { { LEFT | RIGHT | FULL } [OUTER] } }] JOIN

 <Table Source 2>
 ON <JOIN Predicate>

-- ANSI 89
FROM <Table Source 1>,
 <Table Source 2>
WHERE <Join Predicate>
<Join Predicate>:: <Table Source 1 Expression> | = | *= | =* | *=* <Table Source 2
Expression>

APPLY

FROM <Table Source 1>
{ CROSS | OUTER } APPLY

 <Table Source 2>
<Table Source 2>:: <SELECT sub-query> | <Table Valued UDF> | <VALUES clause>

Examples
Create the Orders and Items tables.

CREATE TABLE Items
(

- 93 -

https://technet.microsoft.com/it-it/library/ms143729(v=sql.105).aspx
https://technet.microsoft.com/it-it/library/ms143729(v=sql.105).aspx

Item VARCHAR(20) NOT NULL
 PRIMARY KEY
Category VARCHAR(20) NOT NULL,
Material VARCHAR(20) NOT NULL
);

INSERT INTO Items (Item, Category, Material)
VALUES
('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
('M8 Nut', 'Metric Nuts', 'Stainless Steel'),
('M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL
REFERENCES Items(Item),
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200)

INNER JOIN

SELECT *
FROM Items AS I
 INNER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item;

-- ANSI SQL 89
SELECT *
FROM Items AS I,
 OrderItems AS OI
WHERE I.Item = OI.Item;

LEFT OUTER JOIN

Find Items that were never ordered.

SELECT I.Item
FROM Items AS I
 LEFT OUTER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

- 94 -

-- ANSI SQL 89
SELECT Item
FROM
(
SELECT I.Item, O.OrderID
FROM Items AS I,

 OrderItems AS OI
WHERE I.Item *= OI.Item

) AS LeftJoined
WHERE LeftJoined.OrderID IS NULL;

FULL OUTER JOIN

CREATE TABLE T1(Col1 INT, COl2 CHAR(2));
CREATE TABLE T2(Col1 INT, COl2 CHAR(2));

INSERT INTO T1 (Col1, Col2)
VALUES (1, 'A'), (2,'B');

INSERT INTO T2 (Col1, Col2)
VALUES (2,'BB'), (3,'CC');

SELECT *
FROM T1

FULL OUTER JOIN
T2
ON T1.Col1 = T2.Col1;

Result:
Col1 COl2 Col1 COl2
---- ---- ---- ----
1 A NULL NULL
2 B 2 BB
NULL NULL 3 CC

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

PostgreSQL Overview
Aurora PostgreSQL supports all types of joins in the sameway as SQL Server:

l <Set A> CROSS JOIN <Set B>: Results in a Cartesian product of the two sets. Every JOIN starts as a
Cartesian product.

l <Set A> INNER JOIN <Set B> ON <Join Condition>: Filters the Cartesian product to only the rows
where the join predicate evaluates to TRUE.

l <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows from
the reserved left set with NULL for all the columns that come from the right set.

l <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows
from the reserved right set with NULL for all the columns that come from the left set.

- 95 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

l <Set A> FULL OUTER JOIN <Set B> ON <Join Condition>: Designates both sets as reserved and
adds nonmatching rows from both, similar to a LEFT OUTER JOIN and a RIGHTOUTER JOIN.

SQL Server's APPLY options are not supported but can be replaced with INNER JOIN LATERAL and LEFT
JOIN LATERAL.

Syntax
FROM
 <Table Source 1> CROSS JOIN <Table Source 2>

| <Table Source 1> INNER JOIN <Table Source 2>
 ON <Join Predicate>

| <Table Source 1> {LEFT|RIGHT|FULL} [OUTER] JOIN <Table Source 2>
 ON <Join Predicate>

Migration Considerations
For most JOINs, the syntax should be equivalent and no rewrites should be needed, a few differences can be
found below:

l ANSI SQL 89 is not supported.
l FULLOUTER JOIN andOUTER JOIN using the pre-ANSI SQL 92 syntax are not supported, but they can
be easily worked around (see the examples below).

l CROSS APPLY andOUTER APPLY are not supported and need to be rewritten using INNER JOIN
LATERAL and LEFT JOIN LATERAL.

Examples
Create the Orders and Items tables.

CREATE TABLE Items
(
Item VARCHAR(20) NOT NULL
 PRIMARY KEY
Category VARCHAR(20) NOT NULL,
Material VARCHAR(20) NOT NULL
);

INSERT INTO Items (Item, Category, Material)
VALUES
('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
('M8 Nut', 'Metric Nuts', 'Stainless Steel'),
('M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL
REFERENCES Items(Item),
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

- 96 -

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200)

INNER JOIN

SELECT *
FROM Items AS I
 INNER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item;

LEFT OUTER JOIN

Find Items that were never ordered.

SELECT Item
FROM Items AS I
 LEFT OUTER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

FULL OUTER JOIN

CREATE TABLE T1(Col1 INT, COl2 CHAR(2));
CREATE TABLE T2(Col1 INT, COl2 CHAR(2));

INSERT INTO T1 (Col1, Col2)
VALUES (1, 'A'), (2,'B');

INSERT INTO T2 (Col1, Col2)
VALUES (2,'BB'), (3,'CC');

SELECT *
FROM T1

FULL OUTER JOIN
T2
ON T1.Col1 = T2.Col1;

Result:
Col1 COl2 Col1 COl2
---- ---- ---- ----
1 A NULL NULL
2 B 2 BB
NULL NULL 3 CC

- 97 -

Summary
Table of similarities, differences, and keymigration considerations.

SQL Server Aurora PostgreSQL Comments

INNER JOIN with ON clause or commas Supported

OUTER JOIN with ON cluase Supported

OUTER JOIN with commas Not supported Requires T-SQL rewrite post
SQL Server 2008R2.

CROSS JOIN or using commas Supported

CROSS APPLY andOUTER APPLY Not Supported Rewrite required.

Formore information, see:

l https://www.postgresql.org/docs/13/static/explicit-joins.html

l https://www.postgresql.org/docs/13/static/tutorial-join.html

SQL Server Temporal Tables vs.
PostgreSQL Triggers (Temporal Tables alternative)

Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

N/A

SQL Server Usage
Temporal database tables were introduced in ANSI SQL 2011. T-SQL began supporting system versioned tem-
poral tables in SQL Server 2016.

Each temporal table has two explicitly defined DATETIME2 columns known as period columns. The system uses
these columns to record the period of availability for each row when it ismodified. An additional history table
retains the previous version of the data. The system can automatically create the history table, or a user can spe-
cify an existing table.

To query the history table, use FOR SYSTEMTIME after the table name in the FROMclause and combine it with
the following options:

l ALL: All changes

l CONTAINED IN: Change is valid only within a period

l AS OF: Change was valid somewhere in a specific period

l BETWEEN: change was valid from a time range

Temporal Tables aremostly used when to track data change history as described in the scenarios below.

- 98 -

https://www.postgresql.org/docs/13/static/explicit-joins.html
https://www.postgresql.org/docs/13/static/tutorial-join.html

Anomaly Detection

Use this option when searching for data with unusual values. For example, detecting when a customer returns
items too often.

CREATE TABLE Products_returned
(
 ProductID int NOT NULL PRIMARY KEY CLUSTERED,

ProductName varchar(60) NOT NULL,
return_count INT NOT NULL,
ValidFrom datetime2(7) GENERATED ALWAYS AS ROW START NOT NULL,
ValidTo datetime2(7) GENERATED ALWAYS AS ROW END NOT NULL,
PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)

)
WITH(SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductHistory,

DATA_CONSISTENCY_CHECK = ON))

Query the Product table and run calculations on the data.

SELECT
 ProductId,
 LAG (return_count, 1, 1)
 over (partition by ProductId order by ValidFrom) as PrevValue,
 return_count,
 LEAD (return_count, 1, 1)
 over (partition by ProductId order by ValidFrom) as NextValue ,
 ValidFrom, ValidTo from Product
FOR SYSTEM_TIME ALL

Audit

Track changes to critical data such as salaries or medical data.

CREATE TABLE Employee
(

EmployeeID int NOT NULL PRIMARY KEY CLUSTERED,
Name nvarchar(60) NOT NULL,
Salary decimal (6,2) NOT NULL,
ValidFrom datetime2 (2) GENERATED ALWAYS AS ROW START,
ValidTo datetime2 (2) GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)

)
WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.EmployeeTrackHistory));

Use FOR SYSTEM_TIME ALL to retrieve changes from the history table.

SELECT * FROM Employee
FOR SYSTEM_TIME ALL WHERE

EmployeeID = 1000 ORDER BY ValidFrom;

Other Scenarios

Additional scenarios include:

- 99 -

l Fixing row-level corruption

l Slowly Changing Dimension

l Over time changes analysis

Formore information, see https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-
server-ver15

PostgreSQL Usage
(Temporal Tables alternative)

PostgreSQL provides an extension for supporting temporal tables, but it's not supported by Amazon Aurora. A
workaround will be to create table triggers to update a custom history table to track changes to data. For addi-
tional information, see PostgreSQL triggers.

SQL Server Views vs. PostgreSQL Views
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A Indexed and Partitioned view are not
supported

SQL Server Usage
Views are schema objects that provide stored definitions for virtual tables. Similar to tables, views are data sets
with uniquely named columns and rows.With the exception of indexed views, view objects do not store data.
They consist only of a query definition and are reevaluated for each invocation.

Views are used as abstraction layers and security filters for the underlying tables. They can JOIN and UNION
data frommultiple source tables and use aggregates, window functions, and other SQL features as long as the
result is a semi-proper set with uniquely identifiable columns and no order to the rows. You can use Distributed
Views to query other databases and data sources using linked servers.

As an abstraction layer, a view can decouple application code from the database schema. The underlying tables
can be changed without the need tomodify the application code as long as the expected results of the view do not
change. You can use this approach to provide backward compatible views of data.

As a securitymechanism, a view can screen and filter source table data. You can perform permissionman-
agement at the view level without explicit permissions to the base objects, provided the ownership chain ismain-
tained. For more information on ownership chains in SQL Server, see
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/overview-of-sql-server-security.

View definitions are evaluated when they are created and are not affected by subsequent changes to the under-
lying tables. For example, a view that uses SELECT * does not display columns that were added later to the base
table. Similarly, if a columnwas dropped from the base table, invoking the view results in an error. Use the
SCHEMABINDINGoption to prevent changes to base objects.

- 100 -

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver15

Modifying Data Through Views

Updatable Views can both SELECT andmodify data. For a view to be updatable, the following conditionsmust
bemet:

l TheDML targets only one base table.

l Columns beingmodifiedmust be directly referenced from the underlying base tables. Computed columns,
set operators, functions, aggregates, or any other expressions are not permitted.

l If a view is created with the CHECK OPTION, rows being updated can not be filtered out of the view defin-
ition as the result of the update.

Special View Types

SQLServer also provides three types of specialized views:

l Indexed Views (also known asmaterialized views or persisted views) are standard views that have been
evaluated and persisted in a unique clustered index, much like a normal clustered primary key table. Each
time the source data changes, SQL Server re-evaluates the indexed views automatically and updates
them. Indexed views are typically used as ameans to optimize performance by pre-processing operators
such as aggregations, joins, and others. Queries needing this pre-processing don't have to wait for it to be
reevaluated on every query execution.

l Partitioned Views are views that rejoin horizontally partitioned data sets frommultiple underlying tables,
each containing only a subset of the data. The view uses a UNION ALL query where the underlying tables
can reside locally or in other databases (or even other servers). These types of views are called Distributed
Partitioned Views (DPV).

l System Views are used to access server and object meta data. SQL Server also supports a set of stand-
ard INFORMATION_SCHEMA views for accessing object meta data.

Syntax
CREATE [OR ALTER] VIEW [<Schema Name>.] <View Name> [(<Column Aliases>])]
[WITH [ENCRYPTION][SCHEMABINDING][VIEW_METADATA]]
AS <SELECT Query>
[WITH CHECK OPTION][;]

Examples
Create a view that aggregates items for each customer.

CREATE TABLE Orders
(
OrderID INT NOT NULL PRIMARY KEY,
OrderDate DATETIME NOT NULL
 DEFAULT GETDATE()
);

CREATE TABLE OrderItems
(
OrderID INT NOT NULL
REFERENCES Orders(OrderID),

- 101 -

Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

CREATE VIEW SalesView
AS
SELECT O.Customer,
 OI.Product,
 SUM(CAST(OI.Quantity AS BIGINT)) AS TotalItemsBought
FROM Orders AS O
 INNER JOIN
 OrderItems AS OI
 ON O.OrderID = OI.OrderID;

Create an indexed view that pre-aggregates items for each customer.

CREATE VIEW SalesViewIndexed
AS
SELECT O.Customer,
 OI.Product,
 SUM_BIG(OI.Quantity) AS TotalItemsBought
FROM Orders AS O
 INNER JOIN
 OrderItems AS OI
 ON O.OrderID = OI.OrderID;

CREATE UNIQUE CLUSTERED INDEX IDX_SalesView
ON SalesViewIndexed (Customer, Product);

Create a Partitioned View.

CREATE VIEW dbo.PartitioneView
WITH SCHEMABINDING
AS
SELECT *
FROM Table1
UNION ALL
SELECT *
FROM Table2
UNION ALL
SELECT *
FROM Table3

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/views/views?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view?view=sql-server-
ver15

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-ver15

- 102 -

https://docs.microsoft.com/en-us/sql/relational-databases/views/views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-ver15

PostgreSQL Usage
The basic form of Views is similar between PostgreSQL and SQLServer. A view defines a stored query based on
one or more physical database tables that executes every time the view is accessed.

More complex option such as Indexed Views or Partitioned Views are not supported, andmay require a redesign
or might application rewrite.

RDS ONLY: Starting with PostgreSQL 13 it is now possible to rename view columns using ALTER
VIEW command, this will help the DBA to avoid dropping and recreating the view in order to change
a column name.
The following syntaxwas added to the ALTER VIEW:

ALTER VIEW [IF EXISTS] name RENAME [COLUMN] column_name TO new_
column_name

Prior to PostgreSQL 13 the capability was there but in order to change the view's column name the DBA had to
use the ALTER TABLE command.

PostgreSQL View Privileges

A Role or User must be granted SELECT and DML privileges on the base tables or views in order to create a
view. For additional details, see https://www.postgresql.org/docs/13/static/sql-grant.html

PostgreSQL View Parameters

CREATE [OR REPLACE] VIEW

When re-creating an existing view, the new view must have the same column structure as generated by the ori-
ginal view (column names, column order, and data types). It is sometimes preferable to drop the view and use the
CREATE VIEW statement instead.

hr=# CREATE [OR REPLACE] VIEW VW_NAME AS
SELECT COLUMNS
FROM TABLE(s)
[WHERE CONDITIONS];

hr=# DROP VIEW [IF EXISTS] VW_NAME;

Note: The IF EXISTS parameter is optional.

WITH [CASCADED | LOCAL] CHECK OPTION

DML INSERT and UPDATE operations are verified against the view-based tables to ensure new rows satisfy the
original structure conditions or the view-defining condition. If a conflict is detected, the DML operation fails.

CHECK OPTION

- 103 -

https://www.postgresql.org/docs/13/static/sql-grant.html

l LOCAL: Verifies the view without a hierarchical check.

l CASCADED: Verifies all underlying base views using a hierarchical check.

Executing DML Commands On views

PostgreSQL simple views are automatically updatable. No restrictions exist when performing DML operations on
views. An updatable view may contain a combination of updatable and non-updatable columns. A column is
updatable if it references an updatable column of the underlying base table. If not, the column is read-only and an
error is raised if an INSERT or UPDATE statement is attempted on the column.

Syntax
CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(column_name [,
...])]

[WITH (view_option_name [= view_option_value] [, ...])]
AS query
[WITH [CASCADED | LOCAL] CHECK OPTION]

Examples
Create and update a view without the CHECK OPTION parameter.

CREATE OR REPLACE VIEW VW_DEP AS
SELECT DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
FROM DEPARTMENTS
WHERE LOCATION_ID=1700;

view VW_DEP created.

UPDATE VW_DEP SET LOCATION_ID=1600;

21 rows updated.

Create and update a view with the LOCALCHECK OPTION parameter.

CREATE OR REPLACE VIEW VW_DEP AS
SELECT DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
FROM DEPARTMENTS
WHERE LOCATION_ID=1700
WITH LOCAL CHECK OPTION;

view VW_DEP created.

UPDATE VW_DEP SET LOCATION_ID=1600;

SQL Error: ERROR: new row violates check option for view "vw_dep"

- 104 -

Summary
Feature SQL Server Aurora PostgreSQL

Indexed Views Supported N/A

Partitioned Views Supported N/A

Updateable Views Supported Supported

Prevent schema conflicts SCHEMABINDINGoption N/A

Triggers on views INSTEAD OF INSTEAD OF

Temporary Views CREATE VIEW #View... CREATE [OR REPLACE] [TEMP |
TEMPORARY] VIEW

Refresh view definition sp_refreshview / ALTER VIEW ALTER VIEW

Formore information, see:

l https://www.postgresql.org/docs/13/static/tutorial-views.html

l https://www.postgresql.org/docs/13/static/sql-createview.html

SQL Server Window Functions vs.
PostgreSQL Window Functions
Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

N/A

SQL Server Usage
Windowed functions use anOVER clause to define the window and frame for a data set to be processed. They
are part of the ANSI standard and are typically compatible among various SQL dialects. However, most RDBMS
do not yet support the full ANSI specification.

Windowed functions are a relatively new, advanced, and efficient T-SQL programming tool. They are highly util-
ized by developers to solve numerous programming challenges.

SQL Server currently supports the following windowed functions:

l Ranking functions: ROW_NUMBER, RANK, DENSE_RANK, and NTILE
l Aggregate functions: AVG, MIN, MAX, SUM, COUNT, COUNT_BIG, VAR, STDEV, STDEVP,
STRING_AGG, GROUPING, GROUPING_ID, VAR, VARP, and CHECKSUM_AGG

l Analytic functions: LAG, LEAD, FIRST_Value, LAST_VALUE, PERCENT_RANK, PERCENTILE_
CONT, PERCENTILE_DISC, and CUME_DIST

l Other functions: NEXT_VALUE_FOR (See the Identity and Sequences section)

- 105 -

https://www.postgresql.org/docs/13/static/tutorial-views.html
https://www.postgresql.org/docs/13/static/sql-createview.html

Syntax
<Function()>
OVER
(
[<PARTITION BY clause>]
[<ORDER BY clause>]
[<ROW or RANGE clause>]
)

Examples
Create and populate anOrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Use a windowed ranking function to rank items based on the ordered quantity.

SELECT Item,
 Quantity,
 RANK() OVER(ORDER BY Quantity) AS QtyRank
FROM OrderItems;

Item Quantity QtyRank
---- -------- -------
M8 Bolt 100 1
M8 Nut 100 1
M8 Washer 200 3
M6 Locking Nut 300 4

Use a partitioned windowed aggregate function to calculate the total quantity per order (without using aGROUP
BY clause).

SELECT Item,
 Quantity,
 OrderID,
 SUM(Quantity)
 OVER (PARTITION BY OrderID) AS TotalOrderQty
FROM OrderItems;

- 106 -

Item Quantity OrderID TotalOrderQty
---- -------- ------- -------------
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

Use an analytic LEAD function to get the next largest quantity for the order.

SELECT Item,
Quantity,
OrderID,
LEAD(Quantity)

 OVER (PARTITION BY OrderID ORDER BY Quantity) AS NextQtyOrder
FROM OrderItems;

Item Quantity OrderID NextQtyOrder
---- -------- ------- ------------
M8 Bolt 100 1 NULL
M8 Nut 100 2 NULL
M8 Washer 200 3 300
M6 Locking Nut 300 3 NULL

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-
server-ver15

PostgreSQL Usage
PostgreSQL refers to ANSI SQL analytical functions as “Window Functions”. They provide the same core func-
tionality as SQL Analytical Functions.Window functions in PostgreSQL operate on a logical “partition” or "win-
dow" of the result set and return a value for rows in that “window”.

From a databasemigration perspective, you should examine PostgreSQLWindow Functions by type and com-
pare themwith the equivalent SQL Server window functions to verify compatibility of syntax and output.

Note: Even if a PostgreSQLwindow function provides the same functionality of a specific SQL Server
window function, the returned data typemay be different and require application changes.

PostgreSQL provides support for twomain types ofWindow Functions: Aggregation functions and Ranking func-
tions.

PostgreSQL Window Functions by Type
Function Type Related Functions

Aggregate avg, count, max, min, sum, string_agg

Ranking row_number, rank, dense_rank, percent_rank, cume_dist, ntile, lag, lead, first_value, last_
value, nth_value

- 107 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-server-ver15

PostgreSQL Window Functions
PostgreSQL Window Func-
tion Returned Data Type Compatible Syn-

tax

Count bigint Yes

Max numeric, string, date/time, network or enum type Yes

Min numeric, string, date/time, network or enum type Yes

Avg numeric, double, otherwise same datatype as the argu-
ment

Yes

Sum bigint, otherwise same datatype as the argument Yes

rank() bigint Yes

row_number() bigint Yes

dense_rank() bigint Yes

percent_rank() double Yes

cume_dist() double Yes

ntile() integer Yes

lag() same type as value Yes

lead() same type as value Yes

first_value() same type as value Yes

last_value() same type as value Yes

Examples
Use the PostgreSQL rank() function.

SELECT department_id, last_name, salary, commission_pct,
RANK() OVER (PARTITION BY department_id
ORDER BY salary DESC, commission_pct) "Rank"
FROM employees WHERE department_id = 80;

DEPARTMENT_ID LAST_NAME SALARY COMMISSION_PCT Rank
------------- ------------------------- ---------- -------------- ----------

 80 Russell 14000.00 0.40 1
80 Partners 13500.00 0.30 2
80 Errazuriz 12000.00 0.30 3

Note: The returned formatting for certain numeric data types is different.

Query the total salary for department 80.

SELECT SUM(salary)
FROM employees WHERE department_id = 80;

SUM(SALARY)

 39500.00

- 108 -

Create and populate anOrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Use a windowed ranking function to rank items based on the ordered quantity.

SELECT Item,
 Quantity,
 RANK() OVER(ORDER BY Quantity) AS QtyRank
FROM OrderItems;

Item Quantity QtyRank
---- -------- -------
M8 Bolt 100 1
M8 Nut 100 1
M8 Washer 200 3
M6 Locking Nut 300 4

Use a partitioned windowed aggregate function to calculate the total quantity per order (without using aGROUP
BY clause).

SELECT Item,
 Quantity,
 OrderID,
 SUM(Quantity)
 OVER (PARTITION BY OrderID) AS TotalOrderQty
FROM OrderItems;

Item Quantity OrderID TotalOrderQty
---- -------- ------- -------------
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

Use an analytic LEAD function to get the next largest quantity for the order.

SELECT Item,
Quantity,
OrderID,

- 109 -

LEAD(Quantity)
 OVER (PARTITION BY OrderID ORDER BY Quantity) AS NextQtyOrder
FROM OrderItems;

Item Quantity OrderID NextQtyOrder
---- -------- ------- ------------
M8 Bolt 100 1 NULL
M8 Nut 100 2 NULL
M8 Washer 200 3 300
M6 Locking Nut 300 3 NULL

Formore information see https://www.postgresql.org/docs/13/static/tutorial-window.html

- 110 -

https://www.postgresql.org/docs/13/static/tutorial-window.html

T-SQL

SQL Server Service Broker Essentials vs.
PostgreSQL AWS Lambda or DB links
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

SCT Action Codes -
Broker

Use Amazon Lambda for similar func-
tionality

SQL Server Usage
SQLServer Service Broker provides native support for messaging and queuing applications. It's makes it easier
for developers to create complex applications that use the Database Engine components to communicate
between several SQL Server databases. Developers can use Service Broker to easily build distributed andmore
reliable applications.

Benefits of usingmessaging queues:

l Decouple dependencies between applications by communicating throughmessages.

l Scale out your architecture bymoving queues / message processors to separate servers as needed.

l Maintain individual parts with aminimal impact to the end users.

l Control when themessages are processed (for example: off-peak hours).

l Process queuedmessages onmultiple servers / processes / threads.

The following sections describe the Service Broker commands.

CREATE MESSAGE TYPE

Create amessage with name and structure.

CREATE MESSAGE TYPE message_type_name
[AUTHORIZATION owner_name]

- 111 -

[VALIDATION = { NONE
| EMPTY
| WELL_FORMED_XML
| VALID_XML WITH SCHEMA COLLECTION schema_collection_name

}]
[;]

Formore information, see:
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-message-type-transact-sql?view=sql-server-ver15

CREATE QUEUE

Create a queue to storemessages.

CREATE QUEUE <object>
[WITH

[STATUS = { ON | OFF } [,]]
[RETENTION = { ON | OFF } [,]]
[ACTIVATION (

[STATUS = { ON | OFF } ,]
PROCEDURE_NAME = <procedure> ,
MAX_QUEUE_READERS = max_readers ,
EXECUTE AS { SELF | 'user_name' | OWNER }
) [,]]

[POISON_MESSAGE_HANDLING (
[STATUS = { ON | OFF }])]

]
[ON { filegroup | [DEFAULT] }]

[;]

<object> ::=
{

[database_name. [schema_name] . | schema_name.]
queue_name

}

<procedure> ::=
{

[database_name. [schema_name] . | schema_name.]
stored_procedure_name

}

Formore information, see:
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-queue-transact-sql?view=sql-server-ver15

CREATE CONTRACT

Specify the role and what type of messages a service can handle.

- 112 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-message-type-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-queue-transact-sql?view=sql-server-2017

CREATE CONTRACT contract_name
[AUTHORIZATION owner_name]

({ { message_type_name | [DEFAULT] }
SENT BY { INITIATOR | TARGET | ANY }

} [,...n])
[;]

Formore information, see:
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-contract-transact-sql?view=sql-server-ver15

CREATE SERVICE

Create a named Broker Service for a specified task or set of tasks.

CREATE SERVICE service_name
[AUTHORIZATION owner_name]
ON QUEUE [schema_name.]queue_name
[(contract_name | [DEFAULT][,...n])]

[;]

Formore information, see:
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-service-transact-sql?view=sql-server-ver15

BEGIN DIALOG CONVERSATION

Start the interaction between Broker Services.

BEGIN DIALOG [CONVERSATION] @dialog_handle
FROM SERVICE initiator_service_name
TO SERVICE 'target_service_name'

[, { 'service_broker_guid' | 'CURRENT DATABASE' }]
[ON CONTRACT contract_name]
[WITH
[{ RELATED_CONVERSATION = related_conversation_handle

| RELATED_CONVERSATION_GROUP = related_conversation_group_id }]
[[,] LIFETIME = dialog_lifetime]
[[,] ENCRYPTION = { ON | OFF }]]

[;]

Formore information, see:
https://docs.microsoft.com/en-us/sql/t-sql/statements/begin-dialog-conversation-transact-sql?view=sql-server-ver15

WAITFOR(RECEIVE TOP(1))

Specify that a code block to wait until onemessage is received.

[WAITFOR (]
RECEIVE [TOP (n)]

- 113 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-contract-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-service-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/begin-dialog-conversation-transact-sql?view=sql-server-2017

<column_specifier> [,...n]
FROM <queue>
[INTO table_variable]
[WHERE { conversation_handle = conversation_handle

| conversation_group_id = conversation_group_id }]
[)] [, TIMEOUT timeout]
[;]

<column_specifier> ::=
{ *

| { column_name | [] expression } [[AS] column_alias]
| column_alias = expression

} [,...n]

<queue> ::=
{

[database_name . [schema_name] . | schema_name .]
queue_name

}

Formore information, see:
https://docs.microsoft.com/en-us/sql/t-sql/statements/receive-transact-sql?view=sql-server-ver15

All of the above commands can be combined in to achieve your architecture goals.

Formore information see:
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker?view=sql-server-
ver15

PostgreSQL Usage
Aurora PostgreSQL does not provide a compatible solution to the SQL Server Service Broker. However, you can
use DB Links and AWS Lambda to achieve similar functionality.

AWS Lambda can be combined with AWS SQS in order to reduce costs and remove some loads from the data-
base into the AWS Lambda and SQS (this will bemuchmore efficient), for more information see: https://-
docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

For example, you can create a table in each database and connect each database with a DB link to read the
tables and process the data. For more information, see DB Links.

You can also use AWS Lambda to query a table from the database, process the data, and insert it to another data-
base (even another database type). This approach is the best option for moving workloads out of the database to
a less expensive instance type.

For evenmore decoupling and reducing workloads from the database SQS can be used with Lambda, SQS is
the Amazonmessages queues service.

Formore information see AWS Lambda for sendingmails

- 114 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/receive-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker?view=sql-server-2017
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

SQL Server Cast and Convert vs. PostgreSQL CAST
and CONVERSION
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

CONVERT is used only to convert between
collations

CAST uses different syntax

SQL Server Usage
TheCAST and CONVERT functions are commonly used to convert one data type to another. CAST and
CONVERT behavemostly the same (they share the same topic in MSDN) , but there are few differences :

l CAST is part of the ANSI-SQL specification, but CONVERT is not.

l CONVERT accepts an optional style parameter used for formatting.

For more information about styles, see
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15#date-
and-time-styles

Conversion matrix

To view all conversion data types available, see
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver-
15#implicit-conversions

Syntax

-- CAST Syntax:
CAST (expression AS data_type [(length)])

-- CONVERT Syntax:
CONVERT (data_type [(length)] , expression [, style])

Examples
Cast a string to int and int to decimal.

SELECT CAST('23.7' AS varchar) AS int, CAST(23.7 AS int) AS decimal;

Convert string to int and int to decimal.

SELECT CONVERT(VARCHAR, '23.7') AS int, CONVERT(int, 23.7) AS decimal;

In both examples above, the results will be:

- 115 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#implicit-conversions
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#implicit-conversions

int	decimal
23.7 |23 |

Convert a date with option style input (109 - mon dd yyyy hh:mi:ss:mmmAM (or PM))

SELECT CONVERT(nvarchar(30), GETDATE(), 109);

|
-------------------------------|
Jul 25 2018 5:20:10.8975085PM |

Formore information, see:
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL provides the sameCAST function as SQL Server for conversion between data types. It also
provides a CONVERSION function, but it is not equivalent to SQL Server's CONVERT.
PostgreSQLCONVERSION is used to convert between character set encoding.

CREATE A CAST defines a new cast on how to convert between two data types.

Cast can be EXPLICITLY or IMPLICIT.

The behavior is similar to SQL Server's casting, but in PostgreSQL, you can also create your own casts to change
the default behavior. For example, checking if a string is a valid credit card number by creating the CAST with the
WITHOUT FUNCTION clause.

CREATE CONVERSION is used to convert between encoding such asUTF8 and LATIN. If CONVERT is cur-
rently in use in SQL Server code, it must be rewritten to use CAST instead.

Note: Not all SQL Server's data types are supported on Aurora PostgreSQL, besides changing the
CAST or CONVERT commands, youmight need to also change the source of the target data type, for
more information about supported data types, see: Data Types

Another way to convert between data types in PostgreSQLwill be to use the '::' characters, this option is useful
and canmake your pgsql code look cleaner and simpler, see examples below.

Syntax
CREATE CAST (source_type AS target_type)
WITH FUNCTION function_name (argument_type [, ...]) [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
WITHOUT FUNCTION [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
WITH INOUT [AS ASSIGNMENT | AS IMPLICIT]

- 116 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017

Examples
Convert a numeric value to float.

SELECT 23 + 2.0;

or

SELECT CAST (23 AS numeric) + 2.0;

Convert a date with format input ('mon dd yyyy hh:mi:ss:mmmAM (or PM)').

SELECT TO_CHAR(NOW(),'Mon DD YYYY HH:MI:SS:MSAM');

|
-------------------------------|
Jul 25 2018 5:20:10.8975085PM |

Use '::' characters

SELECT '2.35'::DECIMAL + 4.5 AS results;

results
6.85 |

Summary
Option SQL Server Aurora PostgreSQL

Explicit CAST SELECT CAST('23.7' AS
varchar) AS int

SELECT CAST('23.7' AS varchar) AS int

Explicit CONVERT SELECT CONVERT
(VARCHAR, '23.7')

Need to use CAST:
SELECT CAST('23.7' AS varchar) AS int

Implicit casting SELECT 23 + 2.0 SELECT 23 + 2.0

Convert to a specific date
format: 'mon dd yyyy
hh:mi:ss:mmmAM'

SELECT CONVERT(nvarchar
(30), GETDATE(), 109)

SELECT TO_CHAR(NOW(),'Mon DD YYYY
HH:MI:SS:MSAM')

Formore information, see:

l https://www.postgresql.org/docs/13/static/sql-createcast.html

l https://www.postgresql.org/docs/13/static/typeconv.html

l https://www.postgresql.org/docs/13/static/sql-createconversion.html

- 117 -

https://www.postgresql.org/docs/13/static/sql-createcast.html
https://www.postgresql.org/docs/13/static/typeconv.html
https://www.postgresql.org/docs/13/static/sql-createconversion.html

SQL Server Common Library Runtime (CLR) vs.
PostgreSQL PL/Perl
Feature Com-
patibility

SCT/DMS Automation
Level SCT Action Code Index Key Differences

N/A Migrating CLR objects will require a
full code rewrite

SQL Server Usage
SQLServer provides the capability of implementing .NET objects in the database using the CommonRuntime
Library (CLR). The CLR enables development of functionality that would be complicated using T-SQL.

The CLR provides robust solutions for stringmanipulation, datemanipulation, and calling external services such
asWindowsCommunication Foundation (WCF) services and web services.

The objects that can be created with the EXTERNALNAME clause are:

l Procedures - For more information, see:
https://msdn.microsoft.com/en-us/library/ms131094.aspx

l Functions - For more information, see:
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/create-clr-func-
tions?view=sql-server-ver15

l Triggers - For more information, see:
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/create-clr-triggers?view=sql-server-
ver15

l Types - For more information, see: https://docs.microsoft.com/en-us/sql/relational-databases/clr-integ-
ration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-ver15

l Aggregates - user-defined aggregate function. For more information, see:
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-
functions/clr-user-defined-aggregates?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL does not support .NET code. However, you can create Perl functions. Youmust convert all
C# code to PL/pgSQL or PL/Perl.

In order to use PL/Perl language youmust install the perl extension:

CREATE EXTENSION plperl;

After it is installed, you can create functions using perl code. Specify plperl in the the LANGUAGE clause.

The objects that can be created with Perl are:

l Functions

l Void functions (procedures)

l Triggers

- 118 -

https://msdn.microsoft.com/en-us/library/ms131094.aspx
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/create-clr-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/create-clr-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/create-clr-triggers?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/create-clr-triggers?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-aggregate-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates?view=sql-server-2017

l Event Triggers

l Values for session level

Examples
Create a function that returns the greater value of two integers.

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
if ($_[0] > $_[1]) { return $_[0]; }
return $_[1];

$$ LANGUAGE plperl;

Formore information see: https://www.postgresql.org/docs/13/static/plperl.html

SQL Server Collations vs. PostgreSQL Encoding
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action Code
Index Key Differences

SCT Action Codes -
Collation

UTF16 and NCHAR/NVARCHAR data types
are not supported

SQL Server Usage
SQLServer collations define the rules for stringmanagement and storage in terms of sorting, case sensitivity,
accent sensitivity, and code pagemapping. SQL Server supports both ASCII and UCS-2 UNICODE data.

UCS-2 UNICODE data uses a dedicated set of UNICODE data types denoted by the prefix "N": Nchar and
Nvarchar. Their ASCII counterparts are CHAR and VARCHAR.

Choosing a collation and a character set has significant implications on data storage, logical predicate eval-
uations, query results, and query performance.

Note: To view all collations supported by SQL Server, use the fn_helpcollations function: SELECT *
FROMsys.fn_helpcollations().

Collations define the actual bitwise binary representation of all string characters and the associated sorting rules.
SQL Server supportsmultiple collations down to the column level. A tablemay havemultiple string columns that
use different collations. Collations for non-UNICODE character sets determine the code page number rep-
resenting the string characters.

Note: UNICODE and non-UNICODE data types in SQL Server are not compatible. A predicate or data
modification that introduces a type conflict is resolved using predefined collation precedence rules.
For more information, see
https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql?view=sql-
server-ver15

Collations define sorting andmatching sensitivity for the following string characteristics:

l Case

l Accent

- 119 -

https://www.postgresql.org/docs/13/static/plperl.html
https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql

l Kana

l Width

l Variation selector

SQL Server uses a suffix naming convention that appends the option name to the collation name. For example,
the collation Azeri_Cyrillic_100_CS_AS_KS_WS_SC, is an Azeri-Cyrillic-100 collation that is case-sensitive,
accent-sensitive, kana type-sensitive, width-sensitive, and has supplementary characters.

SQL Server supports three types of collation sets:

l Windows Collations use the rules defined for collations by the operating system locale where UNICODE
and non-UNICODE data use the same comparison algorithms.

l Binary Collations use the binary bit-wise code for comparison. Therefore, the locale does not affect sort-
ing.

l SQL Server Collations provide backward compatibility with previous SQL Server versions. They are not
compatible with the windows collation rules for non-UNICODE data.

Collations can be defined at various levels:

l Server Level Collations determine the collations used for all system databases and is the default for future
user databases.While the system databases collation can not be changed, an alternative collation can be
specified as part of the CREATE DATABASE statement.

l Database Level Collations inherit the server default unless the CREATE DATABASE statement explicitly
sets a different collation. This collation is used as a default for all CREATE TABLE and ALTER TABLE
statements.

l Column Level Collations can be specified as part of the CREATE TABLE or ALTER TABLE statements
to override the database's default collation setting.

l Expression Level Collations can be set for individual string expressions using the COLLATE function. For
example, SELECT * FROMMyTable ORDER BY StringColumnCOLLATE Latin1_General_CS_AS.

Note: SQL Server supports UCS-2 UNICODE only.

SQL Server 2019 adds support for UTF-8 for import and export encoding, and as database-level or column-level
collation for string data. Support includes PolyBase external tables, and Always Encrypted (when not used with
Enclaves). For more information see Collation and Unicode Support.

Syntax
CREATE DATABASE <Database Name>
[ON <File Specifications>]
 COLLATE <Collation>

[WITH <Database Option List>];

CREATE TABLE <Table Name>
(
<Column Name> <String Data Type>
COLLATE <Collation> [<Column Constraints>]...
);

Examples
Create a database with a default Bengali_100_CS_AI collation.

- 120 -

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver15

CREATE DATABASE MyBengaliDatabase
ON
(NAME = MyBengaliDatabase_Datafile,

FILENAME = 'C:\Program Files\Microsoft SQL Server-
\MSSQL13.MSSQLSERVER\MSSQL\DATA\MyBengaliDatabase.mdf',

SIZE = 100)
LOG ON
(NAME = MyBengaliDatabase_Logfile,

FILENAME = 'C:\Program Files\Microsoft SQL Server-
\MSSQL13.MSSQLSERVER\MSSQL\DATA\MyBengaliDblog.ldf',

SIZE = 25)
COLLATE Bengali_100_CS_AI;

Create a table with two different collations.

CREATE TABLE MyTable
(
Col1 CHAR(10) COLLATE Hungarian_100_CI_AI_SC NOT NULL PRIMARY KEY,
COL2 VARCHAR(100) COLLATE Sami_Sweden_Finland_100_CS_AS_KS NOT NULL
);

Formore information, see
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver15

PostgreSQL Usage
PostgreSQL supports a variety of different character sets, also known as encoding, including support for both
single-byte andmulti-byte languages. The default character set is specified when initializing a PostgreSQL data-
base cluster with initdb. Each individual database created on the PostgreSQL cluster supports individual char-
acter sets defined as part of database creation.

RDS ONLY: Starting with PostgreSQL 13,Windows version now support obtaining version inform-
ation for collations (ordering rules) fromOS.

When querying the colllversion from pg_collation in PostgreSQL running onWindows, prior to version 13 there
wasn't any value to reflect the OS collation version, for example version 11 running onWindows:

CREATE COLLATION german (provider = libc, locale = 'de_DE');

CREATE COLLATION

select oid,collname,collversion from pg_collation
where collprovider='c' and collname='german';

oid | collname | collversion
-------+----------+-------------
16394 | german |

(1 row)

select pg_collation_actual_version (16394);

pg_collation_actual_version

- 121 -

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support

(1 row)

RDS ONLY: Starting PostgreSQL 13 running onWindows:

CREATE COLLATION german (provider = libc, locale = 'de_DE');

CREATE COLLATION

select oid,collname,collversion from pg_collation
where collprovider='c' and collname='german';

oid | collname | collversion
-------+----------+---------------
32769 | german | 1539.5,1539.5

(1 row)

select pg_collation_actual_version (32769);

pg_collation_actual_version

1539.5,1539.5

(1 row)

Notes:

l All supported character sets can be used by clients. However, some client-side only characters are not sup-
ported for use within the server.

l Unlike SQL Server, PostgreSQL does not natively support an NVARHCHAR data type and does not
provide support for UTF-16.

Type Function Implementation
Level

Encoding Defines the basic rules on how alphanumeric characters are represented in bin-
ary format. For example, Unicode Encoding.

Database

Locale A superset that includes LC_COLLATE and LC_CTYPE among others. For
example, LC_COLLATE defines how strings are sorted andmust be a subset
supported by the database Encoding.

Table-Column

Examples
Create a database named test01 which uses the Korean EUC_KR Encoding the and the ko_KR locale.

CREATE DATABASE test01 WITH ENCODING 'EUC_KR' LC_COLLATE='ko_KR.euckr' LC_CTYPE='ko_
KR.euckr' TEMPLATE=template0;

View the character sets configured for each database by querying the SystemCatalog.

select datname, datcollate, datctype from pg_database;

- 122 -

Changing Character Sets/Encoding

In-placemodification of the database encoding is not recommended nor supported. Youmust export all data, cre-
ate a new database with the new encoding, and import the data.

Export the data using the pg_dump utility.

pg_dump mydb1 > mydb1_export.sql

Rename (or delete) a database.

ALTER DATABASE mydb1 TO mydb1_backup;

Create a new database using themodified encoding.

CREATE DATABASE mydb1_new_encoding WITH ENCODING 'UNICODE' TEMPLATE=template0;

Import data using the pg_dump file previously created. Verify that you set your client encoding to the encoding of
your “old” database.

PGCLIENTENCODING=OLD_DB_ENCODING psql -f mydb1_export.sql mydb1_new_encoding

Note: The client_encoding parameter overrides the use of PGCLIENTENCODING.

Client/Server Character Set Conversions

PostgreSQL supports conversion of character sets between servers and clients for specific character set com-
binations as described in the pg_conversion system catalog.

PostgreSQL includes predefined conversions. For a complete list, see
https://www.postgresql.org/docs/13/static/multibyte.html#MULTIBYTE-TRANSLATION-TABLE

You can create a new conversion using the SQL commandCREATE CONVERSION.

Examples
Create a conversion fromUTF8 to LATIN1 using the custommyfunc1 function.

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc1;

Configure the PostgreSQL client character set.

Method 1
========
psql \encoding SJIS

Method 2
========
SET CLIENT_ENCODING TO 'value';

View the client character set and reset it back to the default value.

- 123 -

https://www.postgresql.org/docs/13/static/multibyte.html#MULTIBYTE-TRANSLATION-TABLE

SHOW client_encoding;

RESET client_encoding;

Table Level Collation

PostgreSQL supports specifying the sort order and character classification behavior on a per-column level.

Examples
Specify specific collations for individual table columns.

CREATE TABLE test1 (col1 text COLLATE "de_DE", col2 text COLLATE "es_ES");

Summary
Feature SQL Server Aurora PostgreSQL

View database char-
acter set

SELECT collation_name FROMsys.data-
bases';

select datname, pg_encoding_to_
char(encoding), datcollate, datctype
from pg_database;

Modify the database
character set

RECRATE the database • Export the database.

• Drop or rename the database.

• Re-create the database with the
desired new character set.

• Import database data from the
exported file into the new database.

Character set gran-
ularity

Database Database

UTF8 Supported Supported

UTF16 Supported Not Supported

NCHAR/NVARCHAR
data types

Supported Not Supported

For additional details, see https://www.postgresql.org/docs/13/static/multibyte.html

SQL Server Cursors vs. PostgreSQL Cursors
Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

SCT Action Codes - Cursors Different cursor options

- 124 -

https://www.postgresql.org/docs/13/static/multibyte.html

SQL Server Usage
A set is a fundamental concept of the relation datamodel fromwhich SQL is derived. SQL is a declarative lan-
guage that operates on whole sets, unlikemost procedural languages that operate on individual data elements. A
single invocations of an SQL statements can return a whole set or modifymillions of rows.

Many developers are accustomed to using procedural or imperative approaches to develop solutions that are dif-
ficult to implement using set-based querying techniques. Also, operating on row data sequentiallymay be amore
appropriate approach in certain situations.

Cursors provide an alternativemechanism for operating on result sets. Instead of receiving a table object con-
taining rows of data, applications can use cursors to access the data sequentially, row-by-row. Cursors provide
the following capabilities:

l Positioning the cursor at specific rows of the result set using absolute or relative offsets.

l Retrieving a row, or a block of rows, from the current cursor position.

l Modifying data at the current cursor position.

l Isolating datamodifications by concurrent transactions that affect the cursor's result.

l T-SQL statements can use cursors in scripts, stored procedures, and triggers.

Syntax
DECLARE <Cursor Name>
CURSOR [LOCAL | GLOBAL]

[FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR <SELECT statement>
[FOR UPDATE [OF <Column List>]][;]

FETCH [NEXT | PRIOR | FIRST | LAST | ABSOLUTE <Value> | RELATIVE <Value>]
FROM <Cursor Name> INTO <Variable List>;

Examples
Process data in a cursor.

DECLARE MyCursor CURSOR FOR
SELECT *
FROM Table1 AS T1

 INNER JOIN
 Table2 AS T2
 ON T1.Col1 = T2.Col1;

OPEN MyCursor;
 DECLARE @VarCursor1 VARCHAR(20);

FETCH NEXT
 FROM MyCursor INTO @VarCursor1;

WHILE @@FETCH_STATUS = 0

- 125 -

BEGIN
 EXEC MyPRocessingProcedure
 @InputParameter = @VarCursor1;

FETCH NEXT
 FROM product_cursor INTO @VarCursor1;

END

CLOSE MyCursor;
DEALLOCATE MyCursor ;

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/cursors?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Similar to SQL Server's T-SQLCursors, PostgreSQL has PL/pgSQL cursors that enable you to iterate business
logic on rows read from the database. They can encapsulate the query and read the query results a few rows at a
time. All access to cursors in PL/pgSQL is performed through cursor variables, which are always of the refcursor
data type.

Examples

Declare a Cursor

DECLARE..CURSOR options that are Transact-SQL extended syntax have no equivalent in PostgreSQL and
they are:

SQL Server's
Option Use Comments

FORWARD_
ONLY

Defining that FETCH NEXT is the only supported
fetching option

Using FOR LOOPmight be a relevant
solution for this option

STATIC Cursor will make a temporary copy of the data For small data sets temporary tables can
be created and declare a cursor that will
select these tables

KEYSET Determining that membership and order of rows
in the cursor are fixed

N/A

DYNAMIC Cursor will reflect all data changesmade on the
selected rows

Default for PostgreSQL

FAST_
FORWARD

Will use FORWARD_ONLY and READ_ONLY
for optimizing performance

N/A

SCROLL_
LOCKS

Determine that positioned updates or deletes
made by the cursor are guaranteed to succeed

N/A

OPTIMISTIC Determine that positioned updates or deletes
made by the cursor will not succeed if the rows
has been updated.

N/A

- 126 -

https://docs.microsoft.com/en-us/sql/relational-databases/cursors
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql

SQL Server's
Option Use Comments

TYPE_
WARNING

Will send warningmessages to the client if the
cursor is implicitly converted from the requested
type

N/A

Declare a Cursor in PL/pgSQL to be used with any query. The variable c1 is "unbounded" because it is not bound
to any particular query.

DECLARE c1 refcursor;

Declare a Cursor in PL/pgSQLwith a bounded query.

DECLARE c2 CURSOR FOR SELECT * FROM employees;

Declare a Cursor with a parametrized bound query:

l The id variable is replaced by an integer parameter value when the cursor is opened.

l When declaring a Cursor with SCROLL specified, the Cursor can scroll backwards.

l If NOSCROLL is specified, backward fetches are rejected.

DECLARE c3 CURSOR (var1 integer) FOR SELECT * FROM employees where id = var1;

Declare a backward-scrolling compatible Cursor using the SCROLL option.

l SCROLL specifies that rows can be retrieved backwards. NOSCROLL specifies that rows cannot be
retrieved backwards.

l Depending upon the complexity of the execution plan for the query, SCROLLmight create performance
issues.

l Backward fetches are not allowed when the query includes FOR UPDATE or FOR SHARE.

DECLARE c3 SCROLL CURSOR FOR SELECT id, name FROM employees;

Open a Cursor

TheOPEN command is fully compatible between SQLServer and PostgreSQL.

Open a Cursor variable that was declared asUnbound and specify the query to execute.

OPEN c1 FOR SELECT * FROM employees WHERE id = emp_id;

Open a Cursor variable that was declared asUnbound and specify the query to execute as a string expression.
This approach provides greater flexibility.

OPEN c1 FOR EXECUTE format('SELECT * FROM %I WHERE col1 = $1',tabname) USING keyvalue;

Parameter values can be inserted into the dynamic commandwith format() and USING. For example, the table
name is inserted into the query with format(). The comparison value for col1 is inserted with a USINGparameter.

Open a Cursor that was bound to a query when the Cursor was declared and was declared to take arguments.

DO $$
DECLARE
 c3 CURSOR (var1 integer) FOR SELECT * FROM employees where id = var1;

- 127 -

BEGIN
 OPEN c3(var1 := 42);
END$$;

For the c3 Cursor, supply the argument value expressions.

If the Cursor was not declared to take arguments, the arguments can be specified outside the Cursor.

DO $$
DECLARE
 var1 integer;
 c3 CURSOR FOR SELECT * FROM employees where id = var1;
BEGIN
 var1 := 1;
 OPEN c3;
END$$;

Fetch a Cursor

Syntax

FETCH [direction [FROM | IN]] cursor_name

PostgreSQL has few more options as a direction for the FETCH command:

PostgreSQL's Option Use

ALL Get all remaining rows

FORWARD Same asNEXT

FORWARD (n) Fetch the next n rows

FORWARD ALL Same asALL

BACKWARD Same asPRIOR

BACKWARD (n) Fetch the prior n rows

BACKWARD ALL Fetch all prior rows

The PL/pgSQL FETCH command retrieves the next row from the Cursor into a variable.

Fetch the values returned from the c3 Cursor into a row variable.

DO $$
DECLARE
 c3 CURSOR FOR SELECT * FROM employees;
 rowvar employees%ROWTYPE;
BEGIN
 OPEN c3;
 FETCH c3 INTO rowvar;
END$$;

- 128 -

Fetch the values returned from the c3 Cursor into two scalar data types.

DO $$
DECLARE
 c3 CURSOR FOR SELECT id, name FROM employees;
 emp_id integer;
 emp_name varchar;
BEGIN
 OPEN c3;
 FETCH FROM c3 INTO emp_id, emp_name;
END$$;

PL/pgSQL supports a special direction clause when fetching data from aCursor using the NEXT, PRIOR,
FIRST, LAST, ABSOLUTE count, RELATIVE count, FORWARD, or BACKWARD arguments. Omitting dir-
ection is equivalent to specifying NEXT. For example, fetch the last row from the Cursor into the declared vari-
ables.

DO $$
DECLARE
 c3 CURSOR FOR SELECT id, name FROM employees;
 emp_id integer;
 emp_name varchar;
BEGIN
 OPEN c3;
 FETCH LAST FROM c3 INTO emp_id, emp_name;
END$$;

Summary
Feature SQL Server Aurora PostgreSQL

Cursor options [FORWARD_ONLY | SCROLL] [STATIC |
KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS |
OPTIMISTIC]

[BINARY] [INSENSITIVE] [[NO]
SCROLL] CURSOR [{ WITH | WITHOUT }
HOLD]

Updateable curs-
ors

DECLARE CURSOR... FOR UPDATE DECLARE cur_nameCURSOR... FOR
UPDATE

Cursor declar-
ation

DECLARE CURSOR DECLARE cur_nameCURSOR

Cursor open OPEN OPEN

Cursor fetch FETCH NEXT | PRIOR | FIRST | LAST |
ABSOLUTE | RELATIVE

FETCH [direction [FROM | IN]] cursor_
namewhere direction can be empty or one of:

NEXT, PRIOR, FIRST, LAST, ABSOLUTE
count, RELATIVE count, count , ALL
FORWARD, FORWARD count, FORWARD
ALL, BACKWARD, BACKWARD count,
BACKWARD ALL

Cursor close CLOSE CLOSE

Cursor Deal-
locate

DEALLOCATE Same effect as CLOSE (not required)

- 129 -

Feature SQL Server Aurora PostgreSQL

Cursor end con-
dition

@@FETCH_STATUS system variable Not Supported

For additional details, see https://www.postgresql.org/docs/13/static/sql-fetch.html

SQL Server Date and Time Functions vs.
PostgreSQL Date and Time Functions
Feature Com-
patibility

SCT/DMS Auto-
mation Level SCT Action Code Index Key Differences

SCT Action Codes - Date Time
Functions

PostgreSQL is using different func-
tion names

SQL Server Usage
Date and Time Functions are scalar functions that perform operations on temporal or numeric input and return
temporal or numeric values.

System date and time values are derived from the operating system of the server on which SQL Server is run-
ning.

Note: This section does not address timezone considerations and timezone aware functions. For more
information about time zone handling, see Data Types.

Syntax and Examples
The following table lists themost commonly used Date and Time Functions.

Function Purpose Example Result Comments

GETDATE and
GETUTCDATE

Return a datetime value
that contains the current
local or UTC date and
time

SELECT GETDATE
()

2018-04-05
15:53:01.380

DATEPART, DAY,
MONTH, and YEAR

Return an integer value
representing the spe-
cified datepart of a spe-
cified date

SELECT MONTH
(GETDATE()),
YEAR(GETDATE
())

4, 2018

DATEDIFF Returns an integer value
of datepart boundaries
that are crossed
between two dates

SELECT
DATEDIFF(DAY,
GETDATE(),
EOMONTH
(GETDATE()))

25 How many
days left until
end of the
month

DATEADD Returns a datetime
value that is calculated
with an offset interval to

SELECT DATEADD
(DAY, 25,
GETDATE())

2018-04-30
15:55:52.147

- 130 -

Function Purpose Example Result Comments

the specified datepart of
a date.

CAST and
CONVERT

Converts datetime val-
ues to and from string lit-
erals and to and from
other datetime formats

SELECT CAST
(GETDATE() AS
DATE)
SELECT CONVERT
(VARCHAR(20),
GETDATE(),
112)

2018-04-05
20180405

Default date
format
Style 112
(ISO) with no
seprartors

Formore information, see
https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql?view=sql-server-
ver15#DateandTimeFunctions

PostgreSQL Usage
Aurora PostgreSQL provides a very rich set of scalar date and time functions; more than SQL Server.

Note: While some of the functions appear to be similar to those in SQL Server, the functionality can be
significantly different. Take extra care whenmigrating temporal logic to Aurora PostgreSQL paradigms.

Functions and definition
PostgreSQL
Function

Function
Definition

AGE Subtract from current_date

CLOCK_
TIMESTAMP

Current date and time

CURRENT_DATE Current date

CURRENT_TIME Current time of day

CURRENT_
TIMESTAMP

Current date and time (start of current transaction)

DATE_PART Get subfield (equivalent to extract)

DATE_TRUNC Truncate to specified precision

EXTRACT Get subfield

ISFINITE Test for finite interval

JUSTIFY_DAYS Adjust interval so 30-day time periods are represented asmonths

JUSTIFY_HOURS Adjust interval so 24-hour time periods are represented as days

JUSTIFY_
INTERVAL

Adjust interval using justify_days and justify_hours, with additional sign adjustments

LOCALTIME Current time of day

MAKE_DATE Create date from year, month and day fields

- 131 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql#DateandTimeFunctions
https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql#DateandTimeFunctions

PostgreSQL
Function

Function
Definition

MAKE_INTERVAL Create interval from years, months, weeks, days, hours, minutes and seconds fields

MAKE_TIME Create time from hour, minute and seconds fields

MAKE_
TIMESTAMP

Create timestamp from year, month, day, hour, minute, and seconds fields

MAKE_
TIMESTAMPTZ

Create timestampwith time zone from year, month, day, hour, minute, and seconds
fields. If timezone is not specified, the current time zone is used

NOW Current date and time

STATEMENT_
TIMESTAMP

Current date and time

TIMEOFDAY Current date and time (like clock_timestamp, but as a text string)

TRANSACTION_
TIMESTAMP

Current date and time

TO_TIMESTAMP Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp

Summary
SQL Server Function Aurora PostgerSQL Function

GETDATE, CURRENT_
TIMESTAMP

NOW, CURRENT_DATE, CURRENT_TIME, CURRENT_
TIMESTAMP

GETUTCDATE current_timestamp at time zone 'utc'

DAY, MONTH, and YEAR EXTRACT(DAY/MONTH/YEAR FROMTIMESTAMP timestamp_
value)

DATEPART EXTRACT, DATE_PART

DATEDIFF DATE_PART

DATEADD + INTERVAL 'X days/months/years'

CAST and CONVERT CAST

Formore information, see https://www.postgresql.org/docs/13/static/functions-datetime.html

SQL Server String Functions vs. PostgreSQL String
Functions
Feature Com-
patibility SCT/DMS Automation Level SCT Action Code

Index Key Differences

N/A Syntax and option dif-
ferences

- 132 -

https://www.postgresql.org/docs/13/static/functions-datetime.html

SQL Server Usage
String Functions are typically scalar functions that perform an operation on string input and return a string or a
numeric value.

Syntax and Examples
The following table lists themost commonly used string functions.

Function Purpose Example Result Comments

ASCII and
UNICODE

Convert an ASCII or
UNICODE character to
its ASCII or UNICODE
code

SELECT ASCII
('A')

65 Returns a
numeric
integer value

CHAR and NCHAR Convert between ASCII
or UNICODE code to a
string character

SELECT CHAR(65) 'A' Numeric
integer value
as input

CHARINDEX and
PATINDEX

Find the starting pos-
ition of one string
expression (or string pat-
tern) within another
string expression

SELECT
CHARINDEX('ab',
'xabcdy')

2 Returns a
numeric
integer value

CONCAT and
CONCAT_WS

Combinemultiple string
input expressions into a
single string with, or
without, a separator
character (WS)

SELECT CONCAT
('a','b'),
CONCAT_WS
(',','a','b')

'ab', 'a,b'

LEFT, RIGHT,
and SUBSTRING

Return a partial string
from another string
expression based on
position and length

SELECT LEFT
('abs',2),
SUBSTRING
('abcd',2,2)

'ab', 'bc'

LOWER and UPPER Return a string with all
characters in lower or
upper case. Use for
presentation or to
handle case insensitive
expressions

SELECT LOWER
('ABcd')

'abcd'

LTRIM, RTRIM
and TRIM

Remove leading and
trailing spaces

SELECT LTRIM ('
abc d ')

'abc d '

STR Convert a numeric
value to a string

SELECT STR
(3.1415927,5,3)

3.142 Numeric
expressions
as input

REVERSE Return a string in
reverse order

SELECT REVERSE
('abcd')

'dcba'

REPLICATE Return a string that con-
sists of zero or more
concatenated copies of

SELECT
REPLICATE
('abc', 3)

'abcabcabc'

- 133 -

Function Purpose Example Result Comments

another string expres-
sion

REPLACE Replace all occurrences
of a string expression
with another

SELECT REPLACE
('abcd', 'bc',
'xy')

'axyd'

STRING_SPLIT Parse a list of values
with a separator and
return a set of all indi-
vidual elements

SELECT *
FROM STRING_
SPLIT('1,2',
',') AS X(C)

1
2

STRING_
SPLIT is a
table valued
function

STRING_AGG Return a string that con-
sists of concatenated
string values in row
groups

SELECT STRING_
AGG(C, ',')
FROM VALUES(1,
'a'), (1, 'b'),
(2,'c') AS X
(ID,C)
GROUP BY I

1 'ab'
2 'c'

STRING_
AGG is an
aggregate
function

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql?view=sql-
server-ver15

PostgreSQL Usage
Most of SQL Server's String Functions are supported in PostgreSQL, there are few which are not:

l UNICODE - this function will return the integer value of the first character as defined by the Unicode stand-
ard, if you will use UTF8 input ASCII can be used in order to get the same results.

l PATINDEX - returns the starting position of the first occurrence of a pattern in a specified expression, or
zeros if the pattern is not found, there is no equivalent function for that but you can create the same function
with the same name so it will be fully compatible.

Some functions are not supported but they have an equivalent function in PostgreSQL that can be used in order
to get the some functionality.

Some of the functions such as regular expressions do not exist in SQL Server andmay be useful for your applic-
ation.

Syntax and Examples
The following table lists themost commonly used string functions.

PostgreSQL
Function

Function
Definition

CONCAT Concatenate the text representations of all the arguments:
concat('a', 1) --> a1 Also, can use the (||) operators: select 'a' ||' '|| 'b' --> a b

LOWER / UPPER Returns char, with all letters lowercase or uppercase: lower ('MR. Smith’) --> mr. smith

LPAD / RPAD Returns expr1, left or right padded to length n characters with the sequence of characters
in expr2: LPAD('Log-1',10,'*') --> *****Log-1

- 134 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql

PostgreSQL
Function

Function
Definition

REGEXP_
REPLACE

Replace substring(s) matching a POSIX regular expression:
regexp_replace('John', '[hn].', '1') --> Jo1

REGEXP_
MATCHES OR
SUBSTRING

Return all captured substrings resulting frommatching a POSIX regular expression
against the string:
REGEXP_MATCHES ('http://www.aws.com/products', '(http://[[: alnum:]]+.*/)') -->
{http://www.aws.com/}
OR
SUBSTRING ('http://www.aws.com/products', '(http://[[: alnum:]]+.*/)') -->
http://www.aws.com/

REPLACE Returns char with every occurrence of search string replaced with a replacement string:
replace ('abcdef', 'abc', '123') --> 123def

LTRIM / RTRIM Remove the longest string containing only characters from characters (a space by
default) from the start of string:
ltrim('zzzyaws', 'xyz') --> aws

SUBSTRING Extract substring: substring ('John Smith', 6 ,1) --> S

TRIM Remove the longest string containing only characters from characters (a space by
default) from the start, end, or both ends:
trim (both from 'yxJohnxx', 'xyz') --> John

ASCII Returns the decimal representation in the database character set of the first character of
char: ascii('a') --> 97

LENGTH Return the length of char: length ('John S.') --> 7

In order to create the PATINDEX function, you should use the code snippet below, note the 0means that the
expression does not exist so the first position will be 1:

CREATE OR REPLACE FUNCTION "patindex"("pattern" VARCHAR, "expression" VARCHAR)
RETURNS INT AS $BODY$
SELECT COALESCE(STRPOS($2,(
 SELECT(REGEXP_MATCHES($2,'(' ||
 REPLACE(REPLACE(TRIM($1, '%'), '%', '.*?'), '_', '.')
 || ')','i'))[1] LIMIT 1)),0);
$BODY$ LANGUAGE 'sql' IMMUTABLE;

SELECT patindex('Lo%', 'Long String');

patindex
1 |

SELECT patindex('%rin%', 'Long String');

patindex
8 |

SELECT patindex('%g_S%', 'Long String');

patindex |

- 135 -

---------|
4 |

Summary
SQL Server function Aurora PostgreSQL equivalent function

ASCII ASCII

UNICODE For UTF8 inputs only ASCII can be used

CHAR andNCHAR CHR

CHARINDEX POSITION

PATINDEX see examples

CONCAT and CONCAT_WS CONCAT and CONCAT_WS

LEFT, RIGHT, and SUBSTRING LEFT, RIGHT, and SUBSTRING

LOWER andUPPER LOWER andUPPER

LTRIM, RTRIM and TRIM LTRIM, RTRIM and TRIM

STR TO_CHAR

REVERSE REVERSE

REPLICATE LPAD

REPLACE REPLACE

STRING_SPLIT regexp_split_to_array or regexp_split_to_table

STRING_AGG CONCAT_WS

Formore information, see https://www.postgresql.org/docs/13/static/functions-string.html

SQL Server Databases and Schemas vs.
PostgreSQL Databases and Schemas
Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

N/A

SQL Server Usage
Databases and Schemas are logical containers for security and access control. Administrators can grant per-
missions collectively at both the databases and the schema levels. SQL Server instances provide security at three
levels: Individual Objects, Schemas (collections of objects), and Databases (collections of schemas). For more
information, see Data Control Language.

Note: In previous versions of SQL server, the term user was interchangeable with the term schema.
For backward compatibility, each database has several built-in security schemas including guest, dbo,

- 136 -

https://www.postgresql.org/docs/13/static/functions-string.html

db_datareaded, sys, INFORMATION_SCHEMA, and others. Youmost likely will not need tomigrate
these schemas.

Each SQL Server instance can host andmanage a collection of databases, which consists of SQL Server pro-
cesses and theMaster, Model, TempDB, andMSDB system databases.

Themost common SQLServer administrator tasks at the database level are:

l Managing Physical Files: Add, remove, change file growth settings, and re-size files.

l Managing Filegroups: Partition schemes, object distribution, and read-only protection of tables.

l Managing default options.

l Creating database snapshots.

Unique object identifiers within an instance use three-part identifiers: <Database name>.<Schema name>.<Ob-
ject name>.

The recommendedway to view database object meta data, including schemas, is to use the ANSI standard
Information Schema views. In most cases, these views are compatible with other ANSI compliant Relational
DatabaseManagement Systems (RDBMS).

To view a list of all databases on the server, use the sys.databases table.

Syntax
Simplified syntax for CREATE DATABASE:

CREATE DATABASE <database name>
[ON [PRIMARY] <file specifications>[,<filegroup>]
[LOG ON <file specifications>
[WITH <options specification>] ;

Simplified syntax for CREATE SCHEMA:

CREATE SCHEMA <schema name> | AUTHORIZATION <owner name>;

Examples
Add a file to a database and create a table using the new file.

USE master;

ALTER DATABASE NewDB
ADD FILEGROUP NewGroup;

ALTER DATABASE NewDB
ADD FILE (
 NAME = 'NewFile',
 FILENAME = 'D:\NewFile.ndf',
 SIZE = 2 MB
)
TO FILEGROUP NewGroup;

USE NewDB;

- 137 -

CREATE TABLE NewTable
(
Col1 INT PRIMARY KEY
)
ON NewGroup;

SELECT Name
FROM sys.databases
WHERE database_id > 4;

Create a table within a new schema and database.

USE master
CREATE DATABASE NewDB;

USE NewDB;
CREATE SCHEMA NewSchema;

CREATE TABLE NewSchema.NewTable
(
NewColumn VARCHAR(20) NOT NULL PRIMARY KEY
);

Note: This example uses default settings for the new database and schema.

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql?view-
w=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-schema-transact-sql?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-sql-server-transact-sql?view=sql-server-
ver15

PostgreSQL Usage
Aurora PostgreSQL supports both the CREATE SCHEMA andCREATE DATABASE statements.

Aswith SQL Server, Aurora PostgreSQL does have the concept of an instance hostingmultiple databases,
which in turn containmultiple schemas. Objects in Aurora PostgreSQL are referenced as a three part name:
<database>.<schema>.<object>.

A schema is essentially a namespace that contains named objects.

When database is created, it is cloned from a template.

Syntax
Syntax for CREATE DATABASE:

CREATE DATABASE name
[[WITH] [OWNER [=] user_name]

[TEMPLATE [=] template]

- 138 -

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-schema-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-sql-server-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-sql-server-transact-sql

[ENCODING [=] encoding]
[LC_COLLATE [=] lc_collate]
[LC_CTYPE [=] lc_ctype]
[TABLESPACE [=] tablespace_name]
[ALLOW_CONNECTIONS [=] allowconn]
[CONNECTION LIMIT [=] connlimit]
[IS_TEMPLATE [=] istemplate]]

Syntax for CREATE SCHEMA:

CREATE SCHEMA schema_name [AUTHORIZATION role_specification] [schema_element [...
]]
CREATE SCHEMA AUTHORIZATION role_specification [schema_element [...]]
CREATE SCHEMA IF NOT EXISTS schema_name [AUTHORIZATION role_specification]
CREATE SCHEMA IF NOT EXISTS AUTHORIZATION role_specification

where role_specification can be:

user_name
| CURRENT_USER
| SESSION_USER

Migration Considerations
Unlike SQL Server, Aurora PostgreSQL does not support the USE command to specify the default database
(schema) for missing object qualifiers. To use a different database, youmust use a new connection, have the
required permissions, and refer to the object using the database name.

For applications using a single database andmultiple schemas, themigration path is the same and requires fewer
rewrites because two-part names are already being used.

Query the postgres.pg_catalog.pg_database table to view databases in Aurora PostgreSQL.

SELECT datname, datcollate, datistemplate, datallowconn
FROM postgres.pg_catalog.pg_database;

datname	datcollate	datistemplate	datallowconn
template0 |en_US.UTF-8 |true |false |
rdsadmin |en_US.UTF-8 |false |true |
template1 |en_US.UTF-8 |true |true |
postgres |en_US.UTF-8 |false |true |

Examples
Create a new database.

CREATE DATABASE NewDatabase;

Create a schema for user testing.

CREATE SCHEMA AUTHORIZATION joe;

Create a schema, a table and a view.

- 139 -

CREATE SCHEMA world_flights
CREATE TABLE flights (flight_id VARCHAR(10), departure DATE, airport VARCHAR(30))
CREATE VIEW us_flights AS

SELECT flight_id, departure FROM flights WHERE airport='United States';

Formore information, see:

l https://www.postgresql.org/docs/13/static/sql-createdatabase.html

l https://www.postgresql.org/docs/13/static/sql-createschema.html

SQL Server Dynamic SQL vs.
PostgreSQL EXECUTE and PREPARE
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action Code
Index Key Differences

N/A Different paradigm and syntaxwill require rewrit-
ing the application

SQL Server Usage
Dynamic SQL is a feature that helpsminimize hard-coded SQL. The SQL Engine optimizes code, which leads to
less "hard" parses.

Dynamic SQL allows developers to construct and execute SQL queries at run time as a string, using some logic in
SQL to construct varying query strings, without having to pre-construct them during development.

There are two options for running Dynamic SQL: use the EXECUTE command or the sp_executesql function.

EXECUTE Command

This option enables executing a command string within a T-SQL block, procedure, or function. The EXECUTE
command can also be used with linked servers. Meta-data for the result set can be defined by using theWITH
RESULT SETS options.

For parameters, use either the value or@parameter_name=value.

Note: It's important to validate the structure of the string command before running it with the EXECUTE
statement

Syntax

-- Syntax for SQL Server

Execute a stored procedure or function
[{ EXEC | EXECUTE }]

{

- 140 -

https://www.postgresql.org/docs/13/static/sql-createdatabase.html
https://www.postgresql.org/docs/13/static/sql-createschema.html

[@return_status =]
{ module_name [;number] | @module_name_var }

[[@parameter =] { value
| @variable [OUTPUT]
| [DEFAULT]
}

]
[,...n]
[WITH <execute_option> [,...n]]

}
[;]

Execute a character string
{ EXEC | EXECUTE }

({ @string_variable | [N]'tsql_string' } [+ ...n])
[AS { LOGIN | USER } = ' name ']

[;]

Execute a pass-through command against a linked server
{ EXEC | EXECUTE }

({ @string_variable | [N] 'command_string [?]' } [+ ...n]
[{ , { value | @variable [OUTPUT] } } [...n]]

)
[AS { LOGIN | USER } = ' name ']
[AT linked_server_name]

[;]

<execute_option>::=
{

RECOMPILE
| { RESULT SETS UNDEFINED }
| { RESULT SETS NONE }
| { RESULT SETS (<result_sets_definition> [,...n]) }

}

<result_sets_definition> ::=
{

(
{ column_name

data_type
[COLLATE collation_name]
[NULL | NOT NULL] }
[,...n]

)
| AS OBJECT

[db_name . [schema_name] . | schema_name .]
{table_name | view_name | table_valued_function_name }

| AS TYPE [schema_name.]table_type_name
| AS FOR XML

}

Example
EXECUTE a 'tsql_string' with a variable.

- 141 -

DECLARE @scm_name sysname;
DECLARE @tbl_name sysname;
EXECUTE ('DROP TABLE ' + @scm_name + '.' + @tbl_name + ';');

Use EXECUTE AS USER to switch context to another user.

DECLARE @scm_name sysname;
DECLARE @tbl_name sysname;
EXECUTE ('DROP TABLE ' + @scm_name + '.' + @tbl_name + ';') AS USER = 'SchemasAdmin';

Use EXECUTE with a result set.

EXEC GetMaxSalByDeptID 23
WITH RESULT SETS
(

([Salary] int NOT NULL)
);

sp_executesql system stored procedure

This option executes a T-SQL command or block that can be executed several times and built dynamically. It also
can be used with embedded parameters.

Syntax

-- Syntax for SQL Server, Azure SQL Database, Azure SQL Data Warehouse, Parallel Data
Warehouse

sp_executesql [@stmt =] statement
[

{ , [@params =] N'@parameter_name data_type [OUT | OUTPUT][,...n]' }
{ , [@param1 =] 'value1' [,...n] }

]

Examples

Executing a SELECT statement.

EXECUTE sp_executesql
N'SELECT * FROM HR.Employees
WHERE DeptID = @DID',
N'@DID int',
@DID = 23;

- 142 -

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-executesql-transact-
sql?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/execute-transact-sql?view=sql-server-ver15

PostgreSQL Overview

EXECUTE

The PostgreSQL EXECUTE command prepares and executes commands dynamically. The EXECUTE com-
mand can also run DDL statements and retrieve data using SQL commands. Similar to SQL Server, the Post-
greSQL EXECUTE command can be used with bind variables.

Note that Converting SQL Server Dynamic SQL to PostgreSQL requires significant effort.

Examples

Execute a SQL SELECT query with the table name as a dynamic variable using bind variables. This query
returns the number of employees under amanager with a specific ID.

DO $$DECLARE
Tabname varchar(30) := 'employees';
num integer := 1;
cnt integer;
BEGIN
EXECUTE format('SELECT count(*) FROM %I WHERE manager = $1', tabname)
INTO cnt USING num;
RAISE NOTICE 'Count is % int table %', cnt, tabname;
END$$;
;

Execute a DML command; first with no variables and then with variables.

DO $$DECLARE
BEGIN
EXECUTE 'INSERT INTO numbers (a) VALUES (1)';
EXECUTE format('INSERT INTO numbers (a) VALUES (%s)', 42);
END$$;
;

Note: %s formats the argument value as a simple string. A null value is treated as an empty string. %I
treats the argument value as an SQL identifier and double-quotes it if necessary. It is an error for the
value to be null.

Execute a DDL command.

DO $$DECLARE
BEGIN
EXECUTE 'CREATE TABLE numbers (num integer)';
END$$;
;

- 143 -

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-executesql-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-executesql-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/execute-transact-sql?view=sql-server-2017

For additional details, see https://www.postgresql.org/docs/13/static/functions-string.html

PREPARE

Using a PREPARE statement can improve performance of reusable SQL statements.

The PREPARE command can receive a SELECT, INSERT, UPDATE, DELETE, or VALUES statement and
parse it with a user-specified qualifying name so the EXECUTE command can be used later without the need to
re-parse the SQL statement for each execution.

l When using PREPARE to create a prepared statement, it will be viable for the scope of the current ses-
sion.

l If a DDL command is executed on a database object referenced by the prepared SQL statement, the next
EXECUTE command requires a hard parse of the SQL statement.

Example

Use PREPARE and EXECUTE commands in tandem: The SQL command is prepared with a user-specified
qualifying name.The SQL command is executed several times, without the need for re-parsing.

PREPARE numplan (int, text, bool) AS
INSERT INTO numbers VALUES($1, $2, $3);

EXECUTE numplan(100, 'New number 100', 't');
EXECUTE numplan(101, 'New number 101', 't');
EXECUTE numplan(102, 'New number 102', 'f');
EXECUTE numplan(103, 'New number 103', 't');

Summary
Functionality SQL Server – Dynamic SQL PostgerSQL- EXECUTE & PREPARE

Execute SQLwith
results and bind vari-
ables

DECLARE@sal int;
EXECUTE getSalary@sal OUTPUT;

EXECUTE format('select salary from employ-
eesWHERE%I = $1', col_name) INTO
amount USINGcol_val;

Execute DMLwith
variables and bind
variables

DECLARE@amount int
DECLARE@col_val int
DECLARE@col_name carchar(70)
DECLARE@sqlCommand varchar
(1000)
SET@sqlCommand = 'UPDATE
employees SET salary=salary' +
@amount + ' WHERE ' + @col_name +
'=' + @col_val
EXECUTE (@sqlCommand)

EXECUTE format('UPDATE employees SET
salary = salary + $1WHERE%I = $2', col_
name) USINGamount, col_val;

Execute DDL EXECUTE ('CREATE TABLE link_emp
(idemp1 integer, idemp2 integer);');

EXECUTE 'CREATE TABLE link_emp
(idemp1 integer, idemp2 integer)';

Execute Anonym-
ous block

BEGIN ... END; DO$$DECLARE
BEGIN ... END$$;

- 144 -

https://www.postgresql.org/docs/13/static/functions-string.html

For additional details, see https://www.postgresql.org/docs/13/static/plpgsql-statements.html

SQL Server Transactions vs.
PostgreSQL Transactions
Feature Com-
patibility

SCT/DMS Auto-
mation Level SCT Action Code Index Key Differences

SCT Action Codes - Trans-
actions

Nested transactions are not sup-
ported and syntax differences for ini-
tializing a transaction

SQL Server Usage
A Transaction is a unit of work performed on a database and typically represents a change in the database. Trans-
actions serve the following purposes:

l Provide units of work that enable recovery from logical or physical system failures while keeping the data-
base in a consistent state.

l Provide units of work that enable recovery from failures while keeping a database in a consistent state
when a logical or physical system failure occurs.

l Provide isolation between users and programs accessing a database concurrently.

Transactions are an "all-or-nothing" unit of work. Each transactional unit of workmust either complete, or it must
rollback all data changes. Also, transactionsmust be isolated from other transactions. The results of the "view of
data" for each transactionmust conform to the defined database isolation level.

Database transactionsmust comply with ACID properties:

l Atomic: Transactions are "all or nothing". If any part of the transaction fails, the entire transaction fails and
the database remains unchanged.

Note: There are exceptions to this rule. For example, some constraint violations, per ANSI defin-
itions, should not cause a transaction rollback.

l Consistent: All transactionsmust bring the database from one valid state to another valid state. Datamust
be valid according to all defined rules, constraints, triggers, etc.

l Isolation: Concurrent execution of transactionsmust result in a system state that would occur if trans-
actionswere executed sequentially.

Note: There are several exceptions to this rule based on the lenience of the required isolation
level.

l Durable: After a transaction commits successfully and is acknowledged to the client, the enginemust guar-
antee that its changes are persisted in the event of power loss, system crashes, or any other errors.

Note: By default, SQL Server uses the "auto commit" (also known as "implicit transactions")
mode set to ON. Every statement is treated as a transaction on its own unless a transaction was
explicitly defined. This behavior is different than other engines like Oracle where, by default,
every DML requires an explicit COMMIT statement to be persisted.

- 145 -

https://www.postgresql.org/docs/13/static/plpgsql-statements.html

Syntax
Simplified syntax for the commands defining transaction boundaries:

Define the beginning of a transaction.

BEGIN TRAN | TRANSACTION [<transaction name>]

Committing work and the end of a transaction.

COMMIT WORK | [TRAN | TRANSACTION [<transaction name>]]

Rollbackwork at the end of a transaction.

ROLLBACK WORK | [TRAN | TRANSACTION [<transaction name>]]

SQLServer supports the standard ANSI isolation levels defined by the ANSI/ISOSQL standard (SQL92):

Note: Each level provides a different approach for managing the concurrent execution of transactions.
Themain purpose of a transaction isolation level is to manage the visibility of changed data as seen by
other running transactions. Additionally, when concurrent transactions access the same data, the level
of transaction isolation affects the way they interact with each other.

l Read Uncommitted: A current transaction can see uncommitted data from other transactions. If a trans-
action performs a rollback, all data is restored to its previous state.

l Read Committed: A transaction only sees data changes that were committed. Therefore, dirty reads are
not possible. However, after issuing a commit, it would be visible to the current transaction (while it’s still in
a running state).

l Repeatable Read: A transaction sees data changesmade by the other transactions only after both trans-
actions issue a commit or are rolled back.

l Serializable: This isolation level is the strictest because it does not permit transaction overwrites of another
transaction's actions. Concurrent execution of a set of serializable transactions is guaranteed to produce
the same effect as running them sequentially in the same order.

Themain difference between isolation levels is the phenomena they prevent from appearing. The three pre-
ventable phenomena are:

l Dirty Reads: A transaction can read data written by another transaction but not yet committed.

l Non-Repeatable (fuzzy) Reads: When reading the same data several times, a transaction can find the
data has beenmodified by another transaction that has just committed. The same query executed twice
can return different values for the same rows.

l Phantom (ghost) Reads: Similar to a non-repeatable read, but it is related to new data created by another
transaction. The same query executed twice can return different numbers of records.

The following table summarizes the four ANSI/ISOSQL standard (SQL92) isolation levels and indicateswhich
phenomena are allowed (√) or disallowed (X).

Transaction Isolation Level Dirty Reads Non Repeatable Reads Phantom Reads

Read Uncommitted √ √ √

Read Committed X √ √

Repeatable Read X X √

- 146 -

Transaction Isolation Level Dirty Reads Non Repeatable Reads Phantom Reads

Serializable X X X

There are two common implementations for transaction isolation:

l Pessimistic Isolation (Locking): Resources accessed by a transaction are locked for the duration of the
transaction. Depending on the operation, resource, and transaction isolation level, other transactions can
"see" changesmade by the locking transaction, or theymust wait for it to complete. With thismechanism,
there is only one copy of the data for all transactions, whichminimizesmemory and disk resource con-
sumption at the expense of transaction lockwaits.

l Optimistic Isolation (MVCC): Every transaction owns a set of the versions of the resources (typically
rows) that it accessed. In thismode, transactions don't have to wait for one another at the expense of
increasedmemory and disk utilization. In this isolationmechanism, there is a chance that conflicts will arise
when transactions attempt to commit. In case of a conflict, the application needs to be able to handle the
rollback, and attempt a retry.

SQL Server implements bothmechanisms; they can be used concurrently.

For Optimistic Isolation, SQL Server introduced two additional isolation levels: Read Committed Snapshot and
Snapshot. For more details see the links at end of this section.

Set the transaction isolation level using SET command. It affects the current execution scope only.

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ
| SNAPSHOT | SERIALIZABLE }

Examples
Execute two DML statements within a serializable transaction.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRANSACTION;
INSERT INTO Table1
VALUES (1, 'A');
UPDATE Table2
 SET Column1 = 'Done'
WHERE KeyColumn = 1;
COMMIT TRANSACTION;

Formore information, see
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels?view=sql-server-ver15 and
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Aswith SQL Server, the same ANSI/ISOSQL (SQL92) isolation levels apply to PostgreSQL, but with several sim-
ilarities and some differences.

Isolation Level Dirty Reads Non-Repeatable
Reads Phantom Reads

Read Uncom- Permitted but not imple- Permitted Permitted

- 147 -

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql

Isolation Level Dirty Reads Non-Repeatable
Reads Phantom Reads

mitted mented in PostgreSQL

ReadCommitted Not permitted Permitted Permitted

Repeatable Read Not permitted Not permitted Permitted but not implemented in
PostgreSQL

Serializable Not permitted Not permitted Not permitted

PostgreSQL technically supports the use of any of the above four transaction isolation levels, but only three can
practically be used. The Read-Uncommitted isolation level serves asRead-Committed.

The way the Repeatable-Read isolation-level is implemented does not allow for phantom reads, which is similar
to the Serializable isolation-level. The primary difference between Repeatable-Read and Serializable is that Seri-
alizable guarantees that the result of concurrent transactions are precisely the same as if theywere executed seri-
ally, which is not always true for Repeatable-Reads.

Starting with PostgreSQL 12 option AND CHAIN can be added to COMMIT or ROLLBACK commands to imme-
diately start another transaction with the same parameters as preceding transaction.

Multiversion Concurrency Control (MVCC)

In PostgreSQL, theMVCC mechanism allows transactions to work with a consistent snapshot of data ignoring
changesmade by other transactions that have not yet committed or rolled back. Each transaction “sees” a snap-
shot of accessed data accurate to its execution start time regardless of what other transactions are doing con-
currently.

Isolation Levels
PostgreSQL supports the Read-Committed, Repeatable-Reads, and Serializable isolation levels. Read-Com-
mitted is the default isolation level.

l Read-Committed: The default PostgreSQL transaction isolation level. It prevents sessions from “seeing”
data from concurrent transactions until it is committed. Dirty reads are not permitted.

l Repeatable-Read: Queries can only see rows committed before the first query or DML statement was
executed in the transaction.

l Serializable: Provides the strictest transaction isolation level. The Serializable isolation level assures that
the result of the concurrent transactionswill be the same as if theywere executed serially. This is not
always the case for the Repeatable-Read isolation level.

Setting Isolation Levels in Aurora PostgreSQL

Isolation levels can be configured at several levels:

l Session level

l Transaction level

l Instance level using Aurora “Parameter Groups”.

- 148 -

Syntax

SET TRANSACTION transaction_mode [...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [...]

where transaction_mode is one of:

ISOLATION LEVEL {
SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED
}
READ WRITE | READ ONLY [NOT] DEFERRABLE

Examples

Configure the isolation level for a specific transaction.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Configure the isolation level for a specific session.

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE READ;

View the current isolation level.

SELECT CURRENT_SETTING('TRANSACTION_ISOLATION'); -- Session
SHOW DEFAULT_TRANSACTION_ISOLATION; -- Instance

Modifying instance-level parameters for Aurora PostgreSQL is done using “Parameter Groups”. For example
altering the default_transaction_isolation parameter using the AWS Console or the AWS CLI.

For additional details, see: http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Work-
ingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying

Comparison table of relevant database features related to transactions

Database Feature SQL Server PostgreSQL

AutoCommit Off Depends

Autocommit is turned off by
default, however, some client
tools like psql andmore are
setting this to ON by default.

Check your client tool defaults
or run the following command
to check current configuration
in psql:

- 149 -

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying

Database Feature SQL Server PostgreSQL

\echo :AUTOCOMMIT

MVCC Yes Yes

Default Isolation Level Read Committed Read Committed

Supported Isolation Levels REPEATABLE READ | READ COMMITTED
| READ UNCOMMITTED | SERIALIZABLE

Repeatable Reads Seri-
alizable Read-only

Configure Session Isolation
Levels

Yes Yes

Configure Transaction Isolation
Levels

Yes Yes

Read-Committed Isolation Level

TX1 TX2 Comment

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
-------------------+----------

100 | 24000.00

select employee_id, salary from
EMPLOYEES
where employee_id=100;

employee_id | salary
------------------+----------

100 | 24000.00

Same results returned from both ses-
sions

begin;
UPDATE employees
SET salary=27000
WHERE employee_id=100;

begin;
set transaction isolation level
read committed;

TX1 starts a transaction; performs
an update.
TX2 starts a transaction with read-
committed isolation level

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
-------------------+----------
 100 | 27000.00

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
------------------+----------

100 | 24000.00

TX1will “see” themodified results
(27000.00) while
TX2 “sees” the original data
(24000.00)

UPDATE employees
SET salary=29000
WHERE employee_id=100;

Waits as TX2 is blocked by TX1

Commit; TX1 issues a commit, and the lock is
released

Commit; TX2 issues a commit

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
------------+----------

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
------------------+----------

Both queries return the value -
29000.00

- 150 -

TX1 TX2 Comment

100 | 29000.00 100 | 29000.00

Serializable Isolation Level

TX1 TX2 Comment

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
-------------------+----------

100 | 24000.00

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
-------------------+----------

100 | 24000.00

Same results returned from
both sessions

begin;
UPDATE employees
SET salary=27000
WHERE employee_id=100;

begin;
set transaction isolation level seri-
alizable;

TX1 starts a transaction; per-
forms an update.
TX2 starts a transaction with
isolation level of read committed

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
------------------+----------
 100 | 27000.00

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
------------------+----------

100 | 24000.00

TX1will “see” themodified res-
ults (27000.00) while
TX2 “sees” the original data
(24000.00)

update employees set salary-
y=29000 where employee_id=100;

Waits as TX2 is blocked by TX1

Commit; TX1 issues a commit, and the
lock is released

ERROR: could not serialize access
due to concurrent update

TX2 received an error message

Commit;
ROLLBACK

TX2 trying to issue a commit but
receives a rollbackmessage,
the transaction failed due to the
serializable isolation level

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
-------------------+----------

100 | 27000.00

SELECT employee_id, salary
FROMEMPLOYEES
WHERE employee_id=100;

employee_id | salary
-------------------+----------

100 | 27000.00

Both queries will return the data
updated according to TX1

- 151 -

Summary
The following table summarizes the key differences in transaction support and syntaxwhenmigrating fromSQL
Server to Aurora PostgreSQL.

Transaction Prop-
erty SQL Server Aurora PostgreSQL

Default isolation
level

READ COMMITTED READ COMMITED

initialize trans-
action syntax

BEGIN TRAN|TRANSACTION SET TRANSACTION

Default isolation
mechanism

Pessimistic lock based Lock based for writes, consistent read for SELECTs

Commit trans-
action

COMMIT
[WORK|TRAN|TRANSACTION]

COMMIT
[WORK | TRANSACTION]

Rollback trans-
action

ROLLBACK [WORK |[TRAN |
TRANSACTION]

ROLLBACK [WORK | TRANSACTION]

Set autocommit
off/on

SET IMPLICIT_
TRANSACTIONS OFF | ON

SET AUTOCOMMIT { = | TO } { ON | OFF }

ANSI Isolation REPEATABLE READ | READ
COMMITTED | READ
UNCOMMITTED |
SERIALIZABLE

REPEATABLE READ | READ COMMITTED |
READ UNCOMMITTED | SERIALIZABLE

MVCC SNAPSHOT andREAD
COMMITTED SNAPSHOT

READ COMMITTED SNAPSHOT

Nested trans-
actions

Supported, view level with
@@trancount

Not Supported

For additional details, see:

l https://www.postgresql.org/docs/13/static/tutorial-transactions.html

l https://www.postgresql.org/docs/13/static/transaction-iso.html

l https://www.postgresql.org/docs/13/static/sql-set-transaction.html

SQL Server Synonyms vs. PostgreSQL Views,
Types & Functions
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A PostgreSQL does not support Synony - there is an
available workaround

- 152 -

https://www.postgresql.org/docs/13/static/tutorial-transactions.html
https://www.postgresql.org/docs/13/static/transaction-iso.html
https://www.postgresql.org/docs/13/static/sql-set-transaction.html

SQL Server Usage
Synonyms are database objects that serve as alternative identifiers for other database objects. The referenced
database object is called the 'base object' andmay reside in the same database, another database on the same
instance, or a remote server.

Synonyms provide an abstraction layer to isolate client application code from changes to the name or location of
the base object.

In SQL Server, Synonyms are often used to simplify the use of four-part identifiers when accessing remote
instances.

For Example, table A resides on Server A, and the client application accesses it directly. For scale out reasons,
Table A needs to bemoved to server B to offload resource consumption on Server A.Without synonyms, the cli-
ent application codemust be rewritten to access Server B. Instead, you can create a synonym called Table A and
it will transparently redirect the calling application to Server B without any code changes.

Synonyms can be created for the following objects:

l Assembly (CLR) stored procedures, table-valued functions, scalar functions, and aggregate functions
l Replication-filter-procedures
l Extended stored procedures
l SQL scalar functions, table-valued functions, inline-tabled-valued functions, views, and stored procedures
l User defined tables including local and global temporary tables

Syntax
CREATE SYNONYM [<Synonym Schema>] . <Synonym Name>
FOR [<Server Name>] . [<Database Name>] . [Schema Name>] . <Object Name>

Examples
Create a synonym for a local object in a separate database.

CREATE TABLE DB1.Schema1.MyTable
(
KeyColumn INT IDENTITY PRIMARY KEY,
DataColumn VARCHAR(20) NOT NULL
);

USE DB2;
CREATE SYNONYM Schema2.MyTable
FOR DB1.Schema1.MyTable

Create a synonym for a remote object.

-- On ServerA
CREATE TABLE DB1.Schema1.MyTable
(
KeyColumn INT IDENTITY PRIMARY KEY,

DataColumn VARCHAR(20) NOT NULL
);

-- On Server B

- 153 -

USE DB2;
CREATE SYNONYM Schema2.MyTable
FOR ServerA.DB1.Schema1.MyTable;

Note: This example assumes a linked server named ServerA exists on Server B that points to Server A.

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql?view=sql-
server-ver15

PostgreSQL Usage
SQLServer's Synonym often being used to give another name for an object, PostgreSQL does not provide a fea-
ture comparable to SQL Server Synonyms. However, you can achieve similar functionality by using a few Post-
greSQL objects.

This lack of functionality will add amanual dimension tomigration processwherever SQL Server Synonyms are
involved. The user using these objectsmust have privileges on the base object and relevant PostgreSQL options
should be used.

Example
In order to create a Synonym of a table in PostgreSQL, views should be used.

The first step is to create a table that will be used as the base object, and on top of it, a view that will be used as
Synonym.

CREATE TABLE DB1.Schema1.MyTable
(
KeyColumn NUMERIC PRIMARY KEY,
DataColumn VARCHAR(20) NOT NULL
);

CREATE VIEW DB2.Schema2.MyTable_Syn
AS SELECT * FROM DB1.Schema1.MyTable

For more information see: Views

In order to create a Synonym of a User Defined Type in PostgreSQL, another User-Defined-Type should be
used to wrap the source Type.

The first step is to create the User-Defined-Type that will be used as the base object, and on top of it, a User-
Defined-Type that will be used as the Synonym.

CREATE TYPE DB1.Schema1.MyType AS (
ID NUMERIC,
name CHARACTER VARYING(100));

CREATE TYPE DB2.Schema2.MyType_Syn AS (
udt DB1.Schema1.MyT);

- 154 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql

For more information see: User Define Types

In order to create a Synonym for a function in PostgreSQL, another Function should be used to wrap the source
Type.

As before, the first step is to create the Function that will the used as the base object, and on top of it, a Function
that will be used as the Synonym.

CREATE OR REPLACE FUNCTION DB1.Schema1.MyFunc (P_NUM NUMERIC)
RETURNS numeric AS $$
begin

RETURN P_NUM * 2;
END; $$
LANGUAGE PLPGSQL;

CREATE OR REPLACE FUNCTION DB2.Schema2.MyFunc_Syn (P_NUM NUMERIC)
RETURNS numeric AS $$
begin

RETURN DB1.Schema1.MyFunc(P_NUM);
END; $$
LANGUAGE PLPGSQL;

For more information see: User Define Function

SQL Server DELETE and UPDATE FROM vs.
PostgreSQL DELETE and UPDATE FROM
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A DELETE...FROM from_list is not supported -
rewrite to use subqueries

SQL Server Usage
SQLServer supports an extension to the ANSI standard that allows using an additional FROMclause in
UPDATE and DELETE statements.

This additional FROMclause can be used to limit the number of modified rows by joining the table being updated,
or deleted from, to one or more other tables. This functionality is similar to using aWHERE clause with a derived
table sub-query. For UPDATE, you can use this syntax to set multiple column values simultaneously without
repeating the sub-query for every column.

However, these statements can introduce logical inconsistencies if a row in an updated table ismatched tomore
than one row in a joined table. The current implementation chooses an arbitrary value from the set of potential val-
ues and is non-deterministic.

- 155 -

Syntax
UPDATE <Table Name>
SET <Column Name> = <Expression> ,...
FROM <Table Source>
WHERE <Filter Predicate>;

DELETE FROM <Table Name>
FROM <Table Source>
WHERE <Filter Predicate>;

Examples
Delete customerswith no orders.

CREATE TABLE Customers
(
Customer VARCHAR(20) PRIMARY KEY
);

INSERT INTO Customers
VALUES
('John'),
('Jim'),
('Jack')

CREATE TABLE Orders
(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL
);

INSERT INTO Orders (OrderID, Customer, OrderDate)
VALUES
(1, 'Jim', '20180401'),
(2, 'Jack', '20180402');

DELETE FROM Customers
FROM Customers AS C

LEFT OUTER JOIN
Orders AS O
ON O.Customer = C.Customer

WHERE O.OrderID IS NULL;

SELECT *
FROM Customers;

Customer

Jim
Jack

- 156 -

Updatemultiple columns in Orders based on the values in OrderCorrections.

CREATE TABLE OrderCorrections
(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL
);

INSERT INTO OrderCorrections
VALUES (1, 'Jack', '20180324');

UPDATE O
SET Customer = OC.Customer,

OrderDate = OC.OrderDate
FROM Orders AS O

INNER JOIN
OrderCorrections AS OC
ON O.OrderID = OC.OrderID;

SELECT *
FROM Orders;

Customer OrderDate
--------- ---------
Jack 2018-03-24
Jack 2018-04-02

Formore information, see:

l https://docs.microsoft.com/en-us/sql/t-sql/queries/update-transact-sql?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/statements/delete-transact-sql?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL does not support DELETE..FROMsyntax, but it does support UPDATE FROMsyntax.

Syntax
[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table_name [*] [[AS] alias]

SET { column_name = { expression | DEFAULT } |
(column_name [, ...]) = ({ expression | DEFAULT } [, ...]) |
(column_name [, ...]) = (sub-SELECT)

} [, ...]
[FROM from_list]
[WHERE condition | WHERE CURRENT OF cursor_name]
[RETURNING * | output_expression [[AS] output_name] [, ...]]

- 157 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/update-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/delete-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql

Migration Considerations
You can easily rewrite the DELETE statements as subqueries. Place the subqueries in theWHERE clause. This
workaround is simple and, in most cases, easier to read and understand.

Examples
Delete customerswith no orders.

CREATE TABLE Customers
(
Customer VARCHAR(20) PRIMARY KEY
);

INSERT INTO Customers
VALUES
('John'),
('Jim'),
('Jack')

CREATE TABLE Orders
(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL
);

INSERT INTO Orders (OrderID, Customer, OrderDate)
VALUES
(1, 'Jim', '20180401'),
(2, 'Jack', '20180402');

DELETE FROM Customers
WHERE Customer NOT IN (
 SELECT Customer
 FROM Orders
);

SELECT *
FROM Customers;

Customer

Jim
Jack

Update.

CREATE TABLE OrderCorrections
(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

- 158 -

);

INSERT INTO OrderCorrections
VALUES (1, 'Jack', '20180324');

UPDATE orders
SET Customer = OC.Customer,

OrderDate = OC.OrderDate
FROM Orders AS O

INNER JOIN
OrderCorrections AS OC
ON O.OrderID = OC.OrderID;

SELECT *
FROM Orders;

Customer OrderDate
--------- ---------
Jack 2018-03-24
Jack 2018-04-02

Summary
The following table identifies similarities, differences, and keymigration considerations.

Feature SQL Server Aurora PostgreSQL

Join as part of
DELETE

DELETE FROM ... FROM N/A - Rewrite to useWHERE clause with a sub-query.

Join as part of
UPDATE

UPDATE ... FROM UPDATE ... FROM

Formore information, see:

l https://www.postgresql.org/docs/13/static/sql-delete.html

l https://www.postgresql.org/docs/13/static/sql-update.html

SQL Server Stored Procedures vs.
PostgreSQL Stored Procedures
Feature Com-
patibility

SCT/DMS Automation
Level SCT Action Code Index Key Differences

SCT Action Codes - Stored Pro-
cedures

Syntax and option dif-
ferences

- 159 -

https://www.postgresql.org/docs/13/static/sql-delete.html
https://www.postgresql.org/docs/13/static/sql-update.html

SQL Server Usage
Stored Procedures are encapsulated, persisted codemodules that you can execute using the EXECUTE T-SQL
statement. Theymay havemultiple input (IN) and output (OUT) parameters. Table valued user defined types can
be used as input parameters. IN is the default direction for parameters, but OUTmust be explicitly specified. You
can specify parameters as both IN andOUT.

SQL Server allows you to run stored procedures in any security context using the EXECUTE AS option. They
can be explicitly recompiled for every execution using the RECOMPILE option and can be encrypted in the data-
base using the ENCRYPTION option to prevent unauthorized access to the source code.

SQL Server provides a unique feature that allows you to use a stored procedure as an input to an INSERT state-
ment. When using this feature, only the first row in the data set returned by the stored procedure is evaluated.

Syntax
CREATE [OR ALTER] { PROC | PROCEDURE } <Procedure Name>
[<Parameter List>
[WITH [ENCRYPTION]|[RECOMPILE]|[EXECUTE AS ...]]
AS {
[BEGIN]
<SQL Code Body>
[END] }[;]

Examples

Creating and Executing a Stored Procedure

Create a simple parameterized Stored Procedure to validate the basic format of an Email.

CREATE PROCEDURE ValidateEmail
@Email VARCHAR(128), @IsValid BIT = 0 OUT
AS
BEGIN
IF @Email LIKE N'%@%' SET @IsValid = 1
ELSE SET @IsValid = 0
RETURN @IsValid
END;

Execute the procedure.

DECLARE @IsValid BIT
EXECUTE [ValidateEmail]
@Email = 'X@y.com', @IsValid = @IsValid OUT;

SELECT @IsValid;

-- Returns 1

EXECUTE [ValidateEmail]
@Email = 'Xy.com', @IsValid = @IsValid OUT;

SELECT @IsValid;

- 160 -

-- Returns 0

Create a stored procedure that usesRETURN to pass an error value to the application.

CREATE PROCEDURE ProcessImportBatch
@BatchID INT
AS
BEGIN
 BEGIN TRY
 EXECUTE Step1 @BatchID
 EXECUTE Step2 @BatchID
 EXECUTE Step3 @BatchID
 END TRY
 BEGIN CATCH
 IF ERROR_NUMBER() = 235
 RETURN -1 -- indicate special condition
 ELSE
 THROW -- handle error normally
 END CATCH
END

Using a Table-Valued Input Parameter

Create and populate anOrderItems table.

CREATE TABLE OrderItems(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Create a tabled valued type for the OrderItem table valued parameter.

CREATE TYPE OrderItems
AS TABLE
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create a procedure to process order items.

CREATE PROCEDURE InsertOrderItems
@OrderItems AS OrderItems READONLY

- 161 -

AS
BEGIN
 INSERT INTO OrderItems(OrderID, Item, Quantity)
 SELECT OrderID,

 Item,
 Quantity
 FROM @OrderItems

END;

Instantiate and populate the table valued variable and pass the data set to the stored procedure.

DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES
(1, 'M8 Bolt', 100),
(1, 'M8 Nut', 100),
(1, M8 Washer, 200);

EXECUTE [InsertOrderItems]
 @OrderItems = @OrderItems;

(3 rows affected)
 Item Quantity
 ------------ ------------
 1 M8 Bolt 100
 2 M8 Nut 100
 3 M8 Washer 200

INSERT... EXEC Syntax

INSERT INTO <MyTable>
EXECUTE <MyStoredProcedure>;

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql?view=sql-
server-ver15

PostgreSQL Overview
PostgreSQL version 10 provides support for both stored procedures and stored functions using the CREATE
FUNCTION statement. To emphasize, only the CREATE FUNCTION is supported by the procedural statements
used by PostgreSQL version 10. The CREATE PROCEDURE statement is not supported.

PL/pgSQL is themain database programming language used for migrating fromSQLServer's T-SQL code. Post-
greSQL supports these additional programming languages, also available in Amazon Aurora PostgreSQL:

l PL/pgSQL

l PL/Tcl

l PL/Perl

Use the show.rds.extensions command to view all available Amazon Aurora extensions.

- 162 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql

PostgreSQL Create Function Privileges

To create a function, a user must have USAGE privilege on the language.When creating a function, a language
parameter can be specified as shown in the examples below.

Examples
Create a new function named FUNC_ALG.

CREATE OR REPLACE FUNCTION FUNC_ALG(P_NUM NUMERIC)
RETURNS NUMERIC
AS $$
BEGIN
 RETURN P_NUM * 2;
END; $$
LANGUAGE PLPGSQL;

l TheCREATE OR REPLACE statement creates a new function or replaces an existing function with these
limitations:

l You cannot change the function name or argument types.

l The statement does not allow changing the existing function return type.

l The user must own the function to replace it.

l INPUT parameter (P_NUM) is implemented similar to SQL Server T-SQL INPUT parameter.

l The $$ signs alleviate the need to use single-quoted string escape elements. With the $$ sign, there is no
need to use escape characters in the code when using single quotationmarks ('). The $$ sign appears
after the keyword AS and after the function keyword END.

l Use the LANGUAGE PLPGSQL parameter to specify the language for the created function.

Create a function with PostgreSQL PL/pgSQL.

CREATE OR REPLACE FUNCTION EMP_SAL_RAISE
(IN P_EMP_ID DOUBLE PRECISION, IN SAL_RAISE DOUBLE PRECISION)
RETURNS VOID
AS $$
DECLARE
V_EMP_CURRENT_SAL DOUBLE PRECISION;
BEGIN
SELECT SALARY INTO STRICT V_EMP_CURRENT_SAL
FROM EMPLOYEES WHERE EMPLOYEE_ID = P_EMP_ID;

UPDATE EMPLOYEES SET SALARY = V_EMP_CURRENT_SAL + SAL_RAISE WHERE EMPLOYEE_ID = P_EMP_
ID;

RAISE DEBUG USING MESSAGE := CONCAT_WS('', 'NEW SALARY FOR EMPLOYEE ID: ', P_EMP_ID, '
IS ', (V_EMP_CURRENT_SAL + SAL_RAISE));
EXCEPTION
WHEN OTHERS THEN
RAISE USING ERRCODE := '20001', MESSAGE := CONCAT_WS('', 'AN ERROR WAS ENCOUNTERED -
', SQLSTATE, ' -ERROR-', SQLERRM);
END; $$
LANGUAGE PLPGSQL;

- 163 -

select emp_sal_raise(200, 1000);

Note: In the example above, the RAISE command can be replaced with RETURN in order to inform the
application that an error occurred.

Create a function with PostgreSQL PL/pgSQL.

CREATE OR REPLACE FUNCTION EMP_PERIOD_OF_SERVICE_YEAR (IN P_EMP_ID DOUBLE PRECISION)
RETURNS DOUBLE PRECISION
AS $$
DECLARE
V_PERIOD_OF_SERVICE_YEARS DOUBLE PRECISION;
BEGIN
SELECT
EXTRACT (YEAR FROM NOW()) - EXTRACT (YEAR FROM (HIRE_DATE))
INTO STRICT V_PERIOD_OF_SERVICE_YEARS
FROM EMPLOYEES
WHERE EMPLOYEE_ID = P_EMP_ID;
RETURN V_PERIOD_OF_SERVICE_YEARS;
END; $$
LANGUAGE PLPGSQL;

SELECT EMPLOYEE_ID,FIRST_NAME, EMP_PERIOD_OF_SERVICE_YEAR(EMPLOYEE_ID) AS
PERIOD_OF_SERVICE_YEAR
FROM EMPLOYEES;

There is a new behavior in PostgreSQL version 10 for a set-returning function, used by LATERAL FROM-clause.

Previous

CREATE TABLE emps (id int, manager int);
INSERT INTO tab VALUES (23, 24), (52, 23), (21, 65);
SELECT x, generate_series(1,5) AS g FROM tab;

id	g
23 |1
23 |2
23 |3
23 |4
23 |5
52 |1
52 |2
52 |3
52 |4
52 |5
21 |1
21 |2
21 |3
21 |4
21 |5

New

- 164 -

SELECT id, g FROM emps, LATERAL generate_series(1,5) AS g;

id	g
23 |1
23 |2
23 |3
23 |4
23 |5
52 |1
52 |2
52 |3
52 |4
52 |5
21 |1
21 |2
21 |3
21 |4
21 |5

In the above example, you could put the set-return function on the outside of the nested loop join, since it has no
actual lateral dependency on emps table.

Summary
The following table summarizes the differences between SQLServer Stored Procedures and PostgreSQL
Stored Procedures.

SQL Server Aurora PostgreSQL Workaround

General
CREATE
Syntax dif-
ferences

CREATE
PROC|PROCEDURE
<Procedure Name>

@Parameter1 <Type>, ...n

AS

<Body>

CREATE [OR REPLACE
] FUNCTION <Function
Name> (Parameter1
<Type>, ...n)

AS $$

<body>

Rewrite stored procedure creation
scripts to use FUNCTION instead of
PROC or PROCEDURE.

Rewrite stored procedure creation
scripts to omit the AS $$ pattern.

Rewrite stored procedure para-
meters to not use the@ symbol in
parameter names. Add parentheses
around the parameter declaration.

Security
Context

{ EXEC | EXECUTE } AS

{ CALLER | SELF | OWNER
| 'user_name' }

SECURITY INVOKER |
SECURITY DEFINER

For stored procedures that use an
explicit user name, rewrite the code
fromEXECUTE AS 'user' to
SECURITY DEFINER and recreate
the functionswith this user.

For stored procedures that use the
CALLER option, rewrite the code to
include SECURITY INVOKER.

For stored procedures that use the
SELF option, rewrite the code to
SECURITY DEFINER.

- 165 -

SQL Server Aurora PostgreSQL Workaround

Encryption UseWITH ENCRYPTION
option

Not supported in Aurora
PostgreSQL

Parameter
direction

IN andOUT|OUTPUT,

by default OUT can be used
as IN aswell.

IN, OUT, INOUT, or
VARIADIC

Although the functionality of these
parameters is the same for SQL
Server and PostgreSQL, youmust
rewrite the code for syntax com-
pliance:

UseOUT instead of OUTPUT.

USE INOUT instead of OUT for bid-
irectional parameters.

Recompile UseWITH RECOMPILE
option

Not supported in Aurora
PostgreSQL

Table Val-
ued Para-
meters

Use declared table type user
defined parameters

Use declared table type
user defined parameters

Additional
restrictions

Use BULK INSERT to load
data from text file

Not supported in Aurora
PostgreSQL

For additional details, see:

l https://www.postgresql.org/docs/13/static/sql-createfunction.html

l https://www.postgresql.org/docs/13/static/plpgsql.html

l https://www.postgresql.org/docs/13/static/xplang.html

l https://www.postgresql.org/docs/13/static/xfunc-sql.html

SQL Server Error Handling vs. PostgreSQL Error
Handling
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A Different paradigm and syntaxwill require
rewrite of error handling code

SQL Server Usage
SQLServer error handling capabilities have significantly improved throughout the years. However, previous fea-
tures are retained for backward compatibility.
Before SQL Server 2008, only very basic error handling featureswere available. RAISERROR was the primary
statement used for error handling.

Since SQL 2008, SQL Server has added extensive ".Net like" error handling capabilities including TRY/CATCH
blocks, THROW statements, the FORMATMESSAGE function, and a set of system functions that return
metadata for the current error condition.

- 166 -

https://www.postgresql.org/docs/13/static/sql-createfunction.html
https://www.postgresql.org/docs/13/static/plpgsql.html
https://www.postgresql.org/docs/13/static/xplang.html
https://www.postgresql.org/docs/13/static/xfunc-sql.html

TRY/CATCH Blocks
TRY/CATCH blocks implement error handling similar to Microsoft Visual C# andMicrosoft Visual C++. TRY ...
END TRY statement blocks can contain T-SQL statements .

If an error is raised by any of the statements within the TRY ... END TRY block, execution stops and ismoved to
the nearest set of statements that are bounded by a CATCH ... END CATCH block.

Syntax

BEGIN TRY
<Set of SQL Statements>
END TRY
BEGIN CATCH
<Set of SQL Error Handling Statements>
END CATCH

THROW
The THROW statement raises an exception and transfers execution of the TRY ... END TRY block of statements
to the associated CATCH ... END CATCH block of statements.

Throw accepts either constant literals or variables for all parameters.

Syntax

THROW [Error Number>, <Error Message>, < Error State>] [;]

Examples

Use TRY/CATCH error blocks to handle key violations.

CREATE TABLE ErrorTest (Col1 INT NOT NULL PRIMARY KEY);

BEGIN TRY
BEGIN TRANSACTION
 INSERT INTO ErrorTest(Col1) VALUES(1);
 INSERT INTO ErrorTest(Col1) VALUES(2);
 INSERT INTO ErrorTest(Col1) VALUES(1);
COMMIT TRANSACTION;

END TRY
BEGIN CATCH
 THROW; -- Throw with no parameters = RETHROW
END CATCH;

(1 row affected)
(1 row affected)
(0 rows affected)
Msg 2627, Level 14, State 1, Line 7

- 167 -

Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE54D8676973'.
Cannot insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

Note: Contrary to what many SQL developers believe, the values 1 and 2 are indeed inserted into
ErrorTestTable in the above example. This behavior is in accordance with ANSI specifications stating
that a constraint violation should not roll back an entire transaction.

Use THROWwith variables

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO ErrorTest(Col1) VALUES(1);
INSERT INTO ErrorTest(Col1) VALUES(2);
INSERT INTO ErrorTest(Col1) VALUES(1);
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
DECLARE @CustomMessage VARCHAR(1000),

@CustomError INT,
@CustomState INT;

SET @CustomMessage = 'My Custom Text ' + ERROR_MESSAGE();
SET @CustomError = 54321;
SET @CustomState = 1;
THROW @CustomError, @CustomMessage, @CustomState;
END CATCH;

(0 rows affected)
Msg 54321, Level 16, State 1, Line 19
My Custom Text Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE545CBDBB9A'.
Cannot insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

RAISERROR
TheRAISERROR statement is used to explicitly raise an error message, similar to THROW. It causes an error
state for the executing session and forwards execution to either the calling scope or, if the error occurred within a
TRY ... END TRY block, to the associated CATCH ... END CATCH block. RAISERROR can reference a user-
definedmessage stored in the sys.messages system table or can be used with dynamicmessage text.

The key differences between THROW andRAISERROR are:

l Message IDs passed to RAISERRORmust exist in the sys.messages system table. The error number
parameter passed to THROW does not.

l RAISERROR message text may contain printf formatting styles. Themessage text of THROWmay not.
l RAISERROR uses the severity parameter for the error returned. For THROW, severity is always 16.

Syntax

RAISERROR (<Message ID>|<Message Text> ,<Message Severity> ,<Message State>
[WITH option [<Option List>]])

Examples

Raise a custom error.

- 168 -

RAISERROR (N'This is a custom error message with severity 10 and state 1.', 10, 1)

FORMATMESSAGE
FORMATMESSAGE returns a stingmessage consisting of an existing error message in the sys.messages sys-
tem table, or from a text string, using the optional parameter list replacements. The FORMATMESSAGE state-
ment is similar to the RAISERROR statement.

Syntax

FORMATMESSAGE (<Message Number> | <Message String>, <Parameter List>)

Error State Functions
SQLServer provides the following error state functions:

l ERROR_LINE
l ERROR_MESSAGE
l ERROR_NUMBER
l ERROR_PROCEDURE
l ERROR_SEVERITY
l ERROR_STATE
l @@ERROR

Examples

Use Error State Functionswithin a CATCH block.

CREATE TABLE ErrorTest (Col1 INT NOT NULL PRIMARY KEY);

BEGIN TRY;
BEGIN TRANSACTION;

 INSERT INTO ErrorTest(Col1) VALUES(1);
 INSERT INTO ErrorTest(Col1) VALUES(2);
 INSERT INTO ErrorTest(Col1) VALUES(1);
COMMIT TRANSACTION;

END TRY
BEGIN CATCH
 SELECT ERROR_LINE(),
 ERROR_MESSAGE(),
 ERROR_NUMBER(),
 ERROR_PROCEDURE(),
 ERROR_SEVERITY(),
 ERROR_STATE(),
 @@Error;
THROW;
END CATCH;

6
Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE543C8912D8'. Cannot insert
duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).
2627

- 169 -

NULL
14
1
2627

(1 row affected)
(1 row affected)
(0 rows affected)
(1 row affected)
Msg 2627, Level 14, State 1, Line 25
Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE543C8912D8'. Cannot insert
duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

Formore information, see

l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql?view=sql-server-ver15
l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL does not provide native replacement for SQL Server error handling features and options, but
it hasmany comparable options.

To trap the errors, use the BEGIN.. EXCEPTION.. END. By default, any error raised in a PL/pgSQL function
block aborts execution and the surrounding transaction. You can trap and recover from errors using a BEGIN
blockwith an EXCEPTION clause. The syntax is an extension to the normal syntax for a BEGIN block.

Syntax
[<<label>>]
[DECLARE

declarations]
BEGIN

statements
EXCEPTION

WHEN condition [OR condition ...] THEN
handler_statements

[WHEN condition [OR condition ...] THEN
handler_statements

...]
END;

"condition" is related to the error or the code. For example:

l WHEN interval_field_overflow THEN..

l WHEN SQLSTATE '22015' THEN...

For all error codes, see https://www.postgresql.org/docs/13/static/errcodes-appendix.html

- 170 -

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql
https://www.postgresql.org/docs/13/static/errcodes-appendix.html

Throw errors
The PostgreSQLRAISE statement can be used to throw errors. You can combine RAISE with several levels of
severity including:

Severity Usage

DEBUG1..DEBUG5 Provides successivelymore detailed information for use by developers.

INFO Provides information implicitly requested by the user.

NOTICE Provides information that might be helpful to users.

WARNING Provideswarnings of likely problems.

ERROR Reports an error that caused the current command to abort.

LOG Reports information of interest to administrators. For example, checkpoint activity.

FATAL Reports an error that caused the current session to abort.

PANIC Reports an error that caused all database sessions to abort.

Examples
UseRAISE DEBUG (where DEBUG is the configurable severity level).

SET CLIENT_MIN_MESSAGES = 'debug';

DO $$
BEGIN
RAISE DEBUG USING MESSAGE := 'hello world';
END $$;

DEBUG: hello world
DO

Use the client_min_messages parameter to control the level of messages sent to the client. The default is
NOTICE. Use the log_min_messages parameter to control whichmessage levels are written to the server log.
The default isWARNING.

SET CLIENT_MIN_MESSAGES = 'deb

Use EXCEPTION..WHEN...THEN inside BEGIN and END block to handle dividing by zero violations.

CREATE TABLE ErrorTest (Col1 INT NOT NULL PRIMARY KEY);

INSERT INTO employee values ('John',10);
BEGIN

SELECT 5/0;
EXCEPTION

WHEN division_by_zero THEN
RAISE NOTICE 'caught division_by_zero';

return 0;
END;

- 171 -

Summary
The following table identifies similarities, differences, and keymigration considerations.

SQL Server Error Handling Feature Aurora PostgreSQL equivalent

TRY ... END TRY andCATCH ... END
CATCH blocks

Inner
BEGIN
...
EXCEPTIONWHEN ... THEN
END

THROW andRAISERROR RAISE

FORMATMESSAGE RAISE [level] 'format' or ASSERT

Error state functions GET STACKED DIAGNOSTICS

Proprietary error messages in sys.messages
system table

RAISE

Formore information, see

l https://www.postgresql.org/docs/13/static/ecpg-errors.html

l https://www.postgresql.org/docs/13/static/plpgsql-errors-and-messages.html

l https://www.postgresql.org/docs/13/static/runtime-config-logging.html#GUC-LOG-MIN-MESSAGES

SQL Server Flow Control vs. PostgreSQL Control
Structures
Feature Com-
patibility

SCT/DMS Auto-
mation Level SCT Action Code Index Key Differences

SCT Action Codes -
Flow Control

Postgres does not support GOTOand
WAITFOR TIME

SQL Server Usage
Although SQL is amostly declarative language, it does support flow control commands, which provide run time
dynamic changes in script execution paths.

Note: Before SQL/PSMwas introduced in SQL:1999, the ANSI standard did not include flow control
constructs. Therefore, there are significant syntax differences amongRDBMS engines.

SQL Server provides the following flow control keywords.

l BEGIN... END: Define boundaries for a block of commands that are executed together.

l RETURN: Exit a server codemodule (stored procedure, function, etc.) and return control to the calling
scope. RETURN <value> can be used to return an INT value to the calling scope.

l BREAK: Exit WHILE loop execution.

- 172 -

https://www.postgresql.org/docs/13/static/ecpg-errors.html
https://www.postgresql.org/docs/13/static/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/13/static/runtime-config-logging.html#GUC-LOG-MIN-MESSAGES

l THROW: Raise errors and potentially return control to the calling stack.

l CONTINUE: Restart aWHILE loop.

l TRY... CATCH: Error handling (see Error Handling).

l GOTO label: Moves the execution point to the location of the specified label.

l WAITFOR: Delay.

l IF... ELSE: Conditional flow control.

l WHILE <condition>: Continue looping while <condition> returns TRUE.

Note: WHILE loops are commonly used with cursors and use the system variable@@FETCH_
STATUS to determine when to exit (see the Cursors section for more details).

For more information about TRY-CATCH and THROW, see Error Handling.

Examples
The following example demonstrates a solution for executing different processes based on the number of items in
an order:

Create and populate anOrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Declare a cursor for looping through all OrderItems and calculating the total quantity per order.

DECLARE OrderItemCursor CURSOR FAST_FORWARD
FOR
SELECT OrderID,
 SUM(Quantity) AS NumItems
FROM OrderItems
GROUP BY OrderID
ORDER BY OrderID;

DECLARE @OrderID INT, @NumItems INT;

-- Instantiate the cursor and loop through all orders.
OPEN OrderItemCursor;

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems

WHILE @@Fetch_Status = 0

- 173 -

BEGIN;

IF @NumItems > 100
 PRINT 'EXECUTING LogLargeOrder - '
 + CAST(@OrderID AS VARCHAR(5))

 + ' ' + CAST(@NumItems AS VARCHAR(5));
 ELSE
 PRINT 'EXECUTING LogSmallOrder - '
 + CAST(@OrderID AS VARCHAR(5))

 + ' ' + CAST(@NumItems AS VARCHAR(5));

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems;
END;

-- Close and deallocate the cursor.
CLOSE OrderItemCursor;
DEALLOCATE OrderItemCursor;

The above code displays the following results:

EXECUTING LogSmallOrder - 1 100
EXECUTING LogSmallOrder - 2 100
EXECUTING LogLargeOrder - 3 200

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/language-elements/control-of-flow?view=sql-server-
ver15

PostgreSQL Usage
Aurora PostgreSQL provides the following flow control constructs:

l BEGIN... END: Define boundaries for a block of commands executed together.

l CASE: Execute a set of commands based on a predicate (not to be confused with CASE expressions).

l IF... ELSE: Perform conditional flow control.

l ITERATE: Restart a LOOP orWHILE statement.

l LEAVE: Exit a server codemodule (stored procedure, function etc.) and return control to the calling scope.

l LOOP: Loop indefinitely.

l REPEAT... UNTIL: Loop until the predicate is true.

l RETURN: Terminate execution of the current scope and return to the calling scope.

l WHILE: Continue looping while the condition returns TRUE.

Examples
The following example demonstrates a solution for executing different logic based on the number of items in an
order. It provides the same functionality as the example for SQL Server flow control. However, unlike the SQL
Server example executed as a batch script, Aurora PostgreSQL variables can only be used in stored routines
(procedures and functions).

- 174 -

Create and populate anOrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Create a procedure to declare a cursor and loop through the order items.

CREATE OR REPLACE FUNCTION P()
RETURNS numeric
LANGUAGE plpgsql

AS $function$
DECLARE
done int default false;
var_OrderID int;
var_NumItems int;
OrderItemCursor CURSOR FOR SELECT OrderID, SUM(Quantity) AS NumItems
FROM OrderItems
GROUP BY OrderID
ORDER BY OrderID;

BEGIN
OPEN OrderItemCursor;

LOOP
fetch from OrderItemCursor INTO var_OrderID, var_NumItems;

EXIT WHEN NOT FOUND;
IF var_NumItems > 100 THEN
RAISE NOTICE 'EXECUTING LogLargeOrder - %s',var_OrderID;
RAISE NOTICE 'Num Items: %s', var_NumItems;

ELSE
RAISE NOTICE 'EXECUTING LogSmallOrder - %s',var_OrderID;

RAISE NOTICE 'Num Items: %s', var_NumItems;
END IF;

END LOOP;

done = TRUE;

CLOSE OrderItemCursor;

END; $function$

- 175 -

Summary
While there are some syntax differences between SQLServer and Aurora PostgreSQL flow control statements,
most rewrites should be straightforward. The following table summarizes the differences and identifies how to
modify T-SQL code to support similar functionality in Aurora PostgreSQL PL/pgSQL.

COMMAND SQL Server Aurora PostgreSQL

BEGIN...
END

Define command block
boundaries

Define command block boundaries.

RETURN Exit the current scope
and return to caller

Supported for both
scripts and stored code
(procedures and func-
tions).

Exit a stored function and return to caller.

BREAK Exit WHILE loop exe-
cution

EXITWHEN

THROW Raise errors and poten-
tially return control to
the calling stack

Raise errors and potentially return control to the calling stack.

TRY -
CATCH

Error handling Error handling - See Error Handling for more details.

GOTO Move execution to spe-
cified label

Consider rewriting the flow logic using either CASE statements or nes-
ted stored procedures. You can use nested stored procedures to cir-
cumvent this limitation by separating code sections and encapsulating
them in sub-procedures. Use IF <condition> EXEC <stored pro-
cedure> in place of GOTO.

WAITFOR Delay pg_sleep - see: https://www.postgresql.org/docs/13/static/functions-
datetime.html

IF... ELSE Conditional flow control Conditional flow control

WHILE Continue execution
while condition is
TRUE

Continue execution while condition is TRUE

Formore information, see https://www.postgresql.org/docs/13/static/plpgsql-control-structures.html

SQL Server Full-Text Search vs. PostgreSQL Full-
Text Search
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action Code
Index Key Differences

SCT Action Codes -
Full Text Search

Different paradigm and syntaxwill require
rewriting the application

- 176 -

https://www.postgresql.org/docs/10/static/functions-datetime.html
https://www.postgresql.org/docs/10/static/functions-datetime.html
https://www.postgresql.org/docs/13/static/plpgsql-control-structures.html

SQL Server Usage
SQLServer supports an optional framework for executing Full-Text search queries against character-based data
in SQL Server tables using an integrated, in-process Full-Text engine and a filter daemon host process
(fdhost.exe).

To run Full-Text queries, a Full-Text catalogmust first be created, which in turnmay contain one or more Full-
Text indexes. A Full-Text index is comprised of one or more textual columns of a table.

Full-text queries perform smart linguistic searches against Full-Text indexes by identifying words and phrases
based on specific language rules. The searches can be for simple words, complex phrases, or multiple forms of a
word or a phrase. They can return ranking scores for matches (also known as "hits").

Full-Text Indexes

A Full-Text index can be created on one of more columns of a table or view for any of the following data types:

l CHAR: Fixed size ASCII string column data type

l VARCHAR: Variable size ASCII string column data type

l NCHAR: Fixed size UNICODE string column data type

l NVARCHAR: Variable size UNICODE string column data type

l TEXT: ASCII BLOB string column data type (deprecated)

l NTEXT: UNICODE BLOB string column data type (deprecated)

l IMAGE: Binary BLOB data type (deprecated)

l XML: XML structured BLOB data type

l VARBINARY(MAX): Binary BLOB data type

l FILESTREAM: File based storage data type

Note: For more information about data types, see Data Types.

Full-text indexes are created using the CREATE FULLTEXT INDEX statement. A Full-Text indexmay contain
up to 1024 columns from a single table or view.

When creating Full-Text indexes on BINARY type columns, documents such asMicrosoft Word can be stored as
a binary stream and parsed correctly by the Full-Text engine.

Full-Text catalogs

Full-text indexes are contained within Full-Text catalog objects. A Full-Text catalog is a logical container for one
or more Full-Text indexes and can be used to collectively administer them as a group for tasks such as back-up,
restore, refresh content, etc.

Full-text catalogs are created using the CREATE FULLTEXT CATALOG statement. A Full-Text catalogmay con-
tain zero or more Full-Text indexes and is limited in scope to a single database.

Full-Text queries

After a Full-Text catalog and index have been create and populated, users can perform Full-Text queries against
these indexes to query for:

- 177 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-catalog-transact-sql

l Simple termmatch for one or more words or phrases

l Prefix termmatch for words that begin with a set of characters

l Generational termmatch for inflectional forms of a word

l Proximity termmatch for words or phrases that are close to another word or phrase

l Thesaurus search for synonymous forms of a word

l Weighted termmatch for finding words or phraseswith weighted proximity values

Full-text queries are integrated into T-SQL and use the following predicates and functions:

l CONTAINS predicate

l FREETEXT predicate

l CONTAINSTABLE table valued function

l FREETEXTTABLE table valued function

Note: Do not confuse Full-Text functionality with the LIKE predicate, which is used for patternmatching
only.

Updating Full-Text Indexes

By default, Full-Text indexes are automatically updated when the underlying data ismodified, similar to a normal
B-Tree or Columnstore index. However, large changes to the underlying datamay inflict a performance impact
for the Full-Text indexes update because it is a resource intensive operation. In these cases, you can disable the
automatic update of the catalog and update it manually, or on a schedule, to keep the catalog up to date with the
underlying tables.

Note: You canmonitor the status of Full-Text catalog by using the FULLTEXTCATALOGPROPERTY
(<Full-text Catalog Name>, 'Populatestatus') function.

Examples
Create a ProductReviews table.

CREATE TABLE ProductReviews
(
ReviewID INT NOT NULL
 IDENTITY(1,1),
CONSTRAINT PK_ProductReviews PRIMARY KEY(ReviewID),
ProductID INT NOT NULL
 /*REFERENCES Products(ProductID)*/,
ReviewText VARCHAR(4000) NOT NULL,
ReviewDate DATE NOT NULL,
UserID INT NOT NULL
/*REFERENCES Users(UserID)*/
);

INSERT INTO ProductReviews
(ProductID, ReviewText, ReviewDate, UserID)
VALUES
(1, 'This is a review for product 1, it is excellent and works as expected',
'20180701', 2),
(1, 'This is a review for product 1, it is not that great and failed after two days',

- 178 -

'20180702', 2),
(2, 'This is a review for product 3, it has exceeded my expectations. A+++',
'20180710', 2);

Create a Full-Text catalog for product reviews.

CREATE FULLTEXT CATALOG ProductFTCatalog;

Create a Full-Text index for ProductReviews.

CREATE FULLTEXT INDEX
ON ProductReviews (ReviewText)
KEY INDEX PK_ProductReviews
ON ProductFTCatalog;

Query the Full-Text index for reviews containing the word 'excellent'.

SELECT *
FROM ProductReviews
WHERE CONTAINS(ReviewText, 'excellent');

ReviewID ProductID ReviewText
 ReviewDate UserID
-------- --------- ----------
 ---------- ------
1 1 This is a review for product 1, it is excellent and works as expected
2018-07-01 2

Formore information, see https://docs.microsoft.com/en-us/sql/2014/relational-databases/search/Full-Text-search?view-
w=sql-server-ver15

PostgreSQL Usage
Full-Text indexes are used to speed up textual searches performed against textual data by using the Full-Text
@@predicate.

Full-Text indexes can be created on almost any column data type, it depends on the operator class used when
the index is created. All classes can be queried from the pg_opclass table and defaults can be defined.

The default class uses index tsvector data types. Themost common use is to create one columnwith text or other
data type, and use triggers to convert it to a tsvector.

There are two index types for full-text searches: GIN andGiST.

GIN is slowler when building the index because it iscomplete (no false positive results), but it's faster when query-
ing.

GIN performance on creation can be improved by increasing themaintenance_work_memparameter.

When creating GIN indexes, they can be combined with these parameters:

l fastupdate: puts updates on the index on a waiting list so theywill occur in VACUUMor related scenarios
(default is ON)

l gin_pending_list_limit: themaximum size of a waiting list (in KB, the default is 4MB)

- 179 -

https://docs.microsoft.com/en-us/sql/2014/relational-databases/search/full-text-search
https://docs.microsoft.com/en-us/sql/2014/relational-databases/search/full-text-search

GIN cannot be used as composite index (multi columns) unless you add the btree_gin extension (which is sup-
ported in Aurora).

CREATE EXTENSION btree_gin;
CREATE INDEX reviews_idx ON reviews USING GIN (title, body);

Full-Text Search Functions

Boolean Search

You can use to_tsquery(), which accepts a list of words is checked against the normalized vector created with to_
tsvector(). To do this, use the@@operator to check if tsquerymatches tsvector. For example, the following state-
ment returns 't' because the column contains the word 'boy'. This search also returns 't' for 'boys' but not for
'boyser'.

SELECT to_tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('boy');

Operators Search

The following example shows how to use the AND (&), OR (|), and NOT (!) operators. The example below
returns 't'.

SELECT to_tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('young & (boy | guy) & !girl');

Phase Search

When using to_tsquery, you can also search for a similar term if you replace boywith boys and add the laungauge
to be used.

SELECT to_tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('english', 'young & (boys | guy) & !girl');

Search wordswithin a specific distance ('-' is equal to 1). Theses examples return true.

SELECT to_tsvector('The quick young boy jumped over the fence') @@
to_tsquery('young <-> boy'),

 to_tsvector('The quick young boy jumped over the fence') @@
 to_tsquery('quick <3> jumped');

Migration Considerations
Migrating Full-Text indexes fromSQLServer to Aurora PostgreSQL requires a full rewrite of the code that
addresses creating, managing, and querying of Full-Text searches.

Although the Aurora PostgreSQL full-text engine is significantly less comprehensive than SQL Server, it is also
much simpler to create andmanage, and it is sufficiently powerful for most common, basic full-text requirements.

- 180 -

A text search dictionary can be created. For more information see: https://www.postgresql.org/docs/13/static/sql-
createtsdictionary.html

For more complex full-text workloads, Amazon RDS offers CloudSearch, amanaged service in the AWS Cloud
that makes it simple and cost-effective to set up, manage, and scale an enterprise grade search solution. Amazon
CloudSearch supports 34 languages and advanced search features such as highlighting, autocomplete, and geo-
spatial search.

Currently, there is no direct tooling integration with Aurora PostgreSQL and, therefore, youmust create a custom
application to synchronize the data between RDS instances and the CloudSearch Service.

Formore information on CloudSearch, see https://aws.amazon.com/cloudsearch/

Examples
CREATE TABLE ProductReviews
(
ReviewID SERIAL PRIMARY KEY,
ProductID INT NOT NULL
ReviewText TEXT NOT NULL,
ReviewDate DATE NOT NULL,
UserID INT NOT NULL
);

INSERT INTO ProductReviews
(ProductID, ReviewText, ReviewDate, UserID)
VALUES
(1, 'This is a review for product 1, it is excellent and works as expected',
'20180701', 2),
(1, 'This is a review for product 1, it is not that great and failed after two days',
'20180702', 2),
(2, 'This is a review for product 3, it has exceeded my expectations. A+++',
'20180710', 2);

Create Full-Text search index.

CREATE INDEX gin_idx ON ProductReviews USING gin (ReviewText gin_trgm_ops);

Note: gin_trgm_ops allows indexing a TEXT data type.

Query the full-text index for reviews containing the word 'excellent'.

SELECT * FROM ProductReviews where ReviewText @@ to_tsquery('excellent');

Formore information, see:

l https://www.postgresql.org/docs/13/static/textsearch.html

l https://www.postgresql.org/docs/13/static/textsearch-features.html

- 181 -

https://www.postgresql.org/docs/13/static/sql-createtsdictionary.html
https://www.postgresql.org/docs/13/static/sql-createtsdictionary.html
https://aws.amazon.com/cloudsearch/
https://www.postgresql.org/docs/13/static/textsearch.html
https://www.postgresql.org/docs/13/static/textsearch-features.html

SQL Server Graph vs. PostgreSQL Apache AGE
extension
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action Code
Index Key Differences

No native support requires rewriting the
application

SQL Server Usage
SQLServer offers graph database capabilities tomodelmany-to-many relationships. The graph relationships are
integrated into Transact-SQL and receive the benefits of using SQL Server as the foundational databaseman-
agement system.

A graph database is a collection of nodes (or vertices) and edges (or relationships). A node represents an entity
(for example, a person or an organization) and an edge represents a relationship between the two nodes that it
connects (for example, likes or friends). Both nodes and edgesmay have properties associated with them. Here
are some features that make a graph database unique:

l Edges or relationships are first class entities in a Graph Database and can have attributes or properties
associated with them.

l A single edge can flexibly connect multiple nodes in a Graph Database.

l You can express patternmatching andmulti-hop navigation queries easily.

l You can express transitive closure and polymorphic queries easily.

A relational database can achieve anything a graph database can. However, a graph databasemakes it easier to
express certain kinds of queries. Also, with specific optimizations, certain queriesmay perform better. Your
decision to choose either a relational or graph database is based on following factors:

l Your application has hierarchical data. The HierarchyID datatype can be used to implement hierarchies,
but it has some limitations. For example, it does not allow you to storemultiple parents for a node.

l Your application has complexmany-to-many relationships; as application evolves, new relationships are
added.

l You need to analyze interconnected data and relationships.

SQL Server 2017 adds new graph database capabilities for modeling graphmany-to-many relationships. They
include new CREATE TABLE syntax for creating node and edge tables, and the keywordMATCH for queries.
SeeGraph Processing with SQL Server 2017

CREATE TABLE example:

CREATE TABLE Person (ID INTEGER PRIMARY KEY, Name VARCHAR(100), Age INT) AS NODE;

CREATE TABLE friends (StartDate date) AS EDGE;

- 182 -

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15

New MATCH clause is introduced to support patternmatching andmulti-hop navigation through the graph. The
MATCH function uses ASCII-art style syntax for patternmatching. For example:

-- Find friends of John

SELECT Person2.Name
FROM Person Person1, Friends, Person Person2
WHERE MATCH(Person1-(Friends)->Person2)
AND Person1.Name = 'John';

SQLServer 2019 adds ability to define cascaded delete actions on an edge constraint in a graph database. Edge
constraints enable users to add constraints to their edge tables, thereby enforcing specific semantics and also
maintaining data integrity. For more information see Edge Cnostraints

In SQL Server 2019 graph tables now have support for table and index partitioning. For more information see Par-
titioned Tables and Indexes.

PostgreSQL Usage
Currently PostgreSQL does not provide native Graph Database feature, but it is possible to implement some of
them using recursive CTE queries, serializing graphs to regular relations or using various extensions, such as
Apache AGE. For more information see Postgres asGraph Database.

Apache AGE is a PostgreSQL extension that provides graph database functionality. AGE is an acronym for A
Graph Extension, and is inspired by Bitnine's fork of PostgreSQL 10, AgensGraph, which is amulti-model data-
base. The goal of the project is to create single storage that can handle both relational and graphmodel data so
that users can use standard ANSI SQL along with openCypher, the Graph query language.

l AGE is currently being developed for the PostgreSQL 11 release and will support PostgreSQL 12 and 13
in 2021 and all the future releases of PostgreSQL.

l AGE supports the openCypher graph query language and label hierarchy.

l AGE enables queryingmultiple graphs at the same time. This will allow a user to query two or more graphs
at once with cypher, decide how tomerge them and get the desired query outputs.

l AGE will be enhanced with an aim to support all of the key features of AgensGraph (PostgreSQL fork
extended with graph DB functionality).

Unfortunately, Aurora PostgreSQL is not supporting Apache AGE extension. So if you want to useGraphs in
PostgreSQL you should consider to use RDS for PostgreSQL.

For more information see Apache AGE (incubating)

SQL Server JSON and XML vs. PostgreSQL JSON
and XML
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

XML Syntax and option differences, similar func-
tionality

Missing FOR XML clause

- 183 -

https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15

SQL Server Usage
Java Script Object Notation (JSON) and eXtensible Markup Language (XML) are the twomost common types of
semi-structured data documents used by a variety of data interfaces and NoSQL databases. Most REST web ser-
vice APIs support JSON as their native data transfer format. XML is an older, moremature framework that is still
widely used. It providesmany extensions such as XQuery, name spaces, schemas, andmore.

The following example is a JSON document:

[{
"name": "Robert",

 "age": "28"
}, {

"name": "James",
 "age": "71"

"lastname": "Drapers"
}]

It's XML counterpart is:

<?xml version="1.0" encoding="UTF-16" ?>
<root>

<Person>
<name>Robert</name>
<age>28</age>

</Person>
<Person>

<name>James</name>
<age>71</age>
<lastname>Drapers</lastname>

</Person>
</root>

SQLServer provides native support for both JSON and XML in the database using the familiar and convenient T-
SQL interface.

XML Data

SQLServer provides extensive native support for working with XML data including XMLData Types, XML
Columns, XML Indexes, and XQuery.

XML Data Types and Columns

XML data can be stored using the following data types:

l TheNative XML Data Type uses a BLOB structure but preserves the XML Infoset, which consists of the
containment hierarchy, document order, and element/attribute values. An XML typed document may differ
from the original text; white space is removed and the order of objectsmay change. XMLData stored as a
native XML data type has the additional benefit of schema validation.

l An Annotated Schema (AXSD) can be used to distribute XML documents to one or more tables. Hier-
archical structure ismaintained, but element order is not.

- 184 -

l CLOB or BLOB such as VARCHAR(MAX) and VARBINARY(MAX) can be used to store the original
XML document.

XML Indexes

SQLServer allows creation of PRIMARY and SECONDARY XML indexes on columnswith a native XML data
type. Secondary indexes can be created for PATH, VALUE, or PROPERTY, which are helpful for various types
of workload queries.

XQuery

SQLServer supports a subset of theW3C XQUERY language specification. It allows executing queries directly
against XML data and using them as expressions or sets in standard T-SQL statements.

For example:

DECLARE @XMLVar XML = '<Root><Data>My XML Data</Data></Root>';
SELECT @XMLVar.query('/Root/Data');

Result: <Data>My XML Data</Data>

JSON Data

SQLServer does not support a dedicated JSON data type. However, you can store JSON documents in an
NVARCHAR column. For more information about BLOBS, see Data Types.

SQL Server provides a set of JSON functions that can be used for the following tasks:

l Retrieve andmodify values in JSON documents.

l Convert JSON objects to a set (table) format.

l Use standard T-SQL queries with converted JSON objects.

l Convert tabular results of T-SQL queries to JSON format.

The functions are:

l ISJSON: Tests if a string contains a valid JSON string. Use inWHERE clause to avoid errors.

l JSON_VALUE: Retrieves a scalar value from a JSON document.

l JSON_QUERY: Retrieves a whole object or array from a JSON document.

l JSON_MODIFY: Modifies values in a JSON document.

l OPENJSON: Converts a JSON document to a SET that can be used in the FROMclause of a T-SQL
query.

The FOR JSON clause of SELECT queries can be used to convert a tabular set to a JSON document.

Examples
Create a table with a native typed XML column.

CREATE TABLE MyTable
(

- 185 -

XMLIdentifier INT NOT NULL PRIMARY KEY,
XMLDocument XML NULL
);

Query a JSON document.

DECLARE @JSONVar NVARCHAR(MAX);
SET @JSONVar = '{"Data":{"Person":[{"Name":"John"},{"Name":"Jane"},
{"Name":"Maria"}]}}';
SELECT JSON_QUERY(@JSONVar, '$.Data');

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-sql-server?view=sql-server-ver15

PostgreSQL Usage
PostgreSQL provides native JSON Document support using the JSON data types JSON and JSONB.

JSON stores an exact copy of the input text that processing functionsmust re-parse on each execution. It also
preserves semantically-insignificant white space between tokens and the order of keyswithin JSON objects.

JSONB stores data in a decomposed binary format causing slightly slower input performance due to added con-
version to binary overhead. But it is significantly faster to process, since no re-parsing is needed on reads.

l Does not preserve white space.

l Does not preserve the order of object keys.

l Does not keep duplicate object keys. If duplicate keys are specified in the input, only the last value is
retained.

Most applications store JSON data as JSONB unless there are specialized needs. For additional information
about the differences between JSON and JSOB datatypes, see
https://www.postgresql.org/docs/13/static/datatype-json.html

In order to comply with the full JSON specification, database encodingmust be set to UTF8. If the database code
page is not set to UTF8, then non-UTF8 characters are allowed and the database encoding will be non-compliant
with the full JSON specification.

Note: Starting with PostgreSQL 10, both JSON and JSONB are compatible with full-text search.

Examples

Querying JSON data in PostgreSQL uses different syntax than SQL Server.

Return the JSON document stored in the emp_data column associated with emp_id=1.

SELECT emp_data FROM employees WHERE emp_id = 1;

Return all JSON documents stored in the emp_data column having a key named address.

SELECT emp_data FROM employees WHERE emp_data ? ' address';

- 186 -

https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-sql-server
https://www.postgresql.org/docs/13/static/datatype-json.html

Return all JSON items that have an address key or a hobbies key.

SELECT * FROM employees WHERE emp_data ?| array['address', 'hobbies'];

Return all JSON items that have both an address key and a hobbies key.

SELECT * FROM employees WHERE emp_data ?& array['a', 'b'];

Return the value of home key in the phone numbers array.

SELECT emp_data ->'phone numbers'->>'home' FROM employees;

Return all JSON documents where the address key is equal to a specified value and return all JSON documents
where address key contains a specific string (using like).

SELECT * FROM employees WHERE emp_data->>'address' = '1234 First Street, Capital
City';

SELECT * FROM employees WHERE emp_data->>'address' like '%Capital City%';

Removing keys from JSON (removingmore than one key is available in PostgreSQL 10 only).

select '{"id":132, "fname":"John", "salary":999999, "bank_account":1234}'::jsonb
 - '{salary,bank_account}'::text[];

For additional details, see https://www.postgresql.org/docs/13/static/functions-json.html

Indexing and Constraints with JSONB Columns

You can use the CREATE UNIQUE INDEX statement to enforce constraints on values inside JSON documents.
For example, you can create a unique index that forces values of the address key to be unique.

CREATE UNIQUE INDEX employee_address_uq ON employees((emp_data->>'address')) ;

This index allows the first SQL insert statement to work and causes the second to fail.

INSERT INTO employees VALUES
(2, 'Second Employee','{ "address": "1234 Second Street, Capital City"}');

INSERT INTO employees VALUES
(3, 'Third Employee', '{ "address": "1234 Second Street, Capital City"}');

ERROR: duplicate key value violates unique constraint "employee_address_uq" SQL state:
23505 Detail: Key ((emp_data ->> 'address'::text))=(1234 Second Street, Capital City)
already exists.

For JSON data, PostgreSQL Supports B-Tree, HASH, andGeneralized Inverted Indexes (GIN). A GIN index is a
special inverted index structure that is useful when an indexmust mapmany values to a row (such as indexing
JSON documents).

When using GIN indexes, you can efficiently and quickly query data using only the following JSON operators:
@>, ?, ?&, ?|

- 187 -

https://www.postgresql.org/docs/10/static/functions-json.html
https://www.postgresql.org/docs/10/static/gin.html

Without indexes, PostgreSQL is forced to perform a full table scan when filtering data. This condition applies to
JSON data and will most likely have a negative impact on performance since Postgres has to step into each
JSON document.

Create an index on the address key of emp_data.

CREATE idx1_employees ON employees ((emp_data->>'address'));

Create aGIN index on a specific key or the entire emp_data column.

CREATE INDEX idx2_employees ON cards USING gin ((emp_data->'tags'));
CREATE INDEX idx3_employees ON employees USING gin (emp_data);

XML
PostgreSQL provides an XML data type for table columns. The primary advantage of using XML columns, rather
than placing XML data in text columns, is that the XML data is type checked when inserted. Additionally, there are
support functions to perform type-safe operations.

XML can store well-formed “documents” as defined by the XML standard or “content” fragments that defined by
the production XMLDecl. Content fragments can havemore than one top-level element or character node.

IS DOCUMENT can be used to evaluate whether a particular XML value is a full document or only a content frag-
ment.

Examples

The following example demonstrates how to create XML data and insert it into a table:

Insert a document, and then insert a content fragment. Both types of XML data can be inserted into the same
column. If the XML is incorrect (such as amissing tag), the insert fails with the relevant error. The query retrieves
only document records.

CREATE TABLE test (a xml);

insert into test values (XMLPARSE (DOCUMENT '<?xml ver-
sion="1.0"?><Series><title>Simpsons</title><chapter>...</chapter></Series>'));

insert into test values (XMLPARSE (CONTENT 'note<tag>value</tag><tag>value</tag>'));

select * from test where a IS DOCUMENT;

- 188 -

Converting XML data to rowswas a feature added in PostgreSQL 10. This can be very helpful reading XML data
using a table equivalent:

CREATE TABLE xmldata_sample AS SELECT
xml $$
<ROWS>

<ROW id="1">
<EMP_ID>532</EMP_ID>
<EMP_NAME>John</EMP_NAME>

</ROW>
<ROW id="5">

<EMP_ID>234</EMP_ID>
<EMP_NAME>Carl</EMP_NAME>
<EMP_DEP>6</EMP_DEP>
<SALARY unit="dollars">10000</SALARY>

</ROW>
<ROW id="6">

<EMP_ID>123</EMP_ID>
<EMP_DEP>8</EMP_DEP>
<SALARY unit="dollars">5000</SALARY>

</ROW>
</ROWS>
$$ AS data;

SELECT xmltable.*
FROM xmldata_sample,

XMLTABLE('//ROWS/ROW'
PASSING data
COLUMNS id int PATH '@id',

ordinality FOR ORDINALITY,
"EMP_NAME" text,
"EMP_ID" text PATH 'EMP_ID',
SALARY_USD float PATH 'SALARY[@unit = "dollars"]',
MANAGER_NAME text PATH 'MANAGER_NAME' DEFAULT 'not specified');

id	ordinality	EMP_NAME	EMP_ID	salary_usd	manager_name
1 |1 |John |532 | |not specified
5 |2 |Carl |234 |10000 |not specified
6 |3 | |123 |5000 |not specified

- 189 -

Summary
The following table identifies similarities, differences, and keymigration considerations.

Feature SQL Server Aurora PostgreSQL

XML and JSON nat-
ive data types

XMLwith schema col-
lections

JSON

JSON functions IS_JSON, JSON_
VALUE, JSON_
QUERY, JSON_
MODFIY, OPEN_
JSON, FOR JSON

A set of more than 20 dedicated JSON functions.
See: https://www.postgresql.org/docs/13/static/functions-
json.html

XML functions XQUERY and XPATH,
OPEN_XML, FOR XML

ManyXML functions,
see: https://www.postgresql.org/docs/13/static/functions-
xml.html

Missing the FOR XML cluase, can use string_agg instead.

XML and JSON
Indexes

Primary and Secondary
PATH, VALUE and
PROPERTY indexes

Supported

For additional information on PostgresSQL XML Types & Functions, see:

l https://www.postgresql.org/docs/13/static/datatype-xml.html

l https://www.postgresql.org/docs/13/static/functions-xml.html

For additional information on the JSON data type & functions, see:

l https://www.postgresql.org/docs/13/static/datatype-json.html

l https://www.postgresql.org/docs/13/static/functions-json.html

SQL Server MERGE vs. PostgreSQL MERGE
Feature Com-
patibility

SCT/DMS Automation
Level SCT Action Code Index Key Differences

SCT Action Codes -
MERGE

Rewrite to use INSERT…ON
CONFLICT

SQL Server Usage
MERGE is a complex , hybrid DML/DQL statement for performing INSERT, UPDATE, or DELETE operations
on a target table based on the results of a logical join of the target table and a source data set.

MERGE can also return row sets similar to SELECT using theOUTPUT clause, which gives the calling scope
access to the actual datamodifications of theMERGE statement.

- 190 -

https://www.postgresql.org/docs/13/static/functions-json.html
https://www.postgresql.org/docs/13/static/functions-json.html
https://www.postgresql.org/docs/13/static/datatype-xml.html
https://www.postgresql.org/docs/13/static/functions-xml.html
https://www.postgresql.org/docs/13/static/datatype-json.html
https://www.postgresql.org/docs/13/static/functions-json.html

TheMERGE statement ismost efficient for non-trivial conditional DML. For example, inserting data if a row key
value does not exist and updating the existing row if the key value already exists.

You can easilymanage additional logic such as deleting rows from the target that don't appear in the source. For
simple, straightforward updates of data in one table based on data in another, it is typicallymore efficient to use
simple INSERT, DELETE, and UPDATE statements. All MERGE functionality can be replicated using INSERT,
DELETE, and UPDATE statements, but not necessarily less efficiently.

The SQL Server MERGE statement provides a wide range of functionality and flexibility and is compatible with
ANSI standard SQL:2008. SQL Server hasmany extensions toMERGE that provide efficient T-SQL solutions
for synchronizing data.

Syntax
MERGE [INTO] <Target Table> [AS] <Table Alias>]
USING <Source Table>
ON <Merge Predicate>
[WHEN MATCHED [AND <Predicate>]
THEN UPDATE SET <Column Assignments...> | DELETE]
[WHEN NOT MATCHED [BY TARGET] [AND <Predicate>]
THEN INSERT [(<Column List>)]
VALUES (<Values List>) | DEFAULT VALUES]
[WHEN NOT MATCHED BY SOURCE [AND <Predicate>]
THEN UPDATE SET <Column Assignments...> | DELETE]
OUTPUT [<Output Clause>]

Examples
Perform a simple one-way synchronization of two tables.

CREATE TABLE SourceTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

CREATE TABLE TargetTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

INSERT INTO SourceTable (Col1, Col2)
VALUES
(2, 'Source2'),
(3, 'Source3'),
(4, 'Source4');

INSERT INTO TargetTable (Col1, Col2)
VALUES
(1, 'Target1'),
(2, 'Target2'),
(3, 'Target3');

- 191 -

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Col1 = SRC.Col1
WHEN MATCHED
 THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED
 THEN INSERT (Col1, Col2)
 VALUES (SRC.Col1, SRC.Col2);

SELECT * FROM TargetTable;

Col1 Col2
----- -----
1 Target1
2 Source2
3 Source3
4 Source4

Perform a conditional two-way synchronization using NULL for "no change" and DELETE from the target when
the data is not found in the source.

TRUNCATE TABLE SourceTable;
INSERT INTO SourceTable (Col1, Col2) VALUES (3, NULL), (4, 'NewSource4'), (5,
'Source5');

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Col1 = SRC.Col1
WHEN MATCHED AND SRC.Col2 IS NOT NULL
 THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED
 THEN INSERT (Col1, Col2)
 VALUES (SRC.Col1, SRC.Col2)
WHEN NOT MATCHED BY SOURCE
 THEN DELETE;

SELECT *
FROM TargetTable;

Col1 Col2
----- -----
3 Source3
4 NewSource4
5 Source5

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql?view=sql-server-
ver15

PostgreSQL Usage
Currently, PostgreSQL version 10 does not support the use of theMERGE SQL command. As an alternative,
consider using the INSERT…ON CONFLICT clause, which can handle caseswhere insert clausesmight cause a
conflict, and then redirect the operation as an update.

- 192 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql

Examples
Using theON ONFLICT clause:

CREATE TABLE EMP_BONUS (
EMPLOYEE_ID NUMERIC,
BONUS_YEAR VARCHAR(4),
SALARY NUMERIC,
BONUS NUMERIC,
PRIMARY KEY (EMPLOYEE_ID, BONUS_YEAR));

INSERT INTO EMP_BONUS (EMPLOYEE_ID, BONUS_YEAR, SALARY)
 SELECT EMPLOYEE_ID, EXTRACT(YEAR FROM NOW()), SALARY
 FROM EMPLOYEES
 WHERE SALARY < 10000

ON CONFLICT (EMPLOYEE_ID, BONUS_YEAR)
DO UPDATE SET BONUS = EMP_BONUS.SALARY * 0.5;

SELECT * FROM EMP_BONUS;
employee_id | bonus_year | salary | bonus
-------------+------------+---------+----------
103 | 2017 | 9000.00 | 4500.000
104 | 2017 | 6000.00 | 3000.000
105 | 2017 | 4800.00 | 2400.000
106 | 2017 | 4800.00 | 2400.000
107 | 2017 | 4200.00 | 2100.000
109 | 2017 | 9000.00 | 4500.000
110 | 2017 | 8200.00 | 4100.000
111 | 2017 | 7700.00 | 3850.000
112 | 2017 | 7800.00 | 3900.000
113 | 2017 | 6900.00 | 3450.000
115 | 2017 | 3100.00 | 1550.000
116 | 2017 | 2900.00 | 1450.000
117 | 2017 | 2800.00 | 1400.000
118 | 2017 | 2600.00 | 1300.000

Running the same operationmultiple times using theON CONFLICT clause does not generate an error because
the existing records are redirected to the update clause.

For more information, see:
https://www.postgresql.org/docs/13/static/sql-insert.html

https://www.postgresql.org/docs/13/static/unsupported-features-sql-standard.htm

SQL Server PIVOT and UNPIVOT vs.
PostgreSQL PIVOT and UNPIVOT
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

SCT Action Codes -
PIVOT

Straight forward rewrite to use traditional
SQL syntax

- 193 -

https://www.postgresql.org/docs/13/static/sql-insert.html
https://www.postgresql.org/docs/13/static/unsupported-features-sql-standard.htm

SQL Server Usage
PIVOT and UNPIVOT are relational operations used to transform a set by rotating rows into columns and
columns into rows.

PIVOT
The PIVOT operator consists of several clauses and implied expressions.

The "Anchor" column is the column that is not be pivoted and results in a single row per unique value, similar to
GROUP BY.

The pivoted columns are derived from the PIVOT clause and are the row values transformed into columns. The
values for these columns are derived from the source column defined in the PIVOT clause.

Syntax

SELECT <Anchor column>,
[Pivoted Column 1] AS <Alias>,
[Pivoted column 2] AS <Alias>

 ...n
FROM

(<SELECT Statement of Set to be Pivoted>)
AS <Set Alias>

PIVOT
(

<Aggregate Function>(<Aggregated Column>)
FOR
[<Column With the Values for the Pivoted Columns Names>]

IN ([Pivoted Column 1], [Pivoted column 2] ...)
) AS <Pivot Table Alias>;

PIVOT Examples

Create and populate the Orders Table.

CREATE TABLE Orders
(

OrderID INT NOT NULL
IDENTITY(1,1) PRIMARY KEY,
OrderDate DATE NOT NULL,
Customer VARCHAR(20) NOT NULL

);

INSERT INTO Orders (OrderDate, Customer)
VALUES
('20180101', 'John'),
('20180201', 'Mitch'),
('20180102', 'John'),
('20180104', 'Kevin'),
('20180104', 'Larry'),

- 194 -

('20180104', 'Kevin'),
('20180104', 'Kevin');

Create a simple PIVOT for the number of orders per day (days of month 5-31 omitted for example simplicity).

SELECT 'Number of Orders Per Day' AS DayOfMonth,
[1], [2], [3], [4] /*...[31]*/

FROM (
SELECT OrderID,
 DAY(OrderDate) AS OrderDay
FROM Orders

) AS SourceSet
PIVOT
(
COUNT(OrderID)
FOR OrderDay IN ([1], [2], [3], [4] /*...[31]*/)

) AS PivotSet;

DayOfMonth 1 2 3 4 /*...[31]*/
------ - - - -
Number of Orders Per Day 2 1 0 4

Note: The result set is now oriented in rows vs. columns. The first column is the description of the
columns to follow.

PIVOT for number of orders per day per customer.

SELECT Customer,
[1], [2], [3], [4] /*...[31]*/

FROM (
SELECT OrderID,

Customer,
DAY(OrderDate) AS OrderDay

FROM Orders
) AS SourceSet

PIVOT
(
COUNT(OrderID)
FOR OrderDay IN ([1], [2], [3], [4] /*...[31]*/)

) AS PivotSet;

Customer 1 2 3 4
-------- - - - -
John 1 1 0 0
Kevin 0 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0

UNPIVOT
UNPIVOT is similar to PIVOT in reverse, but spreads existing column values into rows.

The source set is similar to the result of the PIVOT with values pertaining to particular entities listed in columns.
Since the result set hasmore rows than the source, aggregations aren't required.

- 195 -

It is less commonly used than PIVOT becausemost data in relational databases have attributes in columns; not
the other way around.

UNPIVOT Examples

Create an populate the "pivot like" EmployeeSales table (in a actual scenario, this ismost likely a view or a set
from an external source).

CREATE TABLE EmployeeSales
(
SaleDate DATE NOT NULL PRIMARY KEY,
John INT,
Kevin INT,
Mary INT
);

INSERT INTO EmployeeSales
VALUES
('20180101', 150, 0, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50, 0),
('20180104', 500, 400, 100);

Unpivot employee sales per date into individual rows per employee.

SELECT SaleDate,
 Employee,
 SaleAmount
FROM

(
 SELECT SaleDate, John, Kevin, Mary

 FROM EmployeeSales
) AS SourceSet
UNPIVOT (
 SaleAmount
 FOR Employee IN (John, Kevin, Mary)
)AS UnpivotSet;

SaleDate Employee SaleAmount
-------- -------- ----------
2018-01-01 John 150
2018-01-01 Kevin 0
2018-01-01 Mary 300
2018-01-02 John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100

- 196 -

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/queries/from-using-pivot-and-unpivot?view=sql-
server-ver15

PostgreSQL Usage
Aurora PostgreSQL does not support the PIVOT and UNPIVOT relational operators.

Functionality of both operators can be rewritten to use standard SQL syntax, as shown in the examples below.

Examples

PIVOT

Create and populate the Orders Table.

CREATE TABLE Orders
(

OrderID SERIAL PRIMARY KEY,
OrderDate DATE NOT NULL,
Customer VARCHAR(20) NOT NULL

);

INSERT INTO Orders (OrderDate, Customer)
VALUES
('20180101', 'John'),
('20180201', 'Mitch'),
('20180102', 'John'),
('20180104', 'Kevin'),
('20180104', 'Larry'),
('20180104', 'Kevin'),
('20180104', 'Kevin');

Simple PIVOT for number of orders per day (days of month 5-31 omitted for example simplicity).

SELECT 'Number of Orders Per Day' AS DayOfMonth,
COUNT(CASE WHEN date_part('day', OrderDate) = 1 THEN 'OrderDate' ELSE NULL END) AS

"1",
COUNT(CASE WHEN date_part('day', OrderDate) = 2 THEN 'OrderDate' ELSE NULL END) AS

"2",
COUNT(CASE WHEN date_part('day', OrderDate) = 3 THEN 'OrderDate' ELSE NULL END) AS

"3",
COUNT(CASE WHEN date_part('day', OrderDate) = 4 THEN 'OrderDate' ELSE NULL END) AS

"4" /*...[31]*/
FROM Orders AS O;

DayOfMonth 1 2 3 4 /*...[31]*/
------ - - - -
Number of Orders Per Day 2 1 0 4

PIVOT for number of order per day, per customer.

- 197 -

SELECT Customer,
COUNT(CASE WHEN date_part('day', OrderDate) = 1 THEN 'OrderDate' ELSE NULL END) AS
"1",
COUNT(CASE WHEN date_part('day', OrderDate) = 2 THEN 'OrderDate' ELSE NULL END) AS
"2",
COUNT(CASE WHEN date_part('day', OrderDate) = 3 THEN 'OrderDate' ELSE NULL END) AS
"3",
COUNT(CASE WHEN date_part('day', OrderDate) = 4 THEN 'OrderDate' ELSE NULL END) AS "4"
/*...[31]*/
FROM Orders AS O
GROUP BY Customer;

Customer 1 2 3 4
-------- - - - -
John 1 1 0 0
Kevin 0 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0

UNPIVOT

Create an populate the 'pivot like' EmployeeSales table.

Note: in real life this will most likely be a view, or a set from an external source.

CREATE TABLE EmplyeeSales
(
SaleDate DATE NOT NULL PRIMARY KEY,
John INT,
Kevin INT,
Mary INT
);

INSERT INTO EmplyeeSales
VALUES
('20180101', 150, 0, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50, 0),
('20180104', 500, 400, 100);

Unpivot employee sales per date into individual rows per employee.

SELECT SaleDate, Employee, SaleAmount
FROM (

SELECT SaleDate,
Employee,
CASE

WHEN Employee = 'John' THEN 'John'
WHEN Employee = 'Kevin' THEN 'Kevin'
WHEN Employee = 'Mary' THEN 'Mary'

END AS SaleAmount
FROM EmplyeeSales as emp
CROSS JOIN
(

- 198 -

SELECT 'John' AS Employee
UNION ALL
SELECT 'Kevin'
UNION ALL
SELECT 'Mary'

) AS Employees
) AS UnpivotedSet;

SaleDate Employee SaleAmount
-------- -------- ----------
2018-01-01 John 150
2018-01-01 Kevin 0
2018-01-01 Mary 300
2018-01-02 John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100

SQL Server Triggers vs. PostgreSQL Triggers
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action Code
Index Key Differences

SCT Action Codes
- Triggers

Syntax and option differences, similar func-
tionality - PostgreSQL trigger calling a function

SQL Server Usage
Triggers are special types of stored procedures that execute automatically in response to events. They aremost
commonly used for DataManipulation Language (DML).

SQL Server supports AFTER/FOR and INSTEAD OF triggers, which can be created on tables and views
(AFTER and FOR are synonymous). SQL Server also provides an event trigger framework at the server and
database levels that includesData Definition Language (DDL), Data Control Language (DCL), and general sys-
tem events such as login.

Note: SQL Sever does not support FOR EACH ROW triggers in which the trigger code is executed
once for each row of modified data.

Trigger Execution

AFTER triggers execute after DML statements complete execution. INSTEAD OF triggers execute code in place
of the original DML statement. AFTER triggers can be created on tables only. INSTEAD OF triggers can be cre-
ated on tables and views.

- 199 -

Only a single INSTEAD OF trigger can be created for any given object and event. Whenmultiple AFTER triggers
exist for the same event and object, you can partially set the trigger order by using the sp_settriggerorder system
stored procedure. It allows setting the first and last triggers to be executed, but not the order of others.

Trigger Scope

SQLServer supports statement level triggers only. The trigger code is executed once per statement. The data
modified by the DML statement is available to the trigger scope and is saved in two virtual tables: INSERTED and
DELETED. These tables contain the entire set of changes performed by the DML statement that caused trigger
execution.

SQL triggers always execute within the transaction of the statement that triggered the execution. If the trigger
code issues an explicit ROLLBACK, or causes an exception that mandates a rollback, the DML statement is also
rolled back. For INSTEAD OF triggers, the DML statement is not executed and does not require a rollback.

Examples

Use a DML Trigger to Audit Invoice Deletions

The following examples demonstrate how to use a trigger to log rows deleted from a table.

Create and populate an Invoices table.

CREATE TABLE Invoices
(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL
);

INSERT INTO Invoices (InvoiceID,Customer,TotalAmount)
VALUES
(1, 'John', 1400.23),
(2, 'Jeff', 245.00),
(3, 'James', 677.22);

Create an InvoiceAuditLog table.

CREATE TABLE InvoiceAuditLog
(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL,
DeleteDate DATETIME NOT NULL DEFAULT (GETDATE()),
DeletedBy VARCHAR(128) NOT NULL DEFAULT (CURRENT_USER)
);

Create an AFTER DELETE trigger to log deletions from the Invoices table to the audit log.

CREATE TRIGGER LogInvoiceDeletes
ON Invoices
AFTER DELETE
AS
BEGIN

- 200 -

INSERT INTO InvoiceAuditLog (InvoiceID, Customer, TotalAmount)
SELECT InvoiceID,
 Customer,
 TotalAmount
FROM Deleted
END;

Delete an invoice.

DELETE FROM Invoices
WHERE InvoiceID = 3;

Query the content of both tables.

SELECT *
FROM Invoices AS I
 FULL OUTER JOIN
 InvoiceAuditLog AS IAG
 ON I.InvoiceID = IAG.InvoiceID;

The example code above displays the following results:

InvoiceID Customer TotalAmount InvoiceID Customer
TotalAmount DeleteDate DeletedBy
--------- -------- ----------- --------- -------- ----------- -------
--- ----------
1 John 1400.23 NULL NULL NULL NULL

 NULL
2 Jeff 245.00 NULL NULL NULL NULL

 NULL
NULL NULL NULL 3 James
677.22 20180224 13:02 Domain/JohnCortney

Create a DDL Trigger

Create a trigger to protect all tables in the database from accidental deletion.

CREATE TRIGGER PreventTableDrop
ON DATABASE FOR DROP_TABLE
AS
BEGIN
 RAISERROR ('Tables Can''t be dropped in this database', 16, 1)
 ROLLBACK TRANSACTION

END;

Test the trigger by attempting to drop a table.

DROP TABLE [Invoices];
 GO

The system displays the follow message explaining that the Invoices table cannot be dropped:

Msg 50000, Level 16, State 1, Procedure PreventTableDrop, Line 5 [Batch Start Line 56]
Tables Can't be dropped in this database

- 201 -

Msg 3609, Level 16, State 2, Line 57
The transaction ended in the trigger. The batch has been aborted.

Formore information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dml-triggers?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/relational-databases/triggers/ddl-triggers?view=sql-server-ver15

PostgreSQL Usage
Triggers providemuch of the same functionality as SQL Server:

l DML Triggers execute based on table related events, such asDML.

l Event Triggers execute after certain database events, such as running DDL commands.

Unlike SQL Server triggers, PostgreSQL triggersmust call a function. They do not support anonymous blocks of
PL/pgSQL code as part of the trigger body. The user-supplied function is declared with no arguments and has a
return type of trigger.

PostgreSQL DML Triggers

l PostgreSQL triggers can be fired BEFORE or AFTER aDML operation.

l They execute before the operation is attempted on a row.

l Before constraints are checked and the INSERT, UPDATE, or DELETE is attempted.

l If the trigger executes before or instead of the event, the trigger can skip the operation for the
current row or change the row being inserted (for INSERT and UPDATE operations only).

l Triggers can execute after the operation was completed, after constraints are checked, and the
INSERT, UPDATE, or DELETE command completed. If the trigger executes after the event, all
changes, including the effects of other triggers, are "visible" to the trigger.

l PostgreSQL triggers can run INSTEAD OF aDML commandwhen created on views.

l PostgreSQL triggers can run FOR EACH ROW affected by the DML statement or FOR EACH
STATEMENT running only once as part of a DML statement.

When Fired Database Event Row-Level Trigger (FOR
EACH ROW)

Statement-Level Trigger (FOR EACH
STATEMENT)

BEFORE INSERT, UPDATE,
DELETE

Tables and foreign tables Tables, views, and foreign tables

TRUNCATE — Tables

AFTER INSERT, UPDATE,
DELETE

Tables and foreign tables Tables, views, and foreign tables

TRUNCATE — Tables

INSTEAD OF INSERT, UPDATE,
DELETE

Views —

TRUNCATE — —

- 202 -

https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dml-triggers
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/ddl-triggers

PostgreSQL Event Triggers

An event trigger executeswhen a specific event associated with the trigger occurs in the database. Supported
events include ddl_command_start, ddl_command_end, table_rewrite, and sql_drop.

l ddl_command_start occurs before the execution of a CREATE, ALTER, DROP, SECURITY LABEL,
COMMENT, GRANT, REVOKE or SELECT INTOcommand.

l ddl_command_end occurs after the command completed and before the transaction commits.

l sql_drop executes only for the DROP DDL command, before the ddl_command_end trigger executes.

For a full list of supported PostgreSQL event trigger types, see https://www.postgresql.org/docs/13/static/event-
trigger-matrix.html

PostgreSQL CREATE TRIGGER Synopsis

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...]
}

ON table_name
[FROM referenced_table_name]
[NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED]]
[REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [...]]
[FOR [EACH] { ROW | STATEMENT }]
[WHEN (condition)]
EXECUTE PROCEDURE function_name (arguments)

where event can be one of:

INSERT
UPDATE [OF column_name [, ...]]
DELETE
TRUNCATE

Note: REFERENCING is a new option since PostgreSQL 10. It can be used with AFTER trigger to
interact with the overall view of the OLD or the NEW TABLE changed rows.

Example

Create a Trigger

Create a trigger function that stores the execution logic (this is the same as a SQLServer DML trigger).

CREATE OR REPLACE FUNCTION PROJECTS_SET_NULL()
RETURNS TRIGGER
AS $$
BEGIN

IF TG_OP = 'UPDATE' AND OLD.PROJECTNO != NEW.PROJECTNO OR
TG_OP = 'DELETE' THEN

UPDATE EMP
SET PROJECTNO = NULL

WHERE EMP.PROJECTNO = OLD.PROJECTNO;
END IF;

- 203 -

https://www.postgresql.org/docs/10/static/event-trigger-matrix.html
https://www.postgresql.org/docs/10/static/event-trigger-matrix.html

IF TG_OP = 'UPDATE' THEN RETURN NULL;
ELSIF TG_OP = 'DELETE' THEN RETURN NULL;

END IF;
END; $$
LANGUAGE PLPGSQL;

CREATE FUNCTION

Create the trigger.

CREATE TRIGGER TRG_PROJECTS_SET_NULL
AFTER UPDATE OF PROJECTNO OR DELETE
ON PROJECTS
FOR EACH ROW
EXECUTE PROCEDURE PROJECTS_SET_NULL();

CREATE TRIGGER

Test the trigger by deleting a row from the PROJECTS table.

DELETE FROM PROJECTS WHERE PROJECTNO=123;
SELECT PROJECTNO FROM EMP WHERE PROJECTNO=123;

projectno

(0 rows)

- 204 -

Create a DDL Trigger

Create an event trigger function (this is the same as a SQLServer DDL System/Schema level trigger, such as a
trigger that prevents running a DDLDROP on objects in the HR schema).

Note that trigger functions are created with no arguments andmust have a return type of TRIGGER or EVENT_
TRIGGER.

CREATE OR REPLACE FUNCTION ABORT_DROP_COMMAND()
RETURNS EVENT_TRIGGER
AS $$

BEGIN
RAISE EXCEPTION 'The % Command is Disabled', tg_tag;

END; $$
LANGUAGE PLPGSQL;

CREATE FUNCTION

Create the event trigger, which executes before the start of a DDLDROP command.

CREATE EVENT TRIGGER trg_abort_drop_command
ON DDL_COMMAND_START
WHEN TAG IN ('DROP TABLE', 'DROP VIEW', 'DROP FUNCTION', 'DROP

SEQUENCE', 'DROP MATERIALIZED VIEW', 'DROP TYPE')
EXECUTE PROCEDURE abort_drop_command();

Test the trigger by attempting to drop the EMPLOYEES table.

DROP TABLE EMPLOYEES;

ERROR: The DROP TABLE Command is Disabled
CONTEXT: PL/pgSQL function abort_drop_command() line 3 at RAISE

- 205 -

Summary
Feature SQL Server Aurora PostgreSQL

DML Triggers Scope Statement level only FOR EACH ROW and FOR EACH
STATMENT

Access to change set INSERTED andDELETED Virtual
multi-row tables

OLD andNEW virtual one-row tables or
the whole view of changed rows

System event triggers DDL, DCL and other event types Event triggers

Trigger execution phase AFTER and INSTEAD OF AFTER, BEFORE, and INSTEAD OF

Multi-trigger execution
order

Can only set first and last using sp_
settriggerorder

Call function within a function

Drop a trigger DROP TRIGGER <trigger name>; DROP TRIGGER <trigger name>;

Modify trigger code Use the ALTER TRIGGER state-
ment

Modify function code

Enable/Disable a trigger Use the ALTER TRIGGER <trigger
name> ENABLE;
and
ALTER TRIGGER <trigger name>
DISABLE;

ALTER TABLE

Triggers on views INSTEAD OF TRIGGERS only INSTEAD OF TRIGGERS only

For additional details, see https://www.postgresql.org/docs/13/static/plpgsql-trigger.html

SQL Server TOP and FETCH vs. PostgreSQL LIMIT
and OFFSET (TOP and FETCH Equivalent)

Feature Compatibility SCT/DMS Automation
Level SCT Action Code Index Key Differences

SCT Action Codes - TOP
and FETCH

TOP is not supported

SQL Server Usage
SQLServer supports two options for limiting and paging result sets returned to the client. TOP is a legacy, pro-
prietary T-SQL keyword that is still supported due to its wide usage. The ANSI compliant syntax of FETCH and
OFFSET were introduced in SQL Server 2012 and are recommended for paginating results sets.

TOP
The TOP (n) operator is used in the SELECT list and limits the number of rows returned to the client based on the
ORDER BY clause.

- 206 -

https://www.postgresql.org/docs/13/static/plpgsql-trigger.html

Note: When TOP is used with noORDER BY clause, the query is non-deterministic andmay return any
rows up to the number specified by the TOP operator.

TOP (n) can be used with twomodifier options:

l TOP (n) PERCENT is used to designate a percentage of the rows to be returned instead of a fixedmax-
imal row number limit (n). When using PERCENT, n can be any value from 1-100.

l TOP (n) WITH TIES is used to allow overriding the nmaximal number (or percentage) of rows specified in
case there are additional rowswith the same ordering values as the last row.

Note: If TOP (n) is used withoutWITH TIES and there are additional rows that have the same ordering
value as the last row in the group of n rows, the query is also non-deterministic because the last row
may be any of the rows that share the same ordering value.

Syntax

SELECT TOP (<Limit Expression>) [PERCENT] [WITH TIES] <Select Expressions List>
FROM...

OFFSET... FETCH
OFFSET... FETCH as part of the ORDER BY clause is the ANSI compatible syntax for limiting and paginating
result sets. It allows specification of the starting position and limits the number of rows returned, which enables
easy pagination of result sets.

Similar to TOP, OFFSET... FETCH relies on the presentation order defined by theORDER BY clause. Unlike
TOP, it is part of the ORDER BY clause and can't be used without it.

Note: Queries using FETCH... OFFSET can still be non-deterministic if there ismore than one row that
has the same ordering value as the last row.

Syntax

ORDER BY <Ordering Expression> [ASC | DESC] [,...n]
OFFSET <Offset Expression> { ROW | ROWS }
[FETCH { FIRST | NEXT } <Page Size Expression> { ROW | ROWS } ONLY]

Examples
Create the OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),

- 207 -

(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Retrieve the 3most ordered items by quantity.

-- Using TOP
SELECT TOP (3) *
FROM OrderItems
ORDER BY Quantity DESC;

-- USING FETCH
SELECT *
FROM OrderItems
ORDER BY Quantity DESC
OFFSET 0 ROWS FETCH NEXT 3 ROWS ONLY;

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100

Include rowswith ties.

SELECT TOP (3) WITH TIES *
FROM OrderItems
ORDER BY Quantity DESC;

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

Retrieve half the rows based on quantity.

SELECT TOP (50) PERCENT *
FROM OrderItems
ORDER BY Quantity DESC;

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200

Formore information, see

l https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql?view=sql-server-ver15
l https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql?view=sql-server-ver15

- 208 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql

PostgreSQL Usage
Aurora PostgreSQL supports the non-ANSI compliant (but popular with other engines) LIMIT... OFFSET oper-
ator for paging results sets.

The LIMIT clause limits the number of rows returned and does not require anORDER BY clause, although that
wouldmake the query non-deterministic.

TheOFFSET clause is zero-based, similar to SQL Server and used for pagination.
OFFSET 0 is the same as omitting the OFFSET clause, as is OFFSET with a NULL argument.

Syntax
SELECT select_list

FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

Migration Considerations
LIMIT... OFFSET syntax can be used to replace the functionality of both TOP(n) and FETCH... OFFSET in SQL
Server. It is automatically converted by the SchemaConversion Tool (SCT) except for theWITH TIES and
PERCENTmodifiers.

To replace the PERCENT option, youmust first calculate how many rows the query returns and then calculate
the fixed number of rows to be returned based on that number (see the example below).

Note: Since this technique involves added complexity and accessing the table twice, consider changing
the logic to use a fixed number instead of percentage.

To replace theWITH TIES option, youmust rewrite the logic to add another query that checks for the existence of
additional rows that have the same ordering value as the last row returned from the LIMIT clause.

Note: Since this technique introduces significant added complexity and three accesses to the source
table, consider changing the logic to introduce a tie-breaker into the ORDER BY clause (see the
example below).

Examples
Create the OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)

);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),

- 209 -

(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Retrieve the threemost ordered items by quantity.

SELECT *
FROM OrderItems
ORDER BY Quantity DESC
LIMIT 3 OFFSET 0;

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200
1 M8 Bolt 100

Include rowswith ties.

SELECT *
FROM
(
 SELECT *
 FROM OrderItems
 ORDER BY Quantity DESC
 LIMIT 3 OFFSET 0
) AS X
UNION
SELECT *
FROM OrderItems
WHERE Quantity = (
 SELECT Quantity
 FROM OrderItems
 ORDER BY Quantity DESC
 LIMIT 1 OFFSET 2
)
ORDER BY Quantity DESC

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

Retrieve half the rows based on quantity.

CREATE or replace FUNCTION getOrdersPct(int) RETURNS SETOF OrderItems AS $$
SELECT * FROM OrderItems

 ORDER BY Quantity desc LIMIT (SELECT COUNT(*)*$1/100 FROM OrderItems) oFFSET 0;
$$ LANGUAGE SQL;

SELECT * from getOrdersPct(50);
or
SELECT getOrdersPct(50);

- 210 -

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200

Summary
SQL Server Aurora PostgreSQL Comments

TOP (n) LIMIT n

TOP (n) WITH TIES Not supported See examples for work-
around

TOP (n) PERCENT Not supported See examples for work-
around

OFFSET... FETCH LIMIT... OFFSET

Formore information, see https://www.postgresql.org/docs/13/static/queries-limit.html

SQL Server User DefinedFunctions vs.
PostgreSQL User Defined Functions
Feature Com-
patibility SCT/DMS Automation Level SCT Action Code

Index Key Differences

N/A Syntax and option dif-
ferences

SQL Server Usage
User Defined Functions (UDF) are code objects that accept input parameters and return either a scalar value or a
set consisting of rows and columns. SQL Server UDFs can be implemented using T-SQL or Common Language
Runtime (CLR) code.

Note: This section does not cover CLR code objects.

Function invocations can not have any lasting impact on the database. Theymust be contained and can only
modify objects and data local to their scope (for example, data in local variables). Functions are not allowed to
modify data or the structure of a database.

Functionsmay be deterministic or non-deterministic. Deterministic functions always return the same result when
executed with the same data. Non-deterministic functionsmay return different results each time they execute.
For example, a function that returns the current date or time.

SQL Server supports three types of T-SQLUDFs: Scalar Functions, Table-Valued Functions, andMulti-State-
ment Table-Valued Functions.

SQL Server 2019 adds Scalar User Defined Functions (UDF) inlining. Inlining transforms functions into relational
expressions and embeds them in the calling SQL query. This transformation improves the performance of work-
loads that take advantage of scalar UDFs. Scalar UDF inlining facilitates cost-based optimization of operations

- 211 -

https://www.postgresql.org/docs/13/static/queries-limit.html

inside UDFs. The results are efficient, set-oriented, and parallel instead of inefficient, iterative, serial execution
plans. For more information see Scalar UDF Inlining

Scalar User Defined Functions
Scalar UDFs accept zero or more parameters and return a scalar value. They can be used in T-SQL expressions.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])
RETURNS <Return Data Type>
[AS]
BEGIN
<Function Body Code>
RETURN <Scalar Expression>
END[;]

Examples

Create a scalar function to change the first character of a string to upper case.

CREATE FUNCTION dbo.UpperCaseFirstChar (@String VARCHAR(20))
RETURNS VARCHAR(20)
AS
BEGIN
RETURN UPPER(LEFT(@String, 1)) + LOWER(SUBSTRING(@String, 2, 19))
END;

SELECT dbo.UpperCaseFirstChar ('mIxEdCasE');

Mixedcase

User Defined Table-Valued Functions
Inline table-valued UDFs are similar to views or a Common Table Expressions (CTE) with the added benefit of
parameters. They can be used in FROMclauses as subqueries and can be joined to other source table rows
using the APPLY andOUTER APPLY operators. In-line table valued UDFs havemany associated internal optim-
izer optimizations due to their simple, view-like characteristics.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])
RETURNS TABLE
[AS]
RETURN (<SELECT Query>)[;]

- 212 -

https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15

Examples

Create a table valued function to aggregate employee orders.

CREATE TABLE Orders
(
OrderID INT NOT NULL PRIMARY KEY,
EmployeeID INT NOT NULL,
OrderDate DATETIME NOT NULL
);

INSERT INTO Orders (OrderID, EmployeeID, OrderDate)
VALUES
(1, 1, '20180101 13:00:05'),
(2, 1, '20180201 11:33:12'),
(3, 2, '20180112 10:22:35');

CREATE FUNCTION dbo.EmployeeMonthlyOrders
(@EmployeeID INT)
RETURNS TABLE AS
RETURN
(
SELECT EmployeeID,
 YEAR(OrderDate) AS OrderYear,
 MONTH(OrderDate) AS OrderMonth,
 COUNT(*) AS NumOrders
FROM Orders AS O
WHERE EmployeeID = @EmployeeID
GROUP BY EmployeeID,
 YEAR(OrderDate),
 MONTH(OrderDate)
);

SELECT *
FROM dbo.EmployeeMonthlyOrders (1)

EmployeeID OrderYear OrderMonth NumOrders
---------- --------- ---------- ---------
1 2018 1 1
1 2018 2 1

Multi-Statment User Defined Table-Valued Functions
Multi-statement table-valued UDFs , like In-line UDFs, are also similar to views or CTEswith the added benefit of
parameters. They can be used in FROMclauses as sub queries and can be joined to other source table rows
using the APPLY andOUTER APPLY operators.

The difference betweenmulti-statement UDFs and the inline UDFs is that multi-statement UDFs are not restric-
ted to a single SELECT statement. They can consist of multiple statements including logic implemented with flow
control, complex data processing, security checks, etc.

The downside of usingmulti-statement UDFs is that there are far less optimizations possible and performance
may suffer.

- 213 -

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])
RETURNS <@Return Variable> TABLE <Table Definition>
[AS]
BEGIN
<Function Body Code>
RETURN
END[;]

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql?view=sql-
server-ver15

PostgreSQL Usage
See Stored Procedures.

Syntax
CREATE [OR REPLACE] FUNCTION

name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr] [, ...]
])

[RETURNS rettype
| RETURNS TABLE (column_name column_type [, ...])]

{ LANGUAGE lang_name
| TRANSFORM { FOR TYPE type_name } [, ...]
| WINDOW
| IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF
| CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
| [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
| PARALLEL { UNSAFE | RESTRICTED | SAFE }
| COST execution_cost
| ROWS result_rows
| SET configuration_parameter { TO value | = value | FROM CURRENT }
| AS 'definition'
| AS 'obj_file', 'link_symbol'

} ...
[WITH (attribute [, ...])]

SQL Server User Defined Types vs.
PostgreSQL User Defined Types

Feature Compatibility SCT/DMS Automation Level SCT Action Code
Index Key Differences

Syntax and option differences

- 214 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql

SQL Server Usage
SQLServer User defined Types provide amechanism for encapsulating custom data types and for adding NULL
constraints.

SQL Server also supports table-valued user defined types, which you can use to pass a set of values to a stored
procedure.

User defined types can also be associated to CLR code assemblies. Beginning with SQL Server 2014, memory
optimized types support memory optimized tables and code.

Note: If your code uses custom rules bound to data types, Microsoft recommends discontinuing the use
of this deprecated feature.

All user defined types are based on an existing system data types. They allow developers to reuse the definition,
making the code and schemamore readable.

Syntax
The simplified syntax for the CREATE TYPE statement is specified below.

CREATE TYPE <type name> {
FROM <base type> [NULL | NOT NULL] | AS TABLE (<Table Definition>)}

Examples

User Defined Types

Create a ZipCode Scalar User Defined Type.

CREATE TYPE ZipCode
FROM CHAR(5)
NOT NULL

Use the ZipCode type in a table.

CREATE TABLE UserLocations
(UserID INT NOT NULL PRIMARY KEY, ZipCode ZipCode);

INSERT INTO [UserLocations] ([UserID],[ZipCode]) VALUES (1, '94324');
INSERT INTO [UserLocations] ([UserID],[ZipCode]) VALUES (2, NULL);

The above code displays the following error message indicating NULL values for ZipCode are not allowed.

Msg 515, Level 16, State 2, Line 78
Cannot insert the value NULL into column 'ZipCode', table 'tempdb.dbo.UserLocations';
column does not allow nulls. INSERT fails.
The statement has been terminated.

- 215 -

Table-Valued types

The following example demonstrates how to create and use a table valued types to pass a set of values to a
stored procedure:

Create the OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create a table valued type for the OrderItems table.

CREATE TYPE OrderItems
AS TABLE
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create the InsertOrderItems procedure. Note that the entire set of rows from the table valued parameter is
handled with one statement.

CREATE PROCEDURE InsertOrderItems
@OrderItems AS OrderItems READONLY
AS
BEGIN
 INSERT INTO OrderItems(OrderID, Item, Quantity)
 SELECT OrderID,

 Item,
 Quantity
 FROM @OrderItems;

END

Instantiate the OrderItems type, insert the values, and pass it to a stored procedure.

DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES
(1, 'M8 Bolt', 100),
(1, 'M8 Nut', 100),
(1, M8 Washer, 200);

EXECUTE [InsertOrderItems] @OrderItems = @OrderItems;

(3 rows affected)

Select all rows from theOrderItems table.

- 216 -

SELECT * FROM OrderItems;

OrderID Item Quantity
------- ---- --------
1 M8 Bolt 100
1 M8 Nut 100
1 M8 Washer 200

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql?view=sql-server-
ver15

PostgreSQL Usage
Similar to SQL Server, PostgreSQL enables creation of User Defined Types using the CREATE TYPE state-
ment. A User Defined Type is owned by the user who creates it. If a schema name is specified, the type is created
under that schema.

PostgreSQL supports the creation of several different User Defined Types:

l Composite Types store a single named attribute attached to a data type or multiple attributes as an attrib-
ute collection. In PostgreSQL, you can also use the CREATE TYPE statement standalone with an asso-
ciation to a table.

l Enumerated Types (enum) store a static ordered set of values. For example, product categories.

CREATE TYPE PRODUCT_CATEGORT AS ENUM
('Hardware', 'Software', 'Document');

l Range Types store a range of values, for example, a range of timestamps used to represent the ranges of
time of when a course is scheduled.

CREATE TYPE float8_range AS RANGE
(subtype = float8, subtype_diff = float8mi);

For more information see https://www.postgresql.org/docs/13/static/rangetypes.html

l Base Types are the system core types (abstract types) and are implemented in a low-level language such
asC.

l Array Types support definition of columns asmultidimensional arrays. An array column can be created
with a built-in type or a user-defined base type, enum type, or composite.

CREATE TABLE COURSE_SCHEDULE (
COURSE_ID NUMERIC PRIMARY KEY,

COURSE_NAME VARCHAR(60),
COURSE_SCHEDULES text[]);

For additional details, see https://www.postgresql.org/docs/13/static/arrays.html

Syntax

CREATE TYPE name AS RANGE (
SUBTYPE = subtype

- 217 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql
https://www.postgresql.org/docs/13/static/rangetypes.html
https://www.postgresql.org/docs/13/static/arrays.html

[, SUBTYPE_OPCLASS = subtype_operator_class]
[, COLLATION = collation]
[, CANONICAL = canonical_function]
[, SUBTYPE_DIFF = subtype_diff_function]

)

CREATE TYPE name (
INPUT = input_function,
OUTPUT = output_function
[, RECEIVE = receive_function]
[, SEND = send_function]
[, TYPMOD_IN = type_modifier_input_function]
[, TYPMOD_OUT = type_modifier_output_function]
[, ANALYZE = analyze_function]
[, INTERNALLENGTH = { internallength | VARIABLE }]
[, PASSEDBYVALUE]
[, ALIGNMENT = alignment]
[, STORAGE = storage]
[, LIKE = like_type]
[, CATEGORY = category]
[, PREFERRED = preferred]
[, DEFAULT = default]
[, ELEMENT = element]
[, DELIMITER = delimiter]
[, COLLATABLE = collatable]

)

Examples
Create a User Define Type for storing an employee phone numbers.

CREATE TYPE EMP_PHONE_NUM AS (
PHONE_NUM VARCHAR(11));

CREATE TABLE EMPLOYEES (
EMP_ID NUMERIC PRIMARY KEY,
EMP_PHONE EMP_PHONE_NUM NOT NULL);

INSERT INTO EMPLOYEES VALUES(1, ROW('111-222-333'));

SELECT a.EMP_ID, (a.EMP_PHONE).PHONE_NUM FROM EMPLOYEES a;

emp_id | phone_num
--------+-------------

1 | 111-222-333
(1 row)

Create a PostgreSQLObject Type as a collection of Attributes for the employees table.

CREATE OR REPLACE TYPE EMP_ADDRESS AS OBJECT (
STATE VARCHAR(2),
CITY VARCHAR(20),
STREET VARCHAR(20),
ZIP_CODE NUMERIC);

- 218 -

CREATE TABLE EMPLOYEES (
EMP_ID NUMERIC PRIMARY KEY,
EMP_NAME VARCHAR(10) NOT NULL,
EMP_ADDRESS EMP_ADDRESS NOT NULL);

INSERT INTO EMPLOYEES
VALUES(1, 'John Smith',

('AL', 'Gulf Shores', '3033 Joyce Street', '36542'));

SELECT a.EMP_NAME,
(a.EMP_ADDRESS).STATE,
(a.EMP_ADDRESS).CITY,
(a.EMP_ADDRESS).STREET,
(a.EMP_ADDRESS).ZIP_CODE

FROM EMPLOYEES a;

emp_name | state | city | street | zip_code
------------+-------+-------------+-------------------+----------
John Smith | AL | Gulf Shores | 3033 Joyce Street | 36542

For additional details, see:

l https://www.postgresql.org/docs/13/static/sql-createtype.html

l https://www.postgresql.org/docs/13/static/rowtypes.htm

SQL Server Sequences and Identity vs.
PostgreSQL Sequences and SERIAL/IDENTITY
Feature Com-
patibility

SCT/DMS Automation
Level SCT Action Code Index Key Differences

SCT Action Codes - Sequences
and Identity

Less optionswith SERIAL

Reseeding needs to be
rewritten

SQL Server Usage
Automatic enumeration functions and columns are commonwith relational databasemanagement systems and
are often used for generating surrogate keys.

SQL Server provides several features that support automatic generation of monotonously increasing value gen-
erators.

l IDENTITY property of a table column

l SEQUENCE objects framework

l Numeric functions such as IDENTITY and NEWSEQUENTIALID

- 219 -

https://www.postgresql.org/docs/13/static/sql-createtype.html
https://www.postgresql.org/docs/13/static/rowtypes.htm

Identity
The IDENTITY property is probably themost widely usedmeans of generating surrogate primary keys in SQL
Server applications. Each tablemay have a single numeric column assigned as an IDENTITY, using the
CREATE TABLE or ALTER TABLE DDL statements. You can explicitly specify a starting value and increment.

Note: The identity property does not enforce uniqueness of column values, indexing, or any other prop-
erty. Additional constraints such as Primary or Unique keys, explicit index specifications, or other prop-
ertiesmust be specified in addition to the IDENTITY property.

The IDENTITY value is generated as part of the transaction that inserts table rows. Applications can obtain
IDENTITY values using the@@IDENTITY, SCOPE_IDENTITY, and IDENT_CURRENT functions.

You canmanage IDENTITY columns using the DBCC CHECKIDENT command, which provides functionality
for reseeding and altering properties.

Syntax

IDENTITY [(<Seed Value>, <Increment Value>)]

Examples

Create a table with an IDENTITY column.

CREATE TABLE MyTABLE
(
Col1 INT NOT NULL
PRIMARY KEY NONCLUSTERED IDENTITY(1,1),

Col2 VARCHAR(20) NOT NULL
);

Insert a row and retrieve the generated IDENTITY value.

DECLARE @LastIdent INT;
INSERT INTO MyTable(Col2)
VALUES('SomeString');
SET @LastIdent = SCOPE_IDENTITY()

Create a table with a non-key IDENTITY column and an increment of 10.

CREATE TABLE MyTABLE
(
Col1 VARCHAR(20) NOT NULL
 PRIMARY KEY,
Col2 INT NOT NULL
IDENTITY(1,10),

);

Create a table with a compound PK including an IDENTITY column.

CREATE TABLE MyTABLE
(
Col1 VARCHAR(20) NOT NULL,
Col2 INT NOT NULL

- 220 -

IDENTITY(1,10),
PRIMARY KEY (Col1, Col2)
);

SEQUENCE
Sequences are objects that are independent of a particular table or column and are defined using the CREATE
SEQUENCE DDL statement. You canmanage sequences using the ALTER SEQUENCE statement. Multiple
tables andmultiple columns from the same tablemay use the values from one or more SEQUENCE objects.

You can retrieve a value from a SEQUENCE object using the NEXT VALUE FOR function. For example, a
SEQUENCE value can be used as a default value for a surrogate key column.

SEQUENCE objects provide several advantages over IDENTITY columns:

l Can be used to obtain a value before the actual INSERT takes place.

l Value series can be shared among columns and tables.

l Easier management, restart, andmodification of sequence properties.

l Allows assignment of value ranges using sp_sequence_get_range and not just per-row values.

Syntax

CREATE SEQUENCE <Sequence Name> [AS <Integer Data Type>]
START WITH <Seed Value>
INCREMENT BY <Increment Value>;

ALTER SEQUENCE <Sequence Name>
RESTART [WITH <Reseed Value>]
INCREMENT BY <New Increment Value>;

Examples

Create a sequence and use it for a primary key default.

CREATE SEQUENCE MySequence AS INT START WITH 1 INCREMENT BY 1;
CREATE TABLE MyTable
(
Col1 INT NOT NULL
PRIMARY KEY NONCLUSTERED DEFAULT (NEXT VALUE FOR MySequence),

Col2 VARCHAR(20) NULL
);

INSERT MyTable (Col1, Col2) VALUES (DEFAULT, 'cde'), (DEFAULT, 'xyz');

SELECT * FROM MyTable;

Col1 Col2
---- ----
1 cde
2 xyz

- 221 -

Sequential Enumeration Functions
SQLServer provides two sequential generation functions: IDENTITY and NEWSEQUENTIALID.

Note: The IDENTITY function should not be confused with the IDENTITY property of a column.

The IDENTITY function can be used only in a SELECT ... INTO statement to insert IDENTITY column values
into a new table.

The NEWSEQUNTIALID function generates a hexadecimal GUID, which is an integer. While the NEWID func-
tion generates a randomGUID, the NEWSEQUENTIALID function guarantees that everyGUID created is
greater (in numeric value) than any other GUID previously generated by the same function on the same server
since the operating system restart.

Note: NEWSEQUENTIALID can be used only with DEFAULT constraints associated with columns
having a UNIQUEIDENTIFIER data type.

Syntax

IDENTITY (<Data Type> [, <Seed Value>, <Increment Value>]) [AS <Alias>]

NEWSEQUENTIALID()

Examples

Use the IDENTITY function as surrogate key for a new table based on an existing table.

CREATE TABLE MySourceTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(10) NOT NULL,
Col3 VARCHAR(10) NOT NULL
);

INSERT INTO MySourceTable
VALUES
(12, 'String12', 'String12'),
(25, 'String25', 'String25'),
(95, 'String95', 'String95');

SELECT IDENTITY(INT, 100, 1) AS SurrogateKey,
 Col1,
 Col2,
 Col3
INTO MyNewTable
FROM MySourceTable
ORDER BY Col1 DESC;

SELECT *
FROM MyNewTable;

SurrogateKey Col1 Col2 Col3
------------ ---- ---- ----

- 222 -

100 95 String95 String95
101 25 String25 String25
102 12 String12 String12

UseNEWSEQUENTIALID as a surrogate key for a new table.

CREATE TABLE MyTable
(
Col1 UNIQUEIDENTIFIER NOT NULL
PRIMARY KEY NONCLUSTERED DEFAULT NEWSEQUENTIALID()

);

INSERT INTO MyTable
DEFAULT VALUES;

SELECT *
FROM MyTable;

Col1

9CC01320-C5AA-E811-8440-305B3A017068

Formore information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers?view=sql-server-
ver15

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property?view=sql-server-
ver15

PostgreSQL Usage
The PostgreSQLCREATE SEQUENCE command ismostly compatible with the SQL Server CREATE
SEQUENCE command. Sequences in PostgreSQL serve the same purpose as in SQL Server; they generate
numeric identifiers automatically. A sequence object is owned by the user that created it.

Sequence Parameters
l TEMPORARY or TEMP: PostgreSQL can create a temporary sequence within a session. Once the ses-
sion ends, the sequence is automatically dropped.

l IF NOT EXISTS: Creates a sequence. If a sequence with an identical name already exists, it is replaced.

l INCREMENT BY: An optional parameter with a default value of 1. Positive values generate sequence val-
ues in ascending order. Negative values generate sequence values in descending sequence.

l START WITH: An optional parameter having a default of 1. It uses theMINVALUE for ascending
sequences and theMAXVALUE for descending sequences.

l MAXVALUE | NO MAXVALUE: Defaults are between 263 for ascending sequences and -1 for des-
cending sequences.

l MINVALUE | NO MINVALUE: Defaults are between 1 for ascending sequences and -263 for descending
sequences.

- 223 -

https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers
https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property

l CYCLE | NO CYCLE: If the sequence value reachesMAXVALUE or MINVALUE, the CYCLE parameter
instructs the sequence to return to the initial value (MINVALUE or MAXVALUE). The default is NO
CYCLE.

l CACHE: In PostgreSQL, the NOCACHE is not supported. By default, when the CACHE parameter is not
specified, no sequence values are pre-cached intomemory (equivalent to the SQL Server NOCACHE
parameter). Theminimum value is 1.

l OWNED BY | OWNBY NON: Specifies that the sequence object is to be associated with a specific
column in a table. When dropping this type of sequence, an error is returned due to the sequence/table
association.

l AS data_type: This is a new option, starting at PostgreSQL 10. To easily determine themin-
imum/maximum values and also improve storagemanagement you can select the data type for the
sequence. The available data types are smallint, integer, and bigint (default).

Syntax
CREATE [TEMPORARY | TEMP] SEQUENCE [IF NOT EXISTS] name
[INCREMENT [BY] increment]
[MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start] [CACHE cache] [[NO] CYCLE]
[OWNED BY { table_name.column_name | NONE }]

Most SQL Server CREATE SEQUENCE parameters are compatible with PostgreSQL.

Examples
Create a sequence.

CREATE SEQUENCE SEQ_1 START WITH 100
 INCREMENT BY 1 MAXVALUE 99999999999 CACHE 20 NO CYCLE;

Drop a sequence.

DROP SEQUENCE SEQ_1;

View sequences created in the current schema and sequence specifications.

SELECT * FROM INFORMATION_SCHEMA.SEQUENCES;
OR
\ds

Use a PostgreSQL sequence as part of a CREATE TABLE and an INSERT statement.

CREATE TABLE SEQ_TST
(COL1 NUMERIC DEFAULT NEXTVAL('SEQ_1') PRIMARY KEY, COL2 VARCHAR(30));

INSERT INTO SEQ_TST (COL2) VALUES('A');
SELECT * FROM SEQ_TST;

 col1 | col2
------+------
 100 | A

Use theOWNED BY parameter to associate the sequence with a table.

- 224 -

CREATE SEQUENCE SEQ_1 START WITH 100 INCREMENT BY 1 OWNED BY SEQ_TST.COL1;

Query the current value of a sequence.

SELECT CURRVAL('SEQ_1);

Manually increment a sequence value according to the INCREMENT BY value.

SELECT NEXTVAL('SEQ_1');
OR
SELECT SETVAL('SEQ_1', 200);

Alter an existing sequence.

ALTER SEQUENCE SEQ_1 MAXVALUE 1000000;

IDENTITY Usage
Since PostgreSQL 10, there is a new option called identity columnswhich is similar to the SERIAL data type but
more SQL standard compliant. The identity columns are slightlymore compatible compared to SQL Server's Iden-
tity columns.

To create a table with Identity columns please use the following:

CREATE TABLE emps (
 emp_id INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 emp_name VARCHAR(35) NOT NULL);

INSERT INTO emps (emp_name) VALUES ('Robert');
INSERT INTO emps (emp_id, emp_name) VALUES (DEFAULT, 'Brian');

SELECT * FROM emps;

col1 | col2
-----+------
1 | Robert
2 | Brian

Note: In PostgreSQL (both SERIAL and IDENTITY) you can insert any value, so long as it won't violate
the primary key constraint. If the value violates the primary key constraint and you use the identity
column sequence value again, the following error might be raised:
SQL Error [23505]: ERROR: duplicate key value violates unique constraint "emps_iden_pkey"
Detail: Key (emp_id)=(2) already exists.

SERIAL Usage
PostgreSQL enables you to create a sequence similar to the IDENTITY property supported by identity columns.
When creating a new table, the sequence is created through the SERIAL pseudo-type. Other types from the
same family are SMALLSERIAL and BIGSERIAL.

By assigning a SERIAL type to a column during table creation, PostgreSQL creates a sequence using the default
configuration and adds a NOT NULL constraint to the column. The newly created sequence behaves like a reg-
ular sequence (incremented by 1) and no composite SERIAL option.

- 225 -

Use a SERIAL Sequence.

CREATE TABLE SERIAL_SEQ_TST(COL1 SERIAL PRIMARY KEY, COL2 VARCHAR(10));

INSERT INTO SERIAL_SEQ_TST(COL2) VALUES('A');
SELECT * FROM SERIAL_SEQ_TST;

col1 | col2
------+------
1 | A

\ds

Schema | Name | Type | Owner
--------+-------------------------+----------+-------
public | serial_seq_tst_col1_seq | sequence | pg_tst_db

Use the PostgreSQL SERIAL pseudo-type (with a Sequence that is created implicitly).

CREATE TABLE SERIAL_SEQ_TST(COL1 SERIAL PRIMARY KEY, COL2 VARCHAR(10));

\ds
 Schema | Name | Type | Owner
--------+-------------------------+----------+-------
 public | serial_seq_tst_col1_seq | sequence | pg_tst_db

ALTER SEQUENCE SERIAL_SEQ_TST_COL1_SEQ RESTART WITH 100 INCREMENT BY 10;
INSERT INTO SERIAL_SEQ_TST(COL2) VALUES('A');
INSERT INTO SERIAL_SEQ_TST(COL1, COL2) VALUES(DEFAULT, 'B');
SELECT * FROM SERIAL_SEQ_TST;

col1 | col2
------+------
100 | A
110 | B

Use the ALTER SEQUENCE command to change the default sequence configuration in a SERIAL column.

Create a table with a SERIAL column that uses increments of 10:

CREATE TABLE SERIAL_SEQ_TST(COL1 SERIAL PRIMARY KEY, COL2 VARCHAR(10));

ALTER SEQUENCE serial_seq_tst_col1_seq INCREMENT BY 10;

Note: The auto generated sequence's name should be created with the following format:
TABLENAME_COLUMNNAME_seq

Create a table with a compound PK including a SERIAL column:

CREATE TABLE SERIAL_SEQ_TST
(COL1 SERIAL, COL2 VARCHAR(10), PRIMARY key (COL1,COL2));

Summary
The following table identifies similarities, differences, and keymigration considerations.

- 226 -

Feature SQL Server Aurora PostgreSQL

Independent
SEQUENCE object

CREATE
SEQUENCE

CREATE SEQUENCE

Automatic enu-
merator column prop-
erty

IDENTITY SERIAL / IDENTITY

Reseed sequence
value

DBCC
CHECKIDENT

1. Find sequence name:
pg_get_serial_sequence('[table_name]', '[serial_field_name]')

2. SELECT SETVAL((SELECT pg_get_serial_sequence('table_
name', 'person_id')), 1, false);

Column restrictions Numeric Numeric

Controlling seed and
interval values

CREATE/ALTER
SEQUENCE

CREATE/ALTER SEQUENCE

Sequence setting ini-
tialization

Maintained through
service restarts

ALTER SEQUENCE

Explicit values to
column

Not allowed by
default, SET
IDENTITY_
INSERTON
required

Allowed

Formore information see:

l https://www.postgresql.org/docs/13/static/sql-createsequence.html

l https://www.postgresql.org/docs/13/static/functions-sequence.html

l https://www.postgresql.org/docs/13/static/datatype-numeric.html

l https://www.postgresql.org/docs/13/sql-createtable.html

- 227 -

https://www.postgresql.org/docs/13/static/sql-createsequence.html
https://www.postgresql.org/docs/13/static/functions-sequence.html
https://www.postgresql.org/docs/13/static/datatype-numeric.html
https://www.postgresql.org/docs/13/sql-createtable.html

Configuration

SQL Server Upgrades vs. PostgreSQL Upgrades

Feature Compatibility SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A N/A N/A

SQL Server Usage
As a Database Administrator, from time to time a database upgrade is required, it can be either for security fix,
bugs fixes, compliance , or new database features.

The database upgrade approach can be planned tominimize the database downtime and risk. You can perform
an upgrade in-place or migrate to a new installation

Upgrade in-place

With this approach, we are retaining the current hardware andOS version by adding the new SQLServer bin-
aries on the same server and then upgrade the SQL Server instance.

Before upgrading the Database Engine, review the SQL Server release notes for the intended target release ver-
sion for any limitations and known issues to help you plan the upgrade.

In general, these will be the steps to perform the upgrade:

Prerequisites steps

l Back up all SQL Server database files, so that it can be restored if required.

l Run the appropriate Database Console Commands (DBCC CHECKDB) on databases to be upgraded to
ensure that they are in a consistent state.

l Ensure to allocate enough disk space for SQL Server components, in addition to user databases.

- 228 -

l Disable all startup stored procedures as stored procedures processed at startup timemight block the
upgrade process.

l Stop all applications, including all services that have SQL Server dependencies

Steps for upgrade

l Install new software

l Fix issues raised

l Set if you prefer to have automatic updates or not

l Select products install to upgrade, this is the new binaries installation

l Monitor the progress of downloading, extracting, and installing the Setup files.

l Specify the instance of SQL Server to upgrade

l On the Select Features page, the features to upgrade will be preselected. The prerequisites for the
selected features are displayed on the right-hand pane. SQL Server Setup will install the pre-
requisite that are not already installed during the installation step described later in this procedure.

l Review upgrade plan before the actual upgrade

l Monitor installation progress

Post upgrade tasks:

l Review summary log file for the installation and other important notes

l Register your servers

Migrate to a new installation

This approachmaintains the current environment while building a new SQLServer environment. This is usually
done whenmigrating on a new hardware and with a new version of the operating system. In this approach
migrate the system objects so that they are same as as the existing environment, thenmigrate the user database
either using backup and restore.

For additional information, see: https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-
database-engine?view=sql-server-ver15

PostgreSQL Usage
After migrating your databases to RDS running Aurora for PostgreSQL, you will still need to upgrade your data-
base instance from time to time, for the same reasons you have done in the past, new features, bugs and security
fixes.

In amanaged service like RDS, the upgrade process ismuch easier and simpler compare to the on-premOracle
process.

To determine the current Aurora for PostgreSQL version being used, you can use the following aws cli command:

aws rds describe-db-engine-versions --engine aurora-postgresql --query '*[].[EngineVer-
sion]' --output text --region your-AWS-Region

This can also be queried from the database, using the following queries:

- 229 -

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-database-engine?view=sql-server-ver15

SELECT AURORA_VERSION();

aurora_version
4.0.0 |

SHOW SERVER_VERSION;

server_version
12.4 |

All Aurora and PostgreSQL versionsmapping can be found in here: https://-
docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

AWS doesn't applymajor version upgrades on RDS Aurora automatically. Major version upgrades contains new
features and functionality which often involves system table and other code changes. These changesmay not be
backward-compatible with previous versions of the database so application testing are highly recommended.

Applying automaticminor upgrades can be set by configuring the RDS instance to allow it.

You can use the following aws cli command (linux) to determine the current automatic upgrademinor versions.

aws rds describe-db-engine-versions --engine aurora-postgresql | grep -A 1 AutoUp-
grade| grep -A 2 true |grep PostgreSQL | sort --unique | sed -e 's/"Description":
"//g'

Note: If no results are returned, there is no automaticminor version upgrade available and scheduled.

When enabled, the instance will be automatically upgraded during the scheduledmaintenance window.

For major upgrades, this is the recommended process:

l Have a version-compatible parameter group ready.
If you are using a customDB instance or DB cluster parameter group, you have two options:

1. Specify the default DB instance, DB cluster parameter group, or both for the new DB engine ver-
sion.

2. Create your own custom parameter group for the new DB engine version.

Note: If you associate a new DB instance or DB cluster parameter group as a part of the upgrade
request, make sure to reboot the database after the upgrade completes to apply the parameters. If a
DB instance needs to be rebooted to apply the parameter group changes, the instance's parameter
group status shows pending-reboot. You can view an instance's parameter group status in the console
or by using a CLI command such as describe-db-instances or describe-db-clusters.

l Check for unsupported usage:

1. Commit or roll back all open prepared transactions before attempting an upgrade. You can use the
following query to verify that there are no open prepared transactions on your instance.

SELECT count(*) FROM pg_catalog.pg_prepared_xacts;

- 230 -

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

2. Remove all uses of the reg* data types before attempting an upgrade. Except for regtype and reg-
class, you can't upgrade the reg* data types. The pg_upgrade utility can't persist this data type,
which is used by Amazon Aurora to do the upgrade.
To verify that there are no uses of unsupported reg* data types, use the following query for each
database.

SELECT count(*) FROM pg_catalog.pg_class c, pg_catalog.pg_namespace n, pg_
catalog.pg_attribute aWHERE c.oid = a.attrelid
AND NOT a.attisdropped
AND a.atttypid IN ('pg_catalog.regproc'::pg_catalog.regtype,
'pg_catalog.regprocedure'::pg_catalog.regtype,
'pg_catalog.regoper'::pg_catalog.regtype,
'pg_catalog.regoperator'::pg_catalog.regtype,
'pg_catalog.regconfig'::pg_catalog.regtype,
'pg_catalog.regdictionary'::pg_catalog.regtype)
AND c.relnamespace = n.oid
AND n.nspname NOT IN ('pg_catalog', 'information_schema');

l Perform a backup.

The upgrade process creates a DB cluster snapshot of your DB cluster during upgrading.

l Upgrade certain extensions to the latest available version before performing themajor version upgrade.
The extensions to update include the following:

l pgRouting

l postGIS

Run the following command for each extension that you are using.

ALTER EXTENSION PostgreSQL-extension UPDATE TO 'new-version'

If you are upgrading older versions (older than 12), there are a few more steps, please review here:https://-
docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

All mentioned above a prerequsites, the actual upgrade can be done throught the console or aws cli.

Console

1. Sign in to the AWSManagement Console and open the Amazon RDS console at https://-
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster that you want to upgrade.

3. ChooseModify. TheModify DB cluster page appears.

4. For DB engine version, choose the new version.

5. Choose Continue and check the summary of modifications.

6. To apply the changes immediately, choose Apply immediately. Choosing this option can cause an outage
in some cases. For more information, seeModifying an Amazon Aurora DB cluster.

7. On the confirmation page, review your changes. If they are correct, chooseModify Cluster to save your
changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

- 231 -

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
--db-cluster-identifier mydbcluster \
--engine-version new_version \
--allow-major-version-upgrade \
--no-apply-immediately

For Windows:

aws rds modify-db-cluster ^
--db-cluster-identifier mydbcluster ^
--engine-version new_version ^
--allow-major-version-upgrade ^
--no-apply-immediately

Summary
Phase SQL Server Step Aurora for PostgreSQL

Prerequisite Performa an instance backup RunRDS instance backup

Prerequisite DBCC for consistent verification N/A

Prerequisite Validate disk size and free space N/A

Prerequisite Disable all startup stored pro-
cedures (if applicable)

N/A

Prerequisite Stop application and connection N/A

Prerequisite Install new software and fix pre-
requisites errors raised

1. Remove all uses of the reg* data types

2. Upgrade certain extensions

3. Commit or roll back all open prepared trans-
actions
SELECT count(*) FROMpg_catalog.pg_pre-
pared_xacts;

Prerequisite Select instances to upgrade Select right RDS instance

Prerequisite Review pre-upgrade summary N/A

Execution Monitor upgrade progress Can be reviewed from the console

Post-upgrade Results Can be reviewed from the console

Post-upgrade Register server N/A

- 232 -

Phase SQL Server Step Aurora for PostgreSQL

Post-upgrade Test applications again the new
upgraded database

Same

Production
deployment

Re-run all steps in a production
enviroment

Same

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBIn-
stance.PostgreSQL.html

SQL Server Session Options vs.
PostgreSQL Session Options
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A N/A SET options are significantly different, except for
transaction isolation control

SQL Server Usage
SessionOptions in SQL Server is a collection of run-time settings that control certain aspects of how the server
handles data for individual sessions. A session is the period between a login event and a disconnect event (or an
exec sp_reset_connection command for connection pooling).

Each sessionmay havemultiple execution scopes, which are all the statements before the GOkeyword used in
SQL Server management Studio scripts, or any set of commands sent as a single execution batch by a client
application. Each execution scopemay contain additional sub-scopes. For example, scripts calling stored pro-
cedures or functions.

You can set the global session options, which all execution scopes use by default, using the SET T-SQL com-
mand. Server codemodules such as stored procedures and functionsmay have their own execution context set-
tings, which are saved along with the code to guarantee the validity of results.

Developers can explicitly use SET commands to change the default settings for any session or for an execution
scope within the session. Typically, client applications send explicit SET commands upon connection initiation.

You can view themetadata for current sessions using the sp_who_system stored procedure and the sys-
processes system table.

Note: To change the default setting for SQL Server Management Studio, click Tools >Options >
Query Execution > SQL Server > Advanced.

Syntax
Syntax for the SET command:

SET
Category Setting
------------- ----------
Date and time DATEFIRST | DATEFORMAT
Locking DEADLOCK_PRIORITY | SET LOCK_TIMEOUT
Miscellaneous CONCAT_NULL_YIELDS_NULL | CURSOR_CLOSE_ON_COMMIT | FIPS_FLAGGER | SET

- 233 -

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

IDENTITY_INSERT
 LANGUAGE | OFFSETS | QUOTED_IDENTIFIER

Query Execution ARITHABORT | ARITHIGNORE | FMTONLY | NOCOUNT | NOEXEC | NUMERIC_
ROUNDABORT | PARSEONLY
 QUERY_GOVERNOR_COST_LIMIT | ROWCOUNT | TEXTSIZE
ANSI ANSI_DEFAULTS | ANSI_NULL_DFLT_OFF | ANSI_NULL_DFLT_ON | ANSI_NULLS |
ANSI_PADDING
 ANSI_WARNINGS
Execution Stats FORCEPLAN | SHOWPLAN_ALL | SHOWPLAN_TEXT | SHOWPLAN_XML | STATISTICS
IO | STATISTICS XML
 STATISTICS PROFILE | STATISTICS TIME
Transactions IMPLICIT_TRANSACTIONS | REMOTE_PROC_TRANSACTIONS | TRANSACTION ISOLATION
LEVEL | XACT_ABORT

Note: For more details about individual settings, see the link at the end of this section.

SET ROWCOUNT for DML Deprecated Setting

The SET ROWCOUNT for DML statements has been deprecated as of SQL Server 2008 in accordance with
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105).

Up to and including SQL Server 2008 R2, you could limit the amount of rows affected by INSERT, UPDATE, and
DELETE operations using SET ROWCOUNT. For example, it is a common practice in SQL Server to batch large
DELETE or UPDATE operations to avoid transaction logging issues. The following example loops and deletes
rows having 'ForDelete' set to 1, but only 5000 rows at a time in separate transactions (assuming the loop is not
within an explicit transaction).

SET ROWCOUNT 5000;
WHILE @@ROWCOUNT > 0
BEGIN
DELETE FROM MyTable
WHERE ForDelete = 1;

END

Begining with SQL Server 2012, SET ROWCOUNT is ignored for INSERT, UPDATE and DELETE statements.
The same functionality can be achieved by using TOP, which can be converted to the Aurora PostgreSQL LIMIT.

For example, the previous code could be rewritten as:

WHILE @@ROWCOUNT > 0
BEGIN
DELETE TOP (5000)
FROM MyTable
WHERE ForDelete = 1;

END

The latter syntax can be converted automatically by SCT to Aurora PostgeSQL. See the code example in Aurora
PostgreSQL SessionOptions.

Examples
Use SET within a stored procedure.

CREATE PROCEDURE <ProcedureName>
AS

- 234 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

BEGIN
 <Some non critical transaction code>
 SET TRANSACTION_ISOLATION_LEVEL SERIALIZABLE;
 SET XACT_ABORT ON;
 <Some critical transaction code>
END

Note: Explicit SET commands affect their execution scope and sub scopes.
After the scope terminates and the procedure code exits, the calling scope resumes its original settings
used before the calling the stored procedure.

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-
server-ver15

PostgreSQL Usage
Aurora PostgreSQL supports hundreds of Server SystemVariables to control server behavior and the global and
session levels.

PostgreSQL provides session-modifiable parameters that are configured using the SET SESSION command.
Configuration of parameters using SET SESSION will only be applicable in the current session. To view the list of
parameters that can be set with SET SESSION , you can query pg_settings:

SELECT * FROM pg_settings where context = 'user';

Examples of commonly used session parameters:

l client_encoding - configures the connected client character set.
l force_parallel_mode - forces use of parallel query for the session.
l lock_timeout - sets themaximumallowed duration of time to wait for a database lock to release.
l search_path - sets the schema search order for object names that are not schema-qualified.
l transaction_isolation - sets the current Transaction Isolation Level for the session.

You can view Aurora PostgreSQL variables using the PostgreSQL command line utility, Aurora database cluster
parameters, Aurora database instance parameters, or SQL interface system variables.

Converting from SQL Server 2008 SET ROWCOUNT for DML
operations

Asmentioned in SQL Server SessionsOptions, the use of SET ROWCOUNT for DML operations is deprecated
as of SQL Server 2008 R2. Code that uses the SET ROWCOUNT syntax can not be converted automatically.
Either rewrite to use TOP before running SCT, or manually change it afterward.

The example used to batch DELETE operations in SQL Server using TOP:

WHILE @@ROWCOUNT > 0
BEGIN
DELETE TOP (5000)
FROM MyTable
WHERE ForDelete = 1;

END

Can be easily rewritten to use Aurora PostgreSQL LIMIT clause :

- 235 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-server-ver15

WHILE row_count() > 0 LOOP
DELETE FROM num_test

 WHERE ctid IN (
 SELECT ctid
 FROM num_test
 LIMIT 10)
END LOOP;

Examples
Change the time zone of the connected session.

SET SESSION DateStyle to POSTGRES, DMY;
SET

SELECT NOW();
now

Sat 09 Sep 11:03:43.597202 2017 UTC

(1 row)

SET SESSION DateStyle to ISO, MDY;
SET

SELECT NOW();
now

2017-09-09 11:04:01.3859+00

(1 row)

Summary
The following table summarizes commonly used SQL Server session options and their corresponding Aurora
PostgreSQL system variables.

Category SQL Server Aurora PostgreSQL

Date and time DATEFIRST

DATEFORMAT

UseDOW in queries

DateStyle

Locking LOCK_TIMEOUT lock_timeout

Transactions IMPLICIT_TRANSACTIONS

TRANSACTION ISOLATION LEVEL

SET TRANSACTION

BEGIN TRANSACTION ISOLATION LEVEL

Query execution IDENTITY_INSERT

LANGUAGE

QUOTED_IDENTIFIER

NOCOUNT

See Identity and sequences

lc_monetary / lc_numeric / lc_time

N/A

N/A and not needed

Execution stats SHOWPLAN_ALL, TEXT, and XML See Execution Plans

- 236 -

Category SQL Server Aurora PostgreSQL

STATISTICS IO, XML, PROFILE, and TIME

Miscellaneous CONCAT_NULL_YIELDS_NULL

ROWCOUNT

N/A

Use LIMIT within SELECT

Formore information, see: For more details, see https://www.postgresql.org/docs/13/static/sql-set.html

SQL Server Database Options vs.
PostgreSQL Database Options
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Use Cluster and Database/Cluster
Parameter

SQL Server Usage
SQLServer provides database level options that can be set using the ALTER DATABASE ... SET command.
These settings enable you to:

l Set default session options. For more information, see Session Options.
l Enable or disable database features such as SNAPSHOT_ISOLATION, CHANGE_TRANCKING, and
ENABLE_BROKER.

l Configure High availability and disaster recovery options such as always on availability groups.
l Configure security access control such as restricting access to a single user, setting the database offline, or
setting the database to read-only.

Syntax
Syntax for setting database options:

ALTER DATABASE { <database name> } SET { <option> [,...n] };

Examples
Set a database to read-only and use ARITHABORT by default.

ALTER DATABASE Demo SET READ_ONLY, ARITHABORT ON;

Set a database to use automatic statistic creation.

ALTER DATABASE Demo SET AUTO_CREATE_STATISTICS ON;

Set a database offline immediately.

ALTER DATABASE DEMO SET OFFLINE WITH ROLLBACK IMMEDIATE;

- 237 -

https://www.postgresql.org/docs/13/static/sql-set.html

Formore information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-option-
s?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL supports both the CREATE SCHEMA andCREATE DATABASE statements.

Aswith SQL Server, Aurora PostgreSQL does have the concept of an instance hostingmultiple databases,
which in turn containmultiple schemas. Objects in Aurora PostgreSQL are referenced as a three part name:
<database>.<schema>.<object>.

Database options are related to the cluster level parameters which aremanaged by the AWS Cluster Parameter
Groups but someMSSQL equivalent parameters can be found at the instance level in the AWS Database Para-
meter Group.

Datable Options are being compared to "AWS Database Parameter Group" and Server Options are being com-
pared to "AWS Cluster Parameter Group", for more information, see Server Options.

SQL Server Server Options vs. PostgreSQL Aurora
Parameter Groups
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Use Cluster and Database/Cluster
Parameter

SQL Server Usage
SQL Server provides server-level settings that affect all databases and all sessions. You canmodify these set-
tings using the sp_configure system stored procedure.

You can use Server Options to perform the following configuration tasks:

l Define hardware utilization such asmemorymanagement, affinitymask, priority boost, network packet
size, and soft Non-UniformMemory Access (NUMA) .

l Alter run time global values such as recovery interval, remote login timeout, optimization for ad-hocwork-
loads, and cost threshold for parallelism.

l Enable and disable global features such asC2 Audit, OLE, procedures, CLR procedures, and allow trigger
recursion.

l Configure global security settings such as server authenticationmode, remote access, shell accesswith
xp_cmdshell, CLR access level, and database chaining.

l Set default values for sessions such as user options, default language, backup compression, and fill factor.

Some settings require an explicit RECONFIGURE command to apply the changes to the server. High risk set-
tings require RECONFIGURE WITH OVERRIDE for the changes to be applied. Some advanced options are hid-
den by default. To view andmodify these settings, set show advanced options to 1 and re-execute sp_configure.

Note: Server audits aremanaged with the T-SQL commandsCREATE and ALTER SERVER AUDIT.

- 238 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-ver15

Syntax
EXECUTE sp_configure <option>, <value>;

Examples
Limit server memory usage to 4GB.

EXECUTE sp_configure 'show advanced options', 1;

RECONFIGURE;

sp_configure 'max server memory', 4096;

RECONFIGURE;

Allow command shell access from T-SQL.

EXEC sp_configure 'show advanced options', 1;

RECONFIGURE;

EXEC sp_configure 'xp_cmdshell', 1;

RECONFIGURE;

Viewing current values.

EXECUTE sp_configure

Formore information, see
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server-
?view=sql-server-ver15

PostgreSQL Usage
When running PostgreSQL databases as Amazon Aurora Clusters, Parameter Groups are used to change to
cluster-level and database-level parameters.

Most of the PostgreSQL parameters are configurable in an Amazon Aurora PostgreSQL cluster, but some are
disabled and cannot bemodified. Since Amazon Aurora clusters restrict access to the underlying operating sys-
tem, modification to PostgreSQL parametersmust bemade using Parameter Groups.

Amazon Aurora is a cluster of database instances and, as a direct result, some of the PostgreSQL parameters
apply to the entire cluster while other parameters apply only to a particular database instance.

Aurora PostgreSQL Parameter Class Controlled Via

Cluster-level parameters
Single cluster parameter group per Amazon Aur-

Managed via cluster parameter groups

For example:

- 239 -

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server?view=sql-server-ver15

Aurora PostgreSQL Parameter Class Controlled Via

ora Cluster • The PostgreSQLwal_buffers parameter is controlled via a
cluster parameter group.

• The PostgreSQL autovacuum parameter is controlled via a
cluster parameter group.

• The client_encoding parameter is controlled via a cluster
parameter group.

Database Instance-Level parameters
Every instance in an Amazon Aurora cluster can
be associated with a unique database parameter
group

Managed via database parameter groups For example:

• The PostgreSQL shared_buffersmemory cache con-
figuration parameter is controlled via a database parameter
group with an AWS-optimized default value based on the
configured database class: {DBIn-
stanceClassMemory/10922}.

• The PostgreSQLmax_connections parameter, which con-
trolsmaximumnumber of client connections allowed to the
PostgreSQL instance, is controlled via a database para-
meter group. Default value is optimized by AWS based on
the configured database class: LEAST({DBIn-
stanceClassMemory/9531392},5000).

• The authentication_timeout parameter, which controls the
maximum time to complete client authentication (in
seconds), is controlled via a database parameter group.

• The superuser_reserved_connections parameter, which
determines the number of reserved connection "slots" for
PostgreSQL superusers, is configured via a database para-
meter group.

• The PostgreSQL effective_cache_size, which informs the
query optimizer how much cache is present in the kernel and
helps control how expensive large index scanswill be, is con-
trolled via a database level parameter group. The default
value is optimized by AWS based on database class (RAM):
{DBInstanceClassMemory/10922}.

New parameters in PostgreSQL 10:

1. enable_gathermerge - enable execution plan Gather Merge
2. max_parallel_workers - maximumnumber of parallel workers process
3. max_sync_workers_per_subscription - maximumnumber of synchronousworkers for subscription
4. wal_consistency_checking - check consistency ofWAL on the standby instance (can't be set in Aurora

PostgreSQL)
5. max_logical_replication_workers - maximumnumber of logical replication worker process
6. max_pred_locks_per_relation - Maximumnumber of records that can be predicate-lock before locking the

entire relation (sighup)
7. max_pred_locks_per_page - Maximumnumber of records that can be predicate-lock before locking the

entire page
8. min_parallel_table_scan_size - minimum table size to consider parallel table scan
9. min_parallel_index_scan_size - minimum table size to consider parallel index scan

- 240 -

Examples

Create and Configure a New Parameter Group

Follow the steps below to create and configure Amazon Aurora database and cluster parameter groups:

1. Navigate to the "Parameter group" section in the RDS Service of the AWS Console.

2. Click Create Parameter Group.

Note: You cannot edit the default parameter group. Youmust create a custom parameter group
to apply changes to your Amazon Aurora cluster and its database instances.

3. Select the DB family from the Parameter group family drop-down list. Select DB Parameter Group from
the Type drop-down list (another option is to select Cluster Parameter Group for modifying cluster para-

meters). Click Create.

Modify an Existing Parameter Group

1. Navigate to the "Parameter group" section in the RDS Service of the AWS Console.

2. Click the name of the parameter to edit.

- 241 -

https://console.aws.amazon.com/rds/home?#parameter-groups:
https://console.aws.amazon.com/rds/home?#parameter-groups:

3. Click the Edit parameters button.

4. Change parameter values and click Save changes

Formore information, see:

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

- 242 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

High Availability and Disaster Recovery (HADR)

SQL Server Backup and Restore vs.
PostgreSQL Backup and Restore
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A SCT Action Codes -
Backup

Storage level backupmanaged by
Amazon RDS

SQL Server Usage
The termBackup refers to both the process of copying data and to the resulting set of data created by the pro-
cesses that copy data for safekeeping and disaster recovery. Backup processes copy SQL Server data and trans-
action logs tomedia such as tapes, network shares, cloud storage, or local files. These "backups" can then be
copied back to the database using a restore process.

SQL Server uses files, or filegroups, to create backups for an individual database or subset of a database. Table
backups are not supported.

When a database uses the FULL recoverymodel, transaction logs also need to be backed up. Transaction logs
allow backing up only database changes since the last full backup and provide amechanism for point-in-time
restore operations.

RecoveryModel is a database-level setting that controls transaction logmanagement. The three available recov-
erymodels are SIMPLE, FULL, and BULK LOGGED. For more information, see https://docs.microsoft.com/en-
us/sql/relational-databases/backup-restore/recovery-models-sql-server?view=sql-server-ver15.

The SQL Server RESTORE process copies data and log pages from a previously created backup back to the
database. It then triggers a recovery process that rolls forward all committed transactions not yet flushed to the
data pageswhen the backup took place. It also rolls back all uncommitted transactionswritten to the data files.

SQL Server supports the following types of backups:

l Copy-Only Backups are independent of the standard chain of SQL Server backups. They are typically
used as "one-off" backups for special use cases and do not interrupt normal backup operations.

- 243 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server

l Data Backups copy data files and the transaction log section of the activity during the backup. A Data
Backupmay contain the whole database (Database Backup) or part of the database. The parts can be a
Partial Backup or a file/filegroup.

l A Database Backup is a Data Backup representing the entire database at the point in time when the
backup process finished.

l A Differential Backup is a data backup containing only the data structures (extents) modified since the last
full backup. A differential backup is dependent on the previous full backup and can not be used alone.

l A Full Backup is a data backup containing a Database Backup and the transaction log records of the activ-
ity during the backup process.

l Transaction Log Backups do not contain data pages. They contain the log pages for all transaction activity
since the last Full Backup or the previous Transaction Log Backup.

l File Backups consist of one or more files or filegroups.

SQL Server also supportsMedia Families andMedia Sets that can be used tomirror and stripe backup devices.
For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-
sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15

SQL Server 2008 Enterprise edition and later versions, support Backup Compression. Backup Compression
provides the benefit of a smaller backup file footprint, less I/O consumption, and less network traffic at the
expense of increased CPU utilization for executing the compression algorithm. For more information, see https://-
docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-
server-ver15

A database backed up in the SIMPLE recoverymode can only be restored from a full or differential backup. For
FULL and BULK LOGGED recoverymodels, transaction log backups can be restored also tominimize potential
data loss.

Restoring a database involvesmaintaining a correct sequence of individual backup restores. For example, a typ-
ical restore operationmay include the following steps:

1. Restore themost recent Full Backup.
2. Restore themost recent Differential Backup.
3. Restore a set of uninterrupted Transaction Log Backups, in order.
4. Recover the database.

For large databases, a full restore, or a complete database restore, from a full database backup is not always a
practical solution. SQL Server supports Data File Restore that restores and recovers a set of files and a single
Data Page Restore, except for databases using the SIMPLE recoverymodel.

Syntax
Backup syntax:

Backing Up a Whole Database
BACKUP DATABASE <Database Name> [<Files / Filegroups>] [READ_WRITE_FILEGROUPS]

TO <Backup Devices>
[<MIRROR TO Clause>]
[WITH [DIFFERENTIAL]
[<Option List>][;]

BACKUP LOG <Database Name>
TO <Backup Devices>
[<MIRROR TO clause>]
[WITH <Option List>][;]

- 244 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-server-ver15

<Option List> =
COPY_ONLY | {COMPRESSION | NO_COMPRESSION } | DESCRIPTION = <Description>
| NAME = <Backup Set Name> | CREDENTIAL | ENCRYPTION | FILE_SNAPSHOT | { EXPIREDATE =
<Expiration Date> | RETAINDAYS = <Retention> }
{ NOINIT | INIT } | { NOSKIP | SKIP } | { NOFORMAT | FORMAT } |
{ NO_CHECKSUM | CHECKSUM } | { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }
{ NORECOVERY | STANDBY = <Undo File for Log Shipping> } | NO_TRUNCATE
ENCRYPTION (ALGORITHM = <Algorithm> | SERVER CERTIFICATE = <Certificate> | SERVER
ASYMMETRIC KEY = <Key>);

Restore Syntax:

RESTORE DATABASE <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
FROM <Backup Devices>
[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]
[, <Option List>]
[;]

RESTORE LOG <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
[FROM <Backup Devices>
[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]
[, <Option List>]
[;]

<Option List> =
MOVE <File to Location>
| REPLACE | RESTART | RESTRICTED_USER | CREDENTIAL
| FILE = <File Number> | PASSWORD = <Passord>
| { CHECKSUM | NO_CHECKSUM } | { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }
| KEEP_REPLICATION | KEEP_CDC
| { STOPAT = <Stop Time>
| STOPATMARK = <Log Sequence Number>
| STOPBEFOREMARK = <Log Sequence Number>

Examples
Perform a full compressed database backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\FullBackup.bak'
WITH COMPRESSION;

Perform a log backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH COMPRESSION;

Perform a partial differential backup.

BACKUP DATABASE MyDatabase
FILEGROUP = 'FileGroup1',
FILEGROUP = 'FileGroup2'
TO DISK='C:\Backups\MyDatabase\DB1.bak'
WITH DIFFERENTIAL;

Restore a database to a point in time.

- 245 -

RESTORE DATABASE MyDatabase
FROM DISK='C:\Backups\MyDatabase\FullBackup.bak'
WITH NORECOVERY;

RESTORE LOG AdventureWorks2012
FROM DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH NORECOVERY, STOPAT = '20180401 10:35:00';

RESTORE DATABASE AdventureWorks2012 WITH RECOVERY;

Formore information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server?view=sql-
server-ver15

l https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server-
?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL continuously backs up all cluster volumes and retains restore data for the duration of the
backup retention period. The backups are incremental and can be used to restore the cluster to any point in time
within the backup retention period. You can specify a backup retention period from one to 35 dayswhen creating
or modifying a database cluster. Backups incur no performance impact and do not cause service interruptions.

Additionally, you canmanually trigger data snapshots in a cluster volume that can be saved beyond the retention
period. You can use Snapshots to create new database clusters.

Note: Manual snapshots incur storage charges for Amazon RDS.

Restoring Data

You can recover databases fromAurora's automatically retained data or from amanually saved snapshot. Using
the automatically retained data significantly reduces the need to take frequent snapshots andmaintain Recovery
Point Objective (RPO) policies.

The RDS console displays the available time frame for restoring database instances in the Latest Restorable
Time and Earliest Restorable Time fields. The Latest Restorable Time is typically within the last fiveminutes. The
Earliest Restorable Time is the end of the backup retention period.

Note: The Latest Restorable Time and Earliest Restorable Time fields display when a database cluster
restore has been completed. Both display NULL until the restore process completes.

Database Cloning

Database cloning is a fast and cost-effective way to create copies of a database. You can createmultiple clones
from a single DB cluster and additional clones can be created from existing clones.When first created, a cloned
database requires onlyminimal additional storage space.

Database cloning uses a copy-on-write protocol. Data is copied only when it changes either on the source or
cloned database.

Data cloning is useful for avoiding impacts on production databases. For example:

- 246 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server?view=sql-server-ver15

l Testing schema or parameter groupmodifications.
l Isolating intensive workloads. For example, exporting large amounts of data and running high resource-
consuming queries.

l Development and Testing with a copy of a production database.

Copying and sharing snapshots

Database snapshots can be copied and shared within the same AWS Region, across AWS Regions, and across
AWS accounts. Snapshot sharing allows an authorized AWS account to access and copy snapshots. Authorized
users can restore a snapshot from its current location without first copying it.

Copying an automated snapshot to another AWS account requires two steps:

l Create amanual snapshot from the automated snapshot.
l Copy themanual snapshot to another account.

Backup Storage

In all RDS regions, Backup Storage is the collection of both automated andmanual snapshots for all database
instances and clusters. The size of this storage is the sum of all individual instance snapshots.

When an Aurora PostgreSQL database instance is deleted, all automated backups of that database instance are
also deleted. However, Amazon RDS provides the option to create a final snapshot before deleting a database
instance. This final snapshot is retained as amanual snapshot. Manual snapshots are not automatically deleted.

The Backup Retention Period

Retention periods for Aurora PostgreSQLDB cluster backups are configured when creating a cluster. If not expli-
citly set, the default retention is one daywhen using the Amazon RDS API or the AWS CLI. The retention period
is seven days if using the AWS Console. You canmodify the backup retention period at any time with values of
one to 35 days.

Disabling automated backups

You cannot disable automated backups on Aurora PostgreSQL. The backup retention period for Aurora Post-
greSQL ismanaged by the database cluster.

Migration Considerations
Migrating from a self managed backup policy to a Platform as a Service (PaaS) environment such as Aurora Post-
greSQL is a complete paradigm shift. You no longer need to worry about transaction logs, file groups, disks run-
ning out of space, and purging old backups.

Amazon RDS provides guaranteed continuous backup with point-in-time restore up to 35 days.

Managing a SQL Server backup policy with similar RTOandRPO is a challenging task. With Aurora Post-
greSQL, all you need to set is the retention period and take somemanual snapshots for special use cases.

- 247 -

Examples
The following walk-through describes how to change Aurora PostgreSQLDB cluster retention settings from one
day to seven days using the RDS console.

Login to the RDS Console and on dashboard click Databases.

Click on relevant DB identifier.

Verify the current automatic backup settings.

- 248 -

In this cluster select database instance with the writer role.

On the top right, click Modify

Scroll down to the Backup section. Select 7 Days from the drop-down list.

Click Continue, review the summary, select if to use scheduledmaintenance window or to apply immediate and
clickModify DB Instance.

- 249 -

For more information and an example of creating amanual snapshot, seeMaintenance Plans.

Summary
Feature SQL Server Aurora PostgreSQL Comments

RecoveryModel SIMPLE, BULK LOGGED,
FULL

N/A The functionality of Aurora
PostgreSQL backups is equi-
valent to the FULL recovery
model.

Backup Data-
base

BACKUP DATABASE aws rds create-db-cluster-
snapshot --db-cluster-snap-
shot-identifier Snapshot_
name --db-cluster-identifier
Cluster_Name

Partial Backup BACKUP DATABASE ...
FILE= ... | FILEGROUP = ...

N/A Can use export utils

Log Backup BACKUP LOG N/A Backup is at the storage level.

Differential
Backups

BACKUP DATABASE ...
WITH DIFFERENTIAL

N/A Can be donemanually using
export tools.

Database Snap-
shots

BACKUP DATABASE ...
WITH COPY_ONLY

RDS console or API The terminology is inconsistent
between SQLServer and Aur-
ora PostgreSQL. A database
snapshot in SQL Server is sim-
ilar to database cloning in Aur-
ora PostgreSQL. Aurora
PostgreSQL database snap-
shots are similar to a COPY_
ONLY backup in SQL Server.

Database
Clones

CREATE DATABASE...
AS SNAPSHOTOF...

Create new cluster from a
cluster snapshot:

aws rds restore-db-cluster-

The terminology is inconsistent
between SQLServer and Aur-
ora PostgreSQL. A database
snapshot in SQL Server is sim-
ilar to database cloning in Aur-

- 250 -

Feature SQL Server Aurora PostgreSQL Comments

from-snapshot --db-cluster-
identifier NewCluster --snap-
shot-identifier Snap-
shotToRestore --engine
aurora-postgresql

Add a new instance to the
new/restored cluster:

aws rds create-db-instance
--region us-east-1 --db-sub-
net-group default --engine
aurora-postgresql --db-
cluster-identifier cluster-
name-restore --db-instance-
identifier newinstance-
nodeA --db-instance-class
db.r4.large

ora PostgreSQL. Aurora Post-
greSQL database snapshots
are similar to a COPY_ONLY
backup in SQL Server.

Point in time
restore

RESTORE DATABASE
| LOG ... WITH STOPAT...

Create new cluster from a
cluster snapshot by given
custom time to restore:

aws rds restore-db-cluster-
to-point-in-time --db-cluster-
identifier clustername-
restore --source-db-cluster-
identifier clustername --
restore-to-time 2017-09-
19T23:45:00.000Z

Add a new instance to the
new/restored cluster:

aws rds create-db-instance
--region us-east-1 --db-sub-
net-group default --engine
aurora-postgresql --db-
cluster-identifier cluster-
name-restore --db-instance-
identifier newinstance-
nodeA --db-instance-class
db.r4.large

Partial Restore RESTORE DATABASE...
FILE= ... | FILEGROUP = ...

N/A The cluster can be restored to
a new cluster and the needed
data can be copied to the
primary cluster.

- 251 -

Formore information, see https://-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html#Aurora.Managing.Backups

SQL Server High Availability Essentials vs.
PostgreSQL High Availability Essentials
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A N/A Multi replica, scale out solution using Amazon Aur-
ora clusters and Availability Zones

SQL Server Usage
SQL Server provides several solutions to support high availability and disaster recovery requirements including
AlwaysOn Failover Cluster Instances (FCI), AlwaysOn Availability Groups, DatabaseMirroring, and Log Ship-
ping. The following sections describe each solution.

SQL Server 2017 also adds new Availability Groups functionality which includes read-scale support without a
cluster, MinimumReplica Commit Availability Groups setting, andWindows-Linux cross-OS migrations and test-
ing.

SQL Server 2019 introduces support for creating Database Snapshots of databases that includememory-optim-
ized filegroups. A database snapshot is a read-only, static view of a SQL Server database. The database snap-
shot is transactional consistent with the source database as of themoment of the snapshot's creation. Among
other things, some benefits of the database snapshots with regard to high availability are:

l Snapshots can be used for reporting purposes.

l Maintaining historical data for report generation.

l Using amirror database that you aremaintaining for availability purposes to offload reporting.

For more information about snapshots, see Database Snapshots

SQL Server 2019 introduces secondary to primary connection redirection for AlwaysOn Availability Groups.
It allows client application connections to be directed to the primary replica regardless of the target server spe-
cified in the connections string. The connection string can target a secondary replica. Using the right configuration
of the availability group replica and the settings in the connection string, the connection can be automatically redir-
ected to the primary replica.

For more information about snapshots, see Secondary to primary replica read/write connection redirection

Always On Failover Cluster Instances (FCI)

AlwaysOn Failover Cluster Instances use theWindowsServer Failover Clustering (WSFC) operating system
framework to deliver redundancy at the server instance level.

An FCI is an instance of SQL Server installed across two or moreWSFC nodes. For client applications, the FCI is
transparent and appears to be a normal instance of SQL Server running on a single server. The FCI provides fail-

- 252 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups?view=sql-server-ver15

over protection bymoving the services from oneWSFC nodeWindows server to another WSFC node windows
server in the event the current "active" node becomes unavailable or degraded.

FCIs target scenarios where a server fails due to a hardwaremalfunction or a software hangup.Without FCI, a
significant hardware or software failure would render the service unavailable until themalfunction is corrected.
With FCI, another server can be configured as a "stand by" to replace the original serverif it stops servicing
requests.

For each service or cluster resource, there is only one node that actively services client requests (known as "own-
ing a resource group"). A monitoring agent constantlymonitors the resource owners and can transfer ownership
to another node in the event of a failure or plannedmaintenance such as installing service packs or security
patches. This process is completely transparent to the client application, whichmay continue to submit requests
as normal when the failover or ownership transfer process completes.

FCI can significantlyminimize downtime due to hardware or software general failures. Themain benefits of FCI
are:

l Full instance level protection.
l Automatic failover of resources from one node to another.
l Supports a wide range of storage solutions.WSFC cluster disks can be iSCSI, Fiber Channel, SMB file
shares, and others.

l Supportsmulti-subnet.
l No need client application configuration after a failover.
l Configurable failover policies.
l Automatic health detection andmonitoring.

Formore information, see https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-
cluster-instances-sql-server?view=sql-server-ver15

Always On Availability Groups

AlwaysOn Availability Groups is themost recent high availability and disaster recovery solution for SQL Server. It
was introduced in SQL Server 2012 and supports high availability for one or more user databases. Because it can
be configured andmanaged at the database level rather than the entire server, it providesmuchmore control and
functionality. Aswith FCI, AlwaysOn Availability Groups relies on the framework services ofWindowsServer Fail-
over Cluster (WSFC) nodes.

AlwaysOn Availability Groups utilize real-time log record delivery and applymechanism tomaintain near real-
time, readable copies of one or more databases.
These copies can also be used as redundant copies for resource usage distribution between servers (a scale-out
read solution).

Themain characteristics of AlwaysOn Availability Groups are:

l Supports up to nine availability replicas: One primary replica and up to eight secondary readable replicas.
l Supports both asynchronous-commit and synchronous-commit availabilitymodes.
l Supports automatic failover, manual failover, and a forced failover. Only the latter can result in data loss.
l Secondary replicas allow both read-only access and offloading of backups.
l Availability Group Listener may be configured for each availability group. It acts as a virtual server address
where applications can submit queries. The listener may route requests to a read-only replica or to the
primary replica for read-write operations. This configuration also facilitates fast failover as client applic-
ations do not need to be reconfigured post failover.

l Flexible failover policies.
l The automatic page repair feature protects against page corruption.

- 253 -

https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server?view=sql-server-ver15

l Log transport framework uses encrypted and compressed channels.
l Rich tooling and APIs including Transact-SQLDDL statements, management studio wizards, AlwaysOn
DashboardMonitor, and Powershell scripting.

Formore information, see
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-
server?view=sql-server-ver15

Database Mirroring.

Note: Microsoft recommends avoiding DatabaseMirroring for new development. This feature is deprec-
ated and will be removed in a future release. It is recommended to use AlwaysOn Availability Groups
instead.

Databasemirroring is a legacy solution to increase database availability by supporting near instantaneous fail-
over. It is similar in concept to AlwaysOn Availability Groups, but can only be configured for one database at a
time and with only one "standby" replica.

Formore information, see
https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server?view=sql-server-
ver15

Log Shipping

Log shipping is one of the oldest and well tested high availability solutions. It is configured at the database level
similar to AlwaysOn Availability Groups and DatabaseMirroring. Log shipping can be used tomaintain one or
more standby (secondary) databases for a singlemaster (primary) database.

The Log shipping process involves three steps:

1. Backing up the transaction log of the primary database instance.
2. Copying the transaction log backup file to a secondary server.
3. Restoring the transaction log backup to apply changes to the secondary database.

Log shipping can be configured to createmultiple secondary database replicas by repeating steps 2 and 3 above
for each secondary server. Unlike FCI and AlwaysOn Availability Groups, log shipping solutions do not provide
automatic failover.

In the event the primary database becomes unavailable or unusable for any reason, an administrator must con-
figure the secondary database to serve as the primary and potentially reconfigure all client applications to connect
to the new database.

Note: Secondary databases can be used for read-only access, but require special handling. For more
information, see https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-ship-
ping-sql-server?view=sql-server-ver15

Themain characteristics of Log Shipping solutions are:

l Provides redundancy for a single primary database and one or more secondary databases. Log Shipping
is considered less of a high availability solution due to the lack of automatic failover.

l Supports limited read-only access to secondary databases.
l Administrators have control over the timing and delays of the primary server log backup and secondary

- 254 -

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-shipping-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-shipping-sql-server?view=sql-server-ver15

server restoration.
l Longer delays can be useful if data is accidentallymodified or deleted in the primary database.

Formore information about log shipping, see https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-
shipping-sql-server?view=sql-server-ver15

Examples
Configure an AlwaysOn Availability Group.

CREATE DATABASE DB1;

ALTER DATABASE DB1 SET RECOVERY FULL;

BACKUP DATABASE DB1 TO DISK = N'\\MyBackupShare\DB1\DB1.bak' WITH FORMAT;

CREATE ENDPOINT DBHA STATE=STARTED
AS TCP (LISTENER_PORT=7022) FOR DATABASE_MIRRORING (ROLE=ALL);

CREATE AVAILABILITY GROUP AG_DB1
FOR

DATABASE DB1
REPLICA ON

'SecondarySQL' WITH
(
ENDPOINT_URL = 'TCP://SecondarySQL.MyDomain.com:7022',
AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
FAILOVER_MODE = MANUAL
);

-- On SecondarySQL
ALTER AVAILABILITY GROUP AG_DB1 JOIN;

RESTORE DATABASE DB1 FROM DISK = N'\\MyBackupShare\DB1\DB1.bak'
WITH NORECOVERY;

-- On Primary
BACKUP LOG DB1
TO DISK = N'\\MyBackupShare\DB1\DB1_Tran.bak'

WITH NOFORMAT

-- On SecondarySQL
RESTORE LOG DB1

FROM DISK = N'\\MyBackupShare\DB1\DB1_Tran.bak'
WITH NORECOVERY

ALTER DATABASE MyDb1 SET HADR AVAILABILITY GROUP = MyAG;

Formore information, see
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/high-availability-solutions-sql-server?view=sql-server-
ver15

- 255 -

https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/high-availability-solutions-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/high-availability-solutions-sql-server?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL is a fullymanaged Platform as a Service (PaaS) providing high availability capabilities.
Amazon RDS provides database and instance administration functionality for provisioning, patching, backup,
recovery, failure detection, and repair.

New Aurora PostgreSQL database instances are always created as part of a cluster. If you don't specify replicas
at creation time, a single-node cluster is created. You can add database instances to clusters later.

Regions and Availability Zones

Amazon RDS is hosted inmultiple global locations. Each location is composed of Regions and Availability Zones.
Each Region is a separate geographic area havingmultiple, isolated Availability Zones. Amazon RDS supports
placement of resources such as database instances and data storage inmultiple locations. By default, resources
are not replicated across regions.

Each Region is completely independent and each Availability Zone is isolated from all others. However, themain
benefit of Availability Zoneswithin a Region is that they are connected through low-latency, high bandwidth local
network links.

Resourcesmay have different scopes. A resourcemay be global, associated with a specific region (region level) ,
or associated with a specific Availability Zone within a region. For more information, see https://-
docs.aws.amazon.com/AWSEC2/latest/UserGuide/resources.html

When creating a database instance, you can specify an availability zone or use the default "No Preference", in
which case Amazon chooses the availability zone for you.

Aurora PostgreSQL instances can be distributed acrossmultiple availability zones. Applications can be designed
to take advantage of failover such that in the event of an instance in one availability zone failing, another instance
in different availability zone will take over and handle requests.

Elastic IP addresses can be used to abstract the failure of an instance by remapping the virtual IP address to one
of the available database instances in another Availability Zone. For more information, see https://-
docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

An Availability Zone is represented by a region code followed by a letter identifier. For example, us-east-1a.

- 256 -

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resources.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resources.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

Note: To guarantee even resource distribution across Availability Zones for a region, Amazon RDS
independentlymaps Availability Zones to identifiers for each account. For example, the Availability
Zone us-east-1a for one account might not be in the same location as us-east-1a for another account.
Users cannot coordinate Availability Zones between accounts.

Aurora PostgreSQL DB Cluster

A DB cluster consists of one or more DB instances and a cluster volume that manages the data for those
instances. A cluster volume is a virtual database storage volume that may spanmultiple Availability Zoneswith
each holding a copy of the database cluster data.

An Aurora database cluster ismade up of one of more of the following types of instances:

l A Primary instance that supports both read and write workloads. This instance is used for all DML trans-
actions. Every Aurora DB cluster has one, and only, one primary instance.

l An Aurora Replica that supports read-only workloads. Every Aurora PostgreSQL database cluster may
contain from zero to 15 Aurora Replicas in addition to the primary instance for a total maximumof 16
instances. Aurora Replicas enable scale-out of read operations by offloading reporting or other read-only
processes tomultiple replicas. Place aurora replicas in multiple availability Zones to increase availability of
the databases.

Endpoints

Endpoints are used to connect to Aurora PostgreSQL databases. An endpoint is a Universal Resource Locator
(URL) comprised of a host address and port number.

l A Cluster Endpoint is an endpoint for an Aurora database cluster that connects to the current primary
instance for that database cluster regardless of the availability zone in which the primary resides. Every Aur-
ora PostgreSQLDB cluster has one cluster endpoint and one primary instance. The cluster endpoint
should be used for transparent failover for either read or write workloads.

Note: Use the cluster endpoint for all write operations including all DML and DDL statements.

If the primary instance of a DB cluster fails for any reason, Aurora automatically fails over server requests
to a new primary instance. An example of a typical Aurora PostgreSQLDB Cluster endpoint is: mydb-
cluster.cluster-123456789012.us-east-1.rds.amazonaws.com:3306

- 257 -

l A Reader Endpoint is an endpoint that is used to connect to one of the Aurora read-only replicas in the
database cluster. Each Aurora PostgreSQL database cluster has one reader endpoint. If there aremore
than one Aurora Replicas in the cluster, the reader endpoint redirects the connection to one of the available
replicas. Use the Reader Endpoint to support load balancing for read-only connections. If the DB cluster
contains no replicas, the reader endpoint redirects the connection to the primary instance. If an Aurora Rep-
lica is created later, the Reader Endpoint starts directing connections to the new Aurora Replica with min-
imal interruption in service. An example of a typical Aurora PostgreSQLDB Reader Endpoint is:
mydbcluster.cluster-ro-123456789012.us-east-1.rds.amazonaws.com:3306

l An Instance Endpoint is a specific endpoint for every database instance in an Aurora DB cluster. Every
Aurora PostgreSQLDB instance regardless of its role has its own unique instance endpoint. Use the
Instance Endpoints only when the application handles failover and read workload scale-out on its own. For
example, you can have certain clients connect to one replica and others to another. An example of a typical
Aurora PostgreSQLDB Reader Endpoint is: pgsdbinstance.123456789012.us-east-1.rd-
s.amazonaws.com:3306

Some general considerations for using endpoints:

l Consider using the cluster endpoint instead of individual instance endpoints because it supports high-avail-
ability scenarios. In the event that the primary instance fails, Aurora PostgreSQL automatically fails over to
a new primary instance. This configuration can be accomplished by either promoting an existing Aurora
Replica to be the new primary or by creating a new primary instance.

l If you use the cluster endpoint instead of the instance endpoint, the connection is automatically redirected
to the new primary.

l If you choose to use the instance endpoint, youmust use the RDS cosole or the API to discover which data-
base instances in the database cluster are available and their current roles. Then, connect using that
instance endpoint.

l Be aware that the reader endpoint load balances connections to Aurora Replicas in an Aurora database
cluster, but it does not load balance specific queries or workloads. If your application requires custom rules
for distributing read workloads, use instance endpoints.

l The reader endpoint may redirect connection to a primary instance during the promotion of an Aurora Rep-
lica to a new primary instance.

Amazon Aurora Storage

Aurora PostgreSQL data is stored in a cluster volume. The Cluster volume is a single, virtual volume that uses
fast solid state disk (SSD) drives.The cluster volume is comprised of multiple copies of the data distributed
between availability zones in a region. This configurationminimizes the chances of data loss and allows for the fail-
over scenariosmentioned above.

Aurora cluster volumes automatically grow to accommodate the growth in size of your databases. An Aurora
cluster volume has amaximum size of 64 terabytes (TiB). Since table size is theoretically limited to the size of the
cluster volume, themaximum table size in an Aurora DB cluster is 64 TiB.

Storage Auto-Repair

The chance of data loss due to disk failure is greatlyminimize due to the fact that Aurora PostgreSQLmaintains
multiple copies of the data in three Availability Zones. Aurora PostgreSQL detects failures in the disks that make
up the cluster volume. If a disk segment fails, Aurora repairs the segment automatically. Repairs to the disk seg-
ments aremade using data from the other cluster volumes to ensure correctness. This process allows Aurora to
significantlyminimize the potential for data loss and the subsequent need to restore a database.

- 258 -

Survivable Cache Warming

When a database instance starts, Aurora PostgreSQL performs a "warming" process for the buffer pool. Aurora
PostgreSQL pre-loads the buffer pool with pages that have been frequently used in the past. This approach
improves performance and shortens the natural cache filling process for the initial period when the database
instance starts servicing requests. Aurora PostgreSQLmaintains a separate process tomanage the cache,
which can stay alive even when the database process restarts. The buffer pool entries remain in memory regard-
less of the database restart providing the database instance with a fully "warm" buffer pool.

Crash Recovery

Aurora PostgreSQL can instantaneously recover from a crash and continue to serve requests. Crash recovery is
performed asynchronously using parallel threads enabling the database to remain open and available imme-
diately after a crash.

Formore information about crash recovery, see https://-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html#Aurora.Managing.FaultTolerance.

Examples
The following walk-through demonstrates how to create a read-replica:

1. Navigate to the RDS databases page.

2. Select the instance and click Instance actions > Create cross region read replica.

3. On the next page, enter all required details and click Create.

After the replica is created, you can execute read and write operations on the primary instance and read-only
operations on the replica.

Summary
Feature SQL Server Aurora PostgreSQL Comments

Server level failure
protection

Failover Cluster
Instances

N/A Not applicable. Clustering is handled by
Aurora PostgreSQL.

Database level fail- AlwaysOn Avail- Aurora Replicas

- 259 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://console.aws.amazon.com/rds/home?#dbinstances:

Feature SQL Server Aurora PostgreSQL Comments

ure protection ability Groups

Log replication Log Shipping N/A Not applicable. Aurora PostgreSQL
handles data replication at the storage
level.

Disk error protection RESTORE...
PAGE=

Automatically

MaximumRead
Only replicas

8 + Primary 15 + Primary

Failover address Availability Group
Listener

Cluster Endpoint

ReadOnly work-
loads

READ INTENT con-
nection

Read Endpoint

Formore information, see:

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html
l https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

- 260 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Indexes

SQL Server Clustered and Non Clustered Indexes
vs. PostgreSQL Clustered and Non Clustered
Indexes
Feature Com-
patibility

SCT/DMS Auto-
mation Level SCT Action Code Index Key Differences

SCT Action Codes - Indexes CLUSTERED INDEX is not sup-
ported

Few missing options

SQL Server Usage
Indexes are physical disk structures used to optimize data access. They are associated with tables or mater-
ialized views and allow the query optimizer to access rows and individual column valueswithout scanning an
entire table.

An index consists of index keys, which are columns from a table or view. They are sorted in ascending or des-
cending order providing quick access to individual values for queries that use equality or range predicates. Data-
base indexes are similar to book indexes that list page numbers for common terms. Indexes created onmultiple
columns are called Composite Indexes.

SQL Server implements indexes using the Balanced Tree algorithm (B-tree).

Note: SQL Server supports additional index types such as hash indexes (for memory-optimized tables),
spatial indexes, full text indexes, and XML indexes.

Indexes are created automatically to support table primary keys and unique constraints. They are required to effi-
ciently enforce uniqueness. Up to 250 indexes can be created on a table to support common queries.

SQL Server provides two types of B-Tree indexes: Clustered Indexes and Non-Clustered Indexes.

- 261 -

Clustered Indexes
Clustered indexes include all the table's column data in their leaf level. The entire table data is sorted and logically
stored in order on disk. A Clustered Index is similar to a phone directory indexwhere the entire data is contained
for every index entry. Clustered indexes are created by default for Primary Key constraints. However, a primary
key doesn't necessarily need to use a clustered index if it is explicitly specified as non-clustered.

Clustered indexes are created using the CREATE CLUSTERED INDEX statement. Only one clustered index
can be created for each table because the index itself is the table's data. A table having a clustered index is called
a "clustered table" (also known as an "index organized table" in other relational databasemanagement systems).
A table with no clustered index is called a "heap".

Examples

Create a Clustered Index as part of table definition.

CREATE TABLE MyTable
(
Col1 INT NOT NULL
 PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

Create an explicit clustered index using CREATE INDEX.

CREATE TABLE MyTable
(
Col1 INT NOT NULL
 PRIMARY KEY NONCLUSTERED,
Col2 VARCHAR(20) NOT NULL
);

CREATE CLUSTERED INDEX IDX1
ON MyTable(Col2);

Non-Clustered Indexes
Non clustered indexes also use the B-Tree algorithm but consist of a data structure separate from the table itself.
They are also sorted by the index keys, but the leaf level of a non-clustered index contains pointers to the table
rows; not the entire row aswith a clustered index.

Up to 999 non-clustered indexes can be created on a SQLServer table. The type of pointer used at the lead level
of a non-clustered index (also known as a row locator) depends on whether the table has a clustered index
(clustered table) or not (heap). For heaps, the row locators use a physical pointer (RID). For clustered tables, row
locators use the clustering key plus a potential uniquifier. This approachminimizes non-clustered index updates
when rowsmove around, or the clustered index key value changes.

Both clustered and non clustered indexesmay be defined asUNIQUE using the CREATE UNIQUE INDEX state-
ment. SQL Server maintains indexes automatically for a table or view and updates the relevant keyswhen table
data ismodified.

- 262 -

Examples

Create a unique non-clustered index as part of table definition.

CREATE TABLE MyTable
(
Col1 INT NOT NULL
 PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
 UNIQUE
);

Create a unique non-clustered index using CREATE INDEX.

CREATE TABLE MyTable
(
Col1 INT NOT NULL
 PRIMARY KEY CLUSTERED,
Col2 VARCHAR(20) NOT NULL
);

CREATE UNIQUE NONCLUSTERED INDEX IDX1 ON MyTable(Col2);

Filtered Indexes and Covering Indexes
SQLServer also supports two special options for non clustered indexes. Filtered indexes can be created to index
only a subset of a table's data. They are useful when it is known that the application will not need to search for spe-
cific values such asNULLs.

For queries that typically require searching on particular columns but also need additional column data from the
table, non-clustered indexes can be configured to include additional column data in the index leaf level in addition
to the row locator. Thismay prevent expensive lookup operations, which follow the pointers to either the physical
row location (in a heap) or traverse the clustered index key in order to fetch the rest of the data not part of the
index. If a query can get all the data it needs from the non-clustered index leaf level, that index is considered a
"covering" index.

Examples

Create a filtered index to exclude NULL values.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable(Col2)
WHERE Col2 IS NOT NULL;

Create a covering index for queries that search on col2 but also need data from col3.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable (Col2)
INCLUDE (Col3);

- 263 -

Indexes On Computed Columns
SQLServer allows creating indexes on persisted computed columns. Computed columns are table or view
columns that derive their value from an expression based on other columns in the table. They are not explicitly
specified when data is inserted or updated. This feature is useful when a query’s filter predicates are not based on
the column table data as-is, but on a function or expression.

Examples

For example, consider the following table that stores phone numbers for customers, but the format is not con-
sistent for all rows; some include country code and some do not:

CREATE TABLE PhoneNumbers
(
PhoneNumber VARCHAR(15) NOT NULL
 PRIMARY KEY,
Customer VARCHAR(20) NOT NULL
);

INSERT INTO PhoneNumbers
VALUES
('+1-510-444-3422','Dan'),
('644-2442-3119','John'),
('1-402-343-1991','Jane');

The following query to look up the owner of a specific phone number must scan the entire table because the index
cannot be used due to the preceding%wild card.

SELECT Customer
FROM PhoneNumbers
WHERE PhoneNumber LIKE '%510-444-3422';

A potential solution would be to add a computed column that holds the phone number in reverse order.

ALTER TABLE PhoneNumbers
ADD ReversePhone AS REVERSE(PhoneNumber)
PERSISTED;

CREATE NONCLUSTERED INDEX IDX1
ON PhoneNumbers (ReversePhone)
INCLUDE (Customer);

Now, the following query can be used to search for the customer based on the reverse string, which places the
wild card at the end of the LIKE predicate. This approach provides an efficient index seek to retrieve the customer
based on the phone number value.

DECLARE @ReversePhone VARCHAR(15) = REVERSE('510-444-3422');
SELECT Customer
FROM PhoneNumbers
WHERE ReversePhone LIKE @ReversePhone + '%';

- 264 -

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-
described?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL supports Balanced Tree (b-tree) indexes similar to SQL Server. However, the terminology,
use, and options for these indexes are different.

Aurora PostgreSQL ismissing the CLUSTERED INDEX feature but has other optionswhich SQL Server
doesn't have, Index Prefix and Blob indexing.

Since PostgreSQL 10, there aremany improvements in performance, related to joins and parallel scans of the
indexes.

Starting with PostgreSQL 12 it is now possible tomonitor progress of CREATE INDEX andREINDEX oper-
artions by querying system view pg_stat_progress_create_index

Cluster Table
PostgreSQL does not support cluster tables directly, but provides similar functionality using the CLUSTER fea-
ture. The PostgreSQLCLUSTER statement specifies table sorting based on an index already associated with
the table. When using the PostgreSQLCLUSTER command, the data in the table is physically sorted based on
the index, possibly using a primary key column.

The CLUSTER statement can be used as needed to re-cluster the table.

Example

CREATE TABLE SYSTEM_EVENTS (
EVENT_ID NUMERIC,
EVENT_CODE VARCHAR(10) NOT NULL,
EVENT_DESCIPTION VARCHAR(200),
EVENT_TIME DATE NOT NULL,
CONSTRAINT PK_EVENT_ID PRIMARY KEY(EVENT_ID));

INSERT INTO SYSTEM_EVENTS VALUES(9, 'EV-A1-10', 'Critical', '01-JAN-2017');
INSERT INTO SYSTEM_EVENTS VALUES(1, 'EV-C1-09', 'Warning', '01-JAN-2017');
INSERT INTO SYSTEM_EVENTS VALUES(7, 'EV-E1-14', 'Critical', '01-JAN-2017');

CLUSTER SYSTEM_EVENTS USING PK_EVENT_ID;
SELECT * FROM SYSTEM_EVENTS;

event_id | event_code | event_desciption | event_time
----------+------------+------------------+------------

1 | EVNT-C1-09 | Warning | 2017-01-01
7 | EVNT-E1-14 | Critical | 2017-01-01
9 | EVNT-A1-10 | Critical | 2017-01-01

- 265 -

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver15

INSERT INTO SYSTEM_EVENTS VALUES(2, 'EV-E2-02', 'Warning', '01-JAN-2017');
SELECT * FROM SYSTEM_EVENTS;

event_id | event_code | event_desciption | event_time
----------+------------+------------------+------------

1 | EVNT-C1-09 | Warning | 2017-01-01
7 | EVNT-E1-14 | Critical | 2017-01-01
9 | EVNT-A1-10 | Critical | 2017-01-01
2 | EVNT-E2-02 | Warning | 2017-01-01

CLUSTER SYSTEM_EVENTS USING PK_EVENT_ID; -- Run CLUSTER again to re-cluster
SELECT * FROM SYSTEM_EVENTS;

event_id | event_code | event_desciption | event_time
----------+------------+------------------+------------

1 | EVNT-C1-09 | Warning | 2017-01-01
2 | EVNT-E2-02 | Warning | 2017-01-01
7 | EVNT-E1-14 | Critical | 2017-01-01
9 | EVNT-A1-10 | Critical | 2017-01-01

Btree Indexes
When creating an Index in PostgreSQL, a B-Tree Index is created by default, similar to the behavior in
SQL Server. PostgreSQL B-Tree indexes have the same characteristics as SQL Server and can handle equality
and range queries on data. The PostgreSQL optimizer considers using B-Tree indexes especially for one or more
of the following operators in queries: >, >=, <, <=, =

In addition, performance improvements can be achieved when using IN, BETWEEN, IS NULL, or IS NOT NULL.

Since PostgreSQL 10, there is a support of parallel B-tree index scans - this change allows this index type pages
to be searched by separate parallel workers

- 266 -

Example

Create a PostgreSQL B-Tree Index.

CREATE INDEX IDX_EVENT_ID ON SYSTEM_LOG(EVENT_ID);
OR
CREATE INDEX IDX_EVENT_ID1 ON SYSTEM_LOG USING BTREE (EVENT_ID);

For more details, seehttps://www.postgresql.org/docs/13/static/sql-createindex.html

Column and Multiple Column Secondary Indexes
Currently, only B-tree, GiST, GIN, and BRIN support Multi-Column Indexes. 32 columns can be specified when
creating aMulti-Column Index.

PostgreSQL uses the exact same syntax as SQL Server to createMulti-Column Indexes.

Example

Create amulti-column index on the EMPLOYEES table.

CREATE INDEX IDX_EMP_COMPI
ON EMPLOYEES (FIRST_NAME, EMAIL, PHONE_NUMBER);

Drop amultiple-column Index.

DROP INDEX IDX_EMP_COMPI;

For additional details: https://www.postgresql.org/docs/13/static/indexes-multicolumn.html

- 267 -

https://www.postgresql.org/docs/13/static/sql-createindex.html
https://www.postgresql.org/docs/13/static/indexes-multicolumn.html

Expression Indexes and Partial Indexes

Example

Create an Expression Index in PostgreSQL.

CREATE TABLE SYSTEM_EVENTS(
EVENT_ID NUMERIC PRIMARY KEY,
EVENT_CODE VARCHAR(10) NOT NULL,
EVENT_DESCIPTION VARCHAR(200),
EVENT_TIME TIMESTAMP NOT NULL);

CREATE INDEX EVNT_BY_DAY ON SYSTEM_EVENTS(EXTRACT(DAY FROM EVENT_TIME));

Insert records into the SYSTEM_EVENTS table, gathering table statistics using the ANALYZE statement and
verifying that the Expression Index (“EVNT_BY_DAY”) is being used for data access.

INSERT INTO SYSTEM_EVENTS
SELECT ID AS event_id,

'EVNT-A'||ID+9||'-'||ID AS event_code,
CASE WHEN mod(ID,2) = 0 THEN 'Warning' ELSE 'Critical' END AS event_desc,
now() + INTERVAL '1 minute' * ID AS event_time

FROM
(SELECT generate_series(1,1000000) AS ID) A;

INSERT 0 1000000

ANALYZE SYSTEM_EVENTS;
ANALYZE

EXPLAIN
SELECT * FROM SYSTEM_EVENTS
WHERE EXTRACT(DAY FROM EVENT_TIME) = '22';

QUERY PLAN

Bitmap Heap Scan on system_events (cost=729.08..10569.58 rows=33633 width=41)

Recheck Cond: (date_part('day'::text, event_time) = '22'::double precision)
-> Bitmap Index Scan on evnt_by_day (cost=0.00..720.67 rows=33633 width=0)

Index Cond: (date_part('day'::text, event_time) = '22'::double precision)

Partial Indexes
PostgreSQL also provides Partial Indexes, which are indexes that use aWHERE clause when created. Themost
significant benefit of using partial indexes is a reduction of the overall subset of indexed data, allowing users to
index relevant table data only. Partial indexes can be used to increase efficiency and reduce the size of the index.

Example

Create a PostgreSQL partial Index.

CREATE TABLE SYSTEM_EVENTS(
 EVENT_ID NUMERIC PRIMARY KEY,

- 268 -

 EVENT_CODE VARCHAR(10) NOT NULL,
 EVENT_DESCIPTION VARCHAR(200),
 EVENT_TIME DATE NOT NULL);

CREATE INDEX IDX_TIME_CODE ON SYSTEM_EVENTS(EVENT_TIME)
 WHERE EVENT_CODE like '01-A%';

For additional details, see
https://www.postgresql.org/docs/13/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

BRIN Indexes
PostgreSQL does not provide native support for BITMAP indexes. However, a BRIN index, which splits table
records into block rangeswith MIN/MAX summaries, can be used as a partial alternative for certain analytic work-
loads. For example, BRIN indexes are suited for queries that rely heavily on aggregations to analyze large num-
bers of records.

Example

Create a PostgreSQL BRIN Index.

CREATE INDEX IDX_BRIN_EMP ON EMPLOYEES USING BRIN(salary);

- 269 -

https://www.postgresql.org/docs/13/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

Summary
The following table summarizes the key differences to consider whenmigrating b-tree indexes fromSQLServer
to Aurora PostgreSQL

Index Feature SQL Server Aurora PostgreSQL

Clustered indexes sup-
ported for

Table keys, composite or single column,
unique and non-unique, null or not null

On indexes

Non clustered index
supported for

Table keys, composite or single column,
unique and non unique, null or not null

Table keys, composite or single column,
unique and non unique, null or not null

Max number of non
clustered indexes

999 N/A

Max total index key
size

900 bytes N/A

Max columns per
index

32 32

Index Prefix N/A Supported

Filtered Indexes Supported Supported (Partial Indexes)

Indexes on BLOBS N/A Supported

For additional details, see:

l https://www.postgresql.org/docs/13/static/indexes-types.html

l https://www.postgresql.org/docs/13/static/sql-createindex.html

l https://www.postgresql.org/docs/13/static/sql-cluster.html

l https://www.postgresql.org/docs/13/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

- 270 -

https://www.postgresql.org/docs/13/static/indexes-types.html
https://www.postgresql.org/docs/13/static/sql-createindex.html
https://www.postgresql.org/docs/13/static/sql-cluster.html
https://www.postgresql.org/docs/13/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

Management

SQL Server Agent vs. PostgreSQL Scheduled
Lambda

SQL Server Usage
SQLServer Agent provides twomain functions: Scheduling automatedmaintenance jobs, and alerting.

Note: Other SQL built-in frameworks such as replication, also use SQL Agent jobs.

SeeMaintenance Plans and Alerting.

Formore information about SQL Server Agent, see https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-
agent?view=sql-server-ver15

PostgreSQL Usage
SQLServer Agent provides twomain functions: Scheduling automatedmaintenance jobs and alerting.

Note: Other SQL built-in frameworks such as replication also use SQL Agent jobs.

Maintenance Plans and Alerting are covered in separate sections:

l Maintenance Plans

l Alerting

Currently, there is no equivalent in Aurora PostgreSQL for scheduling tasks but you can create scheduled AWS
Lambda that will execute a stored procedure, find an example in DB Mail.

- 271 -

https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-agent?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-agent?view=sql-server-ver15

SQL Server Alerting vs. PostgreSQL Alerting
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A N/A Use Event Notifications Subscription with Amazon
Simple Notification Service (SNS)

SQL Server Usage
SQL Server provides SQL Server Agent to generate alerts. When running, SQL Server Agent constantlymon-
itors SQL Server windows application logmessages, performance counters, andWindowsManagement Instru-
mentation (WMI) objects. When a new error event is detected, the agent checks theMSDB database for
configured alerts and executes the specified action.

You can define SQL Server Agent alerts for the following categories:

l SQLServer events

l SQLServer performance conditions

l WMI events

For SQL Server events, the alert options include the following settings:

l Error Number: Alert when a specific error is logged.

l Severity Level: Alert when any error in the specified severity level is logged.

l Database: Filter the database list for which the event will generate an alert.

l Event Text: Filter specific text in the event message.

Note: SQL Server agent is pre-configured with several high severity alerts. It is highly recommended to
enable these alerts.

To generate an alert in response to a specific performance condition, specify the performance counter to bemon-
itored, the threshold values for the alert, and the predicate for the alert to occur. The following list identifies the per-
formance alert settings:

l Object: The Performance counter category or themonitoring area of performance.

l Counter: A counter is a specific attribute value of the object.

l Instance: Filter by SQL Server instance (multiple instances can share logs).

l Alert if counter and Value: The threshold for the alert and the predicate. The threshold is a number. Predic-
ates are Falls below, becomes equal to, or rises above the threshold.

WMI events require theWMI namespace and theWMI Query Language (WQL) query for specific events.

Alerts can be assigned to specific operators with schedule limitations andmultiple response types including:

l Execute an SQL Server Agent Job.

l Send Email, Net Send command, or a pager notification.

You can configure Alerts and responseswith SQL Server Management Studio or system stored procedures.

- 272 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/

Examples
Configure an alert for all errors with severity 20.

EXEC msdb.dbo.sp_add_alert
 @name = N'Severity 20 Error Alert',
 @severity = 20,
 @notification_message = N'A severity 20 Error has occurred. Initiating emergency pro-
cedure',
 @job_name = N'Error 20 emergency response';

Formore information, see https://docs.microsoft.com/en-us/sql/ssms/agent/alerts?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL does not support direct configuration of engine alerts. Use the Event Notifications Infra-
structure to collect history logs or receive event notifications in near real-time.

Amazon Relational Database Service (RDS) uses Amazon Simple Notification Service (SNS) to provide noti-
fications for events. SNS can send notifications in any form supported by the region including email, text mes-
sages, or calls to HTTP endpoints for response automation.

Events are grouped into categories. You can only subscribe to event categories, not individual events. SNS
sends notificationswhen any event in a category occurs.

You can subscribe to alerts for database instances, database clusters, database snapshots, database cluster
snapshots, database security groups, and database parameter groups. For example, a subscription to the
Backup category for a specific database instance sends notificationswhen backup related events occur on that
instance. A subscription to a Configuration Change category for a database security group sends notifications
when the security group changes.

Note: For Amazon Aurora, some events occur at the cluster rather than instance level. You will not
receive those events if you subscribe to an Aurora DB instance.

SNS sends event notifications to the address specified when the subscription was created. Typically, admin-
istrators create several subscriptions. For example, one subscription to receive logging events and another to
receive only critical events for a production environment requiring immediate responses.

You can disable notificationswithout deleting a subscription by setting the Enabled radio button to No in the
Amazon RDS console. Alternatively, use the Command Line Interface (CLI) or RDS API to change the Enabled
setting.

Subscriptions are identified by the Amazon Resource Name (ARN) of an Amazon SNS topic. The Amazon RDS
console creates ARNswhen subscriptions are created.When using the CLI or API, youmust create the ARN
using the Amazon SNS console or the Amazon SNS API.

Examples
The following walk-through demonstrates how to create an Event Notification Subscription:

Sign into an AWS account, open the AWS Console, and navigate to the Amazon RDS page.

Click Events on the left navigation pane.

- 273 -

https://docs.microsoft.com/en-us/sql/ssms/agent/alerts?view=sql-server-ver15

This screen will present relevant RDS events occured

Click Event Subscriptions and then click CREATE EVENT SUBSCRIPTION on the top right side.

Enter the Name of the subscription and select a Target of ARN or Email. For email subscriptions, enter values
for Topic name andWith these recipients.

- 274 -

Select the event source and choose specific event categories. Click the drop-downmenu to view the list of avail-
able categories.

Choose the event categories to bemonitored and click Create.

- 275 -

From the AWS RDS Dashboard, click the View Recent Events button.

Formore information, see https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html

- 276 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html

Raising Errors from Within the Database

Error Log Types

PostgreSQL supports the following log severity levels:

Log Type Information Written to Log

DEBUG1…DEBUG5 Provides successively-more-detailed information for use by developers.

INFO Provides information implicitly requested by the user.

NOTICE Provides information that might be helpful to users.

WARNING Provideswarnings of likely problems.

ERROR Reports the error that caused the current command to abort.

LOG Reports information of interest to administrators.

FATAL Reports the error that caused the current session to abort.

PANIC Reports the error that caused all database sessions to abort.

Several parameters control how and where PostgreSQL log and errors files are placed:

Parameter Description

log_filename Sets the file name pattern for log files.
Modifiable via an Aurora Database Parameter Group.

log_rotation_age (min) Automatic log file rotation will occur after N minutes.
Modifiable via an Aurora Database Parameter Group.

log_rotation_size (kB) Automatic log file rotation will occur after N kilobytes.
Modifiable via an Aurora Database Parameter Group.

log_min_messages Sets themessage levels that are logged (DEBUG, ERROR, INFO, etc.…).
Modifiable via an Aurora Database Parameter Group.

log_min_error_state-
ment

Causes all statements generating errors at or above this level to be logged (DEBUG,
ERROR, INFO, etc.…).
Modifiable via an Aurora Database Parameter Group.

log_min_duration_
statement

Sets theminimumexecution time above which statements will be logged (ms).
Modifiable via an Aurora Database Parameter Group.

Note: Modifications to certain parameters such as log_directory (which sets the destination directory for
log files) or logging_collector (which starts a subprocess to capture stderr output and/or csvlogs into log
files) are disabled for an Aurora PostgreSQL instance.

Formore information, see https://www.postgresql.org/docs/13/static/runtime-config-logging.html

- 277 -

https://www.postgresql.org/docs/13/static/runtime-config-logging.html

SQL Server Database Mail vs.
PostgreSQL Database Mail
Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

N/A SCT Action Codes - Mail Use Lambda Integration

SQL Server Usage
TheDatabaseMail framework is an email client solution for sendingmessages directly fromSQLServer. Email
capabilities and APIs within the database server provide easymanagement of the followingmessages:

l Server administrationmessages such as alerts, logs, status reports, and process confirmations.

l Applicationmessages such as user registration confirmation and action verifications.

Note: DatabaseMail is turned off by default.

Themain features of the DatabaseMail framework are:

l DatabaseMail sendsmessages using the standard and secure SimpleMail Transfer Protocol (SMTP) .

l The email client engine runs asynchronously and sendsmessages in a separate process tominimize
dependencies.

l DatabaseMail supportsmultiple SMTP Servers for redundancy.

l Full support and awareness ofWindowsServer Failover Cluster for high availability environments.

l Multi-profile support with multiple failover accounts in each profile.

l Enhanced securitymanagement with separate roles in MSDB.

l Security is enforced for mail profiles.

l Attachment sizes aremonitored and can be capped by the administrator.

l Attachment file types can be blacklisted.

l Email activity can be logged to SQL Server, theWindows application event log, and a set of system tables
in MSDB.

l Supports full auditing capabilities with configurable retention policies.

l Supports both plain text and HTMLmessages.

Architecture

DatabaseMail is built on top of theMicrosoft SQL Server Service Broker queuemanagement framework.

The system stored procedure sp_send_dbmail sends email messages.When this stored procedure is executed,
it inserts an row to themail queue and records the Email message.

The queue insert operation triggers execution of the DatabaseMail process (DatabaseMail.exe). The Database
Mail process then reads the Email information and sends themessage to the SMTP servers.

- 278 -

When the SMTP servers acknowledge or reject themessage, the DatabaseMail process inserts a status row into
the status queue, including the result of the send attempt. This insert operation triggers the execution of a system
stored procedure that updates the status of the Email message send attempt.

DatabaseMail records all Email attachments in the system tables. SQL Server provides a set of system views
and stored procedures for troubleshooting and administration of the DatabaseMail queue.

Deprecated SQL Mail framework

The previous SQLMail framework using xp_sendmail has been deprecated as of SQL Server 2008R2 in accord-
ance with https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105).

The legacymail system has been completely replaced by the greatly enhanced DBmail framework described
here. The previous system has been out of use for many years because it was prone to synchronous execution
issues and windowsmail profile quirks.

Syntax
EXECUTE sp_send_dbmail

[[,@profile_name =] '<Profile Name>']
[,[,@recipients =] '<Recipients>']
[,[,@copy_recipients =] '<CC Recipients>']
[,[,@blind_copy_recipients =] '<BCC Recipients>']
[,[,@from_address =] '<From Address>']
[,[,@reply_to =] '<Reply-to Address>']
[,[,@subject =] '<Subject>']
[,[,@body =] '<Message Body>']
[,[,@body_format =] '<Message Body Format>']
[,[,@importance =] '<Importance>']
[,[,@sensitivity =] '<Sensitivity>']
[,[,@file_attachments =] '<Attachments>']
[,[,@query =] '<SQL Query>']
[,[,@execute_query_database =] '<Execute Query Database>']
[,[,@attach_query_result_as_file =] <Attach Query Result as File>]
[,[,@query_attachment_filename =] <Query Attachment Filename>]
[,[,@query_result_header =] <Query Result Header>]
[,[,@query_result_width =] <Query Result Width>]
[,[,@query_result_separator =] '<Query Result Separator>']
[,[,@exclude_query_output =] <Exclude Query Output>]
[,[,@append_query_error =] <Append Query Error>]
[,[,@query_no_truncate =] <Query No Truncate>]
[,[,@query_result_no_padding =] @<Parameter for Query Result No Padding>]
[,[,@mailitem_id =] <Mail item id>] [,OUTPUT]

Examples
Create a DatabaseMail account.

EXECUTE msdb.dbo.sysmail_add_account_sp
@account_name = 'MailAccount1',
@description = 'Mail account for testing DB Mail',
@email_address = 'Address@MyDomain.com',

- 279 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

@replyto_address = 'ReplyAddress@MyDomain.com',
@display_name = 'Mailer for registration messages',
@mailserver_name = 'smtp.MyDomain.com' ;

Create a DatabaseMail profile.

EXECUTE msdb.dbo.sysmail_add_profile_sp
@profile_name = 'MailAccount1 Profile',
@description = 'Mail Profile for testing DB Mail' ;

Associate the account with the profile.

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
@profile_name = 'MailAccount1 Profile',
@account_name = 'MailAccount1',
@sequence_number =1 ;

Grant the profile access to DBMailUsers role.

EXECUTE msdb.dbo.sysmail_add_principalprofile_sp
@profile_name = 'MailAccount1 Profile',
@principal_name = 'ApplicationUser',
@is_default = 1 ;

Send amessage with sp_db_sendmail.

EXEC msdb.dbo.sp_send_dbmail
@profile_name = 'MailAccount1 Profile',
@recipients = 'Recipient@Mydomain.com',
@query = 'SELECT * FROM fn_WeeklySalesReport(GETDATE())',
@subject = 'Weekly Sales Report',
@attach_query_result_as_file = 1 ;

Formore information, see https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail?view-
w=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL does not provide native support for sending email message from the database. For alerting
purposes, use the Event Notification Subscription feature to send email notifications to operators. For more
information, see Alerting.

The only way to sent Email from the database is to use the LAMBDA integration. For more information about
Lambda, see https://aws.amazon.com/lambda.

- 280 -

https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail?view=sql-server-ver15
https://aws.amazon.com/lambda

Examples

Sending an Email from Aurora PostgreSQL via
Lambda Integration

First, configure AWS SES.

In the AWS console, navigate to SES > SMTP Settings and click Create My SMTP Credentials. Note the
SMTP server name; you will use it in the Lambda function.

Enter a name for IAM User Name (SMTP user) and click Create.

- 281 -

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/sending-email.html

Note the credentials; you will use them to authenticate with the SMTP server.

Note: After leaving this page, the credentials cannot be retrieved.

Navigate back to the SES page, click Email Addresses on the left, and click Verify a New Email Address.
Before sending email, theymust be verified.

The next page indicates that the email is pending verification.

After the email is verified, create a table to storemessages to be sent by the Lambda fuction.

CREATE TABLE emails (title varchar(600), body varchar(600), recipients varchar(600));

To create the Lambda function, navigate to the Lambda page and click Create function.

- 282 -

https://console.aws.amazon.com/lambda/home

Select Author from Scratch, enter a name for your project, and select Python 2.7 as the runtime. Be sure to use
a role with the correct permissions. Click Create function.

Download this Github project.

In your local environment, create two files: main.py and db_util.py. Cut and paste the content below intomain.py
and db_util.py respectively. Be sure to replace the code highlighted in red with values for your environment.

main.py:

#!/usr/bin/python
import sys
import logging
import psycopg2

from db_util import make_conn, fetch_data
def lambda_handler(event, context):

query_cmd = "select * from mails"
print query_cmd

get a connection, if a connect cannot be made an exception will be raised here
conn = make_conn()

result = fetch_data(conn, query_cmd)
conn.close()

return result

db_util.py:

#!/usr/bin/python
import psycopg2
import smtplib
import email.utils
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

db_host = 'YOUR_RDS_HOST'
db_port = 'YOUR_RDS_PORT'
db_name = 'YOUR_RDS_DBNAME'
db_user = 'YOUR_RDS_USER'
db_pass = 'YOUR_RDS_PASSWORD'

def sendEmail(recp, sub, message):
Replace sender@example.com with your "From" address.
This address must be verified.
SENDER = 'PUT HERE THE VERIFIED EMAIL'
SENDERNAME = 'AWS Lambda'

Replace recipient@example.com with a "To" address. If your account
is still in the sandbox, this address must be verified.
RECIPIENT = recp

Replace smtp_username with your Amazon SES SMTP user name.
USERNAME_SMTP = "YOUR_SMTP_USERNAME"

- 283 -

https://github.com/alexcasalboni/awslambda-psycopg2.git

Replace smtp_password with your Amazon SES SMTP password.
PASSWORD_SMTP = "YOUR_SMTP PASSWORD"

(Optional) the name of a configuration set to use for this message.
If you comment out this line, you also need to remove or comment out
the "X-SES-CONFIGURATION-SET:" header below.
CONFIGURATION_SET = "ConfigSet"

If you're using Amazon SES in an AWS Region other than US West (Oregon),
replace email-smtp.us-west-2.amazonaws.com with the Amazon SES SMTP
endpoint in the appropriate region.
HOST = "YOUR_SMTP_SERVERNAME"
PORT = 587

The subject line of the email.
SUBJECT = sub

The email body for recipients with non-HTML email clients.
BODY_TEXT = ("Amazon SES Test\r\n"

"This email was sent through the Amazon SES SMTP "
"Interface using the Python smtplib package."

)

The HTML body of the email.
BODY_HTML = """<html>
<head></head>
<body>
<h1>Amazon SES SMTP Email Test</h1>""" + message + """</body>
</html>

"""

Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart('alternative')
msg['Subject'] = SUBJECT
msg['From'] = email.utils.formataddr((SENDERNAME, SENDER))
msg['To'] = RECIPIENT
Comment or delete the next line if you are not using a configuration set
#msg.add_header('X-SES-CONFIGURATION-SET',CONFIGURATION_SET)

Record the MIME types of both parts - text/plain and text/html.
part1 = MIMEText(BODY_TEXT, 'plain')
part2 = MIMEText(BODY_HTML, 'html')

Attach parts into message container.
According to RFC 2046, the last part of a multipart message, in this case
the HTML message, is best and preferred.
msg.attach(part1)
msg.attach(part2)

Try to send the message.
try:

server = smtplib.SMTP(HOST, PORT)
server.ehlo()
server.starttls()
#stmplib docs recommend calling ehlo() before & after starttls()

- 284 -

server.ehlo()
server.login(USERNAME_SMTP, PASSWORD_SMTP)
server.sendmail(SENDER, RECIPIENT, msg.as_string())
server.close()

Display an error message if something goes wrong.
except Exception as e:

print ("Error: ", e)
else:

print ("Email sent!")

def make_conn():
conn = None
try:

conn = psycopg2.connect("dbname='%s' user='%s' host='%s' password='%s'" % (db_
name, db_user, db_host, db_pass))

except:
print "I am unable to connect to the database"

return conn

def fetch_data(conn, query):
result = []
print "Now executing: %s" % (query)
cursor = conn.cursor()
cursor.execute(query)

print("Number of new mails to be sent: ", cursor.rowcount)

raw = cursor.fetchall()

for line in raw:
print(line[0])
sendEmail(line[2],line[0],line[1])
result.append(line)

cursor.execute('delete from mails')
cursor.execute('commit')

return result

Note: In the body of db_util.py, Lambda deletes the content of themails table.

Place themain.py and db_util.py files inside theGithub extracted folder and create a new zipfile that includes your
two new files.

Return to your Lambda project and change the Code entry type to Upload a .ZIP file, change the Handler to
mail.lambda_handler, and upload the file. Click Save.

- 285 -

To test the lambda function, click Test and enter the Event name.

- 286 -

Note: The Lambda function can be triggered bymultiple options. This walkthrough demonstrates how
to schedule it to run everyminute. Remember, you are paying for each Lambda execution.

To create a scheduled trigger, use CloudWatch, enter all details, and click Add.

- 287 -

Note: This example runs everyminute, but you can use a different interval. For more information, see
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html

Cick Save.

SQL Server ETL vs. PostgreSQL ETL
Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

N/A N/A Use AmazonGlue for ETL

SQL Server Usage
SQLServer offers a native Extract, Transform, and Load (ETL) framework of tools and services to support enter-
prise ETL requirements. The legacyData Transformation Services (DTS) has been deprecated as of SQL
Server 2008 (see https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/cc707786
(v=sql.105)) and replaced with SQL Server Integration Services (SSIS), which was introduced with SQL Server
2005.

- 288 -

https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html
https://aws.amazon.com/glue/
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/cc707786(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/cc707786(v=sql.105)

DTS

DTS was introduced in SQL Server version 7 in 1998. It was significantly expanded in SQL Server 2000 with fea-
tures such as FTP, database level operations, andMicrosoft MessageQueuing (MSMQ) integration. It included a
set of objects, utilities, and services that enabled easy, visual construction of complex ETL operations across het-
erogeneous data sources and targets.

DTS supported OLE DB, ODBC, and text file drivers. It allowed transformations to be scheduled using SQL
Server Agent. DTS also provided version control and backup capabilities with version control systems such as
Microsoft Visual SourceSafe.

The fundamental entity in DTS was the DTS Package. Packageswere the logical containers for DTS objects
such as connections, data transfers, transformations, and notifications. The DTS framework also included the fol-
lowing tools:

l DTSWizards
l DTS Package Designers
l DTS Query Designer
l DTS RunUtility

SSIS

The SSIS frameworkwas introduced in SQL Server 2005, but was limited to the top-tier editions only, unlike DTS
which was available with all editions.

SSIS has evolved over DTS to offer a truemodern, enterprise class, heterogeneous platform for a broad range of
datamigration and processing tasks. It provides a rich workflow oriented design with features for all types of enter-
prise data warehousing. It also supports scheduling capabilities for multi-dimensional cubesmanagement.

SSIS Provides the following tools:

l SSIS Import/Export Wizard is an SQL Server Management Studio extension that enables quick creation
of packages for moving data between a wide array of sources and destinations. However, it has limited
transformation capabilities.

l SQL Server Business Intelligence Development Studio (BIDS) is a developer tool for creating complex
packages and transformations. It provides the ability to integrate procedural code into package trans-
formations and provides a scripting environment. Recently, BIDS has been replaced by SQL Server Data
Tools - Business intelligence (SSDT-BI).

SSIS objects include:

l Connections
l Event handlers
l Workflows
l Error handlers
l Parameters (Beginning with SQL Server 2012)
l Precedence constraints
l Tasks
l Variables

SSIS packages are constructed as XML documents and can be saved to the file system or stored within a SQL
Server instance using a hierarchical name space.

Formore information, see

- 289 -

l https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-
server-ver15

l https://en.wikipedia.org/wiki/Data_Transformation_Services

PostgreSQL Usage
Aurora PostgreSQL provides AmazonGlue for enterprise class Extract, Transform, and Load (ETL). It is a fully
managed service that performs data cataloging, cleansing, enriching, andmovement between heterogeneous
data sources and destinations. Being a fullymanaged service, the user does not need to be concerned with infra-
structuremanagement.

Amazon Glue Key Features

Integrated Data Catalog

The AmazonGlue Data Catalog is a persistent metadata store, that can be used to store all data assets, whether
in the cloud or on-premises. It stores table schemas, job steps, and additionalmeta data information for managing
these processes. AmazonGlue can automatically calculate statistics and register partitions in order to make quer-
iesmore efficient. It maintains a comprehensive schema version history for tracking changes over time.

Automatic Schema Discovery

AmazonGlue provides automatic crawlers that can connect to source or target data providers. The crawler uses
a prioritized list of classifiers to determine the schema for your data and then generates and stores themetadata
in the AmazonGlue Data Catalog. Crawlers can be scheduled or executed on-demand. You can also trigger a
crawler when an event occurs to keepmetadata current.

Code Generation

AmazonGlue automatically generates the code to extract, transform, and load data. All you need to do is point
Glue to your data source and target. The ETL scripts to transform, flatten, and enrich data are created auto-
matically. AmazonGlue scripts can be generated in Scala or Python and are written for Apache Spark.

Developer Endpoints

When interactively developingGlue ETL code, AmazonGlue provides development endpoints for editing, debug-
ging, and testing. You can use any IDE or text editor for ETL development. Custom readers, writers, and trans-
formations can be imported into Glue ETL jobs as libraries. You can also use and share code with other
developers in the AmazonGlueGitHub repository (see
https://github.com/awslabs/aws-glue-libs).

Flexible Job Scheduler

AmazonGlue jobs can be triggered for execution either on a pre-defined schedule, on-demand, or as a response
to an event.

- 290 -

https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://aws.amazon.com/glue
https://github.com/awslabs/aws-glue-libs

Multiple jobs can be started in parallel and dependencies can be explicitly defined across jobs to build complex
ETL pipelines. Glue handles all inter-job dependencies, filters bad data, and retries failed jobs. All logs and noti-
fications are pushed to Amazon CloudWatch; you canmonitor and get alerts from a central service.

Migration Considerations
Currently, there are no automatic tools for migrating ETL packages fromDTS or SSIS into AmazonGlue. Migra-
tion fromSQLServer to Aurora PostgreSQL requires rewriting ETL processes to use AmazonGlue.

Alternatively, consider using an EC2 SQLServer instance to run the SSIS service as an interim solution. The con-
nectors and tasksmust be revised to support Aurora PostgreSQL instead of SQL Server, but this approach
allows gradualmigration to AmazonGlue.

Examples
The following walk-through describes how to create an AmazonGlue job to upload a CSV file fromS3 to Aurora
PostgreSQL.

The source file for this walk-through is a simple Visits table in CSV format. The objective is to upload this file to an
S3 bucket and create aGlue job to discover and copy it into an Aurora PostgreSQL database.

Step 1 - Create a Bucket in Amazon S3 and Upload the CSV File

Navigate to the S3management console page https://s3.console.aws.amazon.com/s3/home and click Create
Bucket.

- 291 -

https://s3.console.aws.amazon.com/s3/home

Note: This walk-through demonstrates how to create the buckets and upload the filesmanually, which
is automated using the S3 API for production ETLs. Using the console tomanually execute all the set-
tingswill help you get familiar with the terminology, concepts, and work flow.

In the create bucket wizard, enter a unique name for the bucket, select a region and click Next.

Scroll down to define the level of access, enable versioning, add tags, and enable encryption.

On the S3Management Console, click the newly created bucket.

On the bucket page, click Upload.

- 292 -

On the upload page, either "drag and drop", use the Add Files, or the Add folder button to upload.

And upload the visits.xlsx file you have created based on example image above.

Scroll down to set storage class, server-side encryption, ACL and click Upload

Step 2 - Add an Amazon Glue Crawler to Discover and Catalog
the Visits File

Navigate to the AmazonGluemanagement console page at https://console.aws.amazon.com/glue/home.

Use the Tables link in the navigation panel and click on Add tables using a crawler. Alternatively, click the Crawl-
ers navigation link on the left and then click Add Crawler.

- 293 -

https://console.aws.amazon.com/glue/home

Provide a descriptive name for the crawler and click Next.

Pick the crawler behavior.

Leave the default S3 data store and choose whether the file is in a path in your account or another account. For
this example, the path is in my account and specified in the Include path text box. Click Next.

- 294 -

Note: Click the small folder icon to the right of the Include path text box to open a visual folder hierarchy
navigation window.

Select whether the crawler accesses another data store or not. For this example, only uses the visits file. Click
Next.

The IAM role window allows selection of the security context the crawler uses to execute. You can choose an
existing role, update an existing policy, or create a new role. For this example, create a new role. Click Next.

- 295 -

Choose the crawler schedule and frequency. For this example, use Run on demand. Click Next.

- 296 -

Click Add database and provide a name for the new catalog database. Enter an optional table prefix for easy ref-
erence. Click Next.

Review your entries and click Finish to create the crawler.

- 297 -

- 298 -

Step 3 - Run the Crawler

Navigate to the Crawlers page on the gluemanagement console
https://console.aws.amazon.com/glue/home?catalog:tab=crawlers.

Since you just created a new crawler, a message box asks if you want to run it now. You can click the link or check
the check-box near the crawler's name and click the Run crawler button.

After the crawler completes, the Visits table should be discovered and recorded in the catalog in the table spe-
cified.

The followingmessage box appears on the page:

Click the link to get to the table that was just discovered and then click the table name.

Verify the crawler identified the table's properties and schema correctly.

Note: You canmanually adjust the properties and schema JSON files using the buttons on the top right.

- 299 -

https://console.aws.amazon.com/glue/home?catalog:tab=crawlers

Optional - Add Tables Manually

If you don't want to add a crawler, you can add tablesmanually.

Navigate to https://console.aws.amazon.com/glue/home, the default page is the Tables page. Click Add tables
and select Add table manually.

The process is similar the one used for the crawler.

Step 4 - Create an ETL Job to Copy the Visits Table to an Aurora
PostgreSQL Database.

Navigate to the AmazonGlue ETL Jobs page at https://console.aws.amazon.com/glue/home?etl:tab=jobs. Since
this is the first job, the list is empty. Click Add Job.

- 300 -

https://console.aws.amazon.com/glue/home
https://console.aws.amazon.com/glue/home?etl:tab=jobs

Enter a name for the ETL job and pick a role for the security context. For this example, use the same role created
for the crawler. The jobmay consist of a pre-existing ETL script, a manually-authored script, or an automatic
script generated by AmazonGlue. For this example, use AmazonGlue. Enter a name for the script file or accept
the default, which is also the job's name. Configure advanced properties and parameters if needed and click
Next.

Select the data source for the job (in this example, there is only one). Click Next.

- 301 -

Choose transform type.

On the Data Target page, select Create tables in your data target, use the JDBC Data store, and the gluerds
connection type. Click Add Connection.

- 302 -

On the Add connection page, enter the access details for the Aurora Instance and lick Add.

Click Next to display the columnmapping between the source and target. For this example, leave the default map-
ping and data types. Click Next.

Review the job properties and click Save job and edit script.

Review the generated script andmakemanual changes as needed. You can use the built-in templates for
source, target, target location, transform, and spigot using the buttons at the top right section of the screen.

- 303 -

For this example, run the script as-is. Click Run Job.

The optional parameters window displays. Click Run Job.

Navigate back to the gluemanagement console jobs page at
https://console.aws.amazon.com/glue/home?etl:tab=jobs.

On the history tab, verify the job status as Succeeded and view the logs if needed.

- 304 -

https://console.aws.amazon.com/glue/home?etl:tab=jobs

Now open your query IDE, connect to the Aurora PostgreSQL cluster, and query the visits database tomake
sure the data has been transferred successfully.

Formore information, see

l https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
l https://aws.amazon.com/glue/developer-resources/

- 305 -

https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://aws.amazon.com/glue/developer-resources/

SQL Server Export and Import with Text files vs.
PostgreSQL pg_dump and pg_restore
Feature Compatibility SCT/DMS Automation Level SCT Action Code Index Key Differences

N/A N/A Non-compatible tool

SQL Server Usage
SQL Server providesmany options for exporting and importing text files. These operations are commonly used
for datamigration, scripting, and backup.

l Save results to a file in SQL Server Management Studio (SSMS): https://support.microsoft.com/en-
us/help/860545/how-to-create-csv-or-rpt-files-from-an-sql-statement-in-microsoft-sql

l SQLCMD: https://docs.microsoft.com/en-us/sql/relational-databases/scripting/sqlcmd-run-transact-sql-
script-files?view=sql-server-ver15#save-the-output-to-a-text-file

l PowerShell wrapper for SQLCMD

l SSMS Import/Export Wizard: https://docs.microsoft.com/en-us/sql/integration-services/import-export-
data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15

l SQL Server Reporting Services (SSRS)

l Bulk Copy Program (BCP): https://docs.microsoft.com/en-us/sql/relational-databases/import-export/im-
port-and-export-bulk-data-by-using-the-bcp-utility-sql-server?view=sql-server-ver15

All of the options described above required additional tools to export data. Most of the tools are open source and
provide support for a variety of databases.

SQLCMD is a command line utility for executing T-SQL statements, system procedures, and script files. It uses
ODBC to execute T-SQL batches. For example:

SQLCMD -i C:\sql\myquery.sql -o C:\sql\output.txt

SQLCMD utility syntax:

sqlcmd
-a packet_size
-A (dedicated administrator connection)
-b (terminate batch job if there is an error)
-c batch_terminator
-C (trust the server certificate)
-d db_name
-e (echo input)
-E (use trusted connection)
-f codepage | i:codepage[,o:codepage] | o:codepage[,i:codepage]
-g (enable column encryption)
-G (use Azure Active Directory for authentication)
-h rows_per_header
-H workstation_name
-i input_file
-I (enable quoted identifiers)

- 306 -

https://support.microsoft.com/en-us/help/860545/how-to-create-csv-or-rpt-files-from-an-sql-statement-in-microsoft-sql
https://support.microsoft.com/en-us/help/860545/how-to-create-csv-or-rpt-files-from-an-sql-statement-in-microsoft-sql
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/sqlcmd-run-transact-sql-script-files?view=sql-server-ver15#save-the-output-to-a-text-file
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/sqlcmd-run-transact-sql-script-files?view=sql-server-ver15#save-the-output-to-a-text-file
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/import-export/import-and-export-bulk-data-by-using-the-bcp-utility-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/import-export/import-and-export-bulk-data-by-using-the-bcp-utility-sql-server?view=sql-server-ver15

-j (Print raw error messages)
-k[1 | 2] (remove or replace control characters)
-K application_intent
-l login_timeout
-L[c] (list servers, optional clean output)
-m error_level
-M multisubnet_failover
-N (encrypt connection)
-o output_file
-p[1] (print statistics, optional colon format)
-P password
-q "cmdline query"
-Q "cmdline query" (and exit)
-r[0 | 1] (msgs to stderr)
-R (use client regional settings)
-s col_separator
-S [protocol:]server[instance_name][,port]
-t query_timeout
-u (unicode output file)
-U login_id
-v var = "value"
-V error_severity_level
-w column_width
-W (remove trailing spaces)
-x (disable variable substitution)
-X[1] (disable commands, startup script, environment variables, optional exit)
-y variable_length_type_display_width
-Y fixed_length_type_display_width
-z new_password
-Z new_password (and exit)
-? (usage)

Examples
Connect to a named instance usingWindowsAuthentication and specify input and output files.

sqlcmd -S MyMSSQLServer\MyMSSQLInstance -i query.sql -o outputfile.txt

If the file is needed for import to another database, query the data as INSERT commands and CREATE for the
object.

You can export data with SQLCMD and import with Export/Import wizard.

Formore information, see: https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

PostgreSQL Usage
PostgreSQL provides the native utilities pg_dump and pg_restore to perform logical database exports and
imports with comparable functionality to the SQl Server SQLCMD utility. For example, moving data between two
databases and creating logical database backups.

- 307 -

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

l pg_dump: Export data

l pg_restore: Import data

The binaries for both utilitiesmust be installed on your local workstation or on an Amazon EC2 server as part of
the PostgreSQL client binaries.

PostgreSQL dump files created using pg_dump can be copied, after export, to an Amazon S3 bucket as cloud
backup storage or for maintaining the desired backup retention policy. Later, when dump files are needed for data-
base restore, the dump files can be copied back to a desktop or server that has a PostgreSQL client (such as your
workstation or an Amazon EC2 server) to issue the pg_restore command.

Since PostgreSQL 10, these capabilities were added:

l A schema can be excluded in pg_dump/pg_restore commands
l Can create dumpswith no blobs
l Allow to run pg_dumpall by non-superusers, using the --no-role-passwords option
l Create additional integrity option to ensure that the data is stored in disk using fsync() method

Since PostgreSQL 11, the following capabilities were added:

l pg_dump/pg_restore now exports/imports relationships between extensions and database objects estab-
lished with ALTER ... DEPENDSON EXTENSION, which allows these objects to be dropped when exten-
sion is dropped with CASCADE option.

Notes:

l pg_dump creates consistent backups even if the database is being used concurrently.

l pg_dump does not block other users accessing the database (readers or writers).

l pg_dump only exports a single database. To backup global objects common to all databases in a cluster
(such as roles and tablespaces), use pg_dumpall.

l PostgreSQL dump files can be both plain-text and custom format files.

Another option to export and import data fromPostgreSQL database is to use COPY TO/COPY FROMcom-
mands. Starting with PostgreSQL 12COPY FROMcommand, that can be used to load data into DB, has support
for filtering incoming rowswithWHERE condition

CREATE TABLE tst_copy(v TEXT);

COPY tst_copy FROM '/home/postgres/file.csv' WITH (FORMAT CSV) WHERE v LIKE '%apple%';

Examples
Export data using pg_dump. Use a workstation or server with the PostgreSQL client installed to connect to the
Aurora PostgreSQL instance in AWS. Issue the pg_dump command providing the hostname (-h), database user
name (-U), and database name (-d).

$ pg_dump -h hostname.rds.amazonaws.com -U username -d db_name
-f dump_file_name.sql

Note: The output file, dump_file_name.sql, is stored on the server where the pg_dump command
executes. You can later copy the outfile to an S3 Bucket if needed.

- 308 -

Run pg_dump and copy the backup file to an Amazon S3 bucket using a pipe and the AWS CLI.

$ pg_dump -h hostname.rds.amazonaws.com -U username -d db_name -f dump_file_name.sql |
aws s3 cp - s3://pg-backup/pg_bck-$(date"+%Y-%m-%d-%H-%M-%S")

Restore data using pg_restore. Use a workstation or server with the PostgreSQL client installed to connect to the
Aurora PostgreSQL instance. Issue the pg_restore command providing the hostname (-h), database user name
(-U), database name (-d), and the dump file.

$ pg_restore -h hostname.rds.amazonaws.com -U username -d dbname_restore dump_file_
name.sql

Copy the output file from the local server to an Amazon S3 Bucket using the AWS CLI. Upload the dump file to an
S3 bucket.

$ aws s3 cp /usr/Exports/hr.dmp s3://my-bucket/backup-$(date "+%Y-
%m-%d-%H-%M-%S")

Note: The {-$(date "+%Y-%m-%d-%H-%M-%S")} format is valid on Linux servers only.

Download the output file from the S3 bucket.

$ aws s3 cp s3://my-bucket/backup-2017-09-10-01-10-10 /usr/Exports/hr.dmp

Note: You can create a copy of an existing database without having to use pg_dump or pg_restore.
Instead, use the template keyword to specify the source database.

CREATE DATABASE mydb_copy TEPLATE mydb;

Summary
Description SQL Server export / import PostgreSQL Dump

Export data to a
file

using SQLCMD or Export/Import Wizard

SQLCMD -i C:\sql\myquery.sql -o
C:\sql\output.txt

pg_dump -F c -h host-
name.rds.amazonaws.com -U username -d hr -
p 5432 > c:\Export\hr.dmp

Import data to a
new database
with a new name

Run SQLCMD with objects and data cre-
ation script

SQLCMD -i C:\sql\myquery.sql

pg_restore -h hostname.rds.amazonaws.com -
U hr -d hr_restore -p 5432 c:\Expor\hr.dmp

Formore details, see:

l https://www.postgresql.org/docs/13/static/backup-dump.html

l https://www.postgresql.org/docs/13/static/app-pgrestore.html

- 309 -

https://www.postgresql.org/docs/13/static/backup-dump.html
https://www.postgresql.org/docs/13/static/app-pgrestore.html

SQL Server Viewing Server Logs vs.
PostgreSQL Viewing Server Logs
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A N/A View logs from the Amazon RDS console, the Amazon
RDS API, the AWS CLI, or the AWS SDKs

SQL Server Usage
SQLServer logs system and user generated events to the SQL Server Error Log and to theWindowsApplication
Log. It logs recoverymessages, kernelmessages, security events, maintenance events, and other general server
level error and informationalmessages. TheWindowsApplication Log contains events from all windows applic-
ations including SQL Server and SQL Server agent.

SQL Server Management Studio Log Viewer unifies all logs into a single consolidated view. You can also view
the logswith any text editor.

Administrators typically use the SQL Server Error Log to confirm successful completion of processes, such as
backup or batches, and to investigate the cause of run time errors. These logs can help detect current risks or
potential future problem areas.

To view the log for SQL Server, SQL Server Agent, DatabaseMail, andWindows applications, open the SQL
Server Management Studio Object Explorer pane, navigate toManagement > SQL Server Logs , and double-
click the current log.

The following table identifies some common error codes database administrators typically look for in the error
logs:

Error Code Error Message

1105 Could not allocate space

3041 Backup Failed

9002 Transaction Log Full

14151 Replication agent failed

17053 Operating SystemError

18452 Login Failed

9003 Possible database corruption

Examples
The following screenshot shows typical Log File Viewer content:

- 310 -

Formore information, seeMicrosoft-us/sql/tools/configuration-manager/monitoring-the-error-logs?view=sql-server-ver15

PostgreSQL Usage
Aurora PostgreSQL provides administrators with access to the PostgreSQL error log.

The PostgreSQL Error Log is generated by default. To generate the slow query and general logs, set the cor-
responding parameters in the database parameter group. For more details about parameter groups, see Server
Options.

You can view Aurora PostgreSQL logs directly from the Amazon RDS console, the Amazon RDS API, the AWS
CLI, or the AWS SDKs. You can also direct the logs to a database table in themain database and use
SQL queries to view the data. To download a binary log, use the AWS Console.

Several parameters control how and where PostgreSQL log and errors files are placed:

Parameter Description

log_filename Sets the file name pattern for log files.
Modifiable via an Aurora Database Parameter Group.

log_rotation_age (min) Automatic log file rotation will occur after N minutes.
Modifiable via an Aurora Database Parameter Group.

log_rotation_size (kB) Automatic log file rotation will occur after N kilobytes.
Modifiable via an Aurora Database Parameter Group.

log_min_messages Sets themessage levels that are logged (DEBUG, ERROR, INFO, etc.…).
Modifiable via an Aurora Database Parameter Group.

log_min_error_state-
ment

Causes all statements generating errors at or above this level to be logged (DEBUG,
ERROR, INFO, etc.…).
Modifiable via an Aurora Database Parameter Group.

log_min_duration_ Sets theminimumexecution time above which statements will be logged (ms).

- 311 -

https://docs.microsoft.com/en-us/sql/tools/configuration-manager/monitoring-the-error-logs?view=sql-server-ver15

Parameter Description

statement Modifiable via an Aurora Database Parameter Group.

Note: Modifications to certain parameters, such as log_directory (which sets the destination directory
for log files) or logging_collector (which starts a sub-process to capture stderr output and/or csvlogs into
log files) are disabled for Aurora PostgreSQL instances.

Formore information, see https://www.postgresql.org/docs/13/static/runtime-config-logging.html

Examples
The following walk-through demonstrates how to view the Aurora PostgreSQL error logs in the RDS console.

Using a web browser, navigate to https://console.aws.amazon.com/rds/home and click Databases.

Click the instance for which you want to view the error log.

Scroll down to the logs section and click the log name.

- 312 -

https://www.postgresql.org/docs/13/static/runtime-config-logging.html
https://console.aws.amazon.com/rds/home

The log viewer displays the log content.

Formore information, see
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html

SQL Server Maintenance Plans vs.
PostgreSQL Viewing Server Logs
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Backups via the RDS services Tablemain-
tenance via SQL

SQL Server Usage
AMaintenance plan is a set of automated tasks used to optimize a database, performs regular backups, and
ensure it is free of inconsistencies. Maintenance plans are implemented as SQL Server Integration Services
(SSIS) packages and are executed by SQL Server Agent jobs. They can be runmanually or automatically at
scheduled time intervals.

SQL Server provides a variety of pre-configuredmaintenance tasks. You can create custom tasks using T-
SQL scripts or operating system batch files.

Maintenance plans are typically used for the following tasks:

l Backing up database and transaction log files.

l Performing cleanup of database backup files in accordance with retention policies.

l Performing database consistency checks.

- 313 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html

l Rebuilding or reorganizing indexes.

l Decreasing data file size by removing empty pages (shrink a database).

l Updating statistics to help the query optimizer obtain updated data distributions.

l Running SQL Server Agent jobs for custom actions.

l Executing a T-SQL task.

Maintenance plans can include tasks for operator notifications and history/maintenance cleanup. They can also
generate reports and output the contents to a text file or themaintenance plan tables in msdb.

Maintenance plans can be created andmanaged using themaintenance plan wizard in SQL Server Management
Studio, Maintenance Plan Design Surface (provides enhanced functionality over the wizard), Management Stu-
dio Object Explorer, and T-SQL system stored procedures.

For more information about SQL Server Agent migration, see SQL Server Agent.

Deprecated DBCC Index and Table Maintenance Commands

TheDBCC DBREINDEX, INDEXDEFRAG, and SHOWCONTIG commands have been deprecated as of SQL
Server 2008R2 in accordance with
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105).

In place of the deprecated DBCC, SQL Server provides newer syntax alternatives as detailed in the following
table.

Deprecated DBCC Command Use Instead

DBCC DBREINDEX ALTER INDEX ... REBUILD

DBCC INDEXDEFRAG ALTER INDEX ... REORGANIZE

DBCC SHOWCONTIG sys.dm_db_index_physical_stats

For the Aurora PostgreSQL alternatives to thesemaintenance commands, see Aurora PostgreSQLMain-
tenance Plans.

Examples
Enable Agent XPs, which are disabled by default.

EXEC [sys].[sp_configure] @configname = 'show advanced options', @configvalue = 1
RECONFIGURE ;

EXEC [sys].[sp_configure] @configname = 'agent xps', @configvalue = 1
RECONFIGURE;

Create a T-SQLmaintenance plan for a single index rebuild.

USE msdb;

Add the Index Maintenance IDX1 job to SQL Server Agent.

EXEC dbo.sp_add_job @job_name = N'Index Maintenance IDX1', @enabled = 1, @description
= N'Optimize IDX1 for INSERT' ;

Add the T-SQL job step "Rebuild IDX1 to 50 percent fill".

- 314 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

EXEC dbo.sp_add_jobstep @job_name = N'Index Maintenance IDX1', @step_name = N'Rebuild
IDX1 to 50 percent fill', @subsystem = N'TSQL',
@command = N'Use MyDatabase; ALTER INDEX IDX1 ON Shcema.Table REBUILD WITH (FILL_
FACTOR = 50), @retry_attempts = 5, @retry_interval = 5;

Add a schedule to run every day at 01:00 AM.

EXEC dbo.sp_add_schedule @schedule_name = N'Daily0100', @freq_type = 4, @freq_interval
= 1, @active_start_time = 010000;

Associate the schedule Daily0100 with the job IndexMaintenance IDX1.

EXEC sp_attach_schedule @job_name = N'Index Maintenance IDX1' @schedule_name =
N'Daily0100' ;

Formore information, see https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-
plans?view=sql-server-ver15

PostgreSQL Usage
Amazon RDS performs automated database backups by creating storage volume snapshots that back up entire
instances, not individual databases.

RDS creates snapshots during the backup window for individual database instances and retains snapshots in
accordance with the backup retention period. You can use the snapshots to restore a database to any point in
time within the backup retention period.

Note: The state of a database instancemust be ACTIVE for automated backups to occur.

You can backup database instancesmanually by creating an explicit database snapshot. Use the AWS console,
the AWS CLI, or the AWS API to takemanual snapshots.

Examples

Create a Manual Database Snapshot Using the RDS Console

1. Navigate to the RDS Databases Page.

2. Select an AuroraMySQL instance, click Instance actions and select Take Snapshot.

- 315 -

https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15
https://console.aws.amazon.com/rds/home#databases:

Restoring Snapshots on the RDS Console

Follow the steps below to restore an Aurora database from a snapshot.

1. Navigate to the RDS SystemSnapshots (link will refer to System snapshots but another tab can be used to
view Manual snapshots).

2. Select the snapshot to restore, click Actions on the context menu, and select Restore snapshot. This
action creates a new instance.

3. The web page displays a wizard for creating a new Aurora database instance from the selected snapshot.
Enter the required configuration options and click Restore DB Instance.

You can also restore a database instance to a point-in-time. For more details see Backup and Restore.

For all other tasks, use a third-party or a custom application scheduler.

- 316 -

https://console.aws.amazon.com/rds/home?#snapshots-list:tab=automated

Rebuild and Reorganize a table

Aurora PostgreSQL supports the VACUUM, ANALYZE and REINDEX commands, which are similar to the
REORGANIZE option of SQL Server indexes.

VACUUM MyTable;
ANALYZE MyTable;
REINDEX TABLE MyTable;

l VACUUM: Reclaims storage

l ANALYZE: Collect statistics

l REINDEX: Recreate all indexes

Formore information see

l https://www.postgresql.org/docs/13/static/sql-analyze.html

l https://www.postgresql.org/docs/13/static/sql-vacuum.html

l https://www.postgresql.org/docs/13/static/sql-reindex.html

Converting Deprecated DBCC Index and Table Maintenance
Commands

Deprecated DBCC Command Aurora PostgreSQL Equivalent

DBCC DBREINDEX REINDEX INDEX or REINDEX TABLE

DBCC INDEXDEFRAG VACUUM table_name or VACUUM table_name column_name

Update Statistics to Help the Query Optimizer Get Updated Data
Distribution

For more information, seeManaging Statistics.

Summary
The following table summarizes the key tasks that use SQL Server maintenance Plans and a comparable Aurora
PostgreSQL solutions.

Task SQL Server Aurora PostgreSQL

Rebuild or reorganize indexes ALTER INDEX / ALTER TABLE REINDEX INDEX / REINDEX
TABLE

Decrease data file size by
removing empty pages

DBCC SHRINKDATABASE / DBCC
SHRINKFILE

VACUUM

Update statistics to help the
query optimizer get updated
data distribution

UPDATE STATISTICS / sp_updatest-
ats

ANALYZE

- 317 -

https://www.postgresql.org/docs/13/static/sql-analyze.html
https://www.postgresql.org/docs/13/static/sql-vacuum.html
https://www.postgresql.org/docs/13/static/sql-reindex.html

Task SQL Server Aurora PostgreSQL

Perform database con-
sistency checks

DBCC CHECKDB / DBCC
CHECKTABLE

N/A

Back up the database and
transaction log files

BACKUP DATABASE / BACKUP
LOG

Automatically (can be use with CLI)

Run SQLServer Agent jobs
for custom actions

sp_start_job, scheduled N/A

Formore information, see
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html

SQL Server Monitoring vs. PostgreSQL Monitoring
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Use Amazon CloudWatch ser-
vice

SQL Server Usage
Monitoring server performance and behavior is a critical aspect of maintaining service quality and includes ad-hoc
data collection, ongoing data collection, root cause analysis, preventative actions, and reactive actions. SQL
Server provides an array of interfaces tomonitor and collect server data.

SQL Server 2017 introduces several new dynamicmanagement views:

l sys.dm_db_log_stats exposes summary level attributes and information on transaction log files, helpful for
monitoring transaction log health.

l sys.dm_tran_version_store_space_usage tracks version store usage per database, useful for proactively
planning tempdb sizing based on the version store usage per database.

l sys.dm_db_log_info exposes VLF information tomonitor, alert, and avert potential transaction log issues.

l sys.dm_db_stats_histogram is a new dynamicmanagement view for examining statistics.

l sys.dm_os_host_info provides operating system information for bothWindows and Linux.

SQL Server 2019 adds new configuration parameter, LIGHTWEIGHT_QUERY_PROFILING. It enables or dis-
ables the lightweight query profiling infrastructure. The lightweight query profiling infrastructure (LWP) provides
query performance datamore efficiently than standard profilingmechanisms and is enabled by default. For more
information see Lightweight Query Profiling Infrastructure

Windows Operating System Level Tools

TheWindowsScheduler can be used to trigger execution of script files(CMD, Powershell etc) to collect, store,
and process performance data.

SystemMonitor is a graphical tool for measuring and recording performance of SQL Server and other windows
relatedmetrics using theWindowsManagement Interface (WMI) performance objects.

- 318 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15

Note: Performance objects can also be accessed directly from T-SQL using the SQL Server Operating
SystemRelated DMVs. For a full list of the DMVs, see: sql-server-operating-system-related-dynamic-
management-views-transact-sql

Performance counters exist for both real timemeasurements such asCPU Utilization and for aggregated history
such as average active transactions.

For a full list of the object hierarchy, see:
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-object-
s?view=sql-server-ver15

SQL Server Extended Events

SQLServer's latest tracing framework provides very lightweight and robust event collection and storage. SQL
Server Management Studio features the New SessionWizard and New Session graphic user interfaces for man-
aging and analyzing captured data. SQL Server Extended Events consists of the following items:

l SQL Server Extended Events Package is a logical container for Extended Events objects.

l SQL Server Extended Events Targets are consumers of events. Targets include Event File, which writes
data to the file Ring Buffer for retention in memory, or for processing aggregates such as Event Counters
and Histograms.

l SQL Server Extended Events Engine is a collection of services and tools that comprise the framework.

l SQL Server Extended Events Sessions are logical containersmappedmany-to-manywith packages,
events, and filters.

The following example creates a session that logs lock escalations and lock timeouts to a file.

CREATE EVENT SESSION Locking_Demo
ON SERVER

ADD EVENT sqlserver.lock_escalation,
ADD EVENT sqlserver.lock_timeout
ADD TARGET package0.etw_classic_sync_target

(SET default_etw_session_logfile_path = N'C:\ExtendedEvents\Locking\Demo_
20180502.etl')

WITH (MAX_MEMORY=8MB, MAX_EVENT_SIZE=8MB);
GO

SQL Server Tracing Framework and the SQL Server Profiler
Tool

The SQLServer trace framework is the predecessor to the Extended Events framework and remains popular
among database administrators. The lighter andmore flexible Extended Events Framework is recommended for
development of new monitoring functionality. For more information about SQL Server Profiler Tool, see : sql-
server-profiler

SQL Server Management Studio

SQLServer management studio provides several monitoring extensions:

l SQL Server Activity Monitor is an in-process, real-time, basic high-level information graphical tool.

l Query Graphical Show Plan provides easy exploration of estimated and actual query execution plans.

- 319 -

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15

l Query Live Statistics displays query execution progress in real time.

l Replication Monitor presents a Publisher-focused view or Distributor-focused view of all replication activ-
ity. For more details, see: overview-of-the-replication-monitor-interface

l Log Shipping Monitor displays the status of any log shipping activity whose status is available from the
server instance to which you are connected. For more details, see: view-the-log-shipping-report-sql-
server-management-studio

l Standard Performance Reports SSMS provides a set of reports, there aremore than 20 reports that show
themost important performancemetrics, change history, memory usage, activity, transactions, HA, and
more.

T-SQL

From the T-SQL interface, SQL Server providesmany system stored procedures, system views, and functions
for monitoring data.

System stored procedures such as sp_who and sp_lock provide real-time information. sp_monitor provides
aggregated data.

Built in functions such as@@CONNECTIONS,@@IO_BUSY,@@TOTAL_ERRORS, and others provide
high level server information.

A rich set of SystemDynamicManagement functions and views are provided for monitoring almost every aspect
of the server. These functions reside in the sys schema and are prefixed with dm_string. For more information
about DynamicManagement Views, see https://docs.microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15

Trace Flags

Trace flags can be set to log events. For example, set trace flag 1204 to log deadlock information. For more
information about Trace flags, see: dbcc-traceon-trace-flags-transact-sql

SQL Server Query Store

Query Store is a database level framework supporting automatic collection of queries, execution plans, and run
time statistics. This data is stored in system tables and can be used to diagnose performance issues, understand
patterns, and understand trends. It can also be set to automatically revert planswhen a performance regression
is detected.

Formore information, see
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-
store?view=sql-server-ver15

PostgreSQL Usage
Amazon RDS provide a richmonitoring infrastructure for Aurora PostgreSQL clusters and instanceswith the nat-
ive CloudWatch service. See the following up-to-date articles that include examples and walkthroughs for mon-
itoring Aurora PostgreSQL clusters and instances:

- 320 -

https://docs.microsoft.com/en-us/sql/relational-databases/replication/monitor/overview-of-the-replication-monitor-interface?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/view-the-log-shipping-report-sql-server-management-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/view-the-log-shipping-report-sql-server-management-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver15

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html

You can also use the Performance Insights AWS tool to monitor PostgreSQL.

PostgreSQL can also bemonitored by querying system catalog table and views.

Starting with PostgreSQL 12 it is now possible tomonitor progress of CREATE INDEX andREINDEX and
CLUSTER and VACUUM FULL operations by querying system views pg_stat_progress_create_index and pg_
stat_progress_cluster.

RDS ONLY: Starting with PostgreSQL 13 following features have been added:
1. It is now possible tomonitor progress of ANALYZE operations by querying system view pg_stat_
progress_analyze
2. It is now possible tomonitor sharedmemory usage with system view pg_shmem_allocations

Example
The following walk-through demonstrates how to access the Amazon Aurora Performance Insights Console:

Navigate to the RDS section of the AWS Console, and select Performance Insights.

The web page displays a dashboard containing current and past database performancemetrics. You can choose
the period of the displayed performance data (5m, 1h, 6h or 24h) aswell as different criteria to filter and slice the
information (waits, SQL, Hosts or Users, etc.).

- 321 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html

Enabling Performance Insights

Performance Insights is enabled by default for Amazon Aurora clusters. If you havemore than one database in
your Aurora cluster, performance data for all databases is aggregated. Database performance data is retained
for 24 hours.

For additional details, see http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

SQL Server Resource Governor vs.
PostgreSQL Dedicated Amazon Aurora Clusters or
Aurora Read-Replicas
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Distribute load/applications/users acrossmul-
tiple instances

SQL Server Usage
SQL Server ResourceGovernor provides the capability to control andmanage resource consumption. Admin-
istrators can specify and enforce workload limits on CPU, physical I/O, andMemory. Resource configurations are
dynamic and can be changed in real time.

In SQL Server 2019 configurable value for the REQUEST_MAX_MEMORY_GRANT_PERCENT option of
CREATEWORKLOAD GROUP and ALTERWORKLOAD GROUP has been changed from an integer to a float

- 322 -

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

data type to allow more granular control of memory limits. See ALTERWORKLOAD GROUP andCREATE
WORKLOAD GROUP

Use Cases

The following list identifies typical ResourceGovernor use cases:

l Minimize performance bottlenecks and inconsistencies to better support Service Level Agreements
(SLA) for multiple workloads and users.

l Protect against runaway queries that consume a large amount of resources or explicitly throttle I/O intens-
ive operations. For example, consistency checkswith DBCC that may bottleneck the I/O subsystem and
negatively impact concurrent workloads.

l Allow tracking and control for resource-based pricing scenarios to improve predictability of user
charges.

Concepts

The three basic concepts in ResourceGovernor are Resource Pools, WorkloadGroups, and Classification.

l Resource Pools represent physical resources. Two built-in resource pools, internal and default, are cre-
ated when SQLServer is installed. You can create custom user-defined resource pools for specific work-
load types.

l Workload Groups are logical containers for session requests with similar characteristics. Workload
Groups allow aggregate resourcemonitoring of multiple sessions. Resource limit policies are defined for a
WorkloadGroup. EachWorkloadGroup belongs to a Resource Pool.

l Classification is a process that inspects incoming connections and assigns them to a specificWorkload
Group based on the common attributes. User-defined functions are used to implement Classification. For
more information, see User Defined Functions.

Examples
Enable the ResourceGovernor.

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Resource Pool.

CREATE RESOURCE POOL ReportingWorkloadPool
WITH (MAX_CPU_PERCENT = 20);

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create aWorkloadGroup.

CREATE WORKLOAD GROUP ReportingWorkloadGroup USING poolAdhoc;

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a classifier function.

CREATE FUNCTION dbo.WorkloadClassifier()
RETURNS sysname WITH SCHEMABINDING

- 323 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-workload-group-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql?view=sql-server-ver15

AS
BEGIN
RETURN (CASE

 WHEN HOST_NAME()= 'ReportServer'
 THEN 'ReportingWorkloadGroup'
 ELSE 'Default'
 END)
END;

Register the classifier function.

ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION = dbo.WorkloadClassifier);

ALTER RESOURCE GOVERNOR RECONFIGURE;

Formore information, see
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-ver15

PostgreSQL Usage
PostgreSQL does not have built-in resourcemanagement capabilities equivalent to the functionality provided by
SQL Server's ResourceGovernor. However, due to the elasticity and flexibility provided by “cloud economics”,
workarounds could be applicable and such capabilitiesmight not be as of similar importance tomonolithic on-
premises databases.

The SQL Server's ResourceGovernor primarily exists because traditionally, SQL Server instanceswere installed
on very powerful monolithic servers that poweredmultiple applications simultaneously. Themonolithicmodel
made themost sense in an environment where the licensing for the SQL Server database was per-CPU and
where SQL Server instanceswere deployed on physical hardware. In these scenarios, it made sense to con-
solidate asmanyworkloads as possible into fewer servers. With cloud databases, the strict requirement to max-
imize the usage of each individual “server” is often not as important and a different approach can be employed.

Individual Amazon Aurora clusters can be deployed, with varying sizes, each dedicated to a specific application or
workload. Additional read-only Aurora Replica servers can be used to offload any reporting workloads from the
master instance.

With Amazon Aurora, separate and dedicated database clusters can be deployed, each dedicated to a specific
application/workload creating isolation betweenmultiple connected sessions and applications.

Each Amazon Aurora instance (Primary/Replica) can scale independently in terms of CPU andmemory
resources using different instance types. Becausemultiple Amazon Aurora Instances can be instantly deployed
andmuch less overhead is associated with the deployment andmanagement of Aurora instanceswhen com-
pared to physical servers, separating different workloads to different instance classes could be a suitable solution
for controlling resourcemanagement.

For more information about instance types and resources, see
https://aws.amazon.com/ec2/instance-types/

In addition, each Amazon Aurora instance can also be directly accessed from your applications using its own end-
point. This capability is especially useful if you havemultiple Aurora read-replicas for a given cluster and you want
to use different Aurora replicas to segment your workload.

- 324 -

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-ver15
https://aws.amazon.com/ec2/instance-types/

You can adjust the resources and some parameters for Aurora read-replicas in the same cluster to avoid having
additional cluster, however, this will allow to be used only for read operations.

Examples
To create an Aurora cluster please follow this steps:

Navigate to the Databases section under RDS and click on "Create database", follow the wizrd, click on "Create
database", and then your cluster will appear in the Databases section

Suppose that you were using a single SQL Server instance for multiple separate applications and used SQL
Server's ResourceGovernor to enforce a workload separation, allocating a specific amount of server resources
for each application.With Amazon Aurora, youmight want to createmultiple separate databases for each indi-
vidual application.

Follow these steps to add additional replica instances to an existing Amazon Aurora cluster:

Navigate to the Databases section under RDS.

Select the Amazon Aurora cluster that you want to scale-out by adding an additional read Replica, click the
Instance Actions button, and click Create Aurora Replica.

- 325 -

https://console.aws.amazon.com/rds/home?#dbinstances:
https://console.aws.amazon.com/rds/home?#dbinstances:

Select the instance class depending on the amount of compute resources your application requires.

Click Create Aurora Replica.

Dedicated Aurora PostgreSQL Instances
Feature Amazon Aurora Instances

Set themaximum
CPU usage for a
resource group

Create a dedicated Aurora Instance for a specific application.

Limit the degree of
parallelism for spe-
cific queries

SETmax_parallel_workers_per_gather TO x;

Setting the PostgreSQL
max_parallel_workers_per_gather parameter should be done as part of your application
database connection.

Limit parallel exe-
cution

SETmax_parallel_workers_per_gather TO0;
OR
SETmax_parallel_workers TO x; -- for the whole system (since PostgreSQL 10)

Limit the number
of active sessions

Manually detect the number of connections that are open from a specific application and
restrict connectivity either via database procedures or within the application DAL itself.

select pid from pg_stat_activity where usename in(select usename from pg_stat_activity
where state = 'active' group by usename having count(*) > 10) and state = 'active' order by
query_Start;

Restrict maximum
runtime of queries

Manually terminate sessions that exceed the required threshold. You can detect the length
of running queries using SQL commands and restrict max execution duration using either
database procedures or within the application DAL itself.

- 326 -

Feature Amazon Aurora Instances

SELECT pg_terminate_backend(pid) FROMpg_stat_activityWHERE now()-pg_stat_
activity.query_start > interval '5 minutes';

Limit themaximum
idle time for ses-
sions

Manually terminate sessions that exceed the required threshold. You can detect the length
of your idle sessions using SQL queries and restrict maximumexecution using either data-
base procedures or within the application DAL itself.

SELECT pg_terminate_backend(pid) FROMpg_stat_activityWHERE datname =
'regress' AND pid <> pg_backend_pid() AND state = 'idle' AND state_change < current_
timestamp - INTERVAL '5' MINUTE;

Limit the time that
an idle session
holding open locks
can block other
sessions

Manually terminate sessions that exceed the required threshold. You can detect the length
of blocking idle sessions using SQL queries and restrict max execution duration using
either database procedures or within the application DAL itself.

SELECT pg_terminate_backend(blocking_locks.pid)
FROMpg_catalog.pg_locks AS blocked_locks
JOIN pg_catalog.pg_stat_activity AS blocked_activity ON blocked_activity.pid = blocked_
locks.pid
JOIN pg_catalog.pg_locks AS blocking_locksON blocking_locks.locktype = blocked_lock-
s.locktype AND blocking_locks.DATABASE IS NOT DISTINCT FROMblocked_lock-
s.DATABASE AND blocking_locks.relation IS NOT DISTINCT FROMblocked_
locks.relation AND blocking_locks.page IS NOT DISTINCT FROMblocked_locks.page
AND blocking_locks.tuple IS NOT DISTINCT FROMblocked_locks.tuple AND blocking_
locks.virtualxid IS NOT DISTINCT FROMblocked_locks.virtualxid AND blocking_lock-
s.transactionid IS NOT DISTINCT FROMblocked_locks.transactionid AND blocking_lock-
s.classid IS NOT DISTINCT FROMblocked_locks.classid AND blocking_locks.objid IS
NOT DISTINCT FROMblocked_locks.objid AND blocking_locks.objsubid IS NOT
DISTINCT FROMblocked_locks.objsubid AND blocking_locks.pid != blocked_locks.pid
JOIN pg_catalog.pg_stat_activity AS blocking_activity ON blocking_activity.pid = blocking_
locks.pidWHERE NOT blocked_locks.granted and blocked_activity.state_change < cur-
rent_timestamp - INTERVAL '5' minute;

For additional details, see:https://www.postgresql.org/docs/13/static/runtime-config-resource.html

SQL Server Linked Servers vs. PostgreSQL DBLink
and FDWrapper
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A Linked Servers Syntax and option differences, similar
functionality

SQL Server Usage
Linked Servers enable the database engine to connect to external Object Linking and Embedding for Data Bases
(OLE-DB) sources. They are typically used to execute T-SQL commands and include tables in other instances of

- 327 -

https://www.postgresql.org/docs/13/static/runtime-config-resource.html

SQLServer, or other RDBMS engines such asOracle. SQL Server supportsmultiple types of OLE-DB sources
as linked servers, includingMicrosoft Access, Microsoft Excel, text files and others.

Themain benefits of using linked servers are:

l Reading external data for import or processing.

l Executing distributed queries, datamodifications, and transactions for enterprise-wide data sources.

l Querying heterogeneous data source using the familiar T-SQL API.

Linked servers can be configured using either SQL Server Management Studio, or the system stored procedure
sp_addlinkedserver. The available functionality and the specific requirements vary significantly between the vari-
ousOLE-DB sources. Some sourcesmay allow read only access, othersmay require specific security context set-
tings, etc.

The Linked Server Definition contains the linked server alias, the OLE DB provider, and all the parameters
needed to connect to a specific OLE-DB data source.

TheOLE-DB provider is a .Net Dynamic Link Library (DLL) that handles the interaction of SQL Server with all
data sources of its type. For example, OLE-DB Provider for Oracle. TheOLE-DB data source is the specific data
source to be accessed, using the specified OLE-DB provider.

Note: SQL Server distributed queries can be used with any customOLE DB provider as long as the
required interfaces are implemented correctly.

SQL Server parses the T-SQL commands that access the linked server and sends the appropriate requests to
the OLE-DB provider. There are several accessmethods for remote data, including opening the base table for
read or issuing SQL queries against the remote data source.

Linked servers can bemanaged using SQL Server Management Studio graphical user interface or T-SQL sys-
tem stored procedres.

l EXECUTE sp_addlinkedserver to add new server definitions.

l EXECUTE sp_addlinkedserverlogin to define security context.

l EXECUTE sp_linkedservers or SELECT * FROM sys.servers system catalog view to
retrievemeta data.

l EXECUTE sp_dropserver to delete a linked server.

Linked server data sources are accessed from T-SQL using a fully qualified, four part naming scheme: <Server
Name>.<Database Name>.<SchemaName>.<Object Name>.

Additionally, the OPENQUERY row set function can be used to explicitly invoke pass-through queries on the
remote linked server, and theOPENROWSET andOPENDATASOURCE row set functions can be used for ad-
hoc remote data accesswithout defining the linked server in advance.

Syntax
EXECUTE sp_addlinkedserver

[@server=] <Linked Server Name>
[, [@srvproduct=] <Product Name>]
[, [@provider=] <OLE DB Provider>]
[, [@datasrc=] <Data Source>]
[, [@location=] <Data Source Address>]
[, [@provstr=] <Provider Connection String>]
[, [@catalog=] <Database>];

- 328 -

Examples
Create a linked server to a local text file.

EXECUTE sp_addlinkedserver MyTextLinkedServer, N'Jet 4.0',
N'Microsoft.Jet.OLEDB.4.0',
N'D:\TextFiles\MyFolder',
NULL,
N'Text';

Define security context.

EXECUTE sp_addlinkedsrvlogin MyTextLinkedServer, FALSE, Admin, NULL;

Use sp_tables_ex to list tables in folder.

EXEC sp_tables_ex MyTextLinkedServer;

Issue a SELECT query using 4 part name.

SELECT *
FROM MyTextLinkedServer...[FileName#text];

Formore information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-
transact-sql?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-
stored-procedures-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Querying data in remote databases is available via two primary options:

l dblink database link function

l postgresql_fdw (Foreign DataWrapper, FDW) extension

The Postgres foreign data wrapper extension is new to PostgreSQL and provides functionality similar to dblink.
However, the Postgres foreign data wrapper aligns closer with the SQL standard and can provide improved per-
formance.

Examples
Load the dblink extension into PostgreSQL.

CREATE EXTENSION dblink;

Create a persistent connection to a remote PostgreSQL database using the dblink_connect function specifying a
connection name (myconn), database name (postgresql), port (5432), host (hostname), user (username), and
password (password).

- 329 -

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql?view=sql-server-ver15

SELECT dblink_connect
('myconn', 'dbname=postgres port=5432 host=hostname user=username password=password');

The connection can be used to execute queries against the remote database.

Execute a query using the previously created connection (myconn) via the dblink function. The query returns the
id and name columns from the employees table. On the remote database, youmust specify the connection name
and the SQL query to execute aswell as parameters and datatypes for selected columns (id and name in this
example).

SELECT * from dblink
('myconn', 'SELECT id, name FROM EMPLOYEES') AS p(id int,fullname text);

Close the connection using the dblink_disconnect function.

SELECT dblink_disconnect('myconn');

Alternatively, you can use the dblink function specifying the full connection string to the remote PostgreSQL data-
base including the database name, port, hostname, username, and password. This can be done instead of using
a previously defined connection. Youmust also specify the SQL query to execute aswell as parameters and data-
types for the selected columns (id and name, in this example).

SELECT * from dblink
('dbname=postgres port=5432 host=hostname user=username password=password',
'SELECT id, name FROM EMPLOYEES') AS p(id int,fullname text);

DML commands are supported on tables referenced via the dblink function. For example, you can insert a new
row and then delete it from the remote table.

SELECT * FROM dblink('myconn',$$INSERT into employees VALUES (3,'New Employees No.
3!')$$) AS t(message text);

SELECT * FROM dblink('myconn',$$DELETE FROM employees WHERE id=3$$) AS t(message
text);

Create a new local table (new_employees_table) by querying data from a remote table.

SELECT emps.* INTO new_employees_table FROM dblink('myconn','SELECT * FROM employees')
AS emps(id int, name varchar);

Join remote data with local data.

SELECT local_emps.id , local_emps.name, s.sale_year, s.sale_amount
FROM local_emps INNER JOIN
dblink('myconn','SELECT * FROM working_hours') AS s(id int, hours worked int)
ON local_emps.id = s.id;

Execute DDL statements in the remote database.

SELECT * FROM dblink('myconn',$$CREATE table new_remote_tbl (a int, b text)$$) AS t(a
text);

For additional details, see https://www.postgresql.org/docs/13/static/dblink.html

- 330 -

https://www.postgresql.org/docs/13/static/dblink.html

SQL Server Scripting vs. PostgreSQL Scripting
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A N/A Non-compatible tool sets and scripting languages

Use PostgreSQL pgAdmin, Amazon RDS API, AWS
Management Console, and Amazon CLI

SQL Server Usage
SQL Server supports T-SQL and XQuery scripting within multiple execution frameworks such as SQL Server
Agent, and stored procedures.

The SQLCMD command line utility can also be used to execute T-SQL scripts. However, themost extensive and
feature-rich scripting environment is PowerShell.

SQL Server provides two PowerShell snap-ins that implement a provider exposing the entire SQL Server Man-
agement Object Model (SMO) as PowerShell paths. Additionally, a SQL Server cmd can be used to execute spe-
cific SQL Server commands.

Note: Invoke-Sqlcmd can be used to execute scripts using the SQLCMD utility.

The sqlps utility launches the PowerShell scripting environment and automatically loads the SQL Server mod-
ules. sqlps can be launched from a command prompt or from theObject Explorer pane of SQL Server Man-
agement Studio. You can execute ad-hoc PowerShell commands and script files (for example,
.\SomeFolder\SomeScript.ps1).

Note: SQL Server Agent supports executing PowerShell scripts in job steps. For more information, see
SQL Server Agent.

SQL Server also supports three types of direct database engine queries: T-SQL, XQuery, and the SQLCMD util-
ity. T-SQL and XQuery can be called from stored procedures, SQL Server Management Studio (or other IDE),
and SQL Server agent Jobs. The SQLCMD utility also supports commands and variables.

Examples
Backup a database with PowerShell using the default backup options.

PS C:\> Backup-SqlDatabase -ServerInstance "MyServer\SQLServerInstance" -Database
"MyDB"

Get all rows from theMyTable table in theyMyDB database.

PS C:\> Read-SqlTableData -ServerInstance MyServer\SQLServerInstance" -DatabaseName
"MyDB" -TableName "MyTable"

- 331 -

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/

Formore information, see:

l https://docs.microsoft.com/en-us/sql/powershell/sql-server-powershell?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/relational-databases/scripting/database-engine-scripting?view=sql-server-
ver15

l https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

PostgreSQL Usage
As a Platform as a Service (PaaS), Aurora PostgreSQL accepts connections from any compatible client, but you
cannot access the PostgreSQL command line utility typically used for database administration. However, you can
use PostgreSQL tools installed on a network host and the Amazon RDS API. Themost common tools for Aurora
PostgreSQL scripting and automation include PostgreSQL pgAdmin, PostgreSQLUtilities, and the Amazon
RDS API. The following sections describe each tool.

PostgreSQL pgAdmin

PostgreSQL pgAdmin is themost commonly used tool for development and administration of PostgreSQL serv-
ers. It is available as a free Community Edition and paid support is available.

The PostgreSQL pgAdmin also supports a Python scripting shell that you can use interactively and pro-
grammatically. For more information see: https://www.pgadmin.org/

Amazon RDS API

The Amazon RDS API is a web service for managing andmaintaining Aurora PostgreSQL (and other) relational
databases. It can be used to setup, operate, scale, backup, and performmany common administration tasks. The
RDS API supportsmultiple database platforms and can integrate administration seamlessly for heterogeneous
environments.

Note: The Amazon RDS API is asynchronous. Some interfacesmay require polling or callback func-
tions to receive command status and results.

You can access Amazon RDS using the AWSManagement Console, the AWS Command Line Interface (CLI),
and the Amazon RDS Progammatic API as described in the following sections.

AWS Management Console

The AWSManagement Console is a simple web-based set of tools for interactivemanagement of Aurora Post-
greSQL and other RDS services. It can be accessed at https://console.aws.amazon.com/rds/

AWS Command Line Interface (CLI)

The Amazon AWS Command Line Interface is an open source tool that runs on Linux,Windows, or MacOS hav-
ing Python 2 version 2.6.5 and higher or Python 3 version 3.3 and higher.

- 332 -

https://docs.microsoft.com/en-us/sql/powershell/sql-server-powershell?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/database-engine-scripting?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/database-engine-scripting?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15
https://www.pgadmin.org/
https://console.aws.amazon.com/rds/

The AWS CLI is built on top of the AWS SDK for Python (Boto), which provides commands for interacting with
AWS services.Withminimal configuration, you can start using all AWSManagement Console functionality from
your favorite terminal application.

l Linux shells: Use common shell programs such as Bash, Zsh, or tsch.

l Windows command line: Run commands in PowerShell or theWindowsCommand Processor.

l Remotely: Run commands on Amazon EC2 instances through a remote terminal such as PuTTY or SSH.

The AWS Tools for WindowsPowerShell and AWS Tools for PowerShell Core are PowerShell modules built on
the functionality exposed by the AWS SDK for .NET. These Tools enable scripting operations for AWS resources
using the PowerShell command line.

Note: You cannot use SQL Server cmdlets in PowerShell.

Amazon RDS Programmatic API

The Amazon RDS API can be used to automatemanagement of DB instances and other Amazon RDS objects.

Formore information about Amazon RDS API, see:

l API actions: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html

l Data Types: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html

l Common query parameters: http://-
docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html

l Error codes: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html

Examples
The following walk-through describes how to connect to an Aurora PostgreSQLDB instance using the Post-
greSQLUtility:

Log on to the Amazon RDS Console and select PostgreSQL database you want to connect to.

Copy the cluster endpoint address.

- 333 -

http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html

Note: You can also connect to individual DB instances. For more information, see
High Availability Essentials.

From a command shell, type the following:

psql --host=mypostgresql.c6c8mwvfdgv0.us-west-2.rds.amazonaws.com --port=5432 --user-
name=awsuser --password --dbname=mypgdb

l The --host parameter is the endpoint DNS name of the Aurora PostgreSQLDB cluster.

l The --port parameter is the port number .

Formore information, see

l https://docs.aws.amazon.com/cli/latest/reference/

l https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html

- 334 -

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html

Performance Tuning

SQL Server Execution Plans vs.
PostgreSQL Execution Plans
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action Code
Index Key Differences

N/A N/A Syntax differences

Completely different optimizer with different
operators and rules

SQL Server Usage
Execution plans provide users detailed information about the data access and processingmethods chosen by the
SQL Server QueryOptimizer. They also provide estimated or actual costs of each operator and sub-tree. Exe-
cution plans provide critical data for troubleshooting query performance issues.

SQL Server creates execution plans for most queries and returns them to client applications as plain text or XML
documents. SQL Server produces an execution plan when a query executes, but it can also generate estimated
planswithout executing a query.

SQL Server Management Studio provides a graphical view of the underlying XML plan document using icons and
arrows instead of textual information. This graphical view is extremely helpful when investigating the performance
aspects of a query.

To request an estimated execution plan, use the SET SHOWPLAN_XML, SHOWPLAN_ALL, or SHOWPLAN_
TEXT statements.

SQL Server 2017 introduces automatic tuning, which notifies users whenever a potential performance issue is
detected and lets them apply corrective actions, or lets the Database Engine automatically fix performance prob-
lems. Automatic tuning SQL Server enables users to identify and fix performance issues caused by query exe-
cution plan choice regressions. See Automatic tuning.

- 335 -

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15

Examples
Show the estimated execution plan for a query.

SET SHOWPLAN_XML ON;
SELECT *
FROM MyTable
WHERE SomeColumn = 3;
SET SHOWPLAN_XML OFF;

Actual execution plans return after execution of the query or batch of queries completes. Actual execution plans
include run-time statistics about resource usage and warnings. To request the actual execution plan, use the SET
STATISTICS XML statement to return the XML document object. Alternatively, use the STATISTICS PROFILE
statement, which returns an additional result set containing the query execution plan.

Show the actual execution plan for a query.

SET STATISTICS XML ON;
SELECT *
FROM MyTable
WHERE SomeColumn = 3;
SET STATISTICS XML OFF;

The following example shows a (partial) graphical execution plan fromSQLServer Management Studio.

Formore information, see
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans?view=sql-
server-ver15

PostgreSQL Usage
When using the EXPLAIN command, PostgreSQLwill generate the estimated execution plan for actions, such as
SELECT, INSERT, UPDATE and DELETE. EXPLAIN builds a structured tree of plan nodes representing the dif-
ferent actions taken (the sign “->” represents a root line in the PostgreSQL execution plan). In addition, the
EXPLAIN statement will provide statistical information regarding each action, such as cost, rows, time and loops.

When using the EXPLAIN command as part of a SQL statement, the statement will not execute, and the exe-
cution plan will be an estimation. By using the EXPLAIN ANALYZE command, the statement will execute in addi-
tion to displaying the execution plan.

- 336 -

https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans

PostgreSQL EXPLAIN Synopsis:

EXPLAIN [(option value[, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option and values can be one of:

ANALYZE [boolean]
VERBOSE [boolean]
COSTS [boolean]
BUFFERS [boolean]
TIMING [boolean]

 SUMMARY [boolean] (since PostgreSQL 10)
FORMAT { TEXT | XML | JSON | YAML }

By default, planning and execution time are displayed when using EXPLAIN ANALYZE, but not in other cases. A
new option "SUMMARY" allows explicit control of this information. Use SUMMARY to include planning and exe-
cution timemetrics in your output.

PostgreSQL provides configurations options that will cancel SQL statements running longer than provided time
limit. To use this option, you can set the statement_timeout instance-level parameter.
If value is specified without units, it is taken asmilliseconds. A value of zero (the default) disables the timeout.

Third-party connection pooler solutions like Pgbouncer and PgPool build on that and allow more flexibility in con-
trolling how long connection to DB can run, be in idle state etc.

Aurora PostgreSQL Query Plan Management

The Aurora PostgreSQLQuery PlanManagement (QPM) feature solves the problem of plan instability by allow-
ing database users tomaintain stable, yet optimal, performance for a set of managed SQL statements. QPM
primarily serves twomain objectives:

Plan Stability. QPMprevents plan regression and improves plan stability when any of the above changes occur in
the system.

Plan Adaptability. QPMautomatically detects new minimum-cost plans and controls when new plansmay be
used and adapts to the changes.

The quality and consistency of query optimization have amajor impact on the performance and stability of any
relational databasemanagement system (RDBMS). Query optimizers create a query execution plan for a SQL
statement at a specific point in time. As conditions change, the optimizer might pick a different plan that makes per-
formance better or worse. In some cases, a number of changes can all cause the query optimizer to choose a dif-
ferent plan and lead to performance regression. These changes include changes in statistics, constraints,
environment settings, query parameter bindings, and software upgrades. Regression is amajor concern for high-
performance applications.

With query planmanagement, you can control execution plans for a set of statements that you want to manage.
You can do the following:

l Improve plan stability by forcing the optimizer to choose from a small number of known, good plans.

l Optimize plans centrally and then distribute the best plans globally.

l Identify indexes that aren't used and assess the impact of creating or dropping an index.

- 337 -

l Automatically detect a new minimum-cost plan discovered by the optimizer.

l Try new optimizer featureswith less risk, because you can choose to approve only the plan changes that
improve performance.

Examples
1. Displaying the execution plan of a SQL statement using the EXPLAIN command:

EXPLAIN
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
WHERE LAST_NAME='King' AND FIRST_NAME='Steven';

--

Index Scan using idx_emp_name on employees (cost=0.14..8.16 rows=1 width=18)

Index Cond: (((last_name)::text = 'King'::text) AND ((first_name)::text =
'Steven'::text))
(2 rows)

2. Running the same statement with the ANALYZE keyword:

EXPLAIN ANALYZE
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
WHERE LAST_NAME='King' AND FIRST_NAME='Steven';

--

Seq Scan on employees (cost=0.00..3.60 rows=1 width=18) (actual

time=0.012..0.024 rows=1 loops=1)
Filter: (((last_name)::text = 'King'::text) AND ((first_name)::text =

'Steven'::text))
Rows Removed by Filter: 106

Planning time: 0.073 ms
Execution time: 0.037 ms

(5 rows)

By adding the ANALYZE keyword and executing the statement, we get additional information in addition to the
execution plan.

3. Viewing a PostgreSQL execution plan showing a FULL TABLE SCAN:

EXPLAIN ANALYZE
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
WHERE SALARY > 10000;

--

Seq Scan on employees (cost=0.00..3.34 rows=15 width=18) (actual time=0.012..0.036

rows=15 loops=1)
Filter: (salary > '10000'::numeric)
Rows Removed by Filter: 92

Planning time: 0.069 ms
Execution time: 0.052 ms

(5 rows)

- 338 -

PostgreSQL can perform several scan types for processing and retrieving data from tables including sequential
scans, index scans, and bitmap index scans. The sequential scan (“Seq Scan”) is PostgreSQL equivalent for
SQL Server “Table Scan” (full table scan).

For additional information see:https://www.postgresql.org/docs/13/static/sql-explain.html

SQL Server Query Hints and Plan Guides vs.
PostgreSQL DB Query Planning
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action
Code Index Key Differences

N/A N/A Very limited set of hints - Index hints and optim-
izer hints as comments

Syntax differences

SQL Server Usage
SQL Server hints are instructions that override automatic choicesmade by the query processor for DML and
DQL statements. The term hint ismisleading because, in reality, it forces an override to any other choice of exe-
cution plan.

JOIN Hints

LOOP, HASH, MERGE, and REMOTE hints can be explicitly added to a JOIN. For example, ... Table1
INNER LOOP JOIN Table2ON These hints force the optimizer to use Nested Loops, HashMatch, or Merge
physical join algorithms. REMOTE enables processing a join with a remote table on the local server.

Table Hints

Table hints override the default behavior of the query optimizer. Table hints are used to explicitly force a particular
locking strategy or accessmethod for a table operation clause. These hints do not modify the defaults and apply
only for the duration of the DML or DQL statement.

Some common table hints are INDEX = <Index value>, FORCESEEK, NOLOCK, and TABLOCKX.

Query Hints

Query hints affect the entire set of query operators, not just the individual clause in which they appear. Query hints
may be JOIN Hints, Table Hints, or from a set of hints that are only relevant for Query Hints.

Some common table hints includeOPTIMIZE FOR, RECOMPILE, FORCE ORDER, FAST <rows>.

Query hints are specified after the query itself following theWITH options clause.

Plan Guides

Plan guides provide similar functionality to query hints in the sense they allow explicit user intervention and control
over query optimizer plan choices. Plan guides can use either query hints or a full fixed, pre-generated plan

- 339 -

https://www.postgresql.org/docs/13/static/sql-explain.html

attached to a query. The difference between query hints and plan guides is the way they are associated with a
query.

While query or table hints need to be explicitly stated in the query text, they are not an option if you have no control
over the source code generating these queries. If an application uses ad-hoc queries instead of stored pro-
cedures, views, and functions, the only way to affect query plans is to use plan guides. They are often used tomit-
igate performance issueswith third-party software

A plan guide consists of the statement whose execution plan needs to be adjusted and either anOPTION clause
that lists the desired query hints or a full XML query plan that is enforced as long it is valid.

At run time, SQL Server matches the text of the query specified by the guide and attaches theOPTION hints.
Alternatively, it assigns the provided plan for execution.

SQL Server supports three types of Plan Guides:

l Object Plan Guides target statements that run within the scope of a code object such as a stored pro-
cedure, function, or trigger. If the same statement is found in another context, the plan guide is not be
applied.

l SQL Plan Guides are used for matching general ad-hoc statements not within the scope of code objects.
In this case, any instance of the statement regardless of the originating client is assigned the plan guide.

l Template Plan Guides can be used to abstract statement templates that differ only in parameter values. It
can be used to override the PARAMETERIZATION database option setting for a family of queries.

Syntax
QueryHints:

Note: The following syntax is for SELECT. Query hints can be used in all DQL and DML statements.

SELECT <statement>
OPTION
(
{{HASH|ORDER} GROUP
|{CONCAT |HASH|MERGE} UNION
|{LOOP|MERGE|HASH} JOIN
|EXPAND VIEWS
|FAST <Rows>
|FORCE ORDER
|{FORCE|DISABLE} EXTERNALPUSHDOWN
|IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX
|KEEP PLAN
|KEEPFIXED PLAN
|MAX_GRANT_PERCENT = <Percent>
|MIN_GRANT_PERCENT = <Percent>
|MAXDOP <Number of Processors>
|MAXRECURSION <Number>
|NO_PERFORMANCE_SPOOL
|OPTIMIZE FOR (@<Variable> {UNKNOWN|= <Value>}[,...])
|OPTIMIZE FOR UNKNOWN
|PARAMETERIZATION {SIMPLE|FORCED}
|RECOMPILE
|ROBUST PLAN
|USE HINT ('<Hint>' [,...])
|USE PLAN N'<XML Plan>'

- 340 -

|TABLE HINT (<Object Name> [,<Table Hint>[[,...]])
});

Create a PlanGuide:

EXECUTE sp_create_plan_guide @name = '<Plan Guide Name>'
,@stmt = '<Statement>'
,@type = '<OBJECT|SQL|TEMPLATE>'
,@module_or_batch = 'Object Name>'|'<Batch Text>'| NULL
,@params = '<Parameter List>'|NULL }
,@hints = 'OPTION(<Query Hints>'|'<XML Plan>'|NULL;

Examples
Limit parallelism for a sales report query.

EXEC sp_create_plan_guide
@name = N'SalesReportPlanGuideMAXDOP',
@stmt = N'SELECT *

 FROM dbo.fn_SalesReport(GETDATE())
@type = N'SQL',
@module_or_batch = NULL,
@params = NULL,
@hints = N'OPTION (MAXDOP 1)';

Use table and query hints.

SELECT *
FROM MyTable1 AS T1

WITH (FORCESCAN)
INNER LOOP JOIN

 MyTable2 AS T2
 WITH (TABLOCK, HOLDLOCK)

ON T1.Col1 = T2.Col1
WHERE T1.Date BETWEEN DATEADD(DAY, -7, GETDATE()) AND GETDATE()

Formore information, see:

l https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql?view=sql-server-ver15
l https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides?view=sql-server-ver15

PostgreSQL Usage
PostgreSQL does not support database hints to influence the behavior of the query planner, and you cannot influ-
ence how execution plans are generated fromwithin SQL queries. Although database hints are not directly sup-
ported, session parameters (also known asQuery Planning Parameters) can influence the behavior of the query
optimizer at the session level.

Example
Configure the query planner to use indexes instead of full table scans (disable SEQSCAN).

- 341 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides

SET ENABLE_SEQSCAN=FALSE;

Set the query planner’s estimated “cost” of a disk page fetch that is part of a series of sequential fetches (SEQ_
PAGE_COST) and set the planner's estimate of the cost of a non-sequentially-fetched disk page (RANDOM_
PAGE_COST). Reducing the value of RANDOM_PAGE_COST relative to SEQ_PAGE_COST causes the
query planner to prefer index scans, while raising the valuemakes index scansmore “expensive”.

SET SEQ_PAGE_COST to 4;
SET RANDOM_PAGE_COST to 1;

Enable or disable the query planner's use of nested-loopswhen performing joins. While it is impossible to com-
pletely disable the usage of nested-loop joins, setting the ENABLE_NESTLOOP toOFF discourages the query
planner from choosing nested-loop joins compared to alternative join methods.

SET ENABLE_NESTLOOP to FALSE;

For additional details, see https://www.postgresql.org/docs/13/static/runtime-config-query.html

SQL Server Managing Statistics vs.
PostgreSQL Table Statistics
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Syntax and option differences, similar
functionality

SQL Server Usage
Statistics objects in SQL Server are designed to support SQL Server's cost-based query optimizer. It uses stat-
istics to evaluate the various plan options and choose an optimal plan for optimal query performance.

Statistics are stored as BLOBs in system tables and contain histograms and other statistical information about the
distribution of values in one or more columns. A histogram is created for the first column only and samples the
occurrence frequency of distinct values. Statistics and histograms are collected by either scanning the entire table
or by sampling only a percentage of the rows.

You can view Statisticsmanually using the DBCC SHOW_STATISTICS statement or themore recent sys.dm_
db_stats_properties and sys.dm_db_stats_histogram system views.

SQL Server provides the capability to create filtered statistics containing aWHERE predicate. Filtered statistics
are useful for optimizing histogram granularity by eliminating rowswhose values are of less interest, for example
NULLs.

SQL Server canmanage the collection and refresh of statistics automatically (the default). Use the AUTO_
CREATE_STATISTICS and AUTO_UPDATE_STATISTICS database options to change the defaults.

When a query is submitted with AUTO_CREATE_STATISTICS on and the query optimizer may benefit from a
statistics that do not yet exist, SQL Server creates the statistics automatically. You can use the AUTO_UPDATE_
STATISTICS_ASYNC database property to set new statistics creation to occur immediately (causing queries to

- 342 -

https://www.postgresql.org/docs/13/static/runtime-config-query.html

wait) or to run asynchronously. When run asynchronously, the triggering execution cannot benefit from optim-
izations the optimizer may derive from it.

After creation of a new statistics object, either automatically or explicitly using the CREATE STATISTICS state-
ment, the refresh of the statistics is controlled by the AUTO_UPDATE_STATISTICS database option. When set
to ON, statistics are recalculated when they are stale, which happenswhen significant datamodifications have
occurred since the last refresh.

Syntax
CREATE STATISTICS <Statistics Name>
ON <Table Name> (<Column> [,...])
[WHERE <Filter Predicate>]
[WITH <Statistics Options>;

Examples
Create new statistics onmultiple columns. Set to use a full scan and to not refresh.

CREATE STATISTICS MyStatistics
ON MyTable (Col1, Col2)
WITH FULLSCAN, NORECOMPUTE;

Update statistics with a 50% sampling rate.

UPDATE STATISTICS MyTable(MyStatistics)
WITH SAMPLE 50 PERCENT;

View the statistics histogram and data.

DBCC SHOW_STATISTICS ('MyTable','MyStatistics');

Turn off automatic statistics creation for a database.

ALTER DATABASE MyDB SET AUTO_CREATE_STATS OFF;

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql?view=sql-server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql?view-
w=sql-server-ver15

PostgreSQL Usage
Use the ANALYZE command to collect statistics about a database, a table, or a specific table column. The Post-
greSQL ANALYZE command collects table statistics that support the generation of efficient query execution
plans by the query planner.

- 343 -

https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql

l Histograms: ANALYZE collects statistics on table column values and creates a histogram of the approx-
imate data distribution in each column.

l Pages and Rows: ANALYZE collects statistics on the number of database pages and rows fromwhich
each table is comprised.

l Data Sampling: For large tables, the ANALYZE command takes random samples of values rather than
examining each row. This allows the ANALYZE command to scan very large tables in a relatively small
amount of time.

l Statistic Collection Granularity: Executing the ANALYZE commandwithout parameters instructs Post-
greSQL to examine every table in the current schema. Supplying the table name or column name to
ANALYZE instructs the database to examine a specific table or table column.

Automatic Statistics Collection

By default, PostgreSQL is configured with an autovacuum daemonwhich automates the execution of statistics
collection via the ANALYZE commands (in addition to automation of the VACUUMcommand). The autovacuum
daemon scans for tables that show signs of largemodifications in data to collect the current statistics. Auto-
vacuum is controlled by several parameters.

Individual tables have several storage parameters which can trigger autovacuum process sooner or later. These
parameters, like autovacuum_enabled, autovacuum_vacuum_threshold and others can be set or changed using
CREATE TABLE or ALTER TABLE statements.

ALTER TABLE custom_autovaccum SET (autovacuum_enabled = true, autovacuum_vacuum_cost_
delay = 10ms, autovacuum_vacuum_scale_factor = 0.01, autovacuum_analyze_scale_factor =
0.005);

The command above will enable autovaccum for the custom_autovaccum table and will specify the autovacuum
process to sleep for 10milliseconds each run.
It will also specify a 1% of the table size to be added to autovacuum_vacuum_threshold and 0.5% of the table size
to be added to autovacuum_analyze_threshold when deciding whether to trigger a VACUUM

For additional details, see https://www.postgresql.org/docs/13/static/runtime-config-autovacuum.html

Manual Statistics Collection

PostgreSQL allows collecting statistics on-demand using the ANALYZE command at the database level, table-
level, or table column-level.

l ANALYZE on indexes is not currently supported.

l ANALYZE requires only a read-lock on the target table. It can run in parallel with other activity on the table.

l For large tables, ANALYZE takes a random sample of the table contents. It is configured via the show
default_statistics_target parameter. The default value is 100 entries. Raising the limit might allow more
accurate planner estimates to bemade at the price of consumingmore space in the pg_statistic table.

Since PostgreSQL 10, there is a new command "CREATE STATISTICS", which will create a new extended stat-
istics object tracking data about the specified table.

The STATISTICS object will tell the server to collect more detailed statistics.

Examples
Gather statistics for the entire database.

- 344 -

https://www.postgresql.org/docs/13/static/runtime-config-autovacuum.html

ANALYZE;

Gather statistics for a specific table. The VERBOSE keyword displays progress.

ANALYZE VERBOSE EMPLOYEES;

Gather statistics for a specific column.

ANALYZE EMPLOYEES (HIRE_DATE);

Specify the default_statistics_target parameter for an individual table column and reset it back to default.

ALTER TABLE EMPLOYEES ALTER COLUMN SALARY SET STATISTICS 150;

ALTER TABLE EMPLOYEES ALTER COLUMN SALARY SET STATISTICS -1;

Larger values increase the time needed to complete an ANALYZE, but improve the quality of the collected plan-
ner's statistics, which can potentially lead to better execution plans.

View the current (session / global) default_statistics_target, modify it to 150, and analyze the EMPLOYEES table:

SHOW default_statistics_target ;
SET default_statistics_target to 150;
ANALYZE EMPLOYEES ;

View the last time statistics were collected for a table.

select relname, last_analyze from pg_stat_all_tables;

Summary
Feature SQL Server PostgreSQL

Analyze a specific data-
base table

CREATE STATISTICS MyStatistics
ON MyTable (Col1, Col2)

ANALYZE EMPLOYEES;

Analyze a database
table while only
sampling certain rows

UPDATE STATISTICS MyTable(MyStatistics)
WITH SAMPLE 50 PERCENT;

Configure via number of entries for
the table:

SET default_statistics_target to
150;
ANALYZE EMPLOYEES ;

View last time statistics
were collected

DBCC SHOW_STATISTICS ('MyT-
able','MyStatistics');

select relname, last_analyze from
pg_stat_all_tables;

For additional information, see:

l https://www.postgresql.org/docs/13/static/sql-analyze.html

l https://www.postgresql.org/docs/13/static/routine-vacuuming.html#AUTOVACUUM

- 345 -

https://www.postgresql.org/docs/13/static/sql-analyze.html
https://www.postgresql.org/docs/13/static/routine-vacuuming.html#AUTOVACUUM

Physical Storage

SQL Server Columnstore Index vs.
PostgreSQL Columnstore
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A Aurora PostgreSQL offers no com-
parable feature

SQL Server Usage
SQL Server providesColumnstore Indexes that use column-based data storage to compress data and improve
query performance in data warehouses. Columnstore indexes are the preferred data storage format for data
warehousing and analytic workloads. As a best practice, use Columnstore indexeswith fact tables and large
dimension workloads.

Examples
Create a table with a columnar store index.

CREATE TABLE products(ID [int] NOT NULL, OrderDate [int] NOT NULL, ShipDate [int] NOT
NULL);
GO

CREATE CLUSTERED COLUMNSTORE INDEX cci_T1 ON products;
GO

Formore information, see :
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15

- 346 -

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-2017

PostgreSQL Usage
Amazon Aurora PostgreSQL does not currently provide a directly comparable alternative for SQL Server's
Columstore Index.

SQL Server Indexed Views vs.
PostgreSQL Materialized Views
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action Code
Index Key Differences

N/A Different paradigm and syntaxwill require
rewriting the application

SQL Server Usage
The first index created on a view must be a clustered index. Subsequent indexes can be non-clustered indexes.
For more information about clustered and non-clustered indexes, see:
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-
described?view=sql-server-ver15

Before creating an index on a view, the following requirementsmust bemet:

l TheWITH SCHEMABINDINGoptionmust be used when creating the view.

l Verify the SET options are correct for all existing tables referenced in the view and for the session (the the
link at the end of this section for required values).

l Ensure that a clustered index on the view is exists.

Note: Indexed views cannot be used with temporal queries (FOR SYSTEM_TIME).

Examples
Set the required SET options, create a view (with theWITH SCHEMABINDINGoption), and create an index on
this view.

SET NUMERIC_ROUNDABORT OFF;
SET ANSI_PADDING, ANSI_WARNINGS, CONCAT_NULL_YIELDS_NULL, ARITHABORT,

QUOTED_IDENTIFIER, ANSI_NULLS ON;
GO

CREATE VIEW Sales.Ord_view
WITH SCHEMABINDING
AS

SELECT SUM(Price*Qty*(1.00-Discount)) AS Revenue,
OrdTime, ID, COUNT_BIG(*) AS COUNT

FROM Sales.OrderDetail AS ordet, Sales.OrderHeader AS ordhead
WHERE ordet.SalesOrderID = ordhead.SalesOrderID
GROUP BY OrdTime, ID;

GO

- 347 -

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-2017

CREATE UNIQUE CLUSTERED INDEX IDX_V1
ON Sales.Ord_view (OrdTime, ID);

GO

Formore information, see :
https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?view=sql-server-ver15

PostgreSQL Usage
PostgreSQL does not support view indexes, but does provide similar functionality with Materialized Views. Quer-
ies associated with Materialized Views are executed and the view data is populated when the REFRESH com-
mand is issued.

The PostgreSQL implementation of Materialized Views has three primary limitations:

l PostgreSQLMaterialized Viewsmay be refreshed either manually or using a job running the REFRESH
MATERIALIZED VIEW command. Automatic refresh of Materialized Views require the creation of a trig-
ger.

l PostgreSQLMaterialized Views only support complete (full) refresh.

l DML onMaterialized Views is not supported.

In some cases, when the tables are big, full REFRESH can cause performance issues, in this case, triggers can
be used to sync between one table to the new table (the new table can be used as a view) that can indexed.

Examples
Create aMaterialized View named sales_summary using the sales table as the source.

CREATE MATERIALIZED VIEW sales_summary AS
SELECT seller_no,sale_date,sum(sale_amt)::numeric(10,2) as sales_amt
FROM sales
WHERE sale_date < CURRENT_DATE
GROUP BY seller_no, sale_date
ORDER BY seller_no, sale_date;

Execute amanual refresh of theMaterialized View:

REFRESH MATERIALIZED VIEW sales_summary;

Note: TheMaterialized View data is not refreshed automatically if changes occur to its underlying
tables. For automatic refresh of materialized view data, a trigger on the underlying tablesmust be cre-
ated.

Creating a Materialized View

When you create aMaterialized View in PostgreSQL, it uses a regular database table underneath. You can cre-
ate database indexes on theMaterialized View directly and improve performance of queries that access the
Materialized View.

- 348 -

https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?view=sql-server-2017

Example
Create an index on the sellerno and sale_date columns of the sales_summaryMaterialized View.

CREATE UNIQUE INDEX sales_summary_seller
ON sales_summary (seller_no, sale_date);

Summary

Indexed views Materialized view

CreateMater-
ialized View

SET NUMERIC_ROUNDABORTOFF;
SET ANSI_PADDING, ANSI_
WARNINGS, CONCAT_NULL_
YIELDS_NULL, ARITHABORT,
QUOTED_IDENTIFIER, ANSI_NULLS
ON; GO

CREATE VIEW Sales.Ord_view WITH
SCHEMABINDINGAS SELECT SUM
(Price*Qty*(1.00-Discount)) AS Rev-
enue, OrdTime, ID, COUNT_BIG(*) AS
COUNT FROMSales.OrderDetail AS
ordet, Sales.OrderHeader AS ordhead
WHERE ordet.SalesOrderID = ord-
head.SalesOrderID GROUP BY
OrdTime, ID; GO

CREATE UNIQUE CLUSTERED
INDEX IDX_V1ON Sales.Ord_view
(OrdTime, ID); GO

CREATEMATERIALIZED VIEWmv1 AS SELECT
* FROMemployees;

Indexed
refreshed

Automatic Manual. You can automate refreshes using triggers:

Create a trigger that initiates a refresh after every
DML command on the underlying tables:

CREATE OR REPLACE FUNCTION
refresh_mv1()
returns trigger language plpgsql as
$$ begin
refreshmaterialized view mv1;
return null;
end $$;

Create trigger refresh_mv1 after insert, update,
delete or truncate on employees for each statement
execute procedure refresh_mv1();

DML Supported Not Supported

Formore details, see: https://www.postgresql.org/docs/13/static/rules-materializedviews.htm

- 349 -

https://www.postgresql.org/docs/13/static/rules-materializedviews.htm

SQL Server Partitioning vs. PostgreSQL Partitions or
Table Inheritance
Feature Com-
patibility

SCT/DMS Auto-
mation Level

SCT Action Code
Index Key Differences

SCT Action Codes -
Partitions

Does not support LEFT partition or foreign keys
referencing partitioned tables

SQL Server Usage
SQLServer provides a logical and physical framework for partitioning table and index data. SQL Server 2017 sup-
ports up to 15,000 partitions.

Partitioning separates data into logical units that can be stored inmore than one file group. SQL Server par-
titioning is horizontal, where data sets of rows aremapped to individual partitions. A partitioned table or index is a
single object andmust reside in a single schemawithin a single database. Objects composed of disjointed par-
titions is not allowed.

All DQL and DML operations are partition agnostic except for the special predicate $partition, which can be used
for explicit partition elimination.

Partitioning is typically needed for very large tables to address the followingmanagement and performance chal-
lenges:

l Deleting or inserting large amounts of data in a single operation with partition switching instead of individual
row processing while maintaining logical consistency.

l Maintenance operations can be split and customized per partition. For example, older data partitions can
be compressed andmore active partitions can be rebuilt or reorganizedmore frequently.

l Partitioned tablesmay use internal query optimization techniques such as collocated and parallel par-
titioned joins.

l Physical storage performance can be optimized by distributing IO across partitions and physical storage
channels.

l Concurrency improvements due to the engine's ability to escalate locks to the partition level rather than the
whole table.

Partitioning in SQL Server uses the following three objects:

l Partitioning Column: A Partitioning column is the column (or columns) used by the partition function to par-
tition the table or index. The value of this column determines the logical partition to which it belongs. You
can use computed columns in a partition function as long as they are explicitly PERSISTED. Partitioning
columnsmay be any data type that is a valid index columnwith less than 900 bytes per key except
timestamp and LOB data types.

l Partition Function: A Partition function is a database object that defines how the values of the partitioning
columns for individual tables or index rows aremapped to a logical partition. The partition function
describes the partitions for the table or index and their boundaries.

l Partition Scheme: A partition scheme is a database object that maps individual logical partitions of a table
or an index to a set of file groups, which in turn consist of physical operating system files. Placing individual
partitions on individual file groups enables backup operations for individual partitions (by backing their asso-
ciated file groups).

- 350 -

Syntax
CREATE PARTITION FUNCTION <Partition Function>(<Data Type>)
AS RANGE [LEFT | RIGHT]
FOR VALUES (<Boundary Value 1>,...)[;]

CREATE PARTITION SCHEME <Partition Scheme>
AS PARTITION <Partition Function>
[ALL] TO (<File Group> | [PRIMARY] [,...])[;]

CREATE TABLE <Table Name> (<Table Definition>)
ON <Partition Schema> (<Partitioning Column>);

Examples
Create a partitioned table.

CREATE PARTITION FUNCTION PartitionFunction1 (INT)
AS RANGE LEFT FOR VALUES (1, 1000, 100000);

CREATE PARTITION SCHEME PartitionScheme1
AS PARTITION PartitionFunction1
ALL TO (PRIMARY);

CREATE TABLE PartitionTable (
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20)
)
ON PartitionScheme1 (Col1);

Formore information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-
server-ver15

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15
l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql?view=sql-server-ver15
l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-function-transact-sql?view=sql-server-ver15

PostgreSQL Usage
Starting with PostgreSQL 10, there is an equivalent option to the SQL Server Partitionswhen using RANGE or
LIST partitions. Support for HASH partitions is expected to be included in PostgreSQL 11.

Prior to PostgreSQL 10, the table partitioningmechanism in PostgreSQL differed fromSQLServer. Partitioning
in PostgreSQLwas implemented using “table inheritance”. Each table partition was represented by a child table
which was referenced to a single parent table. The parent table remained empty and was only used to represent
the entire table data set (as ameta-data dictionary and as a query source).

In PostgreSQL 10, you still need to create the partition tablesmanually, but you do not need to create triggers or
functions to redirect data to the right partition.

- 351 -

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-function-transact-sql

Some of the Partitioningmanagement operations are performed directly on the sub-partitions (sub-tables).
Querying can be performed directly on the partitioned table itself.

Starting with PostgreSQL 11 following featureswere added:

l For partitioned tables, a default partition can now be created that will store data which can't be redirected to
any other explicit partitions

l In addition to partitioning by ranges and lists, tables can now be partitioned by a hashed key.

l WhenUPDATE changes values in a column that's used as partition key in partitioned table, data ismoved
to proper partitions.

l An index can now be created on a partitioned table. Corresponding indexeswill be automatically created
on individual partitions.

l Foreign keys can now be created on a partitioned table. Corresponding foreign key constraints will be
propagated to individual partitions

l Triggers FOR EACH ROW can now be created on a partitioned table. Corresponding triggers will be auto-
matically created on individual partitions aswell.

l When attaching or detaching new partition to a partitioned table with the foreign key, foreign key enforce-
ment triggers are correctly propagated to a new partition.

Formore information, see:
https://www.postgresql.org/docs/13/static/ddl-inherit.htm
https://www.postgresql.org/docs/13/ddl-partitioning.html

- 352 -

https://www.postgresql.org/docs/13/static/ddl-inherit.html
https://www.postgresql.org/docs/13/ddl-partitioning.html

Using The Partition Mechanism

List Partition

CREATE TABLE emps (
emp_id SERIAL NOT NULL,
emp_name VARCHAR(30) NOT NULL)

PARTITION BY LIST (left(lower(emp_name), 1));

CREATE TABLE emp_abc
PARTITION OF emps (
CONSTRAINT emp_id_nonzero CHECK (emp_id != 0)

) FOR VALUES IN ('a', 'b', 'c');

CREATE TABLE emp_def
PARTITION OF emps (
CONSTRAINT emp_id_nonzero CHECK (emp_id != 0)

) FOR VALUES IN ('d', 'e', 'f');

INSERT INTO emps VALUES (DEFAULT, 'Andrew');

row inserted.

INSERT INTO emps VALUES (DEFAULT, 'Chris');

row inserted.

INSERT INTO emps VALUES (DEFAULT, 'Frank');

row inserted.

INSERT INTO emps VALUES (DEFAULT, 'Pablo');

SQL Error [23514]: ERROR: no partition of relation "emps" found for row
Detail: Partition key of the failing row contains ("left"(lower(emp_name::text), 1))

= (p).

Note: To prevent the above error, ensure that all partitions exist for all possible values in the column that
partitions the table. The default partition feature was added in PostgreSQL 11.

Note: Use theMAXVALUE andMINVALUE in your FROM/TO clause. This can help you get all values
with RANGE partitionswithout the risk of creating new partitions.

- 353 -

Range Partition

CREATE TABLE sales (
saledate DATE NOT NULL,
item_id INT,
price FLOAT

) PARTITION BY RANGE (saledate);

CREATE TABLE sales_2018q1
PARTITION OF sales (
price DEFAULT 0

) FOR VALUES FROM ('2018-01-01') TO ('2018-03-31');

CREATE TABLE sales_2018q2
PARTITION OF sales (
price DEFAULT 0

) FOR VALUES FROM ('2018-04-01') TO ('2018-06-30');

CREATE TABLE sales_2018q3
PARTITION OF sales (
price DEFAULT 0

) FOR VALUES FROM ('2018-07-01') TO ('2018-09-30');

INSERT INTO sales VALUES (('2018-01-08'),3121121, 100);

row inserted.

INSERT INTO sales VALUES (('2018-04-20'),4378623);

row inserted.

INSERT INTO sales VALUES (('2018-08-13'),3278621, 200);

row inserted.

When creating a table with PARTITION OF clause, you can still use the "PARTITION BY" clause with it. Using
the "PARTITION BY" clause will create a sub-partition.

A sub-partition can be the same type as the partition table it is related to, or another partition type.

- 354 -

List Combined With Range Partition

This is an example of creating a LIST partition and sub partitions byRANGE.

CREATE TABLE salers (
emp_id serial not null,
emp_name varchar(30) not null,
sales_in_usd int not null,
sale_date date not null

) PARTITION BY LIST (left(lower(emp_name), 1));

CREATE TABLE emp_abc
PARTITION OF salers (
CONSTRAINT emp_id_nonzero CHECK (emp_id != 0)

) FOR VALUES IN ('a', 'b', 'c') PARTITION BY RANGE (sale_date);

CREATE TABLE emp_def
PARTITION OF salers (
CONSTRAINT emp_id_nonzero CHECK (emp_id != 0)

) FOR VALUES IN ('d', 'e', 'f') PARTITION BY RANGE (sale_date);

CREATE TABLE sales_abc_2018q1
PARTITION OF emp_abc (
sales_in_usd DEFAULT 0

) FOR VALUES FROM ('2018-01-01') TO ('2018-03-31');

CREATE TABLE sales_abc_2018q2
PARTITION OF emp_abc (
sales_in_usd DEFAULT 0

) FOR VALUES FROM ('2018-04-01') TO ('2018-06-30');

CREATE TABLE sales_abc_2018q3
PARTITION OF emp_abc (
sales_in_usd DEFAULT 0

) FOR VALUES FROM ('2018-07-01') TO ('2018-09-30');

CREATE TABLE sales_def_2018q1
PARTITION OF emp_def (
sales_in_usd DEFAULT 0

) FOR VALUES FROM ('2018-01-01') TO ('2018-03-31');

CREATE TABLE sales_def_2018q2
PARTITION OF emp_def (
sales_in_usd DEFAULT 0

) FOR VALUES FROM ('2018-04-01') TO ('2018-06-30');

CREATE TABLE sales_def_2018q3
PARTITION OF emp_def (
sales_in_usd DEFAULT 0

) FOR VALUES FROM ('2018-07-01') TO ('2018-09-30');

- 355 -

Implementing List “Table Partitioning” with inheritance
tables
For older PostgreSQL versions, follow these steps to implement list table partitioning using inherited tables:

1. Create a parent table (“master table”) fromwhich all child tables (“partitions”) will inherit.

2. Create child tables that inherit from the parent table (this is similar to Table Partitions). The child tables
should have an identical structure to the parent table.

3. Create Indexes on each child table. Optionally, add constraints to define allowed values in each table (for
example, primary keys or check constraints).

4. Create a database trigger to redirect data inserted into the parent table to the appropriate child table.

5. Ensure the PostgreSQL constraint_exclusion parameter is enabled and set to partition. This parameter
ensures the queries are optimized for working with table partitions.

show constraint_exclusion;

constraint_exclusion

partition

For additional information on PostgreSQL constraint_exclusion parameter:
https://www.postgresql.org/docs/13/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION

PostgreSQL 9.6 does not support “declarative partitioning”, nor several of the table partitioning features available
in SQL Server.

Note:
• PostgreSQL 9.6 Table Partitioning does not support the creation of foreign keys on the parent table.
Alternative solutions include application-centricmethods such as using triggers/functions or creating
these on the individual tables .
• PostgreSQL does not support SPLIT and EXCHANGE of table partitions. For these actions, you will
need to plan your datamigrationsmanually (between tables) to re-place the data into the right partition.

- 356 -

https://www.postgresql.org/docs/10/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION

Examples
Create a PostgreSQL “list-partitioned table”:

Create the parent table.

CREATE TABLE SYSTEM_LOGS
(EVENT_NO NUMERIC NOT NULL,

 EVENT_DATE DATE NOT NULL,
 EVENT_STR VARCHAR(500),
 ERROR_CODE VARCHAR(10));

Create child tables (“partitions”) with check constraints.

CREATE TABLE SYSTEM_LOGS_WARNING (
 CHECK (ERROR_CODE IN('err1', 'err2', 'err3'))) INHERITS (SYSTEM_LOGS);

CREATE TABLE SYSTEM_LOGS_CRITICAL (
 CHECK (ERROR_CODE IN('err4', 'err5', 'err6'))) INHERITS (SYSTEM_LOGS);

Create indexes on each of the child tables (“partitions”).

CREATE INDEX IDX_SYSTEM_LOGS_WARNING ON SYSTEM_LOGS_WARNING(ERROR_CODE);

CREATE INDEX IDX_SYSTEM_LOGS_CRITICAL ON SYSTEM_LOGS_CRITICAL(ERROR_CODE);

Create a function to redirect data inserted into the Parent Table.

CREATE OR REPLACE FUNCTION SYSTEM_LOGS_ERR_CODE_INS()
 RETURNS TRIGGER AS
 $$
 BEGIN
 IF (NEW.ERROR_CODE IN('err1', 'err2', 'err3')) THEN
 INSERT INTO SYSTEM_LOGS_WARNING VALUES (NEW.*);
 ELSIF (NEW.ERROR_CODE IN('err4', 'err5', 'err6')) THEN
 INSERT INTO SYSTEM_LOGS_CRITICAL VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Value out of range, check SYSTEM_LOGS_ERR_CODE_INS () Function!';
 END IF;
 RETURN NULL;
 END;
 $$
 LANGUAGE plpgsql;

Attach the trigger function created above to log to the table.

CREATE TRIGGER SYSTEM_LOGS_ERR_TRIG
 BEFORE INSERT ON SYSTEM_LOGS
 FOR EACH ROW EXECUTE PROCEDURE SYSTEM_LOGS_ERR_CODE_INS();

Insert data directly into the parent table.

INSERT INTO SYSTEM_LOGS VALUES(1, '2015-05-15', 'a...', 'err1');
INSERT INTO SYSTEM_LOGS VALUES(2, '2016-06-16', 'b...', 'err3');
INSERT INTO SYSTEM_LOGS VALUES(3, '2017-07-17', 'c...', 'err6');

- 357 -

View results from across all the different child tables.

SELECT * FROM SYSTEM_LOGS;
 event_no | event_date | event_str
 ----------+------------+-----------
 1 | 2015-05-15 | a...
 2 | 2016-06-16 | b...
 3 | 2017-07-17 | c...

SELECT * FROM SYSTEM_LOGS_WARNING;
 event_no | event_date | event_str | error_code
 ----------+------------+-----------+------------
 1 | 2015-05-15 | a... | err1
 2 | 2016-06-16 | b... | err3

SELECT * FROM SYSTEM_LOGS_CRITICAL;
 event_no | event_date | event_str | error_cod
 ----------+------------+-----------+------------
 3 | 2017-07-17 | c... | err6

Create a PostgreSQL “range-partitioned table”:

Create the parent table.

CREATE TABLE SYSTEM_LOGS
(EVENT_NO NUMERIC NOT NULL,
EVENT_DATE DATE NOT NULL,
EVENT_STR VARCHAR(500));

Create the child tables (“partitions”) with check constraints.

CREATE TABLE SYSTEM_LOGS_2015 (CHECK (EVENT_DATE >= DATE '2015-01-01' AND EVENT_DATE <
DATE '2016- 01-01')) INHERITS (SYSTEM_LOGS);

CREATE TABLE SYSTEM_LOGS_2016 (CHECK (EVENT_DATE >= DATE '2016-01-01' AND EVENT_DATE <
DATE '2017-01-01')) INHERITS (SYSTEM_LOGS);

CREATE TABLE SYSTEM_LOGS_2017 (CHECK (EVENT_DATE >= DATE '2017-01-01' AND EVENT_DATE
<= DATE '2017-12-31')) INHERITS (SYSTEM_LOGS);

Create indexes on each child table (“partitions”).

CREATE INDEX IDX_SYSTEM_LOGS_2015 ON SYSTEM_LOGS_2015(EVENT_DATE);
CREATE INDEX IDX_SYSTEM_LOGS_2016 ON SYSTEM_LOGS_2016(EVENT_DATE);
CREATE INDEX IDX_SYSTEM_LOGS_2017 ON SYSTEM_LOGS_2017(EVENT_DATE);

Create a function to redirect data inserted into the parent table.

CREATE OR REPLACE FUNCTION SYSTEM_LOGS_INS ()
 RETURNS TRIGGER AS
 $$
 BEGIN
 IF (NEW.EVENT_DATE >= DATE '2015-01-01' AND
 NEW.EVENT_DATE < DATE '2016-01-01') THEN
 INSERT INTO SYSTEM_LOGS_2015 VALUES (NEW.*);
 ELSIF (NEW.EVENT_DATE >= DATE '2016-01-01' AND
 NEW.EVENT_DATE < DATE '2017-01-01') THEN

- 358 -

 INSERT INTO SYSTEM_LOGS_2016 VALUES (NEW.*);
 ELSIF (NEW.EVENT_DATE >= DATE '2017-01-01' AND
 NEW.EVENT_DATE <= DATE '2017-12-31') THEN
 INSERT INTO SYSTEM_LOGS_2017 VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Date out of range. check SYSTEM_LOGS_INS () function!';
 END IF;
 RETURN NULL;
 END;
$$
LANGUAGE plpgsql;

Attach the trigger function created above to log to the SYSTEM_LOGS table.

CREATE TRIGGER SYSTEM_LOGS_TRIG BEFORE INSERT ON SYSTEM_LOGS
 FOR EACH ROW EXECUTE PROCEDURE SYSTEM_LOGS_INS ();

Insert data directly to the parent table.

INSERT INTO SYSTEM_LOGS VALUES (1, '2015-05-15', 'a...');
INSERT INTO SYSTEM_LOGS VALUES (2, '2016-06-16', 'b...');
INSERT INTO SYSTEM_LOGS VALUES (3, '2017-07-17', 'c...');

Test the solution by selecting data from the parent and child tables.

SELECT * FROM SYSTEM_LOGS;
 event_no | event_date | event_str
 ----------+------------+-----------
 1 | 2015-05-15 | a...
 2 | 2016-06-16 | b...
 3 | 2017-07-17 | c...

SELECT * FROM SYSTEM_LOGS_2015;
 event_no | event_date | event_str
 ----------+------------+-----------
 1 | 2015-05-15 | a...

Examples of new partitioning features of PostgreSQL11
Default partitions

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);
CREATE TABLE tst_part1 PARTITION OF tst_part FOR VALUES FROM (1) TO (5);
CREATE TABLE tst_part_dflt PARTITION OF tst_part DEFAULT; INSERT INTO tst_part SELECT generate_
series(1,10,1);
SELECT * FROM tst_part1;i

1
2
3
4
4 rows)

SELECT * FROM tst_part_dflt;

- 359 -

i

5
6
7
8
9
10
(6 rows)

Hash partitioning:

CREATE TABLE tst_hash(i INT) PARTITION BY HASH(i);
CREATE TABLE tst_hash_1 PARTITION OF tst_hash FOR VALUES WITH (MODULUS 2, REMAINDER 0);
CREATE TABLE tst_hash_2 PARTITION OF tst_hash FOR VALUES WITH (MODULUS 2, REMAINDER 1);

INSERT INTO tst_hash SELECT generate_series(1,10,1);

SELECT * FROM tst_hash_1;
 i

1
2

(2 rows)

SELECT * FROM tst_hash_2;
 i

3
4
5
6
7
8
9

10
(8 rows)

UPDATE on partition key:

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);
CREATE TABLE tst_part1 PARTITION OF tst_part FOR VALUES FROM (1) TO (5);
CREATE TABLE tst_part_dflt PARTITION OF tst_part DEFAULT;

INSERT INTO tst_part SELECT generate_series(1,10,1);

SELECT * FROM tst_part1;
i

1
2
3
4
(4 rows)

SELECT * FROM tst_part_dflt;
i

- 360 -

5
6
7
8
9
10
(6 rows)

UPDATE tst_part SET i=1 WHERE i IN (5,6);

SELECT * FROM tst_part_dflt;
i

7
8
9
10
(4 rows)

SELECT * FROM tst_part1;
i

1
2
3
4
1
1
(6 rows)

Index propagation on partitioned tables:

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);

CREATE TABLE tst_part1 PARTITION OF tst_part FOR VALUES FROM (1) TO (5);

CREATE TABLE tst_part2 PARTITION OF tst_part FOR VALUES FROM (5) TO (10);

CREATE INDEX tst_part_ind ON tst_part(i);

\d+ tst_part
 Partitioned table "public.tst_part"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition key: RANGE (i)
Indexes:

"tst_part_ind" btree (i)
Partitions: tst_part1 FOR VALUES FROM (1) TO (5),
 tst_part2 FOR VALUES FROM (5) TO (10)

\d+ tst_part1
Table "public.tst_part1"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:

"tst_part1_i_idx" btree (i)
Access method: heap

\d+ tst_part2

- 361 -

Table "public.tst_part2"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 10))
Indexes:

"tst_part2_i_idx" btree (i)
Access method: heap

Foerign keys propagation on partitioned tables:

CREATE TABLE tst_ref(i INT PRIMARY KEY);

ALTER TABLE tst_part ADD CONSTRAINT tst_part_fk FOREIGN KEY (i) REFERENCES tst_ref(i);

\d+ tst_part
 Partitioned table "public.tst_part"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition key: RANGE (i)
Indexes:

"tst_part_ind" btree (i)
Foreign-key constraints:

"tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Partitions: tst_part1 FOR VALUES FROM (1) TO (5),
 tst_part2 FOR VALUES FROM (5) TO (10)

\d+ tst_part1
Table "public.tst_part1"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:

"tst_part1_i_idx" btree (i)
Foreign-key constraints:

TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Access method: heap

\d+ tst_part2
Table "public.tst_part2"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 10))
Indexes:

"tst_part2_i_idx" btree (i)
Foreign-key constraints:

TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Access method: heap

Triggers propagation on partitioned tables:

- 362 -

CREATE TRIGGER some_trigger AFTER UPDATE ON tst_part FOR EACH ROW EXECUTE FUNCTION some_func();

\d+ tst_part
 Partitioned table "public.tst_part"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition key: RANGE (i)
Indexes:

"tst_part_ind" btree (i)
Foreign-key constraints:

"tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:
 some_trigger AFTER UPDATE ON tst_part FOR EACH ROW EXECUTE FUNCTION some_func()
Partitions: tst_part1 FOR VALUES FROM (1) TO (5),
 tst_part2 FOR VALUES FROM (5) TO (10)

\d+ tst_part1
Table "public.tst_part1"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:

"tst_part1_i_idx" btree (i)
Foreign-key constraints:

TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:
 some_trigger AFTER UPDATE ON tst_part1 FOR EACH ROW EXECUTE FUNCTION some_func()
Access method: heap

\d+ tst_part2
Table "public.tst_part2"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 i | integer | | | | plain | |
Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 10))
Indexes:

"tst_part2_i_idx" btree (i)
Foreign-key constraints:

TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:
 some_trigger AFTER UPDATE ON tst_part2 FOR EACH ROW EXECUTE FUNCTION some_func()
Access method: heap

- 363 -

Summary
The following table identifies similarities, differences, and keymigration considerations.

Feature SQL Server Aurora PostgreSQL

Partition types RANGE only RANGE, LIST

Partitioned tables scope All tables are partitioned, some havemore than
one partition

All tables are partitioned, some
havemore than one partition

Partition boundary dir-
ection

LEFT or RIGHT RIGHT

Exchange partition Any partition to any partition N/A

Partition function Abstract function object, Independent of individual
column

Abstract function object,
Independent of individual column

Partition scheme Abstract partition storagemapping object Abstract partition storagemap-
ping object

Limitations on par-
titioned tables

None — all tables are partitioned Not all commands are com-
patible with table inheritance

Formore information, see https://www.postgresql.org/docs/13/static/ddl-partitioning.html

- 364 -

https://www.postgresql.org/docs/10/static/ddl-partitioning.html

Security

SQL Server Column Encryption vs.
PostgreSQL Column Encryption
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Syntax and option differences, similar
functionality

SQL Server Usage
SQLServer provides encryption and decryption functions to secure the content of individual columns. The fol-
lowing list identifies common encryption functions:

l EncryptByKey and DecryptByKey

l EncryptByCert and DecryptByCert

l EncryptByPassPhrase and DecryptByPassPhrase

l EncryptByAsymKey and DecryptByAsymKey

You can use these functions anywhere in your code; they are not limited to encrypting table columns. A common
use case is to increase run time security by encrypting of application user security tokens passed as parameters.

These functions follow the general SQL Server encryption hierarchy, which in turn use theWindowsServer Data
Protection API.

Symmetric encryption and decryption consumeminimal resources and can be used for large data sets.

Note: This section does not cover Transparent Data Encryption (TDE) or AlwaysEncrypted end-to-end
encryption.

Syntax
General syntax for EncryptByKey and DecryptByKey:

- 365 -

EncryptByKey (<key GUID> , { 'text to be encrypted' }, { <use authenticator flag>}, {
<authenticator> });

DecryptByKey ('Encrypted Text' , <use authenticator flag>, { <authenticator>)

Examples
The following example demonstrates how to encrypt an employee Social Security Number:

Create a databasemaster key.

USE MyDatabase;
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = '<MyPassword>';

Create a certificate and a key.

CREATE CERTIFICATE Cert01
WITH SUBJECT = 'SSN';

CREATE SYMMETRIC KEY SSN_Key
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE Cert01;

Create an employees table.

CREATE TABLE Employees
(
EmployeeID INT PRIMARY KEY,
SSN_encrypted VARBINARY(128) NOT NULL
);

Open the symmetric key for encryption.

OPEN SYMMETRIC KEY SSN_Key
DECRYPTION BY CERTIFICATE Cert01;

Insert the encrypted data.

INSERT INTO Employees (EmployeeID, SSN_encrypted)
VALUES
(1, EncryptByKey(Key_GUID('SSN_Key') , '1112223333', 1, HashBytes('SHA1', CONVERT
(VARBINARY, 1)));

SELECT EmployeeID,
 CONVERT(CHAR(10), DecryptByKey(SSN, 1 , HashBytes('SHA1', CONVERT(VARBINARY,
EmployeeID)))) AS SSN
FROM Employees;

EmployeeID SSN_Encrypted SSN
---------- --------------------- ----------
1 0x00F983FF436E32418132... 1112223333

- 366 -

Formore information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data?view=sql-
server-ver15

l https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy?view=sql-
server-ver15

PostgreSQL Usage
Aurora PostgreSQL provides encryption and decryption functions similar to SQL Server using the pgcrypto exten-
sion. To use this feature, youmust first install the pgcrypto extension.

CREATE EXTENSION pgcrypto;

Aurora PostgreSQL supportsmany encryption algorithms:

l MD5

l SHA1

l SHA224/256/384/512

l Blowfish

l AES

l Raw encryption

l PGP Symmetric encryption

l PGP Public-Key encryption

This section describes the use of PGP_SYM_ENCRYPT and PGP_SYM_DECRYPT, but there aremanymore
options available (see at the link and the end of this section).

Syntax
Encrypt columns using PGP_SYM_ENCRYPT.

pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text

Examples
The following example demonstrates how to encrypt an employee's Social Security Number:

Create a users table.

CREATE TABLE users (id SERIAL, name VARCHAR(60), pass TEXT);

Insert the encrypted data.

INSERT INTO users (name, pass) VALUES ('John',PGP_SYM_ENCRYPT('123456', 'AES_KEY'));

Verify the data is encrypted.

- 367 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy

SELECT * FROM users;

id |name |pass
|

---|-----|--
---|
2 |John |\x-
c30d04070302c30d07ff8b3b12f26ad233015a72bab4d3b-
b73f5a80d5187b1b043149dd961da58e76440ca9eb4a5f7483cc8ce957b47e39b143cf4b1192bb39 |

Query using the encryption key.

SELECT name, PGP_SYM_DECRYPT(pass::bytea, 'AES_KEY') as pass
FROM users WHERE (name LIKE '%John%');

name	pass
John |123465 |

Update the data.

UPDATE users SET (name, pass) = ('John',PGP_SYM_ENCRYPT('0000', 'AES_KEY')) WHERE
id='2';

SELECT name, PGP_SYM_DECRYPT(pass::bytea, 'AES_KEY') as pass
FROM users WHERE (name LIKE '%John%');

name	pass
John |0000 |

Formore information, see https://www.postgresql.org/docs/13/static/pgcrypto.html

SQL Server Data Control Language vs.
PostgreSQL Data Control Language
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Similar syntax and similar func-
tionality

SQL Server Usage
The ANSI standard specifies, andmost Relational DatabaseManagement Systems (RDBMS) use, GRANT and
REVOKE commands to control permissions.

However, SQL Server also provides a DENY command to explicitly restrict access to a resource. DENY takes
precedence over GRANT and is needed to avoid potentially conflicting permissions for users havingmultiple
logins. For example, if a user hasDENY for a resource through groupmembership but GRANT access for a per-
sonal login, the user is denied access to that resource.

- 368 -

https://www.postgresql.org/docs/13/static/pgcrypto.html

SQLServer allows granting permissions at multiple levels from lower-level objects such as columns to higher
level objects such as servers. Permissions are categorized for specific services and features such as the service
broker.

Permissions are used in conjunction with database users and roles. See Users and Roles for more details.

Syntax
Simplified syntax for SQL Server DCL commands:

GRANT { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>

DENY { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>

REVOKE [GRANT OPTION FOR] {[ALL [PRIVILEGES]]|<permission>} [ON <securable>] {
TO | FROM } <principal>

Formore information, see
https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine?view=sql-
server-ver15

PostgreSQL Usage
Aurora PostgreSQL supports the ANSI Data Control Language (DCL) commandsGRANT and REVOKE.

Administrators can grant or revoke permissions for individual objects such as a column, a stored function, or a
table. Permissions can be granted tomultiple objects using ALL% IN SCHEMA.% can be TABLES,
SEQUENCES or FUNCTIONS.

Use the following command to grant select on all tables in schema to a specific user.

GRANT SELECT ON ALL TABLES IN SCHEMA <Schema Name> TO <Role Name>;

Aurora PostgreSQL provides aGRANT permission option that is similar to SQL Server'sWITH GRANT
OPTION clause. This permission grants a user permission to further grant the same permission to other users.

GRANT EXECUTE
ON FUNCTION demo.Procedure1
TO UserY
WITH GRANT OPTION;

The following table identifies AuroraMyPostgreSQL privileges.

Permissions Use to

SELECT Allows to query rows from table.

INSERT Allows to insert rows into a table.

UPDATE Allows to update rows in table.

DELETE Allows to delete rows from table.

TRUNCATE Allows to truncate a table.

- 369 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine

Permissions Use to

REFERENCES Allows to create a foreign key constraint.

TRIGGER Allows the creation of a trigger on the specified table.

CREATE The purpose of this permission depends on the target object. For more information,
see the links at the end of this section.

CONNECT Allows the role to connect to the specified database.

TEMPORARY / TEMP Allows creation of temporary tables.

EXECUTE Allow the user to execute a function.

USAGE The purpose of this permission depends on the target object. For more information,
see the links at the end of this section.

ALL / ALL PRIVILEGES Grant all available privileges.

Syntax
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }

[, ...] | ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...]

| ALL TABLES IN SCHEMA schema_name [, ...] }
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
[, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
ON [TABLE] table_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
[, ...] | ALL [PRIVILEGES] }
ON { SEQUENCE sequence_name [, ...]

| ALL SEQUENCES IN SCHEMA schema_name [, ...] }
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
ON DATABASE database_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON DOMAIN domain_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON FOREIGN DATA WRAPPER fdw_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON FOREIGN SERVER server_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON { FUNCTION function_name ([[argmode] [arg_name] arg_type [, ...]]) [,

...]

- 370 -

| ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON LANGUAGE lang_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
ON LARGE OBJECT loid [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
ON SCHEMA schema_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
ON TABLESPACE tablespace_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON TYPE type_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

where role_specification can be:

[GROUP] role_name
| PUBLIC
| CURRENT_USER
| SESSION_USER

GRANT role_name [, ...] TO role_name [, ...] [WITH ADMIN OPTION]

Examples
Grant SELECT Permission to a user on all tables in the demo database.

GRANT SELECT ON ALL TABLES IN SCHEMA emps TO John;

Revoke EXECUTE permissions from a user on the EmployeeReport stored procedure.

REVOKE EXECUTE ON FUNCTION EmployeeReport FROM John;

Formore information, see https://www.postgresql.org/docs/13/static/sql-grant.html

- 371 -

https://www.postgresql.org/docs/13/static/sql-grant.html

SQL Server Transparent Data Encryption vs.
PostgreSQL Transparent Data Encryption
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Storage level encryptionmanaged by
Amazon RDS

SQL Server Usage
Transparent Data Encryption (TDE) is an SQL Server feature designed to protect "data at rest" in the event an
attacker obtains the physical media containing database files.

TDE does not require application changes and is completely transparent to users. The storage engine encrypts
and decrypts data on-the-fly. Data is not encrypted while in memory or on the network. TDE can be turned on or
off individually for each database.

TDE encryption uses a Database Encryption Key (DEK) stored in the database boot record, making it available
during database recovery. The DEK is a symmetric key signed with a server certificate from themaster system
database.

In many instances, security compliance laws require TDE for data at rest.

Examples
The following example demonstrates how to enable TDE for a database:

Create amaster key and certificate.

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'MyPassword';
CREATE CERTIFICATE TDECert WITH SUBJECT = 'TDE Certificate';

Create a database encryption key.

USE MyDatabase;
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TDECert;

Enable TDE.

ALTER DATABASE MyDatabase SET ENCRYPTION ON;

Formore information, see
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption?view=sql-
server-ver15

- 372 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption

PostgreSQL Usage
Amazon Aurora PostgreSQL provides the ability to encrypt data at rest (data stored in persistent storage) for new
database instances.When data encryption is enabled, Amazon Relational Database Service (RDS) auto-
matically encrypts the database server storage, automated backups, read replicas, and snapshots using the
AES-256 encryption algorithm.

You canmanage the keys used for RDS encrypted instances from the Identity and AccessManagement (IAM)
console using the AWS KeyManagement Service (AWS KMS). If you require full control of a key, youmust man-
age it yourself. You cannot delete, revoke, or rotate default keys provisioned by AWS KMS.

The following limitations exist for Amazon RDS encrypted instances:

l You can only enable encryption for an Amazon RDS database instance when you create it, not afterward.
It is possible to encrypt an existing database by creating a snapshot of the database instance and then cre-
ating an encrypted copy of the snapshot. You can restore the database from the encrypted snapshot, see:
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

l Encrypted database instances cannot bemodified to disable encryption.

l Encrypted Read Replicasmust be encrypted with the same key as the source database instance.

l An unencrypted backup or snapshot can not be restored to an encrypted database instance.

l KMS encryption keys are specific to the region where they are created. Copying an encrypted snapshot
from one region to another requires the KMS key identifier of the destination region.

Note: Disabling the key for an encrypted database instance prevents reading from, or writing to, that
instance.When Amazon RDS encounters a database instance encrypted by a key to which Amazon
RDS does not have access, it puts the database instance into a terminal state. In this state, the data-
base instance is no longer available and the current state of the database can't be recovered. To restore
the database instance, youmust re-enable access to the encryption key for Amazon RDS and then
restore the database instance from a backup.

Examples
The following walk-through demonstrates how to enable TDE.

Enable Encryption

In the database settings, enable encryption and choose amaster key. You can choose the default key provided
for the account or define a specific key based on an IAMKMS ARN from your account or a different account.

- 373 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

Create an Encryption Key

To create your own key, browse to the KeyManagement Service (KMS) and click on "Customer managed keys"
and create a new key.

Choose relevant options and click on “Next”.

Define Alias as the name of the key, add description and click "Next".

- 374 -

You can skip “Define Key Administrative Permissions” (step 3 of 5), click on “Next”.

On the next stepmake sure to assign the key to the relevant users who will need to interact with Aurora:

On the last step you will be able to see the ARN of the key and its account.

- 375 -

Click on “Finish” and now this keywill be listed in under customer managed keys.

Now you will be able to set Master encryption key by using the ARN of the key that you have created or picking it
from the list.

Proceed to finish and launch the instance.

For more information, see
http://docs.aws.amazon.com/AmazonS3/latest/dev/SSEUsingRESTAPI.html and
http://docs.aws.amazon.com/cli/latest/reference/s3/cp.htm

SQL Server Users and Roles vs. PostgreSQL Users
and Roles
Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code
Index Key Differences

N/A N/A Syntax and option differences, similar
functionality
There are no users - only roles

- 376 -

http://docs.aws.amazon.com/AmazonS3/latest/dev/SSEUsingRESTAPI.html
http://docs.aws.amazon.com/cli/latest/reference/s3/cp.htm

SQL Server Usage
SQLServer provides two layers of security principals: Logins at the server level and Users at the database level.
Logins aremapped to users in one or more databases. Administrators can grant logins server-level permissions
that are not mapped to particular databases such asDatabase Creator, SystemAdministrator, and Security
Administrator.

SQL Server also supports Roles for both the server and the database levels. At the database level, admin-
istrators can create custom roles in addition to the general purpose built-in roles.

For each database, administrators can create users and associate themwith logins. At the database level, the
built-in roles include db_owner, db_datareader, db_securityadmin and others. A database user can belong to
one or more roles (users are assigned to the public role by default and can't be removed). Administrators can
grant permissions to roles and then assign individual users to the roles to simplify securitymanagement.

Logins are authenticated using either WindowsAuthentication, which uses theWindowsServer Active Directory
framework for integrated single sign-on, or SQL authentication, which ismanaged by the SQL Server service and
requires a password, certificate, or asymmetric key for identification. Logins using windows authentication can be
created for individual users and domain groups.

In previous versions of SQL server, the concepts of user and schemawere interchangeable. For backward com-
patibility, each database has several existing schemas, including a default schema named dbo which is owned by
the db_owner role. Logins with system administrator privileges are automaticallymapped to the dbo user in each
database. Typically, you do not need tomigrate these schemas.

Examples
Create a login.

CREATE LOGIN MyLogin WITH PASSWORD = 'MyPassword'

Create a database user for MyLogin.

USE MyDatabase; CREATE USER MyUser FOR LOGIN MyLogin;

Assign MyLogin to a server role.

ALTER SERVER ROLE dbcreator ADD MEMBER 'MyLogin'

Assign MyUser to the db_datareader role.

ALTER ROLE db_datareader ADD MEMBER 'MyUser';

Formore information, see
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-
server-ver15

PostgreSQL Usage
PostgreSQL supports only roles; there are no users. However, there is a CREATE USER command, which is an
alias for CREATE ROLE that automatically includes the LOGIN permission.

- 377 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles

Roles are defined at the database cluster level and are valid in all databases in the PostgreSQL cluster.

Syntax
Simplified syntax for CREATE ROLE in Aurora PostgreSQL:

CREATE ROLE name [[WITH] option [...]]

where option can be:

SUPERUSER | NOSUPERUSER
| CREATEDB | NOCREATEDB
| CREATEROLE | NOCREATEROLE
| INHERIT | NOINHERIT
| LOGIN | NOLOGIN
| REPLICATION | NOREPLICATION
| BYPASSRLS | NOBYPASSRLS
| CONNECTION LIMIT connlimit
| [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
| VALID UNTIL 'timestamp'
| IN ROLE role_name [, ...]
| IN GROUP role_name [, ...]
| ROLE role_name [, ...]
| ADMIN role_name [, ...]
| USER role_name [, ...]
| SYSID uid

Note: The UNENCRYPTED PASSWORD option was dropped in PostgreSQL 10, the passwordmust
be kept encrypted.

- 378 -

Example
Create a new database role called "hr_role" that allows users to create new databases in the PostgreSQL
cluster. Note that this role is not able to login to the database and act as a “database user”. In addition, grant
SELECT, INSERT and DELETE privileges on the hr.employees table to the role.

CREATE ROLE hr_role;
GRANT SELECT, INSERT,DELETE on hr.employees to hr_role;

Summary
The following table summarizes common security tasks and the differences between SQLServer and Aurora
PostgerSQL

Task SQL Server Aurora PostgreSQL

View database
users

SELECT Name FROM sys.sysusers SELECT * FROM pg_roles where
rolcanlogin = true;

Create a user and
password

CREATE USER <User Name> WITH
PASSWORD = <PassWord>;

CREATE USER <User Name> WITH
PASSWORD '<PassWord>';

Create a role CREATE ROLE <Role Name> CREATE ROLE <Role Name>

Change a user's
password

ALTER LOGIN <SQL Login> WITH
PASSWORD = <PassWord>;

ALTER USER <SQL Login> WITH
PASSWORD '<PassWord>';

External authen-
tication

Windows Authentication N/A

Add a user to a role ALTER ROLE <Role Name> ADD
MEMBER <User Name>

ALTER ROLE <Role Name> SET
<property and value>

Lock a user ALTER LOGIN <Login Name>
DISABLE

REVOKE CONNECT ON DATABASE
<database_name> from <Role
Name>;

Grant SELECT on
a schema

GRANT SELECT ON SCHEMA::<S-
chema Name> to <User Name>

GRANT SELECT ON ALL TABLES IN
SCHEMA <Schema Name> TO <User
Name>;

Formore details, see:https://www.postgresql.org/docs/13/static/sql-createrole.html

- 379 -

https://www.postgresql.org/docs/13/static/sql-createrole.html

Appendix A: SQL Server 2018 Deprecated Feature
List

SQL Server 2018 Deprecated
Feature Section

TEXT, NTEXT, and IMAGE data
types

SQL Server Data Types topic and Aurora PostgreSQLData Types topic

SET ROWCOUNT for DML SQLServer Session Options topic and Aurora PostgreSQL Session
Options topic

TIMESTAMP syntax for CREATE
TABLE

SQLServer Creating Tables topic and Aurora PostgreSQLCreating
Tables topic

DBCC DBREINDEX,
INDEXDEFRAG, and
SHOWCONTIG

SQLServer Maintenance Plans topic

Old SQLMail SQL Server DatabaseMail

IDENTITY Seed, Increment, non
PK, and compound

SQLServer Sequences and Identity and Aurora PostgreSQL
Sequences and Identity

Stored ProceduresRETURN Values SQL Server Stored Procedures and Aurora PostgreSQL Stored Pro-
cedures

GROUP BY ALL, Cube, and Com-
pute By

SQL Server GROUP BY and Aurora PostgreSQLGROUP BY

DTS SQLServer ETL and Aurora PostgreSQL ETL

Old outer join syntax *= and =* SQL Server Table JOIN and Aurora PostgreSQL Table JOIN

'String Alias' = Expression Migration Tips

DEFAULT keyword for INSERT
statements

Migration Tips

- 380 -

Migration Quick Tips

- 381 -

Migration Quick Tips
This section providesmigration tips that can help save time as you transition fromSQLServer to Aurora Post-
greSQL. They addressmany of the challenges faced by administrators new to Aurora PostgreSQL. Some of
these tips describe functional differences in similar features between SQLServer and Aurora PostgreSQL.

Management
l The equivalent of SQL Server's CREATE DATABASE... AS SNAPSHOTOF... resembles Aurora Post-
greSQLDatabase cloning. However, unlike SQL Server snapshots, which are read only, Aurora Post-
greSQL cloned databases are updatable.

l In Aurora PostgreSQL, the term "Database Snapshot" is equivalent to SQL Server's BACKUP
DATABASE... WITH COPY_ONLY.

l Partitioning in Aurora PostgreSQL is called "INHERITS" tables and act completely different in terms of
management

l Unlike SQL Server's statistics, Aurora PostgreSQL does not collect detailed key value distribution; it relies
on selectivity only. When troubleshooting execution, be aware that parameter values are insignificant to
plan choices.

l Manymissing features such as sending emails can be achieved with quick implementations of Amazon's
services (like Lambda).

l Parameters and backups aremanaged by Amazon's RDS. It is very useful in terms of checking para-
meter's value against its default and comparing them to another parameter group.

l High Availability can be implemented in few clicks to create Replicas.

l With Database Links, there are two options. The db_link extension is similar to SQL Server.

SQL
l Triggers work differently in Aurora PostgreSQL. Triggers can be also executed for each row (not just
once). The syntax for inserted and deleted is new and old.

l Aurora PostgreSQL does not support the@@FETCH_STATUS system parameter for cursors. When
declaring cursors in Aurora PostgreSQL, youmust create an explicit HANDLER object.

l To execute a stored procedure (functions), use SELECT instead of EXECUTE.

l To execute a string as a query, use Aurora PostgreSQL Prepared Statements instead of either sp_execut-
esql, or EXECUTE(<String>) syntax.

l In Aurora PostgreSQL, IF blocksmust be terminated with END IF.WHILE..LOOP loopsmust be ter-
minated with END LOOP.

l Aurora PostgreSQL syntax for opening a transaction is START TRANSACTION as opposed to BEGIN
TRANSACTION. COMMIT and ROLLBACK are used without the TRANSACTION keyword.

l Aurora PostgreSQL does not use special data types for UNICODE data. All string typesmay use any char-
acter set and any relevant collation.

l Collations can be defined at the server, database, and column level, similar to SQL Server. They cannot be
defined at the table level.

l SQLServer's DELETE <Table Name> syntax, which allows omitting the FROMkeyword, is invalid in Aur-
ora PostgreSQL. Add the FROMkeyword to all delete statements.

- 382 -

l Aurora PostgreSQL allowsmultiple rowswith NULL for a UNIQUE constraint; SQL Server allows only
one. Aurora PostgreSQL follows the behavior specified in the ANSI standard.

l Aurora PostgreSQL SERIAL column property is similar to IDENTITY in SQL Server. However, there is a
major difference in the way sequences aremaintained.While SQL Server caches a set of values in
memory, the last allocation is recorded on disk. When the service restarts, some valuesmay be lost, but the
sequence continues fromwhere it left off. In Aurora PostgreSQL, each time the service is restarted, the
seed value to SERIAL is reset to one increment interval larger than the largest existing value. Sequence
position is not maintained across service restarts.

l Parameter names in Aurora PostgreSQL do not require a preceding "@". You can declare local variables
such as SET schema.test = 'value' and get the value by SELECT current_setting('username.test');

l Local parameter scope is not limited to an execution scope. You can define or set a parameter in one state-
ment, execute it, and then query it in the following batch.

l Error handling in Aurora PostgreSQL has less features, but for special requirements, you can log or send
alerts by inserting into tables or catching errors.

l Aurora PostgreSQL does not support theMERGE statement. Use the REPLACE statement and the
INSERT... ON DUPLICATE KEY UPDATE statement as alternatives.

l You cannot concatenate strings in Aurora PostgreSQL using the "+" operator. 'A' + 'B' is not a valid expres-
sion. Use the CONCAT function instead. For example, CONCAT('A', 'B').

l Aurora PostgreSQL does not support aliasing in the select list using the 'String Alias' = Expression. Aurora
PostgreSQL treats it as a logical predicate, returns 0 or FALSE, and will alias the columnwith the full
expression. USE the AS syntax instead. Also note that this syntax has been deprecated as of SQL Server
2008 R2.

l Aurora PostgreSQL has a large set of string functions that ismuchmore diverse than SQL Server. Some
of themore useful string functions are:

l TRIM is not limited to full trim or spaces. The syntax is TRIM([{BOTH | LEADING | TRAILING}
[<remove string>] FROM] <source string>)).

l LENGTH in PostgreSQL is equivalent to DATALENGTH in T-SQL. CHAR_LENGTH is the equi-
valent of T-SQL LENGTH.

l SUBSTRING_INDEX returns a substring from a string before the specified number of occurrences
of the delimiter.

l FIELD returns the index (position) of the first argument in the subsequent arguments.

l POSITION returns the index position of the first argument within the second argument.

l REGEXP_MATCHES provides support for regular expressions.

l For more string functions, see https://www.postgresql.org/docs/13/static/functions-string.html

l The Aurora PostgreSQLCAST function is for casting between collation and not other data types. Use
CONVERT for casting data types.

l Aurora PostgreSQL ismuch stricter than SQL Server in terms of statement terminators. Be sure to always
use a semicolon at the end of statements.

l There is no CREATE PROCEDURE syntax; only CREATE FUNCTION. You can create a function that
returns void.

l Beware of control characters when copying and pasting a script to Aurora PostgreSQL clients. Aurora
PostgreSQL ismuchmore sensitive to control characters than SQL Server and they result in frustrating
syntax errors that are hard to find.

- 383 -

https://www.postgresql.org/docs13/static/functions-string.html

Glossary

ACID
Atomicity, Consistency, Isolation, Durability

AES
Advanced Encryption Standard

ANSI
American National Standards Institute

API
Application Programming Interface

ARN
Amazon Resource Name

AWS
Amazon Web Services

BLOB
Binary Large Object

CDATA
Character Data

CLI
Command Line Interface

CLOB
Character Large Object

CLR
Common Language Runtime

CPU
Central Processing Unit

CRI
Cascading Referential Integrity

CSV
Comma Separated Values

CTE
Common Table Expression

- 384 -

DB
Database

DBCC
Database Console Commands

DDL
Data Definition Language

DEK
Database Encryption Key

DES
Data Encryption Standard

DML
Data Manipulation Language

DQL
Data Query Language

FCI
Failover Cluster Instances

HADR
High Availability and Disaster Recovery

IAM
Identity and Access Management

IP
Internet Protocol

ISO
International Organization for Standardization

JSON
JavaScript Object Notation

KMS
Key Management Service

NUMA
Non-Uniform Memory Access

OLE
Object Linking and Embedding

- 385 -

OLTP
Online Transaction Processing

PaaS
Platform as a Service

PDF
Portable Document Format

QA
Quality Assurance

RDMS
Relational Database Management System

RDS
Amazon Relational Database Service

REGEXP
Regular Expression

SCT
Schema Conversion Tool

SHA
Secure Hash Algorithm

SLA
Service Level Agreement

SMB
Server Message Block

SQL
Structured Query Language

SQL/PSM
SQL/Persistent Stored Modules

SSD
Solid State Disk

SSH
Secure Shell

T-SQL
Transact-SQL

- 386 -

TDE
Transparent Data Encryption

UDF
User Defined Function

UDT
User Defined Type

UTC
Universal Time Coordinated

WMI
Windows Management Instumentation

WQL
Windows Management Instrumentation Query Language

WSFC
Windows Server Failover Clustering

XML
Extensible Markup Language

- 387 -

	Introduction
	Tables of Feature Compatibility
	What's New
	AWS Schema and Data Migration Tools
	AWS Schema Conversion Tool (SCT)
	SCT Action Code Index
	AWS Database Migration Service (DMS)
	Amazon RDS on Outposts
	Amazon RDS Proxy
	Amazon Aurora Serverless v1
	Amazon Aurora Backtrack
	Migration Quick Tips

	ANSI SQL
	Case Sensitivity Differences for SQL Server and PostgreSQL
	SQL Server Constraints vs. PostgreSQL Table Constraints
	PostgreSQL Usage
	SQL Server Creating Tables vs. PostgreSQL Creating Tables
	PostgreSQL Usage
	SQL Server Common Table Expressions vs. PostgreSQL Common Table Expressions (...
	PostgreSQL Usage
	SQL Server Data Types vs. PostgreSQL Data Types
	PostgreSQL Usage
	SQL Server Derived Tables vs. PostgreSQL Derived Tables
	PostgreSQL Usage
	SQL Server GROUP BY vs. PostgreSQL GROUP BY
	PostgreSQL Usage
	SQL Server Table JOIN vs. PostgreSQL Table JOIN
	PostgreSQL Overview
	SQL Server Temporal Tables vs. PostgreSQL Triggers (Temporal Tables alternative)
	PostgreSQL Usage(Temporal Tables alternative)
	SQL Server Views vs. PostgreSQL Views
	PostgreSQL Usage
	SQL Server Window Functions vs. PostgreSQL Window Functions
	PostgreSQL Usage

	T-SQL
	SQL Server Service Broker Essentials vs. PostgreSQL AWS Lambda or DB links
	PostgreSQL Usage
	SQL Server Cast and Convert vs. PostgreSQL CAST and CONVERSION
	PostgreSQL Usage
	SQL Server Common Library Runtime (CLR) vs. PostgreSQL PL/Perl
	PostgreSQL Usage
	SQL Server Collations vs. PostgreSQL Encoding
	PostgreSQL Usage
	SQL Server Cursors vs. PostgreSQL Cursors
	PostgreSQL Usage
	SQL Server Date and Time Functions vs. PostgreSQL Date and Time Functions
	PostgreSQL Usage
	SQL Server String Functions vs. PostgreSQL String Functions
	PostgreSQL Usage
	SQL Server Databases and Schemas vs. PostgreSQL Databases and Schemas
	PostgreSQL Usage
	SQL Server Dynamic SQL vs. PostgreSQL EXECUTE and PREPARE
	PostgreSQL Overview
	SQL Server Transactions vs. PostgreSQL Transactions
	PostgreSQL Usage
	SQL Server Synonyms vs. PostgreSQL Views, Types & Functions
	PostgreSQL Usage
	SQL Server DELETE and UPDATE FROM vs. PostgreSQL DELETE and UPDATE FROM
	PostgreSQL Usage
	SQL Server Stored Procedures vs. PostgreSQL Stored Procedures
	PostgreSQL Overview
	SQL Server Error Handling vs. PostgreSQL Error Handling
	PostgreSQL Usage
	SQL Server Flow Control vs. PostgreSQL Control Structures
	PostgreSQL Usage
	SQL Server Full-Text Search vs. PostgreSQL Full-Text Search
	PostgreSQL Usage
	SQL Server Graph vs. PostgreSQL Apache AGE extension
	PostgreSQL Usage
	SQL Server JSON and XML vs. PostgreSQL JSON and XML
	PostgreSQL Usage
	SQL Server MERGE vs. PostgreSQL MERGE
	PostgreSQL Usage
	SQL Server PIVOT and UNPIVOT vs. PostgreSQL PIVOT and UNPIVOT
	PostgreSQL Usage
	SQL Server Triggers vs. PostgreSQL Triggers
	PostgreSQL Usage
	SQL Server TOP and FETCH vs. PostgreSQL LIMIT and OFFSET (TOP and FETCH Equiv...
	PostgreSQL Usage
	SQL Server User DefinedFunctions vs. PostgreSQL User Defined Functions
	PostgreSQL Usage
	SQL Server User Defined Types vs. PostgreSQL User Defined Types
	PostgreSQL Usage
	SQL Server Sequences and Identity vs. PostgreSQL Sequences and SERIAL/IDENTITY
	PostgreSQL Usage

	Configuration
	SQL Server Upgrades vs. PostgreSQL Upgrades
	PostgreSQL Usage
	SQL Server Session Options vs. PostgreSQL Session Options
	PostgreSQL Usage
	SQL Server Database Options vs. PostgreSQL Database Options
	PostgreSQL Usage
	SQL Server Server Options vs. PostgreSQL Aurora Parameter Groups
	PostgreSQL Usage

	High Availability and Disaster Recovery (HADR)
	SQL Server Backup and Restore vs. PostgreSQL Backup and Restore
	PostgreSQL Usage
	SQL Server High Availability Essentials vs. PostgreSQL High Availability Esse...
	PostgreSQL Usage

	Indexes
	SQL Server Clustered and Non Clustered Indexes vs. PostgreSQL Clustered and N...
	PostgreSQL Usage

	Management
	SQL Server Agent vs. PostgreSQL Scheduled Lambda
	PostgreSQL Usage
	SQL Server Alerting vs. PostgreSQL Alerting
	PostgreSQL Usage
	SQL Server Database Mail vs. PostgreSQL Database Mail
	PostgreSQL Usage
	SQL Server ETL vs. PostgreSQL ETL
	PostgreSQL Usage
	SQL Server Export and Import with Text files vs. PostgreSQL pg_dump and pg_re...
	PostgreSQL Usage
	SQL Server Viewing Server Logs vs. PostgreSQL Viewing Server Logs
	PostgreSQL Usage
	SQL Server Maintenance Plans vs. PostgreSQL Viewing Server Logs
	PostgreSQL Usage
	SQL Server Monitoring vs. PostgreSQL Monitoring
	PostgreSQL Usage
	SQL Server Resource Governor vs. PostgreSQL Dedicated Amazon Aurora Clusters ...
	PostgreSQL Usage
	SQL Server Linked Servers vs. PostgreSQL DBLink and FDWrapper
	PostgreSQL Usage
	SQL Server Scripting vs. PostgreSQL Scripting
	PostgreSQL Usage

	Performance Tuning
	SQL Server Execution Plans vs. PostgreSQL Execution Plans
	PostgreSQL Usage
	SQL Server Query Hints and Plan Guides vs. PostgreSQL DB Query Planning
	PostgreSQL Usage
	SQL Server Managing Statistics vs. PostgreSQL Table Statistics
	PostgreSQL Usage

	Physical Storage
	SQL Server Columnstore Index vs. PostgreSQL Columnstore
	PostgreSQL Usage
	SQL Server Indexed Views vs. PostgreSQL Materialized Views
	PostgreSQL Usage
	SQL Server Partitioning vs. PostgreSQL Partitions or Table Inheritance
	PostgreSQL Usage

	Security
	SQL Server Column Encryption vs. PostgreSQL Column Encryption
	PostgreSQL Usage
	SQL Server Data Control Language vs. PostgreSQL Data Control Language
	PostgreSQL Usage
	SQL Server Transparent Data Encryption vs. PostgreSQL Transparent Data Encryp...
	PostgreSQL Usage
	SQL Server Users and Roles vs. PostgreSQL Users and Roles
	PostgreSQL Usage

	Appendix A: SQL Server 2018 Deprecated Feature List
	Migration Quick Tips
	Migration Quick Tips

	Glossary

