dWsS

Microsoft SQL Server 2019 To Amazon Aurora with Post-
greSQL Compatibility (12.4)

Migration Playbook

1.5 April 2021

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws

This document is provided for informational purposes only. It represents AWS’s current product offerings and
practices as of the date of issue of this document, which are subject to change without notice. Customers are
responsible for making their own independent assessment of the information in this document and any use of
AWS'’s products or services, each of which is provided “as is” without warranty of any kind, whether express or
implied. This document does not create any warranties, representations, contractual commitments, conditions or
assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its cus-
tomers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

aws

INtrodUCHON 8
Tables of Feature Compatibilityl 10
What's NEW L 18
AWS Schema and Data Migration Tools 20
AWS Schema Conversion ToOl (SC T) ...l 21
SCT Action Code INdeX 30
AWS Database Migration Service (DM S) .. 41
AMAazon RDS 0N OULPOSESo 43
AMAZON R S PrOXY .. 44
Amazon Aurora Serverless V1 46
Amazon Aurora Backtrack 49
MIgration QUICK TIPS .ol 53
ANSI SQL 55
Case Sensitivity Differences for SQL Server and PostgreSQL L 55
SQL Server Constraints vs. PostgreSQL Table Constraints 56
PoOStgreS QL USage .. . 59
SQL Server Creating Tables vs. PostgreSQL Creating Tables 65
POStgreSQL USageo o 68
SQL Server Common Table Expressions vs. PostgreSQL Common Table Expressions (CTE) 73
PoStreS QL USage 75
SQL Server Data Types vs. PostgreSQL Data Types 79
PoOStreS QL USage .. . 80
SQL Server Derived Tables vs. PostgreSQL Derived Tables 84
PoOStgreS QL USage .. . 85
SQL Server GROUP BY vs. PostgreSQL GROUP BY . 85
POStgreSQL USageo o 88
SQL Server Table JOIN vs. PostgreSQL Table JOIN 91
PoStgreSQL OVEIVIEW e 95
SQL Server Temporal Tables vs. PostgreSQL Triggers (Temporal Tables alternative) 98
PostgreSQL Usage(Temporal Tables alternative) 100
SQL Server Views vs. PostgreSQL VieWs .. 100

aws

POStOreS QL USaQe ..o 103
SQL Server Window Functions vs. PostgreSQL Window Functions 105
POSIOreS QL USaQe ..o 107
TS QI L 111
SQL Server Service Broker Essentials vs. PostgreSQL AWS Lambdaor DB links _........................_. 111
POSIOreS QL USaQe ..o 114
SQL Server Cast and Convert vs. PostgreSQL CAST and CONVERSION, 115
POSIGreS QL USaQEo 116
SQL Server Common Library Runtime (CLR) vs. PostgreSQL PL/Perl 118
PoOStgreS QL USage 118
SQL Server Collations vs. PostgreSQL Encoding o i 119
POStOreS QL USaQe ..o 121
SQL Server Cursors vs. PostgreSQL CUISOIS il 124
POSIOreS QL USaQe ..o 126
SQL Server Date and Time Functions vs. PostgreSQL Date and Time Functions _.._........................ 130
POSIGreS QL USaQe ..o 131
SQL Server String Functions vs. PostgreSQL String Functions 132
PoOStgreS QL USage 134
SQL Server Databases and Schemas vs. PostgreSQL Databasesand Schemas 136
POStOreS QL USaQe ..o 138
SQL Server Dynamic SQL vs. PostgreSQL EXECUTE and PREPARE 140
PostgreSQL OVEIVIEW e 143
SQL Server Transactions vs. PostgreSQL Transactions 145
POSIGreS QL USaQe ..o 147
SQL Server Synonyms vs. PostgreSQL Views, Types & Functions 152
PoOStgreS QL USage ... 154
SQL Server DELETE and UPDATE FROM vs. PostgreSQL DELETE and UPDATEFROM _............ 155
POStOreS QL USaQe ..o 157
SQL Server Stored Procedures vs. PostgreSQL Stored Procedureso . 159
PoStgreSQL OVEIVIEW e 162
SQL Server Error Handling vs. PostgreSQL ErrorHandling 166
POSIGreS QL USaQE ... 170
SQL Server Flow Control vs. PostgreSQL Control Structures, 172

-4-

aws

POStOreS QL USaQe ..o 174
SQL Server Full-Text Search vs. PostgreSQL Full-TextSearch 176
POSIOreS QL USaQe ..o 179
SQL Server Graph vs. PostgreSQL Apache AGE extension 182
POSIGreS QL USaQE ..o 183
SQL Server JSON and XML vs. PostgreSQL JSON and XML 183
POStOreS QL USaQe . ..o 186
SQL Server MERGE vs. PostgreSQL MERGE 190
POStOreS QL USaQe ..o 192
SQL Server PIVOT and UNPIVOT vs. PostgreSQL PIVOT and UNPIVOT 193
POSIOreS QL USaQe ... 197
SQL Server Triggers vs. PostgreS QL TrigQerso o 199
POSIGreS QL USaQE ... 202
SQL Server TOP and FETCH vs. PostgreSQL LIMIT and OFFSET (TOP and FETCH Equivalent) _..... 206
POStOreS QL USaQe ..o 209
SQL Server User DefinedFunctions vs. PostgreSQL User Defined Functions 211
POStOreS QL USaQeo 214
SQL Server User Defined Types vs. PostgreSQL User Defined Types 214
POSIOreS QL USaQe ..o 217
SQL Server Sequences and ldentity vs. PostgreSQL Sequences and SERIAL/IDENTITY 219
POSIGreS QL USAQE ... 223
CoN i gUIrAt ON 228
SQL Server Upgrades vs. PostgreSQL Upgrades 228
POSIGreS QL USaQe . ..o 229
SQL Server Session Options vs. PostgreSQL Session Options o . 233
PoOStgreS QL USage ... 235
SQL Server Database Options vs. PostgreSQL Database Options i 237
POStOreS QL USaQe . ..o 238
SQL Server Server Options vs. PostgreSQL Aurora Parameter Groupsc.oooooiiiimiiiiiii.. 238
POSIOreS QL USaQe ..o 239
High Availability and Disaster Recovery (HADR) 243
SQL Server Backup and Restore vs. PostgreSQL Backupand Restore 243
POStOreS QL USaQeo 246

aws

SQL Server High Availability Essentials vs. PostgreSQL High Availability Essentials 252
PoOStgreS QL USage ... 256
INAEXES . 261
SQL Server Clustered and Non Clustered Indexes vs. PostgreSQL Clustered and Non Clustered
X ES . . 261
PoOStOreS QL USaQe . ..o 265
Managem et .l 271
SQL Server Agent vs. PostgreSQL Scheduled Lambda L 271
PoOStgreS QL USage 271
SQL Server Alerting vs. PostgreS QL Alerting oo 272
POStOreS QL USaQe ..o 273
SQL Server Database Mail vs. PostgreSQL Database Mail L 278
POSIOreS QL USaQe ..o 280
SQL Server ETL VS, PostgreS QL ET L o o 288
POSIGreS QL USaQe . ..o 290
SQL Server Export and Import with Text files vs. PostgreSQL pg_dump and pg_restore 306
PoOStgreS QL USage 307
SQL Server Viewing Server Logs vs. PostgreSQL Viewing Server Logs, 310
PoOStOreS QL USaQe ..o 311
SQL Server Maintenance Plans vs. PostgreSQL Viewing ServerLogs, 313
POSIOreS QL USaQe ..o 315
SQL Server Monitoring vs. PostgreSQL Monitoring 318
POSIGreS QL USaQe ..o 320
SQL Server Resource Governor vs. PostgreSQL Dedicated Amazon Aurora Clusters or Aurora Read-
REPDIICAS ... L 322
POStOreS QL USaQe . ..o 324
SQL Server Linked Servers vs. PostgreSQL DBLinkand FDWrapper ..o 327
POSIOreS QL USaQe ..o 329
SQL Server Scripting vs. PostgreSQL Scripting 331
POSIGreS QL USaQe ... 332
Performance TUNINGo L 335
SQL Server Execution Plans vs. PostgreSQL ExecutionPlans 335
POSIOreS QL USaQe ..o 336
SQL Server Query Hints and Plan Guides vs. PostgreSQL DB Query Planning 339

-6-

aws

POStOreS QL USaQe ..o 341
SQL Server Managing Statistics vs. PostgreSQL Table Statistics 342
POSIOreS QL USaQe ..o 343
PhysiCal StOrage 346
SQL Server Columnstore Index vs. PostgreSQL Columnstoreo i 346
POSIOreS QL USaQe . ..o 347
SQL Server Indexed Views vs. PostgreSQL Materialized VIiews, 347
POSIGreS QL USaQeo 348
SQL Server Partitioning vs. PostgreSQL Partitions or Table Inheritance 350
PoOStgreS QL USage 351
SO CUNI Y il 365
SQL Server Column Encryption vs. PostgreSQL Column Encryption 365
POSIGreS QL USaQE ... 367
SQL Server Data Control Language vs. PostgreSQL Data Control Language 368
PoOStOreS QL USaQe . ..o 369
SQL Server Transparent Data Encryption vs. PostgreSQL Transparent Data Encryption 372
POStOreS QL USaQe ..o 373
SQL Server Users and Roles vs. PostgreSQL UsersandRoles 376
POSIOreS QL USaQe ..o 377
Appendix A: SQL Server 2018 Deprecated Feature List 380
Migration QUICK TIPS .. .l 381
MiIgration QUICK TIPS ..o 382
GlOS S aANY 384

aws

The migration process from a source database (Oracle or SQL Server) to Amazon Aurora (PostgreSQL or
MySQL) typically involves several stages. The first stage is to use the AWS Schema Conversion Tool (SCT) and
the AWS Database Migration Service (DMS) to convert and migrate the schema and data. While most of the
migration work can be automated, some aspects require manual intervention and adjustments to both database
schema objects and database code.

+ +

(This Document)

The purpose of this Playbook is to assist administrators tasked with migrating from source databases to Aurora
with the aspects that can't be automatically migrated using the Amazon Web Services Schema Conversion Tool
(AWS SCT). It focuses on the differences, incompatibilities, and similarities between the source database and
Aurora in a wide range of topics including T-SQL, Configuration, High Availability and Disaster Recovery
(HADR), Indexing, Management, Performance Tuning, Security, and Physical Storage.

The first section of this document provides an overview of AWS SCT and the AWS Data Migration Service
(DMS) tools for automating the migration of schema, objects and data. The remainder of the document contains
individual sections for the source database features and their Aurora counterparts. Each section provides a short
overview of the feature, examples, and potential workaround solutions for incompatibilities.

You can use this playbook either as a reference to investigate the individual action codes generated by the AWS
SCT tool, or to explore a variety of topics where you expect to have some incompatibility issues. When using the
AWS SCT, you may see a report that lists Action codes , which indicates some manual conversion is required, or
that a manual verification is recommended. For your convenience, this Playbook includes an SCT Action Code
Index section providing direct links to the relevant topics that discuss the manual conversion tasks needed to
address these action codes. Alternatively, you can explore the Tables of Feature Compatibility section that
provides high-level graphical indicators and descriptions of the feature compatibility between the source data-
base and Aurora. It also includes a graphical compatibility indicator and links to the actual sections in the play-
book.

There is appendix at the end of this playbook: Appendix: Migration Quick Tips provides a list of tips for admin-
istrators or developers who have little experience with Aurora (PostgreSQL or MySQL). It briefly highlights key dif-
ferences between the source database and Aurora that they are likely to encounter.

Note that not all of the source database features are fully compatible with Aurora or have simple workarounds.
From a migration perspective, this document does not yet cover all source database features and capabilities.
This first release focuses on some of the most important features and will be expanded over time.

aws

The various code snippets, commands, guides, best practices, and scripts included in this document should be
used for reference only and are provided as-is without warranty. Test all of the code, commands, best practices,
and scripts outlined in this document in a non-production environment first. Amazon and its affiliates are not
responsible for any direct or indirect damage that may occur from the information contained in this document.

aws

Tables of Feature Compatibility

Feature Compatibility Legend

Compatibility
Score Symbol

Description

()
()
()
()
()

Very high compatibility: None or minimal low-risk and low-effort rewrites needed

()
()
()
()
()

High compatibility: Some low-risk rewrites needed, easy workarounds exist for incom-
patible features

()
()
()
()
()

Medium compatibility: More involved low-medium risk rewrites needed, some redesign
may be needed for incompatible features

()
()
()
()
()

Low compatibility: Medium to high risk rewrites needed, some incompatible features
require redesign and reasonable-effort workarounds exist

()
()
()
()
()

Very low compatibility: High risk and/or high-effort rewrites needed, some features
require redesign and workarounds are challenging

()
()
()
()
()

Not compatible: No practical workarounds yet, may require an application level archi-
tectural solution to work around incompatibilities

SCT/DMS Automation Level Legend

SCT/DMS Auto-
mation Level Sym-
bol

Description

elelede e,

Full Automation Perform fully automatic conversion, no manual conversion needed.

SOOOO

High Automation: Minor, simple manual conversions may be needed.

odegegele

Medium Automation: Low-medium complexity manual conversions may be needed.

\oledegege,

Low Automation: Medium-high complexity manual conversions may be needed.

oledede e,

Very Low Automation: High risk or complex manual conversions may be needed.

SOOOO

No Automation: Not currently supported, manual conversion is required for this feature.

-10-

aws

ANSI SQL
SQL Server Aurora PostgreSQL Key Differences Compeatibility
Constraints Constraints « SETDEFAULT optionis | & & = = =
missing = = = ==
» Check constraint with
subquery. OQOOO

Creating Tables

Creating Tables

« Auto generated value
column is different

« Can'tuse physical attrib-
ute ON

« Missing table variable
and memory optimized

table
Common Table Common Table Expres- o Mustuse RECURSIVE cessss
Expressions sions key word for recursive = = = ==
CTE queries

view are not supported

GROUP BY GROUP BY cssses
Table JOIN Table JOIN « OUTER JOIN with com- coses=
mas = —
« CROSS APPLY and
OUTER APPLY are not aoaaa
supported
Data Types Data Types + Syntaxand handling dif- | & = ® = =
ferences == = ==
Views Views « Indexed and Partitioned - o=

Windowed Functions

Windowed Functions

Derived Tables

Derived Tables

-11-

aws

SQL Server Aurora PostgreSQL Key Differences Compatibility
Temporal Tables Temporal Tables « Temporal tables are not A=
supported = = = ==
T-SQL
SQL Server Aurora PostgreSQL Key Differences Compatibility
Collations Collations « UTF16and 0=
NCHAR/NVARCHAR | — — — — =
data types are not sup-
ported yelelolole
Cursors Cursors - Differentcursoroptions | & = = = =

Date and Time Func-

Date and Time Func-

tions

tions

PostgreSQL is using dif-
ferent function names

ported - rewrite to use

String Functions String Functions « Syntax and option dif- 0=
ferences == ===
Databases and Databases and ==
Schemas Schemas == ===
Transactions Transactions « Nested transactions are s
not supported = = = ==
« syntax differences for ini-
tializing a transaction OOOOO
DELETE and UPDATE |[DELETE and UPDATE « DELETE...FROM cssses
FROM FROM from_list is not sup- = = = ==

subqueries ogelege e,
Stored Procedures Stored Procedures « Syntax and option dif- cessses
ferences = = = ==

Error Handling

Error Handling

Different paradigm and
syntax will require

rewrite of error handling

-12-

aws

SQL Server

Aurora PostgreSQL

Key Differences

Compatibility

code

olegegete,

Full Text Search

Full Text Search

« Different paradigm and
syntax will require
application/drivers

()
()
()
()
()

rewrite. egedelede,
Flow Control Flow Control o Postgresdoesnotsup- | = = = = =
port GOTO and = = = ==
WAITFOR TIME OQQOO
JSON and XML JSON and XML « Syntax and option dif- cosce=
ferences, similar func- sEE===
tionality
« Missing FOR XML aaaoa
clause
PIVOT PIVOT « Straight forward rewrite s
to use traditional SQL = = = ==
o 00000
MERGE MERGE « Rewrite to use s
INSERT...ON = = = ==
o GOBO0
Triggers Triggers « Syntax and option dif- ==

ferences, similar func-
tionality - PostgreSQL
trigger calling a function

odegegele

User Defined Functions

User Defined Functions

« Syntax and option dif-
ferences

()
()
()
(@
()

olegegete,

User Defined Types

User Defined Types

« Syntax and option dif-
ferences

()
()
()
()
()

olegegete,

Sequences and ldentity

Sequences and ldentity

« Less options with
SERIAL

« Reseeding need to be
rewrited

()
()
((
()
()

olegegete,

Synonyms

Synonyms

» PostgreSQL does not
support Synonym -
there is an available
workaround

()
()
()
()
()

elegegese,

-13-

aws

SQL Server Aurora PostgreSQL Key Differences Compatibility
TOP and FETCH LIMIT and OFFSET o TOP is not supported s
Dynamic SQL Dynamic SQL - Differentparadigmand | & = = = =
syntax will require = = = ==
application/drivers
rewrite. ye2elololo,
CAST and CONVERT |CAST and CONVERT o CONVERT is used only cocsce=
toconvertbetweencol- | &= = = = =
lations
« CAST uses different QQOQQ
syntax
Broker Broker o Use Amazon Lambda 1T =
for similar functionality | — — — T T
CLR Objects CLR Objects « Migrating CLR objects s
will require a full code = T = ==
e BOOO0
Configuration
SQL Server Aurora PostgreSQL Key Differences Compatibility
Session Options Session Options « SET options are sig-
nificantly different, - - > > -
except for trans- S — R —
action isolation con-
trol
Database Options Database Options ¢ Use Cluster and - - - > o
Database/Cluster SR — R — R —
Parameters
Server Options Server Options o Use Clusterand - - - - -
Database/Cluster EsEEEEE=E=
Parameters
High Availability and Disaster Recovery (HADR)
SQL Server Aurora PostgreSQL Key Differences Compatibility
Backup and Restore Backup and Restore » Storage level - - > > -
backup managed SR

by Amazon RDS

-14-

aws

SQL Server Aurora PostgreSQL Key Differences Compatibility
High Availability Essen- High Availability Essen- « Multi replica, scale
tials tials out solution using
— — o oo
Amazon Aurora ESEEEE=EE=
clusters and Avail-
ability Zones
Indexes
SQL Server Aurora PostgreSQL Key Differences Compatibility
Clustered and Non Clustered and Non « CLUSTERED coces=
Clustered Indexes Clustered Indexes =sE=s=s==

INDEX is not sup-
ported

« There are few miss-
ing options

Indexed Views

Indexed Views

« Different paradigm
and syntax will
require applic-
ation/drivers
rewrite.

Columnstore

Columnstore

« Aurora PostgreSQL
offers no com-
parable feature

Management

SQL Server Aurora PostgreSQL | Key Differences Compatibility

SQL Server SQL Agent o See Alerting and Maintenance Plans cssse=

Alerting Alerting . Uge EventNotifications Sgbsgription - - > > -
with Amazon Simple NotificationSer- | S E = = =
vice (SNS)

ETL ETL « Use Amazon Glue for ETL ssse=

Database Malil Database Malil » Use Lambda Integration s

Viewing Server |Viewing Server Logs « View logs from the Amazon RDS con- - - > > -

Logs sole, the Amazon RDS APIl,the AWS | E === =
CLI, orthe AWS SDKs

Maintenance Maintenance Plans « Backups viathe RDS services 1=

Plans « Table maintenance via SQL == ===

Monitoring Monitoring o Use Amazon Cloud Watch service =

-15-

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/glue/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html

aws

SQL Server Aurora PostgreSQL | Key Differences Compatibility
Resource Resource Governor « Distribute load/applications/users =
Governor across multiple instances = = = ==
Linked Servers | Linked Servers « Syntax and option differences, similar 1=
functionality = T = ==
Scripting & Scripting & Power- « Non-compatible tool sets and scripting
PowerShell Shell languages - - - > -
o Use PostgreSQL pgAdmin, Amazon = ————
RDS API, AWS Management Con-
sole, and Amazon CLI
Import and Import and Export « Non-compatible tool s
Performance Tuning
SQL Server Aurora PostgreSQL | Key Differences Compatibility
Execution Plans | Execution Plans « Syntax differences - - > > >
« Completely different optimizer with R
different operators and rules
Query Hints and | Query Hints and Plan « Very limited set of hints - Index hints
Plan Guides Guides and optimizer hints as comments R — R —
« Syntax differences
Managing Stat- | Managing Statistics « Syntax and option differences, sim- s
istics ilar functionality = = = ==
Physical Storage
SQL Server Aurora PostgreSQL Key Differences Compatibility
Partitioning Partitioning « Does not support coeoe=
LEFT partition or sEEEET
foreign keys ref-
erencing partitioned ooaaa
tables
Security
SQL Server Aurora PostgreSQL Key Differences Compatibility
Column Encryption Column Encryption « Syntax and option
differences, similar | = = = = =
functionality
Data Control Language Data Control Language « Similar syntax and A=
similar functionality | — — — — =
Transparent Data Encryp- | Transparent Data Encryp- « Storage level
tion tion encryption man- A=
aged by Amazon - = = ==
RDS

-16-

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/

aws

SQL Server

Aurora PostgreSQL

Key Differences

Compatibility

Users and Roles

Users and Roles

« Syntax and option
differences, similar
functionality

« There are no users
- only roles

((
()
([
()

()

-17-

aws

The previous playbook covered the Aurora PostgreSQL 9.6 compatible and SQL Server 2016, this playbook will

cover the main updates for Aurora PostgreSQL 12 compatible and SQL Server 2019.

AWS is keep updating all the services, for the open-source databases, AWS is trying to keep up with the releases

of the brand.

In order to provide the complete picture to all users, RDS related information is being mentioned in this playbook
as well. Sections formatted in the following way are relevant for RDS only:

RDS ONLY: This paragraph is about the latest db engine version which is supported only in RDS

(and not Aurora)

engines

Update Aspect Link

Updated screen shots AWS AWS SCT
Updated SCT warning lists AWS AWS SCT Error Codes
Amazon RDS on Outposts AWS RDS Outposts
Amazon RDS Proxy AWS RDS Proxy
Amazon Aurora Serverless AWS Aurora Serverless
AWS RDS Backtrack AWS RDS Backtrack
New features for pg_dump PostgreSQL pg_dump

support for extension dependencies

pg_dump dump files can not only be plain text files but also

with custom and compressed format

support for WHERE in COPY

Rewrite partitioning topic to present declarative partitions PostgreSQL Partitions
Monitoring index creation PostgreSQL Overall Indexes
Monitoring VACUUM FULL and CLUSTER operations PostgreSQL Information Views
Monitoring index creation

New system views to monitor shared memory usage and

ANALYZE progress

New option AND CHAIN for COMMIT /ROLLBACK PostgreSQL Transactions
Generated columns PostgreSQL Virtual Columns
New supported collation versions PostgreSQL Character Set
New ability to rename view columns PostgreSQL Views

Table storage parameters that can trigger autovacuum PostgreSQL Statistics
Automatic Tuning in SQL Server 2017 SQL Server Execution Plan
Cancel queries automatically PostgreSQL Execution Plans
Case sensitive topic to call out the difference between the two | PostgreSQL Case Sensitive

-18-

aws

Update Aspect Link

Graph Features in SQL Server 2017 and updates for 2019 New topic Graph Features

- Availability Groups in SQL Server 2017 SQL Server High Availability

- Database Snapshots Databases in SQL Server 2019

New System Views in SQL Server 2017 SQL Server Monitoring
Lightweight Query Profiling Infrastructure

Upgrades New topic Upgrades

Scalar UDF Inline in SQL Server 2019 SQL Server User Defined Functions
Changes Resource governance SQL operations in SQL Server Resource Governor
SQL Server 2019

UTF-8 support in SQL Server 2019 SQL Server Collations

We will dive into each change in the relevant topics.

General migration tips topic has been added here: link

For additional details, see: https.://www.postgresql.org/docs/13/release-13.html

-19-

https://www.postgresql.org/docs/13/release-13.html

aws

N

AWS Schema and Data Migration Tools

-20-

aws

AWS Schema Conversion Tool (SCT)

Usage

The AWS Schema Conversion Tool (SCT) is a Java utility that connects to source and target databases, scans
the source database schema objects (tables, views, indexes, procedures, etc.), and converts them to target data-
base objects.

This section provides a step-by-step process for using AWS SCT to migrate an Oracle database to an Aurora
PostgreSQL database cluster. Since AWS SCT can automatically migrate most of the database objects, it greatly
reduces manual effort.

Itis recommended to start every migration with the process outlined in this section and then use the rest of the
Playbook to further explore manual solutions for objects that could not be migrated automatically. For more
information, see

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/\WWelcome.html

Migrating a Database

Note: This walkthrough uses the AWS DMS Sample Database. You can download it from https://-
github.com/aws-samples/aws-database-migration-samples.

Download the Software and Drivers

1. Download and install the AWS SCT from
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP _Installing.html.

2. Download the relevant drivers:

« Oracle

http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-
1958347.html

o SQL Server
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774

» PostgreSQL
https://jdbc.postgresqgl.org/

https://www.mysql.com/products/connector/

o Other link to supported drivers can be found in here:
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP _Installing.htm-
I#CHAP _Installing.JDBCDrivers

-21-

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
https://github.com/aws-samples/aws-database-migration-samples
https://github.com/aws-samples/aws-database-migration-samples
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://jdbc.postgresql.org/download.html
https://www.mysql.com/products/connector/
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers

aws

N

Configure SCT

Launch SCT. Click the Settings button and select Global Settings.

.1 AWS Schema Conversion Tool

iFiIe = Settings Applications Help

@ Default project settings

Project settings

On the left navigation bar, click Drivers. Enter the paths for the Oracle and PostgreSQL drivers downloaded in
the first step. Click Apply and then OK.

|11 Global settings [m| X
| Lagging Driver settings
I Drivers I 1
Oracle driver path [Ciojdbc8-12.2.0.1 jar I ' Browse
| Performance and memory
Microsoft SOL Server driver path ' Browse
| VM options
5QL Server Windows Authentication library [' Erowse
| Assessment Report
MySQL driver path [Browse
| AWS service profiles |—|
| S I PostgreSQL driver path C:\postgresql-42‘2‘19.jar| ' Browse
| Notifications Teradata drivers path [' Browse

Create a New Migration Project

Click File > New project wizard. Alternatively, use the keyboard shortcut <Ctrl+W>.

ﬁ AWNS Schema Conversion Tool

llD View (:"\ Settings % Applications Help

=" New project... Ctrl=N

s Open project Ctrl+0

b

Alt+F4

-22-

aws

Enter a project name and select a location for the project files. Click Next.

Create a new database migration project O X

The AWS Schema Conversion Tool can help migrate your database to the database platform of your choice. Specify the database to migrate to AWS.
Step 1. Choose a source

v
Projectname | Playbook Demo
Step 2. Connect to the source database

r
Location CAAWS Schema Conversion Tool\Projects Erowse

Step 3. Choose a schema

®) Transactional database (OLTP)
Step 4. Run the database migration assessment
Data warehouse (OLAP)

Step 5. Choose a target NoSQL database

ETL

I Source engine: | Oracle I -

® | want to switch engines and optimize for the cloud
| want to keep the same engine but optimize for the cloud

| want to see a combined report for database engine switch and optimization to cloud

| Net || cancel

Enter connection details for the source Oracle database and click Test Connection to verify. Click Next.

Create a new database migration project = =

Specify information about the source database to connect to.
Step 1. Choose a source

Note: The AWS Schema Conversion Tool doesn't store the password. If you close your AWS Schema Conversion Tool project and reopen it, you are prompted

Step 2. Connect to the source database for the password to connect your source database as needed.
Step 3. Choose a schema Connect to Oracle
Step 4. Run the database migration assessment | Connection
Step 5. Choose a target Type SiD =
Server name| -
r
Serverport || 1521 -
r
Oracle SID -
r
User name -
Password [
Use S5L

/| Store password

Test connection Previous Mext Cancel

-23-

aws

Select the schema or database to migrate and click Next.
Create a new database migration project

Choose the schema that you want to analyze.
Step 1. Choose a source

¥ & postgres@oraplaybook.cnv77o85ivBn.eu-central- 1.rds.amazonaws.com:1521:0RCL

Step 2. Connect to the source database
¥ || e Schemas [24]

= ANONYMOUS

s APPQOSSYS

= AUDSYS

 CTASYS

=s DBSFWUSER

Step 3. Choose a schema v
v
v
v
v
v | wa DBSNMP
v
v
v
v
v

Step 4. Run the database migration assessment

Step 5. Choose a target

o DIP

o DMS_SAMPLE

o GEMADMIN_INTERNAL
ol GEMCATUSER

s GSMUSER

The progress bar displays the objects being analyzed.

—0—— Oracle database

Loading schema dependencies...

The Database Migration Assessment Report is displayed when the analysis completes. Read the Executive sum-
mary and other sections. Note that the information on the screen is only partial. To read the full report, including
details of the individual issues, click Save to PDF and open the PDF document.

Create a new database migration project X

*! Save to CSV = Save to PDF

Step 1. Choose a source
Database Switch Assessment

Step 2. Connect to the source database

Step 3. Choose a schema Executive summary
Step 4. Run the database migration assessment Auto or minimal changes Complex actions
T)) R Storage objects Code objects
Step 5. Choose a target Storage objects Code objects actions Objects Coieion Objects T
count actions count actions
Amazon RDS 63 12 0 1"
12 0 55
for MysaL (100%) (52%) ©%) (48%)
Amazon Aurora 61 12 15 2 0 1 55
(MySQL compatible) (97%) (52%) (3%) (48%)
Amazon RDS 63 20 1 0 1
for PostgreSQL (100%) (87%) (0%)
Amazon Aurora 63 20 1 0 0 1
(PostgreSQL compatible) (100%) ®7%) %) (13%)
Amazon RDS 61 13 2 10
for MariaDB (97%) (57%) 2 (3%) 0 43%) 0

We completed the analysis of your Oracle source database and estimate that 100% of the database storage objects and 52% of database code objects can be converted
automatically or with minimal changes if you select Amazon RDS for MySQL as your migration target. Database storage objects include schemas, tables, table constraints, indexes,
types, collection types, sequences, synonyms, view-constraints, clusters and database links. Database code objects include triggers, views, materialized views, materialized view
logs, procedures, functions, packages, package constants, package cursors, package exceptions, package variables, package functions, package procedures, package types,

packaae collection tvoes. scheduler-iobs. scheduler-oroarams. scheduler-schedules and aueuina-tables. Based on the source code svntax analvsis. we estimate 90% (based on # 3

Previous Next Cancel

-24-

aws

N

Scroll down to the section Database objects with conversion actions for Amazon Aurora (PostgreSQL com-
patible).

Of the total 63 database storage object(s) and 23 database code object(s) in the source database, we identifed
63 (100%) database storage object(s) and 20 (87%) database code object(s) that can be converted to Amazon
Aurora (PostgreSQL compatible) automatically or with minimal changes.

3 (13%) database code object(s) require 1 complex user action(s) to complete the conversion.

Figure: Conversion statistics for database storage objects

Schema

(1:1/0/0/0)

(16: 16/0/0/0) .
(32: 32/0/0/0) .
(9: 9/0/0/0) -
Sequence
(:5/0/0/0 :

1

0 10 100
[Objects automatically converted [Objects with simple actions
[Objects with medium-complexity actions [l Objects with complex actions
Figure: Conversion statistics for database code objects
Trigger

100% 3

(3:3/0/0/0)

View
(2: 2/0/0/0)

[

100%

Procedure

(6:4/2/0/0) 67% 33% 6

Package
(1:1/0/0/0)

Package type
(1:1/0/0/0)

Package function

(2: 2/0/0/0) 100% 2

I | |

Package procedure

(5: 2/0/2/1) 40% 40% 20% 5

Package variable

(2: 2/0/0/0) 100% 2

Package collection type
(1:1/0/0/0)

(=]
| I

10
. Objects automatically converted . Objects with simple actions

. Objects with medium-complexity actions . Objects with complex actions

Scroll further down to the section Detailed recommendations for Amazon Aurora (PostgreSQL compatible)
migrations.

-25.-

aws

Action Items
¥ Teradata 4 Issue: 13001: Unable to convert datatypes
T Recommended action: Perform autoconversion to the CHARACTER VARYING type.
Number of accurrences: 1 | Documentation reference: http://docs aws.amazon.com/redshift/latest/dg/c_unsupported-postgresql-datatypes.html
3 ‘=8 TDStats
i ¥ () Issue: 13022: Character type with length > 4096 is unsupported
) Recommendad action: Performed autoconversion to the VARCHAR type.
L fsl TD_SERVER_DB Mumber of occurrences: 98 | Documentation reference: http://docs.aws amazen.com/redshift/latest/dg/r_Character_types.him
S TD SYSFNL
L TDSYSEAIE, » Column: ca_suite_number (Number of occurrences: 1)
> &= TD_SYSGPL
i ¥ Column: d_current year (Number of accurrences: 1)
> = TD_SYSXML
T » Column: wehb_site_id (Number of occurrences: 1)
v || i TPCDS
- 25 TH. —_——. ¥ Column: i_product_name (Number of accurrences: 1)
v (V] 1§ call_center » Column: web_street_type (Number of accurrences: 1)
¥ (] 5B catalog page » Column: d_holiday (Number of occurrences: 1)
» [v| &g catalog_returns » Column: i_manufact (Number of occurrences: 1)
* [¥| g catalog sales * Column: ¢ salutation (Number of occurrences: 1)

Returnto AWS SCT and click Next. Enter the connection details for the target Aurora PostgreSQL database and
click Finish.

Note: The changes have not yet been saved to the target.

Create a new database migration project

Specify the target database engine and the connection information.
Step 1. Choose a source

e Target engine: | Amazon Aurora (PostgreSQL compatible}

Sl Connect to Amazon Aurora (PostgreSQL compatible)

Step 4. Run the database migration assessment
Connection

r
Step 5. Choose a target Sewername | pg-playbosks-instance-1.crv77085ivan.eu-central-1.rds.amazonaws.com
r
Serverport | 5432
r
Database | pplaybooks

r
Username | postgres

r
Password LTI R LT T Y

Use S5L
[Store password

Test connection Previous Finish

When the connection is complete, AWS SCT displays the main window. In this interface, you can explore the indi-
vidual issues and recommendations discovered by AWS SCT.

For example, expand sample database > dms sample > Proceduress > generate_tickets. This issue has a
red marker indicating it could not be automatically converted and requires a manual code change (issue 811
above). Select the object to highlight the incompatible code section.

-26 -

aws
N

v Oracle v Oracle procedure: GENERATE TICKETS v Amazon Aurora (PostgreSQL compatible)
A Properties | SQL| Parameters Related converted objects Mapping Settings A 4
> |V DI ~ 7 standard price NUMBER(6,2); ~ | v == postgres@pg-playbooks-instance-1.cr
v V| 5@ DMS_SAMPLE 8 =)
> (V) 5 Tables [16 i T e
ables [16] 10 standard_price := DBMS_RANDOM.VALUE (30,50) ; V| & Foreign Servers
V| s External Tables 11 v V| & Server Level Objects
NV fews [2] 12 FOR event_rec IN event_cur(P_event_id) LOOP .
) 13 INSERT INTO sporting_event ticket (id,sporting_event id,sport locati V| & Contexts
> |V| @ Packages [1] 14 SELECT sporting_event_ticket_seq.nextval V| &l SQL Scripts
v V| @ Procedures [6] 15 ,sporting_event.id
V) (5 GENERATESEATS 16 ,seat.sport_location_id
< 17 ,seat.seat_level
“ ‘%‘GENERATE—TICKETS 18 .seat.seat section M
V| (5 LOADMLBPLAYERS < 2
B E5 LOADMLETEAMS v Amazon Aurora (PostgreSQL compatible) category: Schemas
V| 5 LOADNFLPLAYERS Properties | SOL Apply status
V| & LOADNFLTEAMS T NS +
V| & Functions ¥ Category
V| &l User Defined Types Name of the category Schemas
T 2t Tomnn

Right-click the schema and then click Create Report to create a report tailored for the target database type. It can
be viewed in AWS SCT.

¥ Qracle v Oracle schema: DMS_SAMPLE
T Properties| SOl Related converted objects Mapping Settings
A | postgres@oraplaybook.crv??oSSwEA Name Value +
v (=] 3% Schemas [23] ¥ Created or last modified
> & - ANONYMOUS Created 2021-02-24 17:56:30.0
» Ll APPQOSSYS ¥ Object name
> & AUDSYS Name DMS_SAMPLE
> el CTXSYS
> s/ DBSFWUSER
»> !l DBSNMP
> L DIP < s
v A
N Tables Amazon Aurora (PostgreSQL compatible) category: Schemas
V| & Extern 18 Convert schema jes| SQL Apply status
» V| 5 Views i@ Load schema Name Value s
» (7 P nan

The progress bar updates while the report is generated.

_gl—r— Cracle database

: Analyzing table LOGSTDBY$APPLY MILESTONE...

To — o

The executive summary page displays. Click the Action ltems tab.

Summary | Action items

! Save to CSV || & Save to PDF

Database migration assessment report aWs
N/

Source database: DMS_SAMPLE postgres@oraplaybook.crv77085iv8n.eu-central-1.rds.amazonaws.com:1521:orcl
Oracle Database 19¢ Standard Edition 2 19.10.0.0.0 (Production), Standard edition

Executive summary

We completed the analysis of your Oracle source database and estimate that 100% of the database storage objects and 87% of database code objects can be converted automatically or with minimal changes if you
select Amazon Aurora (PostgreSQL compatible) as your migration target. Database storage objects include schemas, tables, table constraints, indexes, types, collection types, sequences, synonyms, view-constraints,
clusters and database links. Database code objects include triggers, views, materialized views, materialized view logs, procedures, functions, packages, package constants, package cursors, package exceptions,
package variables, package functions, package procedures, package types, package collection types, scheduler-jobs, scheduler-programs, scheduler-schedules and queuing-tables. Based on the source code syntax
analysis, we estimate 99.8% (based on # lines of code) of your code can be converted to Amazon Aurora (PostgreSQL compatible) automatically. To complete the migration, we recommend 12 conversion action(s)
ranging from simple tasks to medium-complexity actions to complex conversion actions.

Migration guidance for database objects that could not be converted automatically can be found here

Database objects with conversion actions for Amazon Aurora (PostgreSQL compatible)

Of the total 63 database storage object(s) and 23 database code object(s) in the source database, we identifed 63 (100%) database storage object(s) and 20 (87%) database code object(s) that can be converted to
| Amazon Aurora (PostqreSQL compatible) automatically or with minimal chanqges.

-27 -

aws

In this window, you can investigate each issue in detail and view the suggested course of action. For each issue,
drill down to view all instances of that issue.

Action Items
¥ Teradata > Issue: 13001: Unable to convert datatypes 2
T Recommended action: Perform autaconversion to the CHARACTER VARYING type.
- Number of occurrences: 1 | Documentation reference: httpy//docs.aws.amazon.com/redshift/latest/dg//c_unsupported-postgresql-datatypes.html
> s TDStats
i &t ¥ Issue: 13022: Character type with length > 4096 is unsupported
: Recommended action: Perfarmed autaconversion to the VARCHAR type.
& | TD_SERVER DE Number of occurrences: 98 | Documentation reference: http://docs.aws.smazan.cam/redshift/latest/dg/r Character_types htm!
L &= TD_SYSFNLIB Column: ca_suite_number (Number of occurrences: 1)
> sl TD_SYSGPL
Column: d_current_year (Number of occurrences: 1)

» i TD_SYSXML
e Column: web_site_id (Number of occurrences: 1)

Column: i_product_name (Number of accurrences: 1)
V| (3 callcenter Column: weh_street_type (Number of occurrences: 1)
V| £@ catalog_page

V| @ catalog_returns

Column: dl_holiday (Number of occurrences: 1)

Column: i_manufact (Number of occurrences: 1)

vy ¥ v v v ¥y v v

| 5 catalog sales Colurnn: ¢ salutation (Number of accurrences: 1)

Right-click the database name and click Convert Schema.

Be sure to uncheck the sys and information_schema system schemas. Aurora PostgreSQL already has an
information_schema schema.

This step does not make any changes to the target database.

» || e GSMCATUSER

P || e GSMUSER

N, "‘i;'. OUTLN =4 Create report

» [/ = POSTGRES E Convert schema

» V| S5 pUBLIC & Load schema

» /| & RDSADMIN | B Hide schema

> || B REMOTE SCR D Refresh from database -

¥ e SYS @ Load dependencies

> || Gl SYSBACKUP & Create DMS task Propertie
PV e SYEDG ﬁ Create Local task

> V] mu SYSKM ﬁ Create Local & DMS task ¥ Catege
> - SYSTEM M Save a5 5L MNam
F || s XDE

> W] e XSSNULL

On the right pane, the new virtual schema is displayed as if it exists in the target database. Drilling down into indi-
vidual objects displays the actual syntax generated by AWS SCT to migrate the objects.

-28 -

aws

¥ Amazon RDS for MySQL
T
¥ = Ami@migrationplaybook-cluster.cl -

¥ |v| [Schemas [8]

| performance_schema

» V| s Demo

P V| G demo2

» | Ll information_schema
PV s mysql

b | & NewDotobase

L4

L4

sy
I' v | s dms_sample_dbo I
» || & Tables [16]
¥ || & Views [3]
P || ws gethewlD

» || @& sporting_event_info
b || & sporting_event_ticket i
» || &8 Procedures [10]
¥ || & Functions [1]
rand_int
v/| & User-Defined Functions

» || & Plugins [50]
¥ || we AWS Oracle Extensions [1]

» /| wai Database sequence emulati
¥ || & AWS SQL Server Extensions [

» |v/| s Database sequence emulat

5 - P g

Right-click the database on the right pane and choose either Apply to database to automatically execute the con-
version script against the target database, or click Save as SQL to save to an SQL file.

Saving to an SQL file is recommended because it allows you to verify and QA the SCT code. Also, you can make
the adjustments needed for objects that could not be automatically converted.

¥ Amazon Aurora (PostgreSQL compatible)
T
¥ == postgres@pg-playbooks-instance-1.crv7To85ivBn.eu-central- 1
¥ || & Schemas [1]
2 hr
v| & Foreign ¢ O Load schema
¥ [/| L Server Le o Hide schema

v'| s Contex D Refresh from database

VAR RO = Apply to database

& Save as SQL

I Apply extension pack

For more information, see https.//docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

-29-

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

aws

Level Symbol

SCT/DMS Automation

Description

elelede e,

Full Automation SCT performs fully automatic conversion, no manual conversion
needed.

olelede e,

High Automation: Minor, simple manual conversions may be needed.

elelede e,

Medium Automation: Low-medium complexity manual conversions may be needed.

elelede e,

Low Automation: Medium-high complexity manual conversions may be needed.

SOOOO

Very Low Automation: High risk or complex manual conversions may be needed.

olelede e,

No Automation: Not currently supported by SCT, manual conversion is required for
this feature.

The following sections list the Schema Conversion Tool Action codes for topics that are covered in this playbook.

Note: The links in the table point to the Microsoft SQL Server topic pages, which are immediately fol-
lowed by the PostgreSQL pages for the same topics.

eielede e,

AWS SCT automatically converts the most commonly used constructs of the CREATE TABLE statement as both
SQL Server and Aurora PostgreSQL support the entry level ANSI compliance. These items include table names,
containing security schema (or database), column names, basic column data types, column and table constraints,
column default values, primary, candidate (UNIQUE), and foreign keys. Some changes may be required for com-
puted columns and global temporary tables.

For more details, see Creating Tables.

Action Code Action Message

7659 The scope table-variables and temporary tables is different. You must apply manual con-
version, if you are using recursion

7665 PostgreSQL doesn’t support FILESTREAM option for storing column values

7678 A computed column is replaced by regular column. Automatically fill is not supported

7679 A computed column is replaced by the triggers

7680 PostgreSQL doesn't support global temporary tables

-30-

aws

Action Code Action Message
7812 Temporary table must be removed before the end of the function
7835 PostgreSQL does not support the Filetable option

eqelede e,

Data type syntax and rules are very similar between SQL Server and Aurora PostgreSQL and most are con-
verted automatically by AWS SCT. Note that date and time handling paradigms are different for SQL Server and
Aurora PostgreSQL and require manual verifications and/or conversion. Also note that due to differences in data
type behavior between SQL Server and Aurora PostgreSQL , manual verification and strict testing are highly
recommended.

For more details, see Data Types.

Action Code Action Message

7657 PostgreSQL doesn't support this type. A manual conversion is required
7658 PostgreSQL doesn't support this type. A manual conversion is required
7662 PostgreSQL doesn't support this type. A manual conversion is required
7664 PostgreSQL doesn't support this type. A manual conversion is required
7690 PostgreSQL doesn't support table types

7706 Unable convert the variable declaration of unsupported %s datatype
7707 Unable convert variable reference of unsupported %s datatype

7708 Unable convert complex usage of unsupported %s datatype

7773 Unable to perform an automated migration of arithmetic operations with several dates
7775 Check the data type conversion. Possible loss of accuracy

eleledete,

The collation paradigms of SQL Server and Aurora PostgreSQL are significantly different. The AWS SCT tool
can not migrate collation automaticly to PostgreSQL

For more details, see Collations.

Action Code Action Message

7646 Automatic conversion of collation is not supported

-31-

aws

oqeledete,

Aurora PostgreSQL version 10 does not support the PIVOT and UNPIVOT syntax and it cannot be automatically
converted by AWS SCT.

For workarounds using traditional SQL syntax, see PIVOT and UNPIVOT.

Action Code Action Message
7905 PostgreSQL doesn't support the PIVOT clause for the SELECT statement
7906 PostgreSQL doesn't support the UNPIVOT clause for the SELECT statement

eqelede e,

Aurora PostgreSQL supports the non-ANSI compliant (but popular with other engines) LIMIT... OFFSET oper-

ator for paging results sets. Some options such as WITH TIES cannot be automatically converted and require
manual conversion.

For more details, see TOP and FETCH.

Action Code Action Message

7605 PostgreSQL doesn't support the WITH TIES option

7796 PostgreSQL doesn't support TOP option in the operator UPDATE
7798 PostgreSQL doesn't support TOP option in the operator DELETE
7799 PostgreSQL doesn’t support TOP option in the operator INSERT

odegegele

PostgreSQL has PL/pgSQL cursors that enable you to iterate business logic on rows read from the database.
They can encapsulate the query and read the query results a few rows at a time. All access to cursors in PL/p-
gSAQL is performed through cursor variables, which are always of the refcursor data type.

There are specific options which are not supported for automatic conversion by SCT.

For more details, see Cursors.

-32-

aws

Action Code Action Message

7637 PostgreSQL doesn't support GLOBAL CURSORS. Requires manual Conversion

7639 PostgreSQL doesn't support DYNAMIC cursors

7700 The membership and order of rows never changes for cursors in PostgreSQL, so this
option is skipped

7701 Setting this option corresponds to the typical behavior of cursors in PostgreSQL, so this
option is skipped

7702 All PostgreSQL cursors are read-only, so this option is skipped

7704 PostgreSQL doesn't support the option OPTIMISTIC, so this option is skipped

7705 PostgreSQL doesn't support the option TYPE_WARNING, so this option is skipped

7803 PostgreSQL doesn't support the option FOR UPDATE, so this option is skipped

eieledete,

Although the flow control syntax of SQL Server differs from Aurora PostgreSQL , the AWS SCT can convert
most constructs automatically including loops, command blocks, and delays. Aurora PostgreSQL does not sup-
port the GOTO command nor the WAITFOR TIME command, which require manual conversion.

For more details, see Flow Control.

Action Code Action Message

7628 PostgreSQL doesn't support the GOTO option. Automatic conversion can't be performed

7691 PostgreSQL doesn't support WAITFOR TIME feature

7801 The table can be locked open cursor

7802 A table that is created within the procedure, must be deleted before the end of the pro-
cedure

7810 PostgreSQL doesn’t supportthe SET NOCOUNT

7821 Automatic conversion operator WAITFOR with a variable is not supported

7826 Check the default value for a DateTime variable

7827 Unable to convert default value

-33-

eqeledete,

aws

Aurora PostgreSQL supports the four transaction isolation levels specified in the SQL:92 standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE, all of which are auto-
matically converted by AWS SCT. AWS SCT also converts BEGIN / COMMIT and ROLLBACK commands that
use slightly different syntax. Manual conversion is required for named, marked, and delayed durability trans-
actions that are not supported by Aurora PostgreSQL .

For more details, see Transaction Isolation.

Action Code

Action Message

7807

PostgreSQL does not support explicit transaction management in functions

oqelede e,

Aurora PostgreSQL Stored Procedures (functions) provides very similar functionality to SQL Server stored pro-
cedures and can be automatically converted by AWS SCT. Manual conversion is required for procedures that
use RETURN values and some less common EXECUTE options such as the RECOMPILE and RESULTS

SETS options.

For more details, see Stored Procedures.

Action Code Action Message

7640 The EXECUTE with RECOMPILE option is ignored

7641 The EXECUTE with RESULT SETS UNDEFINED option is ignored
7642 The EXECUTE with RESULT SETS NONE option is ignored

7643 The EXECUTE with RESULT SETS DEFINITION option is ignored
7672 Automatic conversion of this command is not supported

7695 PostgreSQL doesn't support the execution of a procedure as a variable
7800 PostgreSQL doesn't support result sets in the style of MSSQL

7830 Automatic conversion arithmetic operations with operand CASE is not supported
7838 The EXECUTE with LOGIN | USER option is ignored

7839 Converted code might be incorrect because of the parameter names

-34-

aws

oqelede e,

Aurora PostgreSQL supports BEFORE and AFTER triggers for INSERT, UPDATE, and DELETE. However,

Aurora PostgreSQL triggers differ substantially from SQL Server's triggers, but most common use cases can be
migrated with minimal code changes.

For more details, see Triggers.

Action Code Action Message

7809 PostgreSQL does not support INSTEAD OF triggers on tables
7832 Unable to convert INSTEAD OF triggers on view

7909 Unable to convert the clause

oleledete,

Aurora PostgreSQL version 10 does not support the MERGE statement and it cannot be automatically converted
by AWS SCT. Manual conversion is straight-forward in most cases.

For more details and potential workarounds, see MERGE.

Action Code Action Message
7915 Please check unique(exclude) constraint existence on field %s
7916 Current MERGE statement can not be emulated by INSERT ON CONFLICT usage

oaegege e

Basic query hints such as index hints can be converted automatically by AWS SCT, except for DML statements.
Note that specific optimizations used for SQL Server may be completely inapplicable to a new query optimizer. It
is recommended to start migration testing with all hints removed. Then, selectively apply hints as a last resort if

other means such as schema, index, and query optimizations have failed. Plan guides are not supported by Aur-
ora PostgreSQL.

For more details, see Query hints and Plan Guides.

-35.-

aws

Action Code

Action Message

7823

PostgreSQL doesn't support table hints in DML statements

SOOOO

Migrating Full-Text indexes from SQL Server to Aurora PostgreSQL requires a full rewrite of the code that deals
with both creating, managing, and querying Full-Text indexes. They cannot be automatically converted by AWS

SCT.

For more details, see Full Text Search.

Action Code

Action Message

7688

PostgreSQL doesn't supportthe FREETEXT predicate

odegegele

Basic non-clustered indexes, which are the most commonly used type of indexes are automatically migrated by
AWS SCT. In addition, filtered indexes, indexes with included columns, and some SQL Server specific index
options can not be migrated automatically and require manual conversion.

For more details, see Indexes.

Action Code Action Message

7675 PostgreSQL doesn't support sorting options (ASC | DESC) for constraints

7681 PostgreSQL doesn't support clustered indexes

7682 PostgreSQL doesn't support the INCLUDE option in indexes

7781 PostgreSQL doesn't support the PAD_INDEX option in indexes

7782 PostgreSQL doesn't support the SORT_IN_TEMPDB option in indexes

7783 PostgreSQL doesn't support the IGNORE_DUP_KEY option inindexes

7784 PostgreSQL doesn't support the STATISTICS_NORECOMPUTE option in indexes
7785 PostgreSQL doesn't support the STATISTICS_INCREMENTAL option in indexes
7786 PostgreSQL doesn't support the DROP_EXISTING option in indexes

7787 PostgreSQL doesn't support the ONLINE option in indexes

7788 PostgreSQL doesn't support the ALLOW_ROW_LOCKS option in indexes

7789 PostgreSQL doesn't support the ALLOW_PAGE_LOCKS option in indexes

7790 PostgreSQL doesn't support the MAXDOP option in indexes

-36-

aws

Action Code Action Message

7791 PostgreSQL doesn't supportthe DATA_COMPRESSION option in indexes

oaegege e

Aurora PostgreSQL uses "table inheritance", some of the physical aspects of partitioning in SQL Server do not
apply to Aurora PostgreSQL . For example, the concept of file groups and assigning partitions to file groups. Aur-
ora PostgreSQL supports a much richer framework for table partitioning than SQL Server, with many additional
options such as hash partitioning, and sub partitioning.

For more details, see Partitioning.

Action Code Action Message

7910 NULL columns not supported for partitioning

7911 PostgreSQL does not support foreign keys referencing partitioned tables

7912 PostgreSQL does not support foreign key references from a partitioned table to some other
table

7913 PostgreSQL does not support LEFT partitioning - partition values distribution could vary

7914 Update of the partitioned table may lead to errors

COOOO

Migrating from a self-managed backup policy to a Platform as a Service (PaaS) environment such as Aurora Post-
greSQL is a complete paradigm shift. You no longer need to worry about transaction logs, file groups, disks run-
ning out of space, and purging old backups. Amazon RDS provides guaranteed continuous backup with point-in-
time restore up to 35 days. Therefor, AWS SCT does not automatically convert backups.

For more details, see Backup and Restore.

Action Code Action Message

7903 PostgreSQL does not have functionality similar to SQL Server Backup

oleledete,

-37-

aws

Aurora PostgreSQL does not provide native support sending mail from the database.

For more details and potential workarounds, see Database Mail.

Action Code Action Message

7900 PostgreSQL does not have functionality similar to SQL Server Database Mail

SOOOO

For more details and potential workarounds, see Graph.

Action Code Action Message
7931 Automatic migration of sql graph tables not supported
7932 Automatic migration of DML constructs for SQL Graph Architecture is not supported

SOOOO

Aurora PostgreSQL does not provide functionality similar to SQL Server Agent as an external, cross-instance
scheduler. However, Aurora PostgreSQL does provide a native, in-database scheduler. Itis limited to the cluster

scope and can't be used to manage multiple clusters. Therefore, AWS SCT can not automatically convert Agent
jobs and alerts.

For more details, see SQL Server Agent.

Action Code Action Message

7902 PostgreSQL does not have functionality similar to SQL Server Agent

SOOOO

Aurora PostgreSQL does not provide a compatible solution to the SQL Server Service Broker. However, you can
use DB Links and AWS Lambda to achieve similar functionality.

For more details, see Service Broker.

-38-

aws

Action Code Action Message

7901 PostgreSQL does not have functionality similar to SQL Server Service Broker

eqeledete,

The XML options and features in Aurora PostgreSQL are similar to SQL Server and the most important functions
(XPATH and XQUERY) or almost identical.

PostgreSQL does not support FOR XML clause, the walkaround for that is using string_agg instead. In some
cases, it might be more efficient to use JSON instead of XML.

For more details, see XML.

Action Code Action Message

7816 PostgreSQL doesn't support any methods for datatype XML

7817 PostgreSQL doesn't support option [for xml path] in the SQL-queries

7920 PostgreSQL doesn’t support FOR XML mode EXPLICIT

7924 Columns XPath expression could return multiple elements. PostgreSQL does not support
such functionality, so the error can be occurred

oqelede e,

Constraints feature is almost fully automated and compatible between SQL Server and Aurora PostgreSQL.
The differences are: missing SET DEFAULT and Check constraint with sub-query.

For more details, see Constraints.

Action Code Action Message

7606 PostgreSQL doesn’t support foreign keys referencing partitioned tables
7675 PostgreSQL doesn’t support sorting options (ASC | DESC) for constraints
7825 The default value for a DateTime column removed

7915 Please check unique(exclude) constraint existence on field %s

-39-

aws

odegegele

Aurora PostgreSQL does support remote data access from the database. Connectivity between schemas is
trivial, but connectivity to other instances require an extension installation

For more details, see Linked Servers.

Action Code Action Message

7645 PostgreSQL doesn't support executing a pass-through command on a linked server

olegegete,

Aurora PostgreSQL does support synonyms, if these are referring to table/views/function then these can be

replaced with views or functions to wrap those. It becomes more challengeing when these referes to other
objects.

For more details, see Synonyms.

Action Code Action Message

7792 PostgreSQL doesn’t support synonyms

-40-

aws

The AWS Database Migration Service (DMS) helps you migrate databases to AWS quickly and securely. The
source database remains fully operational during the migration, minimizing downtime to applications that rely on
the database. The AWS Database Migration Service can migrate your data to and from most widely-used com-
mercial and open-source databases.

The service supports homogenous migrations such as Oracle to Oracle as well as heterogeneous migrations
between different database platforms such as Oracle to Amazon Aurora or Microsoft SQL Server to MySQL. It
also allows you to stream data to Amazon Redshift, Amazon DynamoDB, and Amazon S3 from any of the sup-
ported sources, which are Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, SAP ASE, SQL
Server, IBM DB2 LUW, and MongoDB, enabling consolidation and easy analysis of data in a petabyte-scale data
warehouse. The AWS Database Migration Service can also be used for continuous data replication with high-
availability.

When migrating databases to Aurora, Redshift or DynamoDB, you can use DMS free for six months.

For all supported sources for DMS, see
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html

For all supported targets for DMS, see
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.html

« Inatraditional solution, you need to perform capacity analysis, procure hardware and software, install and
administer systems, and test and debug the installation. AWS DMS automatically manages the deploy-
ment, management, and monitoring of all hardware and software needed for your migration. Your migra-
tion can be up and running within minutes of starting the AWS DMS configuration process.

« With AWS DMS, you can scale up (or scale down) your migration resources as needed to match your
actual workload. For example, if you determine that you need additional storage, you can easily increase
your allocated storage and restart your migration, usually within minutes. On the other hand, if you discover
that you aren't using all of the resource capacity you configured, you can easily downsize to meet your
actual workload.

« AWS DMS uses a pay-as-you-go model. You only pay for AWS DMS resources while you use them as
opposed to traditional licensing models with up-front purchase costs and ongoing maintenance charges.

« AWS DMS automatically manages all of the infrastructure that supports your migration server including
hardware and software, software patching, and error reporting.

« AWS DMS provides automatic failover. If your primary replication server fails for any reason, a backup rep-
lication server can take over with little or no interruption of service.

« AWS DMS can help you switch to a modern, perhaps more cost-effective database engine than the one
you are running now. For example, AWS DMS can help you take advantage of the managed database ser-
vices provided by Amazon RDS or Amazon Aurora. Or, it can help you move to the managed data ware-
house service provided by Amazon Redshift, NoSQL platforms like Amazon DynamoDB, or low-cost
storage platforms like Amazon S3. Conversely, if you want to migrate away from old infrastructure but con-
tinue to use the same database engine, AWS DMS also supports that process.

-41-

https://aws.amazon.com/dms/free-dms/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.html

aws

N

« AWS DMS supports nearly all of today’s most popular DBMS engines as data sources, including Oracle,
Microsoft SQL Server, MySQL, MariaDB, PostgreSQL, Db2 LUW, SAP, MongoDB, and Amazon Aurora.

« AWS DMS provides a broad coverage of available target engines including Oracle, Microsoft SQL Server,
PostgreSQL, MySQL, Amazon Redshift, SAP ASE, S3, and Amazon DynamoDB.

« You can migrate from any of the supported data sources to any of the supported data targets. AWS DMS
supports fully heterogeneous data migrations between the supported engines.

« AWS DMS ensures that your data migration is secure. Data at rest is encrypted with AWS Key Man-
agement Service (AWS KMS) encryption. During migration, you can use Secure Socket Layers (SSL) to
encrypt your in-flight data as it travels from source to target.

How AWS DMS Works

At its most basic level, AWS DMS is a server in the AWS Cloud that runs replication software. You create a
source and target connection to tell AWS DMS where to extract from and load to. Then, you schedule a task that
runs on this server to move your data. AWS DMS creates the tables and associated primary keys if they don't
exist on the target. You can pre-create the target tables manually if you prefer. Or you can use AWS SCT to cre-
ate some or all of the target tables, indexes, views, triggers, and so on.

The following diagram illustrates the AWS DMS process.

Source Replication Target
Endpoint Task Endpoint

Latest updates

DMS is continuously evolving and supporting more and more options, find below some of the updates add since
last edition of this playbook:

« CDC tasks and Oracle source tables created using CREATE TABLE AS AWS -DMS now supports both
full-load and CDC and CDC-only tasks running against Oracle source tables created using the CREATE
TABLE AS statement.

-42-

aws

o New MySQL version AWS DMS now supports MySQL version 8.0 as a source except when the trans-
action payload is compressed.

« Support for AWS Secrets Manager integration You can store the database connection details (user cre-
dentials) for supported endpoints securely in AWS Secrets Manager. You can then submit the cor-
responding secret instead of plain-text credentials to AWS DMS when you create or modify an endpoint.
AWS DMS then connects to the endpoint databases using the secret. For more information on creating
secrets for AWS DMS endpoints see Using secrets to access AWS Database Migration Service end-
points.

« Support for Oracle extended data types Oracle extended data types for both Oracle source and targets are
now supported.

o TLS 1.2 support for MySQL AWS DMS now supports TLS 1.2 for MySQL endpoints.
o TLS 1.2 support for SQL Server AWS DMS now supports TLS 1.2 for SQL Server endpoints.

For a complete guide with a step-by-step walkthrough including all the latest notes for migrating SQL Server to
Aurora MySQL (which is very similar to the Oracle-PostgreSQL migration process) with DMS, see
https://docs.aws.amazon.com/dms/latest/sbs/CHAP SQLServer2Aurora.html

For more information about DMS, see:

« https://docs.aws.amazon.com/dms/latest/userguide/Welcome. html

« https://docs.aws.amazon.com/dms/latest/userguide/CHAP_BestPractices.html|

Amazon RDS on Outposts

PLEASE NOTE, ENTIRE TOPIC IS RELATED TO RDS
AND IS NOT SUPPORTED WITH AURORA

Usage

Amazon RDS on Outposts is a fully managed service that offers the same AWS infrastructure, AWS services,
APIls, and tools to virtually any data center, co-location space, or on-premises facility for a truly consistent hybrid
experience. Amazon RDS on Outposts is ideal for workloads that require low latency access to on-premises sys-
tems, local data processing, data residency, and migration of applications with local system inter-dependencies.

When you deploy Amazon RDS on Outposts, you can run RDS on premises for low latency workloads that need
to be run in close proximity to your on-premises data and applications. Amazon RDS on Outposts also enables
automatic backup to an AWS Region. You can manage RDS databases both in the cloud and on premises using
the same AWS Management Console, APIs, and CLI. Amazon RDS on Outposts supports Microsoft SQL
Server, MySQL, and PostgreSQL database engines, with support for additional database engines coming soon.

-43-

https://docs.aws.amazon.com/dms/latest/sbs/CHAP_SQLServer2Aurora.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_BestPractices.html

aws

How it works

Amazon RDS on Outposts lets you run Amazon RDS in your on-premises or co-location site. You can deploy and
scale an RDS database instance in Outposts just as you do in the cloud, using the AWS console, APIs, or CLI.
RDS databases in Outposts are encrypted at rest using AWS KMS keys. RDS automatically stores all automatic
backups and manual snapshots in the AWS Region.

N A
& = K 7
Amazon RDS @ < g >

74 N

@ Amazon $3 1. AWS deploys RDS in 2. Manage your RDS 3. Backups and
your on premises site database in Outposts snapshots are
using a secure using the AWS Console, automatically stored

connection CLI, and APIs. Databases in the AWS Region

@Q AWS KMS are encrypted using
AWS KMS

This option is helpful when you need to run RDS on premises for low latency workloads that need to be runin
close proximity to your on-premises data and applications

For more information, see:

« https://aws.amazon.com/outposts/

« https://aws.amazon.com/rds/outposts/

« https://aws.amazon.com/blogs/aws/new-create-amazon-rds-db-instances-on-aws-outposts/

Amazon RDS Proxy

Amazon RDS Proxy is a fully managed, highly available database proxy for Amazon Relational Database Ser-
vice (RDS) that makes applications more scalable, more resilient to database failures, and more secure.

Many applications, including those built on modern server-less architectures, can have many open connections to
the database server, and may open and close database connections at a high rate, exhausting database memory
and compute resources. Amazon RDS Proxy allows applications to pool and share connections established with
the database, improving database efficiency and application scalability. With RDS Proxy, fail-over times for Aur-
ora and RDS databases are reduced by up to 66% and database credentials, authentication, and access can be
managed through integration with AWS Secrets Manager and AWS Identity and Access Management (IAM).

-44 -

https://aws.amazon.com/outposts/
https://aws.amazon.com/rds/outposts/
https://aws.amazon.com/blogs/aws/new-create-amazon-rds-db-instances-on-aws-outposts/

aws

Amazon RDS Proxy can be enabled for most applications with no code changes, and you don’t need to provision
or manage any additional infrastructure. Pricing is simple and predictable: you pay per vCPU of the database
instance for which the proxy is enabled. Amazon RDS Proxy is now generally available for Aurora MySQL, Aur-
ora PostgreSQL, RDS MySQL and RDS PostgreSQL.

Benefits

Improved application performance

Amazon RDS proxy manages a connection pooling which helps with reducing the stress on database com-
pute and memory resources that typically occurs when new connections are established and it is useful to
efficiently support a large number and frequency of application connections

Increase application availability
By automatically connecting to a new database instance while preserving application connections Amazon
RDS Proxy can reduce fail-over time by 66%

Manage application security
RDS Proxy also enables you to centrally manage database credentials using AWS Secrets Manager

Fully managed
Amazon RDS Proxy gives you the benefits of a database proxy without requiring additional burden of
patching and managing your own proxy server.

Fully compatible with your database
Amazon RDS Proxy is fully compatible with the protocols of supported database engines, so you can
deploy RDS Proxy for your application without making changes to your application code.

Available and durable
Amazon RDS Proxy is highly available and deployed over multiple Availability Zones (AZs) to protect you
from infrastructure failure

Client Applications RDS Proxy RDS Database
Your application is pointed RDS Proxy sits between RDS Proxy pools and shares
to the RDS Proxy endpoint your application and database DB connections, improving
to efficiently manage database efficiency and

DB connections application scalability

For more information, see:

-45-

aws

« https://aws.amazon.com/blogs/aws/amazon-rds-proxy-now-generally-available/

« https://aws.amazon.com/rds/proxy/

Amazon Aurora Serverless v1 (Amazon Aurora Serverless version 1) is an on-demand autoscaling configuration
for Amazon Aurora. An Aurora Serverless DB cluster is a DB cluster that scales compute capacity up and down
based on your application's needs. This contrasts with Aurora provisioned DB clusters, for which you manually
manage capacity. Aurora Serverless v1 provides a relatively simple, cost-effective option for infrequent, inter-
mittent, or unpredictable workloads. It is cost-effective because it automatically starts up, scales compute capa-
city to match your application's usage, and shuts down when it's not in use.

To learn more about pricing, see Serverless Pricing under MySQL-Compatible Edition or PostgreSQL-Com-
patible Edition on the Amazon Aurora pricing page.

Aurora Serverless v1 clusters have the same kind of high-capacity, distributed, and highly available storage
volume that is used by provisioned DB clusters. The cluster volume for an Aurora Serverless v1 cluster is always
encrypted. You can choose the encryption key, but you can't disable encryption. That means that you can per-
form the same operations on an Aurora Serverless v1 that you can on encrypted snapshots. For more inform-
ation, see Aurora Serverless v1 and snapshots.

Aurora Serverless v1 provides the following advantages:

« Simpler than provisioned - Aurora Serverless v1 removes much of the complexity of managing DB
instances and capacity.

» Scalable - Aurora Serverless v1 seamlessly scales compute and memory capacity as needed, with no dis-
ruption to client connections.

» Cost-effective - When you use Aurora Serverless v1, you pay only for the database resources that you con-
sume, on a per-second basis.

« Highly available storage - Aurora Serverless v1 uses the same fault-tolerant, distributed storage system
with six-way replication as Aurora to protect against data loss.

-46-

https://aws.amazon.com/blogs/aws/amazon-rds-proxy-now-generally-available/
https://aws.amazon.com/rds/proxy/

aws

Aurora Serverless v1 is designed for the following use cases:

Infrequently used applications - You have an application that is only used for a few minutes several times
per day or week, such as a low-volume blog site. With Aurora Serverless v1, you pay for only the database
resources that you consume on a per-second basis.

New applications - You're deploying a new application and you're unsure about the instance size you
need. By using Aurora Serverless v1, you can create a database endpoint and have the database auto-
scale to the capacity requirements of your application.

Variable workloads - You're running a lightly used application, with peaks of 30 minutes to several hours a
few times each day, or several times per year. Examples are applications for human resources, budgeting,
and operational reporting applications. With Aurora Serverless v1, you no longer need to provision for peak
or average capacity.

Unpredictable workloads - You're running daily workloads that have sudden and unpredictable increases
in activity. An example is a traffic site that sees a surge of activity when it starts raining. With Aurora Server-
less v1, your database autoscales capacity to meet the needs of the application's peak load and scales
back down when the surge of activity is over.

Development and test databases - Your developers use databases during work hours but don't need
them on nights or weekends. With Aurora Serverless v1, your database automatically shuts down when it's
notin use.

Multi-tenant applications - With Aurora Serverless v1, you don't have to individually manage database
capacity for each application in your fleet. Aurora Serverless v1 manages individual database capacity for
you.

This process takes almost no time and since the storage is shared between nodes Aurora can scale up or down in
seconds for most workloads. The service currently has autoscaling thresholds of 1.5 minutes to scale up and 5
minutes to scale down. That means metrics must exceed the limits for 1.5 minutes to trigger a scale up or fall
below the limits for 5 minutes to trigger a scale down. The cool-down period between scaling activities is 5
minutes to scale up and 15 minutes to scale down. Before scaling can happen the service has to find a “scaling
point” which may take longer than anticipated if you have long-running transactions. Scaling operations are trans-
parent to the connected clients and applications since existing connections and session state are transferred to
the new nodes. The only difference with pausing and resuming is a higher latency for the first connection, typically
around 25 seconds. You can find more details in the documentation.

-47-

aws

N

Applications

Router fleet

aes .--8
‘o8 e— BE 8
"0

ae Warm pool of
storage DB capacity

DB DB
storage storage

Aurora Database Storage

How to provision

Browse to the Databases page and click on "Create database"

Pick "Serverless" capacity type

Engine options

Engine type Info

© Amazon Aurora) MysQL () MariaDB
+
@ “ l
() PostgreSQL () Oracle () Microsoft SQL Server

@ ORACLE P50 server

Edition
() Amazon Aurora with MySQL compatibility
© Amazon Aurora with PostgreSQL compatibility
Capacity type Info
) Provisioned
You pravision and manage the server instance sizes.

© Serverless

You specify the minimum and maximum ameunt of resources needed, and Aurera scales the
capacity based on database load. This is a gaod option for intermittent or unpredictable
workloads.

Version

‘ Aurora PostgreSQL (compatible with PostgreSQL 10.14) v
To see more versions, modify the capacity types. Info

@ Aurora PostgreSQL engine versions earlier than 11.9 don't support the newest rég generation instance
classes.

-48-

https://eu-central-1.console.aws.amazon.com/rds/home?#databases:

aws

Choose the capacity properties suite for you use case

Capacity settings

This billing estimate is based on published prices. Learn more [4

Minimum Aurora capacity unit Info Maximum Aurora capacity unit Info

1 64

2GB RAM 122GB RAM

¥ Additional scaling configuration

Force scaling the capacity to the specified values when the timeout is
reached Info

Enable to force capacity scaling as soon as possible. Disable to cancel the capacity changes
when a timeout is reached

Pause compute capacity after consecutive minutes of inactivity Info
You are only cha ‘:jEd for database sto rage while the compute capacity 1s paused

For more information, see:

o https://aws.amazon.com/rds/aurora/serverless/

« https://aws.amazon.com/blogs/aws/aurora-serverless-ga/

« https://aws.amazon.com/blogs/aws/amazon-aurora-postgresql-serverless-now-generally-available/

Amazon Aurora Backtrack

Usage

We’ve all been there, you need to make a quick, seemingly simple fix to an important production database. You
compose the query, give it a once-over, and let it run. Seconds later you realize that you forgot the WHERE
clause, dropped the wrong table, or made another serious mistake, and interrupt the query, but the damage has
been done. You take a deep breath, whistle through your teeth, wish that reality came with an Undo option.

Backtracking "rewinds" the DB cluster to the time you specify. Backtracking is not a replacement for backing up

your DB cluster so that you can restore it to a point in time. However, backtracking provides the following advant-
ages over traditional backup and restore:

« You can easily undo mistakes. If you mistakenly perform a destructive action, such as a DELETE without a
WHERE clause, you can backtrack the DB cluster to a time before the destructive action with minimal inter-
ruption of service.

« You can backtrack a DB cluster quickly. Restoring a DB cluster to a point in time launches a new DB
cluster and restores it from backup data or a DB cluster snapshot, which can take hours. Backtracking a
DB cluster doesn't require a new DB cluster and rewinds the DB cluster in minutes.

» You can explore earlier data changes. You can repeatedly backtrack a DB cluster back and forth in time to
help determine when a particular data change occurred. For example, you can backtrack a DB cluster
three hours and then backtrack forward in time one hour. In this case, the backtrack time is two hours
before the original time.

Aurora uses a distributed, log-structured storage system (read Design Considerations for High Throughput
Cloud-Native Relational Databases to learn a lot more); each change to your database generates a new log

-49-

https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/blogs/aws/aurora-serverless-ga/
https://aws.amazon.com/blogs/aws/amazon-aurora-postgresql-serverless-now-generally-available/

aws

record, identified by a Log Sequence Number (LSN). Enabling the backtrack feature provisions a FIFO buffer in
the cluster for storage of LSNs. This allows for quick access and recovery times measured in seconds.

When you create a new Aurora MySQL DB cluster, backtracking is configured when you choose Enable Back-
track and specify a Target Backtrack window value that is greater than zero in the Backtrack section.

To create a DB cluster, follow the instructions in Creating an Amazon Aurora DB cluster. The following image
shows the Backtrack section.

Backtrack
Backtrack lets you guickly rewind the DB cluster to a specific point in time, without having to create another DB cluster. Info
Enable Backtrack

Enabling Backtrack will charge you for storing the changes you make for backtracking.

Target Backtrack window
The Backtrack window determines how far back in time you could go. Aurora will try to retain enough log information to support
that window of time. Info

12

Typical user cost
The cost of Backtrack depends on how often you are updating your database. This is an estimate based on typical workloads for
your selected instance size (db.r5.large). Info

4 14.38 USD / month

After a production error, you can simply pause your application, open up the Aurora Console, select the cluster,
and click Backtrack DB cluster

Then you select Backtrack and choose the point in time just before your epic fail, and click Backtrack DB cluster:

Backtrack DB cluster

Rewinds the DB cluster to a previous point in time without creating a new DB cluster.

Earliest restorable time is June 16, 2021 at 8:53:02 PM UTC-4 (Local) @

Date Time
June 16, 2021 20 v : | 53 v : | 02 v uTc-4
The next available time will be used if the specified time is not available.

A Your DB cluster is unavailable during the Backtrack process, which typically takes a few minutes.

Cancel Backtrack DB cluster

Then you wait for the rewind to take place, unpause your application and proceed as if nothing had happened.
When you initiate a backtrack, Aurora will pause the database, close any open connections, drop uncommitted
writes, and wait for the backtrack to complete. Then it will resume normal operation and be able to accept
requests. The instance state will be backtracking while the rewind is underway.

-50-

aws

With backtracking, there is a target backtrack window and an actual backtrack window:

» The target backtrack window is the amount of time you want to be able to backtrack your DB cluster. When
you enable backtracking, you specify a target backtrack window. For example, you might specify a target
backtrack window of 24 hours if you want to be able to backtrack the DB cluster one day.

« The actual backtrack window is the actual amount of time you can backtrack your DB cluster, which can be
smaller than the target backtrack window. The actual backtrack window is based on your workload and the
storage available for storing information about database changes, called change records.

As you make updates to your Aurora DB cluster with backtracking enabled, you generate change records. Aur-
ora retains change records for the target backtrack window, and you pay an hourly rate for storing them. Both the
target backtrack window and the workload on your DB cluster determine the number of change records you

store. The workload is the number of changes you make to your DB cluster in a given amount of time. If your work-
load is heavy, you store more change records in your backtrack window than you do if your workload is light.

You can think of your target backtrack window as the goal for the maximum amount of time you want to be able to
backtrack your DB cluster. In most cases, you can backtrack the maximum amount of time that you specified.
However, in some cases, the DB cluster can't store enough change records to backtrack the maximum amount of
time, and your actual backtrack window is smaller than your target. Typically, the actual backtrack window is smal-
ler than the target when you have extremely heavy workload on your DB cluster. When your actual backtrack win-
dow is smaller than your target, we send you a notification.

When backtracking is enabled for a DB cluster, and you delete a table stored in the DB cluster, Aurora keeps that
table in the backtrack change records. It does this so that you can revert back to a time before you deleted the
table. If you don't have enough space in your backtrack window to store the table, the table might be removed
from the backtrack change records eventually.

The following limitations apply to backtracking:

« Backtracking an Aurora DB cluster is available in certain AWS Regions and for specific Aurora MySQL ver-
sions only. For more information, see Backtracking in Aurora.

« Backtracking is only available for DB clusters that were created with the Backtrack feature enabled. You
can enable the Backtrack feature when you create a new DB cluster or restore a snapshot of a DB cluster.
For DB clusters that were created with the Backtrack feature enabled, you can create a clone DB cluster
with the Backtrack feature enabled. Currently, you can't perform backtracking on DB clusters that were cre-
ated with the Backtrack feature disabled.

« The limit for a backtrack window is 72 hours.

» Backtracking affects the entire DB cluster. For example, you can't selectively backtrack a single table or a
single data update.

-51-

aws

« Backtracking isn't supported with binary log (binlog) replication. Cross-Region replication must be disabled
before you can configure or use backtracking.

« You can't backtrack a database clone to a time before that database clone was created. However, you can
use the original database to backtrack to a time before the clone was created. For more information about
database cloning, see Cloning an Aurora DB cluster volume.

« Backtracking causes a brief DB instance disruption. You must stop or pause your applications before start-
ing a backtrack operation to ensure that there are no new read or write requests. During the backtrack oper-
ation, Aurora pauses the database, closes any open connections, and drops any uncommitted reads and
writes. It then waits for the backtrack operation to complete.

» Backtracking isn't supported for the following AWS Regions:
« Africa (Cape Town)
o China (Ningxia)
« Asia Pacific (Hong Kong)
« Europe (Milan)
« Europe (Stockholm)
» Middle East (Bahrain)
o South America (S&o Paulo)

« You can'trestore a cross-Region snapshot of a backtrack-enabled cluster in an AWS Region that doesn't
support backtracking.

« You can't use Backtrack with Aurora multi-master clusters.

« If you perform an in-place upgrade for a backtrack-enabled cluster from Aurora MySQL version 1 to ver-
sion 2, you can't backtrack to a point in time before the upgrade happened

For more information, see: https://aws.amazon.com/blogs/aws/amazon-aurora-backtrack-turn-back-time/

-52-

https://aws.amazon.com/blogs/aws/amazon-aurora-backtrack-turn-back-time/

aws

This section provides migration tips that can help save time as you transition from SQL Server to Aurora Post-
greSQL. They address many of the challenges faced by administrators new to Aurora PostgreSQL. Some of
these tips describe functional differences in similar features between SQL Server and Aurora PostgreSQL.

« The equivalent of SQL Server's CREATE DATABASE... AS SNAPSHOT OF... resembles Aurora Post-
greSQL Database cloning. However, unlike SQL Server snapshots, which are read only, Aurora Post-
greSQL cloned databases are updatable.

« InAurora PostgreSQL, the term "Database Snapshot" is equivalent to SQL Server's BACKUP
DATABASE... WITH COPY_ONLY.

« Partitioning in Aurora PostgreSQL is called "INHERITS" tables and act completely different in terms of
management

« Unlike SQL Server's statistics, Aurora PostgreSQL does not collect detailed key value distribution; it relies
on selectivity only. When troubleshooting execution, be aware that parameter values are insignificant to
plan choices.

« Many missing features such as sending emails can be achieved with quick implementations of Amazon's
services (like Lambda).

« Parameters and backups are managed by Amazon's RDS. Itis very useful in terms of checking para-
meter's value against its default and comparing them to another parameter group.

« High Availability can be implemented in few clicks to create Replicas.

« With Database Links, there are two options. The db_link extension is similar to SQL Server.

« Triggers work differently in Aurora PostgreSQL. Triggers can be also executed for each row (not just
once). The syntax for inserted and deleted is new and old.

» Aurora PostgreSQL does not support the @@FETCH_STATUS system parameter for cursors. When
declaring cursors in Aurora PostgreSQL, you must create an explicit HANDLER object.

« Toexecute a stored procedure (functions), use SELECT instead of EXECUTE.

« Toexecute a string as a query, use Aurora PostgreSQL Prepared Statements instead of either sp_execut-
esql, or EXECUTE(<String>) syntax.

« InAurora PostgreSQL, IF blocks must be terminated with END IF. WHILE..LOOP loops must be ter-
minated with END LOOP.

« Aurora PostgreSQL syntax for opening a transaction is START TRANSACTION as opposed to BEGIN
TRANSACTION. COMMIT and ROLLBACK are used without the TRANSACTION keyword.

« Aurora PostgreSQL does not use special data types for UNICODE data. All string types may use any char-
acter set and any relevant collation.

« Collations can be defined at the server, database, and column level, similar to SQL Server. They cannot be
defined at the table level.

o SQL Server's DELETE <Table Name> syntax, which allows omitting the FROM keyword, is invalid in Aur-
ora PostgreSQL. Add the FROM keyword to all delete statements.

-53-

aws

Aurora PostgreSQL allows multiple rows with NULL for a UNIQUE constraint; SQL Server allows only
one. Aurora PostgreSQL follows the behavior specified in the ANSI standard.

Aurora PostgreSQL SERIAL column property is similar to IDENTITY in SQL Server. However, there is a
maijor difference in the way sequences are maintained. While SQL Server caches a set of values in
memory, the last allocation is recorded on disk. When the service restarts, some values may be lost, but the
sequence continues from where it left off. In Aurora PostgreSQL, each time the service is restarted, the
seed value to SERIAL is reset to one increment interval larger than the largest existing value. Sequence
position is not maintained across service restarts.

Parameter names in Aurora PostgreSQL do not require a preceding "@". You can declare local variables
such as SET schema.test = 'value' and get the value by SELECT current_setting(‘'username.test');

Local parameter scope is not limited to an execution scope. You can define or set a parameter in one state-
ment, execute it, and then query it in the following batch.

Error handling in Aurora PostgreSQL has less features, but for special requirements, you can log or send
alerts by inserting into tables or catching errors.

Aurora PostgreSQL does not support the MERGE statement. Use the REPLACE statement and the
INSERT... ON DUPLICATE KEY UPDATE statement as alternatives.

You cannot concatenate strings in Aurora PostgreSQL using the "+" operator. 'A' + 'B' is not a valid expres-
sion. Use the CONCAT function instead. For example, CONCAT('A", 'B").

Aurora PostgreSQL does not support aliasing in the select list using the 'String Alias' = Expression. Aurora
PostgreSQL treats it as a logical predicate, returns 0 or FALSE, and will alias the column with the full
expression. USE the AS syntax instead. Also note that this syntax has been deprecated as of SQL Server
2008 R2.

Aurora PostgreSQL has a large set of string functions that is much more diverse than SQL Server. Some
of the more useful string functions are:

« TRIMis not limited to full trim or spaces. The syntax is TRIM({BOTH | LEADING | TRAILING}
[<remove string>] FROM] <source string>)).

o LENGTH in PostgreSQL is equivalentto DATALENGTH in T-SQL. CHAR_LENGTH is the equi-
valent of T-SQL LENGTH.

« SUBSTRING_INDEX returns a substring from a string before the specified number of occurrences
of the delimiter.

« FIELD returns the index (position) of the first argument in the subsequent arguments.
o POSITION returns the index position of the first argument within the second argument.
« REGEXP_MATCHES provides support for regular expressions.

« For more string functions, see https://www.postgresgl.org/docs/13/static/functions-string.html

The Aurora PostgreSQL CAST function is for casting between collation and not other data types. Use
CONVERT for casting data types.

Aurora PostgreSQL is much stricter than SQL Server in terms of statement terminators. Be sure to always
use a semicolon at the end of statements.

There is no CREATE PROCEDURE syntax; only CREATE FUNCTION. You can create a function that
returns void.

Beware of control characters when copying and pasting a script to Aurora PostgreSQL clients. Aurora
PostgreSQL is much more sensitive to control characters than SQL Server and they result in frustrating
syntax errors that are hard to find.

-54-

https://www.postgresql.org/docs13/static/functions-string.html

aws

ANSI SQL

Case Sensitivity Differences for SQL Server and
PostgreSQL

Object name case sensitivity might be different for SQL Server and PostgreSQL. SQL Server names are
depended on the used collection and can be either case sensitive or not. PostgreSQL names are case sensitive.

By default, AWS SCT uses object name in lower-case for PostgreSQL. In most cases, you'll want to use AWS
DMS transformations to change schema, table, and column names to lower case.

To have an upper-case name, you must place the objects names within doubles quotes.

For example, to create a table named EMPLOYEES (upper-case) in PostgreSQL, you should use the following:

CREATE TABLE "EMPLOYEES" (

EMP ID NUMERIC PRIMARY KEY,
EMP FULL NAME VARCHAR(60) NOT NULL,
AVG_ SALARY NUMERIC NOT NULL) ;

The command below will create a table named employees (lower-case).

CREATE TABLE EMPLOYEES (

EMP ID NUMERIC PRIMARY KEY,
EMP FULL NAME VARCHAR (60) NOT NULL,
AVG SALARY NUMERIC NOT NULL) ;

If doubles quotes weren't used, PostgreSQL will look for object names in their lower-case form, for CREATE com-
mands where doubles quotes weren't used, objects will be created with lower-case names, therefore, to create /
query / manipulate an upper-cased (or mixed) object names you must use doubles quotes.

-55.-

aws

SQL Server Constraints vs. PostgreSQL Table Con-
straints

Fea-tu..lr.e Com- SCT/DMS Automation SCT Action Code Key Differences
patibility Level Index
I3 =0= Constraints SET DEFAULT option is miss-
S — anaa ing
Check constraint with sub-
query

SQL Server Usage

Column and table constraints are defined by the SQL standard and enforce relational data consistency. There
are four types of SQL constraints: Check Constraints, Unique Constraints, Primary Key Constraints, and Foreign
Key Constraints.

Check Constraints

Syntax

CHECK (<Logical Expression>)

CHECK constraints enforce domain integrity by limiting the data values stored in table columns. They are logical
boolean expressions that evaluate to one of three values: TRUE, FALSE, and UNKNOWN.

Note: CHECK constraint expressions behave differently than predicates in other query clauses. For
example, in a WHERE clause, a logical expression that evaluates to UNKNOWN is functionally equi-
valent to FALSE and the row is filtered out. For CHECK constraints, an expression that evaluates to
UNKNOWN is functionally equivalent to TRUE because the value is permitted by the constraint.

Multiple CHECK constraints may be assigned to a column. A single CHECK constraint may apply to multiple
columns (in this case, it is known as a Table-Level Check Constraint).

In ANSI SQL, CHECK constraints can not access other rows as part of the expression. SQL Server allows using
User Defined Functions in constraints to access other rows, tables, or databases.

Unique Constraints

Syntax

UNIQUE [CLUSTERED | NONCLUSTERED] (<Column List>)

UNIQUE constraints should be used for all candidate keys. A candidate key is an attribute or a set of attributes
(columns) that uniquely identify each tuple (row) in the relation (table data).

UNIQUE constraints guarantee that no rows with duplicate column values exist in a table.

-56 -

aws

A UNIQUE constraint can be simple or composite. Simple constraints are composed of a single column. Com-
posite constraints are composed of multiple columns. A column may be a part of more than one constraint.

Although the ANSI SQL standard allows multiple rows having NULL values for UNIQUE constraints, SQL Server
allows a NULL value for only one row. Use a NOT NULL constraint in addition to a UNIQUE constraint to disallow
allNULL values.

To improve efficiency, SQL Server creates a unique index to support UNIQUE constraints. Otherwise, every
INSERT and UPDATE would require a full table scan to verify there are no duplicates. The default index type for
UNIQUE constraints is non- clustered.

PRIMARY KEY [CLUSTERED | NONCLUSTERED] (<Column List>)

A PRIMARY KEY is a candidate key serving as the unique identifier of a table row. PRIMARY KEYS may consist
of one or more columns. All columns that comprise a primary key must also have a NOT NULL constraint. Tables
can have one primary key.

The defaultindex type for PRIMARY KEYS is a clustered index.

FOREIGN KEY (<Referencing Column List>)
REFERENCES <Referenced Table> (<Referenced Column List>)

FOREIGN KEY constraints enforce domain referential integrity. Similar to CHECK constraints, FOREIGN KEYS
limit the values stored in a column or set of columns.

FOREIGN KEYS reference columns in other tables, which must be either PRIMARY KEY'S or have UNIQUE
constraints. The set of values allowed for the referencing table is the set of values existing the referenced table.

Although the columns referenced in the parent table are indexed (since they must have either a PRIMARY KEY
or UNIQUE constraint), no indexes are automatically created for the referencing columns in the child table. A best
practice is to create appropriate indexes to support joins and constraint enforcement.

FOREIGN KEY constraints impose DML limitations for the referencing child and parent tables. The purpose of a
constraint is to guarantee that no "orphan" rows (rows with no corresponding matching values in the parent table)
exist in the referencing table. The constraint limits INSERT and UPDATE to the child table and UPDATE and
DELETE to the parent table. For example, you can not delete an order having associated order items.

Foreign keys support Cascading Referential Integrity (CRI). CRI can be used to enforce constraints and define
action paths for DML statements that violate the constraints. There are four CRI options:

« NO ACTION: When the constraint is violated due to a DML operation, an error is raised and the operation
is rolled back.

« CASCADE: Values in a child table are updated with values from the parent table when they are updated or
deleted along with the parent.

-57-

aws

« SET NULL: All columns that are part of the foreign key are set to NULL when the parent is deleted or
updated.

« SET DEFAULT: All columns that are part of the foreign key are set to their DEFAULT value when the par-
entis deleted or updated.

These actions can be customized independently of others in the same constraint. For example, a cascading con-
straint may have CASCADE for UPDATE, but NO ACTION for UPDATE.

Create a composite non-clustered PRIMARY KEY.

CREATE TABLE MyTable
(
Coll INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR (20) NULL,
CONSTRAINT PK MyTable
PRIMARY KEY NONCLUSTERED (Coll, Col2)
) ;

Create a table-level CHECK constraint.

CREATE TABLE MyTable

(
Coll INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK MyTable

PRIMARY KEY NONCLUSTERED (Coll, Col2),
CONSTRAINT CK MyTableCollCol2

CHECK (Col2 >= Coll)

);

Create a simple non-null UNIQUE constraint.

CREATE TABLE MyTable

(
Coll INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR (20) NULL,
CONSTRAINT PK MyTable

PRIMARY KEY NONCLUSTERED (Coll, Col2),
CONSTRAINT UQ Col2Col3

UNIQUE (Col2, Col3)

) ;

Create a FOREIGN KEY with multiple cascade actions.

CREATE TABLE MyParentTable
(

Coll INT NOT NULL,

Col2 INT NOT NULL,

Col3 VARCHAR (20) NULL,
CONSTRAINT PK MyTable

-58 -

aws

PRIMARY KEY NONCLUSTERED (Coll, Col2)
) ;

CREATE TABLE MyChildTable

(
Coll INT NOT NULL PRIMARY KEY,
Col2 INT NOT NULL,
Col3 INT NOT NULL,

CONSTRAINT FK_MyChildTable_MyParentTable
FOREIGN KEY (Col2, Col3)

REFERENCES MyParentTable (Coll, Col2)
ON DELETE NO ACTION

ON UPDATE CASCADE

) ;

For more information, see:

« https://docs.microsoft.com/en-us/sqgl/relational-databases/tables/unique-constraints-and-check-con-
straints ?view=sql-server-ver15

« https.//docs. microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints ?view=sql-
server-ver15

PostgreSQL Usage

PostgreSQL supports the following types of table constraints:

« PRIMARY KEY

. FOREIGN KEY

. UNIQUE

o« NOTNULL

o EXCLUDE (unique to PostgreSQL)

Similar to constraint declaration in SQL Server, PostgreSQL allows creating constraints in-line or out-of-line
when specifying table columns.

PostgreSQL constraints can be specified using CREATE / ALTER TABLE. Constraints on views are not sup-
ported.

You must have privileges (CREATE / ALTER) on the table in which constraints are created. For foreign key con-
straints, you must also have the REFERENCES privilege.

Primary Key Constraints

« Uniquely identify each row and cannot contain NULL values.
« Usethe same ANSI SQL syntax as SQL Server.

« Can be created on a single column or on multiple columns (composite primary keys) as the only PRIMARY
KEY in atable.

» Creatinga PRIMARY KEY constraint automatically creates a unique B-Tree index on the column or group
of columns marked as the primary key of the table.

-59.-

https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-server-ver15

aws

« Constraint names can be generated automatically by PostgreSQL or explicitly specified during constraint
creation.

Create aninline primary key constraint with a system-generated constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST NAME VARCHAR(20),
LAST NAME VARCHAR(25),
EMAIL VARCHAR (25)) ;

Create an inline primary key constraint with a user-specified constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE ID NUMERIC CONSTRAINT PK EMP ID PRIMARY KEY,
FIRST NAME VARCHAR(20),
LAST NAME VARCHAR (25) ,
EMAIL VARCHAR (25)) ;

Create an out-of-line primary key constraint.

CREATE TABLE EMPLOYEES (
EMPLOYEE ID NUMERIC,
FIRST NAME VARCHAR(20),
LAST NAME VARCHAR (25) ,
EMAIL VARCHAR (25)),
CONSTRAINT PK EMP ID PRIMARY KEY (EMPLOYEE ID));

Add a primary key constraint to an existing table.

ALTER TABLE SYSTEM EVENTS
ADD CONSTRAINT PK EMP ID PRIMARY KEY (EVENT CODE, EVENT TIME) ;

Drop the primary key.

ALTER TABLE SYSTEM EVENTS DROP CONSTRAINT PK EMP ID;

« Enforce referential integrity in the database. Values in specific columns or a group of columns must match
the values from another table (or column).

« Creatinga FOREIGN KEY constraint in PostgreSQL uses the same ANSI SQL syntax as SQL Server.
« Can be created in-line or out-of-line during table creation.
« Usethe REFERENCES clause to specify the table referenced by the foreign key constraint.

« When specifying REFERENCES in the absence of a column list in the referenced table, the PRIMARY
KEY of the referenced table is used as the referenced column or columns.

« Atable can have multiple FOREIGN KEY constraints.

» Usethe ON DELETE clause to handle FOREIGN KEY parent record deletions (such as cascading
deletes).

-60-

aws

« Foreign key constraint names are generated automatically by the database or specified explicitly during
constraint creation.

PostgreSQL provides three main options to handle cases where data is deleted from the parent table and a child
table is referenced by a FOREIGN KEY constraint. By default, without specifying any additional options, Post-
greSQL uses the NO ACTION method and raises an error if the referencing rows still exist when the constraint is
verified.

« ON DELETE CASCADE: Any dependent foreign key values in the child table are removed along with the
referenced values from the parent table.

« ON DELETE RESTRICT: Prevents the deletion of referenced values from the parent table and the dele-
tion of dependent foreign key values in the child table.

« ON DELETE NO ACTION: Performs no action (the default). The fundamental difference between
RESTRICT and NO ACTION is that NO ACTION allows the check to be postponed until later in the trans-
action; RESTRICT does not.

Handling updates on FOREIGN KEY columns is also available using the ON UPDATE clause, which shares the
same options as the ON DELETE clause:

« ONUPDATE CASCADE
« ON UPDATE RESTRICT
« ONUPDATE NOACTION

Create aninline foreign key with a user-specified constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE ID NUMERIC PRIMARY KEY,

FIRST NAME VARCHAR (20) ,
LAST NAME VARCHAR (25) ,
EMATIL VARCHAR (25) ,

DEPARTMENT ID NUMERIC REFERENCES DEPARTMENTS (DEPARTMENT ID)) ;

Create an out-of-line foreign key constraint with a system-generated constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE ID NUMERIC PRIMARY KEY,

FIRST NAME VARCHAR (20) ,
LAST NAME VARCHAR (25) ,
EMATIL VARCHAR (25) ,

DEPARTMENT ID NUMERIC,
CONSTRAINT FK FEP ID
FOREIGN KEY (DEPARTMENT ID) REFERENCES DEPARTMENTS (DEPARTMENT ID)) ;

Create aforeign key using the ON DELETE CASCADE clause.

-61-

aws

CREATE TABLE EMPLOYEES (
EMPLOYEE ID NUMERIC PRIMARY KEY,

FIRST NAME VARCHAR (20) ,
LAST NAME VARCHAR (25) ,
EMAIL VARCHAR (25) ,

DEPARTMENT ID NUMERIC,

CONSTRAINT FK FEP_ ID

FOREIGN KEY (DEPARTMENT ID) REFERENCES DEPARTMENTS (DEPARTMENT ID)
ON DELETE CASCADE) ;

Add a foreign key to an existing table.

ALTER TABLE EMPLOYEES ADD CONSTRAINT FK DEPT
FOREIGN KEY (department id)
REFERENCES DEPARTMENTS (department id) NOT VALID;

ALTER TABLE EMPLOYEES VALIDATE CONSTRAINT FK DEPT;

UNIQUE Constraints

« Ensure that values in a column, or a group of columns, are unique across the entire table.
« PostgreSQL UNIQUE constraint syntax is ANSI SQL compatible.

« Automatically creates a B-Tree index on the respective column, or a group of columns, when creating a
UNIQUE constraint.

« If duplicate values exist in the column(s) on which the constraint was defined during UNIQUE constraint
creation, the UNIQUE constraint creation fails and returns an error message.

« UNIQUE constraints in PostgreSQL accept multiple NULL values (similar to SQL Server).

« UNIQUE constraint naming can be system-generated or explicitly specified.

Example

Create an inline unique constraint ensuring uniqueness of values in the email column.

CREATE TABLE EMPLOYEES (
EMPLOYEE ID NUMERIC PRIMARY KEY,

FIRST NAME VARCHAR (20) ,
LAST NAME VARCHAR (25) ,
EMATIL VARCHAR (25) CONSTRAINT UNIQ EMP EMAIL UNIQUE,

DEPARTMENT ID NUMERIC) ;

CHECK Constraints

« Enforce that values in a column satisfy a specific requirement.
« CHECK constraints in PostgreSQL use the same ANSI SQL syntax as SQL Server.

Can only be defined using a Boolean data type to evaluate the values of a column.

CHECK constraints naming can be system-generated or explicitly specified by the user during constraint
creation.

-62-

aws

Check constraints are using Boolean data datatype, therefor sub-query can't be used in CHECK constraint. if you
want to use a similar feature you can create a Boolean function that will check the query resulsts and return
TRUE or FALSE values accordingly.

Create aninline CHECK constraint using a regular expression to enforce the email column contains email
addresses with an “@aws.com” suffix.

CREATE TABLE EMPLOYEES (
EMPLOYEE ID NUMERIC PRIMARY KEY,

FIRST NAME VARCHAR (20) ,
LAST NAME VARCHAR (25) ,
EMAIL VARCHAR (25) CHECK (EMAIL ~ ' ("[A-Za-z]+Q@aws.com$)'),

DEPARTMENT ID NUMERIC) ;

« Enforce that a column cannot accept NULL values. This behavior is different from the default column beha-
vior in PostgreSQL where columns can accept NULL values.

o NOT NULL constraints can only be defined inline during table creation.
« You can explicitly specify names for NOT NULL constraints when used with a CHECK constraint.

Define two not null constraints on the FIRST_NAME and LAST_NAME columns. Define a check constraint (with
an explicitly user-specified name) to enforce not null behavior on the EMAIL column.

CREATE TABLE EMPLOYEES (
EMPLOYEE ID NUMERIC PRIMARY KEY,
FIRST NAME VARCHAR(20) NOT NULL,
LAST NAME VARCHAR (25) NOT NULL,
EMATL VARCHAR (25) CONSTRAINT CHK EMAIL
CHECK (EMAIL IS NOT NULL)) ;

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

PostgreSQL provides controls for certain aspects of constraint behavior:
- DEFERRABLE | NOT DEFERRABLE: Using the PostgreSQL SET CONSTRAINTS statement. Con-
straints can be defined as:

« DEFERRABLE: Allows you to use the SET CONSTRAINTS statement to set the behavior of con-
straint checking within the current transaction until transaction commit.

o IMMEDIATE: Constraints are enforced only at the end of each statement. Note that each constraint
has its own IMMEDIATE or DEFERRED mode.

-63-

aws

« NOT DEFERRABLE: This statement always runs as IMMEDIATE and is not affected by the SET
CONSTRAINTS command.

o VALIDATE CONSTRAINT | NOT VALID:

« VALIDATE CONSTRAINT: Validates foreign key or check constraints (only) that were previously
created as NOT VALID. This action performs a validation check by scanning the table to ensure all
records satisfy the constraint definition.

o NOT VALID: Can be used only for foreign key or check constraints. When specified, new records
are not validated with the creation of the constraint. Only when the VALIDATE CONSTRAINT state
is applied is the constraint state enforced on all records.

PostgreSQL can add a new primary key or unique constraints based on an existing unique Index . All index
columns are included in the constraint. When creating constraints using this method, the index is owned by the
constraint. When dropping the constraint, the index is also dropped.

Use an existing unique Index to create a primary key constraint.

CREATE UNIQUE INDEX IDX EMP ID ON EMPLOYEES (EMPLOYEE ID);

ALTER TABLE EMPLOYEES
ADD CONSTRAINT PK CON UNIQ PRIMARY KEY USING INDEX IDX EMP ID;

The following table identifies similarities, differences, and key migration considerations.

Feautre SQL Server Aurora PostgreSQL
CHECK constraints CHECK CHECK
UNIQUE constraints UNIQUE UNIQUE
PRIMARY KEY constraints PRIMARY KEY PRIMARY KEY
FOREIGN KEY constraints FOREIGN KEY FOREIGN KEY
Cascaded referential actions NOACTION | CASCADE | SET NULL |RESTRICT | CASCADE | SET
| SET DEFAULT NULL |
NOACTION
Indexing of referencing columns | Not required N/A
Indexing of referenced columns | PRIMARY KEY or UNIQUE PRIMARY KEY or UNIQUE
For additional details:

« https.//www.postgresql.org/docs/13/static/ddlI-constraints. html

« https.//www.postgresql.org/docs/13/static/sqgl-set-constraints. html

« https.//www.postgresql.org/docs/13/static/sql-altertable. html

-64-

https://www.postgresql.org/docs/13/static/ddl-constraints.html
https://www.postgresql.org/docs/13/static/sql-set-constraints.html
https://www.postgresql.org/docs/13/static/sql-altertable.html

aws

SQL Server Creating Tables vs.
PostgreSQL Creating Tables

Feature Com- |SCT/DMS Auto-
patibility mation Level

SCT Action Code Index Key Differences

= QOQOO SCT Action Codes - Auto generated value column is dif-

CREATE TABLE ferent

Can't use physical attribute ON

Missing table variable and memory
optimized table

SQL Server Usage

ANSI Syntax Conformity

Tables in SQL Server are created using the CREATE TABLE statement and conform to the ANSI/ISO entry level
standard. The basic features of CREATE TABLE are similar for most relational database management engines
and are well defined in the ANSI/ISO standards.

In its most basic form, the CREATE TABLE statement in SQL Server is used to define:

Table names, the containing security schema, and database
Column names

Column data types

Column and table constraints

Column default values

Primary, candidate (UNIQUE), and foreign keys

T-SQL Extensions

SQL Server extends the basic syntax and provides many additional options for the CREATE TABLE or ALTER
TABLE statements. The most often used options are:

Supporting index types for primary keys and unique constraints, clustered or non-clustered, and index prop-
erties such as FILLFACTOR

Physical table data storage containers using the ON <File Group> clause
Defining IDENTITY auto-enumerator columns

Encryption

Compression

Indexes

For more information, see Data Types, Column Encryption, and Databases and Schemas.

-65-

aws

Table Scope

SQL Server provides five scopes for tables:

« Standard tables are created on disk, globally visible, and persist through connection resets and server
restarts.

« Temporary Tables are designated with the "# " prefix. They are persisted in TempDB and are visible to the
execution scope where they were created (and any sub-scopes). Temporary tables are cleaned up by the
server when the execution scope terminates and when the server restarts.

» Global Temporary Tables are designated by the "## " prefix. They are similar in scope to temporary tables,
but are also visible to concurrent scopes.

« Table Variables are defined with the DECLARE statement, not with CREATE TABLE. They are visible
only to the execution scope where they were created.

« Memory-Optimized tables are special types of tables used by the In-Memory Online Transaction Pro-
cessing (OLTP) engine. They use a non-standard CREATE TABLE syntax.

Creating a Table Based on an Existing Table or Query

SQL Server allows creating new tables based on SELECT queries as an alternate to the CREATE TABLE state-
ment. A SELECT statement that returns a valid set with unique column names can be used to create a new table
and populate data.

SELECT INTO is a combination of DML and DDL. The simplified syntax for SELECT INTO is:

SELECT <Expression List>

INTO <Table Name>

[FROM <Table Source>]

[WHERE <Filter>]

[GROUP BY <Grouping Expressions>...];

When creating a new table using SELECT INTO, the only attributes created for the new table are column names,
column order, and the data types of the expressions. Even a straight forward statement such as SELECT * INTO
<New Table> FROM <Source Table> does not copy constraints, keys, indexes, identity property, default values,
or any other related objects.

TIMESTAMP Syntax for ROWVERSION Deprecated Syntax

The TIMESTAMP syntax synonym for ROWVERSION has been deprecated as of SQL Server 2008R2 in
accordance with https://docs.microsoft.com/en-us/previous-versions/sqgl/sgl-server-2008-r2/ms143729

(v=sql.105).

Previously, you could use either the TIMESTAMP or the ROWVERSION keywords to denote a special data type
that exposes an auto-enumerator. The auto-enumerator generates unique eight-byte binary numbers typically
used to version-stamp table rows. Clients read the row, process it, and check the ROWVERSION value against
the current row in the table before modifying it. If they are different, the row has been modified since the client
read it. The client can then apply different processing logic.

Note that when migrating to Aurora PostgreSQL using the Amazon RDS Schema Conversion Tool (SCT),
neither ROWVERSION nor TIMESTAMP are supported. You must add customer logic, potentially in the form of
a trigger, to maintain this functionality.

See a fullexample in Creating Tables.

-66 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

Syntax

Simplified syntax for CREATE TABLE:

CREATE TABLE [<Database Name>.<Schema Name>] .<Table Name>
[ON{<Partition Scheme Name> (<Partition Column Name>)];

<Column Definition>:

<Column Name> <Data Type>

[CONSTRAINT <Column Constraint>

[DEFAULT <Default Value>]]

[IDENTITY [(<Seed Value>, <Increment Value>)]
[NULL | NOT NULL]

[ENCRYPTED WITH (<Encryption Specifications>)
[<Column Constraints>]

[<Column Index Specifications>]

<Column Constraint>:
[CONSTRAINT <Constraint Name>]

{{PRIMARY KEY | UNIQUE} [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = <Fill Factor>]
| [FOREIGN KEY]

REFERENCES <Referenced Table> (<Referenced Columns>)]

<Column Index Specifications>:

INDEX <Index Name> [CLUSTERED | NONCLUSTERED]
[WITH (<Index Options>]

Examples

Create a basic table.

CREATE TABLE MyTable

(

Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR (20) NOT NULL

) ;

Create a table with column constraints and an identity.

CREATE TABLE MyTable
(
Coll INT NOT NULL PRIMARY KEY IDENTITY (1,1),

Col2 VARCHAR(20) NOT NULL CHECK (Col2 <> ''),
Col3 VARCHAR(100) NULL

REFERENCES MyOtherTable (Col3)
) ;

Create a table with an additional index.

CREATE TABLE MyTable
(
Coll INT NOT NULL PRIMARY KEY,

-67-

(<Column Definitions>)

aws

aws

Col2 VARCHAR (20) NOT NULL
INDEX IDX Col2 NONCLUSTERED
)7

For more information, see https.//docs. microsoft.com/en-us/sqgl/t-sql/statements/create-table-transact-sql?view=sql-
server-ver15

PostgreSQL Usage

Like SQL Server, Aurora PostgreSQL provides ANSI/ISO syntax entry level conformity for CREATE TABLE and
custom extensions to support Aurora PostgreSQL specific functionality.

In its most basic form, and very similar to SQL Server, the CREATE TABLE statement in Aurora PostgreSQL is
used to define:

» Table names containing security schema and/or database
o Column names

o Column data types

« Column and table constraints

o Column default values

» Primary, candidate (UNIQUE), and foreign keys

Starting with PostgreSQL 12 support for generated columns has been added. Generated columns can be either
calculated from other columns values on the fly or calculated and stored.

CREATE TABLE tst_gen(

n NUMERIC,

n_gen GENERATED ALWAYS AS (n*0.01)
)

Aurora PostgreSQL Extensions

Aurora PostgreSQL extends the basic syntax and allows many additional options to be defined as part of the
CREATE TABLE or ALTER TABLE statements. The most often used option is in-line index definition.

Table Scope

Aurora PostgreSQL provides two table scopes:
- Standard Tables are created on disk, visible globally, and persist through connection resets and server
restarts.

« Temporary Tables are created using the CREATE GLOBAL TEMPORARY TABLE statement. A
TEMPORARY table is visible only to the session that creates it and is dropped automatically when the ses-
sion is closed.

-68-

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15

aws

Creating a Table Based on an Existing Table or Query

Aurora PostgreSQL provides two ways to create standard or temporary tables based on existing tables and quer-
ies:

CREATE TABLE <New Table> LIKE <Source Table> and CREATE TABLE ... AS <Query Expres-
sion>.

CREATE TABLE <New Table> LIKE <Source Table> creates an empty table based on the defin-
ition of another table including any column attributes and indexes defined in the ori-
ginal table.

CREATE TABLE ... AS <Query Expression> is very similar to SQL Server's SELECT INTO. It
allows creating a new table and populating data in a single step.

For example:

CREATE TABLE SourceTable (Coll INT) ;

INSERT INTO SourceTable VALUES (1)

CREATE TABLE NewTable (Coll INT) AS SELECT Coll AS Col2 FROM SourceTable;
INSERT INTO NewTable (Coll, Col2) VALUES (2,3);

SELECT * FROM NewTable

Coll Col2

NULL 1
2 3

Converting TIMESTAMP and ROWVERSION Columns

SQL server provides an automatic mechanism for stamping row versions for application concurrency control. For
example:

CREATE TABLE WorkItems

(

WorkItemID INT IDENTITY (1,1) PRIMARY KEY,
WorkItemDescription XML NOT NULL,

Status VARCHAR (10) NOT NULL DEFAULT ('Pending'),
—-— other columns...

VersionNumber ROWVERSION

);

The VersionNumber column automatically updates when a row is modified. The actual value is meaningless. Just
the fact that it changed is what indicates a row modification. The client can now read a work item row, processiit,
and ensure no other clients updated the row before updating the status.

SELECT @WorkItemDescription = WorkItemDescription,
@Status = Status,
@VersionNumber = VersionNumber

FROM WorkItems

-69-

aws

WHERE WorkItemID = @WorkItemID;
EXECUTE ProcessWorkItem @WorkItemID, @WorkItemDescription, @Stauts OUTPUT;

IF (
SELECT VersionNumber
FROM WorkItems
WHERE WorkItemID = @WorkItemID
) = @VersionNumber;
EXECUTE UpdateWorkItems @WorkItemID, 'Completed'; -- Success
ELSE
EXECUTE ConcurrencyExceptionWorkItem; -- Row updated while processing

In Aurora PostgreSQL, you can add a trigger to maintain the updated stamp per row.

CREATE OR REPLACE FUNCTION IncByOne ()

RETURNS TRIGGER

AS $$

BEGIN
UPDATE WorkItems SET VersionNumber = VersionNumber+l
WHERE WorkItemID = OLD.WorkItemID;

END; $$
LANGUAGE PLPGSQL;

CREATE TRIGGER MaintainWorkItemVersionNumber
AFTER UPDATE OF WorkItems

FOR EACH ROW
EXECUTE PROCEDURE IncByOne () ;

For more information on PostgreSQL triggers, see the Triggers.

Syntax

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table name ([
{ column name data type [COLLATE collation] [column constraint [...]]
| table constraint
| LIKE source table [like option ...] }

Ly «.. 1]

INHERITS (parent table [, ...])]

PARTITION BY { RANGE | LIST } ({ column name | (expression) } [COLLATE collation
WITH (storage parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]

]
[
[
] [opclass] [, ... 1) 1
[
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace name]
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table name
OF type name [(

{ column name [WITH OPTIONS] [column constraint [...]]

| table constraint }

-70-

aws

Ly ... 1
)]

PARTITION BY { RANGE | LIST } ({ column name | (expression) } [COLLATE collation
[opclass 1 [, ... 1) 1
WITH (storage parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]

ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
TABLESPACE tablespace name]

— e o/

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table name
PARTITION OF parent table [(
{ column name [WITH OPTIONS] [column constraint [...]]
| table constraint }
[, .. 1
)] FOR VALUES partition bound spec

PARTITION BY { RANGE | LIST } ({ column name | (expression) } [COLLATE collation
[opclass] [, ... 1) 1
WITH (storage parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]

ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
TABLESPACE tablespace name]

— — o/

where column constraint is:

[CONSTRAINT constraint name]

{ NOT NULL |
NULL |
CHECK (expression) [NO INHERIT] |
DEFAULT default expr |
GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options) 1 |

UNIQUE index parameters |
PRIMARY KEY index parameters |

REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table constraint is:

[CONSTRAINT constraint name]

{ CHECK (expression) [NO INHERIT] |

UNIQUE (column name [, ...]) index parameters |

PRIMARY KEY (column name [, ...]) index parameters |

EXCLUDE [USING index method] (exclude element WITH operator [, ...]) index para-
meters [WHERE (predicate)] |

FOREIGN KEY (column name [, ...]) REFERENCES reftable [(refcolumn [, ...])]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE

action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and like option is:

{ INCLUDING | EXCLUDING } { COMMENTSDEFAULTS | CONSTRAINTS | DEFAULTS | IDENTITY |
INDEXES | STATISTICS | STORAGE |COMMENTS | ALL }

and partition bound spec is:

-71-

aws

IN ({ numeric literal | string literal | TRUE | FALSE | NULL } [, ...]) |

FROM ({ numeric literal | string literal | TRUE | FALSE | MINVALUE | MAXVALUE } [,
1)
TO ({ numeric literal | string literal | TRUE | FALSE | MINVALUE | MAXVALUE } [,

-1)

index parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[WITH (storage parameter [= value] [, ...]) 1]
[USING INDEX TABLESPACE tablespace name]

exclude element in an EXCLUDE constraint is:

{ column name | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | LAST }]

Create a basic table.

CREATE TABLE MyTable

(

Coll INT PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL

) 8
Create a table with column constraints.

CREATE TABLE MyTable
(

Coll INT PRIMARY KEY,

Col2 VARCHAR (20) NOT NULL
CHECK (Col2 <> ''),

Col3 VARCHAR (100) NULL
REFERENCES MyOtherTable (Col3)

) ;

Feature SQL Server Aurora PostgreSQL

ANSI compliance Entry level Entry level

Auto generated enumerator IDENTITY SERIAL

Reseed auto generated value DBCC CHECKIDENT N/A

Index types CLUSTERED/ See the Clustered and Non Clustered
NONCLUSTERED Indexes .

Physical storage location ON <File Group> Not supported

Temporary tables #TempTable CREATE GLOBAL TEMPORARY

TABLE
Global Temporary Tables ##GlobalTempTable CREATE TEMPORARY TABLE

-72-

aws

Feature SQL Server Aurora PostgreSQL
Table Variables DECLARE @Table Not supported

Create table as query SELECT...INTO CREATE TABLE... AS
Copy table structure Not supported CREATE TABLE... LIKE
Memory optimized tables Supported N/A

For more information, see https.//www.postgresql.org/docs/13/sqgl-createtable. html

SQL Server Common Table Expressions vs.
PostgreSQL Common Table Expressions (CTE)

Feature Com- |SCT/DMS Automation |SCT Action Code .

patibility Level Index G SIS
cssss= N/A Must use RECURSIVE key word for recursive
- T T Oooaa CTE queries

SQL Server Usage

Common Table Expressions (CTE), which have been a part of the ANSI standard since SQL:1999, simplify quer-
ies and make them more readable by defining a temporary view, or derived table, that a subsequent query can ref-
erence. SQL Server CTEs can be the target of DML modification statements. They have similar restrictions as
updateable views.

SQL Server CTEs provide recursive functionality in accordance with the the ANSI 99 standard. Recursive CTEs
can reference themselves and re-execute queries until the data set is exhausted, or the maximum number of iter-
ations is exceeded.

CTE Syntax (simplified)

WITH <CTE NAME>
AS

(

SEBILWECT 000

)

SELECT ...

FROM CTE

Recursive CTE syntax

WITH <CTE NAME>

AS (
<Anchor SELECT query>
UNION ALL
<Recursive SELECT query with reference to <CTE NAME>>
)
SELECT ... FROM <CTE NAME>...

-73-

https://www.postgresql.org/docs/13/sql-createtable.html

aws

Examples

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Washer', 100);

Define a CTE to calculate the total quantity in every order and then join to the Orderltems table to obtain the rel-
ative quantity for each item.

WITH AggregatedOrders

AS

(SELECT OrderID, SUM(Quantity) AS TotalQty
FROM OrderItems
GROUP BY OrderID

)

SELECT 0.0OrderID, O.Item,

O.Quantity,

(O.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O

INNER JOIN

AggregatedOrders AS AO
ON O0.0rderID = AO.OrderlID;

The example above produces the following results:

OrderID Item Quantity PercentOfOrder
1 M8 Bolt 100 100.0000000000
2 M8 Nut 100 100.0000000000
3 M8 Washer 100 33.3333333300
3 M6 Washer 200 66.6666666600

Using a Recursive CTE, create and populate the Employees table with the DirectManager for each employee.

CREATE TABLE Employees

(

Employee VARCHAR(5) NOT NULL PRIMARY KEY,
DirectManager VARCHAR (5) NULL

) i

INSERT INTO Employees (Employee, DirectManager)
VALUES

-74-

aws

('John', 'Dave'),
('Jose', 'Dave'),
('Fred', 'John'),
('Dave', NULL) ;

Use arecursive CTE to display the employee-management hierarchy.

WITH EmpHierarchyCTE AS
(
-- Anchor query retrieves the top manager
SELECT 0 AS LVL,
Employee,
DirectManager
FROM Employees AS E
WHERE DirectManager IS NULL
UNION ALL
-- Recursive query gets all Employees managed by the previous level
SELECT LVL + 1 AS LVL,
E.Employee,
E.DirectManager
FROM EmpHierarchyCTE AS EH
INNER JOIN
Employees AS E
ON E.DirectManager = EH.Employee
)
SELECT *
FROM EmpHierarchyCTE;

The example above displays the following results:

LVL Employee DirectManager
0 Dave NULL
1 John Dave
1 Jose Dave
2 Fred John

For more information, see https://technet. microsoft.com/en-us/library/ms 186243.aspx

PostgreSQL Usage

PostgreSQL conforms to the ANSI SQL-99 standard and implementing CTEs in PostgreSQL is similar to SQL
Server.

CTE also non as WITH query, this type of query helps you to simplify long queries, it is similar to defining tem-
porary tables that exist only for the running of the query. The statement in a WITH clause can be a SELECT,
INSERT, UPDATE, or DELETE, and the WITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, or DELETE.

-75-

https://technet.microsoft.com/en-us/library/ms186243.aspx

CTE Syntax (simplified)

WITH <CTE NAME>
AS

(

SELECT OR DML

)
SELECT OR DML

Recursive CTE syntax

WITH RECURSIVE <CTE NAME>
AS (
<Anchor SELECT query>
UNION ALL
<Recursive SELECT query with reference to <CTE NAME>>
)
SELECT OR DML

Examples

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Washer', 100);

Createa CTE.

WITH DEPT COUNT
(DEPARTMENT ID, DEPT COUNT) AS (
SELECT DEPARTMENT ID, COUNT (*) FROM EMPLOYEES GROUP BY DEPARTMENT ID)
SELECT E.FIRST NAME |[|' '|| E.LAST NAME AS EMP NAME,
D.DEPT COUNT AS EMP DEPT COUNT
FROM EMPLOYEES E JOIN DEPT COUNT D USING (DEPARTMENT ID) ORDER BY 2;

-76-

aws

PostgreSQL provides an additional feature when using a CTE as a recursive modifier. The following example
uses a recursive WITH clause to access its own result set.

WITH RECURSIVE t(n) AS (
VALUES (0)
UNION ALL
SELECT n+l1 FROM t WHERE n < 5)
SELECT * FROM t;

WITH RECURSIVE t(n) AS (
VALUES (0)

UNION ALL

SELECT n+l FROM t WHERE n < 5)

SELECT * FROM t;

Note that using the SQL Server example will get undesired results:

Define a CTE to calculate the total quantity in every order and then join to the Orderltems table to obtain the rel-
ative quantity for each item.

WITH AggregatedOrders
AS
(SELECT OrderID, SUM(Quantity) AS TotalQty
FROM OrderItems
GROUP BY OrderID
)
SELECT 0.0OrderID, O.Item,
O.Quantity,
(O.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O
INNER JOIN
AggregatedOrders AS AO
ON 0.0rderID = AO.OrderID;

The example above produces the following results:

OrderID Item Quantity PercentOfOrder
1 M8 Bolt 100 100

2 M8 Nut 100 100

3 M8 Washer 100 0

3 M6 Washer 200 0

This is because divide INT by INT will return round result, if another data type is in used such as DECIMAL there
will be no problem, in order to fix the current issue the columns can be casted using "::decimal'.

-77 -

WITH AggregatedOrders
AS
(SELECT OrderID, SUM(Quantity) AS TotalQty
FROM OrderItems
GROUP BY OrderID
)
SELECT 0.0OrderID, O.Item,
O.Quantity,

aws

trunc((0.Quantity::decimal / AO.TotalQty::decimal)*100,2) AS PercentOfOrder

FROM OrderItems AS O
INNER JOIN
AggregatedOrders AS AO
ON O0.0rderID = AO.OrderlID;

The example above produces the following results:

OrderID Item Quantity PercentOfOrder
1 M8 Bolt 100 100.00
2 M8 Nut 100 100.00
3 M8 Washer 100 66.66
3 M6 Washer 200 33.33

For RECURSIVE WITH query, the 'RECURSIVE' word must be used (unlike in SQL Server).

The equivalent query to SQL Server example will be:

Use a recursive CTE to display the employee-management hierarchy.

WITH RECURSIVE EmpHierarchyCTE AS
(
-- Anchor query retrieves the top manager
SELECT 0 AS LVL,
Employee,
DirectManager
FROM Employees AS E
WHERE DirectManager IS NULL
UNION ALL
-- Recursive query gets all Employees managed by the previous level
SELECT LVL + 1 AS LVL,
E.Employee,
E.DirectManager
FROM EmpHierarchyCTE AS EH
INNER JOIN
Employees AS E
ON E.DirectManager = EH.Employee
)
SELECT *
FROM EmpHierarchyCTE;

The example above displays the following results:

LVL Employee DirectManager
0 Dave
1 John Dave

-78 -

i Jose
Fred

N

For additional details, see: https.//www.postgresqgl.org/docs/13/static/queries-with. html

Dave
John

aws

Feature Com-
patibility

SCT/DMS Automation
Level

SCT Action Code Index

Key Differences

()
()

—
—

()
(@

oledegese,

SCT Action Codes - Data

Syntax and handling dif-

Types ferences

In SQL Server, each table column, variable, expression, and parameter has an associated data type. SQL Server
provides a rich set of built-in data types as summarized in the following table.

Category Data Types

Numeric BIT, TINYINT, SMALLINT, INT, BIGINT, NUMERIC, DECIMAL, MONEY,
SMALLMONEY, FLOAT, REAL

String and Character CHAR, VARCHAR, NCHAR, NVARCHAR

Temporal DATE, TIME, SMALLDATETIME, DATETIME, DATETIME2,
DATETIMEOFFSET

Binary BINARY, VARBINARY

Large Object (LOB) TEXT, NTEXT, IMAGE, VARCHAR(MAX), NVARCHAR(MAX),
VARBINARY (MAX)

Cursor CURSOR

GUID UNIQUEIDENTIFIER

Hierarchical identifier HIERARCHYID

Spatial GEOMETRY, GEOGRAPHY

Sets (Table type) TABLE

XML XML

Other Specialty Types ROW VERSION, SQL_VARIANT

Note: You can create custom user defined data types using T-SQL, and the .NET Framework. Custom
data types are based on the built-in system data types and are used to simplify development. For more
information, see User Defined Types.

The TEXT, NTEXT, and IMAGE data types have been deprecated as of SQL Server 2008R2 in accordance with
https://docs.microsoft.com/en-us/previous-versions/sgl/sgl-server-2008-r2/ms143729(v=sqgl.105).

-79-

https://www.postgresql.org/docs/13/static/queries-with.html
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

aws

These data types are legacy types for storing BLOB and CLOB data. The TEXT data type was used to store
ASCII text CLOBS, the NTEXT data type to store UNICODE CLOBS, and IMAGE was used as a generic data
type for storing all BLOB data. In SQL Server 2005, Microsoft introduced the new and improved VARCHAR
(MAX), NVARCHAR(MAX), and VARBINARY (MAX) data types as the new BLOB and CLOB standard. These
new types support a wider range of functions and operations. They also provide enhanced performance over the
legacy types.

If your code uses TEXT, NTEXT or IMAGE data types, SCT automatically converts them to the appropriate Aur-
ora PostgreSQL BYTEA data type. TEXT and NTEXT are converted to LONGTEXT and image to LONGBLOB.
Make sure you use the proper collations. For more details, see the Collations.

Define table columns.

CREATE TABLE MyTable

(

Coll AS INTEGER NOT NULL PRIMARY KEY,
Col2 AS NVARCHAR (100) NOT NULL

) ;

Define variable types.

DECLARE @MyXMLType AS XML,
@MyTemporalType AS DATETIME2

DECLARE (@MyTableType

AS TABLE

(

Coll AS BINARY (16) NOT NULL PRIMARY KEY,
Col2 AS XML NULL

) ;

For more information, see https.//docs. microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql ?view=sql-server-
verls

PostgreSQL provides multiple data types equivalent to certain SQL Server data types. The following table
provides the full list of PostgreSQL data types:

gtalt;%el:)veer SQL ServerData Type ::Qt:rissz';ver SEE IS :Ic;?\tt?c::? gcl;m- :gfrtgsrzsogdling
Family patibility Data Type
Character CHAR Fixed length 1-8,000 CHAR
VARCHAR Variable length 1-8,000 VARCHAR
NCHAR Fixed length 1-4,000 NCHAR
NVARCHAR Variable length 1-4,000 NVARCHAR
Numeric BIT first 8 BIT column will consume 1 BIT

-80-

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-ver15

aws

SQL Server PostgreSQL |PostgreSQL
Data Type SQL ServerData Type :gé_r;:::ver SRR IO Gl Identical Com-| Corresponding
Family patibility Data Type
byte, 9 to 16 BIT columns will be 2
bytes etc..
TINYINT 8-bit unsigned integer, 0 to 255 No SMALLINT
SMALLINT 16-bit integer SMALLINT
INT, INTEGER 32-bit integer INT, INTEGER
BIGINT 64-bit integer BIGINT
NUMERIC Fixed-point number NUMERIC
DECIMAL Fixed-point number DECIMAL
MONEY 64-bit currency amount MONEY
SMALLMONEY 32-bit currency amount No MONEY
FLOAT Floating-point number FLOAT
REAL Single-precision floating-point REAL
number
Temporal DATE Date (year, month and day) DATE
TIME Time (hour, minute, second and TIME
fraction)
SMALLDATETIME Date and time No TIMESTAMP(0)
DATETIME Date and time with fraction No TIMESTAMP(3)
DATETIME2 Date and time with fraction No TIMESTAMP(p)
Temporal DATETIMEOFFSET | Date and time with fraction and No TIMESTAMP(p)
time zone WITH TIME
ZONE
Binary BINARY Fixed-length byte string No BYTEA
VARBINARY Variable length 1-8,000 No BYTEA
LOB TEXT Variable-length character data up TEXT
to2 GB
NTEXT Variable-length Unicode UCS-2 |No TEXT
dataupto2 GB
IMAGE Variable-length character data up |No BYTEA
to2 GB
VARCHAR(MAX) Variable-length character data up TEXT
to2 GB
NVARCHAR(MAX) Variable-length Unicode UCS-2 |No TEXT
dataupto2 GB
VARBINARY (MAX) Variable-length character data up |No BYTEA

to2 GB

-81-

aws

SQL Server PostgreSQL |PostgreSQL

Data Type SQL ServerData Type el S erver SER IS Identical Com-| Corresponding
. acteristic s

Family patibility Data Type

XML XML XML data XML

GUID UNIQUEIDENTIFIER |16-byte GUID (UUID) CHAR(16)

Hierarchical |HIERARCHYID Approximately 5 bytes NVARCHAR

identifier (4000)

Spatial - For | GEOMETRY Euclidean (flat) coordinate system GEOMETRY

using with

Aurora Post- | GEOGRAPHY Round-earth coordinate system GEOGRAPHY

greSQL, see: : :

AWS Docs SQL_VARIANT Maximum length of 8016 No equivalent

Other ROWVERSION 8 bytes TIMESTAMP(p)

PostgreSQL only supports CHAR for column size semantics. If you define a field as VARCHAR (10), Post-
greSQL can store 10 characters regardless of how many bytes it takes to store each non-English character.
VARCHAR(n) stores strings up to n characters (not bytes) in length.

Automatic migration and conversion of SQL Server Tables and Data Types can be performed using Amazon’s

Schema Conversion Tool (Amazon SCT).

To demonstrate SCT’s capability for migrating SQL Server tables to their PostgreSQL equivalents, a table con-
taining columns representing the majority of SQL Server data types was created and converted using Amazon

SCT.

Source SQL Server compatible DDL for creating the DATATYPES table:

CREATE TABLE "DataTypes" (

"BINARY FLOAT"
"BINARY DOUBLE"
"BLOB"

"CHAR"
"CHARACTER"
"CLOB"
"DATE"
"DECIMAL"
"DOUBLE PRECISION"
"FLOAT"
"INTEGER"
"LONG"
"NCHAR"
"NUMBER"
"NUMBER1"

REAL,
FLOAT,

VARBINARY (4000),
CHAR (10),

CHAR (10),
VARCHAR (4000) ,
DATE,

NUMERIC (3,2),
FLOAT (52),

FLOAT (3),
INTEGER,

TEXT,

NCHAR (10) ,
NUMERIC (9, 9),
NUMERIC (9, 0),

-82-

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.PostGIS

aws

"NUMERIC" NUMERIC (9, 9),
"RAW" BINARY (10),
"REAL" FLOAT (52),
"SMALLINT" SMALLINT,
"TIMESTAMP" TIMESTAMP,

"TIMESTAMP WITH TIME ZONE" DATETIMEOFFSET (5),

"VARCHAR" VARCHAR (10) ,
"VARCHAR2" VARCHAR (10),
"XMLTYPE" XML

) ;

Target PostgreSQL compatible DDL for creating the DATATYPES table migrated from SQL Server with

Amazon SCT:

CREATE TABLE IF NOT EXISTS datatypes (

binary float
binary double
blob

real DEFAULT NULL,
double precision DEFAULT NULL,
bytea DEFAULT NULL,

char character (10) DEFAULT NULL,

character character (10) DEFAULT NULL,

clob text DEFAULT NULL,

date TIMESTAMP (0) without time zone DEFAULT NULL,
decimal numeric(3,2) DEFAULT NULL,

dec numeric(3,2) DEFAULT NULL,

double precision
float

double precision DEFAULT NULL,
double precision DEFAULT NULL,

integer numeric(38,0) DEFAULT NULL,

long text DEFAULT NULL,

nchar character (10) DEFAULT NULL,

number numeric(9,9) DEFAULT NULL,

numberl numeric(9,0) DEFAULT NULL,

numeric numeric(9,9) DEFAULT NULL,

raw bytea DEFAULT NULL,

real double precision DEFAULT NULL,

smallint numeric(38,0) DEFAULT NULL,

timestamp TIMESTAMP (5) without time zone DEFAULT NULL,

timestamp with time zone

TIMESTAMP (5) with time zone DEFAULT NULL,

varchar character varying(10) DEFAULT NULL,
varchar? character varying(10) DEFAULT NULL,
xmltype xml DEFAULT NULL

)

WITH (

OIDS=FALSE

) i

Summary:

Allincompatible data type being converted by SCT.
SQL Server CREATE TABLE command:

CREATE TABLE scttest (
SMALLDATETIMEcol SMALLDATETIME,
datetimecol DATETIME,
datetime2col DATETIMEZ,
datetimeoffsetcol DATETIMEOFFSET,
binarycol BINARY,

-83-

varbinarycol VARBINARY,

ntextcol NTEXT,

imagecol IMAGE,

nvarcharmaxcol NVARCHAR (MAX),
varbinarymaxcol VARBINARY (MAX),
uniqueidentifiercol UNIQUEIDENTIFIER,
hierarchyiDcol HIERARCHYID,

sql variantcol SQL VARIANT,
rowversioncol ROWVERSION) ;

The equivalent command that was created using the SCT:

CREATE TABLE scttest(

smalldatetimecol TIMESTAMP WITHOUT TIME ZONE,
datetimecol TIMESTAMP WITHOUT TIME ZONE,
datetime2col TIMESTAMP (6) WITHOUT TIME ZONE,
datetimeoffsetcol TIMESTAMP (6) WITH TIME ZONE,
binarycol BYTEA,

varbinarycol BYTEA,

ntextcol TEXT,

imagecol BYTEA,

nvarcharmaxcol TEXT,

varbinarymaxcol BYTEA,

uniqueidentifiercol UUID,

hierarchyidcol VARCHAR(8000),

sql variantcol VARCHAR(8000),

rowversioncol VARCHAR (8000) NOT NULL) ;

For additional details, see:

« https.//www.postgresql.org/docs/13/static/ddl-system-columns. html

« https.//www.postgresql.org/docs/13/static/datatype.html|

« https.//aws.amazon.com/documentation/SchemaConversionTool

aws

SQL Server Derived Tables vs. PostgreSQL Derived

Tables

Feature Compatibility |SCT/DMS Automation Level

SCT Action Code Index

Key Differences

SESEE odegegele

((
((
((
(«
((

N/A

SQL Server Usage

SQL Server implements Derived Tables as specified in ANSI SQL:2011.A derived tables are similartoa CTE,
but the reference to another query is used inside the FROM clause of a query.

This feature enables you to write more sophisticated, complex join queries.

-84-

https://www.postgresql.org/docs/13/static/ddl-system-columns.html
https://www.postgresql.org/docs/13/static/datatype.html
https://aws.amazon.com/documentation/SchemaConversionTool

aws

Examples

SELECT name, salary, average salary
FROM (SELECT AVG (salary)
FROM employee) AS workers (average salary), employee
WHERE salary > average salary
ORDER BY salary DESC;

For more information, see https.//docs. microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sqgl-server-ver15

PostgreSQL Usage

PostgreSQL implements Derived Tables and is fully compatible with SQL Server Derived Tables.

Examples

SELECT name, salary, average salary
FROM (SELECT AVG(salary)
FROM employee) AS workers (average salary), employee
WHERE salary > average salary
ORDER BY salary DESC;

For more information, see https.//www.postgresql.org/docs/13/static/queries-table-expressions. html

SQL Server GROUP BY vs. PostgreSQL GROUP BY

Feature Compatibility |SCT/DMS Automation Level SCT Action Code Index | Key Differences

sssss | O0O000 A

SQL Server Usage

GROUP BY is an ANSI SQL query clause used to group individual rows that have passed the WHERE filter
clause into groups to be passed on to the HAVING filter and then to the SELECT list. This grouping supports the
use of aggregate functions such as SUM, MAX, AVG, and others.

Syntax

ANSI| compliant GROUP BY Syntax:

GROUP BY

[ROLLUP | CUBE]

<Column Expression> ...n

[GROUPING SETS (<Grouping Set>)...n

-85-

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15
https://www.postgresql.org/docs/13/static/queries-table-expressions.html

aws

Backward compatibility syntax:

GROUP BY
[ALL] <Column Expression> ...n
[WITH CUBE | ROLLUP]

The basic ANSI syntax for GROUP BY supports multiple grouping expressions, the CUBE and ROLLUP
keywords, and the GROUPING SETS clause; all used to add super-aggregate rows to the output.

Up to SQL Server 2008 R2, the database engine supported a legacy, proprietary syntax (not ANSI Compliant)
using the WITH CUBE and WITH ROLLUP clauses. These clauses added super-aggregates to the output.

Also, up to SQL Server 2008 R2, SQL Server supported the GROUP BY ALL syntax, which was used to create
an empty group for rows that failed the WHERE clause.

SQL Server supports the following aggregate functions:

AVG, CHECKSUM AGG, COUNT, COUNT BIG, GROUPING, GROUPING ID, STDEV, STDEVP, STRING AGG,
sSuM, MIN, MAX, VAR, VARP

Examples
Legacy CUBE and ROLLUP Syntax

CREATE TABLE Orders

(
OrderID INT IDENTITY(1,1) NOT NULL
PRIMARY KEY,
Customer VARCHAR (20) NOT NULL,
OrderDate DATE NOT NULL

) ;

INSERT INTO Orders (Customer, OrderDate)
VALUES ('John', '20180501'"), ('"John', '20180502'), ('John', '20180503'),
('"Jim', '20180501'"), ('Jim', '20180503'), ('Jim', '20180504")

SELECT Customer,

OrderDate,

COUNT (*) AS NumOrders
FROM Orders AS O
GROUP BY Customer, OrderDate
WITH ROLLUP

Customer OrderDate NumOrders
Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1

-86-

aws

NULL NULL 6

The highlighted rows were added as a result of the WITH ROLLUP clause and contain super aggregates for the
following:

« Allorders for Jim and John regardless of OrderDate (Orange).

« A super aggregated for all customers and all dates (Red).

Using CUBE instead of ROLLUP adds super aggregates in all possible combinations, not only in GROUP BY
expression order.

SELECT Customer,

OrderDate,

COUNT (*) AS NumOrders
FROM Orders AS O
GROUP BY Customer, OrderDate

WITH CUBE

Customer OrderDate NumOrders
Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3
John NULL 3

Note the additional four green highlighted rows, which were added by the CUBE. They provide super aggregates
for every date for all customers that were not part of the ROLLUP results above.

Legacy GROUP BY ALL

Use the Orders table from the previous example.

SELECT Customer,

OrderDate,

COUNT (*) AS NumOrders
FROM Orders AS O
WHERE OrderDate <= '20180503"
GROUP BY ALL Customer, OrderDate

Customer OrderDate NumOrders
Jim 2018-05-01 1
John 2018-05-01 1
John 2018-05-02 1

-87-

aws

Jim 2018-05-03 1
John 2018-05-03 1

Warning: Null value is eliminated by an aggregate or other SET operation.

The row highlighted in orange for 2018-05-04 failed the WHERE clause and was returned as an empty group as
indicated by the warning for the empty COUNT(*) = 0.

Use GROUPING SETS

The following query uses the ANSI compliant GROUPING SETS syntax to provide all possible aggregate com-
binations for the Orders table, similar to the result of the CUBE syntax. This syntax requires specifying each
dimension that needs to be aggregated.

SELECT Customer,
OrderDate,
COUNT (*) AS NumOrders

FROM Orders AS O

GROUP BY GROUPING SETS (

(Customer, OrderDate),

(Customer),

(OrderDate),

()

)

Customer OrderDate NumOrders
Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3
John NULL 3

For more information, see:

« https.//docs. microsoft.com/en-us/sql/t-sqgl/functions/aggregate-functions-transact-sql?view=sql-server-ver15

« https.//docs. microsoft.com/en-us/sql/t-sqgl/queries/select-group-by-transact-sql?view=sql-server-ver15

PostgreSQL Usage

Aurora PostgreSQL supports the basic ANSI syntax for GROUP BY and also supports GROUPING SETS
CUBE, and ROLLUP.

-88 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql?view=sql-server-ver15

aws

Like SQL Server, Aurora PostgreSQL does allow using ROLLUP and ORDER BY clauses in the same query,
but the syntax is a bit different from SQL Server; there is no WITH clause in the statement.

SELECT Customer,
OrderDate,
COUNT (*) AS NumOrders
FROM Orders AS O
GROUP BY ROLLUP (Customer, OrderDate)

The main difference is the need to move from writing the column to GROUP BY after the ROLLUP.

For the CUBE option, it's the same change:

SELECT Customer,
OrderDate,
COUNT (*) AS NumOrders
FROM Orders AS O
GROUP BY CUBE (Customer, OrderDate);

GROUPING SET:

SELECT Customer,
OrderDate,
COUNT (*) AS NumOrders
FROM Orders AS O
GROUP BY GROUPING SETS (
(Customer, OrderDate),
(Customer) ,
(OrderDate), ())

For more information, see https.//www.postgresql.org/docs/13/static/queries-table-expressions. html

Syntax

SELECT <Select List>
FROM <Table Source>
WHERE <Row Filter>
GROUP BY
[ROLLUP | CUBE | GROUPING SETS]
<Column Name> | <Expression> | <Position>

Migration Considerations

The GROUP BY functionality exists (except for the ALL option).

Every query must be converted to use the column name after the GROUP BY option (CUBE, ROLLUP, or
CUBE).

Examples

Rewrite SQL Server WITH CUBE modifier for migration. Also, see the example in SQL Server GROUP BY.

-89-

https://www.postgresql.org/docs/13/static/queries-table-expressions.html

aws

CREATE TABLE Orders

(
OrderID serial NOT NULL
PRIMARY KEY,
Customer VARCHAR (20) NOT NULL,
OrderDate DATE NOT NULL

) ;

INSERT INTO Orders (Customer, OrderDate)
VALUES ('John', '20180501"'), ("John', '20180502'), ('John', '20180503"),
('"Jim', '20180501'"), ('Jim', '20180503"), ('Jim', '20180504"'");

SELECT Customer,
OrderDate,
COUNT (*) AS NumOrders
FROM Orders AS O
GROUP BY CUBE (Customer, OrderDate);

Customer OrderDate NumOrders

Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
Jim NULL 3
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
John NULL 3
NULL NULL 6
NULL 2018-05-01 2
NULL 2018-05-02 1
NULL 2018-05-03 2
NULL 2018-05-04 1

Rewrite SQL Server GROUP BY ALL for migration. Also see the example in SQL Server GROUP BY.

SELECT Customer,

OrderDate,

COUNT (*) AS NumOrders
FROM Orders AS O
WHERE OrderDate <= '20180503'
GROUP BY Customer, OrderDate

UNION ALL -- Add the empty groups
SELECT DISTINCT Customer,
OrderDate,
0

FROM Orders AS O
WHERE OrderDate > '20180503';

Customer OrderDate NumOrders

Jim 2018-05-01 1
Jim 2018-05-03 1
John 2018-05-01 1

-90-

John 2018-05-02
John 2018-05-03
Jim 2018-05-04

aws

Table of similarities, differences, and key migration considerations.

SQL Server feature

Aurora PostgreSQL fea-
ture

Comments

MAX, MIN, AVG, COUNT,
COUNT_BIG

MAX, MIN, AVG, COUNT

In Aurora PostgreSQL, COUNT returns a BIGINT
and is compatible with SQL Server's COUNT and
COUNT_BIG.

CHECKSUM_AGG

N/A

Use a loop to calculate checksums.

ID

GROUPING, GROUPING_

GROUPING

Reconsider query logic to avoid having NULL
groups that are ambiguous with the super aggreg-
ates.

STDEV, STDEVP, VAR,
VARP

STDDEV, STDDEV_POP,
VARIANCE, VAR_POP

Rewrite keywords only.

STRING_AGG STRING_AGG

WITH ROLLUP ROLLUP Remove WITH and change the columns names to
be after the ROLLUP keyword

WITH CUBE CUBE Remove WITH and change the columns names to

be after the CUBE keyword

GROUPING SETS

GROUPING SETS

For more information, see https.//www.postgresql.org/docs/13/static/functions-aggregate. html

Feature Com- SCT/DMS Auto- |SCT Action .
patibility mation Level Code Index Gy el
s N/A OUTER JOIN with commas and CROSS APPLY and
SEESESE sLaon OUTER APPLY are not supported
ANSI JOIN

SQL Server supports the standard ANSI join types:

« <Set A> CROSS JOIN <Set B>: Results in a Cartesian product of the two sets. Every JOIN starts as a

Cartesian product.

-91-

https://www.postgresql.org/docs/10/static/functions-aggregate.html

aws

« <Set A> INNER JOIN <Set B> ON <Join Condition>: Filters the Cartesian product to only the rows
where the join predicate evaluates to TRUE.

« <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows from
the reserved left set with NULL for all the columns that come from the right set.

« <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows
from the reserved right set with NULL for all the columns that come from the left set.

« <Set A> FULL OUTER JOIN <Set B> ON <Join Condition>: Designates both sets as reserved and
adds non matching rows from both, similartoa LEFT OUTER JOIN and a RIGHT OUTER JOIN.

SQL Server also supports the APPLY operator, which is somewhat similar to a join. However, APPLY operators
enable the creation of a correlation between <Set A> and <Set B> such that <Set B> may consist of a sub query,
a VALUES row value constructor, or a table valued function that is evaluated per row of <Set A> where the <Set
B> query can reference columns from the current row in <Set A>. This functionality is not possible with any type
of standard JOIN operator.

There are two APPLY types:

« <Set A> CROSS APPLY <Set B>: Similar to a CROSS JOIN in the sense that every row from <Set A> is
matched with every row from <Set B>.

« <Set A> OUTER APPLY <Set B>: Similartoa LEFT OUTER JOIN in the sense that rows from <Set A>
are returned even if the sub query for <Set B> produces an empty set. In that case, NULL is assigned to all
columns of <Set B>.

Up until version 2008R2, SQL Server also supported the "old style" JOIN syntax including LEFT and
RIGHT OUTER JOIN.

The ANSI syntax for a CROSS JOIN operator was to list the sets in the FROM clause using commas as sep-
arators. For example:

SELECT *

FROM Tablel,
Table2,
Table3...

To perform an INNER JOIN, you only heeded to add the JOIN predicate as part of the WHERE clause. For
example:

SELECT *
FROM Tablel,
Table?2
WHERE Tablel.Columnl = Table2.Columnl

Although the ANSI standard didn't specify outer joins at the time, most RDBMS supported them in one way or
another. T-SQL supported outer joins by adding an asterisk to the left or the right of equality sign of the join pre-
dicate to designate the reserved table. For example:

SELECT *
FROM Tablel,

-92-

aws

Table2
WHERE Tablel.Columnl *= Table2.Columnl

To perform a FULL OUTER JOIN, asterisks were placed on both sides of the equality sign of the join predicate.

As of SQL Server 2008R2, outer joins using this syntax have been deprecated in accordance with https://-
technet.microsoft.com/it-it/library/ms143729(v=sql.105).aspx.

Note: Even though INNER JOINs using the ANSI SQL 89 syntax are still supported, they are highly dis-
couraged due to being notorious for introducing hard-to-catch programming bugs.

Syntax
CROSS JOIN

FROM <Table Source 1>
CROSS JOIN
<Table Source 2>

-— ANSI 89
FROM <Table Source 1>,
<Table Source 2>

INNER / OUTER JOIN

FROM <Table Source 1>
[{ INNER | { { LEFT | RIGHT | FULL } [OUTER] } }] JOIN
<Table Source 2>
ON <JOIN Predicate>

-—- ANSI 89
FROM <Table Source 1>,
<Table Source 2>
WHERE <Join Predicate>
<Join Predicate>:: <Table Source 1 Expression> |

Il
*
|

=* *=* <Table Source 2
Expression>

APPLY

FROM <Table Source 1>
{ CROSS | OUTER } APPLY
<Table Source 2>
<Table Source 2>:: <SELECT sub-query> | <Table Valued UDF> | <VALUES clause>

Examples

Create the Orders and ltems tables.

CREATE TABLE Items
(

-03-

https://technet.microsoft.com/it-it/library/ms143729(v=sql.105).aspx
https://technet.microsoft.com/it-it/library/ms143729(v=sql.105).aspx

aws

Item VARCHAR (20) NOT NULL
PRIMARY KEY

Category VARCHAR (20) NOT NULL,

Material VARCHAR (20) NOT NULL

) ;

INSERT INTO Items (Item, Category, Material)

VALUES
('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
'M8 Nut', 'Metric Nuts', 'Stainless Steel'),

(
("M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR(20) NOT NULL
REFERENCES Items (Item),
Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

)7

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200)

INNER JOIN

SELECT *

FROM Items AS T
INNER JOIN
OrderItems AS OI
ON I.Ttem = OI.Item;

-— ANSI SQL 89

SELECT *

FROM Items AS T,
OrderItems AS OI

WHERE I.Item = OI.Item;

LEFT OUTER JOIN

Find Items that were never ordered.

SELECT I.Item
FROM Items AS T
LEFT OUTER JOIN
OrderItems AS OI
ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

-94-

aws

-— ANSI SQL 89

SELECT TItem

FROM

(

SELECT I.Item, 0.0rderID

FROM Items AS I,

OrderItems AS OI

WHERE I.Item *= OI.Item

) AS LeftJoined
WHERE LeftJoined.OrderID IS NULL;

CREATE TABLE T1 (Coll INT, COl2 CHAR(2));
CREATE TABLE T2 (Coll INT, COl2 CHAR(2));

INSERT INTO Tl (Coll, Col2)
VALUES (1, 'A'), (2,'B');

INSERT INTO T2 (Coll, Col2)
VALUES (2,'BB'"), (3,'CC'");

SELECT *

FROM T1
FULL OUTER JOIN
T2

ON Tl.Coll = T2.Coll;

Result:

Coll Co12 Coll Co12
1 A NULL NULL
2 B 2 BB
NULL NULL 3 CcC

For more information, see https.//docs. microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sqgl-server-ver15

Aurora PostgreSQL supports all types of joins in the same way as SQL Server:

» <Set A> CROSS JOIN <Set B>: Results in a Cartesian product of the two sets. Every JOIN starts as a
Cartesian product.

« <Set A> INNER JOIN <Set B> ON <Join Condition>: Filters the Cartesian product to only the rows
where the join predicate evaluates to TRUE.

» <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows from
the reserved left set with NULL for all the columns that come from the right set.

» <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows
from the reserved right set with NULL for all the columns that come from the left set.

-95-

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

aws

« <Set A> FULL OUTER JOIN <Set B> ON <Join Condition>: Designates both sets as reserved and
adds non matching rows from both, similartoa LEFT OUTER JOIN and a RIGHT OUTER JOIN.

SQL Server's APPLY options are not supported but can be replaced with INNER JOIN LATERAL and LEFT
JOIN LATERAL.

Syntax

FROM
<Table Source 1> CROSS JOIN <Table Source 2>
| <Table Source 1> INNER JOIN <Table Source 2>
ON <Join Predicate>
| <Table Source 1> {LEFT|RIGHT|FULL} [OUTER] JOIN <Table Source 2>
ON <Join Predicate>

Migration Considerations

For most JOINs, the syntax should be equivalent and no rewrites should be needed, a few differences can be
found below:

o ANSI SQL 89is not supported.

o FULLOUTER JOIN and OUTER JOIN using the pre-ANSI SQL 92 syntax are not supported, but they can
be easily worked around (see the examples below).

« CROSS APPLY and OUTER APPLY are not supported and need to be rewritten using INNER JOIN
LATERAL and LEFT JOIN LATERAL.

Examples

Create the Orders and Items tables.

CREATE TABLE Items

(

Item VARCHAR (20) NOT NULL
PRIMARY KEY

Category VARCHAR (20) NOT NULL,

Material VARCHAR (20) NOT NULL

) ;

INSERT INTO Items (Item, Category, Material)

VALUES

("M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
("M8 Nut', 'Metric Nuts', 'Stainless Steel'),

('M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL
REFERENCES Items (Item),
Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)
) ;

-96 -

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200)

INNER JOIN

SELECT *

FROM Items AS T
INNER JOIN
OrderItems AS OI
ON I.Item = OI.Item;

LEFT OUTER JOIN

Find Items that were never ordered.

SELECT Item
FROM Items AS T
LEFT OUTER JOIN
OrderItems AS OI
ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

FULL OUTER JOIN

CREATE TABLE T1 (Coll INT, COl2 CHAR(2));
CREATE TABLE T2 (Coll INT, COl2 CHAR(2));

INSERT INTO T1 (Coll, Col2)
VALUES (1, 'A'), (2,'B");

INSERT INTO T2 (Coll, Col2)
VALUES (2,'BB'), (3,'CC'");

SELECT *

FROM T1
FULL OUTER JOIN
T2

ON T1.Coll = T2.Coll;

Result:

Coll Cco12 Coll Cco12
1 A NULL NULL
2 B 2 BB
NULL NULL 3 CcC

-97-

aws

aws

Table of similarities, differences, and key migration considerations.

SQL Server Aurora PostgreSQL Comments

INNER JOIN with ON clause or commas | Supported

OUTER JOIN with ON cluase Supported

OUTER JOIN with commas Not supported Requires T-SQL rewrite post
SQL Server 2008R2.

CROSS JOIN or using commas Supported

CROSS APPLY and OUTER APPLY Not Supported Rewrite required.

For more information, see:

o https.//www.postgresqgl.org/docs/13/static/explicit-joins. html

« https.//www.postgresql.org/docs/13/static/tutorial-join. html

(Temporal Tables alternative)

Feature Compatibility |SCT/DMS Automation Level SCT Action Code Index |Key Differences

sssss | GO000 A

Temporal database tables were introduced in ANSI SQL 2011. T-SQL began supporting system versioned tem-
poral tables in SQL Server 2016.

Each temporal table has two explicitly defined DATETIMEZ2 columns known as period columns. The system uses
these columns to record the period of availability for each row when it is modified. An additional history table
retains the previous version of the data. The system can automatically create the history table, or a user can spe-
cify an existing table.

To query the history table, use FOR SYSTEM TIME after the table name in the FROM clause and combine it with
the following options:

o ALL: Allchanges
« CONTAINED IN: Change is valid only within a period
« AS OF: Change was valid somewhere in a specific period

« BETWEEN: change was valid from a time range

Temporal Tables are mostly used when to track data change history as described in the scenarios below.

-08 -

https://www.postgresql.org/docs/13/static/explicit-joins.html
https://www.postgresql.org/docs/13/static/tutorial-join.html

aws

Anomaly Detection

Use this option when searching for data with unusual values. For example, detecting when a customer returns
items too often.

CREATE TABLE Products returned

(
ProductID int NOT NULL PRIMARY KEY CLUSTERED,
ProductName varchar (60) NOT NULL,
return count INT NOT NULL,
ValidFrom datetime2 (7) GENERATED ALWAYS AS ROW START NOT NULL,
ValidTo datetime2 (7) GENERATED ALWAYS AS ROW END NOT NULL,
PERIOD FOR SYSTEM TIME (ValidFrom, ValidTo)

)

WITH(SYSTEM VERSIONING = ON (HISTORY TABLE = dbo.ProductHistory,

DATA CONSISTENCY CHECK = ON))

Query the Product table and run calculations on the data.

SELECT
ProductlId,
LAG (return count, 1, 1)
over (partition by ProductId order by ValidFrom) as PrevValue,
return_ count,
LEAD (return count, 1, 1)
over (partition by ProductId order by ValidFrom) as NextValue ,
ValidFrom, ValidTo from Product
FOR SYSTEM TIME ALL

Audit

Track changes to critical data such as salaries or medical data.

CREATE TABLE Employee

(
EmployeeID int NOT NULL PRIMARY KEY CLUSTERED,
Name nvarchar (60) NOT NULL,
Salary decimal (6,2) NOT NULL,
ValidFrom datetime2 (2) GENERATED ALWAYS AS ROW START,
ValidTo datetime2 (2) GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM TIME (ValidFrom, ValidTo)

)
WITH (SYSTEM VERSIONING = ON (HISTORY TABLE = dbo.EmployeeTrackHistory)) :;

Use FOR SYSTEM_TIME ALL to retrieve changes from the history table.

SELECT * FROM Employee
FOR SYSTEM TIME ALL WHERE
EmployeeID = 1000 ORDER BY ValidFrom;

Other Scenarios
Additional scenarios include:

-99-

aws

« Fixing row-level corruption
« Slowly Changing Dimension

« Overtime changes analysis

For more information, see https://docs. microsoft.com/en-us/sql/relational-databases/tables/temporal-tables ?view=sgl-
server-ver15

PostgreSQL Usage

(Temporal Tables alternative)

PostgreSQL provides an extension for supporting temporal tables, but it's not supported by Amazon Aurora. A
workaround will be to create table triggers to update a custom history table to track changes to data. For addi-
tional information, see PostgreSQL triggers.

SQL Server Views vs. PostgreSQL Views

Feature Com- SCT/DMS Automation |SCT Action Code Kev Differences

patibility Level Index y
cssses N/A Indexed and Partitioned view are not
_————-———-—— oaaoo Supported

SQL Server Usage

Views are schema objects that provide stored definitions for virtual tables. Similar to tables, views are data sets
with uniquely named columns and rows. With the exception of indexed views, view objects do not store data.
They consist only of a query definition and are reevaluated for each invocation.

Views are used as abstraction layers and security filters for the underlying tables. They can JOIN and UNION
data from multiple source tables and use aggregates, window functions, and other SQL features as long as the
result is a semi-proper set with uniquely identifiable columns and no order to the rows. You can use Distributed
Views to query other databases and data sources using linked servers.

As an abstraction layer, a view can decouple application code from the database schema. The underlying tables
can be changed without the need to modify the application code as long as the expected results of the view do not
change. You can use this approach to provide backward compatible views of data.

As a security mechanism, a view can screen and filter source table data. You can perform permission man-
agement at the view level without explicit permissions to the base objects, provided the ownership chain is main-
tained. For more information on ownership chains in SQL Server, see
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sgl/overview-of-sqgl-server-security.

View definitions are evaluated when they are created and are not affected by subsequent changes to the under-
lying tables. For example, a view that uses SELECT * does not display columns that were added later to the base
table. Similarly, if a column was dropped from the base table, invoking the view results in an error. Use the
SCHEMABINDING option to prevent changes to base objects.

-100 -

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver15

aws

Updatable Views can both SELECT and modify data. For a view to be updatable, the following conditions must
be met:

« The DML targets only one base table.

« Columns being modified must be directly referenced from the underlying base tables. Computed columns,
set operators, functions, aggregates, or any other expressions are not permitted.

« Ifaview is created with the CHECK OPTION, rows being updated can not be filtered out of the view defin-
ition as the result of the update.

SQL Server also provides three types of specialized views:

» Indexed Views (also known as materialized views or persisted views) are standard views that have been
evaluated and persisted in a unique clustered index, much like a normal clustered primary key table. Each
time the source data changes, SQL Server re-evaluates the indexed views automatically and updates
them. Indexed views are typically used as a means to optimize performance by pre-processing operators
such as aggregations, joins, and others. Queries needing this pre-processing don't have to wait for it to be
reevaluated on every query execution.

«» Partitioned Views are views that rejoin horizontally partitioned data sets from multiple underlying tables,
each containing only a subset of the data. The view uses a UNION ALL query where the underlying tables
can reside locally or in other databases (or even other servers). These types of views are called Distributed
Partitioned Views (DPV).

« System Views are used to access server and object meta data. SQL Server also supports a set of stand-
ard INFORMATION_SCHEMA views for accessing object meta data.

CREATE [OR ALTER] VIEW [<Schema Name>.] <View Name> [(<Column Aliases>])]
[WITH [ENCRYPTION][SCHEMABINDING][VIEW_METADATA]]

AS <SELECT Query>

[WITH CHECK OPTION][;]

Create a view that aggregates items for each customer.

CREATE TABLE Orders

(

OrderID INT NOT NULL PRIMARY KEY,

OrderDate DATETIME NOT NULL
DEFAULT GETDATE ()

) ;

CREATE TABLE OrderItems

(
OrderID INT NOT NULL
REFERENCES Orders (OrderID),

-101 -

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

)7

CREATE VIEW SalesView
AS
SELECT O.Customer,
OI.Product,
SUM (CAST (OI.Quantity AS BIGINT)) AS TotalltemsBought
FROM Orders AS O
INNER JOIN
OrderItems AS OI
ON 0.0rderID = OI.OrderID;

Create an indexed view that pre-aggregates items for each customer.

CREATE VIEW SalesViewIndexed
AS
SELECT O.Customer,
OI.Product,
SUM BIG(OI.Quantity) AS TotalItemsBought
FROM Orders AS O
INNER JOIN
OrderItems AS OI
ON O0.0rderID = 0OI.OrderlID;

CREATE UNIQUE CLUSTERED INDEX IDX_SalesView
ON SalesViewIndexed (Customer, Product);

Create a Partitioned View.

CREATE VIEW dbo.PartitioneView
WITH SCHEMABINDING
AS

SELECT *

FROM Tablel

UNION ALL

SELECT *

FROM Table?2

UNION ALL

SELECT *

FROM Table3

For more information, see:

« https://docs.microsoft.com/en-us/sql/relational-databases/views/views ?view=sqgl-server-ver15

aws

« https://docs.microsoft.com/en-us/sqgl/relational-databases/views/modify-data-through-a-view ?view=sqgl-server-

ver15

« https://docs.microsoft.com/en-us/sqgl/t-sgl/statements/create-view-transact-sql?view=sql-server-ver15

-102 -

https://docs.microsoft.com/en-us/sql/relational-databases/views/views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-ver15

aws

PostgreSQL Usage

The basic form of Views is similar between PostgreSQL and SQL Server. A view defines a stored query based on
one or more physical database tables that executes every time the view is accessed.

More complex option such as Indexed Views or Partitioned Views are not supported, and may require a redesign
or might application rewrite.

RDS ONLY: Starting with PostgreSQL 13 it is now possible to rename view columns using ALTER
VIEW command, this will help the DBA to avoid dropping and recreating the view in order to change

a column name.
The following syntax was added to the ALTER VIEW:

ALTER VIEW [IF EXISTS] name RENAME [COLUMN] column name TO new
column name

Prior to PostgreSQL 13 the capability was there but in order to change the view's column name the DBA had to
use the ALTER TABLE command.

PostgreSQL View Privileges

A Role or User must be granted SELECT and DML privileges on the base tables or views in order to create a
view. For additional details, see https://www.postgresgl.org/docs/13/static/sqgl-grant.html

PostgreSQL View Parameters

CREATE [OR REPLACE] VIEW

When re-creating an existing view, the new view must have the same column structure as generated by the ori-
ginal view (column names, column order, and data types). It is sometimes preferable to drop the view and use the
CREATE VIEW statement instead.

hr=# CREATE [OR REPLACE] VIEW VW NAME AS
SELECT COLUMNS
FROM TABLE (s)
[WHERE CONDITIONS] ;

hr=# DROP VIEW [IF EXISTS] VW NAME;

Note: The IF EXISTS parameter is optional.

WITH [CASCADED | LOCAL] CHECK OPTION

DML INSERT and UPDATE operations are verified against the view-based tables to ensure new rows satisfy the
original structure conditions or the view-defining condition. If a conflict is detected, the DML operation fails.

CHECK OPTION

- 103 -

https://www.postgresql.org/docs/13/static/sql-grant.html

aws

« LOCAL: Verifies the view without a hierarchical check.
« CASCADED: Verifies all underlying base views using a hierarchical check.

Executing DML Commands On views

PostgreSQL simple views are automatically updatable. No restrictions exist when performing DML operations on
views. An updatable view may contain a combination of updatable and non-updatable columns. A column is
updatable if it references an updatable column of the underlying base table. If not, the column is read-only and an
error is raised if an INSERT or UPDATE statement is attempted on the column.

Syntax

CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(column name [,

-1]

[WITH (view option name [= view option value] [, ...])]

AS query
[WITH [CASCADED | LOCAL] CHECK OPTION]

Examples
Create and update a view without the CHECK OPTION parameter.
CREATE OR REPLACE VIEW VW DEP AS

SELECT DEPARTMENT ID, DEPARTMENT NAME, MANAGER ID, LOCATION ID

FROM DEPARTMENTS
WHERE LOCATION ID=1700;

view VW DEP created.

UPDATE VW DEP SET LOCATION ID=1600;

21 rows updated.

Create and update a view with the LOCAL CHECK OPTION parameter.
CREATE OR REPLACE VIEW VW _DEP AS

SELECT DEPARTMENT ID, DEPARTMENT NAME, MANAGER ID, LOCATION ID

FROM DEPARTMENTS
WHERE LOCATION ID=1700
WITH LOCAL CHECK OPTION;

view VW DEP created.
UPDATE VW DEP SET LOCATION ID=1600;

SQL Error: ERROR: new row violates check option for view "vw dep"

-104 -

aws

Feature SQL Server Aurora PostgreSQL

Indexed Views Supported N/A

Partitioned Views Supported N/A

Updateable Views Supported Supported

Prevent schema conflicts SCHEMABINDING option N/A

Triggers on views INSTEAD OF INSTEAD OF

Temporary Views CREATE VIEW #View... CREATE[OR REPLACE][TEMP |
TEMPORARY] VIEW

Refresh view definition sp_refreshview / ALTER VIEW ALTER VIEW

For more information, see:

o https://www.postgresql.org/docs/13/static/tutorial-views. html|

o https://www.postgresqgl.org/docs/13/static/sql-createview.html

Feature Compatibility

SCT/DMS Automation Level SCT Action Code Index

Key Differences

()
((
()
()

((

eledede e, A

Windowed functions use an OVER clause to define the window and frame for a data set to be processed. They
are part of the ANSI standard and are typically compatible among various SQL dialects. However, most RDBMS
do not yet support the full ANSI specification.

Windowed functions are a relatively new, advanced, and efficient T-SQL programming tool. They are highly util-
ized by developers to solve numerous programming challenges.

SQL Server currently supports the following windowed functions:

« Ranking functions: ROW_NUMBER, RANK, DENSE_RANK, and NTILE
« Aggregate functions: AVG, MIN, MAX, SUM, COUNT, COUNT_BIG, VAR, STDEV, STDEVP,

STRING_AGG, GROUPING, GROUPING_ID, VAR, VARP, and CHECKSUM_AGG

« Analytic functions: LAG, LEAD, FIRST_Value, LAST_VALUE, PERCENT_RANK, PERCENTILE_
CONT, PERCENTILE_DISC, and CUME_DIST
« Other functions: NEXT_VALUE_FOR (See the Identity and Sequences section)

-105-

https://www.postgresql.org/docs/13/static/tutorial-views.html
https://www.postgresql.org/docs/13/static/sql-createview.html

aws

Syntax

<Function () >

OVER

(

[<PARTITION BY clause>]
[<ORDER BY clause>]

[<ROW or RANGE clause>]

)

Examples

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Locking Nut', 300);

Use a windowed ranking function to rank items based on the ordered quantity.

SELECT Item,

Quantity,
RANK () OVER (ORDER BY Quantity) AS QtyRank
FROM OrderItems;
ITtem Quantity OQtyRank
M8 Bolt 100 1
M8 Nut 100 1
M8 Washer 200 3
M6 Locking Nut 300 4

Use a partitioned windowed aggregate function to calculate the total quantity per order (without using a GROUP
BY clause).

SELECT Item,
Quantity,
OrderlID,
SUM (Quantity)
OVER (PARTITION BY OrderID) AS TotalOrderQty
FROM OrderItems;

- 106 -

aws

Item Quantity OrderID TotalOrderQty
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

Use an analytic LEAD function to get the next largest quantity for the order.

SELECT Item,

Quantity,

OrderlID,

LEAD (Quantity)

OVER (PARTITION BY OrderID ORDER BY Quantity) AS NextQtyOrder
FROM OrderItems;

Item Quantity OrderID NextQtyOrder
M8 Bolt 100 1 NULL

M8 Nut 100 2 NULL

M8 Washer 200 3 300

M6 Locking Nut 300 3 NULL

For more information, see https://docs.microsoft.com/en-us/sql/t-sgl/queries/select-over-clause-transact-sgl?view=sql-
server-ver15

PostgreSQL refers to ANSI SQL analytical functions as “Window Functions”. They provide the same core func-
tionality as SQL Analytical Functions. Window functions in PostgreSQL operate on a logical “partition” or "win-
dow" of the result set and return a value for rows in that “window”.

From a database migration perspective, you should examine PostgreSQL Window Functions by type and com-
pare them with the equivalent SQL Server window functions to verify compatibility of syntax and output.

Note: Even if a PostgreSQL window function provides the same functionality of a specific SQL Server
window function, the returned data type may be different and require application changes.

PostgreSQL provides support for two main types of Window Functions: Aggregation functions and Ranking func-
tions.

Function Type Related Functions

Aggregate avg, count, max, min, sum, string_agg

Ranking row_number, rank, dense_rank, percent_rank, cume_dist, ntile, lag, lead, first_value, last_
value, nth_value

-107 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-server-ver15

aws

PostgreSQL Window Func- Compatible Syn-
0s1g Q Returned Data Type p y
tion tax
Count bigint
Max numeric, string, date/time, network or enum type
Min numeric, string, date/time, network or enum type
Avg numeric, double, otherwise same datatype as the argu-
ment
Sum bigint, otherwise same datatype as the argument
rank() bigint
row_number() bigint
dense_rank() bigint
percent_rank() double
cume_dist() double
ntile() integer
lag() same type as value
lead() same type as value
first_value() same type as value
last_value() same type as value
Use the PostgreSQL rank() function.
SELECT department id, last name, salary, commission pct,
RANK () OVER (PARTITION BY department id
ORDER BY salary DESC, commission pct) "Rank"
FROM employees WHERE department id = 80;
DEPARTMENT ID LAST NAME SALARY COMMISSION PCT Rank
80 Russell 14000.00 0.40 1
80 Partners 13500.00 0.30 2
80 Errazuriz 12000.00 0.30 3

Note: The returned formatting for certain numeric data types is different.

Query the total salary for department 80.

SELECT SUM(salary)

FROM employees WHERE department id = 80;

SUM (SALARY)

39500.00

- 108 -

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Locking Nut', 300);

Use a windowed ranking function to rank items based on the ordered quantity.

SELECT Item,

Quantity,

RANK () OVER (ORDER BY Quantity) AS QtyRank
FROM OrderItems;

Item Quantity QtyRank
M8 Bolt 100 1
M8 Nut 100 1
M8 Washer 200 3
M6 Locking Nut 300 4

aws

Use a partitioned windowed aggregate function to calculate the total quantity per order (without using a GROUP

BY clause).

SELECT Item,

Quantity,

OrderID,

SUM (Quantity)

OVER (PARTITION BY OrderID) AS TotalOrderQty
FROM OrderItems;

Item Quantity OrderID TotalOrderQty
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

Use an analytic LEAD function to get the next largest quantity for the order.

SELECT Item,
Quantity,
OrderID,

-109 -

aws

LEAD (Quantity)
OVER (PARTITION BY OrderID ORDER BY Quantity) AS NextQtyOrder
FROM OrderItems;

Item Quantity OrderID NextQtyOrder
M8 Bolt 100 1 NULL

M8 Nut 100 2 NULL

M8 Washer 200 3 300

M6 Locking Nut 300 3 NULL

For more information see https.//www.postgresql.org/docs/13/static/tutorial-window. html

-110-

https://www.postgresql.org/docs/13/static/tutorial-window.html

aws

T-SQL

SQL Server Service Broker Essentials vs.
PostgreSQL AWS Lambda or DB links

Fea-tt.xr.e Com- SCT/DMS Automation |SCT Action Code Key Differences

patibility Level Index
cessses SCT Action Codes - Use Amazon Lambda for similar func-
===== aaaaa Broker tionality

SQL Server Usage

SQL Server Service Broker provides native support for messaging and queuing applications. It's makes it easier
for developers to create complex applications that use the Database Engine components to communicate
between several SQL Server databases. Developers can use Service Broker to easily build distributed and more
reliable applications.

Benefits of using messaging queues:

« Decouple dependencies between applications by communicating through messages.

« Scale out your architecture by moving queues / message processors to separate servers as needed.
« Maintain individual parts with a minimal impact to the end users.

« Control when the messages are processed (for example: off-peak hours).

« Process queued messages on multiple servers / processes / threads.

The following sections describe the Service Broker commands.

CREATE MESSAGE TYPE

Create a message with name and structure.

CREATE MESSAGE TYPE message type name
[AUTHORIZATION owner name]

~111 -

[VALIDATION = { NONE
| EMPTY

| WELL FORMED XML

| VALID XML WITH SCHEMA COLLECTION schema collection name

For more information, see:

https.//docs. microsoft.com/en-us/sql/t-sgl/statements/create-message-type-transact-sql?view=sql-server-ver15

CREATE QUEUE

Create a queue to store messages.

CREATE QUEUE <object>

[WITH
[STATUS = { ON | OFF } [, 11
[RETENTION = { ON | OFF } [, 1 1]
[ACTIVATION (
[STATUS = { ON | OFF } , 1]

PROCEDURE NAME = <procedure> ,
MAX QUEUE READERS =
EXECUTE AS { SELF |

) [, 11

[POISON MESSAGE HANDLING (

[STATUS = { ON | OFF }]) 1

max readers ,

'user name' | OWNER }

[ON { filegroup | [
[7]

DEFAULT] }]

<object> ::=
{
[database name.

[schema name] . | schema name.

queue name

<procedure> ::=
{
[database name.
stored procedure name

[schema name] . | schema name.

For more information, see:

]

]

https.//docs. microsoft.com/en-us/sql/t-sgl/statements/create-queue-transact-sql ?view=sql-server-ver15

CREATE CONTRACT

Specify the role and what type of messages a service can handle.

- 112-

aws

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-message-type-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-queue-transact-sql?view=sql-server-2017

aws

CREATE CONTRACT contract name
[AUTHORIZATION owner name]

(1 { message type name | [DEFAULT] }
SENT BY { INITIATOR | TARGET | ANY }
yo[L,e..nl)

For more information, see:
https.//docs. microsoft.com/en-us/sql/t-sql/statements/create-contract-transact-sql?view=sql-server-ver15

CREATE SERVICE

Create a named Broker Service for a specified task or set of tasks.

CREATE SERVICE service name

[AUTHORIZATION owner name]

ON QUEUE [schema name.]queue name

[(contract name | [DEFAULT][,...n])]
7]

For more information, see:
https.//docs. microsoft.com/en-us/sql/t-sql/statements/create-service-transact-sqgl?view=sql-server-ver15

BEGIN DIALOG CONVERSATION

Start the interaction between Broker Services.

BEGIN DIALOG [CONVERSATION] @dialog_handle
FROM SERVICE initiator service name
TO SERVICE 'target service name'
[, { '"service broker guid' | 'CURRENT DATABASE' }]
[ON CONTRACT contract name]
[WITH
[{ RELATED CONVERSATION = related conversation handle
| RELATED CONVERSATION GROUP = related conversation group id }]
[[,] LIFETIME = dialog lifetime]
[[,] ENCRYPTION = { ON | OFF }]]
[;]

For more information, see:
https.//docs. microsoft.com/en-us/sql/t-sgl/statements/begin-dialog-conversation-transact-sql?view=sqgl-server-ver15

WAITFOR(RECEIVE TOP(1))

Specify that a code block to wait until one message is received.

[WAITFOR (]
RECEIVE [TOP (n)]

-113-

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-contract-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-service-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/begin-dialog-conversation-transact-sql?view=sql-server-2017

aws

<column specifier> [,...n]
FROM <queue>
[INTO table variable]
[WHERE { conversation handle = conversation handle
| conversation group id = conversation group id }]
[) 1 [, TIMEOUT timeout]
[7]

<column_ specifier> ::=

{ *

| { column name | [] expression } [[AS] column alias]
| column_aiias = expression a
} [poool]
<queue> ::=
{
[database name . [schema name] . | schema name .]

queue name

For more information, see:
https.//docs. microsoft.com/en-us/sql/t-sql/statements/receive-transact-sql?view=sql-server-ver15

All of the above commands can be combined in to achieve your architecture goals.

For more information see:
https.//docs. microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker?view=sql-server-
ver1b

Aurora PostgreSQL does not provide a compatible solution to the SQL Server Service Broker. However, you can
use DB Links and AWS Lambda to achieve similar functionality.

AWS Lambda can be combined with AWS SQS in order to reduce costs and remove some loads from the data-
base into the AWS Lambda and SQS (this will be much more efficient), for more information see: https://-
docs.aws.amazon.com/lambda/latest/dg/with-sgs.html

For example, you can create a table in each database and connect each database with a DB link to read the
tables and process the data. For more information, see DB Links.

You can also use AWS Lambda to query a table from the database, process the data, and insert it to another data-
base (even another database type). This approach is the best option for moving workloads out of the database to
a less expensive instance type.

For even more decoupling and reducing workloads from the database SQS can be used with Lambda, SQS is
the Amazon messages queues service.

For more information see AWS Lambda for sending mails

114 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/receive-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker?view=sql-server-2017
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

aws

SQL Server Cast and Convert vs. PostgreSQL CAST
and CONVERSION

Feature Com- SCT/DMS Automation |SCT Action Code

Key Differences

patibility Level Index
cssses aaoaa CONVERT is used only to convert between

collations

CAST uses different syntax

SQL Server Usage

The CAST and CONVERT functions are commonly used to convert one data type to another. CAST and

CONVERT behave mostly the same (they share the same topic in MSDN) , but there are few differences :
o CAST is part of the ANSI-SQL specification, but CONVERT is not.

o CONVERT accepts an optional style parameter used for formatting.

For more information about styles, see
https://docs.microsoft.com/en-us/sql/t-sqgl/functions/cast-and-convert-transact-sqgl?view=sqgl-server-ver15#date-
and-time-styles

Conversion matrix

To view all conversion data types available, see
https://docs.microsoft.com/en-us/sql/t-sgl/functions/cast-and-convert-transact-sqgl?view=sqgl-server-ver-
15#implicit-conversions

Syntax

-- CAST Syntax:
CAST (expression AS data type [(length)])

—-— CONVERT Syntax:
CONVERT (data type [(length)] , expression [, style])

Examples

Cast a string to int and int to decimal.

SELECT CAST ('23.7' AS varchar) AS int, CAST(23.7 AS int) AS decimal;

Convert string to int and int to decimal.

SELECT CONVERT (VARCHAR, '23.7') AS int, CONVERT (int, 23.7) AS decimal;

In both examples above, the results will be:

-115-

https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#implicit-conversions
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#implicit-conversions

aws

int |decimal |
————— | ——=—————|
23.7 |23 |

Convert a date with option style input (109 - mon dd yyyy hh:mi:ss:mmmAM (or PM))

SELECT CONVERT (nvarchar (30), GETDATE(), 109);

Jul 25 2018 5:20:10.8975085PM |

For more information, see:
https.//docs. microsoft.com/en-us/sql/t-sgl/functions/cast-and-convert-transact-sql?view=sql-server-ver15

Aurora PostgreSQL provides the same CAST function as SQL Server for conversion between data types. It also
provides a CONVERSION function, but it is not equivalent to SQL Server's CONVERT.
PostgreSQL CONVERSION is used to convert between character set encoding.

CREATE A CAST defines a new cast on how to convert between two data types.
Cast can be EXPLICITLY or IMPLICIT.

The behavior is similar to SQL Server's casting, but in PostgreSQL, you can also create your own casts to change
the default behavior. For example, checking if a string is a valid credit card number by creating the CAST with the
WITHOUT FUNCTION clause.

CREATE CONVERSION is used to convert between encoding such as UTF8 and LATIN. If CONVERT is cur-
rently in use in SQL Server code, it must be rewritten to use CAST instead.

Note: Not all SQL Server's data types are supported on Aurora PostgreSQL, besides changing the
CAST or CONVERT commands, you might need to also change the source of the target data type, for
more information about supported data types, see: Data Types

Another way to convert between data types in PostgreSQL will be to use the "::' characters, this option is useful
and can make your pgsql code look cleaner and simpler, see examples below.

CREATE CAST (source type AS target type)
WITH FUNCTION function name (argument type [, ...]) [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source type AS target type)
WITHOUT FUNCTION [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source type AS target type)
WITH INOUT [AS ASSIGNMENT | AS IMPLICIT]

-116-

https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017

aws

Convert a numeric value to float.

SELECT 23 + 2.0;
or
SELECT CAST (23 AS numeric) + 2.0;

Convert a date with format input (‘'mon dd yyyy hh:mi:ss:mmmAM (or PM)").

SELECT TO_CHAR(NOW (), 'Mon DD YYYY HH:MI:SS:MSAM');

Jul 25 2018 5:20:10.8975085PM |

Use "::' characters

SELECT '2.35'::DECIMAL + 4.5 AS results;

results |
———————— |
6.85 |
Option SQL Server Aurora PostgreSQL
Explicit CAST SELECT CAST('23.7'AS SELECT CAST('23.7" AS varchar) AS int
varchar) AS int
Explicit CONVERT SELECT CONVERT Need to use CAST:
(VARCHAR, '23.7") SELECT CAST('23.7"' AS varchar) AS int
Implicit casting SELECT 23+ 2.0 SELECT 23+ 2.0
Convert to a specific date SELECT CONVERT(nvarchar |SELECT TO_CHAR(NOW(),'MonDD YYYY
format: 'mon dd yyyy (30), GETDATE(), 109) HH:MI:SS:MSAM')
hh:mi:ss:mmmAM'

For more information, see:

« https.//www.postgresql.org/docs/13/static/sqgl-createcast.html|

« https.:.//www.postgresql.org/docs/13/static/typeconv.htm|

o https://www.postgresql.org/docs/13/static/sql-createconversion.html|

117 -

https://www.postgresql.org/docs/13/static/sql-createcast.html
https://www.postgresql.org/docs/13/static/typeconv.html
https://www.postgresql.org/docs/13/static/sql-createconversion.html

aws

SQL Server Common Library Runtime (CLR) vs.
PostgreSQL PL/Perl

-CATR - SCT/DMS Automation | ot a ction Code Index Key Differences

patibility Level
s N/A Migrating CLR objects will require a
= = = == aaaaa full code rewrite

SQL Server Usage

SQL Server provides the capability of implementing .NET objects in the database using the Common Runtime
Library (CLR). The CLR enables development of functionality that would be complicated using T-SQL.

The CLR provides robust solutions for string manipulation, date manipulation, and calling external services such
as Windows Communication Foundation (WCF) services and web services.

The objects that can be created with the EXTERNAL NAME clause are:

o Procedures - For more information, see:
https://msdn.microsoft.com/en-us/library/ms131094.aspx

« Functions - For more information, see:
https://docs.microsoft.com/en-us/sqgl/relational-databases/user-defined-functions/create-clr-func-

tions?view=sqgl-server-ver15

« Triggers - For more information, see:
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/create-clr-triggers?view=sql-server-

verib

« Types - For more information, see: https://docs.microsoft.com/en-us/sql/relational-databases/clr-integ-
ration-database-objects-user-defined-types/clr-user-defined-types?view=sqgl-server-ver15

» Aggregates - user-defined aggregate function. For more information, see:
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-
functions/clr-user-defined-aggregates?view=sqgl-server-ver15

PostgreSQL Usage

Aurora PostgreSQL does not support .NET code. However, you can create Perl functions. You must convert all
C# code to PL/pgSAQL or PL/Perl.

In order to use PL/Perl language you must install the perl extension:

CREATE EXTENSION plperl;

After it is installed, you can create functions using perl code. Specify plperl in the the LANGUAGE clause.
The objects that can be created with Perl are:

« Functions
« Void functions (procedures)

» Triggers

-118-

https://msdn.microsoft.com/en-us/library/ms131094.aspx
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/create-clr-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/create-clr-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/create-clr-triggers?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/create-clr-triggers?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-aggregate-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates?view=sql-server-2017

aws

« EventTriggers

o Values for session level

Examples

Create a function that returns the greater value of two integers.

CREATE FUNCTION perl max (integer, integer) RETURNS integer AS S
if ($_[0] > $_[1]) { return $_[O0]; }
return $ [1];

$$ LANGUAGE plperl;

For more information see: https.//www.postgresqgl.org/docs/13/static/plperi.html

SQL Server Collations vs. PostgreSQL Encoding

Feature Com- |SCT/DMS Auto- SCT Action Code .
patibility mation Level Index G IS
= SCT Action Codes - |UTF16 and NCHAR/NVARCHAR data types
aaaaa Collation are not supported

SQL Server Usage

SQL Server collations define the rules for string management and storage in terms of sorting, case sensitivity,
accent sensitivity, and code page mapping. SQL Server supports both ASCIl and UCS-2 UNICODE data.

UCS-2 UNICODE data uses a dedicated set of UNICODE data types denoted by the prefix "N": Nchar and
Nvarchar. Their ASCII counterparts are CHAR and VARCHAR.

Choosing a collation and a character set has significant implications on data storage, logical predicate eval-
uations, query results, and query performance.

Note: To view all collations supported by SQL Server, use the fn_helpcollations function: SELECT *
FROM sys.fn_helpcollations().

Collations define the actual bitwise binary representation of all string characters and the associated sorting rules.
SQL Server supports multiple collations down to the column level. A table may have multiple string columns that
use different collations. Collations for non-UNICODE character sets determine the code page number rep-
resenting the string characters.

Note: UNICODE and non-UNICODE data types in SQL Server are not compatible. A predicate or data
modification that introduces a type conflict is resolved using predefined collation precedence rules.

For more information, see
https://docs.microsoft.com/en-us/sqgl/t-sqgl/statements/collation-precedence-transact-sqgl?view=sqgl-
server-ver15

Collations define sorting and matching sensitivity for the following string characteristics:

o Case

« Accent

-119-

https://www.postgresql.org/docs/13/static/plperl.html
https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql

aws

« Kana
« Width
« Variation selector
SQL Server uses a suffix naming convention that appends the option name to the collation name. For example,

the collation Azeri_Cyrillic_100_CS_AS_KS_WS_SC, is an Azeri-Cyrillic-100 collation that is case-sensitive,
accent-sensitive, kana type-sensitive, width-sensitive, and has supplementary characters.

SQL Server supports three types of collation sets:
« Windows Collations use the rules defined for collations by the operating system locale where UNICODE
and non-UNICODE data use the same comparison algorithms.
« Binary Collations use the binary bit-wise code for comparison. Therefore, the locale does not affect sort-
ing.
« SQL Server Collations provide backward compatibility with previous SQL Server versions. They are not
compatible with the windows collation rules for non-UNICODE data.
Collations can be defined at various levels:

» Server Level Collations determine the collations used for all system databases and is the default for future
user databases. While the system databases collation can not be changed, an alternative collation can be
specified as part of the CREATE DATABASE statement.

. Database Level Collations inherit the server default unless the CREATE DATABASE statement explicitly
sets a different collation. This collation is used as a default for all CREATE TABLE and ALTER TABLE
statements.

« Column Level Collations can be specified as part of the CREATE TABLE or ALTER TABLE statements
to override the database's default collation setting.

« Expression Level Collations can be set for individual string expressions using the COLLATE function. For
example, SELECT * FROM MyTable ORDER BY StringColumn COLLATE Latin1_General_CS_AS.

Note: SQL Server supports UCS-2 UNICODE only.

SQL Server 2019 adds support for UTF-8 for import and export encoding, and as database-level or column-level
collation for string data. Support includes PolyBase external tables, and Always Encrypted (when not used with
Enclaves). For more information see Collation and Unicode Support.

CREATE DATABASE <Database Name>

[ON <File Specifications>]
COLLATE <Collation>

[WITH <Database Option List>];

CREATE TABLE <Table Name>

(

<Column Name> <String Data Type>

COLLATE <Collation> [<Column Constraints>]...
)i

Create a database with a default Bengali_100_CS_Al collation.

-120-

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver15

aws

CREATE DATABASE MyBengaliDatabase

ON
(NAME = MyBengaliDatabase Datafile,
FILENAME = 'C:\Program Files\Microsoft SQL Server-
\MSSQL13.MSSQLSERVER\MSSQL\DATA\MyBengaliDatabase.mdf"',
SIZE = 100)
LOG ON
(NAME = MyBengaliDatabase Logfile,
FILENAME = 'C:\Program Files\Microsoft SQL Server-
\MSSQL13.MSSQLSERVER\MSSQL\DATA\MyBengaliDblog.1ldf"',
SIZE = 25)

COLLATE Bengali 100 CS AI;

Create a table with two different collations.

CREATE TABLE MyTable

(

Coll CHAR(10) COLLATE Hungarian 100 CI AI SC NOT NULL PRIMARY KEY,
COL2 VARCHAR(100) COLLATE Sami Sweden Finland 100 CS AS KS NOT NULL
) ;

For more information, see
https.//docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support ?view=sql-server-ver15

PostgreSQL supports a variety of different character sets, also known as encoding, including support for both
single-byte and multi-byte languages. The default character set is specified when initializing a PostgreSQL data-
base cluster with initdb. Each individual database created on the PostgreSQL cluster supports individual char-
acter sets defined as part of database creation.

RDS ONLY: Starting with PostgreSQL 13, Windows version now support obtaining version inform-
ation for collations (ordering rules) from OS.

When querying the colllversion from pg_collation in PostgreSQL running on Windows, prior to version 13 there
wasn't any value to reflect the OS collation version, for example version 11 running on Windows:

CREATE COLLATION german (provider = libc, locale = 'de DE');
CREATE COLLATION

select oid,collname,collversion from pg collation
where collprovider='c' and collname='german';

oid | collname | collversion
_______ S
16394 | german |
(1 row)

select pg collation actual version (16394);

pg_collation _actual version

121 -

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support

RDS ONLY: Starting PostgreSQL 13 running on Windows:

CREATE COLLATION german (provider = libc, locale = 'de DE');

CREATE COLLATION

select oid,collname,collversion from pg collation
where collprovider='c' and collname='german';

select pg collation actual version (32769);

pg_collation _actual version

1539.5,1539.5

(1 row)

aws

« All supported character sets can be used by clients. However, some client-side only characters are not sup-
ported for use within the server.

« Unlike SQL Server, PostgreSQL does not natively support an NVARHCHAR data type and does not
provide support for UTF-16.

. Implementation
Type Function Level
Encoding | Defines the basic rules on how alphanumeric characters are represented in bin- | Database
ary format. For example, Unicode Encoding.
Locale A superset thatincludes LC_COLLATE and LC_CTYPE among others. For Table-Column

example, LC_COLLATE defines how strings are sorted and must be a subset
supported by the database Encoding.

Create a database named test01 which uses the Korean EUC_KR Encoding the and the ko_KR locale.

CREATE DATABASE test(0l WITH ENCODING 'EUC_KR' LC_COLLATE='ko KR.euckr' LC_CTYPE='ko_

KR.euckr'

TEMPLATE=templateO;

View the character sets configured for each database by querying the System Catalog.

select datname, datcollate, datctype from pg database;

-122 -

aws

Changing Character Sets/Encoding

In-place modification of the database encoding is not recommended nor supported. You must export all data, cre-
ate a new database with the new encoding, and import the data.

Export the data using the pg_dump utility.

pg dump mydbl > mydbl export.sql
Rename (or delete) a database.

ALTER DATABASE mydbl TO mydbl backup;

Create a new database using the modified encoding.

CREATE DATABASE mydbl new encoding WITH ENCODING 'UNICODE' TEMPLATE=templateO;

Import data using the pg_dump file previously created. Verify that you set your client encoding to the encoding of
your “old” database.

PGCLIENTENCODING=OLD DB ENCODING psqgl -f mydbl export.sqgl mydbl new encoding

Note: The client_encoding parameter overrides the use of PGCLIENTENCODING.

Client/Server Character Set Conversions

PostgreSQL supports conversion of character sets between servers and clients for specific character set com-
binations as described in the pg_conversion system catalog.

PostgreSQL includes predefined conversions. For a complete list, see
https://www.postgresql.org/docs/13/static/multibyte. htmli#MULTIBYTE-TRANSLATION-TABLE

You can create a new conversion using the SQL command CREATE CONVERSION.

Examples

Create a conversion from UTF8 to LATIN1 using the custom myfunc1 function.

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfuncl;

Configure the PostgreSQL client character set.

Method 1

SET CLIENT ENCODING TO 'value';

View the client character set and reset it back to the default value.

-123 -

https://www.postgresql.org/docs/13/static/multibyte.html#MULTIBYTE-TRANSLATION-TABLE

aws

SHOW client encoding;

RESET client encoding;

Table Level Collation

PostgreSQL supports specifying the sort order and character classification behavior on a per-column level.

Examples

Specify specific collations for individual table columns.

CREATE TABLE testl (coll text COLLATE "de DE", col2 text COLLATE "es ES");

Summary
Feature SQL Server Aurora PostgreSQL
View database char- SELECT collation_name FROM sys.data- select dathame, pg_encoding_to_
acter set bases'; char(encoding), datcollate, datctype
from pg_database;
Modify the database RECRATE the database » Export the database.
character set
* Drop or rename the database.
* Re-create the database with the
desired new character set.
* Import database data from the
exported file into the new database.
Character set gran- Database Database
ularity
UTF8 Supported Supported
UTF16 Supported Not Supported
NCHAR/NVARCHAR | Supported Not Supported
data types

For additional details, see https.//www.postgresqgl.org/docs/13/static/multibyte.html|

SQL Server Cursors vs. PostgreSQL Cursors

Feature Compatibility | SCT/DMS Automation Level |SCT Action Code Index Key Differences

()
()
((

- O a a a a SCT Action Codes - Cursors | Different cursor options

()
()

124 -

https://www.postgresql.org/docs/13/static/multibyte.html

aws

A setis a fundamental concept of the relation data model from which SQL is derived. SQL is a declarative lan-
guage that operates on whole sets, unlike most procedural languages that operate on individual data elements. A
single invocations of an SQL statements can return a whole set or modify millions of rows.

Many developers are accustomed to using procedural or imperative approaches to develop solutions that are dif-
ficult to implement using set-based querying techniques. Also, operating on row data sequentially may be a more
appropriate approach in certain situations.

Cursors provide an alternative mechanism for operating on result sets. Instead of receiving a table object con-
taining rows of data, applications can use cursors to access the data sequentially, row-by-row. Cursors provide
the following capabilities:

« Positioning the cursor at specific rows of the result set using absolute or relative offsets.
« Retrieving a row, or a block of rows, from the current cursor position.

Modifying data at the current cursor position.

« Isolating data modifications by concurrent transactions that affect the cursor's result.

« T-SQL statements can use cursors in scripts, stored procedures, and triggers.

DECLARE <Cursor Name>

CURSOR [LOCAL | GLOBAL]
[FORWARD ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE WARNING]
FOR <SELECT statement>
[FOR UPDATE [OF <Column List>]1]1[;]

FETCH [NEXT | PRIOR | FIRST | LAST | ABSOLUTE <Value> | RELATIVE <Value>]
FROM <Cursor Name> INTO <Variable List>;

Process data in a cursor.

DECLARE MyCursor CURSOR FOR

SELECT *
FROM Tablel AS T1
INNER JOIN

Table2 AS T2
ON T1l.Coll = T2.Coll;
OPEN MyCursor;
DECLARE @VarCursorl VARCHAR(20) ;
FETCH NEXT
FROM MyCursor INTO @VarCursorl;

WHILE @Q@FETCH STATUS = 0

-125-

aws

BEGIN
EXEC MyPRocessingProcedure
@InputParameter = @VarCursorl;
FETCH NEXT

FROM product cursor INTO @VarCursorl;
END

CLOSE MyCursor;
DEALLOCATE MyCursor ;

For more information, see:

« https://docs.microsoft.com/en-us/sql/relational-databases/cursors ?view=sqgl-server-ver15

« https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sqgl?view=sgql-server-ver15

Similar to SQL Server's T-SQL Cursors, PostgreSQL has PL/pgSQL cursors that enable you to iterate business
logic on rows read from the database. They can encapsulate the query and read the query results a few rows ata
time. All access to cursors in PL/pgSQL is performed through cursor variables, which are always of the refcursor
data type.

DECLARE..CURSOR options that are Transact-SQL extended syntax have no equivalent in PostgreSQL and
they are:

SQL Server's
Option Use Comments
FORWARD_ Defining that FETCH NEXT is the only supported | Using FOR LOOP might be a relevant
ONLY fetching option solution for this option
STATIC Cursor will make a temporary copy of the data For small data sets temporary tables can
be created and declare a cursor that will
select these tables
KEYSET Determining that membership and order of rows | N/A
in the cursor are fixed
DYNAMIC Cursor will reflect all data changes made onthe | Default for PostgreSQL
selected rows
FAST_ Willuse FORWARD_ONLY and READ_ONLY |N/A
FORWARD for optimizing performance
SCROLL Determine that positioned updates or deletes N/A
LOCKS made by the cursor are guaranteed to succeed
OPTIMISTIC Determine that positioned updates or deletes N/A
made by the cursor will not succeed if the rows
has been updated.

-126 -

https://docs.microsoft.com/en-us/sql/relational-databases/cursors
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql

aws

SQL Server's
Option Use Comments
TYPE_ Will send warning messages to the client if the N/A
WARNING cursor is implicitly converted from the requested

type

Declare a Cursor in PL/pgSQL to be used with any query. The variable c1 is "unbounded" because it is not bound
to any particular query.

DECLARE cl refcursor;

Declare a Cursor in PL/pgSQL with a bounded query.

DECLARE c2 CURSOR FOR SELECT * FROM employees;

Declare a Cursor with a parametrized bound query:

» Theid variable is replaced by an integer parameter value when the cursor is opened.
« When declaring a Cursor with SCROLL specified, the Cursor can scroll backwards.
« IfNO SCROLL is specified, backward fetches are rejected.

DECLARE c3 CURSOR (varl integer) FOR SELECT * FROM employees where id = varl;

Declare a backward-scrolling compatible Cursor using the SCROLL option.

« SCROLL specifies that rows can be retrieved backwards. NO SCROLL specifies that rows cannot be
retrieved backwards.

« Depending upon the complexity of the execution plan for the query, SCROLL might create performance
issues.

« Backward fetches are not allowed when the query includes FOR UPDATE or FOR SHARE.

DECLARE c¢3 SCROLL CURSOR FOR SELECT id, name FROM employees;

The OPEN command is fully compatible between SQL Server and PostgreSQL.

Open a Cursor variable that was declared as Unbound and specify the query to execute.

OPEN cl FOR SELECT * FROM employees WHERE id = emp id;

Open a Cursor variable that was declared as Unbound and specify the query to execute as a string expression.
This approach provides greater flexibility.

OPEN cl FOR EXECUTE format ('SELECT * FROM %I WHERE coll = $1',tabname) USING keyvalue;

Parameter values can be inserted into the dynamic command with format() and USING. For example, the table
name is inserted into the query with format(). The comparison value for col1 is inserted with a USING parameter.

Open a Cursor that was bound to a query when the Cursor was declared and was declared to take arguments.
DO $$

DECLARE
c3 CURSOR (varl integer) FOR SELECT * FROM employees where id = varl;

127 -

aws

BEGIN
OPEN c3(varl := 42);
ENDSS;

For the c3 Cursor, supply the argument value expressions.

If the Cursor was not declared to take arguments, the arguments can be specified outside the Cursor.

DO $$%
DECLARE
varl integer;
c3 CURSOR FOR SELECT * FROM employees where id = varl;
BEGIN
varl := 1;
OPEN c3;
ENDSS;
FETCH [direction [FROM | IN]] cursor name

PostgreSQL has few more options as a direction for the FETCH command:

PostgreSQL's Option Use

ALL Get all remaining rows
FORWARD Same as NEXT
FORWARD (n) Fetch the next nrows
FORWARD ALL Sameas ALL
BACKWARD Same as PRIOR
BACKWARD (n) Fetch the prior nrows
BACKWARD ALL Fetch all prior rows

The PL/pgSQL FETCH command retrieves the next row from the Cursor into a variable.

Fetch the values returned from the ¢3 Cursor into a row variable.

DO $$
DECLARE
c3 CURSOR FOR SELECT * FROM employees;
rowvar employees%SROWTYPE;
BEGIN
OPEN c3;
FETCH c¢3 INTO rowvar;
ENDSS;

- 128 -

aws

Fetch the values returned from the c¢3 Cursor into two scalar data types.

DO $$
DECLARE
c3 CURSOR FOR SELECT id, name FROM employees;
emp id integer;
emp name varchar;
BEGIN
OPEN c3;
FETCH FROM c3 INTO emp id, emp name;
ENDS$S;

PL/pgSQL supports a special direction clause when fetching data from a Cursor using the NEXT, PRIOR,
FIRST, LAST, ABSOLUTE count, RELATIVE count, FORWARD, or BACKWARD arguments. Omitting dir-
ection is equivalent to specifying NEXT. For example, fetch the last row from the Cursor into the declared vari-
ables.

DO $$%

DECLARE
c3 CURSOR FOR SELECT id, name
emp id integer;

FROM employees;

emp name varchar;

BEGIN
OPEN c3;
FETCH LAST FROM c3 INTO emp id, emp name;
ENDSS;
Feature SQL Server Aurora PostgreSQL
Cursoroptions |[FORWARD_ONLY | SCROLL][STATIC| |[BINARY][INSENSITIVE][[NO]
KEYSET | DYNAMIC | FAST_FORWARD] |[SCROLL]CURSOR [{WITH | WITHOUT }
[READ_ONLY | SCROLL_LOCKS | HOLD]
OPTIMISTIC]
Updateable curs-| DECLARE CURSOR... FOR UPDATE DECLARE cur_name CURSOR...FOR
ors UPDATE
Cursordeclar- |DECLARE CURSOR DECLARE cur_name CURSOR
ation
Cursor open OPEN OPEN
Cursor fetch FETCH NEXT | PRIOR | FIRST | LAST | FETCH [direction[FROM | IN]] cursor_
ABSOLUTE | RELATIVE name where direction can be empty or one of:
NEXT, PRIOR, FIRST, LAST, ABSOLUTE
count, RELATIVE count, count , ALL
FORWARD, FORWARD count, FORWARD
ALL, BACKWARD, BACKWARD count,
BACKWARD ALL
Cursor close CLOSE CLOSE
Cursor Deal- DEALLOCATE Same effect as CLOSE (not required)
locate

-129-

aws

Feature SQL Server Aurora PostgreSQL

Cursor end con-
dition

@@FETCH_STATUS system variable Not Supported

For additional details, see https:.//www.postgresql.org/docs/13/static/sql-fetch. html

SQL Server Date and Time Functions vs.
PostgreSQL Date and Time Functions

Feature Com- |SCT/DMS Auto- . .
patibility mation Level SCT Action Code Index Key Differences
- = SCT Action Codes - Date Time | PostgreSQL is using different func-

odegedede,

Functions

tion names

SQL Server Usage

Date and Time Functions are scalar functions that perform operations on temporal or numeric input and return
temporal or numeric values.

System date and time values are derived from the operating system of the server on which SQL Server is run-

ning.

Note: This section does not address timezone considerations and timezone aware functions. For more
information about time zone handling, see Data Types.

Syntax and Examples

The following table lists the most commonly used Date and Time Functions.

Function Purpose Example Result Comments

GETDATE and Return a datetime value | SELECT GETDATE |2018-04-05

GETUTCDATE that contains the current | () 15:53:01.380
local or UTC date and
time

DATEPART, DAY, [Returnanintegervalue |SELECT MONTH 4,2018

MONTH, and YEAR |representingthe spe- (GETDATE ()) ,
cified datepart of aspe- | YEAR (GETDATE
cified date ())

DATEDIFF Returns an integer value | SELECT 25 How many
of datepart boundaries |DATEDIFF (DAY, days left until
that are crossed GETDATE (), end of the
between two dates EOMONTH month

(GETDATE ()))

DATEADD Returns a datetime SELECT DATEADD |2018-04-30
value thatis calculated | (DAY, 25, 15:55:52.147
with an offset intervalto | GETDATE ())

-130-

aws

Function Purpose Example Result Comments
the specified datepart of
a date.
CAST and Converts datetime val- |SELECT CAST 2018-04-05 Default date
CONVERT ues to and from string lit- | (GETDATE () AS |20180405 format
erals and to and from DATE) Style 112
other datetime formats | SELECT CONVERT (ISO) with no
(VARCHAR (20) , seprartors
GETDATE (),
112)

For more information, see
https.//docs. microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-ty pes-and-functions-transact-sql?view=sgql-server-

ver15#DateandTimeFunctions

Aurora PostgreSQL provides a very rich set of scalar date and time functions; more than SQL Server.

Note: While some of the functions appear to be similar to those in SQL Server, the functionality can be
significantly different. Take extra care when migrating temporal logic to Aurora PostgreSQL paradigms.

PostgreSQL Function

Function Definition

AGE Subtract from current_date
CLOCK _ Current date and time
TIMESTAMP

CURRENT_DATE

Current date

CURRENT_TIME

Current time of day

CURRENT_ Current date and time (start of current transaction)
TIMESTAMP

DATE_PART Get subfield (equivalent to extract)
DATE_TRUNC Truncate to specified precision

EXTRACT Get subfield

ISFINITE Test for finite interval

JUSTIFY_DAYS

Adjust interval so 30-day time periods are represented as months

JUSTIFY_HOURS

Adjust interval so 24-hour time periods are represented as days

JUSTIFY_ Adjust interval using justify_days and justify_hours, with additional sign adjustments
INTERVAL

LOCALTIME Current time of day

MAKE_DATE Create date from year, month and day fields

131 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql#DateandTimeFunctions
https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql#DateandTimeFunctions

aws

PostgreSQL Function

Function Definition

MAKE_INTERVAL | Create interval from years, months, weeks, days, hours, minutes and seconds fields
MAKE_TIME Create time from hour, minute and seconds fields

MAKE_ Create timestamp from year, month, day, hour, minute, and seconds fields
TIMESTAMP

MAKE _ Create timestamp with time zone from year, month, day, hour, minute, and seconds
TIMESTAMPTZ fields. If timezone is not specified, the current time zone is used

NOW Current date and time

STATEMENT _ Current date and time

TIMESTAMP

TIMEOFDAY Current date and time (like clock_timestamp, but as a text string)

TRANSACTION_ | Current date and time

TIMESTAMP

TO_TIMESTAMP | Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp

SQL Server Function Aurora PostgerSQL Function

GETDATE, CURRENT_ NOW, CURRENT_DATE, CURRENT_TIME, CURRENT_

TIMESTAMP TIMESTAMP

GETUTCDATE current_timestamp at time zone 'utc'

DAY, MONTH, and YEAR EXTRACT(DAY/MONTH/YEAR FROM TIMESTAMP timestamp_
value)

DATEPART EXTRACT, DATE_PART

DATEDIFF DATE_PART

DATEADD + INTERVAL 'X days/months/years'

CAST and CONVERT CAST

For more information, see https.://www.postgresql.org/docs/13/static/functions-datetime. html|

Feature Com- . SCT Action Code .
patibility SCT/DMS Automation Level Index Key Differences
N/A Syntax and option dif-
Sssss | QHO000 Symtax and opton

-132-

https://www.postgresql.org/docs/13/static/functions-datetime.html

aws

String Functions are typically scalar functions that perform an operation on string input and return a string or a

numeric value.

The following table lists the most commonly used string functions.

Function Purpose Example Result Comments
ASCII and Convertan ASCIl or SELECT ASCII 65 Returns a
UNICODE UNICODE characterto | ('"A") numeric
its ASCIl or UNICODE integer value
code
CHAR and NCHAR |Convertbetween ASCII|SELECT CHAR(65) ['A' Numeric
or UNICODE codeto a integer value
string character asinput
CHARINDEX and Find the starting pos- SELECT 2 Returns a
PATINDEX ition of one string CHARINDEX ('ab', numeric
expression (or string pat- ' xabcdy ") integer value
tern) within another
string expression
CONCAT and Combine multiple string | SELECT CONCAT ‘ab', 'a,b’
CONCAT WS input expressionsintoa | ('a', 'b"),
single string with, or CONCAT_ WS
without, a separator (',/','a','b")
character (WS)
LEFT, RIGHT, Return a partial string | SELECT LEFT ‘ab’, 'bc’
and SUBSTRING from another string ("abs',2),
expression based on SUBSTRING
position and length ("abcd',2,2)
LOWER and UPPER |Returnastringwithall |[SELECT LOWER 'abed’
characters in lower or ("ABcd')
upper case. Use for
presentation or to
handle case insensitive
expressions
LTRIM, RTRIM Remove leading and SELECT LTRIM (' |['abcd'
and TRIM trailing spaces abc d ")
STR Convert a numeric SELECT STR 3.142 Numeric
value to a string (3.1415927,5,3) expressions
asinput
REVERSE Return a string in SELECT REVERSE 'dcba’
reverse order ("abcd')
REPLICATE Return a string that con- | SELECT ‘abcabcabc'
sists of zero or more REPLICATE
concatenated copiesof | ('abc', 3)

-133-

aws

Function Purpose Example Result Comments
another string expres-
sion

REPLACE Replace all occurrences | SELECT REPLACE '‘axyd'
of a string expression ('abcd', 'bc',
with another "xy')

STRING SPLIT Parse alist of values SELECT * 1 STRING_
with a separator and FROM STRING 2 SPLITisa
return a set of all indi- SPLIT('1l,2"', table valued
vidual elements 'y ') AS X(C) function

STRING AGG Return a string thatcon- | SELECT STRING 1'ab’ STRING_
sists of concatenated AGG(C, ', ") 2'c AGGisan
string values in row FROM VALUES (1, aggregate
groups 'a'), (1, 'b"), function

(2,'c'") AS X
(ID,C)
GROUP BY I

For more information, see https.//docs. microsoft.com/en-us/sql/t-sqgl/functions/string-functions-transact-sql ?view=sql-

server-ver15

Most of SQL Server's String Functions are supported in PostgreSQL, there are few which are not:

« UNICODE - this function will return the integer value of the first character as defined by the Unicode stand-
ard, if you will use UTF8 input ASCII can be used in order to get the same results.

« PATINDEX - returns the starting position of the first occurrence of a pattern in a specified expression, or
zeros if the pattern is not found, there is no equivalent function for that but you can create the same function
with the same name so it will be fully compatible.

Some functions are not supported but they have an equivalent function in PostgreSQL that can be used in order
to get the some functionality.

Some of the functions such as regular expressions do not exist in SQL Server and may be useful for your applic-
ation.

The following table lists the most commonly used string functions.

PostgreSQL Function
Function Definition
CONCAT Concatenate the text representations of all the arguments:
concat(‘a’, 1) --> a1 Also, can use the (||) operators: select'a’||''|| 'b'-->ab
LOWER /UPPER |Returns char, with all letters lowercase or uppercase: lower ('MR. Smith’) --> mr. smith
LPAD /RPAD Returns expr1, left or right padded to length n characters with the sequence of characters
inexpr2: LPAD('Log-1',10,"") --> *****Log-1

134 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql

aws

PostgreSQL Function

Function Definition

REGEXP_ Replace substring(s) matching a POSIX regular expression:

REPLACE regexp_replace('John’, '[hn].",'1") --> Jo1

REGEXP_ Return all captured substrings resulting from matching a POSIX regular expression

MATCHES OR against the string:

SUBSTRING REGEXP_MATCHES (‘http://www.aws.com/products', '(http:/[[: alnum:]]+.*/)") -->
{http://www.aws.com/}
OR
SUBSTRING ('http://www.aws.com/products’, '(http://[[: alnum:]]+.*/)") -->
http://www.aws.com/

REPLACE Returns char with every occurrence of search string replaced with a replacement string:
replace (‘abcdef', 'abc', '123") --> 123def

LTRIM/RTRIM Remove the longest string containing only characters from characters (a space by
default) from the start of string:
ltrim('zzzyaws', 'xyz') --> aws

SUBSTRING Extract substring: substring ('John Smith', 6,1) --> S

TRIM Remove the longest string containing only characters from characters (a space by
default) from the start, end, or both ends:
trim (both from 'yxJohnxx', 'xyz') --> John

ASCII Returns the decimal representation in the database character set of the first character of
char: ascii('a') --> 97

LENGTH Return the length of char: length ('John S.") --> 7

In order to create the PATINDEX function, you should use the code snippet below, note the 0 means that the
expression does not exist so the first position will be 1:

CREATE OR REPLACE FUNCTION "patindex" ("pattern" VARCHAR, "expression" VARCHAR)
RETURNS INT AS $BODYS
SELECT COALESCE (STRPOS (52, (

SELECT (REGEXP_MATCHES ($2, ' (' |
REPLACE (REPLACE (TRIM($1,

"'y

|
l%')

'i'))[1] LIMIT 1))

SBODYS LANGUAGE 'sqgl' IMMUTABLE;

SELECT patindex (

patindex |

SELECT patindex (

patindex |

SELECT patindex (

patindex |

'Lo%', 'Long String');

L e s o

%rin%', 'Long String');

'$g_S%', 'Long String');

-135-

aws

SQL Server function Aurora PostgreSQL equivalent function
ASCII ASCII

UNICODE For UTF8 inputs only ASCII can be used
CHAR and NCHAR CHR

CHARINDEX POSITION

PATINDEX see examples

CONCAT and CONCAT_WS

CONCAT and CONCAT_WS

LEFT, RIGHT, and SUBSTRING

LEFT, RIGHT, and SUBSTRING

LOWER and UPPER LOWER and UPPER

LTRIM, RTRIM and TRIM LTRIM, RTRIM and TRIM

STR TO_CHAR

REVERSE REVERSE

REPLICATE LPAD

REPLACE REPLACE

STRING_SPLIT regexp_split_to_array or regexp_split_to_table
STRING_AGG CONCAT_WS

For more information, see https.//www.postgresqgl.org/docs/13/static/functions-string. html

Feature Compatibility

SCT/DMS Automation Level

SCT Action Code Index | Key Differences

elededee,

N/A

Databases and Schemas are logical containers for security and access control. Administrators can grant per-
missions collectively at both the databases and the schema levels. SQL Server instances provide security at three
levels: Individual Objects, Schemas (collections of objects), and Databases (collections of schemas). For more
information, see Data Control Language.

Note: In previous versions of SQL server, the term userwas interchangeable with the term schema.
For backward compatibility, each database has several built-in security schemas including guest, dbo,

-136-

https://www.postgresql.org/docs/13/static/functions-string.html

aws

db_datareaded, sys, INFORMATION_SCHEMA, and others. You most likely will not need to migrate
these schemas.

Each SQL Server instance can host and manage a collection of databases, which consists of SQL Server pro-
cesses and the Master, Model, TempDB, and MSDB system databases.

The most common SQL Server administrator tasks at the database level are:
« Managing Physical Files: Add, remove, change file growth settings, and re-size files.
« Managing Filegroups: Partition schemes, object distribution, and read-only protection of tables.
« Managing default options.

« Creating database snapshots.

Unique object identifiers within an instance use three-part identifiers: <Database name>.<Schema name>.<QOb-
ject name>.

The recommended way to view database object meta data, including schemas, is to use the ANSI standard
Information Schema views. In most cases, these views are compatible with other ANSI compliant Relational
Database Management Systems (RDBMS).

To view a list of all databases on the server, use the sys.databases table.

Simplified syntax for CREATE DATABASE:

CREATE DATABASE <database name>

[ON [PRIMARY] <file specifications>[,<filegroup>]
[LOG ON <file specifications>

[WITH <options specification>] ;

Simplified syntax for CREATE SCHEMA:

CREATE SCHEMA <schema name> | AUTHORIZATION <owner name>;

Add afile to a database and create a table using the new file.

USE master;

ALTER DATABASE NewDB
ADD FILEGROUP NewGroup;

ALTER DATABASE NewDB
ADD FILE (
NAME = 'NewFile',
FILENAME = 'D:\NewFile.ndf',
SIZE = 2 MB
)
TO FILEGROUP NewGroup;

USE NewDB;

-137-

aws

CREATE TABLE NewTable

(
Coll INT PRIMARY KEY

)
ON NewGroup;

SELECT Name
FROM sys.databases
WHERE database id > 4;

Create a table within a new schema and database.

USE master
CREATE DATABASE NewDB;

USE NewDB;
CREATE SCHEMA NewSchema;

CREATE TABLE NewSchema.NewTable

(
NewColumn VARCHAR (20) NOT NULL PRIMARY KEY

) ;

Note: This example uses default settings for the new database and schema.

For more information, see:

« https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sgl?view-
w=sqgl-server-ver15

« https://docs. microsoft.com/en-us/sql/t-sql/statements/create-schema-transact-sgl?view=sql-server-ver15

« https://docs. microsoft.com/en-us/sql/t-sqgl/statements/create-database-sql-server-transact-sql?view=sql-server-
veris

PostgreSQL Usage

Aurora PostgreSQL supports both the CREATE SCHEMA and CREATE DATABASE statements.

As with SQL Server, Aurora PostgreSQL does have the concept of an instance hosting multiple databases,
which in turn contain multiple schemas. Obijects in Aurora PostgreSQL are referenced as a three part name:
<database>.<schema>.<object>.

A schema is essentially a namespace that contains named objects.

When database is created, it is cloned from a template.

Syntax

Syntax for CREATE DATABASE:

CREATE DATABASE name
[[WITH] [OWNER [
[TEMPLATE [=

=] user name]
] template]

-138-

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-schema-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-sql-server-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-sql-server-transact-sql

aws

[ENCODING [=] encoding]
[LC COLLATE [=] lc collate]
[LC_CTYPE [=] lc ctype]
[TABLESPACE [=] tablespace name]
[ALLOW_CONNECTIONS [=] allowconn]
[CONNECTION LIMIT [=] connlimit]
[IS TEMPLATE [=] istemplate]]
Syntax for CREATE SCHEMA:
CREATE SCHEMA schema name [AUTHORIZATION role specification] [schema element [

11

CREATE SCHEMA AUTHORIZATION role specification [schema element [...]]
CREATE SCHEMA IF NOT EXISTS schema name [AUTHORIZATION role specification]
CREATE SCHEMA IF NOT EXISTS AUTHORIZATION role_specification

where role specification can be:

user name
| CURRENT USER
| SESSION USER

Migration Considerations

Unlike SQL Server, Aurora PostgreSQL does not support the USE command to specify the default database
(schema) for missing object qualifiers. To use a different database, you must use a new connection, have the
required permissions, and refer to the object using the database name.

For applications using a single database and multiple schemas, the migration path is the same and requires fewer
rewrites because two-part names are already being used.

Query the postgres.pg_catalog.pg_database table to view databases in Aurora PostgreSQL.

SELECT datname, datcollate, datistemplate, datallowconn
FROM postgres.pg catalog.pg database;

datname |datcollate |datistemplate |datallowconn |
—————————— e D e
template0 |en US.UTF-8 |true | false
rdsadmin |en US.UTF-8 |false | true
templatel |en US.UTF-8 |true | true

postgres len US.UTF-8 |false | true
Examples

Create a new database.

CREATE DATABASE NewDatabase;

Create a schema for user testing.

CREATE SCHEMA AUTHORIZATION joe;

Create a schema, a table and a view.

-139-

aws

CREATE SCHEMA world flights
CREATE TABLE flights (flight id VARCHAR(10), departure DATE, airport VARCHAR(30))
CREATE VIEW us_flights AS
SELECT flight id, departure FROM flights WHERE airport='United States';

For more information, see:

« https.//www.postgresql.org/docs/13/static/sqgl-createdatabase.html|

« https.//www.postgresql.org/docs/13/static/sql-createschema. html

SQL Server Dynamic SQL vs.
PostgreSQL EXECUTE and PREPARE

Feature Com- SCT/DMS Auto- |SCT Action Code .
L . Key Differences
patibility mation Level Index
s N/A Different paradigm and syntax will require rewrit-
=T s == aaaoa ing the application

SQL Server Usage

Dynamic SQL is a feature that helps minimize hard-coded SQL. The SQL Engine optimizes code, which leads to
less "hard" parses.

Dynamic SQL allows developers to construct and execute SQL queries at run time as a string, using some logic in
SQL to construct varying query strings, without having to pre-construct them during development.

There are two options for running Dynamic SQL: use the EXECUTE command or the sp_executesql function.

EXECUTE Command

This option enables executing a command string within a T-SQL block, procedure, or function. The EXECUTE
command can also be used with linked servers. Meta-data for the result set can be defined by using the WITH
RESULT SETS options.

For parameters, use either the value or @parameter_name=value.

Note: It's important to validate the structure of the string command before running it with the EXECUTE
statement

Syntax

-- Syntax for SQL Server
Execute a stored procedure or function

[{ EXEC | EXECUTE }]
{

-140-

https://www.postgresql.org/docs/13/static/sql-createdatabase.html
https://www.postgresql.org/docs/13/static/sql-createschema.html

aws

[@return status =]

{ module name [;number] | @module name var }
[[@parameter =] { value
| @variable [OUTPUT]
| [DEFAULT]
}
]
[pocold]
[WITH <execute option> [,...n] 1]

(51

Execute a character string

{ EXEC | EXECUTE }
({ @string variable | [N]'tsgl string' } [+ ...n])
[AS { LOGIN | USER } = ' name ']

[71]

Execute a pass-through command against a linked server
{ EXEC | EXECUTE }

({ @string variable | [N] 'command string [2]' } [+ ...n]
[{ , { value | @Qvariable [OUTPUT] } } [...n]]

)

[AS { LOGIN | USER } = ' name ']

[AT linked server name]

[7]
<execute option>::=

RECOMPILE
| { RESULT SETS UNDEFINED }
| { RESULT SETS NONE }
| { RESULT SETS (<result sets definition> [,...n]) }

<result sets definition> ::=

{

{ column name

data type
[COLLATE collation name]
[NULL | NOT NULL] }

[,...n]
)
| AS OBJECT
[do name . [schema name] . | schema name .]
{table name | view name | table valued function name }
| AS TYPE [schema name.]table type name
| AS FOR XML

Example

EXECUTE a 'tsql_string' with a variable.

- 141 -

aws

DECLARE @scm name sysname;
DECLARE @tbl name sysname;
EXECUTE ('DROP TABLE ' + @scm name + '.' + @tbl name + ';');

Use EXECUTE AS USER to switch context to another user.

DECLARE (@scm name sysname;
DECLARE @tbl name sysname;
EXECUTE ('DROP TABLE ' + @scm name + '.' + @tbl name + ';') AS USER = 'SchemasAdmin';

Use EXECUTE with a result set.

EXEC GetMaxSalByDeptID 23
WITH RESULT SETS

(
([Salary] int NOT NULL)

) ;

sp_executesql system stored procedure

This option executes a T-SQL command or block that can be executed several times and built dynamically. It also
can be used with embedded parameters.

Syntax

-- Syntax for SQL Server, Azure SQL Database, Azure SQL Data Warehouse, Parallel Data
Warehouse

sp_executesqgl [@stmt =] statement
[
{ , [@params =] N'@parameter name data type [OUT | OUTPUT][,...n]1' }
{ , [@araml =] 'valuel' [,...n] }
]
Examples

Executing a SELECT statement.

EXECUTE sp executesqgl
N'SELECT * FROM HR.Employees
WHERE DeptID = @DID',
N'@DID int',
@DID = 23;

-142-

aws

For more information, see:

« https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-executesql-transact-
sqgl?view=sqgl-server-ver15

« https://docs.microsoft.com/en-us/sql/t-sgl/language-elements/execute-transact-sql?view=sql-server-ver15

PostgreSQL Overview
EXECUTE

The PostgreSQL EXECUTE command prepares and executes commands dynamically. The EXECUTE com-
mand can also run DDL statements and retrieve data using SQL commands. Similar to SQL Server, the Post-
greSQL EXECUTE command can be used with bind variables.

Note that Converting SQL Server Dynamic SQL to PostgreSQL requires significant effort.

Examples

Execute a SQL SELECT query with the table name as a dynamic variable using bind variables. This query
returns the number of employees under a manager with a specific ID.

DO $SDECLARE

Tabname varchar (30) := 'employees';
num integer := 1;

cnt integer;

BEGIN

EXECUTE format ('SELECT count (*) FROM %I WHERE manager = $1', tabname)
INTO cnt USING num;

RAISE NOTICE 'Count is % int table %', cnt, tabname;

ENDSS;

Execute a DML command; first with no variables and then with variables.

DO $$SDECLARE

BEGIN

EXECUTE 'INSERT INTO numbers (a) VALUES (1)';

EXECUTE format ('INSERT INTO numbers (a) VALUES (%s)', 42);
ENDSS;

’

Note: %s formats the argument value as a simple string. A null value is treated as an empty string. %I
treats the argument value as an SQL identifier and double-quotes it if necessary. Itis an error for the
value to be null.

Execute a DDL command.

DO SSDECLARE

BEGIN

EXECUTE 'CREATE TABLE numbers (num integer)';
ENDSS;

’

-143-

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-executesql-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-executesql-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/execute-transact-sql?view=sql-server-2017

aws

For additional details, see https.//www.postgresqgl.org/docs/13/static/functions-string. html

Using a PREPARE statement can improve performance of reusable SQL statements.

The PREPARE command canreceive a SELECT, INSERT, UPDATE, DELETE, or VALUES statement and
parse it with a user-specified qualifying name so the EXECUTE command can be used later without the need to
re-parse the SQL statement for each execution.

« When using PREPARE to create a prepared statement, it will be viable for the scope of the current ses-

sion.

. IfaDDL command is executed on a database object referenced by the prepared SQL statement, the next
EXECUTE command requires a hard parse of the SQL statement.

Use PREPARE and EXECUTE commands in tandem: The SQL command is prepared with a user-specified
qualifying name.The SQL command is executed several times, without the need for re-parsing.

PREPARE numplan

(int,

text, bool) AS

INSERT INTO numbers VALUES ($1, $2, $3);

EXECUTE numplan (100, 'New number 100', 't');
EXECUTE numplan (101, 'New number 101', 't');
EXECUTE numplan (102, 'New number 102', 'f');
EXECUTE numplan (103, 'New number 103', 't');

Functionality SQL Server - Dynamic SQL PostgerSQL- EXECUTE & PREPARE
Execute SQL with DECLARE @salint; EXECUTE format('select salary from employ-
results and bind vari- | EXECUTE getSalary @sal OUTPUT; |ees WHERE %l =$1', col_name) INTO
ables amount USING col_val;
Execute DML with | DECLARE @amount int EXECUTE format('UPDATE employees SET
variables andbind |DECLARE @col_valint salary = salary + $1 WHERE %! = $2', col_
variables DECLARE @col_name carchar(70) name) USING amount, col_val;
DECLARE @sglCommand varchar
(1000)
SET @sqlCommand = 'UPDATE
employees SET salary=salary' +
@amount + ' WHERE ' + @col_name +
'='+ @col_val
EXECUTE (@sglCommand)
Execute DDL EXECUTE ('CREATE TABLE link_emp | EXECUTE 'CREATE TABLE link_emp
(idemp1 integer, idemp2 integer);'); (idemp1 integer, idemp2 integer)';
Execute Anonym- |BEGIN ... END; DO $$DECLARE
ous block BEGIN ... END$$;

- 144 -

https://www.postgresql.org/docs/13/static/functions-string.html

aws

For additional details, see https.:.//www.postgresql.org/docs/13/static/plpgsqgl-statements. html

SQL Server Transactions vs.
PostgreSQL Transactions

Fea-tu..ur.e cei SCT/D Sl ATE SCT Action Code Index Key Differences
patibility mation Level
s Qoaa_a SCT Action Codes - Trans- | Nested transactions are not sup-

actions ported and syntax differences for ini-
tializing a transaction

SQL Server Usage

A Transaction is a unit of work performed on a database and typically represents a change in the database. Trans-
actions serve the following purposes:

Provide units of work that enable recovery from logical or physical system failures while keeping the data-
base in a consistent state.

Provide units of work that enable recovery from failures while keeping a database in a consistent state
when a logical or physical system failure occurs.

Provide isolation between users and programs accessing a database concurrently.

Transactions are an "all-or-nothing" unit of work. Each transactional unit of work must either complete, or it must
rollback all data changes. Also, transactions must be isolated from other transactions. The results of the "view of
data" for each transaction must conform to the defined database isolation level.

Database transactions must comply with ACID properties:

Atomic: Transactions are "all or nothing". If any part of the transaction fails, the entire transaction fails and
the database remains unchanged.

Note: There are exceptions to this rule. For example, some constraint violations, per ANSI defin-
itions, should not cause a transaction rollback.

Consistent: All transactions must bring the database from one valid state to another valid state. Data must
be valid according to all defined rules, constraints, triggers, etc.

Isolation: Concurrent execution of transactions must result in a system state that would occur if trans-
actions were executed sequentially.

Note: There are several exceptions to this rule based on the lenience of the required isolation
level.

Durable: After a transaction commits successfully and is acknowledged to the client, the engine must guar-
antee that its changes are persisted in the event of power loss, system crashes, or any other errors.

Note: By default, SQL Server uses the "auto commit" (also known as "implicit transactions")
mode set to ON. Every statement is treated as a transaction on its own unless a transaction was
explicitly defined. This behavior is different than other engines like Oracle where, by default,
every DML requires an explicit COMMIT statement to be persisted.

-145-

https://www.postgresql.org/docs/13/static/plpgsql-statements.html

aws

Simplified syntax for the commands defining transaction boundaries:
Define the beginning of a transaction.

BEGIN TRAN | TRANSACTION [<transaction name>]

Committing work and the end of a transaction.

COMMIT WORK | [TRAN | TRANSACTION [<transaction name>]]

Rollback work at the end of a transaction.

ROLLBACK WORK | [TRAN | TRANSACTION [<transaction name>]]

SQL Server supports the standard ANSI isolation levels defined by the ANSI/ISO SQL standard (SQL92):

Note: Each level provides a different approach for managing the concurrent execution of transactions.
The main purpose of a transaction isolation level is to manage the visibility of changed data as seen by
other running transactions. Additionally, when concurrent transactions access the same data, the level
of transaction isolation affects the way they interact with each other.

« Read Uncommitted: A current transaction can see uncommitted data from other transactions. If a trans-
action performs a rollback, all data is restored to its previous state.

« Read Committed: A transaction only sees data changes that were committed. Therefore, dirty reads are
not possible. However, after issuing a commit, it would be visible to the current transaction (while it’s still in
a running state).

» Repeatable Read: A transaction sees data changes made by the other transactions only after both trans-
actions issue a commit or are rolled back.

- Serializable: This isolation level is the strictest because it does not permit transaction overwrites of another
transaction's actions. Concurrent execution of a set of serializable transactions is guaranteed to produce
the same effect as running them sequentially in the same order.

The main difference between isolation levels is the phenomena they prevent from appearing. The three pre-
ventable phenomena are:

» Dirty Reads: A transaction can read data written by another transaction but not yet committed.

. Non-Repeatable (fuzzy) Reads: When reading the same data several times, a transaction can find the
data has been modified by another transaction that has just committed. The same query executed twice
can return different values for the same rows.

- Phantom (ghost) Reads: Similar to a non-repeatable read, but it is related to new data created by another
transaction. The same query executed twice can return different numbers of records.

The following table summarizes the four ANSI/ISO SQL standard (SQL92) isolation levels and indicates which
phenomena are allowed (V) or disallowed (X).

Transaction Isolation Level | Dirty Reads | Non Repeatable Reads | Phantom Reads
Read Uncommitted vV N N
Read Committed X \ |
Repeatable Read X X N,

- 146 -

aws

Transaction Isolation Level | Dirty Reads | Non Repeatable Reads | Phantom Reads
Serializable X X X

There are two common implementations for transaction isolation:

» Pessimistic Isolation (Locking): Resources accessed by a transaction are locked for the duration of the
transaction. Depending on the operation, resource, and transaction isolation level, other transactions can
"see" changes made by the locking transaction, or they must wait for it to complete. With this mechanism,
there is only one copy of the data for all transactions, which minimizes memory and disk resource con-
sumption at the expense of transaction lock waits.

» Optimistic Isolation (MVCC): Every transaction owns a set of the versions of the resources (typically
rows) that it accessed. In this mode, transactions don't have to wait for one another at the expense of
increased memory and disk utilization. In this isolation mechanism, there is a chance that conflicts will arise
when transactions attempt to commit. In case of a conflict, the application needs to be able to handle the
rollback, and attempt a retry.

SQL Server implements both mechanisms; they can be used concurrently.

For Optimistic Isolation, SQL Server introduced two additional isolation levels: Read Committed Snapshot and
Snapshot. For more details see the links at end of this section.

Set the transaction isolation level using SET command. It affects the current execution scope only.

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ
| SNAPSHOT | SERIALIZABLE }

Execute two DML statements within a serializable transaction.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRANSACTION;
INSERT INTO Tablel
VALUES (1, 'A'");
UPDATE Table?2
SET Columnl = 'Done'
WHERE KeyColumn = 1;
COMMIT TRANSACTION;

For more information, see
https.//docs. microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels ?view=sqgl-server-ver15 and
https.//docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql ?view=sql-server-ver15

As with SQL Server, the same ANSI/ISO SQL (SQL92) isolation levels apply to PostgreSQL, but with several sim-
ilarities and some differences.

Isolation Level |Dirty Reads NELGEELE Phantom Reads
Reads
Read Uncom- Permitted but not imple- Permitted Permitted

- 147 -

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql

aws

Isolation Level Dirty Reads NELIREER R Phantom Reads
Reads
mitted mented in PostgreSQL
Read Committed | Not permitted Permitted Permitted
Repeatable Read | Not permitted Not permitted Permitted but not implemented in
PostgreSQL
Serializable Not permitted Not permitted Not permitted

PostgreSQL technically supports the use of any of the above four transaction isolation levels, but only three can
practically be used. The Read-Uncommitted isolation level serves as Read-Committed.

The way the Repeatable-Read isolation-level is implemented does not allow for phantom reads, which is similar
to the Serializable isolation-level. The primary difference between Repeatable-Read and Serializable is that Seri-
alizable guarantees that the result of concurrent transactions are precisely the same as if they were executed seri-
ally, which is not always true for Repeatable-Reads.

Starting with PostgreSQL 12 option AND CHAIN can be added to COMMIT or ROLLBACK commands to imme-
diately start another transaction with the same parameters as preceding transaction.

In PostgreSQL, the MVCC mechanism allows transactions to work with a consistent snapshot of data ignoring
changes made by other transactions that have not yet committed or rolled back. Each transaction “sees” a shap-
shot of accessed data accurate to its execution start time regardless of what other transactions are doing con-
currently.

PostgreSQL supports the Read-Committed, Repeatable-Reads, and Serializable isolation levels. Read-Com-
mitted is the default isolation level.

« Read-Committed: The default PostgreSQL transaction isolation level. It prevents sessions from “seeing”
data from concurrent transactions until it is committed. Dirty reads are not permitted.

« Repeatable-Read: Queries can only see rows committed before the first query or DML statement was
executed in the transaction.

« Serializable: Provides the strictest transaction isolation level. The Serializable isolation level assures that
the result of the concurrent transactions will be the same as if they were executed serially. This is not
always the case for the Repeatable-Read isolation level.

Isolation levels can be configured at several levels:

e Session level
« Transaction level

« Instance level using Aurora “Parameter Groups”.

-148-

aws

Syntax

SET TRANSACTION transaction mode [...]
SET TRANSACTION SNAPSHOT Snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction mode [...]

where transaction mode is one of:

ISOLATION LEVEL {
SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED

}
READ WRITE | READ ONLY [NOT] DEFERRABLE

Examples

Configure the isolation level for a specific transaction.

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Configure the isolation level for a specific session.

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE READ;

View the current isolation level.

SELECT CURRENT SETTING ('TRANSACTION ISOLATION'); —-- Session
SHOW DEFAULT TRANSACTION ISOLATION; -- Instance

Modifying instance-level parameters for Aurora PostgreSQL is done using “Parameter Groups”. For example
altering the default_transaction_isolation parameter using the AWS Console or the AWS CLI.

For additional details, see: http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/lUSER Work-
ingWithParamGroups.htmi#USER WorkingWithParamGroups.Modifying

Comparison table of relevant database features related to transactions

Database Feature SQL Server PostgreSQL

AutoCommit Off Depends

Autocommit is turned off by
default, however, some client
tools like psgl and more are
setting this to ON by default.

Check your client tool defaults
or run the following command
to check current configuration

in psql:

- 149 -

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying

aws

Database Feature SQL Server PostgreSQL

\echo :AUTOCOMMIT
MVCC Yes Yes
Default Isolation Level Read Committed Read Committed

Supported Isolation Levels

REPEATABLE READ | READ COMMITTED
| READ UNCOMMITTED | SERIALIZABLE

Repeatable Reads Seri-
alizable Read-only

Configure Session Isolation Yes Yes

Levels

Configure Transaction Isolation | Yes Yes

Levels

1 TX2 Comment

SELECT employee_id, salary select employee_id, salary from | Same results returned from both ses-
FROM EMPLOYEES EMPLOYEES sions

WHERE employee_id=100;

employee_id | salary
+

100 | 24000.00

where employee_id=100;

employee_id | salary
+

100 | 24000.00

begin;

UPDATE employees

SET salary=27000
WHERE employee_id=100;

begin;
set transaction isolation level
read committed;

TX1 starts a transaction; performs
an update.

TX2 starts a transaction with read-
committed isolation level

SELECT employee_id, salary
FROM EMPLOYEES
WHERE employee_id=100;

employee_id | salary

SELECT employee_id, salary
FROM EMPLOYEES
WHERE employee_id=100;

employee_id | salary

TX1 will “see” the modified results
(27000.00) while

TX2 “sees” the original data
(24000.00)

+ +
100]27000.00 100 | 24000.00
UPDATE employees Waits as TX2 is blocked by TX1

SET salary=29000
WHERE employee_id=100;

Commit;

TX1 issues a commit, and the lock is
released

Commit;

TX2 issues a commit

SELECT employee_id, salary
FROM EMPLOYEES
WHERE employee_id=100;

employee_id | salary
+

SELECT employee_id, salary
FROM EMPLOYEES
WHERE employee_id=100;

employee_id | salary
+

Both queries return the value -
29000.00

-150 -

aws

X1

TX2 Comment

1001 29000.00

100 29000.00

X1 TX2 Comment
SELECT employee_id, salary SELECT employee_id, salary Same results returned from
FROM EMPLOYEES FROM EMPLOYEES both sessions

WHERE employee_id=100;

employee_id | salary
+
100 | 24000.00

WHERE employee_id=100;

employee_id | salary
+
100 | 24000.00

begin;

UPDATE employees

SET salary=27000
WHERE employee_id=100;

begin;
set transaction isolation level seri-
alizable;

TX1 starts a transaction; per-
forms an update.

TX2 starts a transaction with
isolation level of read committed

SELECT employee_id, salary
FROM EMPLOYEES
WHERE employee_id=100;

employee_id | salary
+
100|27000.00

SELECT employee_id, salary
FROM EMPLOYEES
WHERE employee_id=100;

employee_id | salary
+
100 | 24000.00

TX1 will “see” the modified res-
ults (27000.00) while

TX2 “sees” the original data
(24000.00)

update employees set salary-
y=29000 where employee_id=100;

Waits as TX2 is blocked by TX1

Commit;

TX1 issues a commit, and the
lock is released

ERROR: could not serialize access
due to concurrent update

TX2 received an error message

Commit;
ROLLBACK

TX2 trying to issue a commit but
receives a rollback message,
the transaction failed due to the
serializable isolation level

SELECT employee_id, salary
FROM EMPLOYEES
WHERE employee_id=100;

employee_id | salary
+
100 | 27000.00

SELECT employee_id, salary
FROM EMPLOYEES
WHERE employee_id=100;

employee_id | salary
+
100| 27000.00

Both queries will return the data
updated according to TX1

- 151 -

aws

The following table summarizes the key differences in transaction support and syntax when migrating from SQL
Server to Aurora PostgreSQL.

erty

Transaction Prop-

SQL Server

Aurora PostgreSQL

Default isolation
level

READ COMMITTED

READ COMMITED

initialize trans-
action syntax

BEGIN TRAN|TRANSACTION

SET TRANSACTION

Default isolation
mechanism

Pessimistic lock based

Lock based for writes, consistent read for SELECTs

Commit trans-
action

COMMIT
[WORK|TRAN|TRANSACTION]

COMMIT
[WORK | TRANSACTION]|

Rollback trans-

ROLLBACK [WORK |[TRAN |

ROLLBACK[WORK | TRANSACTION]

COMMITTED SNAPSHOT

action TRANSACTION]

Set autocommit SET IMPLICIT_ SETAUTOCOMMIT{=|TO}{ON | OFF}

off/on TRANSACTIONS OFF | ON

ANSI Isolation REPEATABLE READ | READ REPEATABLE READ | READ COMMITTED |
COMMITTED | READ READ UNCOMMITTED | SERIALIZABLE
UNCOMMITTED |
SERIALIZABLE

MVCC SNAPSHOT and READ READ COMMITTED SNAPSHOT

Nested trans-
actions

Supported, view level with
@@trancount

Not Supported

For additional details, see:

« https://www.postgresgl.org/docs/13/static/tutorial-transactions. htm/

« https://www.postgresgl.org/docs/13/static/transaction-iso.html|

« https://www.postgresgl.org/docs/13/static/sqgl-set-transaction. html

Feature Com- |SCT/DMS Auto- SCT Action Kev Differences
patibility mation Level Code Index y
A= a Q a a a N/A PostgreSQL does not support Synony - there is an
available workaround

-152-

https://www.postgresql.org/docs/13/static/tutorial-transactions.html
https://www.postgresql.org/docs/13/static/transaction-iso.html
https://www.postgresql.org/docs/13/static/sql-set-transaction.html

aws

Synonyms are database objects that serve as alternative identifiers for other database objects. The referenced
database object is called the 'base object' and may reside in the same database, another database on the same
instance, or a remote server.

Synonyms provide an abstraction layer to isolate client application code from changes to the name or location of
the base object.

In SQL Server, Synonyms are often used to simplify the use of four-part identifiers when accessing remote
instances.

For Example, table A resides on Server A, and the client application accesses it directly. For scale out reasons,
Table A needs to be moved to server B to offload resource consumption on Server A. Without synonyms, the cli-
ent application code must be rewritten to access Server B. Instead, you can create a synonym called Table A and
it will transparently redirect the calling application to Server B without any code changes.

Synonyms can be created for the following objects:

« Assembly (CLR) stored procedures, table-valued functions, scalar functions, and aggregate functions
Replication-filter-procedures

Extended stored procedures

« SQL scalar functions, table-valued functions, inline-tabled-valued functions, views, and stored procedures
User defined tables including local and global temporary tables

CREATE SYNONYM [<Synonym Schema>] . <Synonym Name>
FOR [<Server Name>] . [<Database Name>] . [Schema Name>] . <Object Name>

Create a synonym for a local object in a separate database.

CREATE TABLE DB1l.Schemal.MyTable

(

KeyColumn INT IDENTITY PRIMARY KEY,
DataColumn VARCHAR (20) NOT NULL

) i

USE DB2;
CREATE SYNONYM SchemaZ2.MyTable
FOR DB1l.Schemal.MyTable

Create a synonym for a remote object.

-— On ServerA
CREATE TABLE DB1.Schemal.MyTable

(
KeyColumn INT IDENTITY PRIMARY KEY,
DataColumn VARCHAR (20) NOT NULL

) ;
-— On Server B

-153-

aws

USE DB2;
CREATE SYNONYM Schema2.MyTable
FOR ServerA.DBl.Schemal.MyTable;

Note: This example assumes a linked server named ServerA exists on Server B that points to Server A.

For more information, see https://docs.microsoft.com/en-us/sql/t-sgl/statements/create-synonym-transact-sqgl?view=sql-
server-ver15

SQL Server's Synonym often being used to give another name for an object, PostgreSQL does not provide a fea-
ture comparable to SQL Server Synonyms. However, you can achieve similar functionality by using a few Post-
greSQL objects.

This lack of functionality will add a manual dimension to migration process wherever SQL Server Synonyms are
involved. The user using these objects must have privileges on the base object and relevant PostgreSQL options
should be used.

In order to create a Synonym of a table in PostgreSQL, views should be used.

The first step is to create a table that will be used as the base object, and on top of it, a view that will be used as
Synonym.

CREATE TABLE DB1l.Schemal.MyTable

(
KeyColumn NUMERIC PRIMARY KEY,
DataColumn VARCHAR (20) NOT NULL

) ;

CREATE VIEW DB2.SchemaZ2.MyTable Syn
AS SELECT * FROM DB1l.Schemal.MyTable

For more information see: Views

In order to create a Synonym of a User Defined Type in PostgreSQL, another User-Defined-Type should be
used to wrap the source Type.

The first step is to create the User-Defined-Type that will be used as the base object, and on top of it, a User-
Defined-Type that will be used as the Synonym.

CREATE TYPE DBl.Schemal.MyType AS (
ID NUMERIC,
name CHARACTER VARYING(100)) ;

CREATE TYPE DB2.Schema2.MyType Syn AS (
udt DB1l.Schemal.MyT) ;

- 154 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql

aws

For more information see: User Define Types

In order to create a Synonym for a function in PostgreSQL, another Function should be used to wrap the source
Type.

As before, the first step is to create the Function that will the used as the base object, and on top of it, a Function
that will be used as the Synonym.

CREATE OR REPLACE FUNCTION DB1l.Schemal.MyFunc (P_NUM NUMERIC)
RETURNS numeric AS $$
begin
RETURN P NUM ¥ 28
END; $$%
LANGUAGE PLPGSQL;

CREATE OR REPLACE FUNCTION DB2.SchemaZ.MyFunc Syn (P_NUM NUMERIC)
RETURNS numeric AS $$
begin

RETURN DB1.Schemal.MyFunc (P _NUM) ;

END; $%
LANGUAGE PLPGSQL;

For more information see: User Define Function

SQL Server DELETE and UPDATE FROM vs.
PostgreSQL DELETE and UPDATE FROM

Feature Com- | SCT/DMS Auto- SCT Action

Key Differences

patibility mation Level Code Index
A= aoaaa N/A DELETE...FROM from_list is not supported -

rewrite to use subqueries

SQL Server Usage

SQL Server supports an extension to the ANSI standard that allows using an additional FROM clause in
UPDATE and DELETE statements.

This additional FROM clause can be used to limit the number of modified rows by joining the table being updated,
or deleted from, to one or more other tables. This functionality is similar to using a WHERE clause with a derived
table sub-query. For UPDATE, you can use this syntax to set multiple column values simultaneously without
repeating the sub-query for every column.

However, these statements can introduce logical inconsistencies if a row in an updated table is matched to more
than one row in a joined table. The current implementation chooses an arbitrary value from the set of potential val-
ues and is non-deterministic.

-155-

Syntax

UPDATE <Table Name>

SET <Column Name> = <Expression> ,...
FROM <Table Source>

WHERE <Filter Predicate>;

DELETE FROM <Table Name>
FROM <Table Source>
WHERE <Filter Predicate>;

Examples

Delete customers with no orders.

CREATE TABLE Customers
(
Customer VARCHAR (20) PRIMARY KEY

) ;

INSERT INTO Customers
VALUES

('Jdohn'),

('"Jim'),

('Jack")

CREATE TABLE Orders

(

OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

) ;

INSERT INTO Orders (OrderID, Customer,
VALUES

(1, 'Jdim', '20180401'"),

(2, 'Jack', '20180402");

DELETE FROM Customers
FROM Customers AS C

LEFT OUTER JOIN

Orders AS O

ON O.Customer = C.Customer
WHERE O.OrderID IS NULL;

SELECT *
FROM Customers;

Customer

OrderDate)

- 156 -

aws

Update multiple columns in Orders based on the values in OrderCorrections.

CREATE TABLE OrderCorrections

(

OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR (20) NOT NULL,
OrderDate DATE NOT NULL

) ;

INSERT INTO OrderCorrections
VALUES (1, 'Jack', '20180324'");

UPDATE O
SET Customer = OC.Customer,
OrderDate = OC.OrderDate
FROM Orders AS O
INNER JOIN
OrderCorrections AS OC
ON O0.OrderID = 0OC.OrderID;

SELECT *
FROM Orders;

Customer OrderDate

Jack 2018-03-24
Jack 2018-04-02

For more information, see:

« https.//docs. microsoft.com/en-us/sql/t-sql/queries/update-transact-sql?view=sql-server-ver15

« https.//docs. microsoft.com/en-us/sql/t-sqgl/statements/delete-transact-sql?view=sql-server-ver15

« https.//docs. microsoft.com/en-us/sql/t-sqgl/queries/from-transact-sql?view=sql-server-ver15

PostgreSQL Usage

aws

Aurora PostgreSQL does not support DELETE..FROM syntax, but it does support UPDATE FROM syntax.

Syntax

[WITH [RECURSIVE] with query [, ...]]

UPDATE [ONLY] table name [*] [[AS] alias]
SET { column name = { expression | DEFAULT } |
(column name [, ...]) = ({ expression | DEFAULT }

(column name [, ...])
| I P
[FROM from list]
[WHERE condition | WHERE CURRENT OF cursor name]

(sub-SELECT)

[RETURNING * | output expression [[AS] output name]

-157 -

[,

[,

https://docs.microsoft.com/en-us/sql/t-sql/queries/update-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/delete-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql

aws

Migration Considerations

You can easily rewrite the DELETE statements as subqueries. Place the subqueries in the WHERE clause. This
workaround is simple and, in most cases, easier to read and understand.

Examples

Delete customers with no orders.

CREATE TABLE Customers
(
Customer VARCHAR (20) PRIMARY KEY

) ;

INSERT INTO Customers
VALUES

("John'),

('Jim'"),

('"Jack")

CREATE TABLE Orders

(

OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR (20) NOT NULL,
OrderDate DATE NOT NULL

) ;

INSERT INTO Orders (OrderID, Customer, OrderDate)
VALUES

(1, '"Jim', '20180401"),

(2, 'Jack', '20180402");

DELETE FROM Customers

WHERE Customer NOT IN (
SELECT Customer
FROM Orders

) ;

SELECT *
FROM Customers;

Customer

Update.

CREATE TABLE OrderCorrections

(

OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR (20) NOT NULL,
OrderDate DATE NOT NULL

- 158 -

) ;

INSERT INTO OrderCorrections
VALUES (1, 'Jack', '20180324"');

UPDATE orders
SET Customer = OC.Customer,
OrderDate = OC.OrderDate
FROM Orders AS O
INNER JOIN
OrderCorrections AS OC
ON 0.0rderID = OC.OrderID;

SELECT *
FROM Orders;

Customer OrderDate

Jack 2018-03-24
Jack 2018-04-02
Summary

The following table identifies similarities, differences, and key migration considerations.

DELETE

Join as part of DELETE FROM...FROM

N/A - Rewrite to use WHERE clause with a sub-query.

aws

N

Join as part of UPDATE ... FROM
UPDATE

UPDATE ... FROM

For more information, see:

« https://www.postgresql.org/docs/13/static/sqgl-delete. html

« https://www.postgresql.org/docs/13/static/sqgl-update. html|

SQL Server Stored Procedures vs.
PostgreSQL Stored Procedures

(]
(((J
(@
(]
(]

olegegede,

SCT Action Codes - Stored Pro- | Syntax and option dif-

cedures ferences

-159-

https://www.postgresql.org/docs/13/static/sql-delete.html
https://www.postgresql.org/docs/13/static/sql-update.html

aws

SQL Server Usage

Stored Procedures are encapsulated, persisted code modules that you can execute using the EXECUTE T-SQL
statement. They may have multiple input (IN) and output (OUT) parameters. Table valued user defined types can
be used as input parameters. IN is the default direction for parameters, but OUT must be explicitly specified. You

can specify parameters as both IN and OUT.

SQL Server allows you to run stored procedures in any security context using the EXECUTE AS option. They
can be explicitly recompiled for every execution using the RECOMPILE option and can be encrypted in the data-
base using the ENCRYPTION option to prevent unauthorized access to the source code.

SQL Server provides a unique feature that allows you to use a stored procedure as an input to an INSERT state-
ment. When using this feature, only the first row in the data set returned by the stored procedure is evaluated.

Syntax

CREATE [OR ALTER] { PROC | PROCEDURE } <Procedure Name>
[<Parameter List>

[WITH [ENCRYPTION]| [RECOMPILE]|[EXECUTE AS ...]]

AS {

[BEGIN]

<SQL Code Body>

[END] }[;]

Examples

Creating and Executing a Stored Procedure

Create a simple parameterized Stored Procedure to validate the basic format of an Email.

CREATE PROCEDURE ValidateEmail

@Email VARCHAR(128), @IsValid BIT = 0 OUT
AS

BEGIN

IF @Email LIKE N'%@%' SET @IsValid = 1
ELSE SET @IsValid = 0

RETURN @IsValid

END;

Execute the procedure.

DECLARE @IsValid BIT
EXECUTE [ValidateEmail]

@Email = 'X@y.com', @IsValid = @IsValid OUT;
SELECT @IsValid;

-- Returns 1
EXECUTE [ValidateEmail]

@Email = 'Xy.com', @IsValid = @IsValid OUT;
SELECT @IsValid;

- 160 -

-— Returns O

Create a stored procedure that uses RETURN to pass an error value to the application.

CREATE PROCEDURE ProcessImportBatch
@BatchID INT
AS
BEGIN
BEGIN TRY
EXECUTE Stepl @BatchID
EXECUTE Step2 @BatchID
EXECUTE Step3 @BatchID
END TRY
BEGIN CATCH
IF ERROR NUMBER () = 235
RETURN -1 -- indicate special condition
ELSE
THROW -- handle error normally
END CATCH
END

Using a Table-Valued Input Parameter

Create and populate an Orderltems table.

CREATE TABLE OrderItems (
OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)
) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Washer', 100);

Create a tabled valued type for the Orderltem table valued parameter.

CREATE TYPE OrderItems

AS TABLE

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

) ;

Create a procedure to process order items.

CREATE PROCEDURE InsertOrderItems
@OrderItems AS OrderItems READONLY

- 161 -

aws

aws

AS
BEGIN
INSERT INTO OrderItems (OrderID, Item, Quantity)
SELECT OrderID,
Item,
Quantity
FROM @OrderItems
END;

Instantiate and populate the table valued variable and pass the data set to the stored procedure.
DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES

(1, 'M8 Bolt', 100),

(1, 'M8 Nut', 100),

(1, M8 Washer, 200);

EXECUTE [InsertOrderItems]
@QOrderItems = @OrderItems;

(3 rows affected)

Item Quantity
1 M8 Bolt 100
2 M8 Nut 100
3 M8 Washer 200

INSERT... EXEC Syntax

INSERT INTO <MyTable>
EXECUTE <MyStoredProcedure>;

For more information, see https.//docs. microsoft.com/en-us/sql/t-sqgl/statements/create-procedure-transact-sql?view=sql-
server-ver15

PostgreSQL Overview

PostgreSQL version 10 provides support for both stored procedures and stored functions using the CREATE
FUNCTION statement. To emphasize, only the CREATE FUNCTION is supported by the procedural statements
used by PostgreSQL version 10. The CREATE PROCEDURE statement is not supported.

PL/pgSQL is the main database programming language used for migrating from SQL Server's T-SQL code. Post-
greSQL supports these additional programming languages, also available in Amazon Aurora PostgreSQL:

« PL/pgSQL
o PL/Tcl
o PL/Perl

Use the show.rds.extensions command to view all available Amazon Aurora extensions.

-162 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql

aws

PostgreSQL Create Function Privileges

To create a function, a user must have USAGE privilege on the language. When creating a function, a language
parameter can be specified as shown in the examples below.

Examples

Create a new function named FUNC_ALG.

CREATE OR REPLACE FUNCTION FUNC ALG (P_NUM NUMERIC)
RETURNS NUMERIC
AS $$
BEGIN
RETURN P _NUM * 2;
END; $$%
LANGUAGE PLPGSQL;

« The CREATE OR REPLACE statement creates a new function or replaces an existing function with these
limitations:

« You cannot change the function name or argument types.
« The statement does not allow changing the existing function return type.
« The user must own the function to replace it.
o INPUT parameter (P_NUM) is implemented similar to SQL Server T-SQL INPUT parameter.

« The $$ signs alleviate the need to use single-quoted string escape elements. With the $$ sign, there is no
need to use escape characters in the code when using single quotation marks ('). The $$ sign appears
after the keyword AS and after the function keyword END.

« Usethe LANGUAGE PLPGSAQL parameter to specify the language for the created function.
Create a function with PostgreSQL PL/pgSQL.

CREATE OR REPLACE FUNCTION EMP SAL RAISE
(IN P_EMP ID DOUBLE PRECISION, IN SAL RAISE DOUBLE PRECISION)
RETURNS VOID

AS $$

DECLARE

V_EMP CURRENT SAL DOUBLE PRECISION;

BEGIN

SELECT SALARY INTO STRICT V_EMP CURRENT SAL

FROM EMPLOYEES WHERE EMPLOYEE ID = P_EMP ID;

UPDATE EMPLOYEES SET SALARY = V_EMP_CURRENT_SAL + SAL_RAISE WHERE EMPLOYEE_ID = P EMP
I1D;

RAISE DEBUG USING MESSAGE := CONCAT WS('', 'NEW SALARY FOR EMPLOYEE ID: ', P _EMP ID, '
IS ', (V_EMP CURRENT SAL + SAL RAISE));

EXCEPTION

WHEN OTHERS THEN

RAISE USING ERRCODE := '20001', MESSAGE := CONCAT WS('', 'AN ERROR WAS ENCOUNTERED -
', SQLSTATE, ' -ERROR-', SQLERRM);

END; $$

LANGUAGE PLPGSQL;

- 163 -

aws

select emp sal raise (200, 1000);

Note: In the example above, the RAISE command can be replaced with RETURN in order to inform the
application that an error occurred.

Create a function with PostgreSQL PL/pgSQL.

CREATE OR REPLACE FUNCTION EMP PERIOD OF SERVICE YEAR (IN P _EMP ID DOUBLE PRECISION)
RETURNS DOUBLE PRECISION

AS $$

DECLARE

V_PERIOD OF SERVICE YEARS DOUBLE PRECISION;

BEGIN

SELECT

EXTRACT (YEAR FROM NOW()) - EXTRACT (YEAR FROM (HIRE DATE))
INTO STRICT V_PERIOD OF SERVICE YEARS

FROM EMPLOYEES

WHERE EMPLOYEE ID = P_EMP ID;

RETURN V_PERIOD OF SERVICE YEARS;

END; $$

LANGUAGE PLPGSQL;

SELECT EMPLOYEE ID,FIRST NAME, EMP PERIOD OF SERVICE YEAR (EMPLOYEE ID) AS
PERIOD OF SERVICE YEAR
FROM EMPLOYEES;

There is a new behavior in PostgreSQL version 10 for a set-returning function, used by LATERAL FROM-clause.

Previous

CREATE TABLE emps (id int, manager int);
INSERT INTO tab VALUES (23, 24), (52, 23), (21, 65);
SELECT x, generate series(1,5) AS g FROM tab;

id Ig
—_—— | _—
23 |1
23 |2
23 |3
23 |4
23 |5
52 |1
52 |2
52 |3
52 |4
52 |5
21 |1
21 |2
21 |3
21 |4
21 |5
New

- 164 -

SELECT id, g FROM emps,

id |g
—ee | ==
23 |1
23 12
23 13
23 |4
23 |5
52 |1
52 |2
52 |3
52 |4
52 |5
21 |1
21 |2
21 |3
21 |4
21 |5

LATERAL generate series(1,5) AS g;

aws

In the above example, you could put the set-return function on the outside of the nested loop join, since it has no
actual lateral dependency on emps table.

The following table summarizes the differences between SQL Server Stored Procedures and PostgreSQL
Stored Procedures.

{CALLER | SELF | OWNER
| 'user_name'}

SQL Server Aurora PostgreSQL Workaround
General CREATE CREATE [OR REPLACE | Rewrite stored procedure creation
CREATE PROC|PROCEDURE]FUNCTION <Function | scripts to use FUNCTION instead of
Syntax dif- | <Procedure Name> Name> (Parameter1 PROC or PROCEDURE.
ferences <Type>, ...n , ,
@Parameter1 <Type>, ...n yp) Rewrite stored procedure creation
AS AS $$ scripts to omit the AS $$ pattern.
. <body> Rewrite stored procedure para-
<Body meters to not use the @ symbol in
parameter names. Add parentheses
around the parameter declaration.
Security {EXEC |EXECUTE} AS SECURITY INVOKER | |For stored procedures that use an
Context SECURITY DEFINER explicit user name, rewrite the code

from EXECUTE AS 'user' to
SECURITY DEFINER and recreate
the functions with this user.

For stored procedures that use the
CALLER option, rewrite the code to
include SECURITY INVOKER.

For stored procedures that use the
SELF option, rewrite the code to
SECURITY DEFINER.

- 165-

aws

SQL Server Aurora PostgreSQL Workaround
Encryption |UseWITH ENCRYPTION |Notsupportedin Aurora
option PostgreSQL
Parameter IN and OUT|OUTPUT, IN, OUT, INOUT, or Although the functionality of these
direction VARIADIC parameters is the same for SQL
by default OUT can be used Server and PostgreSQL, you must
as IN as well rewrite the code for syntax com-
pliance:
Use OUT instead of OUTPUT.
USE INOUT instead of OUT for bid-
irectional parameters.
Recompile |Use WITH RECOMPILE Not supported in Aurora
option PostgreSQL
Table Val- Use declared table type user | Use declared table type
ued Para- defined parameters user defined parameters
meters
Additional Use BULKINSERT toload | Not supported in Aurora
restrictions | data from text file PostgreSQL

For additional details, see:

« https://www.postgresgl.org/docs/13/static/sqgl-createfunction. html

« https://www.postgresgl.org/docs/13/static/plpgsql.html

« https://www.postgresgl.org/docs/13/static/xplang. html

« https://www.postgresgl.org/docs/13/static/xfunc-sgl. html

Feature Com- SCT/DMS Auto- SCT Action .

patibility mation Level Code Index HE TS
cssses N/A Different paradigm and syntax will require
- = = == oaaao rewrite of error handling code

SQL Server error handling capabilities have significantly improved throughout the years. However, previous fea-

tures are retained for backward compatibility.

Before SQL Server 2008, only very basic error handling features were available. RAISERROR was the primary
statement used for error handling.

Since SQL 2008, SQL Server has added extensive ".Net like" error handling capabilities including TRY/CATCH
blocks, THROW statements, the FORMATMESSAGE function, and a set of system functions that return
metadata for the current error condition.

- 166 -

https://www.postgresql.org/docs/13/static/sql-createfunction.html
https://www.postgresql.org/docs/13/static/plpgsql.html
https://www.postgresql.org/docs/13/static/xplang.html
https://www.postgresql.org/docs/13/static/xfunc-sql.html

TRY/CATCH Blocks

aws

TRY/CATCH blocks implement error handling similar to Microsoft Visual C# and Microsoft Visual C++. TRY ...

END TRY statement blocks can contain T-SQL statements .

If an error is raised by any of the statements within the TRY ... END TRY block, execution stops and is moved to
the nearest set of statements that are bounded by a CATCH ... END CATCH block.

Syntax

BEGIN TRY

<Set of SQL Statements>

END TRY

BEGIN CATCH

<Set of SQL Error Handling Statements>
END CATCH

THROW

The THROW statement raises an exception and transfers execution of the TRY
to the associated CATCH ... END CATCH block of statements.

Throw accepts either constant literals or variables for all parameters.

Syntax

THROW [Error Number>, <Error Message>, < Error State>] [;]

Examples

Use TRY/CATCH error blocks to handle key violations.

CREATE TABLE ErrorTest (Coll INT NOT NULL PRIMARY KEY) ;

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO ErrorTest (Coll) VALUES (1) ;
INSERT INTO ErrorTest (Coll) VALUES(2);
INSERT INTO ErrorTest (Coll) VALUES (1) ;
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
THROW; -- Throw with no parameters = RETHROW
END CATCH;

(1 row affected)
(1 row affected)
(0 rows affected)
Msg 2627, Level 14, State 1, Line 7

- 167 -

... END TRY block of statements

aws

Violation of PRIMARY KEY constraint 'PK ErrorTes A259EE54D8676973"'.
Cannot insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

Note: Contrary to what many SQL developers believe, the values 1 and 2 are indeed inserted into
ErrorTestTable in the above example. This behavior is in accordance with ANSI specifications stating
that a constraint violation should not roll back an entire transaction.

Use THROW with variables

BEGIN TRY

BEGIN TRANSACTION

INSERT INTO ErrorTest (Coll) VALUES (1) ;

INSERT INTO ErrorTest (Coll) VALUES (2);

INSERT INTO ErrorTest (Coll) VALUES (1)

COMMIT TRANSACTION;

END TRY

BEGIN CATCH

DECLARE @CustomMessage VARCHAR (1000),
@CustomError INT,
@CustomState INT;

SET @CustomMessage = 'My Custom Text ' + ERROR MESSAGE () ;

SET @CustomError = 54321;

SET @CustomState = 1;

THROW @CustomError, @CustomMessage, @CustomState;

END CATCH;

(0 rows affected)

Msg 54321, Level 16, State 1, Line 19

My Custom Text Violation of PRIMARY KEY constraint 'PK ErrorTes A259EE545CBDBBOA'.
Cannot insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

RAISERROR

The RAISERROR statement is used to explicitly raise an error message, similar to THROW. It causes an error
state for the executing session and forwards execution to either the calling scope or, if the error occurred within a
TRY ... END TRY block, to the associated CATCH ... END CATCH block. RAISERROR can reference a user-
defined message stored in the sys.messages system table or can be used with dynamic message text.

The key differences between THROW and RAISERROR are:

« Message IDs passed to RAISERROR must exist in the sys.messages system table. The error number

parameter passed to THROW does not.
« RAISERROR message text may contain printf formatting styles. The message text of THROW may not.
« RAISERROR uses the severity parameter for the error returned. For THROW, severity is always 16.

Syntax

RAISERROR (<Message ID>|<Message Text> ,<Message Severity> ,<Message State>
[WITH option [<Option List>]])

Examples

Raise a custom error.

- 168 -

aws

RAISERROR (N'This is a custom error message with severity 10 and state 1.', 10, 1)

FORMATMESSAGE

FORMATMESSAGE returns a sting message consisting of an existing error message in the sys.messages sys-
tem table, or from a text string, using the optional parameter list replacements. The FORMATMESSAGE state-
ment is similar to the RAISERROR statement.

Syntax

FORMATMESSAGE (<Message Number> | <Message String>, <Parameter List>)

Error State Functions

SQL Server provides the following error state functions:

. ERROR_LINE
. ERROR_MESSAGE

. ERROR_NUMBER

. ERROR_PROCEDURE
. ERROR_SEVERITY

. ERROR_STATE

. @@ERROR

Examples

Use Error State Functions withina CATCH block.

CREATE TABLE ErrorTest (Coll INT NOT NULL PRIMARY KEY) ;

BEGIN TRY;

BEGIN TRANSACTION;
INSERT INTO ErrorTest (Coll) VALUES (1) ;
INSERT INTO ErrorTest (Coll) VALUES (2);
INSERT INTO ErrorTest (Coll) VALUES (1)

COMMIT TRANSACTION;

END TRY
BEGIN CATCH
SELECT ERROR _LINE (),

ERROR_MESSAGE () ,
ERROR_NUMBER () ,
ERROR_PROCEDURE () ,
ERROR SEVERITY (),
ERROR STATE (),
QQRError;

THROW;

END CATCH;

6

Violation of PRIMARY KEY constraint 'PK ErrorTes A259EE543C8912D8'. Cannot insert
duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).
2627

- 169 -

aws

NULL
14

1
2627

(1 row affected)

(1 row affected)

(0 rows affected)

(1 row affected)

Msg 2627, Level 14, State 1, Line 25

Violation of PRIMARY KEY constraint 'PK ErrorTes A259EE543C8912D8'. Cannot insert
duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

For more information, see
« https://docs.microsoft.com/en-us/sql/t-sgl/language-elements/raiserror-transact-sql?view=sql-server-ver15

« https://docs.microsoft.com/en-us/sql/t-sgl/language-elements/try-catch-transact-sql ?view=sql-server-ver15
« https://docs.microsoft.com/en-us/sql/t-sgl/language-elements/throw-transact-sql?view=sqgl-server-ver15

PostgreSQL Usage

Aurora PostgreSQL does not provide native replacement for SQL Server error handling features and options, but
it has many comparable options.

To trap the errors, use the BEGIN.. EXCEPTION.. END. By default, any error raised in a PL/pgSQL function
block aborts execution and the surrounding transaction. You can trap and recover from errors using a BEGIN
block with an EXCEPTION clause. The syntax is an extension to the normal syntax for a BEGIN block.

Syntax

[<<label>>]
[DECLARE
declarations]
BEGIN
statements
EXCEPTION
WHEN condition [OR condition ...] THEN
handler statements
[WHEN condition [OR condition ...] THEN
handler statements

]
END;

"condition" is related to the error or the code. For example:

o WHEN interval_field_overflow THEN..
« WHEN SQLSTATE '22015' THEN...

For all error codes, see https://www.postgresgl.org/docs/13/static/errcodes-appendix. html

-170-

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql
https://www.postgresql.org/docs/13/static/errcodes-appendix.html

aws

The PostgreSQL RAISE statement can be used to throw errors. You can combine RAISE with several levels of
severity including:

Severity Usage

DEBUG1..DEBUGS | Provides successively more detailed information for use by developers.

INFO Provides information implicitly requested by the user.

NOTICE Provides information that might be helpful to users.

WARNING Provides warnings of likely problems.

ERROR Reports an error that caused the current command to abort.

LOG Reports information of interest to administrators. For example, checkpoint activity.
FATAL Reports an error that caused the current session to abort.

PANIC Reports an error that caused all database sessions to abort.

Use RAISE DEBUG (where DEBUG is the configurable severity level).

SET CLIENT MIN MESSAGES = 'debug';

DO $S

BEGIN

RAISE DEBUG USING MESSAGE := 'hello world';
END $$;

DEBUG: hello world
DO

Use the client_min_messages parameter to control the level of messages sent to the client. The default is
NOTICE. Use the log_min_messages parameter to control which message levels are written to the server log.
The defaultis WARNING.

SET CLIENT MIN MESSAGES = 'deb

Use EXCEPTION..WHEN... THEN inside BEGIN and END block to handle dividing by zero violations.

CREATE TABLE ErrorTest (Coll INT NOT NULL PRIMARY KEY) ;

INSERT INTO employee values ('John',10);
BEGIN
SELECT 5/0;
EXCEPTION
WHEN division by zero THEN
RAISE NOTICE 'caught division by zero';
return 0;
END;

171 -

aws

Summary
The following table identifies similarities, differences, and key migration considerations.
SQL Server Error Handling Feature Aurora PostgreSQL equivalent
TRY ...END TRY and CATCH ... END Inner
CATCH blocks BEGIN
EXCEPTION WHEN ... THEN
END
THROW and RAISERROR RAISE
FORMATMESSAGE RAISE [level] 'format' or ASSERT
Error state functions GET STACKED DIAGNOSTICS
Proprietary error messages in sys.messages | RAISE

system table

For more information, see

« https.//www.postgresql.org/docs/13/static/ecpg-errors. html

« https.//www.postgresql.org/docs/13/static/plpgsgl-errors-and-messages. html
« https.//www.postgresql.org/docs/13/static/runtime-config-logging. html#GUC-LOG-MIN-MESSAGES

SQL Server Flow Control vs. PostgreSQL Control
Structures

Feature Com- |SCT/DMS Auto-

patibility mation Level SCT Action Code Index | Key Differences

= o aaoo SCT Action Codes - Postgres does not support GOTO and
- Flow Control WAITFOR TIME

SQL Server Usage

Although SQL is a mostly declarative language, it does support flow control commands, which provide run time
dynamic changes in script execution paths.

Note: Before SQL/PSM was introduced in SQL:1999, the ANSI standard did not include flow control
constructs. Therefore, there are significant syntax differences among RDBMS engines.

SQL Server provides the following flow control keywords.

« BEGIN... END: Define boundaries for a block of commands that are executed together.

« RETURN: Exit a server code module (stored procedure, function, etc.) and return control to the calling
scope. RETURN <value> can be used to return an INT value to the calling scope.

« BREAK: Exit WHILE loop execution.

172-

https://www.postgresql.org/docs/13/static/ecpg-errors.html
https://www.postgresql.org/docs/13/static/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/13/static/runtime-config-logging.html#GUC-LOG-MIN-MESSAGES

aws

« THROW: Raise errors and potentially return control to the calling stack.

o CONTINUE: Restarta WHILE loop.

« TRY... CATCH: Error handling (see Error Handling).

« GOTO label: Moves the execution point to the location of the specified label.
« WAITFOR: Delay.

« IF... ELSE: Conditional flow control.

« WHILE <condition>: Continue looping while <condition> returns TRUE.

Note: WHILE loops are commonly used with cursors and use the system variable @ @FETCH_
STATUS to determine when to exit (see the Cursors section for more details).

For more information about TRY-CATCH and THROW, see Error Handling.

The following example demonstrates a solution for executing different processes based on the number of items in
an order:

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200);

Declare a cursor for looping through all Orderltems and calculating the total quantity per order.

DECLARE OrderItemCursor CURSOR FAST FORWARD
FOR
SELECT OrderlID,
SUM (Quantity) AS NumItems
FROM OrderItems
GROUP BY OrderID
ORDER BY OrderID;

DECLARE @OrderID INT, @NumItems INT;

-- Instantiate the cursor and loop through all orders.
OPEN OrderItemCursor;

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems

WHILE @Q@Fetch Status = 0

173 -

aws

BEGIN;

IF

@NumItems > 100

PRINT 'EXECUTING LogLargeOrder - '
+ CAST (@OrderID AS VARCHAR(5))

+

' ' + CAST(@NumItems AS VARCHAR(S));

ELSE
PRINT 'EXECUTING LogSmallOrder - '
+ CAST (QOrderID AS VARCHAR(S))

+

' ' 4+ CAST(@NumItems AS VARCHAR(S5));

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems;

END;

-— Close and deallocate the cursor.
CLOSE OrderItemCursor;
DEALLOCATE OrderItemCursor;

The above code displays the following results:

EXECUTING LogSmallOrder - 1 100
EXECUTING LogSmallOrder - 2 100
EXECUTING LogLargeOrder - 3 200

For more information, see https.//docs. microsoft.com/en-us/sql/t-sqgl/language-elements/control-of-flow ?view=sql-server-

ver1l5

Aurora PostgreSQL provides the following flow control constructs:

BEGIN... END: Define boundaries for a block of commands executed together.

CASE: Execute a set of commands based on a predicate (not to be confused with CASE expressions).
IF... ELSE: Perform conditional flow control.

ITERATE: Restart a LOOP or WHILE statement.

LEAVE: Exit a server code module (stored procedure, function etc.) and return control to the calling scope.
LOOP: Loop indefinitely.

REPEAT... UNTIL: Loop until the predicate is true.

RETURN: Terminate execution of the current scope and return to the calling scope.

WHILE: Continue looping while the condition returns TRUE.

The following example demonstrates a solution for executing different logic based on the number of items in an
order. It provides the same functionality as the example for SQL Server flow control. However, unlike the SQL
Server example executed as a batch script, Aurora PostgreSQL variables can only be used in stored routines
(procedures and functions).

174 -

aws

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200);

Create a procedure to declare a cursor and loop through the order items.

CREATE OR REPLACE FUNCTION P ()
RETURNS numeric

LANGUAGE plpgsqgl
AS S$function$

DECLARE

done int default false;

var OrderID int;

var NumItems int;
OrderItemCursor CURSOR FOR SELECT OrderID, SUM(Quantity) AS NumItems
FROM OrderItems

GROUP BY OrderID

ORDER BY OrderID;

BEGIN
OPEN OrderItemCursor;
LOOP
fetch from OrderItemCursor INTO var OrderID, var NumItems;
EXIT WHEN NOT FOUND;
IF var NumItems > 100 THEN

RAISE NOTICE 'EXECUTING LogLargeOrder - %s',var OrderID;
RAISE NOTICE 'Num Items: %s', var Numltems;
ELSE

RAISE NOTICE 'EXECUTING LogSmallOrder - %s',var OrderID;
RAISE NOTICE 'Num Items: %s', var NumItems;
END TIF;
END LOOP;
done = TRUE;

CLOSE OrderItemCursor;

END; S$function$

-175-

aws

While there are some syntax differences between SQL Server and Aurora PostgreSQL flow control statements,
most rewrites should be straightforward. The following table summarizes the differences and identifies how to
modify T-SQL code to support similar functionality in Aurora PostgreSQL PL/pgSQL.

COMMAND |SQL Server Aurora PostgreSQL
BEGIN... Define command block | Define command block boundaries.
END boundaries
RETURN Exit the current scope | Exit a stored function and return to caller.
and return to caller
Supported for both
scripts and stored code
(procedures and func-
tions).
BREAK Exit WHILE loop exe- |EXIT WHEN
cution
THROW Raise errors and poten- | Raise errors and potentially return control to the calling stack.
tially return control to
the calling stack
TRY - Error handling Error handling - See Error Handling for more details.
CATCH
GOTO Move execution to spe- | Consider rewriting the flow logic using either CASE statements or nes-
cified label ted stored procedures. You can use nested stored procedures to cir-
cumvent this limitation by separating code sections and encapsulating
them in sub-procedures. Use IF <condition> EXEC <stored pro-
cedure> in place of GOTO.
WAITFOR Delay pg_sleep - see: https://www.postgresqgl.org/docs/13/static/functions-
datetime.html
IF... ELSE Conditional flow control | Conditional flow control
WHILE Continue execution Continue execution while condition is TRUE
while condition is
TRUE

For more information, see https.://www.postgresqgl.org/docs/13/static/plpgsql-control-structures. html

Feature Com- SCT/DMS Auto- SCT Action Code .

patibility mation Level Index $GE AT
s SCT Action Codes - Different paradigm and syntax will require
= = === QOQOQ Full Text Search rewriting the application

-176 -

https://www.postgresql.org/docs/10/static/functions-datetime.html
https://www.postgresql.org/docs/10/static/functions-datetime.html
https://www.postgresql.org/docs/13/static/plpgsql-control-structures.html

aws

SQL Server supports an optional framework for executing Full-Text search queries against character-based data
in SQL Server tables using an integrated, in-process Full-Text engine and a filter daemon host process
(fdhost.exe).

To run Full-Text queries, a Full-Text catalog must first be created, which in turn may contain one or more Full-
Text indexes. A Full-Text index is comprised of one or more textual columns of a table.

Full-text queries perform smart linguistic searches against Full-Text indexes by identifying words and phrases
based on specific language rules. The searches can be for simple words, complex phrases, or multiple forms of a
word or a phrase. They can return ranking scores for matches (also known as "hits").

A Full-Text index can be created on one of more columns of a table or view for any of the following data types:

« CHAR: Fixed size ASCII string column data type

« VARCHAR: Variable size ASCII string column data type

« NCHAR: Fixed size UNICODE string column data type

« NVARCHAR: Variable size UNICODE string column data type
o TEXT: ASCII BLOB string column data type (deprecated)

o NTEXT: UNICODE BLOB string column data type (deprecated)
« IMAGE: Binary BLOB data type (deprecated)

o XML: XML structured BLOB data type

« VARBINARY(MAX): Binary BLOB data type

« FILESTREAM: File based storage data type

Note: For more information about data types, see Data Types.

Full-text indexes are created using the CREATE FULLTEXT INDEX statement. A Full-Text index may contain
up to 1024 columns from a single table or view.

When creating Full-Text indexes on BINARY type columns, documents such as Microsoft Word can be stored as
a binary stream and parsed correctly by the Full-Text engine.

Full-text indexes are contained within Full-Text catalog objects. A Full-Text catalog is a logical container for one
or more Full-Text indexes and can be used to collectively administer them as a group for tasks such as back-up,
restore, refresh content, etc.

Full-text catalogs are created using the CREATE FULLTEXT CATALOG statement. A Full-Text catalog may con-
tain zero or more Full-Text indexes and is limited in scope to a single database.

After a Full-Text catalog and index have been create and populated, users can perform Full-Text queries against
these indexes to query for:

-177 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-catalog-transact-sql

aws

« Simple term match for one or more words or phrases

« Prefix term match for words that begin with a set of characters

« Generational term match for inflectional forms of a word

« Proximity term match for words or phrases that are close to another word or phrase
« Thesaurus search for synonymous forms of a word

« Weighted term match for finding words or phrases with weighted proximity values
Full-text queries are integrated into T-SQL and use the following predicates and functions:

o CONTAINS predicate
« FREETEXT predicate
o CONTAINSTABLE table valued function
« FREETEXTTABLE table valued function

Note: Do not confuse Full-Text functionality with the LIKE predicate, which is used for pattern matching
only.

By default, Full-Text indexes are automatically updated when the underlying data is modified, similar to a normal
B-Tree or Columnstore index. However, large changes to the underlying data may inflict a performance impact
for the Full-Text indexes update because it is a resource intensive operation. In these cases, you can disable the
automatic update of the catalog and update it manually, or on a schedule, to keep the catalog up to date with the
underlying tables.

Note: You can monitor the status of Full-Text catalog by using the FULLTEXTCATALOGPROPERTY
(<Full-text Catalog Name>, 'Populatestatus') function.

Create a ProductReviews table.

CREATE TABLE ProductReviews
(
ReviewID INT NOT NULL
IDENTITY (1,1),
CONSTRAINT PK ProductReviews PRIMARY KEY (ReviewID),
ProductID INT NOT NULL
/*REFERENCES Products (ProductID) */,
ReviewText VARCHAR (4000) NOT NULL,
ReviewDate DATE NOT NULL,
UserID INT NOT NULL
/*REFERENCES Users (UserID) */
) ;

INSERT INTO ProductReviews
(ProductID, ReviewText, ReviewDate, UserID)
VALUES

(1, 'This is a review for product 1, it is excellent and works as expected’,
'20180701', 2),
(1, 'This is a review for product 1, it is not that great and failed after two days',

-178-

aws

'20180702', 2),
(2, 'This is a review for product 3, it has exceeded my expectations. A+++',
'20180710"', 2);

Create a Full-Text catalog for product reviews.

CREATE FULLTEXT CATALOG ProductFTCatalog;

Create a Full-Text index for ProductReviews.

CREATE FULLTEXT INDEX

ON ProductReviews (ReviewText)
KEY INDEX PK ProductReviews
ON ProductFTCatalog;

Query the Full-Text index for reviews containing the word 'excellent'.

SELECT *
FROM ProductReviews
WHERE CONTAINS (ReviewText, 'excellent'):;

ReviewID ProductID ReviewText

ReviewDate UserID
1 1 This is a review for product 1, it is excellent and works as expected
2018-07-01 2

For more information, see https://docs. microsoft.com/en-us/sql/2014/relational-databases/search/F ull-Text-search?view-
w=sqgl-server-ver15

Full-Text indexes are used to speed up textual searches performed against textual data by using the Full-Text
@@ predicate.

Full-Text indexes can be created on almost any column data type, it depends on the operator class used when
the index is created. All classes can be queried from the pg_opclass table and defaults can be defined.

The default class uses index tsvector data types. The most common use is to create one column with text or other
data type, and use triggers to convert it to a tsvector.

There are two index types for full-text searches: GIN and GiST.

GIN is slowler when building the index because it iscomplete (no false positive results), but it's faster when query-
ing.
GIN performance on creation can be improved by increasing the maintenance_work_mem parameter.

When creating GIN indexes, they can be combined with these parameters:

« fastupdate: puts updates on the index on a waiting list so they will occur in VACUUM or related scenarios
(defaultis ON)

« gin_pending_list_limit: the maximum size of a waiting list (in KB, the default is 4MB)

179 -

https://docs.microsoft.com/en-us/sql/2014/relational-databases/search/full-text-search
https://docs.microsoft.com/en-us/sql/2014/relational-databases/search/full-text-search

aws

GIN cannot be used as composite index (multi columns) unless you add the btree_gin extension (which is sup-
ported in Aurora).

CREATE EXTENSION btree_gin;
CREATE INDEX reviews idx ON reviews USING GIN (title, body);

Full-Text Search Functions

Boolean Search

You can use to_tsquery(), which accepts a list of words is checked against the normalized vector created with to_
tsvector(). To do this, use the @@ operator to check if tsquery matches tsvector. For example, the following state-
ment returns 't' because the column contains the word 'boy'. This search also returns 't' for 'boys' but not for
'boyser’.

SELECT to tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('boy'):;

Operators Search

The following example shows how to use the AND (&), OR (]), and NOT (!) operators. The example below
returns't'.

SELECT to tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('young & (boy | gquy) & !girl');

Phase Search
When using to_tsquery, you can also search for a similar term if you replace boy with boys and add the laungauge
to be used.

SELECT to tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('english', 'young & (boys | guy) & !girl');

Search words within a specific distance ('-' is equal to 1). Theses examples return true.
SELECT to_tsvector ('The quick young boy jumped over the fence') Q@
to tsquery ('young <-> boy'),

to tsvector ('The quick young boy jumped over the fence') @@
to tsquery('quick <3> jumped');

Migration Considerations

Migrating Full-Text indexes from SQL Server to Aurora PostgreSQL requires a full rewrite of the code that
addresses creating, managing, and querying of Full-Text searches.

Although the Aurora PostgreSQL full-text engine is significantly less comprehensive than SQL Server, it is also
much simpler to create and manage, and it is sufficiently powerful for most common, basic full-text requirements.

-180-

aws

A text search dictionary can be created. For more information see: https://www.postgresgl.org/docs/13/static/sql-
createtsdictionary.html

For more complex full-text workloads, Amazon RDS offers CloudSearch, a managed service in the AWS Cloud
that makes it simple and cost-effective to set up, manage, and scale an enterprise grade search solution. Amazon

CloudSearch supports 34 languages and advanced search features such as highlighting, autocomplete, and geo-
spatial search.

Currently, there is no direct tooling integration with Aurora PostgreSQL and, therefore, you must create a custom
application to synchronize the data between RDS instances and the CloudSearch Service.

For more information on CloudSearch, see https.//aws.amazon.com/cloudsearch/

Examples

CREATE TABLE ProductReviews
(

ReviewID SERIAL PRIMARY KEY,
ProductID INT NOT NULL
ReviewText TEXT NOT NULL,
ReviewDate DATE NOT NULL,
UserID INT NOT NULL

) ;

INSERT INTO ProductReviews

(ProductID, ReviewText, ReviewDate, UserID)
VALUES

(1, 'This is a review for product 1, it is excellent and works as expected',
'20180701"', 2),

(1, 'This is a review for product 1, it is not that great and failed after two days',
'20180702', 2),

(2, '"This is a review for product 3, it has exceeded my expectations. A+++',
'20180710"', 2);

Create Full-Text search index.
CREATE INDEX gin idx ON ProductReviews USING gin (ReviewText gin trgm ops);

Note: gin_trgm_ops allows indexing a TEXT data type.

Query the full-text index for reviews containing the word 'excellent'.

SELECT * FROM ProductReviews where ReviewText @@ to tsquery('excellent');

For more information, see:

o https.//www.postgresqgl.org/docs/13/static/textsearch.html

o https.//www.postgresqgl.org/docs/13/static/textsearch-features.html!

- 181 -

https://www.postgresql.org/docs/13/static/sql-createtsdictionary.html
https://www.postgresql.org/docs/13/static/sql-createtsdictionary.html
https://aws.amazon.com/cloudsearch/
https://www.postgresql.org/docs/13/static/textsearch.html
https://www.postgresql.org/docs/13/static/textsearch-features.html

aws

SQL Server Graph vs. PostgreSQL Apache AGE
extension

Feature Com- SCT/DMS Auto- SCT Action Code .

patibility mation Level Index N AEETEES
cssses No native support requires rewriting the
SsSsss | Q0000 No natve

SQL Server Usage

SQL Server offers graph database capabilities to model many-to-many relationships. The graph relationships are
integrated into Transact-SQL and receive the benefits of using SQL Server as the foundational database man-
agement system.

A graph database is a collection of nodes (or vertices) and edges (or relationships). A node represents an entity
(for example, a person or an organization) and an edge represents a relationship between the two nodes that it
connects (for example, likes or friends). Both nodes and edges may have properties associated with them. Here
are some features that make a graph database unique:

« Edges or relationships are first class entities in a Graph Database and can have attributes or properties
associated with them.

« A single edge can flexibly connect multiple nodes in a Graph Database.
« You can express pattern matching and multi-hop navigation queries easily.
« You can express transitive closure and polymorphic queries easily.

A relational database can achieve anything a graph database can. However, a graph database makes it easier to
express certain kinds of queries. Also, with specific optimizations, certain queries may perform better. Your
decision to choose either a relational or graph database is based on following factors:

« Your application has hierarchical data. The HierarchylD datatype can be used to implement hierarchies,
but it has some limitations. For example, it does not allow you to store multiple parents for a node.

« Your application has complex many-to-many relationships; as application evolves, new relationships are
added.

« You need to analyze interconnected data and relationships.

SQL Server 2017 adds new graph database capabilities for modeling graph many-to-many relationships. They
include new CREATE TABLE syntax for creating node and edge tables, and the keyword MATCH for queries.
See Graph Processing with SQL Server 2017

CREATE TABLE example:

CREATE TABLE Person (ID INTEGER PRIMARY KEY, Name VARCHAR(100), Age INT) AS NODE;

CREATE TABLE friends (StartDate date) AS EDGE;

-182-

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15

aws

New MATCH clause is introduced to support pattern matching and multi-hop navigation through the graph. The
MATCH function uses ASClI-art style syntax for pattern matching. For example:

-— Find friends of John

SELECT Person?2.Name

FROM Person Personl, Friends, Person Person2
WHERE MATCH (Personl- (Friends)->Person?2)

AND Personl.Name = 'John';

SQL Server 2019 adds ability to define cascaded delete actions on an edge constraint in a graph database. Edge
constraints enable users to add constraints to their edge tables, thereby enforcing specific semantics and also
maintaining data integrity. For more information see Edge Cnostraints

In SQL Server 2019 graph tables now have support for table and index partitioning. For more information see Par-
titioned Tables and Indexes.

PostgreSQL Usage

Currently PostgreSQL does not provide native Graph Database feature, but it is possible to implement some of
them using recursive CTE queries, serializing graphs to regular relations or using various extensions, such as
Apache AGE. For more information see Postgres as Graph Database.

Apache AGE is a PostgreSQL extension that provides graph database functionality. AGE is an acronym for A
Graph Extension, and is inspired by Bitnine's fork of PostgreSQL 10, AgensGraph, which is a multi-model data-
base. The goal of the project is to create single storage that can handle both relational and graph model data so
that users can use standard ANSI SQL along with openCypher, the Graph query language.

« AGE is currently being developed for the PostgreSQL 11 release and will support PostgreSQL 12 and 13
in 2021 and all the future releases of PostgreSQL.

« AGE supports the openCypher graph query language and label hierarchy.

« AGE enables querying multiple graphs at the same time. This will allow a user to query two or more graphs
at once with cypher, decide how to merge them and get the desired query outputs.

« AGE will be enhanced with an aim to support all of the key features of AgensGraph (PostgreSQL fork
extended with graph DB functionality).

Unfortunately, Aurora PostgreSQL is not supporting Apache AGE extension. So if you want to use Graphs in
PostgreSQL you should consider to use RDS for PostgreSQL.

For more information see Apache AGE (incubating)

SQL Server JSON and XML vs. PostgreSQL JSON
and XML

Feature Com- SCT/DMS Auto- SCT Action .
patibility mation Level Code Index e
cssse= XML Syntax and option differences, similar func-
= = = == aaoaa tionality
Missing FOR XML clause

-183-

https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15

aws

Java Script Object Notation (JSON) and eXtensible Markup Language (XML) are the two most common types of
semi-structured data documents used by a variety of data interfaces and NoSQL databases. Most REST web ser-
vice APIs support JSON as their native data transfer format. XML is an older, more mature framework that is still
widely used. It provides many extensions such as XQuery, name spaces, schemas, and more.

The following example is a JSON document:

[{

"name": "Robert",
"age": "28"

boo A
"name": "James",
"age": "71"
"lastname": "Drapers"

}H]

It's XML counterpart is:

<?xml version="1.0" encoding="UTF-16" ?>
<root>
<Person>
<name>Robert</name>
<age>28</age>
</Person>
<Person>
<name>James</name>
<age>71</age>
<lastname>Drapers</lastname>
</Person>
</root>

SQL Server provides native support for both JSON and XML in the database using the familiar and convenient T-
SQL interface.

SQL Server provides extensive native support for working with XML data including XML Data Types, XML
Columns, XML Indexes, and XQuery.

XML data can be stored using the following data types:

» The Native XML Data Type uses a BLOB structure but preserves the XML Infoset, which consists of the
containment hierarchy, document order, and element/attribute values. An XML typed document may differ
from the original text; white space is removed and the order of objects may change. XML Data stored as a
native XML data type has the additional benefit of schema validation.

« An Annotated Schema (AXSD) can be used to distribute XML documents to one or more tables. Hier-
archical structure is maintained, but element order is not.

- 184 -

aws

« CLOB or BLOB such as VARCHAR(MAX) and VARBINARY (MAX) can be used to store the original
XML document.

SQL Server allows creation of PRIMARY and SECONDARY XML indexes on columns with a native XML data
type. Secondary indexes can be created for PATH, VALUE, or PROPERTY, which are helpful for various types
of workload queries.

SQL Server supports a subset of the W3C XQUERY language specification. It allows executing queries directly
against XML data and using them as expressions or sets in standard T-SQL statements.

For example:

DECLARE @XMLVar XML = '<Root><Data>My XML Data</Data></Root>';
SELECT @XMLVar.query('/Root/Data');

Result: <Data>My XML Data</Data>

SQL Server does not support a dedicated JSON data type. However, you can store JSON documents in an
NVARCHAR column. For more information about BLOBS, see Data Types.

SQL Server provides a set of JSON functions that can be used for the following tasks:

« Retrieve and modify values in JSON documents.
o Convert JSON objects to a set (table) format.
» Use standard T-SQL queries with converted JSON objects.
« Convert tabular results of T-SQL queries to JSON format.
The functions are:
« ISJSON: Tests if a string contains a valid JSON string. Use in WHERE clause to avoid errors.
« JSON_VALUE: Retrieves a scalar value from a JSON document.
« JSON_QUERY: Retrieves a whole object or array from a JSON document.

« JSON_MODIFY: Modifies values in a JSON document.

« OPENJSON: Converts a JSON document to a SET that can be used in the FROM clause of a T-SQL
query.
The FOR JSON clause of SELECT queries can be used to convert a tabular set to a JSON document.

Create a table with a native typed XML column.

CREATE TABLE MyTable
(

-185-

aws

XMLIdentifier INT NOT NULL PRIMARY KEY,
XMLDocument XML NULL
)7

Query a JSON document.

DECLARE @JSONVar NVARCHAR (MAX) ;

SET @JSONVar = '{"Data":{"Person":[{"Name":"John"}, {"Name":"Jane"},
{"Name" :"Maria"}]}}"';

SELECT JSON QUERY (@JSONVar, 'S.Data');

For more information, see:

« https://docs.microsoft.com/en-us/sqgl/relational-databases/json/json-data-sql-server?view=sql-server-ver15

« https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-sqgl-server?view=sql-server-ver15

PostgreSQL provides native JSON Document support using the JSON data types JSON and JSONB.

JSON stores an exact copy of the input text that processing functions must re-parse on each execution. It also
preserves semantically-insignificant white space between tokens and the order of keys within JSON objects.

JSONB stores data in a decomposed binary format causing slightly slower input performance due to added con-
version to binary overhead. But it is significantly faster to process, since no re-parsing is needed on reads.

« Does not preserve white space.
« Does not preserve the order of object keys.

« Does not keep duplicate object keys. If duplicate keys are specified in the input, only the last value is
retained.

Most applications store JSON data as JSONB unless there are specialized needs. For additional information
about the differences between JSON and JSOB datatypes, see
https://www.postgresqgl.org/docs/13/static/datatype-json.html

In order to comply with the full JSON specification, database encoding must be set to UTF8. If the database code
page is not set to UTF8, then non-UTF8 characters are allowed and the database encoding will be hon-compliant
with the full JSON specification.

Note: Starting with PostgreSQL 10, both JSON and JSONB are compatible with full-text search.

Querying JSON data in PostgreSQL uses different syntax than SQL Server.

Return the JSON document stored in the emp_data column associated with emp_id=1.

SELECT emp data FROM employees WHERE emp id = 1;

Return all JSON documents stored in the emp_data column having a key named address.

SELECT emp data FROM employees WHERE emp data ? ' address';

- 186 -

https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-sql-server
https://www.postgresql.org/docs/13/static/datatype-json.html

aws

Return all JSON items that have an address key or a hobbies key.

SELECT * FROM employees WHERE emp data ?| array['address', 'hobbies'];
Return all JSON items that have both an address key and a hobbies key.

SELECT * FROM employees WHERE emp data ?& array['a', 'b'];

Return the value of home key in the phone numbers array.

SELECT emp data ->'phone numbers'->>'home' FROM employees;

Return all JSON documents where the address key is equal to a specified value and return all JSON documents
where address key contains a specific string (using like).

SELECT * FROM employees WHERE emp data->>'address' = '1234 First Street, Capital
City';

SELECT * FROM employees WHERE emp data->>'address' like '%Capital City%';

Removing keys from JSON (removing more than one key is available in PostgreSQL 10 only).

select '{"id":132, "fname":"John", "salary":999999, "bank account":1234}'::jsonb
- '{salary,bank account}'::text[];

For additional details, see https://www.postgresgl.org/docs/13/static/functions-json.html

You can use the CREATE UNIQUE INDEX statement to enforce constraints on values inside JSON documents.
For example, you can create a unique index that forces values of the address key to be unique.

CREATE UNIQUE INDEX employee address uqg ON employees((emp data->>'address')) ;

This index allows the first SQL insert statement to work and causes the second to fail.

INSERT INTO employees VALUES
(2, 'Second Employee','{ "address": "1234 Second Street, Capital City"}'");

INSERT INTO employees VALUES
(3, '"Third Employee', '{ "address": "1234 Second Street, Capital City"}'");

ERROR: duplicate key value violates unique constraint "employee address ug" SQL state:
23505 Detail: Key ((emp_data ->> 'address'::text))=(1234 Second Street, Capital City)
already exists.

For JSON data, PostgreSQL Supports B-Tree, HASH, and Generalized Inverted Indexes (GIN). A GIN index is a
special inverted index structure that is useful when an index must map many values to a row (such as indexing
JSON documents).

When using GIN indexes, you can efficiently and quickly query data using only the following JSON operators:
@>,7,7&, 7]

-187-

https://www.postgresql.org/docs/10/static/functions-json.html
https://www.postgresql.org/docs/10/static/gin.html

aws

Without indexes, PostgreSQL is forced to perform a full table scan when filtering data. This condition applies to
JSON data and will most likely have a negative impact on performance since Postgres has to step into each
JSON document.

Create an index on the address key of emp_data.

CREATE 1idxl employees ON employees ((emp data->>'address')):;

Create a GIN index on a specific key or the entire emp_data column.

CREATE INDEX idx2 employees ON cards USING gin ((emp data->'tags'));
CREATE INDEX 1idx3 employees ON employees USING gin (emp data);

PostgreSQL provides an XML data type for table columns. The primary advantage of using XML columns, rather
than placing XML data in text columns, is that the XML data is type checked when inserted. Additionally, there are
support functions to perform type-safe operations.

XML can store well-formed “documents” as defined by the XML standard or “content” fragments that defined by
the production XMLDecl. Content fragments can have more than one top-level element or character node.

IS DOCUMENT can be used to evaluate whether a particular XML value is a full document or only a content frag-
ment.

The following example demonstrates how to create XML data and insert it into a table:

Insert a document, and then insert a content fragment. Both types of XML data can be inserted into the same
column. If the XML is incorrect (such as a missing tag), the insert fails with the relevant error. The query retrieves
only document records.

CREATE TABLE test (a xml);

insert into test values (XMLPARSE (DOCUMENT '<?xml ver-—
sion="1.0"?><Series><title>Simpsons</title><chapter>...</chapter></Series>"'));

insert into test values (XMLPARSE (CONTENT 'note<tag>value</tag><tag>value</tag>'"));

select * from test where a IS DOCUMENT;

- 188 -

aws

Converting XML data to rows was a feature added in PostgreSQL 10. This can be very helpful reading XML data
using a table equivalent:

CREATE TABLE xmldata sample AS SELECT
xml $$
<ROWS>
<ROW id="1">
<EMP_ID>532</EMP ID>
<EMP_NAME>John</EMP_NAME>
</ROW>
<ROW id="5">
<EMP_ID>234</EMP_ID>
<EMP7NAME>Carl</EMPiNAME>
<EMP DEP>6</EMP DEP>
<SALARY unit="dollars">10000</SALARY>
</ROW>
<ROW id="6">
<EMP_ID>123</EMP_ID>
<EMP DEP>8</EMP DEP>
<SALARY unit="dollars">5000</SALARY>
</ROW>
</ROWS>
$$ AS data;

SELECT xmltable.*
FROM xmldata sample,
XMLTABLE ('//ROWS/ROW'

PASSING data

COLUMNS id int PATH '@id',
ordinality FOR ORDINALITY,
"EMP_NAME" text,
"EMP_ ID" text PATH 'EMP ID',
SALARY_USD float PATH 'SALARY[Qunit = "dollars"]',
MANAGER NAME text PATH 'MANAGER NAME' DEFAULT 'not specified');

id |ordinality |EMP NAME |EMP ID |salary usd |manager name
o= |memmesamsas e |emmmss e |emmemesssscs

1 |1 | John | 532 | |Inot specified
5 |2 |Carl | 234 [10000 |not specified
o | 3 | 1123 5000 |not specified

-189-

aws

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora PostgreSQL

XML and JSON nat- | XML with schema col- [JSON

ive data types lections

JSON functions IS_JSON, JSON _ A set of more than 20 dedicated JSON functions.
VALUE, JSON_ See: https://www.postgresgl.org/docs/13/static/functions-
QUERY, JSON _ json.html
MODFIY, OPEN_
JSON, FOR JSON

XML functions XQUERY and XPATH, | Many XML functions,

OPEN_XML, FOR XML

xml.html

see: https://www.postgresql.org/docs/13/static/functions-

Missing the FOR XML cluase, can use string_agg instead.

XML and JSON Primary and Secondary
Indexes PATH, VALUE and
PROPERTY indexes

Supported

For additional information on PostgresSQL XML Types & Functions, see:

« https://www.postgresql.org/docs/13/static/datatype-xml.html

« https://www.postgresql.org/docs/13/static/functions-xml.html

For additional information on the JSON data type & functions, see:

« https://www.postgresql.org/docs/13/static/datatype-json.html|

« https://www.postgresql.org/docs/13/static/functions-json.html

SQL Server MERGE vs. PostgreSQL MERGE

Feature Com- SCT/DMS Automation . .

patibility Level SCT Action Code Index | Key Differences
A= SCT Action Codes - Rewrite to use INSERT... ON
SSESEss | aRoun MERGE CONFLICT

SQL Server Usage

MERGE is a complex, hybrid DML/DQL statement for performing INSERT, UPDATE, or DELETE operations
on a target table based on the results of a logical join of the target table and a source data set.

MERGE can also return row sets similar to SELECT using the OUTPUT clause, which gives the calling scope
access to the actual data modifications of the MERGE statement.

-190 -

https://www.postgresql.org/docs/13/static/functions-json.html
https://www.postgresql.org/docs/13/static/functions-json.html
https://www.postgresql.org/docs/13/static/datatype-xml.html
https://www.postgresql.org/docs/13/static/functions-xml.html
https://www.postgresql.org/docs/13/static/datatype-json.html
https://www.postgresql.org/docs/13/static/functions-json.html

aws

The MERGE statement is most efficient for non-trivial conditional DML. For example, inserting data if a row key
value does not exist and updating the existing row if the key value already exists.

You can easily manage additional logic such as deleting rows from the target that don't appear in the source. For
simple, straightforward updates of data in one table based on data in another, it is typically more efficient to use
simple INSERT, DELETE, and UPDATE statements. All MERGE functionality can be replicated using INSERT,
DELETE, and UPDATE statements, but not necessarily less efficiently.

The SQL Server MERGE statement provides a wide range of functionality and flexibility and is compatible with
ANSI standard SQL:2008. SQL Server has many extensions to MERGE that provide efficient T-SQL solutions
for synchronizing data.

MERGE [INTO] <Target Table> [AS] <Table Alias>]
USING <Source Table>

ON <Merge Predicate>

[WHEN MATCHED [AND <Predicate>]

THEN UPDATE SET <Column Assignments...> | DELETE]
[WHEN NOT MATCHED [BY TARGET] [AND <Predicate>]
THEN INSERT [(<Column List>)]

VALUES (<Values List>) | DEFAULT VALUES]

[WHEN NOT MATCHED BY SOURCE [AND <Predicate>]
THEN UPDATE SET <Column Assignments...> | DELETE]
OUTPUT [<Output Clause>]

Perform a simple one-way synchronization of two tables.

CREATE TABLE SourceTable

(

Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR (20) NOT NULL

) ;

CREATE TABLE TargetTable

(

Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR (20) NOT NULL

) ;

INSERT INTO SourceTable (Coll, Col2)
VALUES

(2, 'Source2'),

(3, 'Source3'),

(4, 'Sourced');

INSERT INTO TargetTable (Coll, Col2)
VALUES

(1, 'Targetl'),

(2, 'Target2'),

(3, 'Target3');

-191 -

aws

MERGE INTO TargetTable AS TGT

USING SourceTable AS SRC ON TGT.Coll = SRC.Coll
WHEN MATCHED

THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED

THEN INSERT (Coll, Col2)

VALUES (SRC.Coll, SRC.Col2);

SELECT * FROM TargetTable;

Coll Col2

1 Targetl
2 Source?2
3 Source3
4 Sourceid

Perform a conditional two-way synchronization using NULL for "no change" and DELETE from the target when
the data is not found in the source.

TRUNCATE TABLE SourceTable;
INSERT INTO SourceTable (Coll, Col2) VALUES (3, NULL), (4, 'NewSourced'), (5,
'Sourceb') ;

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Coll = SRC.Coll
WHEN MATCHED AND SRC.Col2 IS NOT NULL

THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED

THEN INSERT (Coll, Col2)

VALUES (SRC.Coll, SRC.Col2)
WHEN NOT MATCHED BY SOURCE

THEN DELETE;

SELECT *
FROM TargetTable;

Coll Col2

3 Source3

4 NewSourced
5 Sourceb

For more information, see https.//docs. microsoft.com/en-us/sql/t-sqgl/statements/merge-transact-sql?view=sqgl-server-
ver15

PostgreSQL Usage

Currently, PostgreSQL version 10 does not support the use of the MERGE SQL command. As an alternative,
consider using the INSERT... ON CONFLICT clause, which can handle cases where insert clauses might cause a
conflict, and then redirect the operation as an update.

-192-

https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql

aws

Examples

Using the ON ONFLICT clause:

CREATE TABLE EMP BONUS (

EMPLOYEE ID NUMERIC,

BONUS YEAR VARCHAR (4),

SALARY NUMERIC,

BONUS NUMERIC,

PRIMARY KEY (EMPLOYEE ID, BONUS YEAR));

INSERT INTO EMP BONUS (EMPLOYEE ID, BONUS YEAR, SALARY)
SELECT EMPLOYEE ID, EXTRACT (YEAR FROM NOW()), SALARY
FROM EMPLOYEES
WHERE SALARY < 10000
ON CONFLICT (EMPLOYEE ID, BONUS_YEAR)
DO UPDATE SET BONUS = EMP_ BONUS.SALARY * 0.5;

SELECT * FROM EMP BONUS;

employee id | bonus year | salary | bonus
————————————— e et e e
103 | 2017 | 9000.00 | 4500.000

104 | 2017 | 6000.00 | 3000.000

105 | 2017 | 4800.00 | 2400.000

106 | 2017 | 4800.00 | 2400.000

107 | 2017 | 4200.00 | 2100.000

109 | 2017 | 9000.00 | 4500.000

110 | 2017 | 8200.00 | 4100.000

111 | 2017 | 7700.00 | 3850.000

112 | 2017 | 7800.00 | 3900.000

113 | 2017 | 6900.00 | 3450.000

115 | 2017 | 3100.00 | 1550.000

116 | 2017 | 2900.00 | 1450.000

117 | 2017 | 2800.00 | 1400.000

118 | 2017 | 2600.00 | 1300.000

Running the same operation multiple times using the ON CONFLICT clause does not generate an error because
the existing records are redirected to the update clause.

For more information, see:
https://www.postgresqgl.org/docs/13/static/sql-insert.html

https.//www.postgresql.org/docs/13/static/unsupported-features-sqgl-standard.htm

SQL Server PIVOT and UNPIVOT vs.
PostgreSQL PIVOT and UNPIVOT

Feature Com- SCT/DMS Automation |SCT Action Code Kev Differences

patibility Level Index y
A= SCT Action Codes - | Straight forward rewrite to use traditional
=T T == aaaaa PIVOT SQL syntax

-193-

https://www.postgresql.org/docs/13/static/sql-insert.html
https://www.postgresql.org/docs/13/static/unsupported-features-sql-standard.htm

aws

SQL Server Usage

PIVOT and UNPIVOT are relational operations used to transform a set by rotating rows into columns and
columns into rows.

PIVOT

The PIVOT operator consists of several clauses and implied expressions.

The "Anchor" column is the column that is not be pivoted and results in a single row per unique value, similar to
GROUP BY.

The pivoted columns are derived from the PIVOT clause and are the row values transformed into columns. The
values for these columns are derived from the source column defined in the PIVOT clause.

Syntax

SELECT <Anchor column>,
[Pivoted Column 1] AS <Alias>,
[Pivoted column 2] AS <Alias>
.n
FROM
(<SELECT Statement of Set to be Pivoted>)
AS <Set Alias>
PIVOT
(
<Aggregate Function> (<Aggregated Column>)
FOR
[<Column With the Values for the Pivoted Columns Names>]
IN ([Pivoted Column 1], [Pivoted column 2] ...)
) AS <Pivot Table Alias>;

PIVOT Examples

Create and populate the Orders Table.

CREATE TABLE Orders

(
OrderID INT NOT NULL
IDENTITY (1,1) PRIMARY KEY,
OrderDate DATE NOT NULL,
Customer VARCHAR (20) NOT NULL

) ;

INSERT INTO Orders (OrderDate, Customer)
VALUES

('20180101', 'John'),

('20180201"', 'Mitch'"),
('20180102'", 'John'),

('20180104', 'Kevin'),
('20180104', 'Larry')

14

-194 -

aWs
('20180104', 'Kevin'),
('20180104"', 'Kevin'):;

Create a simple PIVOT for the number of orders per day (days of month 5-31 omitted for example simplicity).

SELECT 'Number of Orders Per Day' AS DayOfMonth,

(11, [21, [31, [41 /*...[311%/
FROM (
SELECT OrderID,
DAY (OrderDate) AS OrderDay
FROM Orders
) AS SourceSet
PIVOT

(

COUNT (OrderID)

FOR OrderDay IN ([1]1, [21, [31, [4] /*...[31]1*/)
) AS PivotSet;

DayOfMonth 1 2 3 4 /*...[311*/
Number of Orders Per Day 2 1 0 4

Note: The result set is now oriented in rows vs. columns. The first column is the description of the
columns to follow.

PIVOT for number of orders per day per customer.

SELECT Customer,

(11, [21, (31, [4] /*...[31]1*/
FROM (
SELECT OrderlID,
Customer,
DAY (OrderDate) AS OrderDay
FROM Orders
) AS SourceSet
PIVOT

(

COUNT (OrderID)

FOR OrderDay IN ([1]1, [2]1, [31, [4] /*...[311*/)
) AS PivotSet;

Customer 1 2 3 4
John 1 1 0 0
Kevin 0 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0

UNPIVOT is similar to PIVOT in reverse, but spreads existing column values into rows.

The source set is similar to the result of the PIVOT with values pertaining to particular entities listed in columns.
Since the result set has more rows than the source, aggregations aren't required.

-195-

aws

It is less commonly used than PIVOT because most data in relational databases have attributes in columns; not

the other way around.

UNPIVOT Examples

Create an populate the "pivot like" EmployeeSales table (in a actual scenario, this is most likely a view or a set

from an external source).

CREATE TABLE EmployeeSales
(

SaleDate DATE NOT NULL PRIMARY KEY,

John INT,
Kevin INT,
Mary INT
) ;

INSERT INTO EmployeeSales
VALUES

('20180101', 150, 0O, 300),
('20180102', 0, O, 0),
('20180103', 250, 50, 0),
('20180104', 500, 400, 100);

Unpivot employee sales per date into individual rows per employee.

SELECT SaleDate,

Employee,
SaleAmount
FROM
(
SELECT SaleDate, John, Kevin, Mary
FROM EmployeeSales
) AS SourceSet

UNPIVOT (

SaleAmount

FOR Employee IN (John, Kevin, Mary)

)AS UnpivotSet;
SaleDate Employee SaleAmount
2018-01-01 John 150
2018-01-01 Kevin 0
2018-01-01 Mary 300
2018-01-02 John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100

- 196 -

aws

For more information, see https://docs. microsoft.com/en-us/sql/t-sql/queries/from-using-pivot-and-unpivot ?view=sql-

server-ver15

PostgreSQL Usage

Aurora PostgreSQL does not support the PIVOT and UNPIVOT relational operators.

Functionality of both operators can be rewritten to use standard SQL syntax, as shown in the examples below.

Examples
PIVOT

Create and populate the Orders Table.

CREATE TABLE Orders

(
OrderID SERIAL PRIMARY KEY,
OrderDate DATE NOT NULL,

Customer VARCHAR (20) NOT NULL
) ;
INSERT INTO Orders (OrderDate, Customer)
VALUES
('20180101', 'John'),
('20180201"', 'Mitch'"),
('20180102'", 'John'),
('20180104', 'Kevin'),
('20180104', 'Larry'),
('20180104', 'Kevin'),
('20180104', 'Kevin');

Simple PIVOT for number of orders per day (days of month 5-31 omitted for example simplicity).

SELECT 'Number of Orders Per Day' AS DayOfMonth,

COUNT (CASE WHEN date part('day', OrderDate)
myw,

COUNT (CASE WHEN date part('day', OrderDate)
mom,

COUNT (CASE WHEN date part('day', OrderDate)
"3",

COUNT (CASE WHEN date part('day', OrderDate)
WAW fsz o o [3L] =/
FROM Orders AS O;
DayOfMonth 1 2 3
Number of Orders Per Day 2 1 0

PIVOT for number of order per day, per customer.

-197-

THEN

THEN

THEN

THEN

'OrderDate' ELSE NULL END)

'OrderDate' ELSE NULL END)

'OrderDate' ELSE NULL END)

'OrderDate' ELSE NULL END)
/*...[311*/

AS

AS

AS

AS

SELECT Customer,

COUNT (CASE WHEN date part('day', OrderDate)
"1"’

COUNT (CASE WHEN date part('day', OrderDate)
"2"’

COUNT (CASE WHEN date part('day', OrderDate)
"3",

COUNT (CASE WHEN date part('day', OrderDate)
/*x...[131]*%/

FROM Orders AS O

GROUP BY Customer;

Customer 1 2 3 4
John 1 1 0 0
Kevin 0 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0

UNPIVOT

Create an populate the 'pivot like' EmployeeSales table.

THEN

THEN

THEN

THEN

'OrderDate’

'OrderDate’

'OrderDate’

'OrderDate’

Note: in real life this will most likely be a view, or a set from an external source.

CREATE TABLE EmplyeeSales

(
SaleDate DATE NOT NULL PRIMARY KEY,

John INT,
Kevin INT,
Mary INT

) ;

INSERT INTO EmplyeeSales
VALUES

('20180101', 150, 0O, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50,
('20180104', 500, 400,

0),
100) ;

Unpivot employee sales per date into individual rows per employee.

SELECT SaleDate, Employee, SaleAmount
FROM (
SELECT SaleDate,
Employee,
CASE
WHEN Employee = 'John'
WHEN Employee = 'Kevin'
WHEN Employee = 'Mary'

END AS SaleAmount
FROM EmplyeeSales as emp
CROSS JOIN
(

- 198 -

THEN
THEN
THEN

'John'
'Kevin'
'Mary'

ELSE NULL END)

ELSE NULL END)

ELSE NULL END)

ELSE NULL END)

aws

AS
AS
AS

AS "4"

aws

SELECT 'John' AS Employee
UNION ALL
SELECT 'Kevin'
UNION ALL
SELECT 'Mary'
) AS Employees
) AS UnpivotedSet;

SaleDate Employee SaleAmount
2018-01-01 John 150
2018-01-01 Kevin 0
2018-01-01 Mary 300
2018-01-02 John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100

SQL Server Triggers vs. PostgreSQL Triggers

Feature Com- SCT/DMS Auto- |SCT Action Code Kev Differences

patibility mation Level Index y
I3 =0= SCT Action Codes | Syntax and option differences, similar func-
= = = == oaaoa - Triggers tionality - PostgreSQL trigger calling a function

SQL Server Usage

Triggers are special types of stored procedures that execute automatically in response to events. They are most
commonly used for Data Manipulation Language (DML).

SQL Server supports AFTER/FOR and INSTEAD OF triggers, which can be created on tables and views
(AFTER and FOR are synonymous). SQL Server also provides an event trigger framework at the server and
database levels that includes Data Definition Language (DDL), Data Control Language (DCL), and general sys-
tem events such as login.

Note: SQL Sever does not support FOR EACH ROW triggers in which the trigger code is executed
once for each row of modified data.

Trigger Execution

AFTER triggers execute after DML statements complete execution. INSTEAD OF triggers execute code in place
of the original DML statement. AFTER triggers can be created on tables only. INSTEAD OF triggers can be cre-
ated on tables and views.

-199-

aws

Only a single INSTEAD OF trigger can be created for any given object and event. When multiple AFTER triggers
exist for the same event and object, you can partially set the trigger order by using the sp_settriggerorder system
stored procedure. It allows setting the first and last triggers to be executed, but not the order of others.

SQL Server supports statement level triggers only. The trigger code is executed once per statement. The data
modified by the DML statement is available to the trigger scope and is saved in two virtual tables: INSERTED and
DELETED. These tables contain the entire set of changes performed by the DML statement that caused trigger
execution.

SQL triggers always execute within the transaction of the statement that triggered the execution. If the trigger
code issues an explicit ROLLBACK, or causes an exception that mandates a rollback, the DML statement is also
rolled back. For INSTEAD OF triggers, the DML statement is not executed and does not require a rollback.

The following examples demonstrate how to use a trigger to log rows deleted from a table.

Create and populate an Invoices table.

CREATE TABLE Invoices
(

InvoicelID INT NOT NULL PRIMARY KEY,
Customer VARCHAR (20) NOT NULL,
TotalAmount DECIMAL (9,2) NOT NULL

) ;

INSERT INTO Invoices (InvoicelID,Customer,TotalAmount)
VALUES

(1, 'John', 1400.23),

(2, 'Jeff', 245.00),

(3, 'James', 677.22);

Create an InvoiceAuditLog table.

CREATE TABLE InvoiceAuditLog
(

InvoicelID INT NOT NULL PRIMARY KEY,

Customer VARCHAR (20) NOT NULL,

TotalAmount DECIMAL (9,2) NOT NULL,

DeleteDate DATETIME NOT NULL DEFAULT (GETDATE()),
DeletedBy VARCHAR (128) NOT NULL DEFAULT (CURRENT USER)

)
Create an AFTER DELETE trigger to log deletions from the Invoices table to the audit log.

CREATE TRIGGER LogInvoiceDeletes
ON Invoices

AFTER DELETE

AS

BEGIN

- 200 -

INSERT INTO InvoiceAuditLog (InvoiceID, Customer, TotalAmount)
SELECT 1InvoicelD,
Customer,
TotalAmount
FROM Deleted
END;

Delete an invoice.

DELETE FROM Invoices
WHERE InvoiceID = 3;

Query the content of both tables.

SELECT *

FROM Invoices AS I
FULL OUTER JOIN
InvoiceAuditLog AS IAG
ON I.InvoiceID = IAG.InvoicelID;

The example code above displays the following results:

InvoiceID Customer TotalAmount InvoiceID Customer

TotalAmount DeleteDate DeletedBy

1 John 1400.23 NULL NULL NULL
NULL

2 Jeff 245.00 NULL NULL NULL
NULL

NULL NULL NULL 3 James

677.22 20180224 13:02 Domain/JohnCortney

Create a DDL Trigger

Create atrigger to protect all tables in the database from accidental deletion.

CREATE TRIGGER PreventTableDrop
ON DATABASE FOR DROP_TABLE

AS

BEGIN
RAISERROR ('Tables Can''t be dropped in this database', 16, 1)
ROLLBACK TRANSACTION

END;

Test the trigger by attempting to drop a table.

DROP TABLE [Invoices];
GO

The system displays the follow message explaining that the Invoices table cannot be dropped:

aws

Msg 50000, Level 16, State 1, Procedure PreventTableDrop, Line 5 [Batch Start Line 56]

Tables Can't be dropped in this database

-201 -

aws

Msg 3609, Level 16, State 2, Line 57
The transaction ended in the trigger. The batch has been aborted.

For more information, see

« https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dmi-triggers ?view=sql-server-ver15

« https://docs.microsoft.com/en-us/sql/relational-databases/triggers/ddl-triggers ?view=sql-server-ver15

Triggers provide much of the same functionality as SQL Server:

- DML Triggers execute based on table related events, such as DML.

« Event Triggers execute after certain database events, such as running DDL commands.

Unlike SQL Server triggers, PostgreSQL triggers must call a function. They do not support anonymous blocks of
PL/pgSQL code as part of the trigger body. The user-supplied function is declared with no arguments and has a
return type of trigger.

» PostgreSQL triggers can be fired BEFORE or AFTER a DML operation.
« They execute before the operation is attempted on a row.
« Before constraints are checked and the INSERT, UPDATE, or DELETE is attempted.

« Ifthe trigger executes before or instead of the event, the trigger can skip the operation for the
current row or change the row being inserted (for INSERT and UPDATE operations only).

« Triggers can execute after the operation was completed, after constraints are checked, and the
INSERT, UPDATE, or DELETE command completed. If the trigger executes after the event, all
changes, including the effects of other triggers, are "visible" to the trigger.

» PostgreSQL triggers can run INSTEAD OF a DML command when created on views.

« PostgreSQL triggers can run FOR EACH ROW affected by the DML statement or FOR EACH
STATEMENT running only once as part of a DML statement.

. Row-Level Trigger (FOR | Statement-Level Trigger (FOR EACH
When Fired Database Event EACH ROW) STATEMENT)
BEFORE INSERT, UPDATE, Tables and foreign tables | Tables, views, and foreign tables
DELETE
TRUNCATE - Tables
AFTER INSERT, UPDATE, Tables and foreign tables | Tables, views, and foreign tables
DELETE
TRUNCATE - Tables
INSTEAD OF [INSERT, UPDATE, Views -
DELETE
TRUNCATE - -

-202 -

https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dml-triggers
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/ddl-triggers

aws

PostgreSQL Event Triggers

An event trigger executes when a specific event associated with the trigger occurs in the database. Supported
events include ddl_command_start, ddl_command_end, table_rewrite, and sql_drop.

« ddl_command_start occurs before the execution ofa CREATE, ALTER, DROP, SECURITY LABEL,
COMMENT, GRANT, REVOKE or SELECT INTO command.

« ddl_command_end occurs after the command completed and before the transaction commits.

« sql_drop executes only for the DROP DDL command, before the ddl_command_end trigger executes.

For a full list of supported PostgreSQL event trigger types, see https://www.postgresgl.org/docs/13/static/event-
trigger-matrix.html

PostgreSQL CREATE TRIGGER Synopsis

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...]
}

ON table name

[FROM referenced table name]

[NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED]]

[REFERENCING { { OLD | NEW } TABLE [AS] transition relation name } [...]]

[FOR [EACH] { ROW | STATEMENT }]

[WHEN (condition)]

EXECUTE PROCEDURE function name (arguments)

where event can be one of:
INSERT
UPDATE [OF column name [, ...]]

DELETE
TRUNCATE

Note: REFERENCING is a new option since PostgreSQL 10. It can be used with AFTER trigger to
interact with the overall view of the OLD or the NEW TABLE changed rows.

Example

Create a Trigger

Create a trigger function that stores the execution logic (this is the same as a SQL Server DML trigger).

CREATE OR REPLACE FUNCTION PROJECTS SET NULL ()
RETURNS TRIGGER

AS $$

BEGIN

IF TG_OP = 'UPDATE' AND OLD.PROJECTNO != NEW.PROJECTNO OR
TG OP = 'DELETE' THEN

UPDATE EMP

SET PROJECTNO = NULL
WHERE EMP.PROJECTNO = OLD.PROJECTNO;
END IF;

- 203 -

https://www.postgresql.org/docs/10/static/event-trigger-matrix.html
https://www.postgresql.org/docs/10/static/event-trigger-matrix.html

aws

IF TG OP = 'UPDATE' THEN RETURN NULL;

ELSIF TG OP = 'DELETE' THEN RETURN NULL;
END IF;

END; $3%
LANGUAGE PLPGSQL;

CREATE FUNCTION

Create the trigger

CREATE TRIGGER TRG_ PROJECTS SET NULL
AFTER UPDATE OF PROJECTNO OR DELETE
ON PROJECTS

FOR EACH ROW
EXECUTE PROCEDURE PROJECTS SET NULL() ;

CREATE TRIGGER

Test the trigger by deleting a row from the PROJECTS table.

DELETE FROM PROJECTS WHERE PROJECTNO=123;
SELECT PROJECTNO FROM EMP WHERE PROJECTNO=123;

projectno

- 204 -

aws

Create a DDL Trigger

Create an event trigger function (this is the same as a SQL Server DDL System/Schema level trigger, such as a
trigger that prevents running a DDL DROP on objects in the HR schema).

Note that trigger functions are created with no arguments and must have a return type of TRIGGER or EVENT _
TRIGGER.

CREATE OR REPLACE FUNCTION ABORT DROP_ COMMAND ()
RETURNS EVENT TRIGGER
AS $$
BEGIN
RAISE EXCEPTION 'The % Command is Disabled', tg tag;
END; $$
LANGUAGE PLPGSQL;

CREATE FUNCTION
Create the event trigger, which executes before the start of a DDL DROP command.
CREATE EVENT TRIGGER trg abort drop command
ON DDL_ COMMAND START
WHEN TAG IN ('DROP TABLE', 'DROP VIEW', 'DROP FUNCTION', 'DROP
SEQUENCE', 'DROP MATERIALIZED VIEW', 'DROP TYPE')
EXECUTE PROCEDURE abort drop command () ;
Test the trigger by attempting to drop the EMPLOYEES table.

DROP TABLE EMPLOYEES;

ERROR: The DROP TABLE Command is Disabled
CONTEXT: PL/pgSQL function abort drop command() line 3 at RAISE

- 205 -

aws

Feature

SQL Server

Aurora PostgreSQL

DML Triggers Scope

Statement level only

FOR EACH ROW and FOR EACH
STATMENT

Access to change set

INSERTED and DELETED Virtual
multi-row tables

OLD and NEW virtual one-row tables or
the whole view of changed rows

System event triggers

DDL, DCL and other event types

Event triggers

Trigger execution phase

AFTER and INSTEAD OF

AFTER, BEFORE, and INSTEAD OF

Multi-trigger execution
order

Can only set first and last using sp_
settriggerorder

Call function within a function

Drop a trigger

DROP TRIGGER <trigger name>;

DROP TRIGGER <trigger name>;

Modify trigger code

Use the ALTER TRIGGER state-
ment

Modify function code

Enable/Disable a trigger

Use the ALTER TRIGGER <trigger
name> ENABLE;

and

ALTER TRIGGER <trigger name>
DISABLE;

ALTER TABLE

Triggers on views

INSTEAD OF TRIGGERS only

INSTEAD OF TRIGGERS only

For additional details, see https.//www.postgresql.org/docs/13/static/plpgsql-trigger. html

SCT/DMS Automation
Level

oledegede,

Feature Compatibility SCT Action Code Index | Key Differences

SCT Action Codes - TOP
and FETCH

TOP is not supported

()
()
()
()
()

SQL Server supports two options for limiting and paging result sets returned to the client. TOP is a legacy, pro-
prietary T-SQL keyword that is still supported due to its wide usage. The ANSI compliant syntax of FETCH and
OFFSET were introduced in SQL Server 2012 and are recommended for paginating results sets.

The TOP (n) operator is used in the SELECT list and limits the number of rows returned to the client based on the
ORDER BY clause.

- 206 -

https://www.postgresql.org/docs/13/static/plpgsql-trigger.html

aws

Note: When TOP is used with no ORDER BY clause, the query is non-deterministic and may return any
rows up to the number specified by the TOP operator.

TOP (n) can be used with two modifier options:

« TOP (n) PERCENT is used to designate a percentage of the rows to be returned instead of a fixed max-
imal row number limit (n). When using PERCENT, n can be any value from 1-100.

« TOP (n) WITH TIES is used to allow overriding the n maximal number (or percentage) of rows specified in
case there are additional rows with the same ordering values as the last row.

Note: If TOP (n) is used without WITH TIES and there are additional rows that have the same ordering
value as the last row in the group of n rows, the query is also non-deterministic because the last row
may be any of the rows that share the same ordering value.

SELECT TOP (<Limit Expression>) [PERCENT] [WITH TIES] <Select Expressions List>
FROM. ..

OFFSET... FETCH as part of the ORDER BY clause is the ANSI compatible syntax for limiting and paginating
result sets. It allows specification of the starting position and limits the number of rows returned, which enables
easy pagination of result sets.

Similarto TOP, OFFSET... FETCH relies on the presentation order defined by the ORDER BY clause. Unlike
TOP, itis part of the ORDER BY clause and can't be used without it.

Note: Queries using FETCH... OFFSET can still be non-deterministic if there is more than one row that
has the same ordering value as the last row.

ORDER BY <Ordering Expression> [ASC | DESC] [,...n]
OFFSET <Offset Expression> { ROW | ROWS }
[FETCH { FIRST | NEXT } <Page Size Expression> { ROW | ROWS } ONLY]

Create the Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,

Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)

) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(L, 'M8 Bolt', 100),

- 207 -

(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Retrieve the 3 most ordered items by quantity.

-- Using TOP

SELECT TOP (3) *

FROM OrderItems

ORDER BY Quantity DESC;

—-— USING FETCH

SELECT *

FROM OrderItems

ORDER BY Quantity DESC

OFFSET 0 ROWS FETCH NEXT 3 ROWS ONLY;

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100

Include rows with ties.

SELECT TOP (3) WITH TIES *
FROM OrderItems
ORDER BY Quantity DESC;

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

Retrieve half the rows based on quantity.

SELECT TOP (50) PERCENT *
FROM OrderItems
ORDER BY Quantity DESC;

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200

For more information, see

aws

« https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sqgl?view=sgl-server-ver15

« https://docs.microsoft.com/en-us/sql/t-sgl/queries/top-transact-sql?view=sqgl-server-ver15

- 208 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql

aws

PostgreSQL Usage

Aurora PostgreSQL supports the non-ANSI compliant (but popular with other engines) LIMIT... OFFSET oper-
ator for paging results sets.

The LIMIT clause limits the number of rows returned and does not require an ORDER BY clause, although that
would make the query non-deterministic.

The OFFSET clause is zero-based, similar to SQL Server and used for pagination.
OFFSET 0 is the same as omitting the OFFSET clause, as is OFFSET with a NULL argument.

Syntax

SELECT select list
FROM table expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number |

Migration Considerations

LIMIT... OFFSET syntax can be used to replace the functionality of both TOP(n) and FETCH... OFFSET in SQL
Server. It is automatically converted by the Schema Conversion Tool (SCT) except for the WITH TIES and
PERCENT maodifiers.

To replace the PERCENT option, you must first calculate how many rows the query returns and then calculate
the fixed number of rows to be returned based on that number (see the example below).

Note: Since this technique involves added complexity and accessing the table twice, consider changing
the logic to use a fixed number instead of percentage.

To replace the WITH TIES option, you must rewrite the logic to add another query that checks for the existence of
additional rows that have the same ordering value as the last row returned from the LIMIT clause.

Note: Since this technique introduces significant added complexity and three accesses to the source
table, consider changing the logic to introduce a tie-breaker into the ORDER BY clause (see the
example below).

Examples

Create the Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)
) ;

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

- 209 -

(3,
(3,

'M8 Washer', 200),
'M6 Locking Nut', 300);

Retrieve the three most ordered items by quantity.

SELECT *

FROM OrderItems

ORDER BY Quantity DESC
LIMIT 3 OFFSET O;

OrderID Item Quantity
3 M6 Locking Nut 300

M8 Washer 200
1 M8 Bolt 100

Include rows with ties.

SELECT *
FROM
(
SELECT *
FROM OrderItems
ORDER BY Quantity DESC
LIMIT 3 OFFSET O
) AS X
UNION
SELECT *
FROM OrderItems
WHERE Quantity = (
SELECT Quantity
FROM OrderItems
ORDER BY Quantity DESC
LIMIT 1 OFFSET 2
)
ORDER BY Quantity DESC

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

Retrieve half the rows based on quantity.

CREATE or replace FUNCTION getOrdersPct (int)

SELECT * FROM OrderItems
ORDER BY Quantity desc LIMIT
$$ LANGUAGE SOQL;

SELECT * from getOrdersPct (50);
or
SELECT getOrdersPct (50) ;

RETURNS SETOF

(SELECT COUNT (*)*$1/100 FROM OrderItems)

-210-

aws

OrderItems AS $$

oFFSET O0;

aws

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
Summary
SQL Server Aurora PostgreSQL Comments
TOP (n) LIMIT n
TOP (n) WITHTIES Not supported See examples for work-
around
TOP (n) PERCENT Not supported See examples for work-
around
OFFSET... FETCH LIMIT... OFFSET

For more information, see https.//www.postgresql.org/docs/13/static/queries-limit. html

SQL Server User DefinedFunctions vs.
PostgreSQL User Defined Functions

Fea-tl.n:e - SCT/DMS Automation Level 261 BT EEE Key Differences
patibility Index
% % % % g Oooaa N/A fSeX(ra\:]ag;znd option dif-

SQL Server Usage

User Defined Functions (UDF) are code objects that accept input parameters and return either a scalar value or a
set consisting of rows and columns. SQL Server UDFs can be implemented using T-SQL or Common Language
Runtime (CLR) code.

Note: This section does not cover CLR code objects.

Function invocations can not have any lasting impact on the database. They must be contained and can only
modify objects and data local to their scope (for example, data in local variables). Functions are not allowed to
modify data or the structure of a database.

Functions may be deterministic or non-deterministic. Deterministic functions always return the same result when
executed with the same data. Non-deterministic functions may return different results each time they execute.
For example, a function that returns the current date or time.

SQL Server supports three types of T-SQL UDFs: Scalar Functions, Table-Valued Functions, and Multi-State-
ment Table-Valued Functions.

SQL Server 2019 adds Scalar User Defined Functions (UDF) inlining. Inlining transforms functions into relational
expressions and embeds them in the calling SQL query. This transformation improves the performance of work-
loads that take advantage of scalar UDFs. Scalar UDF inlining facilitates cost-based optimization of operations

-211 -

https://www.postgresql.org/docs/13/static/queries-limit.html

aws

inside UDFs. The results are efficient, set-oriented, and parallel instead of inefficient, iterative, serial execution
plans. For more information see Scalar UDF Inlining

Scalar User Defined Functions

Scalar UDFs accept zero or more parameters and return a scalar value. They can be used in T-SQL expressions.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])

RETURNS <Return Data Type>

[AS]

BEGIN

<Function Body Code>

RETURN <Scalar Expression>

END[;]

Examples

Create a scalar function to change the first character of a string to upper case.

CREATE FUNCTION dbo.UpperCaseFirstChar (@String VARCHAR (20))
RETURNS VARCHAR (20)

AS

BEGIN

RETURN UPPER(LEFT (@String, 1)) + LOWER (SUBSTRING (@String, 2, 19))
END;

SELECT dbo.UpperCaseFirstChar ('mIxEdCasE');

Mixedcase

User Defined Table-Valued Functions

Inline table-valued UDFs are similar to views or a Common Table Expressions (CTE) with the added benefit of
parameters. They can be used in FROM clauses as subqueries and can be joined to other source table rows
using the APPLY and OUTER APPLY operators. In-line table valued UDFs have many associated internal optim-
izer optimizations due to their simple, view-like characteristics.

Syntax
CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]1])
RETURNS TABLE
[AS]

RETURN (<SELECT Query>) [;]

-212-

https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15

Examples

Create a table valued function to aggregate employee orders.

CREATE TABLE Orders

(

OrderID INT NOT NULL PRIMARY KEY,
EmployeeID INT NOT NULL,
OrderDate DATETIME NOT NULL

) ;

INSERT INTO Orders (OrderID, EmployeelID, OrderDate)
VALUES

(1, 1, '20180101 13:00:05"),

(2, 1, '20180201 11:33:12"),

(3, 2, '20180112 10:22:35");

CREATE FUNCTION dbo.EmployeeMonthlyOrders
(@EmployeeID INT)
RETURNS TABLE AS
RETURN
(
SELECT EmployeelD,
YEAR (OrderDate) AS OrderYear,
MONTH (OrderDate) AS OrderMonth,
COUNT (*) AS NumOrders
FROM Orders AS O
WHERE EmployeeID = @EmployeelID
GROUP BY EmployeelD,
YEAR (OrderDate) ,
MONTH (OrderDate)

) ;

SELECT *

FROM dbo.EmployeeMonthlyOrders (1)

EmployeeID OrderYear OrderMonth NumOrders
1 2018 1 1

1 2018 2 1

Multi-Statment User Defined Table-Valued Functions

aws

Multi-statement table-valued UDFs, like In-line UDFs, are also similar to views or CTEs with the added benefit of
parameters. They can be used in FROM clauses as sub queries and can be joined to other source table rows

using the APPLY and OUTER APPLY operators.

The difference between multi-statement UDFs and the inline UDFs is that multi-statement UDFs are not restric-
ted to a single SELECT statement. They can consist of multiple statements including logic implemented with flow

control, complex data processing, security checks, etc.

The downside of using multi-statement UDFs is that there are far less optimizations possible and performance

may suffer.

-213-

aws

N

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]1])

RETURNS <@Return Variable> TABLE <Table Definition>

[AS]

BEGIN

<Function Body Code>

RETURN

END[;]

For more information, see https.//docs. microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql?view=sql-
server-ver15

PostgreSQL Usage

See Stored Procedures.

Syntax

CREATE [OR REPLACE] FUNCTION
name ([[argmode] [argname] argtype [{ DEFAULT | = } default expr] [, ...]

[RETURNS rettype
| RETURNS TABLE (column name column type [, ...])]
{ LANGUAGE lang name
TRANSFORM { FOR TYPE type name } [, ...]

WINDOW

IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF

CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT

[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER

|
|
|
|
|
| PARALLEL { UNSAFE | RESTRICTED | SAFE }
| COST execution cost

| ROWS result rows

| SET configuration parameter { TO value | = value | FROM CURRENT }
| AS 'definition'

| AS 'obj file', 'link symbol'

[WITH (attribute [, ...])]

SQL Server User Defined Types vs.
PostgreSQL User Defined Types

OOQOQ Syntax and option differences

((
((
((
((
((

-214-

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql

aws

SQL Server Usage

SQL Server User defined Types provide a mechanism for encapsulating custom data types and for adding NULL
constraints.

SQL Server also supports table-valued user defined types, which you can use to pass a set of values to a stored
procedure.

User defined types can also be associated to CLR code assemblies. Beginning with SQL Server 2014, memory
optimized types support memory optimized tables and code.

Note: If your code uses custom rules bound to data types, Microsoft recommends discontinuing the use
of this deprecated feature.

All user defined types are based on an existing system data types. They allow developers to reuse the definition,
making the code and schema more readable.

Syntax

The simplified syntax for the CREATE TYPE statement is specified below.

CREATE TYPE <type name> {
FROM <base type> [NULL | NOT NULL] | AS TABLE (<Table Definition>)}

Examples

User Defined Types

Create a ZipCode Scalar User Defined Type.

CREATE TYPE ZipCode
FROM CHAR (5)
NOT NULL

Use the ZipCode type in a table.

CREATE TABLE UserLocations
(UserID INT NOT NULL PRIMARY KEY, ZipCode ZipCode) ;

INSERT INTO [UserLocations] ([UserID], [ZipCode]) VALUES (1, '94324");
INSERT INTO [UserLocations] ([UserID], [ZipCode]) VALUES (2, NULL);

The above code displays the following error message indicating NULL values for ZipCode are not allowed.

Msg 515, Level 16, State 2, Line 78

Cannot insert the value NULL into column 'ZipCode', table 'tempdb.dbo.UserLocations';
column does not allow nulls. INSERT fails.

The statement has been terminated.

-215-

aws

Table-Valued types

The following example demonstrates how to create and use a table valued types to pass a set of valuesto a
stored procedure:

Create the Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)
) ;

Create a table valued type for the Orderltems table.

CREATE TYPE OrderItems

AS TABLE

(

OrderID INT NOT NULL,

Item VARCHAR (20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, Item)
) ;

Create the InsertOrderltems procedure. Note that the entire set of rows from the table valued parameter is
handled with one statement.

CREATE PROCEDURE InsertOrderItems
@OrderItems AS OrderItems READONLY
AS
BEGIN
INSERT INTO OrderItems (OrderID, Item, Quantity)
SELECT OrderID,
Item,
Quantity
FROM @OrderItems;
END

Instantiate the Orderltems type, insert the values, and pass it to a stored procedure.
DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])

VALUES

(1, 'M8 Bolt', 100),

(1, 'M8 Nut', 100),

(1, M8 Washer, 200);

EXECUTE [InsertOrderItems] @OrderItems = @OrderItems;

(3 rows affected)

Select all rows from the Orderltems table.

-216-

aws

SELECT * FROM OrderItems;

OrderID Item Quantity
1 M8 Bolt 100
1 M8 Nut 100
1 M8 Washer 200

For more information, see https.//docs. microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sqgl?view=sgql-server-
ver1s

Similar to SQL Server, PostgreSQL enables creation of User Defined Types using the CREATE TYPE state-
ment. A User Defined Type is owned by the user who creates it. If a schema name is specified, the type is created
under that schema.

PostgreSQL supports the creation of several different User Defined Types:

. Composite Types store a single named attribute attached to a data type or multiple attributes as an attrib-
ute collection. In PostgreSQL, you can also use the CREATE TYPE statement standalone with an asso-
ciation to a table.

- Enumerated Types (enum) store a static ordered set of values. For example, product categories.

CREATE TYPE PRODUCT CATEGORT AS ENUM
('"Hardware', 'Software', 'Document');

» Range Types store a range of values, for example, a range of timestamps used to represent the ranges of
time of when a course is scheduled.

CREATE TYPE float8 range AS RANGE
(subtype = float8, subtype diff = float8mi);

For more information see https://www.postgresqgl.org/docs/13/static/rangetypes.html

- Base Types are the system core types (abstract types) and are implemented in a low-level language such
asC.

« Array Types support definition of columns as multidimensional arrays. An array column can be created
with a built-in type or a user-defined base type, enum type, or composite.

CREATE TABLE COURSE SCHEDULE (
COURSE ID NUMERIC PRIMARY KEY,
COURSE NAME VARCHAR (60) ,
COURSE_SCHEDULES text[]);

For additional details, see https://www.postgresql.org/docs/13/static/arrays.html

CREATE TYPE name AS RANGE (
SUBTYPE = subtype

-217-

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql
https://www.postgresql.org/docs/13/static/rangetypes.html
https://www.postgresql.org/docs/13/static/arrays.html

aws

[, SUBTYPE OPCLASS = subtype operator class]
[, COLLATION = collation]

[, CANONICAL = canonical function]

[, SUBTYPE DIFF = subtype diff function]

CREATE TYPE name (
INPUT = input function,
OUTPUT = output function
[, RECEIVE = receive function]
[, SEND = send function]
[, TYPMOD IN = type modifier input function]
[, TYPMOD OUT = type modifier output function]
[, ANALYZE = analyze function]
[, INTERNALLENGTH = { internallength | VARIABLE }]
[, PASSEDBYVALUE]
[, ALIGNMENT = alignment]
[, STORAGE = storage]
[, LIKE = like type]
[, CATEGORY = category]

[, PREFERRED = preferred]

[, DEFAULT = default]

[, ELEMENT = element]

[, DELIMITER = delimiter]

[, COLLATABLE = collatable]

Examples

Create a User Define Type for storing an employee phone numbers.

CREATE TYPE EMP_ PHONE NUM AS (
PHONE NUM VARCHAR(11));

CREATE TABLE EMPLOYEES (
EMP ID NUMERIC PRIMARY KEY,
EMP PHONE EMP PHONE NUM NOT NULL) ;

INSERT INTO EMPLOYEES VALUES (1, ROW('111-222-333'));
SELECT a.EMP_ID, (a.EMP_ PHONE) .PHONE NUM FROM EMPLOYEES a;

emp _id | phone num
________ +_____________

1 | 111-222-333
(1 row)

Create a PostgreSQL Object Type as a collection of Attributes for the employees table.

CREATE OR REPLACE TYPE EMP ADDRESS AS OBJECT (
STATE VARCHAR (2) ,
CITY VARCHAR (20) ,
STREET VARCHAR (20),
ZIP CODE NUMERIC) ;

-218-

aws

CREATE TABLE EMPLOYEES (
EMP ID NUMERIC PRIMARY KEY,
EMP NAME VARCHAR (10) NOT NULL,
EMP ADDRESS EMP ADDRESS NOT NULL) ;

INSERT INTO EMPLOYEES
VALUES (1, 'John Smith',
('"AL', 'Gulf Shores', '3033 Joyce Street', '36542'));

SELECT a.EMP NAME,
(a.EMP_ADDRESS) .STATE,
(a.EMP_ADDRESS) .CITY,
(a.EMP_ADDRESS) .STREET,
(a.EMP_ADDRESS) .ZIP CODE
FROM EMPLOYEES a;

AL | Gulf Shores | 3033 Joyce Street | 36542

For additional details, see:

« https://www.postgresql.org/docs/13/static/sqgl-createtype.html

« https://www.postgresqgl.org/docs/13/static/rowtypes. htm

SQL Server Sequences and ldentity vs.
PostgreSQL Sequences and SERIAL/IDENTITY

Feature Com- SCT/DMS Automation

patibility Level SCT Action Code Index Key Differences
e SCT Action Codes - Sequences Less options with SERIAL
= T = == aaoaa and Identity

Reseeding needs to be
rewritten

SQL Server Usage

Automatic enumeration functions and columns are common with relational database management systems and
are often used for generating surrogate keys.

SQL Server provides several features that support automatic generation of monotonously increasing value gen-
erators.

o IDENTITY property of a table column
« SEQUENCE objects framework
« Numeric functions such as IDENTITY and NEWSEQUENTIALID

-219-

https://www.postgresql.org/docs/13/static/sql-createtype.html
https://www.postgresql.org/docs/13/static/rowtypes.htm

aws

The IDENTITY property is probably the most widely used means of generating surrogate primary keys in SQL
Server applications. Each table may have a single numeric column assigned as an IDENTITY, using the
CREATE TABLE or ALTER TABLE DDL statements. You can explicitly specify a starting value and increment.

Note: The identity property does not enforce uniqueness of column values, indexing, or any other prop-
erty. Additional constraints such as Primary or Unique keys, explicit index specifications, or other prop-
erties must be specified in addition to the IDENTITY property.

The IDENTITY value is generated as part of the transaction that inserts table rows. Applications can obtain
IDENTITY values using the @@IDENTITY, SCOPE_IDENTITY, and IDENT_CURRENT functions.

You can manage IDENTITY columns using the DBCC CHECKIDENT command, which provides functionality
for reseeding and altering properties.

IDENTITY [(<Seed Value>, <Increment Value>)]

Create a table with an IDENTITY column.

CREATE TABLE MyTABLE
(
Coll INT NOT NULL
PRIMARY KEY NONCLUSTERED IDENTITY (1,1),
Col2 VARCHAR (20) NOT NULL
) ;

Insert a row and retrieve the generated IDENTITY value.

DECLARE @LastIdent INT;

INSERT INTO MyTable (Col2)

VALUES ('SomeString') ;

SET @LastIdent = SCOPE_IDENTITY()

Create atable with a non-key IDENTITY column and an increment of 10.

CREATE TABLE MyTABLE

(

Coll VARCHAR (20) NOT NULL
PRIMARY KEY,

Col2 INT NOT NULL
IDENTITY (1,10),

) ;

Create a table with a compound PK including an IDENTITY column.

CREATE TABLE MyTABLE

(
Coll VARCHAR(20) NOT NULL,
Col2 INT NOT NULL

- 220 -

aws

IDENTITY (1,10),
PRIMARY KEY (Coll, Col2)
)7

Sequences are objects that are independent of a particular table or column and are defined using the CREATE
SEQUENCE DDL statement. You can manage sequences using the ALTER SEQUENCE statement. Multiple
tables and multiple columns from the same table may use the values from one or more SEQUENCE objects.

You can retrieve a value from a SEQUENCE object using the NEXT VALUE FOR function. For example, a
SEQUENCE value can be used as a default value for a surrogate key column.

SEQUENCE objects provide several advantages over IDENTITY columns:

« Can be used to obtain a value before the actual INSERT takes place.
» Value series can be shared among columns and tables.
« Easier management, restart, and modification of sequence properties.

« Allows assignment of value ranges using sp_sequence_get_range and not just per-row values.

CREATE SEQUENCE <Sequence Name> [AS <Integer Data Type>]
START WITH <Seed Value>
INCREMENT BY <Increment Value>;

ALTER SEQUENCE <Sequence Name>
RESTART [WITH <Reseed Value>]
INCREMENT BY <New Increment Value>;

Create a sequence and use it for a primary key default.

CREATE SEQUENCE MySequence AS INT START WITH 1 INCREMENT BY 1;
CREATE TABLE MyTable

(
Coll INT NOT NULL

PRIMARY KEY NONCLUSTERED DEFAULT (NEXT VALUE FOR MySequence),
Col2 VARCHAR (20) NULL

) ;

INSERT MyTable (Coll, Col2) VALUES (DEFAULT, 'cde'), (DEFAULT, 'xyz');

SELECT * FROM MyTable;

Coll Col2
1 cde
2 XYZ

-221-

aws

Sequential Enumeration Functions

SQL Server provides two sequential generation functions: IDENTITY and NEWSEQUENTIALID.
Note: The IDENTITY function should not be confused with the IDENTITY property of a column.

The IDENTITY function can be used onlyina SELECT ... INTO statement to insert IDENTITY column values
into a new table.

The NEWSEQUNTIALID function generates a hexadecimal GUID, which is an integer. While the NEWID func-
tion generates a random GUID, the NEWSEQUENTIALID function guarantees that every GUID created is
greater (in numeric value) than any other GUID previously generated by the same function on the same server
since the operating system restart.

Note: NEWSEQUENTIALID can be used only with DEFAULT constraints associated with columns
having a UNIQUEIDENTIFIER data type.

Syntax

IDENTITY (<Data Type> [, <Seed Value>, <Increment Value>]) [AS <Alias>]

NEWSEQUENTIALID ()

Examples

Use the IDENTITY function as surrogate key for a new table based on an existing table.

CREATE TABLE MySourceTable

(

Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(10) NOT NULL,
Col3 VARCHAR(10) NOT NULL

) ;

INSERT INTO MySourceTable
VALUES

(12, 'Stringl2', 'Stringl2'),
(25, 'String25', 'String25'),
(95, 'String95', 'String95');

SELECT IDENTITY (INT, 100, 1) AS SurrogateKey,
Coll,
Col2,
Col3

INTO MyNewTable

FROM MySourceTable

ORDER BY Coll DESC;

SELECT *
FROM MyNewTable;

SurrogateKey Coll Col2 Col3

-222 -

aws

100 95 String95 String95
101 25 String25 String25
102 12 Stringl2 Stringl2

Use NEWSEQUENTIALID as a surrogate key for a new table.

CREATE TABLE MyTable

(

Coll UNIQUEIDENTIFIER NOT NULL

PRIMARY KEY NONCLUSTERED DEFAULT NEWSEQUENTIALID ()
) ;

INSERT INTO MyTable
DEFAULT VALUES;

SELECT *
FROM MyTable;

Coll

9CC01320-C5AA-E811-8440-305B3A017068

For more information, see

« https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers ?view=sqgl-server-
veris

 https://docs.microsoft.com/en-us/sql/t-sqgl/statements/create-table-transact-sql-identity-property ?view=sql-server-
ver15

The PostgreSQL CREATE SEQUENCE command is mostly compatible with the SQL Server CREATE
SEQUENCE command. Sequences in PostgreSQL serve the same purpose as in SQL Server; they generate
numeric identifiers automatically. A sequence object is owned by the user that created it.

- TEMPORARY or TEMP: PostgreSQL can create a temporary sequence within a session. Once the ses-
sion ends, the sequence is automatically dropped.

« IF NOT EXISTS: Creates a sequence. If a sequence with an identical name already exists, it is replaced.

« INCREMENT BY: An optional parameter with a default value of 1. Positive values generate sequence val-
ues in ascending order. Negative values generate sequence values in descending sequence.

o START WITH: An optional parameter having a default of 1. It uses the MINVALUE for ascending
sequences and the MAXVALUE for descending sequences.

« MAXVALUE | NO MAXVALUE: Defaults are between 263 for ascending sequences and -1 for des-
cending sequences.

« MINVALUE | NO MINVALUE: Defaults are between 1 for ascending sequences and -263 for descending
sequences.

- 223 -

https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers
https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property

aws

o CYCLE | NO CYCLE: If the sequence value reaches MAXVALUE or MINVALUE, the CYCLE parameter
instructs the sequence to return to the initial value (MINVALUE or MAXVALUE). The defaultis NO
CYCLE.

o CACHE: In PostgreSQL, the NOCACHE is not supported. By default, when the CACHE parameter is not
specified, no sequence values are pre-cached into memory (equivalent to the SQL Server NOCACHE
parameter). The minimum value is 1.

« OWNED BY | OWNBY NON: Specifies that the sequence object is to be associated with a specific

column in a table. When dropping this type of sequence, an error is returned due to the sequence/table
association.

« AS data_type: This is a new option, starting at PostgreSQL 10. To easily determine the min-
imum/maximum values and also improve storage management you can select the data type for the
sequence. The available data types are smallint, integer, and bigint (default).

CREATE [TEMPORARY | TEMP] SEQUENCE [IF NOT EXISTS] name

[INCREMENT [BY] increment]

[MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start] [CACHE cache] [[NO] CYCLE]

[OWNED BY { table name.column name | NONE }]

Most SQL Server CREATE SEQUENCE parameters are compatible with PostgreSQL.

Create a sequence.

CREATE SEQUENCE SEQ 1 START WITH 100
INCREMENT BY 1 MAXVALUE 99999999999 CACHE 20 NO CYCLE;

Drop a sequence.

DROP SEQUENCE SEQ 1;

View sequences created in the current schema and sequence specifications.

SELECT * FROM INFORMATION_SCHEMA.SEQUENCES;
OR
\ds

Use a PostgreSQL sequence as part of a CREATE TABLE and an INSERT statement.

CREATE TABLE SEQ TST

(COL1 NUMERIC DEFAULT NEXTVAL('SEQ 1') PRIMARY KEY, COL2 VARCHAR(30));
INSERT INTO SEQ TST (COL2) VALUES('A');
SELECT * FROM SEQ TST;

Use the OWNED BY parameter to associate the sequence with a table.

-224 -

aws

CREATE SEQUENCE SEQ 1 START WITH 100 INCREMENT BY 1 OWNED BY SEQ TST.COL1;

Query the current value of a sequence.

SELECT CURRVAL ('SEQ 1);
Manually increment a sequence value according to the INCREMENT BY value.

SELECT NEXTVAL('SEQ 1'");
OR
SELECT SETVAL('SEQ 1', 200);

Alter an existing sequence.

ALTER SEQUENCE SEQ 1 MAXVALUE 1000000;

Since PostgreSQL 10, there is a new option called identity columns which is similar to the SERIAL data type but
more SQL standard compliant. The identity columns are slightly more compatible compared to SQL Server's Iden-

tity columns.

To create a table with Identity columns please use the following:

CREATE TABLE emps (
emp id INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
emp name VARCHAR (35) NOT NULL) ;

INSERT INTO emps (emp name) VALUES ('Robert');
INSERT INTO emps (emp id, emp name) VALUES (DEFAULT, 'Brian');

SELECT * FROM emps;

coll | col2

_____ o
1 | Robert
2 | Brian

Note: In PostgreSQL (both SERIAL and IDENTITY) you can insert any value, so long as it won't violate
the primary key constraint. If the value violates the primary key constraint and you use the identity
column sequence value again, the following error might be raised:

SQL Error [23505]: ERROR: duplicate key value violates unique constraint "emps_iden_pkey"

Detail: Key (emp_id)=(2) already exists.

PostgreSQL enables you to create a sequence similar to the IDENTITY property supported by identity columns.
When creating a new table, the sequence is created through the SERIAL pseudo-type. Other types from the
same family are SMALLSERIAL and BIGSERIAL.

By assigning a SERIAL type to a column during table creation, PostgreSQL creates a sequence using the default
configuration and adds a NOT NULL constraint to the column. The newly created sequence behaves like a reg-
ular sequence (incremented by 1) and no composite SERIAL option.

-225-

aws

Use a SERIAL Sequence.
CREATE TABLE SERIAL SEQ TST(COLl SERIAL PRIMARY KEY, COL2 VARCHAR(10));

INSERT INTO SERIAL SEQ TST (COL2) VALUES('A');
SELECT * FROM SERIAL SEQ TST;

public | serial seq tst coll seq | sequence | pg tst db
Use the PostgreSQL SERIAL pseudo-type (with a Sequence that is created implicitly).
CREATE TABLE SERIAL SEQ TST(COLl SERIAL PRIMARY KEY, COL2 VARCHAR(10));

\ds
Schema | Name | Type | Owner

public | serial seq tst coll seq | sequence | pg tst db

ALTER SEQUENCE SERIAL_SEQ_TST_COLI_SEQ RESTART WITH 100 INCREMENT BY 10;
INSERT INTO SERIAL SEQ TST(COL2) VALUES('A');

INSERT INTO SERIAL SEQ TST(COL1l, COLZ2) VALUES (DEFAULT, 'B');

SELECT * FROM SERIAL SEQ TST;

coll | col2

Use the ALTER SEQUENCE command to change the default sequence configuration in a SERIAL column.

Create a table with a SERIAL column that uses increments of 10:

CREATE TABLE SERIAL SEQ TST(COLl1l SERIAL PRIMARY KEY, COL2 VARCHAR(10));
ALTER SEQUENCE serial seq tst coll seqg INCREMENT BY 10;

Note: The auto generated sequence's name should be created with the following format:
TABLENAME_COLUMNNAME_seq

Create a table with a compound PK including a SERIAL column:

CREATE TABLE SERIAL SEQ TST
(COL1 SERIAL, COL2 VARCHAR(10), PRIMARY key (COL1,COL2));

Summary

The following table identifies similarities, differences, and key migration considerations.

- 226 -

aws

column

default, SET
IDENTITY_
INSERT ON
required

Feature SQL Server Aurora PostgreSQL

Independent CREATE CREATE SEQUENCE

SEQUENCE object |SEQUENCE

Automatic enu- IDENTITY SERIAL/IDENTITY

merator column prop-

erty

Reseed sequence DBCC 1. Find sequence name:

value CHECKIDENT pg_get_serial_sequence('[table_name]', '[serial_field_name]')
2. SELECT SETVAL((SELECT pg_get_serial_sequence('table_
name', 'person_id")), 1, false);

Column restrictions | Numeric Numeric

Controlling seedand |CREATE/ALTER |CREATE/ALTER SEQUENCE

interval values SEQUENCE

Sequence setting ini- | Maintained through |ALTER SEQUENCE

tialization service restarts

Explicit values to Not allowed by Allowed

For more information see:

« https://www.postgresql.org/docs/13/static/sqgl-createsequence.html

« https://www.postgresql.org/docs/13/static/functions-sequence.html

« https://www.postgresgl.org/docs/13/static/datatype-numeric. html

« https://www.postgresgl.org/docs/13/sqgl-createtable. html

- 227 -

https://www.postgresql.org/docs/13/static/sql-createsequence.html
https://www.postgresql.org/docs/13/static/functions-sequence.html
https://www.postgresql.org/docs/13/static/datatype-numeric.html
https://www.postgresql.org/docs/13/sql-createtable.html

aws

Configuration

SQL Server Upgrades vs. PostgreSQL Upgrades

SCT/DMS Auto- |SCT Action

Feature Compatibility | -0 | evel Code Index

Key Differences

N/A N/A N/A

SQL Server Usage

As a Database Administrator, from time to time a database upgrade is required, it can be either for security fix,
bugs fixes, compliance , or new database features.

The database upgrade approach can be planned to minimize the database downtime and risk. You can perform
an upgrade in-place or migrate to a new installation

Upgrade in-place
With this approach, we are retaining the current hardware and OS version by adding the new SQL Server bin-
aries on the same server and then upgrade the SQL Server instance.

Before upgrading the Database Engine, review the SQL Server release notes for the intended target release ver-
sion for any limitations and known issues to help you plan the upgrade.

In general, these will be the steps to perform the upgrade:
Prerequisites steps
» Backup all SQL Server database files, so that it can be restored if required.

« Run the appropriate Database Console Commands (DBCC CHECKDB) on databases to be upgraded to
ensure that they are in a consistent state.

« Ensure to allocate enough disk space for SQL Server components, in addition to user databases.

- 228 -

aws

« Disable all startup stored procedures as stored procedures processed at startup time might block the
upgrade process.

« Stop all applications, including all services that have SQL Server dependencies
Steps for upgrade

« Install new software

» Fixissues raised

« Setif you prefer to have automatic updates or not

« Select products install to upgrade, this is the new binaries installation

« Monitor the progress of downloading, extracting, and installing the Setup files.
« Specify the instance of SQL Server to upgrade

« Onthe Select Features page, the features to upgrade will be preselected. The prerequisites for the
selected features are displayed on the right-hand pane. SQL Server Setup will install the pre-
requisite that are not already installed during the installation step described later in this procedure.

» Review upgrade plan before the actual upgrade
« Monitor installation progress
Post upgrade tasks:
« Review summary log file for the installation and other important notes

« Register your servers

This approach maintains the current environment while building a new SQL Server environment. This is usually
done when migrating on a new hardware and with a new version of the operating system. In this approach
migrate the system objects so that they are same as as the existing environment, then migrate the user database
either using backup and restore.

For additional information, see: https://docs.microsoft.com/en-us/sqgl/database-engine/install-windows/upgrade-
database-engine?view=sqgl-server-ver15

After migrating your databases to RDS running Aurora for PostgreSQL, you will still need to upgrade your data-
base instance from time to time, for the same reasons you have done in the past, new features, bugs and security
fixes.

In a managed service like RDS, the upgrade process is much easier and simpler compare to the on-prem Oracle
process.

To determine the current Aurora for PostgreSQL version being used, you can use the following aws cli command:

aws rds describe-db-engine-versions --engine aurora-postgresqgl --query '*[].[EngineVer-—
sion]' --output text --region your-AWS-Region

This can also be queried from the database, using the following queries:

- 229 -

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-database-engine?view=sql-server-ver15

aws

SELECT AURORA VERSION () ;

aurora version|

SHOW SERVER VERSION;

server version|

All Aurora and PostgreSQL versions mapping can be found in here: https://-
docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

AWS doesn't apply major version upgrades on RDS Aurora automatically. Major version upgrades contains new
features and functionality which often involves system table and other code changes. These changes may not be
backward-compatible with previous versions of the database so application testing are highly recommended.

Applying automatic minor upgrades can be set by configuring the RDS instance to allow it.

You can use the following aws cli command (linux) to determine the current automatic upgrade minor versions.

aws rds describe-db-engine-versions --engine aurora-postgresqgl | grep -A 1 AutoUp-
grade| grep -A 2 true |grep PostgreSQL | sort --unique | sed -e 's/"Description":

"//gl

Note: If no results are returned, there is no automatic minor version upgrade available and scheduled.

When enabled, the instance will be automatically upgraded during the scheduled maintenance window.

For major upgrades, this is the recommended process:

« Have a version-compatible parameter group ready.
If you are using a custom DB instance or DB cluster parameter group, you have two options:

1. Specify the default DB instance, DB cluster parameter group, or both for the new DB engine ver-
sion.

2. Create your own custom parameter group for the new DB engine version.

Note: If you associate a new DB instance or DB cluster parameter group as a part of the upgrade
request, make sure to reboot the database after the upgrade completes to apply the parameters. If a
DB instance needs to be rebooted to apply the parameter group changes, the instance's parameter
group status shows pending-reboot. You can view an instance's parameter group status in the console
or by using a CLI command such as describe-db-instances or describe-db-clusters.

o Check for unsupported usage:

1. Commit or roll back all open prepared transactions before attempting an upgrade. You can use the
following query to verify that there are no open prepared transactions on your instance.

SELECT count (*) FROM pg catalog.pg prepared xacts;

-230-

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

aws

2. Remove all uses of the reg* data types before attempting an upgrade. Except for regtype and reg-
class, you can't upgrade the reg* data types. The pg_upgrade utility can't persist this data type,
which is used by Amazon Aurora to do the upgrade.

To verify that there are no uses of unsupported reg* data types, use the following query for each
database.

SELECT count (*) FROM pg catalog.pg class c¢, pg catalog.pg namespace n, pg
catalog.pg attribute aWHERE c.oid = a.attrelid

AND NOT a.attisdropped

AND a.atttypid IN ('pg catalog.regproc'::pg catalog.regtype,
'pg_catalog.regprocedure'::pg catalog.regtype,

'pg catalog.regoper'::pg catalog.regtype,

'pg catalog.regoperator'::pg catalog.regtype,
'pg_catalog.regconfig'::pg catalog.regtype,
'pg_catalog.regdictionary'::pg catalog.regtype)

AND c.relnamespace = n.oid

AND n.nspname NOT IN ('pg catalog', 'information schema');

« Perform a backup.

The upgrade process creates a DB cluster snapshot of your DB cluster during upgrading.

« Upgrade certain extensions to the latest available version before performing the major version upgrade.

The extensions to update include the following:
« pgRouting
o postGIS

Run the following command for each extension that you are using.

ALTER EXTENSION PostgreSQL-extension UPDATE TO 'new-version'

If you are upgrading older versions (older than 12), there are a few more steps, please review here:https://-
docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

All mentioned above a prerequsites, the actual upgrade can be done throught the console or aws cli.

Console

1.

o g k~ W N

Signin to the AWS Management Console and open the Amazon RDS console at https://-
console.aws.amazon.com/rds/.

In the navigation pane, choose Databases, and then choose the DB cluster that you want to upgrade.
Choose Modify. The Modify DB cluster page appears.

For DB engine version, choose the new version.

Choose Continue and check the summary of modifications.

To apply the changes immediately, choose Apply immediately. Choosing this option can cause an outage
in some cases. For more information, see Modifying an Amazon Aurora DB cluster.

On the confirmation page, review your changes. If they are correct, choose Modify Cluster to save your
changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS CLI

-231-

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
--db-cluster-identifier mydbcluster \
--engine-version new version \
-—allow-major-version-upgrade \
--no-apply-immediately

For Windows:

aws rds modify-db-cluster
--db-cluster-identifier mydbcluster *
--engine-version new version "

--allow-major-version-upgrade
--no-apply-immediately

aws

Phase SQL Server Step Aurora for PostgreSQL
Prerequisite Performa an instance backup Run RDS instance backup
Prerequisite DBCC for consistent verification N/A
Prerequisite Validate disk size and free space N/A
Prerequisite Disable all startup stored pro- N/A

cedures (if applicable)
Prerequisite Stop application and connection N/A

Prerequisite Install new software and fix pre-

requisites errors raised

1. Remove all uses of the reg* data types
2. Upgrade certain extensions

3. Commit or roll back all open prepared trans-
actions
SELECT count(*) FROM pg_catalog.pg_pre-
pared_xacts;

Prerequisite Select instances to upgrade

Selectright RDS instance

Prerequisite Review pre-upgrade summary

N/A

Execution Monitor upgrade progress

Can be reviewed from the console

Post-upgrade Results

Can be reviewed from the console

Post-upgrade Register server

N/A

-232 -

aws

Phase SQL Server Step Aurora for PostgreSQL
Post-upgrade Test applications again the new Same
upgraded database
Production Re-run all steps in a production Same
deployment enviroment

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER _UpgradeDBIn-
stance.PostgreSQL.html

Feature Com- |SCT/DMS Auto- SCT Action

patibility mation Level Code Index Key Differences

N/A N/A SET options are significantly different, except for
transaction isolation control

((
(

=
=

((
((

Session Options in SQL Server is a collection of run-time settings that control certain aspects of how the server
handles data for individual sessions. A session is the period between a login event and a disconnect event (or an
exec sp_reset_connection command for connection pooling).

Each session may have multiple execution scopes, which are all the statements before the GO keyword used in
SQL Server management Studio scripts, or any set of commands sent as a single execution batch by a client
application. Each execution scope may contain additional sub-scopes. For example, scripts calling stored pro-
cedures or functions.

You can set the global session options, which all execution scopes use by default, using the SET T-SQL com-
mand. Server code modules such as stored procedures and functions may have their own execution context set-
tings, which are saved along with the code to guarantee the validity of results.

Developers can explicitly use SET commands to change the default settings for any session or for an execution
scope within the session. Typically, client applications send explicit SET commands upon connection initiation.

You can view the metadata for current sessions using the sp_who_system stored procedure and the sys-
processes system table.

Note: To change the default setting for SQL Server Management Studio, click Tools >Options >
Query Execution > SQL Server > Advanced.

Syntax for the SET command:

SET
Category Setting

Date and time DATEFIRST | DATEFORMAT
Locking DEADLOCK PRIORITY | SET LOCK TIMEOUT
Miscellaneous CONCAT NULL YIELDS NULL | CURSOR CLOSE ON COMMIT | FIPS FLAGGER | SET

- 233 -

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

aws

IDENTITY INSERT
LANGUAGE | OFFSETS | QUOTED IDENTIFIER

Query Execution ARITHABORT | ARITHIGNORE | FMTONLY | NOCOUNT | NOEXEC | NUMERIC
ROUNDABORT | PARSEONLY

QUERY GOVERNOR COST LIMIT | ROWCOUNT | TEXTSIZE

ANSI ANSI DEFAULTS | ANSI NULL DFLT OFF | ANSI NULL DFLT ON | ANSI NULLS |
ANSI_ PADDING

ANST WARNINGS

Execution Stats FORCEPLAN | SHOWPLAN ALL | SHOWPLAN TEXT | SHOWPLAN XML | STATISTICS
IO | STATISTICS XML

STATISTICS PROFILE | STATISTICS TIME

Transactions IMPLICIT TRANSACTIONS | REMOTE PROC TRANSACTIONS | TRANSACTION ISOLATION
LEVEL | XACT_ ABORT

Note: For more details about individual settings, see the link at the end of this section.

SET ROWCOUNT for DML Deprecated Setting

The SET ROWCOUNT for DML statements has been deprecated as of SQL Server 2008 in accordance with
https://docs.microsoft.com/en-us/previous-versions/sql/sqgl-server-2008-r2/ms143729(v=sqgl.105).

Up to and including SQL Server 2008 R2, you could limit the amount of rows affected by INSERT, UPDATE, and
DELETE operations using SET ROWCOUNT. For example, it is a common practice in SQL Server to batch large
DELETE or UPDATE operations to avoid transaction logging issues. The following example loops and deletes
rows having 'ForDelete' set to 1, but only 5000 rows at a time in separate transactions (assuming the loop is not
within an explicit transaction).

SET ROWCOUNT 5000;
WHILE Q@ROWCOUNT > O
BEGIN

DELETE FROM MyTable
WHERE ForDelete = 1;
END

Begining with SQL Server 2012, SET ROWCOUNT isignored for INSERT, UPDATE and DELETE statements.
The same functionality can be achieved by using TOP, which can be converted to the Aurora PostgreSQL LIMIT.

For example, the previous code could be rewritten as:

WHILE @@ROWCOUNT > 0
BEGIN

DELETE TOP (5000)
FROM MyTable

WHERE ForDelete = 1;
END

The latter syntax can be converted automatically by SCT to Aurora PostgeSQL. See the code example in Aurora
PostgreSQL Session Options.

Examples

Use SET within a stored procedure.

CREATE PROCEDURE <ProcedureName>
AS

-234 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

aws

BEGIN
<Some non critical transaction code>
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET XACT ABORT ON;
<Some critical transaction code>
END

Note: Explicit SET commands affect their execution scope and sub scopes.
After the scope terminates and the procedure code exits, the calling scope resumes its original settings
used before the calling the stored procedure.

For more information, see https.//docs. microsoft.com/en-us/sqgl/t-sql/statements/set-statements-transact-sql?view=sql-
server-ver15

PostgreSQL Usage

Aurora PostgreSQL supports hundreds of Server System Variables to control server behavior and the global and
session levels.

PostgreSQL provides session-modifiable parameters that are configured using the SET SESSION command.
Configuration of parameters using SET SESSION will only be applicable in the current session. To view the list of
parameters that can be set with SET SESSION , you can query pg_ settings:

SELECT * FROM pg settings where context = 'user';

Examples of commonly used session parameters:

« client_encoding - configures the connected client character set.

. force_parallel_mode - forces use of parallel query for the session.

« lock_timeout - sets the maximum allowed duration of time to wait for a database lock to release.
search_path - sets the schema search order for object names that are not schema-qualified.

« transaction_isolation - sets the current Transaction Isolation Level for the session.

You can view Aurora PostgreSQL variables using the PostgreSQL command line utility, Aurora database cluster
parameters, Aurora database instance parameters, or SQL interface system variables.

Converting from SQL Server 2008 SET ROWCOUNT for DML
operations

As mentioned in SQL Server Sessions Options, the use of SET ROWCOUNT for DML operations is deprecated
as of SQL Server 2008 R2. Code that uses the SET ROWCOUNT syntax can not be converted automatically.
Either rewrite to use TOP before running SCT, or manually change it afterward.

The example used to batch DELETE operations in SQL Server using TOP:

WHILE Q@ROWCOUNT > O
BEGIN

DELETE TOP (5000)
FROM MyTable

WHERE ForDelete = 1;
END

Can be easily rewritten to use Aurora PostgreSQL LIMIT clause :

-235-

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-server-ver15

WHILE row count() > 0 LOOP

DELETE FROM num test
WHERE ctid IN (
SELECT ctid
FROM num_ test
LIMIT 10)

END LOOP;

Change the time zone of the connected session.

SET SESSION DateStyle to POSTGRES, DMY;

SET

SELECT NOW () ;

Sat 09 Sep 11:03:43.597202 2017 UTC
(1 row)

SET SESSION DateStyle to ISO, MDY;
SET

SELECT NOW () ;

2017-09-09 11:04:01.3859+00
(1 row)

aws

The following table summarizes commonly used SQL Server session options and their corresponding Aurora

PostgreSQL system variables.

TRANSACTION ISOLATION LEVEL

Category SQL Server Aurora PostgreSQL

Date andtime |DATEFIRST Use DOW in queries
DATEFORMAT DateStyle

Locking LOCK _TIMEOUT lock_timeout

Transactions IMPLICIT_TRANSACTIONS SET TRANSACTION

BEGIN TRANSACTION ISOLATION LEVEL

Query execution | IDENTITY_INSERT
LANGUAGE
QUOTED_IDENTIFIER
NOCOUNT

See Identity and sequences

Ic_monetary/Ic_numeric/Ic_time
N/A
N/A and not needed

Execution stats [SHOWPLAN_ALL, TEXT, and XML

See Execution Plans

aws

Category SQL Server Aurora PostgreSQL
STATISTICS IO, XML, PROFILE, and TIME

Miscellaneous |CONCAT_NULL_YIELDS_NULL N/A
ROWCOUNT Use LIMIT within SELECT

For more information, see: For more details, see https://www.postgresgl.org/docs/13/static/sqgl-set. html

SQL Server Database Options vs.
PostgreSQL Database Options

Feature Com- SCT/DMS Automation |SCT Action Code ,

patibility Level Index Gy PILETETEE
s N/A N/A Use Cluster and Database/Cluster
== === Parameter

SQL Server Usage

SQL Server provides database level options that can be set using the ALTER DATABASE ... SET command.
These settings enable you to:

« Set default session options. For more information, see Session Options.

« Enable or disable database features such as SNAPSHOT _ISOLATION, CHANGE_TRANCKING, and
ENABLE_BROKER.

« Configure High availability and disaster recovery options such as always on availability groups.

«» Configure security access control such as restricting access to a single user, setting the database offline, or
setting the database to read-only.

Syntax

Syntax for setting database options:

ALTER DATABASE { <database name> } SET { <option> [,...n] };

Examples

Set a database to read-only and use ARITHABORT by default.

ALTER DATABASE Demo SET READ ONLY, ARITHABORT ON;

Set a database to use automatic statistic creation.

ALTER DATABASE Demo SET AUTO CREATE STATISTICS ON;

Set a database offline immediately.

ALTER DATABASE DEMO SET OFFLINE WITH ROLLBACK IMMEDIATE;

- 237 -

https://www.postgresql.org/docs/13/static/sql-set.html

aws

For more information, see https://docs. microsoft.com/en-us/sqgl/t-sql/statements/alter-database-transact-sql-set-option-
s?view=sql-server-ver15

PostgreSQL Usage

Aurora PostgreSQL supports both the CREATE SCHEMA and CREATE DATABASE statements.

As with SQL Server, Aurora PostgreSQL does have the concept of an instance hosting multiple databases,
which in turn contain multiple schemas. Objects in Aurora PostgreSQL are referenced as a three part name:
<database>.<schema>.<object>.

Database options are related to the cluster level parameters which are managed by the AWS Cluster Parameter
Groups but some MSSQL equivalent parameters can be found at the instance level in the AWS Database Para-
meter Group.

Datable Options are being compared to "AWS Database Parameter Group" and Server Options are being com-
pared to "AWS Cluster Parameter Group", for more information, see Server Options.

SQL Server Server Options vs. PostgreSQL Aurora
Parameter Groups

Feature Com- SCT/DMS Automation |SCT Action Code .
L Key Differences
patibility Level Index
= N/A N/A Use Cluster and Database/Cluster
= = = == Parameter

SQL Server Usage

SQL Server provides server-level settings that affect all databases and all sessions. You can modify these set-
tings using the sp_configure system stored procedure.

You can use Server Options to perform the following configuration tasks:

« Define hardware utilization such as memory management, affinity mask, priority boost, network packet
size, and soft Non-Uniform Memory Access (NUMA) .

« Alter run time global values such as recovery interval, remote login timeout, optimization for ad-hoc work-
loads, and cost threshold for parallelism.

« Enable and disable global features such as C2 Audit, OLE, procedures, CLR procedures, and allow trigger
recursion.

« Configure global security settings such as server authentication mode, remote access, shell access with
xp_cmdshell, CLR access level, and database chaining.

« Setdefault values for sessions such as user options, default language, backup compression, and fill factor.

Some settings require an explicit RECONFIGURE command to apply the changes to the server. High risk set-
tings require RECONFIGURE WITH OVERRIDE for the changes to be applied. Some advanced options are hid-
den by default. To view and modify these settings, set show advanced optionsto 1and re-execute sp_configure.

Note: Server audits are managed with the T-SQL commands CREATE and ALTER SERVER AUDIT.

- 238 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-ver15

EXECUTE sp configure <option>, <value>;

Limit server memory usage to 4GB.

EXECUTE sp configure 'show advanced options',

RECONFIGURE;

sp_configure 'max server memory', 4096;

RECONFIGURE;

Allow command shell access from T-SQL.

EXEC sp configure 'show advanced options',

RECONFIGURE;
EXEC sp configure 'xp cmdshell', 1;
RECONFIGURE;

Viewing current values.

EXECUTE sp_ configure

For more information, see

https.//docs. microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server-

1s

?view=sql-server-ver15

aws

When running PostgreSQL databases as Amazon Aurora Clusters, Parameter Groups are used to change to

cluster-level and database-level parameters.

Most of the PostgreSQL parameters are configurable in an Amazon Aurora PostgreSQL cluster, but some are
disabled and cannot be modified. Since Amazon Aurora clusters restrict access to the underlying operating sys-

tem, modification to PostgreSQL parameters must be made using Parameter Groups.

Amazon Aurora is a cluster of database instances and, as a direct result, some of the PostgreSQL parameters

apply to the entire cluster while other parameters apply only to a particular database instance.

Aurora PostgreSQL Parameter Class Controlled Via

Cluster-level parameters
Single cluster parameter group per Amazon Aur-

Managed via cluster parameter groups

For example:

-239-

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server?view=sql-server-ver15

aws

Aurora PostgreSQL Parameter Class

Controlled Via

ora Cluster

* The PostgreSQL wal_buffers parameter is controlled via a
cluster parameter group.

* The PostgreSQL autovacuum parameter is controlled via a
cluster parameter group.

* The client_encoding parameter is controlled via a cluster
parameter group.

Database Instance-Level parameters
Every instance in an Amazon Aurora cluster can
be associated with a unique database parameter

group

Managed via database parameter groups For example:

* The PostgreSQL shared_buffers memory cache con-
figuration parameter is controlled via a database parameter
group with an AWS-optimized default value based on the
configured database class: {DBIn-
stanceClassMemory/10922}.

* The PostgreSQL max_connections parameter, which con-
trols maximum number of client connections allowed to the
PostgreSQL instance, is controlled via a database para-
meter group. Default value is optimized by AWS based on
the configured database class: LEAST({DBIn-
stanceClassMemory/9531392},5000).

* The authentication_timeout parameter, which controls the
maximum time to complete client authentication (in
seconds), is controlled via a database parameter group.

* The superuser_reserved_connections parameter, which
determines the number of reserved connection "slots" for
PostgreSQL superusers, is configured via a database para-
meter group.

» The PostgreSQL effective_cache_size, which informs the
query optimizer how much cache is present in the kernel and
helps control how expensive large index scans will be, is con-
trolled via a database level parameter group. The default
value is optimized by AWS based on database class (RAM):
{DBInstanceClassMemory/10922}.

New parameters in PostgreSQL 10:

NS

PostgreSQL)

oo

entire relation (sighup)

enable_gathermerge - enable execution plan Gather Merge

max_parallel_workers - maximum number of parallel workers process
max_sync_workers_per_subscription - maximum number of synchronous workers for subscription
wal_consistency_checking - check consistency of WAL on the standby instance (can't be set in Aurora

max_logical_replication_workers - maximum number of logical replication worker process
max_pred_locks_per_relation - Maximum number of records that can be predicate-lock before locking the

7. max_pred_locks_per_page - Maximum number of records that can be predicate-lock before locking the

entire page

© o

min_parallel_table_scan_size - minimum table size to consider parallel table scan
min_parallel_index_scan_size - minimum table size to consider parallel index scan

-240-

aws

Examples

Create and Configure a New Parameter Group

Follow the steps below to create and configure Amazon Aurora database and cluster parameter groups:

1. Navigate to the "Parameter group" section in the RDS Service of the AWS Console.

2. Click Create Parameter Group.

Note: You cannot edit the default parameter group. You must create a custom parameter group
to apply changes to your Amazon Aurora cluster and its database instances.

Amazon RDS X RDS Parameter groups
Dashboard Parameter groups (6)
Databases Q 1 &
Query Editor
Performance Insights Name A Family v Type v D
Snapshots

default.aurora-mysql5.7 aurora-mysql5.7 Parameter groups Di
Automated backups
Reserved instances default.aurora-mysql5.7 aurora-mysql5.7 DB cluster parameter group D
Proxies default.aurora-postgresql12 aurora-postgresql12 Parameter groups Dy

3. Select the DB family from the Parameter group family drop-down list. Select DB Parameter Group from
the Type drop-down list (another option is to select Cluster Parameter Group for modifying cluster para-

Create parameter group

Parameter group details

To create a parameter group, choose a parameter group family, then name and describe your parameter group

Parameter group family

DB family that this DB parameter group will apply to
aurora-mysql5.7 v
Type
DB Parameter Group v
2 Group name
Identifier for the DB parameter group
Description
Description for the DB parameter group

o

meters). Click Create.

Modify an Existing Parameter Group

1. Navigate to the "Parameter group" section in the RDS Service of the AWS Console.

2. Click the name of the parameter to edit.

-241-

https://console.aws.amazon.com/rds/home?#parameter-groups:
https://console.aws.amazon.com/rds/home?#parameter-groups:

aws

3. Click the Edit parameters button.

aW51 Services Resource Groups ~ * N. Virginia v Support v

— -
Amazon RDS X RDS Parameter groups default.aurora-mysql5.7
Dashboard default.aurora-mysql5.7
Instances
Clusters Parameters Edit parameters
Performance Insights @

Q ¢ 1 2 3 4 5 6 7 . 13 3» &
Snapshots
Reserved instances
Name Values Allowed values Modifi

Subnet groups

4. Change parameter values and click Save changes

For more information, see:

o https.//docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups. html

- 242 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

aws

High Availability and Disaster Recovery (HADR)

SQL Server Backup and Restore vs.
PostgreSQL Backup and Restore

Fegtq(e Com- SCT/DMS Automation |[SCT Action Code Key Differences

patibility Level Index
ssse=e= NA SCT Action Codes - Storage level backup managed by
= = === Backup Amazon RDS

SQL Server Usage

The term Backup refers to both the process of copying data and to the resulting set of data created by the pro-
cesses that copy data for safekeeping and disaster recovery. Backup processes copy SQL Server data and trans-
action logs to media such as tapes, network shares, cloud storage, or local files. These "backups" can then be
copied back to the database using a restore process.

SQL Server uses files, or filegroups, to create backups for an individual database or subset of a database. Table
backups are not supported.

When a database uses the FULL recovery model, transaction logs also need to be backed up. Transaction logs
allow backing up only database changes since the last full backup and provide a mechanism for point-in-time
restore operations.

Recovery Model is a database-level setting that controls transaction log management. The three available recov-
ery models are SIMPLE, FULL, and BULK LOGGED. For more information, see https://docs.microsoft.com/en-
us/sql/relational-databases/backup-restore/recovery-models-sgl-server?view=sql-server-ver15.

The SQL Server RESTORE process copies data and log pages from a previously created backup back to the
database. It then triggers a recovery process that rolls forward all committed transactions not yet flushed to the
data pages when the backup took place. It also rolls back all uncommitted transactions written to the data files.

SQL Server supports the following types of backups:

« Copy-Only Backups are independent of the standard chain of SQL Server backups. They are typically
used as "one-off" backups for special use cases and do not interrupt normal backup operations.

- 243 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server

aws

» Data Backups copy data files and the transaction log section of the activity during the backup. A Data
Backup may contain the whole database (Database Backup) or part of the database. The parts can be a
Partial Backup or a file/filegroup.

» A Database Backup is a Data Backup representing the entire database at the point in time when the
backup process finished.

- A Differential Backup is a data backup containing only the data structures (extents) modified since the last
full backup. A differential backup is dependent on the previous full backup and can not be used alone.

« AFull Backup is a data backup containing a Database Backup and the transaction log records of the activ-
ity during the backup process.

- Transaction Log Backups do not contain data pages. They contain the log pages for all transaction activity
since the last Full Backup or the previous Transaction Log Backup.

« File Backups consist of one or more files or filegroups.

SQL Server also supports Media Families and Media Sets that can be used to mirror and stripe backup devices.
For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-
sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15

SQL Server 2008 Enterprise edition and later versions, support Backup Compression. Backup Compression
provides the benefit of a smaller backup file footprint, less I/O consumption, and less network traffic at the
expense of increased CPU utilization for executing the compression algorithm. For more information, see https://-
docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sgl-server?view=sql-
server-ver15

A database backed up in the SIMPLE recovery mode can only be restored from a full or differential backup. For
FULL and BULK LOGGED recovery models, transaction log backups can be restored also to minimize potential
data loss.

Restoring a database involves maintaining a correct sequence of individual backup restores. For example, a typ-
ical restore operation may include the following steps:

1. Restore the most recent Full Backup.

2. Restore the most recent Differential Backup.

3. Restore a set of uninterrupted Transaction Log Backups, in order.
4. Recover the database.

For large databases, a full restore, or a complete database restore, from a full database backup is not always a
practical solution. SQL Server supports Data File Restore that restores and recovers a set of files and a single
Data Page Restore, except for databases using the SIMPLE recovery model.

Backup syntax:

Backing Up a Whole Database
BACKUP DATABASE <Database Name> [<Files / Filegroups>] [READ WRITE FILEGROUPS]
TO <Backup Devices>
[<MIRROR TO Clause>]
[WITH [DIFFERENTIAL]
[<Option List>][;]

BACKUP LOG <Database Name>
TO <Backup Devices>
[<MIRROR TO clause>]
[WITH <Option List>][;]

- 244 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-server-ver15

aws

<Option List> =

COPY ONLY | {COMPRESSION | NO COMPRESSION } | DESCRIPTION = <Description>

| NAME = <Backup Set Name> | CREDENTIAL | ENCRYPTION | FILE SNAPSHOT | { EXPIREDATE =
<Expiration Date> | RETAINDAYS = <Retention> }

{ NOINIT | INIT } | { NOSKIP | SKIP } | { NOFORMAT | FORMAT } |
{ NO_CHECKSUM | CHECKSUM } | { STOP_ON ERROR | CONTINUE AFTER ERROR }
{ NORECOVERY | STANDBY = <Undo File for Log Shipping> } | NO TRUNCATE

ENCRYPTION (ALGORITHM = <Algorithm> | SERVER CERTIFICATE = <Certificate> | SERVER
ASYMMETRIC KEY = <Key>);

Restore Syntax:

RESTORE DATABASE <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
FROM <Backup Devices>

[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]

[, <Option List>]
[7]

RESTORE LOG <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
[FROM <Backup Devices>
WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]

[
[, <Option List>]
[7]

<Option List> =

MOVE <File to Location>

| REPLACE | RESTART | RESTRICTED USER | CREDENTIAL

| FILE = <File Number> | PASSWORD = <Passord>

| { CHECKSUM | NO CHECKSUM } | { STOP ON ERROR | CONTINUE AFTER ERROR }
| KEEP REPLICATION | KEEP_ CDC

| { STOPAT = <Stop Time>

| STOPATMARK = <Log Sequence Number>

| STOPBEFOREMARK = <Log Sequence Number>

Examples

Perform a full compressed database backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\FullBackup.bak'
WITH COMPRESSION;

Perform a log backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH COMPRESSION;

Perform a partial differential backup.

BACKUP DATABASE MyDatabase
FILEGROUP = 'FileGroupl',
FILEGROUP = 'FileGroup2'
TO DISK='C:\Backups\MyDatabase\DB1l.bak'
WITH DIFFERENTIAL;

Restore a database to a point in time.

- 245 -

aws

RESTORE DATABASE MyDatabase
FROM DISK='C:\Backups\MyDatabase\FullBackup.bak'
WITH NORECOVERY;

RESTORE LOG AdventureWorks2012
FROM DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH NORECOVERY, STOPAT = '20180401 10:35:00"';

RESTORE DATABASE AdventureWorks2012 WITH RECOVERY;

For more information, see

« https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sgl-server?view=sql-
server-ver15

« https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server-
?view=sql-server-ver15

Aurora PostgreSQL continuously backs up all cluster volumes and retains restore data for the duration of the
backup retention period. The backups are incremental and can be used to restore the cluster to any point in time
within the backup retention period. You can specify a backup retention period from one to 35 days when creating
or modifying a database cluster. Backups incur no performance impact and do not cause service interruptions.

Additionally, you can manually trigger data snapshots in a cluster volume that can be saved beyond the retention
period. You can use Snapshots to create new database clusters.

Note: Manual snapshots incur storage charges for Amazon RDS.

You can recover databases from Aurora's automatically retained data or from a manually saved snapshot. Using
the automatically retained data significantly reduces the need to take frequent snapshots and maintain Recovery
Point Objective (RPO) policies.

The RDS console displays the available time frame for restoring database instances in the Latest Restorable
Time and Earliest Restorable Time fields. The Latest Restorable Time is typically within the last five minutes. The
Earliest Restorable Time is the end of the backup retention period.

Note: The Latest Restorable Time and Earliest Restorable Time fields display when a database cluster
restore has been completed. Both display NULL until the restore process completes.

Database cloning is a fast and cost-effective way to create copies of a database. You can create multiple clones
from a single DB cluster and additional clones can be created from existing clones. When first created, a cloned
database requires only minimal additional storage space.

Database cloning uses a copy-on-write protocol. Data is copied only when it changes either on the source or
cloned database.

Data cloning is useful for avoiding impacts on production databases. For example:

- 246 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server?view=sql-server-ver15

aws

« Testing schema or parameter group modifications.

« Isolating intensive workloads. For example, exporting large amounts of data and running high resource-
consuming queries.

« Development and Testing with a copy of a production database.

Copying and sharing snapshots

Database snapshots can be copied and shared within the same AWS Region, across AWS Regions, and across
AWS accounts. Snapshot sharing allows an authorized AWS account to access and copy snapshots. Authorized
users can restore a snapshot from its current location without first copying it.

Copying an automated snapshot to another AWS account requires two steps:

« Create a manual snapshot from the automated snapshot.
« Copy the manual snapshot to another account.

Backup Storage

In all RDS regions, Backup Storage is the collection of both automated and manual snapshots for all database
instances and clusters. The size of this storage is the sum of all individual instance snapshots.

When an Aurora PostgreSQL database instance is deleted, all automated backups of that database instance are
also deleted. However, Amazon RDS provides the option to create a final snapshot before deleting a database
instance. This final snapshot is retained as a manual snapshot. Manual snapshots are not automatically deleted.

The Backup Retention Period

Retention periods for Aurora PostgreSQL DB cluster backups are configured when creating a cluster. If not expli-
citly set, the default retention is one day when using the Amazon RDS API or the AWS CLI. The retention period
is seven days if using the AWS Console. You can modify the backup retention period at any time with values of
one to 35 days.

Disabling automated backups

You cannot disable automated backups on Aurora PostgreSQL. The backup retention period for Aurora Post-
greSQL is managed by the database cluster.

Migration Considerations

Migrating from a self managed backup policy to a Platform as a Service (PaaS) environment such as Aurora Post-
greSQL is a complete paradigm shift. You no longer need to worry about transaction logs, file groups, disks run-
ning out of space, and purging old backups.

Amazon RDS provides guaranteed continuous backup with point-in-time restore up to 35 days.

Managing a SQL Server backup policy with similar RTO and RPO is a challenging task. With Aurora Post-
greSQL, all you need to set is the retention period and take some manual snapshots for special use cases.

- 247 -

Examples

aws

The following walk-through describes how to change Aurora PostgreSQL DB cluster retention settings from one

day to seven days using the RDS console.

Login to the RDS Console and on dashboard click Databases.

Amazon RDS X

Dashboard
Databases
Query Editor
- Performance Insights
¢ Snapshots
- Automated backups

Reserved instances

Click on relevant DB identifier.

RDS Databases

Resources

You are using the following Amazon RDS resourc

(used/quota)

DB Instances (4/40) Parar
Allocated storage (0.02 TB/100 TB) Di
Click here to increase DB instances C
limit Optic

DB Clusters (2/40) D

Databases
@ Group resources I C] I Modify] \ Actions W] I Restore from S3 l
Q
DB identifier A Role ¥ Engine v
(o] mysql-aurora-playbook Regional Aurora MySQL
mysql-aurora-playbook-instance-1 Writer Aurora MySQL

Verify the current automatic backup settings.

Backup
Automated backups Earliest restorable time Latest restore time
Enabled (2 Days) February 24, 2021, 2:32:36 February 26, 2021,

AMUTC

11:34:05 PM UTC

Copy tags to snapshots
Disabled

Backup window
02:27-02:57 UTC (GMT)

-248-

aws

In this cluster select database instance with the writer role.

RDS Databases mysql-aurora-playbook mysql-aurora-playbook-instance-1
mysql-aurora-playbook-instance-1 | Modify || Actions v
Related
Q @
DB identifier A Role w Engine v Region & AZ v Size
mysql-aurora-playbook Regional Aurora MySQL eu-central-1 1ins:
(o] mysql-aurora-playbook-instance-1 Writer Aurora MySQL eu-central-1a db.t3

On the top right, click Modify

laybook-instance-1

I Modify] ’ Actions ¥

&
Role ¥ Engine v Region & AZ ¥ Size
Regional Aurora MySQL eu-central-1 1ins
Writer Aurora MySQL eu-central-1a db.t3

Scroll down to the Backup section. Select 7 Days from the drop-down list.

Failover priority

tier-1 v

Backup

Creates a point-in-time snapshot of your database

Backup retention period Info
Choose the number of days that RDS should retain automatic backups for this instance.

2 days A

3 days
4 days
5 days
6 days

7 days

8 days es or threads u
-

Log exports

Click Continue, review the summary, select if to use scheduled maintenance window or to apply immediate and
click Modify DB Instance.

-249-

Amazon RDS X

Databases

Query Editor
Performance Insights
Snapshots
Automated backups

Reserved instances

Events

Event subscriptions

Recommendations g}

Certificate update

RDS Databases

Modify DB instance: mysql-aurora-playbook-instance-1

Modify DB instance: mysql-aurora-playbook-instance-1

Summary of modifications

You ar
click Modify DB Instance.

Attribute

Backup retention period 2

Current value

 about to submit the following modifications. Only values that will change are displayed. Carefully verify your changes and

New value

7

Scheduling of modifications

When to apply modifications

© Apply during the
Curr

aws

For more information and an example of creating a manual snapshot, see Maintenance Plans.

Feature

SQL Server

Aurora PostgreSQL

Comments

Recovery Model

SIMPLE, BULK LOGGED,
FULL

N/A

The functionality of Aurora
PostgreSQL backups is equi-
valent to the FULL recovery
model.

Backup Data- BACKUP DATABASE aws rds create-db-cluster-
base snapshot --db-cluster-snap-
shot-identifier Snapshot_
name --db-cluster-identifier
Cluster Name
Partial Backup |BACKUP DATABASE ... N/A Can use export utils
FILE=...| FILEGROUP = ...
Log Backup BACKUP LOG N/A Backup is at the storage level.
Differential BACKUP DATABASE ... N/A Can be done manually using
Backups WITH DIFFERENTIAL export tools.
Database Snap- | BACKUP DATABASE ... RDS console or API The terminology is inconsistent

shots

WITH COPY_ONLY

between SQL Server and Aur-
ora PostgreSQL. A database
snapshot in SQL Server is sim-
ilar to database cloning in Aur-
ora PostgreSQL. Aurora
PostgreSQL database snap-
shots are similarto a COPY _
ONLY backup in SQL Server.

Database
Clones

CREATE DATABASE...
AS SNAPSHOT OF...

Create new cluster from a
cluster snapshot:

aws rds restore-db-cluster-

The terminology is inconsistent
between SQL Server and Aur-
ora PostgreSQL. A database
snapshot in SQL Server is sim-
ilar to database cloning in Aur-

- 250 -

aws

Feature

SQL Server

Aurora PostgreSQL

Comments

from-snapshot --db-cluster-
identifier NewCluster --snap-
shot-identifier Snap-
shotToRestore --engine
aurora-postgresq|

Add a new instance to the
new/restored cluster:

aws rds create-db-instance
--region us-east-1 --db-sub-
net-group default --engine
aurora-postgresql --db-
cluster-identifier cluster-
name-restore --db-instance-
identifier newinstance-
nodeA --db-instance-class
db.r4.large

ora PostgreSQL. Aurora Post-
greSQL database snapshots
are similartoa COPY_ONLY
backup in SQL Server.

Pointin time
restore

RESTORE DATABASE
| LOG ... WITH STOPAT...

Create new cluster from a
cluster snapshot by given
custom time to restore:

aws rds restore-db-cluster-
to-point-in-time --db-cluster-
identifier clustername-
restore --source-db-cluster-
identifier clustername --
restore-to-time 2017-09-
19T23:45:00.000Z

Add a new instance to the
new/restored cluster:

aws rds create-db-instance
--region us-east-1 --db-sub-
net-group default --engine
aurora-postgresql --db-
cluster-identifier cluster-
name-restore --db-instance-
identifier newinstance-
nodeA --db-instance-class
db.r4.large

Partial Restore

RESTORE DATABASE...
FILE=...| FILEGROUP = ...

N/A

The cluster can be restored to
a new cluster and the needed
data can be copied to the
primary cluster.

- 251 -

aws

For more information, see https.//-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora. Managing. html#Aurora. Managing. Backups

SQL Server High Availability Essentials vs.
PostgreSQL High Availability Essentials

Feature Com- SCT/DMS Auto- |SCT Action Kev Differences

patibility mation Level Code Index y
A= N/A N/A Multi replica, scale out solution using Amazon Aur-
= = = == ora clusters and Availability Zones

SQL Server Usage

SQL Server provides several solutions to support high availability and disaster recovery requirements including
Always On Failover Cluster Instances (FCI), Always On Availability Groups, Database Mirroring, and Log Ship-
ping. The following sections describe each solution.

SQL Server 2017 also adds new Availability Groups functionality which includes read-scale support without a
cluster, Minimum Replica Commit Availability Groups setting, and Windows-Linux cross-OS migrations and test-

ing.

SQL Server 2019 introduces support for creating Database Snapshots of databases that include memory-optim-
ized filegroups. A database snapshot is a read-only, static view of a SQL Server database. The database snap-
shot is transactional consistent with the source database as of the moment of the snapshot's creation. Among
other things, some benefits of the database snapshots with regard to high availability are:

« Snapshots can be used for reporting purposes.
« Maintaining historical data for report generation.
« Using a mirror database that you are maintaining for availability purposes to offload reporting.

For more information about snapshots, see Database Snapshots

SQL Server 2019 introduces secondary to primary connection redirection for Always On Availability Groups.

It allows client application connections to be directed to the primary replica regardless of the target server spe-
cified in the connections string. The connection string can target a secondary replica. Using the right configuration
of the availability group replica and the settings in the connection string, the connection can be automatically redir-
ected to the primary replica.

For more information about snapshots, see Secondary to primary replica read/write connection redirection

Always On Failover Cluster Instances (FCI)

Always On Failover Cluster Instances use the Windows Server Failover Clustering (WSFC) operating system
framework to deliver redundancy at the server instance level.

An FClis an instance of SQL Server installed across two or more WSFC nodes. For client applications, the FCl is
transparent and appears to be a normal instance of SQL Server running on a single server. The FCI provides fail-

- 252 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups?view=sql-server-ver15

aws

over protection by moving the services from one WSFC node Windows server to another WSFC node windows
server in the event the current "active" node becomes unavailable or degraded.

FCls target scenarios where a server fails due to a hardware malfunction or a software hangup. Without FCI, a
significant hardware or software failure would render the service unavailable until the malfunction is corrected.
With FCI, another server can be configured as a "stand by" to replace the original serverif it stops servicing
requests.

For each service or cluster resource, there is only one node that actively services client requests (known as "own-
ing a resource group"). A monitoring agent constantly monitors the resource owners and can transfer ownership
to another node in the event of a failure or planned maintenance such as installing service packs or security
patches. This process is completely transparent to the client application, which may continue to submit requests
as normal when the failover or ownership transfer process completes.

FCI can significantly minimize downtime due to hardware or software general failures. The main benefits of FCI
are:

« Fullinstance level protection.

« Automatic failover of resources from one node to another.

» Supports a wide range of storage solutions. WSFC cluster disks can be iSCSI, Fiber Channel, SMB file
shares, and others.

o Supports multi-subnet.

« No need client application configuration after a failover.

« Configurable failover policies.

« Automatic health detection and monitoring.

For more information, see https.//docs. microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-
cluster-instances-sql-server?view=sql-server-ver15

Always On Availability Groups is the most recent high availability and disaster recovery solution for SQL Server. It
was introduced in SQL Server 2012 and supports high availability for one or more user databases. Because it can
be configured and managed at the database level rather than the entire server, it provides much more control and
functionality. As with FCI, Always On Availability Groups relies on the framework services of Windows Server Fail-
over Cluster (WSFC) nodes.

Always On Availability Groups utilize real-time log record delivery and apply mechanism to maintain near real-
time, readable copies of one or more databases.

These copies can also be used as redundant copies for resource usage distribution between servers (a scale-out
read solution).

The main characteristics of Always On Availability Groups are:

« Supports up to nine availability replicas: One primary replica and up to eight secondary readable replicas.

« Supports both asynchronous-commit and synchronous-commit availability modes.

« Supports automatic failover, manual failover, and a forced failover. Only the latter can result in data loss.

« Secondary replicas allow both read-only access and offloading of backups.

« Availability Group Listener may be configured for each availability group. It acts as a virtual server address
where applications can submit queries. The listener may route requests to a read-only replica or to the
primary replica for read-write operations. This configuration also facilitates fast failover as client applic-
ations do not need to be reconfigured post failover.

« Flexible failover policies.

« The automatic page repair feature protects against page corruption.

- 253 -

https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server?view=sql-server-ver15

aws

« Log transport framework uses encrypted and compressed channels.
« Richtooling and APlIs including Transact-SQL DDL statements, management studio wizards, Always On
Dashboard Monitor, and Powershell scripting.

For more information, see
https.//docs. microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sgl-
server?view=sql-server-ver15

Note: Microsoft recommends avoiding Database Mirroring for new development. This feature is deprec-
ated and will be removed in a future release. It is recommended to use Always On Availability Groups
instead.

Database mirroring is a legacy solution to increase database availability by supporting near instantaneous fail-
over. Itis similar in concept to Always On Availability Groups, but can only be configured for one database at a
time and with only one "standby" replica.

For more information, see
https.//docs. microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server?view=sgl-server-
verls

Log shipping is one of the oldest and well tested high availability solutions. It is configured at the database level
similar to Always On Availability Groups and Database Mirroring. Log shipping can be used to maintain one or
more standby (secondary) databases for a single master (primary) database.

The Log shipping process involves three steps:

1. Backing up the transaction log of the primary database instance.
2. Copying the transaction log backup file to a secondary server.
3. Restoring the transaction log backup to apply changes to the secondary database.

Log shipping can be configured to create multiple secondary database replicas by repeating steps 2 and 3 above
for each secondary server. Unlike FCl and Always On Availability Groups, log shipping solutions do not provide
automatic failover.

In the event the primary database becomes unavailable or unusable for any reason, an administrator must con-
figure the secondary database to serve as the primary and potentially reconfigure all client applications to connect
to the new database.

Note: Secondary databases can be used for read-only access, but require special handling. For more
information, see https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-ship-
ping-sql-server?view=sqgl-server-ver15

The main characteristics of Log Shipping solutions are:

« Provides redundancy for a single primary database and one or more secondary databases. Log Shipping
is considered less of a high availability solution due to the lack of automatic failover.

« Supports limited read-only access to secondary databases.

« Administrators have control over the timing and delays of the primary server log backup and secondary

- 254 -

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-shipping-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-shipping-sql-server?view=sql-server-ver15

aws

server restoration.
» Longer delays can be useful if data is accidentally modified or deleted in the primary database.

For more information about log shipping, see https://docs. microsoft.com/en-us/sql/database-engine/log-shipping/about-log-
shipping-sql-server?view=sql-server-ver15

Examples

Configure an Always On Availability Group.

CREATE DATABASE DB1;
ALTER DATABASE DB1 SET RECOVERY FULL;
BACKUP DATABASE DBl TO DISK = N'\\MyBackupShare\DB1\DB1.bak' WITH FORMAT;

CREATE ENDPOINT DBHA STATE=STARTED
AS TCP (LISTENER PORT=7022) FOR DATABASE MIRRORING (ROLE=ALL) ;

CREATE AVAILABILITY GROUP AG DBI1
FOR
DATABASE DB1
REPLICA ON
'SecondarySQL' WITH
(
ENDPOINT URL = 'TCP://SecondarySQL.MyDomain.com:7022",
AVATLABILITY MODE = ASYNCHRONOUS COMMIT,
FATLOVER MODE = MANUAL

) ;

-—- On SecondarySQL
ALTER AVAILABILITY GROUP AG_DBl JOIN;

RESTORE DATABASE DBl FROM DISK = N'\\MyBackupShare\DB1\DBl.bak'
WITH NORECOVERY;

-- On Primary

BACKUP LOG DB1

TO DISK = N'\\MyBackupShare\DB1\DBl Tran.bak'
WITH NOFORMAT

-- On SecondarySQL

RESTORE LOG DB1
FROM DISK = N'\\MyBackupShare\DBI\DBl Tran.bak'
WITH NORECOVERY

ALTER DATABASE MyDbl SET HADR AVAILABILITY GROUP = MyAG;

For more information, see
https.//docs. microsoft.com/en-us/sql/sqgl-server/failover-clusters/high-availability-solutions-sgl-server?view=sgl-server-
ver15

- 255 -

https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/high-availability-solutions-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/high-availability-solutions-sql-server?view=sql-server-ver15

aws

Aurora PostgreSQL is a fully managed Platform as a Service (PaaS) providing high availability capabilities.
Amazon RDS provides database and instance administration functionality for provisioning, patching, backup,
recovery, failure detection, and repair.

New Aurora PostgreSQL database instances are always created as part of a cluster. If you don't specify replicas
at creation time, a single-node cluster is created. You can add database instances to clusters later.

Amazon RDS is hosted in multiple global locations. Each location is composed of Regions and Availability Zones.
Each Region is a separate geographic area having multiple, isolated Availability Zones. Amazon RDS supports
placement of resources such as database instances and data storage in multiple locations. By default, resources
are not replicated across regions.

Each Region is completely independent and each Availability Zone is isolated from all others. However, the main
benefit of Availability Zones within a Region is that they are connected through low-latency, high bandwidth local
network links.

' Y
Amazon Web Services
i ™ ra !
. .
Region Availability Region Availability
Zone / Zone
" ™ ' ™y
Availahility Availahility Availahility Availability
Zone Zone Zone Zone
b A b A
\. y b -
b Iy

Resources may have different scopes. A resource may be global, associated with a specific region (region level) ,
or associated with a specific Availability Zone within a region. For more information, see https://-
docs.aws.amazon.com/AWSEC2/latest/UserGuide/resources.html

When creating a database instance, you can specify an availability zone or use the default "No Preference", in
which case Amazon chooses the availability zone for you.

Aurora PostgreSQL instances can be distributed across multiple availability zones. Applications can be designed
to take advantage of failover such that in the event of an instance in one availability zone failing, another instance
in different availability zone will take over and handle requests.

Elastic IP addresses can be used to abstract the failure of an instance by remapping the virtual IP address to one
of the available database instances in another Availability Zone. For more information, see https://-
docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

An Availability Zone is represented by a region code followed by a letter identifier. For example, us-east-1a.

- 256 -

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resources.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resources.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

aws

Note: To guarantee even resource distribution across Availability Zones for a region, Amazon RDS
independently maps Availability Zones to identifiers for each account. For example, the Availability
Zone us-east-1a for one account might not be in the same location as us-east-1a for another account.
Users cannot coordinate Availability Zones between accounts.

Aurora PostgreSQL DB Cluster

A DB cluster consists of one or more DB instances and a cluster volume that manages the data for those
instances. A cluster volume is a virtual database storage volume that may span multiple Availability Zones with
each holding a copy of the database cluster data.

An Aurora database cluster is made up of one of more of the following types of instances:

« APrimary instance that supports both read and write workloads. This instance is used for all DML trans-
actions. Every Aurora DB cluster has one, and only, one primary instance.

« An Aurora Replica that supports read-only workloads. Every Aurora PostgreSQL database cluster may
contain from zero to 15 Aurora Replicas in addition to the primary instance for a total maximum of 16
instances. Aurora Replicas enable scale-out of read operations by offloading reporting or other read-only
processes to multiple replicas. Place aurora replicas in multiple availability Zones to increase availability of
the databases.

Amazon Aurora DB Cluster

.i

Data Copies Data Copies Data Copies

Cluster Volume

Endpoints

Endpoints are used to connect to Aurora PostgreSQL databases. An endpoint is a Universal Resource Locator
(URL) comprised of a host address and port number.

« A Cluster Endpoint is an endpoint for an Aurora database cluster that connects to the current primary
instance for that database cluster regardless of the availability zone in which the primary resides. Every Aur-
ora PostgreSQL DB cluster has one cluster endpoint and one primary instance. The cluster endpoint
should be used for transparent failover for either read or write workloads.

Note: Use the cluster endpoint for all write operations including all DML and DDL statements.
If the primary instance of a DB cluster fails for any reason, Aurora automatically fails over server requests

to a new primary instance. An example of a typical Aurora PostgreSQL DB Cluster endpointis: mydb-
cluster.cluster-123456789012.us-east-1.rds.amazonaws.com:3306

-257 -

aws

. A Reader Endpoint is an endpoint that is used to connect to one of the Aurora read-only replicas in the
database cluster. Each Aurora PostgreSQL database cluster has one reader endpoint. If there are more
than one Aurora Replicas in the cluster, the reader endpoint redirects the connection to one of the available
replicas. Use the Reader Endpoint to support load balancing for read-only connections. If the DB cluster
contains no replicas, the reader endpoint redirects the connection to the primary instance. If an Aurora Rep-
lica is created later, the Reader Endpoint starts directing connections to the new Aurora Replica with min-
imal interruption in service. An example of a typical Aurora PostgreSQL DB Reader Endpoint is:
mydbcluster.cluster-ro-123456789012.us-east-1.rds.amazonaws.com: 3306

« AnInstance Endpoint is a specific endpoint for every database instance in an Aurora DB cluster. Every
Aurora PostgreSQL DB instance regardless of its role has its own unique instance endpoint. Use the
Instance Endpoints only when the application handles failover and read workload scale-out on its own. For
example, you can have certain clients connect to one replica and others to another. An example of a typical
Aurora PostgreSQL DB Reader Endpointis: pgsdbinstance.123456789012.us-east-1.rd-
s.amazonaws.com: 3306

Some general considerations for using endpoints:

« Consider using the cluster endpoint instead of individual instance endpoints because it supports high-avail-
ability scenarios. In the event that the primary instance fails, Aurora PostgreSQL automatically fails over to
a new primary instance. This configuration can be accomplished by either promoting an existing Aurora
Replica to be the new primary or by creating a new primary instance.

« Ifyou use the cluster endpoint instead of the instance endpoint, the connection is automatically redirected
to the new primary.

« If you choose to use the instance endpoint, you must use the RDS cosole or the API to discover which data-
base instances in the database cluster are available and their current roles. Then, connect using that
instance endpoint.

« Be aware that the reader endpoint load balances connections to Aurora Replicas in an Aurora database
cluster, but it does not load balance specific queries or workloads. If your application requires custom rules
for distributing read workloads, use instance endpoints.

« The reader endpoint may redirect connection to a primary instance during the promotion of an Aurora Rep-
lica to a new primary instance.

Aurora PostgreSQL data is stored in a cluster volume. The Cluster volume is a single, virtual volume that uses

fast solid state disk (SSD) drives.The cluster volume is comprised of multiple copies of the data distributed
between availability zones in a region. This configuration minimizes the chances of data loss and allows for the fail-
over scenarios mentioned above.

Aurora cluster volumes automatically grow to accommodate the growth in size of your databases. An Aurora
cluster volume has a maximum size of 64 terabytes (TiB). Since table size is theoretically limited to the size of the
cluster volume, the maximum table size in an Aurora DB cluster is 64 TiB.

The chance of data loss due to disk failure is greatly minimize due to the fact that Aurora PostgreSQL maintains
multiple copies of the data in three Availability Zones. Aurora PostgreSQL detects failures in the disks that make
up the cluster volume. If a disk segment fails, Aurora repairs the segment automatically. Repairs to the disk seg-
ments are made using data from the other cluster volumes to ensure correctness. This process allows Aurora to
significantly minimize the potential for data loss and the subsequent need to restore a database.

- 258 -

aws

Survivable Cache Warming

When a database instance starts, Aurora PostgreSQL performs a "warming" process for the buffer pool. Aurora
PostgreSQL pre-loads the buffer pool with pages that have been frequently used in the past. This approach
improves performance and shortens the natural cache filling process for the initial period when the database
instance starts servicing requests. Aurora PostgreSQL maintains a separate process to manage the cache,
which can stay alive even when the database process restarts. The buffer pool entries remain in memory regard-
less of the database restart providing the database instance with a fully "warm" buffer pool.

Crash Recovery

Aurora PostgreSQL can instantaneously recover from a crash and continue to serve requests. Crash recovery is
performed asynchronously using parallel threads enabling the database to remain open and available imme-
diately after a crash.

For more information about crash recovery, see https.//-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora. Managing. html#Aurora. Managing. Fault Tolerance.

Examples

The following walk-through demonstrates how to create a read-replica:

1. Navigate to the RDS databases page.

2. Selectthe instance and click Instance actions > Create cross region read replica.
RDS Databases

Databases
@ Group resources ‘ (@} | ‘ Modify ‘ ‘ Actions & ‘ | Restore from S3 ‘ Create database
Stop
Q 1 &
DB identifier ne v Region & A
L- -playbook MySQL -central-1
o mysgl-aurora-playboo Add AWS Region ra MySQ eu-centra

mysql-aurora-playbook-instance-1 Add reader ra MySQL eu-central-1

Create cross-Region read

. le Standard Edition Two eu-central-1
replica

oraplaybook

3. Onthe next page, enter all required details and click Create.

After the replica is created, you can execute read and write operations on the primary instance and read-only
operations on the replica.

Summary

Feature SQL Server Aurora PostgreSQL | Comments

Server level failure | Failover Cluster N/A Not applicable. Clustering is handled by
protection Instances Aurora PostgreSQL.

Database level fail- | Always On Avail- Aurora Replicas

- 259 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://console.aws.amazon.com/rds/home?#dbinstances:

aws

Only replicas

Feature SQL Server Aurora PostgreSQL | Comments

ure protection ability Groups

Log replication Log Shipping N/A Not applicable. Aurora PostgreSQL
handles data replication at the storage
level.

Disk error protection |RESTORE... Automatically

PAGE=
Maximum Read 8 + Primary 15 + Primary

Failover address

Availability Group
Listener

Cluster Endpoint

Read Only work-
loads

READ INTENT con-
nection

Read Endpoint

For more information, see:

« https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora. Overview.html

« https://docs.aws.amazon.com/AWSE CZ2/latest/UserGuide/using-regions-availability-zones. html

- 260 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

aws

Indexes

SQL Server Clustered and Non Clustered Indexes
vs. PostgreSQL Clustered and Non Clustered
Indexes

Feature Com- SCT/DMS Auto- . .
patibility mation Level SCT Action Code Index Key Differences
- &

aaoaa SCT Action Codes - Indexes | CLUSTERED INDEX is not sup-
ported

Few missing options

SQL Server Usage

Indexes are physical disk structures used to optimize data access. They are associated with tables or mater-
ialized views and allow the query optimizer to access rows and individual column values without scanning an
entire table.

An index consists of index keys, which are columns from a table or view. They are sorted in ascending or des-
cending order providing quick access to individual values for queries that use equality or range predicates. Data-
base indexes are similar to book indexes that list page numbers for common terms. Indexes created on multiple
columns are called Composite Indexes.

SQL Server implements indexes using the Balanced Tree algorithm (B-tree).

Note: SQL Server supports additional index types such as hash indexes (for memory-optimized tables),
spatial indexes, full text indexes, and XML indexes.

Indexes are created automatically to support table primary keys and unique constraints. They are required to effi-
ciently enforce uniqueness. Up to 250 indexes can be created on a table to support common queries.

SQL Server provides two types of B-Tree indexes: Clustered Indexes and Non-Clustered Indexes.

-261-

aws

Clustered indexes include all the table's column data in their leaf level. The entire table data is sorted and logically
stored in order on disk. A Clustered Index is similar to a phone directory index where the entire data is contained
for every index entry. Clustered indexes are created by default for Primary Key constraints. However, a primary
key doesn't necessarily need to use a clustered index if it is explicitly specified as non-clustered.

Clustered indexes are created using the CREATE CLUSTERED INDEX statement. Only one clustered index
can be created for each table because the index itself is the table's data. A table having a clustered index is called
a "clustered table" (also known as an "index organized table" in other relational database management systems).
A table with no clustered index is called a "heap".

Create a Clustered Index as part of table definition.

CREATE TABLE MyTable

(
Coll INT NOT NULL
PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL

) i
Create an explicit clustered index using CREATE INDEX.

CREATE TABLE MyTable

(
Coll INT NOT NULL

PRIMARY KEY NONCLUSTERED,
Col2 VARCHAR (20) NOT NULL

) ;

CREATE CLUSTERED INDEX IDX1
ON MyTable (Col2) ;

Non clustered indexes also use the B-Tree algorithm but consist of a data structure separate from the table itself.
They are also sorted by the index keys, but the leaf level of a non-clustered index contains pointers to the table
rows; not the entire row as with a clustered index.

Up to 999 non-clustered indexes can be created on a SQL Server table. The type of pointer used at the lead level
of a non-clustered index (also known as a row locator) depends on whether the table has a clustered index
(clustered table) or not (heap). For heaps, the row locators use a physical pointer (RID). For clustered tables, row
locators use the clustering key plus a potential uniquifier. This approach minimizes non-clustered index updates
when rows move around, or the clustered index key value changes.

Both clustered and non clustered indexes may be defined as UNIQUE using the CREATE UNIQUE INDEX state-
ment. SQL Server maintains indexes automatically for a table or view and updates the relevant keys when table
data is modified.

- 262 -

aws

Examples

Create a unique non-clustered index as part of table definition.

CREATE TABLE MyTable

(

Coll INT NOT NULL
PRIMARY KEY,

Col2 VARCHAR (20) NOT NULL
UNIQUE

) ;

Create a unique non-clustered index using CREATE INDEX.

CREATE TABLE MyTable

(
Coll INT NOT NULL

PRIMARY KEY CLUSTERED,
Col2 VARCHAR (20) NOT NULL
) ;

CREATE UNIQUE NONCLUSTERED INDEX IDX1 ON MyTable (Col2);

Filtered Indexes and Covering Indexes

SQL Server also supports two special options for non clustered indexes. Filtered indexes can be created to index
only a subset of a table's data. They are useful when it is known that the application will not need to search for spe-
cific values such as NULLs.

For queries that typically require searching on particular columns but also need additional column data from the
table, non-clustered indexes can be configured to include additional column data in the index leaf level in addition
to the row locator. This may prevent expensive lookup operations, which follow the pointers to either the physical
row location (in a heap) or traverse the clustered index key in order to fetch the rest of the data not part of the
index. If a query can get all the data it needs from the non-clustered index leaf level, that index is considered a
"covering" index.

Examples

Create afiltered index to exclude NULL values.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable (Col2)
WHERE Col2 IS NOT NULL;

Create a covering index for queries that search on col2 but also need data from col3.
CREATE NONCLUSTERED INDEX IDX1

ON MyTable (Col2)
INCLUDE (Col3);

- 263 -

aws

SQL Server allows creating indexes on persisted computed columns. Computed columns are table or view
columns that derive their value from an expression based on other columns in the table. They are not explicitly
specified when data is inserted or updated. This feature is useful when a query’s filter predicates are not based on
the column table data as-is, but on a function or expression.

For example, consider the following table that stores phone numbers for customers, but the format is not con-
sistent for all rows; some include country code and some do not:

CREATE TABLE PhoneNumbers

(

PhoneNumber VARCHAR (15) NOT NULL
PRIMARY KEY,

Customer VARCHAR (20) NOT NULL

) ;

INSERT INTO PhoneNumbers
VALUES
('+1-510-444-3422"','Dan'),
('644-2442-3119"', '"John"'"),
('1-402-343-1991"', '"Jane"') ;

The following query to look up the owner of a specific phone number must scan the entire table because the index
cannot be used due to the preceding % wild card.

SELECT Customer
FROM PhoneNumbers
WHERE PhoneNumber LIKE '$510-444-3422"';

A potential solution would be to add a computed column that holds the phone number in reverse order.

ALTER TABLE PhoneNumbers
ADD ReversePhone AS REVERSE (PhoneNumber)
PERSISTED;

CREATE NONCLUSTERED INDEX IDX1
ON PhoneNumbers (ReversePhone)
INCLUDE (Customer) ;

Now, the following query can be used to search for the customer based on the reverse string, which places the
wild card at the end of the LIKE predicate. This approach provides an efficient index seek to retrieve the customer
based on the phone number value.

DECLARE @ReversePhone VARCHAR(15) = REVERSE ('510-444-3422");
SELECT Customer

FROM PhoneNumbers

WHERE ReversePhone LIKE @ReversePhone + '%';

- 264 -

aws

For more information, see:

« https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-
described?view=sql-server-ver15

« https://docs. microsoft.com/en-us/sql/t-sqgl/statements/create-index-transact-sgl?view=sql-server-ver15

PostgreSQL Usage

Aurora PostgreSQL supports Balanced Tree (b-tree) indexes similar to SQL Server. However, the terminology,
use, and options for these indexes are different.

Aurora PostgreSQL is missing the CLUSTERED INDEX feature but has other options which SQL Server
doesn't have, Index Prefix and Blob indexing.

Since PostgreSQL 10, there are many improvements in performance, related to joins and parallel scans of the
indexes.

Starting with PostgreSQL 12 it is now possible to monitor progress of CREATE INDEX and REINDEX oper-
artions by querying system view pg_stat_progress_create_index

Cluster Table

PostgreSQL does not support cluster tables directly, but provides similar functionality using the CLUSTER fea-
ture. The PostgreSQL CLUSTER statement specifies table sorting based on an index already associated with
the table. When using the PostgreSQL CLUSTER command, the data in the table is physically sorted based on
the index, possibly using a primary key column.

The CLUSTER statement can be used as needed to re-cluster the table.

Example

CREATE TABLE SYSTEM EVENTS (
EVENT ID NUMERIC,
EVENT CODE VARCHAR (10) NOT NULL,
EVENT DESCIPTION VARCHAR (200),
EVENT TIME DATE NOT NULL,
CONSTRAINT PK EVENT ID PRIMARY KEY (EVENT ID)) ;

INSERT INTO SYSTEM EVENTS VALUES (9, 'EV-Al-10', 'Critical', '01-JAN-2017");
INSERT INTO SYSTEM EVENTS VALUES (1, 'EV-C1-09', 'Warning', '01-JAN-2017"');
INSERT INTO SYSTEM EVENTS VALUES (7, 'EV-E1-14', 'Critical', '01-JAN-2017");

CLUSTER SYSTEM EVENTS USING PK EVENT ID;
SELECT * FROM SYSTEM EVENTS;

event time
2017-01-01

2017-01-01
2017-01-01

EVNT-C1-09
EVNT-E1-14
EVNT-A1-10

Warning
Critical
Critical

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver15

INSERT INTO SYSTEM EVENTS VALUES (2,

'EV-E2-

SELECT * FROM SYSTEM EVENTS;

event code

EVNT-C1-09
EVNT-E1-14
EVNT-A1-10
EVNT-E2-02

Warning
Critical
Critical
Warning

CLUSTER SYSTEM EVENTS USING PK_EVENT ID; --
SELECT * FROM SYSTEM EVENTS;

EVNT-C1-09
EVNT-E2-02
EVNT-E1-14
EVNT-A1-10

Warning
Warning
Critical
Critical

0z2',

event time

2017-01-01
2017-01-01
2017-01-01
2017-01-01

'Warning',

aws

'01-JAN-2017") ;

Run CLUSTER again to re-cluster

event time

2017-01-01
2017-01-01
2017-01-01
2017-01-01

When creating an Index in PostgreSQL, a B-Tree Index is created by default, similar to the behavior in
SQL Server. PostgreSQL B-Tree indexes have the same characteristics as SQL Server and can handle equality

and range queries on data. The PostgreSQL optimizer considers using B-Tree indexes especially for one or more
of the following operators in queries: >, >=, <, <=, =

In addition, performance improvements can be achieved when using IN, BETWEEN, IS NULL, or IS NOT NULL.

Since PostgreSQL 10, there is a support of parallel B-tree index scans - this change allows this index type pages
to be searched by separate parallel workers

- 266 -

aws

Example

Create a PostgreSQL B-Tree Index.

CREATE INDEX IDX EVENT ID ON SYSTEM LOG(EVENT ID);
OR
CREATE INDEX IDX EVENT ID1 ON SYSTEM LOG USING BTREE (EVENT ID);

For more details, seehttps://www.postgresql.org/docs/13/static/sqgl-createindex.html

Column and Multiple Column Secondary Indexes

Currently, only B-tree, GiST, GIN, and BRIN support Multi-Column Indexes. 32 columns can be specified when
creating a Multi-Column Index.

PostgreSQL uses the exact same syntax as SQL Server to create Multi-Column Indexes.

Example

Create a multi-column index on the EMPLOYEES table.

CREATE INDEX IDX EMP COMPI
ON EMPLOYEES (FIRST NAME, EMAIL, PHONE NUMBER) ;

Drop a multiple-column Index.

DROP INDEX IDX EMP COMPI;

For additional details: https://www.postgresgl.org/docs/13/static/indexes-multicolumn.html

-267 -

https://www.postgresql.org/docs/13/static/sql-createindex.html
https://www.postgresql.org/docs/13/static/indexes-multicolumn.html

aws

Expression Indexes and Partial Indexes

Example

Create an Expression Index in PostgreSQL.

CREATE TABLE SYSTEM EVENTS (
EVENT ID NUMERIC PRIMARY KEY,
EVENT CODE VARCHAR (10) NOT NULL,
EVENT DESCIPTION VARCHAR(200),
EVENT TIME TIMESTAMP NOT NULL) ;

CREATE INDEX EVNT BY DAY ON SYSTEM EVENTS (EXTRACT (DAY FROM EVENT TIME)) ;

Insert records into the SYSTEM_EVENTS table, gathering table statistics using the ANALYZE statement and
verifying that the Expression Index (“EVNT_BY_DAY?”) is being used for data access.

INSERT INTO SYSTEM EVENTS
SELECT ID AS event id,

'"EVNT-A'"| |ID+9||'-"||ID AS event code,

CASE WHEN mod (ID,2) = 0 THEN 'Warning' ELSE 'Critical' END AS event desc,
now () + INTERVAL 'l minute' * ID AS event time
FROM

(SELECT generate series(1,1000000) AS ID) A;
INSERT 0 1000000

ANALYZE SYSTEM EVENTS;
ANALYZE

EXPLAIN
SELECT * FROM SYSTEM EVENTS
WHERE EXTRACT (DAY FROM EVENT TIME) = '22';

QUERY PLAN

Bitmap Heap Scan on system events (cost=729.08..10569.58 rows=33633 width=41)

Recheck Cond: (date part('day'::text, event time) = '22'::double precision)
-> Bitmap Index Scan on evnt by day (cost=0.00..720.67 rows=33633 width=0)
Index Cond: (date part('day'::text, event time) = '22'::double precision)

Partial Indexes
PostgreSQL also provides Partial Indexes, which are indexes that use a WHERE clause when created. The most

significant benefit of using partial indexes is a reduction of the overall subset of indexed data, allowing users to
index relevant table data only. Partial indexes can be used to increase efficiency and reduce the size of the index.

Example

Create a PostgreSQL partial Index.

CREATE TABLE SYSTEM EVENTS (
EVENT ID NUMERIC PRIMARY KEY,

- 268 -

aws

EVENT CODE VARCHAR(10) NOT NULL,
EVENT DESCIPTION VARCHAR(200),
EVENT TIME DATE NOT NULL) ;

CREATE INDEX IDX TIME CODE ON SYSTEM EVENTS (EVENT TIME)
WHERE EVENT CODE like 'Ol-A%';

For additional details, see
https.//www.postgresgl.org/docs/13/static/sqgl-createindex. htmi#SQL-CREATEINDEX-CONCURRENTLY

BRIN Indexes

PostgreSQL does not provide native support for BITMAP indexes. However, a BRIN index, which splits table
records into block ranges with MIN/MAX summaries, can be used as a partial alternative for certain analytic work-
loads. For example, BRIN indexes are suited for queries that rely heavily on aggregations to analyze large num-
bers of records.

Example

Create a PostgreSQL BRIN Index.

CREATE INDEX IDX BRIN EMP ON EMPLOYEES USING BRIN (salary) ;

- 269 -

https://www.postgresql.org/docs/13/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

aws

The following table summarizes the key differences to consider when migrating b-tree indexes from SQL Server

to Aurora PostgreSQL
Index Feature SQL Server Aurora PostgreSQL
Clustered indexes sup-| Table keys, composite or single column, On indexes

ported for

unique and non-unique, null or not null

Non clustered index
supported for

Table keys, composite or single column,
unique and non unique, null or not null

Table keys, composite or single column,
unique and non unique, null or not null

Max number of non
clustered indexes

999

N/A

Max total index key 900 bytes N/A

size

Max columns per 32 32

index

Index Prefix N/A Supported

Filtered Indexes Supported Supported (Partial Indexes)
Indexes on BLOBS N/A Supported

For additional details, see:

« https://www.postgresgl.org/docs/13/static/indexes-types.html|

« https://www.postgresgl.org/docs/13/static/sqgl-createindex. html

« https://www.postgresql.org/docs/13/static/sql-cluster.htm|

o https://www.postgresql.org/docs/13/static/sqgl-createindex. htmli#SQL-CREATEINDEX-CONCURRENTLY

-270-

https://www.postgresql.org/docs/13/static/indexes-types.html
https://www.postgresql.org/docs/13/static/sql-createindex.html
https://www.postgresql.org/docs/13/static/sql-cluster.html
https://www.postgresql.org/docs/13/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

aws

Management

SQL Server Agent vs. PostgreSQL Scheduled
Lambda

SQL Server Usage

SQL Server Agent provides two main functions: Scheduling automated maintenance jobs, and alerting.
Note: Other SQL built-in frameworks such as replication, also use SQL Agent jobs.

See Maintenance Plans and Alerting.

For more information about SQL Server Agent, see https://docs. microsoft.com/en-us/sql/ssms/agent/sql-server-
agent?view=sqgl-server-ver15

PostgreSQL Usage

SQL Server Agent provides two main functions: Scheduling automated maintenance jobs and alerting.
Note: Other SQL built-in frameworks such as replication also use SQL Agent jobs.
Maintenance Plans and Alerting are covered in separate sections:
« Maintenance Plans

« Alerting

Currently, there is no equivalent in Aurora PostgreSQL for scheduling tasks but you can create scheduled AWS
Lambda that will execute a stored procedure, find an example in DB Mail.

-271-

https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-agent?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-agent?view=sql-server-ver15

aws

Feature Com- SCT/DMS Auto- |SCT Action Key Differences

patibility mation Level Code Index
= N/A N/A Use Event Notifications Subscription with Amazon

Simple Notification Service (SNS)

SQL Server provides SQL Server Agentto generate alerts. When running, SQL Server Agent constantly mon-
itors SQL Server windows application log messages, performance counters, and Windows Management Instru-
mentation (WMI) objects. When a new error event is detected, the agent checks the MSDB database for
configured alerts and executes the specified action.

You can define SQL Server Agent alerts for the following categories:
« SQL Server events
« SQL Server performance conditions
o WMl events
For SQL Server events, the alert options include the following settings:

« Error Number: Alert when a specific error is logged.
« Severity Level: Alert when any error in the specified severity level is logged.
» Database: Filter the database list for which the event will generate an alert.

« Event Text: Filter specific text in the event message.

Note: SQL Server agent is pre-configured with several high severity alerts. It is highly recommended to
enable these alerts.

To generate an alert in response to a specific performance condition, specify the performance counter to be mon-
itored, the threshold values for the alert, and the predicate for the alert to occur. The following list identifies the per-
formance alert settings:

« Object: The Performance counter category or the monitoring area of performance.
« Counter: A counter is a specific attribute value of the object.
« Instance: Filter by SQL Server instance (multiple instances can share logs).

« Alert if counter and Value: The threshold for the alert and the predicate. The threshold is a number. Predic-
ates are Falls below, becomes equalto, or rises above the threshold.

WMI events require the WMI namespace and the WMI Query Language (WQL) query for specific events.
Alerts can be assigned to specific operators with schedule limitations and multiple response types including:

» Execute an SQL Server Agent Job.

« Send Email, Net Send command, or a pager notification.

You can configure Alerts and responses with SQL Server Management Studio or system stored procedures.

-272 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/

aws

Configure an alert for all errors with severity 20.

EXEC msdb.dbo.sp add alert

@name = N'Severity 20 Error Alert',

@severity = 20,

@notification message = N'A severity 20 Error has occurred. Initiating emergency pro-
cedure',

@job name = N'Error 20 emergency response';

For more information, see https://docs. microsoft.com/en-us/sql/ssms/agent/alerts ?view=sql-server-ver15

Aurora PostgreSQL does not support direct configuration of engine alerts. Use the Event Notifications Infra-
structure to collect history logs or receive event notifications in near real-time.

Amazon Relational Database Service (RDS) uses Amazon Simple Natification Service (SNS) to provide noti-
fications for events. SNS can send notifications in any form supported by the region including email, text mes-
sages, or calls to HTTP endpoints for response automation.

Events are grouped into categories. You can only subscribe to event categories, not individual events. SNS
sends notifications when any event in a category occurs.

You can subscribe to alerts for database instances, database clusters, database snapshots, database cluster
snapshots, database security groups, and database parameter groups. For example, a subscription to the
Backup category for a specific database instance sends notifications when backup related events occur on that
instance. A subscription to a Configuration Change category for a database security group sends notifications
when the security group changes.

Note: For Amazon Aurora, some events occur at the cluster rather than instance level. You will not
receive those events if you subscribe to an Aurora DB instance.

SNS sends event notifications to the address specified when the subscription was created. Typically, admin-
istrators create several subscriptions. For example, one subscription to receive logging events and another to
receive only critical events for a production environment requiring immediate responses.

You can disable notifications without deleting a subscription by setting the Enabled radio button to Noin the
Amazon RDS console. Alternatively, use the Command Line Interface (CLI) or RDS API to change the Enabled
setting.

Subscriptions are identified by the Amazon Resource Name (ARN) of an Amazon SNS topic. The Amazon RDS
console creates ARNs when subscriptions are created. When using the CLI or API, you must create the ARN
using the Amazon SNS console or the Amazon SNS API.

The following walk-through demonstrates how to create an Event Notification Subscription:
Sign into an AWS account, open the AWS Console, and navigate to the Amazon RDS page.

Click Events on the left navigation pane.

-273 -

https://docs.microsoft.com/en-us/sql/ssms/agent/alerts?view=sql-server-ver15

Dashboard
Databases

Query Editor
Performance Insights
Snapshots
Automated backups
Reserved instances

Proxies

Subnet groups
Parameter groups

Option groups

Event subscrintions

aws

Amazon Aurora

replicas. Learn more

Or, Restore Aurora DB cluster from S3

Amazon Aurora is a MySQL- and PostgreSQL-compatible enterprise-class database
up to 64TB of auto-scaling storage capacity, 6-way replication across three availab

Resources

You are using the following Amazon RDS resources in the EU (Frankfurt) region

(used/quota)
DB Instances (4/40)
Allocated storage (0.02 TB/100 TB)

Click here to increase DB instances

Parameter groups (6)

Default (5)
Custom (1/100)

This screen will present relevant RDS events occured

Dashboard
Databases

Query Editor
Performance Insights
Snapshots
Automated backups
Reserved instances

Proxies

Subnet groups
Parameter groups

Option groups

Events

Event subscriptions

RDS Events

Events (8)

Q

Source v

rds:mysql-aurora-playbook-2021-02-26-02-32

rds:mysql-aurora-playbook-2021-02-26-02-32

rds:pg-playbooks-2021-02-25-21-26

Type

Cluster Snapshots

Cluster Snapshots

Cluster Snapshots

Time W

February
26,2021,
2:32:37

February
26,2021,
2:32:33

February

25,2021,
9:27:19

Message v

Automated cluster snapshot created

Creating automated cluster snapshot

Automated cluster snapshot created

Click Event Subscriptions and then click CREATE EVENT SUBSCRIPTION on the top right side.

Enter the Name of the subscription and select a Target of ARN or Email. For email subscriptions, enter values
for Topic name and With these recipients.

-274 -

aws

RDS Event subscriptions Create event subscription

Create event subscription

Details

Name
Narme of the Subscription

TestEvent

Enabled

O VYes
No

Target

Send notifications to
ARN
© New email topic

Topic name

Name of the topic.

TestEvent

With these recipients
Email addresses or phone numbers of SMS enabled devices to send the notifications to

user@domain.com

e.g. user@domain.com

Select the event source and choose specific event categories. Click the drop-down menu to view the list of avail-
able categories.

[al
availability

backup
configuration change
creation
deletion
failover
failure

low storage
maintenance
notification
read replica
recovery

restoration

Choose the event categories to be monitored and click Create.

-275-

Source

Source type

Source type of resource this subscription will consume event from

Instances

Instances to include
Instances that this subscription will consume events from

© Allinstances

Select specific instances

Event categories to include

Event categories that this subscription will consume events from

All event categories

© Select specific event categories

Specific event

select event categories

| configuration change)(| | low storage X

Cancel

From the AWS RDS Dashboard, click the View Recent Events button.

Amazon RDS X

Dashboard
Databases

Query Editor
Performance Insights
Snapshots
Automated backups
Reserved instances

Proxies

Subnet groups
Parameter groups

Option groups

Events

For more information, see https.//docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html

Resources

You are using the following Amazon RDS resources in the EU (Frankfurt) region

(used/quota)
DB Instances (4/40)

Allocated storage (0.02 TB/100 TB)

Click here to increase DB instances

limit
DB Clusters (2/40)

Reserved instances (0/40)

Snapshots (7)
Manual (0/100)
Automated (7)

]

Event subscriptions (0/20)

Parameter groups (7)
Default (5)
Custom (2,/100)

Option groups (3)
Default (3)
Custom (0/20)

Subnet groups (1/50)

Supported platforms VPC

Default network vpc-9bc94£f1

-276-

aws
N

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html

aws

PostgreSQL supports the following log severity levels:

Log Type Information Written to Log

DEBUG1..DEBUGS Provides successively-more-detailed information for use by developers.
INFO Provides information implicitly requested by the user.

NOTICE Provides information that might be helpful to users.

WARNING Provides warnings of likely problems.

ERROR Reports the error that caused the current command to abort.

LOG Reports information of interest to administrators.

FATAL Reports the error that caused the current session to abort.

PANIC Reports the error that caused all database sessions to abort.

Several parameters control how and where PostgreSQL log and errors files are placed:

Parameter Description

log_filename Sets the file name pattern for log files.
Modifiable via an Aurora Database Parameter Group.

log_rotation_age (min) Automatic log file rotation will occur after N minutes.
Modifiable via an Aurora Database Parameter Group.

log_rotation_size (kB) Automatic log file rotation will occur after N kilobytes.
Modifiable via an Aurora Database Parameter Group.

log_min_messages |Setsthe message levels that are logged (DEBUG, ERROR, INFO, etc....).
Modifiable via an Aurora Database Parameter Group.

log_min_error_state- | Causes all statements generating errors at or above this level to be logged (DEBUG,
ment ERROR, INFO, etc....).
Modifiable via an Aurora Database Parameter Group.

log_min_duration_ Sets the minimum execution time above which statements will be logged (ms).
statement Modifiable via an Aurora Database Parameter Group.

Note: Modifications to certain parameters such as log_directory (which sets the destination directory for
log files) or logging_ collector (which starts a subprocess to capture stderr output and/or csvlogs into log
files) are disabled for an Aurora PostgreSQL instance.

For more information, see https.//www.postgresqgl.org/docs/13/static/runtime-config-logging. html

-277 -

https://www.postgresql.org/docs/13/static/runtime-config-logging.html

aws

SQL Server Database Mail vs.
PostgreSQL Database Mail

Feature Compatibility | SCT/DMS Automation Level |SCT Action Code Index |Key Differences

N/A SCT Action Codes - Mail |Use Lambda Integration

()
()

((
()
()

SQL Server Usage

The Database Mail framework is an email client solution for sending messages directly from SQL Server. Email
capabilities and APIs within the database server provide easy management of the following messages:

« Server administration messages such as alerts, logs, status reports, and process confirmations.

« Application messages such as user registration confirmation and action verifications.
Note: Database Mail is turned off by default.
The main features of the Database Mail framework are:

» Database Mail sends messages using the standard and secure Simple Mail Transfer Protocol (SMTP) .

« The email client engine runs asynchronously and sends messages in a separate process to minimize
dependencies.

« Database Mail supports multiple SMTP Servers for redundancy.

« Full support and awareness of Windows Server Failover Cluster for high availability environments.
« Multi-profile support with multiple failover accounts in each profile.

« Enhanced security management with separate roles in MSDB.

« Security is enforced for mail profiles.

« Attachment sizes are monitored and can be capped by the administrator.

« Attachment file types can be blacklisted.

« Email activity can be logged to SQL Server, the Windows application event log, and a set of system tables
in MSDB.

« Supports full auditing capabilities with configurable retention policies.

« Supports both plain text and HTML messages.

Architecture

Database Mail is built on top of the Microsoft SQL Server Service Broker queue management framework.

The system stored procedure sp_send_dbmail sends email messages. When this stored procedure is executed,
it inserts an row to the mail queue and records the Email message.

The queue insert operation triggers execution of the Database Mail process (DatabaseMail.exe). The Database
Mail process then reads the Email information and sends the message to the SMTP servers.

-278 -

aws

When the SMTP servers acknowledge or reject the message, the Database Mail process inserts a status row into
the status queue, including the result of the send attempt. This insert operation triggers the execution of a system
stored procedure that updates the status of the Email message send attempt.

Database Mail records all Email attachments in the system tables. SQL Server provides a set of system views
and stored procedures for troubleshooting and administration of the Database Mail queue.

Deprecated SQL Mail framework

The previous SQL Mail framework using xp_sendmail has been deprecated as of SQL Server 2008R2 in accord-
ance with https://docs.microsoft.com/en-us/previous-versions/sql/sgl-server-2008-r2/ms143729(v=sqgl.105).

The legacy mail system has been completely replaced by the greatly enhanced DB mail framework described
here. The previous system has been out of use for many years because it was prone to synchronous execution
issues and windows mail profile quirks.

Syntax

EXECUTE sp_ send dbmail
[[,@profile name =] '<Profile Name>']
, [,Q@recipients =] '<Recipients>"']
,@copy recipients =] '<CC Recipients>"']
,@blind copy recipients =] '<BCC Recipients>']
,@from address =] '<From Address>']
,@reply to =] '<Reply-to Address>']
,@subject =] '<Subject>']
, @body =] '<Message Body>']
,@body format =] '<Message Body Format>"']
, @importance =] '<Importance>"']
,@sensitivity =] '<Sensitivity>']
,@file attachments =] '<Attachments>']
,@query =] '<SQL Query>"']
,@execute query database =] '<Execute Query Database>']
,@attach query result as file =] <Attach Query Result as File>]
’
4
4

[
[,
[,
[,
[,
[,
[,
[,
[,
[,
[,
[,
[,
[,
[, [,@query attachment filename =] <Query Attachment Filename>]

[, [,@query result header =] <Query Result Header>]

[, [,Q@query result width =] <Query Result Width>]

[, [,@query result separator =] '<Query Result Separator>']

[, [,@exclude query output =] <Exclude Query Output>]

[, [,Cappend query error =] <Append Query Error>]

[, [,@query no truncate =] <Query No Truncate>]

[, [,@query result no padding =] @<Parameter for Query Result No Padding>]
[, [,@mailitem id =] <Mail item id>] [, OUTPUT]

14
4
4
4
4 4
4 4
4 4
14 14

14

Examples

Create a Database Mail account.

EXECUTE msdb.dbo.sysmail add account sp

@account name = 'MailAccountl',
@description = 'Mail account for testing DB Mail',
@email address = 'Address@MyDomain.com',

-279-

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

aws

@replyto address = 'ReplyAddress@MyDomain.com',
@display name = 'Mailer for registration messages',
@mailserver name = 'smtp.MyDomain.com' ;

Create a Database Mail profile.

EXECUTE msdb.dbo.sysmail add profile sp
@profile name = 'MailAccountl Profile',
@description = 'Mail Profile for testing DB Mail' ;

Associate the account with the profile.

EXECUTE msdb.dbo.sysmail add profileaccount sp
@profile name = 'MailAccountl Profile',
@account name 'MailAccountl',

@sequence number =1 ;

Grant the profile access to DBMailUsers role.

EXECUTE msdb.dbo.sysmail add principalprofile sp
@profile name = 'MailAccountl Profile',
@principal name = 'ApplicationUser',

@is default = 1 ;

Send a message with sp_db_sendmail.

EXEC msdb.dbo.sp send dbmail
@profile name = 'MailAccountl Profile',
@recipients = 'Recipient@Mydomain.com',
@gquery = 'SELECT * FROM fn WeeklySalesReport (GETDATE()) "',
@subject = 'Weekly Sales Report',
@attach query result as file =1 ;

For more information, see https.//docs. microsoft.com/en-us/sqgl/relational-databases/database-mail/database-mail ?view-
w=sqgl-server-ver15

PostgreSQL Usage

Aurora PostgreSQL does not provide native support for sending email message from the database. For alerting
purposes, use the Event Notification Subscription feature to send email notifications to operators. For more
information, see Alerting.

The only way to sent Email from the database is to use the LAMBDA integration. For more information about
Lambda, see https://aws.amazon.com/lambda.

- 280 -

https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail?view=sql-server-ver15
https://aws.amazon.com/lambda

aws

Examples

Sending an Email from Aurora PostgreSQL via
Lambda Integration

First, configure AWS SES.

In the AWS console, navigate to SES > SMTP Settings and click Create My SMTP Credentials. Note the
SMTP server name; you will use it in the Lambda function.

Services Resource Groups -

SES Home Using SMTP to Send Email with Amazon SES

4
|dent t}' “fou can send email through Amazon SES by using a variety of SMTP-enabled programming languages and soffware. To
anagement To send email using SMTP, you will need te know the following:
Domains Server Name: email-smtp.us-east-1_amazonaws.com
Email Addresses Port: 25, 465 or 587
Use Transport Layer Security (TLS): Yes
- L Authentication: Your SMTP credentials - see below.
Email Sending
Sending Statistics To =end email through Amazon SES using SMTP, you must create SMTP credentials. SMTP credentialz are a usemr

“You can use the same set of SMTP credentials for all regions in which Amazon SES is available.
Reputation Dazhboard

Dedicated IPs

Configuration Sets Create My SMTP Credentials

SMTP Settings

Note: Your SMTP user name and password are not the same as your AWS access key ID and secret access key. Do not
Suppression List endpoint. For more information about credential types, click here.
Removal

To cbtain your SMTP credentials, click the button below. For more information about SMTP credentials, click here.

Cross-Account
Mofifications

Email Templates

Enter a name for IAM User Name (SMTP user) and click Create.

aWS Services ~ Resource Groups ~ i Global ~ Support ~
Create User for SMTP This form lets you create an IAM user for SMTP authentication with Amazon SES. Enter the name of a new IAM user or accept the default
and click Create to set up your SMTP credentials
IAM User Name: SMTP_USER
Maximum 64 characters

w Hide More Information

Amazon SES uses AWS |dentity and Access Management (IAM) to manage SMTP credentials. The |AM user name is case sensitive and
may contain only alphanumeric characters and the symbols +=, @-_

SMTP credentials consist of a username and a password. When you click the Create button below, SMTP credentials will be generated for
you.

The new user will be granted the following 1AM policy:

“Statement”: [{ "Effect":"Allow", “Action":"ses:SendRawEmail”, “Resource™:"*"}]

-281-

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/sending-email.html

aws

Note the credentials; you will use them to authenticate with the SMTP server.

Note: After leaving this page, the credentials cannot be retrieved.

aWS Services ~ Resource Groups ~) EC2 5 ~ Global ~ Support ~

Your 1 User(s) have been created successfully.
This is the only time these SMTP security credentials will be available for download. Credentials for SMTP users are only available
when creating the user. For your protection, you should never share your SMTP credentials with anyone

Create User for SMTP

¥ Hide User SMTP Security Credentials

~n SMTP_USER
>

SMTP Username: —, [° "7 ' s
SMTP Password: .07 "7 T!

MEEE (| Download Credentials

Navigate back to the SES page, click Email Addresses on the left, and click Verify a New Email Address.
Before sending email, they must be verified.

EE«LS, Services ~ Resource Groups ~) EC2 RDS %
SES Home Verify a New Email Address
4
dentity Q, Search emalil addresses X Allidentities ~

Domains Email Address |dentities

Email Addresses You have not verified any email addresses.

To venfy a email address, click the Verify a New Email Address button above

Email Sending

The next page indicates that the email is pending verification.

After the email is verified, create a table to store messages to be sent by the Lambda fuction.

CREATE TABLE emails (title wvarchar (600), body varchar (600), recipients wvarchar (600));

To create the Lambda function, navigate to the Lambda page and click Create function.

Lambda Functions

Q (ter Dy tags and atiriDUtes or searcn DY KEyword m 1 {E}
Function name v Description Runtime v Code size v Last Modified v
ExecPg Python 2.7 8226 kB % hours ago

-282-

https://console.aws.amazon.com/lambda/home

aws

Select Author from Scratch, enter a name for your project, and select Python 2.7 as the runtime. Be sure to use
a role with the correct permissions. Click Create function.

Download this Github project.

In your local environment, create two files: main.py and db_util.py. Cut and paste the content below into main.py
and db_util.py respectively. Be sure to replace the code highlighted in red with values for your environment.

main.py:

#!/usr/bin/python
import sys

import logging
import psycopg?2

from db util import make conn, fetch data
def lambda handler (event, context):
query cmd = "select * from mails"
print query cmd

get a connection, if a connect cannot be made an exception will be raised here
conn = make conn ()

result = fetch data(conn, query cmd)
conn.close ()

return result
db_util.py:

#!/usr/bin/python

import psycopg?

import smtplib

import email.utils

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

db _host = 'YOUR_RDS HOST'

db port = 'YOUR_RDS PORT'

db name = 'YOUR RDS DBNAME'
db user = 'YOUR RDS USER'

db pass = 'YOUR _RDS PASSWORD'

def sendEmail (recp, sub, message) :
Replace sender@example.com with your "From" address.
This address must be verified.
SENDER = 'PUT HERE THE VERIFIED EMAIL'
SENDERNAME = 'AWS Lambda'

Replace recipient@example.com with a "To" address. If your account
is still in the sandbox, this address must be verified.

RECIPIENT = recp

Replace smtp username with your Amazon SES SMTP user name.
USERNAME SMTP = "YOUR SMTP_USERNAME"

- 283 -

https://github.com/alexcasalboni/awslambda-psycopg2.git

aws

Replace smtp password with your Amazon SES SMTP password.
PASSWORD SMTP = "YOUR_SMTP PASSWORD"

(Optional) the name of a configuration set to use for this message.
If you comment out this line, you also need to remove or comment out
the "X-SES-CONFIGURATION-SET:" header below.

CONFIGURATION SET = "ConfigSet"

If you're using Amazon SES in an AWS Region other than US West (Oregon),
replace email-smtp.us-west-2.amazonaws.com with the Amazon SES SMTP

endpoint in the appropriate region.

HOST = "YOUR_SMTP_SERVERNAME"

PORT = 587

The subject line of the email.
SUBJECT = sub

The email body for recipients with non-HTML email clients.
BODY TEXT = ("Amazon SES Test\r\n"
"This email was sent through the Amazon SES SMTP "
"Interface using the Python smtplib package."
)

The HTML body of the email.

BODY HTML = """<html>

<head></head>

<body>

<hl>Amazon SES SMTP Email Test</h1>""" + message + """</body>
</html>

mwrwwn

Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart ('alternative')

msg['Subject'] = SUBJECT
msg['From'] = email.utils.formataddr ((SENDERNAME, SENDER))
msg['To'] = RECIPIENT

Comment or delete the next line if you are not using a configuration set
#msg.add_header('X—SES—CONFIGURATION—SET',CONFIGURATION_SET)

Record the MIME types of both parts - text/plain and text/html.
partl = MIMEText (BODY TEXT, 'plain')
part2 = MIMEText (BODY HTML, 'html')

Attach parts into message container.

According to RFC 2046, the last part of a multipart message, in this case
the HTML message, is best and preferred.

msg.attach (partl)

msg.attach (part2)

Try to send the message.
try:
server = smtplib.SMTP (HOST, PORT)
server.ehlo ()
server.starttls ()
#stmplib docs recommend calling ehlo() before & after starttls/()

- 284 -

aws

server.ehlo ()
server.login(USERNAMEisMTP, PASSWORD SMTP)
server.sendmail (SENDER, RECIPIENT, msg.as_string())
server.close ()
Display an error message if something goes wrong.
except Exception as e:
print ("Error: ", e)
else:
print ("Email sent!")

def make conn() :

conn = None
try:
conn = psycopg2.connect ("dbname="'%s' user='%s' host="'%s' password="'%s'" % (db_
name, db user, db host, db pass))
except:

print "I am unable to connect to the database"
return conn

def fetch data(conn, query):
result = []
print "Now executing: %s" % (query)
cursor = conn.cursor ()
cursor.execute (query)

print ("Number of new mails to be sent: ", cursor.rowcount)
raw = cursor.fetchall ()

for line in raw:
print (line[0])
sendEmail (1line[2],1ine[0],line[1])
result.append(line)

cursor.execute ('delete from mails')
cursor.execute ('commit"')

return result

Note: In the body of db_util.py, Lambda deletes the content of the mails table.

Place the main.py and db_util.py files inside the Github extracted folder and create a new zipfile that includes your
two new files.

Return to your Lambda project and change the Code entry type to Upload a .ZIP file, change the Handler to
mail.lambda_handler, and upload the file. Click Save.

- 285 -

aws

N

Send|ngEma|l Throttle || Qualifiers ¥ || Actions ¥ Select a test event.. v

v Designer

Add triggers ‘p
Click on a trigger from the list SendingEmail

below to add it to your function. @ Unsaved changes

AP| Gateway
Add triggers from the list on the left !_ Amazon CloudWatch Logs
AWS loT
Alexa Skills Kit . Amazon EC2
Alexa Smart Home
CloudFront Resources the function’s role has access to will be

shown here

CloudWatch Events -

Function code info

Code entry type Runtime Handler Info

Upload a .ZIP file v Python 2.7 v main.lambda_handler

w

[l Upload pgmail.zip (823.6 kB)

For files larger than 10 M-B. consider uploading via

o
w
L

To test the lambda function, click Test and enter the Event name.

-286 -

aws
p

Configure test event x

A function can have up to 10 test events. The events are persisted so you can switch to another computer or web browser
and test your function with the same events.

© Create new test event

Edit saved test events

Event template

Hello World v

Event name

1-
2 "key3": "walue3d™,
3 "key2": "walue2",
4 "keyl": "waluel™
5}

Note: The Lambda function can be triggered by multiple options. This walkthrough demonstrates how
to schedule it to run every minute. Remember, you are paying for each Lambda execution.

To create a scheduled trigger, use CloudWatch, enter all details, and click Add.

-287 -

aws

Sending Ema|l | Throttle || Qualifiers ¥ | | Actions ¥ Test v
AWS loT a SendingEmail
Alexa Skills Kit @ saved
Alexa Smart Home ‘! CloudWatch Events ; Amazon CloudWatch Logs
CloudFrant @ Configuration required

CloudWatch Events Add triggers from the list on the left ‘ Amazon EC2

CloudWatch Logs
Resources the function's role has access to will be shown here
CodeCommit

Configure triggers

Rule
Create a new rule v
Rule name*
Entel iniquely identify y
CheckForNewEmails
Rule description
Check for new emails trigger
Rule type

Event pattern
© Schedule expression

Schedule expression®

Il rate(1 minute)

Lambda will add the necessary permissions for Amazon CloudWatch Events to invoke your Lambda function from this trigger. Learn more about the Lambda permissions model

Enable trigger

Cancel Add

Note: This example runs every minute, but you can use a different interval. For more information, see
https://docs.aws.amazon.com/lambdal/latest/dg/tutorial-scheduled-events-schedule-expressions.html

Cick Save.

SQL Server ETL vs. PostgreSQL ETL

Feature Compatibility [SCT/DMS Automation Level |SCT Action Code Index |Key Differences

s N/A N/A Use Amazon Glue for ETL

SQL Server Usage

SQL Server offers a native Extract, Transform, and Load (ETL) framework of tools and services to support enter-
prise ETL requirements. The legacy Data Transformation Services (DTS) has been deprecated as of SQL
Server 2008 (see https://docs.microsoft.com/en-us/previous-versions/sqgl/sql-server-2008-r2/cc707786
(v=sql.105)) and replaced with SQL Server Integration Services (SSIS), which was introduced with SQL Server
2005.

-288 -

https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html
https://aws.amazon.com/glue/
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/cc707786(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/cc707786(v=sql.105)

aws

DTS was introduced in SQL Server version 7 in 1998. It was significantly expanded in SQL Server 2000 with fea-
tures such as FTP, database level operations, and Microsoft Message Queuing (MSMQ) integration. Itincluded a
set of objects, utilities, and services that enabled easy, visual construction of complex ETL operations across het-
erogeneous data sources and targets.

DTS supported OLE DB, ODBC, and text file drivers. It allowed transformations to be scheduled using SQL
Server Agent. DTS also provided version control and backup capabilities with version control systems such as
Microsoft Visual SourceSafe.

The fundamental entity in DTS was the DTS Package. Packages were the logical containers for DTS objects
such as connections, data transfers, transformations, and notifications. The DTS framework also included the fol-
lowing tools:

o DTS Wizards

« DTS Package Designers
o DTS Query Designer

o DTS Run Utility

The SSIS framework was introduced in SQL Server 2005, but was limited to the top-tier editions only, unlike DTS
which was available with all editions.

SSIS has evolved over DTS to offer a true modern, enterprise class, heterogeneous platform for a broad range of
data migration and processing tasks. It provides a rich workflow oriented design with features for all types of enter-
prise data warehousing. It also supports scheduling capabilities for multi-dimensional cubes management.

SSIS Provides the following tools:

« SSIS Import/Export Wizard is an SQL Server Management Studio extension that enables quick creation
of packages for moving data between a wide array of sources and destinations. However, it has limited
transformation capabilities.

« SQL Server Business Intelligence Development Studio (BIDS) is a developer tool for creating complex
packages and transformations. It provides the ability to integrate procedural code into package trans-
formations and provides a scripting environment. Recently, BIDS has been replaced by SQL Server Data
Tools - Business intelligence (SSDT-BI).

SSIS objects include:

Connections

Event handlers

Workflows

Error handlers

Parameters (Beginning with SQL Server 2012)
Precedence constraints

Tasks

Variables

SSIS packages are constructed as XML documents and can be saved to the file system or stored within a SQL
Server instance using a hierarchical name space.

For more information, see

- 289 -

aws

« https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sqgl-
server-ver15
« https://en.wikipedia.org/wiki/Data_Transformation_Services

PostgreSQL Usage

Aurora PostgreSQL provides Amazon Glue for enterprise class Extract, Transform, and Load (ETL). Itis a fully
managed service that performs data cataloging, cleansing, enriching, and movement between heterogeneous
data sources and destinations. Being a fully managed service, the user does not need to be concerned with infra-
structure management.

Amazon Glue Key Features

Integrated Data Catalog

The Amazon Glue Data Catalog is a persistent metadata store, that can be used to store all data assets, whether
in the cloud or on-premises. It stores table schemas, job steps, and additional meta data information for managing
these processes. Amazon Glue can automatically calculate statistics and register partitions in order to make quer-
ies more efficient. It maintains a comprehensive schema version history for tracking changes over time.

Automatic Schema Discovery

Amazon Glue provides automatic crawlers that can connect to source or target data providers. The crawler uses
a prioritized list of classifiers to determine the schema for your data and then generates and stores the metadata
in the Amazon Glue Data Catalog. Crawlers can be scheduled or executed on-demand. You can also trigger a
crawler when an event occurs to keep metadata current.

Code Generation

Amazon Glue automatically generates the code to extract, transform, and load data. All you need to do is point
Glue to your data source and target. The ETL scripts to transform, flatten, and enrich data are created auto-
matically. Amazon Glue scripts can be generated in Scala or Python and are written for Apache Spark.

Developer Endpoints

When interactively developing Glue ETL code, Amazon Glue provides development endpoints for editing, debug-
ging, and testing. You can use any IDE or text editor for ETL development. Custom readers, writers, and trans-
formations can be imported into Glue ETL jobs as libraries. You can also use and share code with other
developers in the Amazon Glue GitHub repository (see

https://github.com/awslabs/aws-glue-libs).

Flexible Job Scheduler

Amazon Glue jobs can be triggered for execution either on a pre-defined schedule, on-demand, or as a response
to an event.

-290 -

https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://aws.amazon.com/glue
https://github.com/awslabs/aws-glue-libs

aws

Multiple jobs can be started in parallel and dependencies can be explicitly defined across jobs to build complex
ETL pipelines. Glue handles all inter-job dependencies, filters bad data, and retries failed jobs. All logs and noti-
fications are pushed to Amazon CloudWatch; you can monitor and get alerts from a central service.

Migration Considerations

Currently, there are no automatic tools for migrating ETL packages from DTS or SSIS into Amazon Glue. Migra-
tion from SQL Server to Aurora PostgreSQL requires rewriting ETL processes to use Amazon Glue.

Alternatively, consider using an EC2 SQL Server instance to run the SSIS service as an interim solution. The con-
nectors and tasks must be revised to support Aurora PostgreSQL instead of SQL Server, but this approach
allows gradual migration to Amazon Glue.

Examples

The following walk-through describes how to create an Amazon Glue job to upload a CSV file from S3 to Aurora
PostgreSQL.

The source file for this walk-through is a simple Visits table in CSV format. The objective is to upload this file to an
S3 bucket and create a Glue job to discover and copy it into an Aurora PostgreSQL database.

- - Visits - Excel
Page Layout Formulas Data Review View Help = Tellme =%
T Calibri - o == — ah General - %Cunditiunal Formatting - @ o)
- D g~ B I U~ A o ===H- S -0 9 GFDFmEtESTﬂblE' Celle | Edit
aste . - ells nng
. N . DA €3 £ - W (7 Cell Styles ~ - -
Clipboard = Font M Alignment P Mumber & Styles -
Al W 5 ID v
A B C D E F G H] K -
1 |ID MName Date
2 1 Dan 1/1/2018
3 2 lohn 1/2/2018
4 3 Chris 1/3/2018
3 4 Richard = 2/1/2018
6 -
? -
8 -
g _ -
Visits) 1 »
Ready Average: 21556 Count: 15 Sum: 172448 H - | + 100%

Step 1 - Create a Bucket in Amazon S3 and Upload the CSV File

Navigate to the S3 management console page https://s3.console.aws.amazon.com/s3/home and click Create
Bucket.

-291-

https://s3.console.aws.amazon.com/s3/home

aws

Amazon 53 X Amazon S3

Buckets
Buckets (1)

Buckets are containers for data stored in S3. Learn more A

Access Points

Batch Operations

ke
Access analyzer for S3 Create bucket

Q 1 &
Block Public Access settings for .
Name 'y AWS Region v Access v Creation date v
account
config-bucket-970272110175-eu- EU (Frankfurt) eu- Objects can be February 3, 2021, 15:08:16
v Storage Lens central-1 central-1 public (UTC-08:00)

Dashboards

Note: This walk-through demonstrates how to create the buckets and upload the files manually, which
is automated using the S3 API for production ETLs. Using the console to manually execute all the set-
tings will help you get familiar with the terminology, concepts, and work flow.

In the create bucket wizard, enter a unique name for the bucket, select a region and click Next.

General configuration

Bucket name
latestvisits_glue_aurora

Bucket name must be unigue and must not contain spaces or uppercase letters. See rules for bucket naming [4

AWS Ragion

EU (Frankfurt) eu-central-1 v

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied.

Choose bucket

Scroll down to define the level of access, enable versioning, add tags, and enable encryption.

On the S3 Management Console, click the newly created bucket.

Amazon 53

Buckets (2) m

Buckets are containers for data stored in 53. Learn more [A

Q 1 @
Name 'y AWS Region v Access v Creation date v
config-bucket-57 3-eu- EU (Frankfurt) eu- Objects can be public February 3, 2021, 18:08:16
central-1 central-1 e (UTC-05:00)

I latestvisits-qlue-aurnra I EU (Frankfurt) eu- Bucket and objects not February 27, 2021, 16:03:33
g central-1 public (UTC-05:00)

On the bucket page, click Upload.

-292 -

aws

latestvisits-glue-aurora

Objects Properties Permissions Metrics Management Access Points

Objects (0)

Objects are the fundamental entities stored in Amazon 53. For others to access your objects, you'll need to explicitly grant them permissions. Learn more E

Q 1 @

Create folder

Name A Type v Last modified v Size v Storage class v

No objects

You don't have any objects in this bucket.

Upload

On the upload page, either "drag and drop", use the Add Files, or the Add folder button to upload.

And upload the visits.xIsx file you have created based on example image above.

Amazon 53 latestvisits-glue-aurora Upload

Upload

Add the files and folders you want to upload to S3. To upload a file larger than 160GB, use the AWS CLI, AWS SDK or Amazon
S3 REST API. Learn more [F

I Drag and drop files and folders you want to upload here, or choose Add files, or Add folders. I

Files and folders (0) I| Add files |I| Add folder ||

All files and folders in this table will be uploaded.

Q 1

Name A Folder v Type v Size v

No files or folders

You have not chosen any files or folders to upload.

Scroll down to set storage class, server-side encryption, ACL and click Upload

Step 2 - Add an Amazon Glue Crawler to Discover and Catalog
the Visits File

Navigate to the Amazon Glue management console page at https://console.aws.amazon.com/glue/home.

Use the Tables link in the navigation panel and click on Add tables using a crawler. Alternatively, click the Crawl-
ers navigation link on the left and then click Add Crawler.

-293-

https://console.aws.amazon.com/glue/home

aws
p

Tables A table is the metadata definition that represents your data, including its schema. A table can be used as a source or target in a job definition.

4
id tables - Q, Filter by atiributes or s

AWS Glue

Showing: 0-0 [S - 3
Data catalog
Databases 0 nName - Database - Location - Classifieatiol Last updated - Deprecate
You don't have any tables defined in your
Connections data catalog
Crawlers

Add tables using a crawler
Classifiers

Schema registries

Schemas

Settings

Provide a descriptive name for the crawler and click Next.

Add crawler

O crawer nfo Add information about your crawler

Crawler name

53_visits

~ Tags, description, security configuration, and classifiers (optional)

Tag key € Tag value

OO0 0000

Description

Security configuration

None

Choose a security configuration to enable at-rest encryption on the logs pushed to CloudWatch.

Classifiers infer the schema of your data. AWS Glue tries to match your data with custom classifiers in the order listed. The first classifier
to recognize your data is used. Built-in classifiers are used if you do not supply a classifier that matches.

Custom classifiers Showing: 0- 0 Selected classifiers Showing: 0-0

Classifier Classification Classifier Classification

No items available No classifiers selected.

Pick the crawler behavior.

Add crawler

© Crawer nfo Specify crawler source type
S3_visits Choose Existing catalog tables to specify catalog tables as the crawler source. The selected tables specify the data stores to crawl. This

(O Crawler source type option doesn't support JDBC data stores.

]

o Crawler source type
@]
O (_) Existing catalog tables
0

- Repeat crawls of S3 data stores
O

(") Crawl new folders only

Only Amazon S3 folders that were added since the last crawl will be crawled. If the schemas are compatible, new partitions will be added to existing tables

Leave the default S3 data store and choose whether the file is in a path in your account or another account. For
this example, the path is in my account and specified in the Include path text box. Click Next.

-294 -

Note: Click the small folder icon to the right of the Include path text box to open a visual folder hierarchy
navigation window.

Add crawler

Add a data store

(@ Crawler info
s3_visits
Choose a data store
(@ Crawler source type
Data stores | 3 v ‘
(O Data store R
O “ ‘
O his S3 target. Note that each crawle N e P - & S targets w
Q s 53 target. Note that each crawler is limited to one Network connection so any future 53 targets will also
O ;
\dd connection
o,
Crawl data in
(@ Specified path in my account
() Specified path in another account
Include path
s3://latestvisits-glue-aurora/visits.csv
All folders and files contained in the include path are crawled. For example, type s3://MyBucket/MyFolder/ to crawl all objects in MyFelder within MyBucket

» Exclude patterns (optional)

el - |

Select whether the crawler accesses another data store or not. For this example, only uses the visits file. Click
Next.

Add crawler

© Crawier info Add another data store
53_visits .;:: I Yes

(@ No

() Crawler source type
Data stores

$3: s3://latestvisits-g...

O

O

O

O

The IAM role window allows selection of the security context the crawler uses to execute. You can choose an
existing role, update an existing policy, or create a new role. For this example, create a new role. Click Next.

-295-

Add crawler

() Crawler info
53_visits

(¥ Crawler source type
Data stores

() Data store

$3: s3://|atestvisits-g...

(O 1AM Role

O
O

O

aws
p

Choose an |IAM role

The 1AM role allows the crawler to run and access your Amazon S3 data stores. Learn more

() Update a policy in an IAM role
) Choose an existing IAM role
(@) Create an IAM role

1AM role €

AWSGlueServiceRole-| S3Role

To create an 1AM role, you must have CreateRole, CreatePolicy, and AttachRolePolicy permissions.

Create an I1AM role named "AWSGlueServiceRole-rolename” and attach the AWS managed policy, AWSGlueServiceRole, plus an inline
policy that allows read access to:

» 53//latestvisits-glue-aurora/visits.csv

You can also create an 1AM role on the 1AM console.

Choose the crawler schedule and frequency. For this example, use Run on demand. Click Next.

Add crawler

() Crawler info
53_visits
() Crawler source type
Data stores
() Data store
$3: s3://visits-glue-a...
() 1AM Role
arn:awsiam::2
irole/service-

role/AWSGlueService
Role-S3Role

(O schedule
O
O

Create a schedule for this crawler

Frequency

Run on demand v

-296 -

aws
p

Click Add database and provide a name for the new catalog database. Enter an optional table prefix for easy ref-

erence. Click Next.

Add crawler

() Crawler info
53_visits

(@ Crawler source type
Data stores

(¥) Data store

53: s3://visits-glue-a...

() 1AM Role
arn:aws:iam::
.- - - -role/service-

role/ AWSGlueService
Role-53Role

() Schedule

Run on demand
(O Output

O

Database name

Configure the crawler's output

Database €

‘ visits_demo w ‘

Add database

Prefix added to tables (optional) €

‘ Type a prefix added fo table names ‘

» Grouping behavior for S3 data (optional)

» Configuration options (optional)

Add database

visits_demo

» Description and location (optional)

Review your entries and click Finish to create the crawler.

-297 -

Add crawler

() Crawler info
s3_visits

(¥ Crawler source type
Data stores

() Data store
531 83://visits-glue-a

(® 1AM Role
arn:aws:iam::z

irole/service-

role/AWSGlueService
Role-S3Role

(© Schedule
Run on demand
(@ output
visits_demo
(O Review all steps

Name
Tags

Data store

Include path
Connection

Exclude patterns

1AM role

Schedule

Database

Prefix added to tables (optional)

Create a single schema for each $3 path
» Configuration opticns

33_visits

53

Crawler info

Data stores

s3://visits-glue-aurora/Visits.csv

arn:aws:iam::

Run on demand

visits_demo

false

IAM role

irole/service-role/AWSGlueServiceRole-S3Role

Schedule

Output

-298 -

aws

Step 3 - Run the Crawler

Navigate to the Crawlers page on the glue management console
https://console.aws.amazon.com/glue/home?catalog:tab=crawlers.

Since you just created a new crawler, a message box asks if you want to run it now. You can click the link or check
the check-box near the crawler's name and click the Run crawler button.

Crawlers A crawler connects to a data store, progresses through

AWS Glue

Data catalog

W Q, Filter by tags

Databases

Tables

Connections 53 _visits

== 4 3

Classifiers

Schema registries
Schemas

Settings

After the crawler completes, the Visits table should be discovered and recorded in the catalog in the table spe-
cified.

The following message box appears on the page:
Crawlers

A crawler connects to a data store, progresses through a prioritized list of classifiers fo determine the schema for your data, and then
creates metadata tables in your data catalog.

Crawler "s3_visits" completed and made the following changes: 1 tables created, 0 tables updated. See the tables created in x
database
visits_demo.

Click the link to get to the table that was just discovered and then click the table name.

Tables A table is the metadata definition that represents your data, including its schema. A table can be used as a source or target in a job definition

AWS Glue

Data catalog

Databases v Database - Location - Classification ~ Lastupdated

| Tables visits_demo §3://visits-glue-aurora/Visits.csv csv 27 February 2021 4:41 AM UTC-5

Connections
Crawlers

Classifiers

Verify the crawler identified the table's properties and schema correctly.

Note: You can manually adjust the properties and schema JSON files using the buttons on the top right.

-299 -

https://console.aws.amazon.com/glue/home?catalog:tab=crawlers

Tables > visits_csv

ete table

Name
Description
Database
Classification
Location
Connection
Deprecated
Last updated
Input format
Output format
Serde serialization lib

Serde parameters

Table properties

Schema
Column name
1 id
2 name
3 date

aws

Last updated 27 Feb 2021 09:41 PM Table Version (Current versi

View properties |

Compare versions ” Edits

visits_csw

visits_demo
csv
s3://visits-glue-aurora/Visits.csv

No

Sat Feb 27 21:41:56 GMT-500 2021
org.apache.hadoop.mapred. TextinputFormat
org.apache.hadoop.hive.qgl.io.HivelgnoreKeyTextOutputFormat
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

field.delim

skip.headerline.count 1 sizekey 101 objeciCount 1 UPDATED_BY CRAWLER s3_visits CrawlerSchemaSerializervVersion 1.0 recordCount 6 averageRecordSize 16

CrawlerSchemaDeserializerVersion 1.0 compressionType none columnsOrdered true areColumnsQuoted false delimiter , typeOfData file

Showing: 1-3 of 3

Data type Comment

Partition key
bigint
string

string

Optional - Add Tables Manually

If you don't want to add a crawler, you can add tables manually.

Navigate to https://console.aws.amazon.com/glue/home, the default page is the Tables page. Click Add tables

and select Add table manually.

a_l"‘f_s, Services Resource Groups ~ * FA v N.Virginia ¥ Support v
Tables
AWS Glue _ N - _
d A table is the metadata definition that represents your data, including its schema. A table can be used as a source or target in a job
definition.
Data catalog] I
= Add tables Q (1) Saveview | v Showing: 0-0 o o 0
Databases
Add tables using a crawler
| Tables I hse - Location - Classification Lastupdated Deprecated -
X Add table manually
Connections No tables found. Check your search filter.
Crawlers
Classifiers
ETL
Jobs
Trinnarc

The process is similar the one used for the crawler.

Step 4 - Create an ETL Job to Copy the Visits Table to an Aurora
PostgreSQL Database.

Navigate to the Amazon Glue ETL Jobs page at https://console.aws.amazon.com/glue/home?etl:tab=jobs. Since
this is the first job, the list is empty. Click Add Job.

-300-

https://console.aws.amazon.com/glue/home
https://console.aws.amazon.com/glue/home?etl:tab=jobs

aws

aﬁs Services Resource Groups ~ * JAY > N.V¥irginia v Support ¥
Jobs
AWS Glue o) o 5)]
4 A job is your business logic required to perform extract, transform and load (ETL) work. Job runs are initiated by triggers which can be

scheduled or driven by events.
Data catalog

U ! | Filter by attributes Showing: 0- 0 o
Databases Add job Q, Filter by attributes g oo

Tables

Connections [Name ETL language Script location Last modified Job bookmark
Crawlers

o You don't have any jobs defined yet.
Classifiers
| Add job ‘

ETL
| Jobs
Triggers

Dev endpoints

Enter a name for the ETL job and pick a role for the security context. For this example, use the same role created
for the crawler. The job may consist of a pre-existing ETL script, a manually-authored script, or an automatic
script generated by Amazon Glue. For this example, use Amazon Glue. Enter a name for the script file or accept
the default, which is also the job's name. Configure advanced properties and parameters if needed and click
Next.

Add job

O Job properties Configure the job properties

@)
e Name

O ‘ visit_etl ‘

)
~ 1AM role €@

o ‘ AWsGlueServiceRole-S3Role - ‘

Q

Ensure that this role has permission to your Amazon S3 sources, targets, temporary directory, scripts, and any libraries used by the job. Create |AM role.
Type
‘ Spark v ‘

Glue version

‘ Spark 2.4, Python 3 with improved job startup times (Glue Version 2.0) ~ ‘

This job runs
@) A proposed script generated by AWS Glue @
O An existing script that you provide

(O Anew script to be authored by you

Script file name

‘ Visit_etl ‘

S3 path where the script is stored

‘ s3://aws-glug s-east-1/ | [%

Temporary directory €

‘ s3://aws-glue-te I1s-east-1/ | [%

» Advanced properties

» Monitoring options

Select the data source for the job (in this example, there is only one). Click Next.
Add job

(@ Job properties Choose a data source
Visit_etl

O Data source Q) Filter by attributes or search by keyword

O
O
Oy

- Name - Database - Location - Classification
')

o

® visits_csv visits_demo s3://visits-glue-aurora/Visits.csv csv

-301-

aws
p

Choose transform type.

Add job

(@ Job properties Choose a transform type
Visit_etl

() Data source ‘ Machine leaming transforms are currently not supported for Glue 2.0. ‘
visits_csv

(Q Transform type

N —

o (® change schema

O Change schema of your source data and create a new target dataset

(O Find matching records
Use machine learning to find matching records within your source data

On the Data Target page, select Create tables in your data target, use the JDBC Data store, and the gluerds
connection type. Click Add Connection.

Add job

(@) Job properties Choose a data target
Visit_etl
(&) Data source (® create tables in your data target
visits_csv (_) Use tables in the data catalog and update your data target

(® Transform type

Change schema Data store
O Data target | JDBC o |
O
Connection
| gluerds o |

Add connection

Database name €@

Nam.

f the database |

-302 -

aws

On the Add connection page, enter the access details for the Aurora Instance and lick Add.

Add connection)

Name

| visitsdemo |

Connection type

‘ Amazon RDS b ‘

Database engine

| Amazon Aurora ~

For more information, see Working with Connection.

Instance

| visitsdemo v |

Database name

‘ visits ‘

Username

Password

+ Description and tags (optional)

Description

Click Next to display the column mapping between the source and target. For this example, leave the default map-
ping and data types. Click Next.

Add job

@ Job properties Output Schema Definition

Visit_etl
(@ Data source
visits_csv

Verify the mappings created by AWS Glue. Change mappings by choosing other columns with Map to target. You can Clear all mappings and Reset to default AWS Glue mappings. AWS Glue generates your script with the defined mappings.

(© Transform type

Source Target
Change schema
@ Datatarget Column name Datatype Map to target Column name Data type
gluerds id bigint d id long x ¥
Q schema
name string name name string x v 4
date string date date string x v 1+

Save job and edit script

Review the job properties and click Save job and edit script.

Review the generated script and make manual changes as needed. You can use the built-in templates for
source, target, target location, transform, and spigot using the buttons at the top right section of the screen.

-303-

For this example, run the script as-is. Click Run Job.

Job: Action - Insert template at cursor € ‘ Source

‘ Target H Target Location H Transform ‘

Visit_etl

=
i}

Generate diagram

0 x

1 Iimpnrt sys

2 from awsglue.transforms import *

. 3 from awsglue.utils import getResolvedOptions
Database Name VTS!tS_der 4 from pyspark.context import SparkContext

|:| Table Name visits_csv 5 from awsglue.centext import GlusContext
& from awsglue.job import Job
7

o 8 ## @params: [JOB_NAME]

9 args - getResolvedOptions(sys.argv, ["JOB_NAME"])
i1e

11 sc = SparkContext()
12 glueContext = GlueContext(sc)
13 spark = glueContext.spark_sessiocn

-y, 14 Job = Job{glueContext}
I Transform Name ApplyMa 15 job.init{args['JOB_MAME'], args)

16 #H : DataSource

17 : [database = _demo"”, table_name
18 turn: datasourced

13 [1

20

21

22 : [mapping = [("i

23 rn: applymappingl

1 [frame = datasource@]

Transform Name Resolvet 26 lveChoice

N

B

"wisits_csu", transformation_ctx = "datasour

= "wisits_demo", table_na

", "leng”, "id", "long"), ("name", "string", "name", "string"), ("da

ApplyMapping.apply(frame = datasource®, mappings = [("id", "long", "ig", "long

cols", transformation_ctx = "resolvechoice2"]

28
29 : [frame = applymsppingl]
30 resolvechoice? = ResolveChoice.apply{frame = applymappingl, choice = "meke_cols", transformati
Exl :
32 x = "dropnullfields3"]
33 1
34 puts: [frame = resolvechoice?]
= 35 11fields3 = DropNullFields.apply(frame = resolvechoice2, transformation_ctx = "dropnullf
36 : DataSink
Transform Name DmpNu" 37 [catalog connection = "gluerds", connection_options = {"dbtable": "dat -
38 : datasinkd
39 4

Connection Name gluerds
Database Name

The optional parameters window displays. Click Run Job.

b4

Parameters (optional)
Review and override parameter values, as needed, before running this job. Changes affect
this run only. Edit a job to change default parameter values.
» Advanced properties
» Monitoring options

» Security configuration, script libraries, and job parameters

Only job Visit_etl is run. Jobs dependent on the completion of job Visit_etl will not be run
To run a job and trigger dependent jobs, define an on-demand trigger.

-
-

Navigate back to the glue management console jobs page at

https://console.aws.amazon.com/glue/home?etl:tab=jobs.

On the history tab, verify the job status as Succeeded and view the logs if needed.

-304 -

aws
p

https://console.aws.amazon.com/glue/home?etl:tab=jobs

aws

a_:"v_s Services Resource Groups *
Jobs A job is your business logic required to perform extract, transform and load (ETL) work. Job runs are initiated by triggers which can be scheduled or driven by events.
AWS Glue
Add job Q Filter by attributes
Data
Databases
Name ETL language Script location Last modified
Tables
Connections visits_etl_Aurora python s3://aws-glue-scripts-270324613865-us-east-1/a_. 13 July 2018 11:4
Crawlers
Classifiers
ETL
| Jobs
Triggers
Dev endpoints
Tutorials
Add crawler
Explore table
Add job N ~) _
History Details Secript Metrics
Resources ' E—
What's new (£
Run ID Retry attempt Run status Error Logs Error legs Execution time Timeout Dela
Q jr_add7c32f27535fcae Logs 22 secs 2880 mins

Now open your query IDE, connect to the Aurora PostgreSQL cluster, and query the visits database to make

sure the data has been transferred successfully.

I E e - S P

'EProjects} ﬁ.E:‘| O« ¥ 5 O

=

itabase Mavigator 2

- . kd St— —

IT <MySQL - visits> Script

part of object name to filter

b MySOL - visits

+ [ill Databases
information_schema
mysql
performance_schema

sys

visits

[Tables

w FH visits_csv
E Columns
[Constraints
EB Foreign Keys
E¥ References
En Triggers
EB Indexes
Em Partitions

51 Views

E3 Indexes

E® Procedures

En Triggers

E® Events

9 Users

E3 Administer

[System Info

L (CROCR(CRIC)

For more information, see

BELECT id, name, "date’
FROM visits.visits_csv;

B visits_csv

(<MySOL - visits> Query 3

<+] SELECT id, name, "date” FROM visits.visit5_| Entera §

123id T} [recname Y| |necdate T

1 1 Dan 17172018
2 2 John 1/2/2018
3 3 Chris 1/3/2018
4 4 Richard 27172018

() Sawve Cancel [Seript | =S S moa== € € > 2l | sl Gl

(1) 4 row(s) fetched - 99ms (+7ms)

« https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html

« https://aws.amazon.com/glue/developer-resources/

-305-

=

=4

https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://aws.amazon.com/glue/developer-resources/

aws

SQL Server Export and Import with Text files vs.
PostgreSQL pg_dump and pg_restore

Feature Compatibility |SCT/DMS Automation Level SCT Action Code Index |Key Differences

s N/A N/A Non-compatible tool

SQL Server Usage

SQL Server provides many options for exporting and importing text files. These operations are commonly used
for data migration, scripting, and backup.

« Save results to a file in SQL Server Management Studio (SSMS): https://support.microsoft.com/en-
us/help/860545/how-to-create-csv-or-rpt-files-from-an-sqgl-statement-in-microsoft-sqgl

« SQLCMD: https://docs.microsoft.com/en-us/sgl/relational-databases/scripting/sglcmd-run-transact-sql-
script-files?view=sql-server-ver15#save-the-output-to-a-text-file

« PowerShell wrapper for SQLCMD

o SSMS Import/Export Wizard: https://docs.microsoft.com/en-us/sgl/integration-services/import-export-
data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15

« SQL Server Reporting Services (SSRS)

» Bulk Copy Program (BCP): https://docs.microsoft.com/en-us/sql/relational-databases/import-export/im-
port-and-export-bulk-data-by-using-the-bcp-utility-sgl-server?view=sqgl-server-ver15

All of the options described above required additional tools to export data. Most of the tools are open source and
provide support for a variety of databases.

SQLCMD is a command line utility for executing T-SQL statements, system procedures, and script files. It uses
ODBC to execute T-SQL batches. For example:

SQLCMD -i C:\sgl\myquery.sql -o C:\sgl\output.txt

SQLCMD utility syntax:

sglcmd
-a packet size
-A (dedicated administrator connection)
-b (terminate batch job if there is an error)
-c batch terminator
-C (trust the server certificate)
-d db_name
-e (echo input)
-E (use trusted connection)
-f codepage | i:codepage[,o:codepage] | o:codepagel,i:codepage]
-g (enable column encryption)
-G (use Azure Active Directory for authentication)
-h rows per header
-H workstation name
-1 input file
-I (enable quoted identifiers)

- 306 -

https://support.microsoft.com/en-us/help/860545/how-to-create-csv-or-rpt-files-from-an-sql-statement-in-microsoft-sql
https://support.microsoft.com/en-us/help/860545/how-to-create-csv-or-rpt-files-from-an-sql-statement-in-microsoft-sql
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/sqlcmd-run-transact-sql-script-files?view=sql-server-ver15#save-the-output-to-a-text-file
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/sqlcmd-run-transact-sql-script-files?view=sql-server-ver15#save-the-output-to-a-text-file
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/import-export/import-and-export-bulk-data-by-using-the-bcp-utility-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/import-export/import-and-export-bulk-data-by-using-the-bcp-utility-sql-server?view=sql-server-ver15

aws

-3 (Print raw error messages)

-k[1 | 2] (remove or replace control characters)
-K application intent

-1 login timeout

-L[c] (list servers, optional clean output)
-m error level

-M multisubnet failover

-N (encrypt connection)

-o output file

-pl[l] (print statistics, optional colon format)
-P password

-gq "cmdline query"

-Q "cmdline query" (and exit)

-r[0 | 1] (msgs to stderr)

-R (use client regional settings)

-s col separator

-S [protocol:]server[instance name] [,port]
-t query timeout

-u (unicode output file)

-U login_id

-v var = "value"

-V error severity level

-w column width

-W (remove trailing spaces)

-x (disable variable substitution)

-X[1] (disable commands, startup script, environment variables, optional exit)
-y variable length type display width

-Y fixed length type display width

-z new_password

-Z new_password (and exit)

-? (usage)

Examples

Connect to a named instance using Windows Authentication and specify input and output files.

sglcmd -S MyMSSQLServer\MyMSSQLInstance -i query.sgl -o outputfile.txt

If the file is needed for import to another database, query the data as INSERT commands and CREATE for the
object.

You can export data with SQLCMD and import with Export/Import wizard.

For more information, see: https://docs. microsoft.com/en-us/sqgl/tools/sqglcmd-utility ?view=sql-server-ver15

PostgreSQL Usage

PostgreSQL provides the native utilities pg_dump and pg_restore to perform logical database exports and
imports with comparable functionality to the SQI Server SQLCMD utility. For example, moving data between two
databases and creating logical database backups.

-307 -

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

aws

« pg_dump: Export data
» pg_restore: Import data

The binaries for both utilities must be installed on your local workstation or on an Amazon EC2 server as part of
the PostgreSQL client binaries.

PostgreSQL dump files created using pg_dump can be copied, after export, to an Amazon S3 bucket as cloud
backup storage or for maintaining the desired backup retention policy. Later, when dump files are needed for data-
base restore, the dump files can be copied back to a desktop or server that has a PostgreSQL client (such as your
workstation or an Amazon EC2 server) to issue the pg_restore command.

Since PostgreSQL 10, these capabilities were added:

« A schema can be excluded in pg_dump/pg_restore commands

o Can create dumps with no blobs

« Allow to run pg_dumpall by non-superusers, using the --no-role-passwords option

« Create additional integrity option to ensure that the data is stored in disk using fsync() method

Since PostgreSQL 11, the following capabilities were added:

« pg_dump/pg_restore now exports/imports relationships between extensions and database objects estab-
lished with ALTER ... DEPENDS ON EXTENSION, which allows these objects to be dropped when exten-
sion is dropped with CASCADE option.

« pg_dump creates consistent backups even if the database is being used concurrently.
« pg_dump does not block other users accessing the database (readers or writers).

« pg_dump only exports a single database. To backup global objects common to all databases in a cluster
(such as roles and tablespaces), use pg_dumpall.

» PostgreSQL dump files can be both plain-text and custom format files.

Another option to export and import data from PostgreSQL database is to use COPY TO/COPY FROM com-
mands. Starting with PostgreSQL 12 COPY FROM command, that can be used to load data into DB, has support
for filtering incoming rows with WHERE condition

CREATE TABLE tst copy(v TEXT);

COPY tst copy FROM '/home/postgres/file.csv' WITH (FORMAT CSV) WHERE v LIKE 'S%apple$';

Export data using pg_dump. Use a workstation or server with the PostgreSQL client installed to connect to the
Aurora PostgreSQL instance in AWS. Issue the pg_dump command providing the hostname (-h), database user
name (-U), and database name (-d).

$ pg dump -h hostname.rds.amazonaws.com -U username -d db name
-f dump file name.sql

Note: The output file, dump_file_name.sq|, is stored on the server where the pg_dump command
executes. You can later copy the outfile to an S3 Bucket if needed.

- 308 -

aws

Run pg_dump and copy the backup file to an Amazon S3 bucket using a pipe and the AWS CLI.

$ pg _dump -h hostname.rds.amazonaws.com -U username —-d db name -f dump file name.sql |
aws s3 cp - s3://pg-backup/pg bck-$ (date"+%Y-%m-%d-$H-$M-%S")

Restore data using pg_restore. Use a workstation or server with the PostgreSQL client installed to connect to the
Aurora PostgreSQL instance. Issue the pg_restore command providing the hostname (-h), database user name
(-U), database name (-d), and the dump file.

$ pg _restore -h hostname.rds.amazonaws.com -U username -d dbname restore dump file
name.sqgl

Copy the output file from the local server to an Amazon S3 Bucket using the AWS CLI. Upload the dump file to an
S3 bucket.

$ aws s3 cp /usr/Exports/hr.dmp s3://my-bucket/backup-$ (date "+%Y-
$m-%d-$H-%M-%S")

Note: The {-$(date "+%Y-%m-%d-%H-%M-%S")} format is valid on Linux servers only.
Download the output file from the S3 bucket.

$ aws s3 cp s3://my-bucket/backup-2017-09-10-01-10-10 /usr/Exports/hr.dmp

Note: You can create a copy of an existing database without having to use pg_dump or pg_restore.
Instead, use the template keyword to specify the source database.

CREATE DATABASE mydb copy TEPLATE mydb;

Description SQL Server export / import PostgreSQL Dump
Exportdatatoa |using SQLCMD or Export/Import Wizard | pg_dump -F c -h host-
file name.rds.amazonaws.com -U username -d hr -

SQLCMD -i C:\sgl\myquery.sql -0

5432 > c:\Export\hr.dm
C:\sgl\output.txt P p p

Importdatatoa |RunSQLCMD with objects and data cre- | pg_restore -h hostname.rds.amazonaws.com -
new database ation script U hr -d hr_restore -p 5432 c:\Expor\hr.dmp

ith a new name
W W SQLCMD -i C:\sgl\myquery.sq|

For more details, see:

o https.:.//www.postgresql.org/docs/13/static/backup-dump. html

o https.:.//www.postgresql.org/docs/13/static/app-pgrestore. html

- 309 -

https://www.postgresql.org/docs/13/static/backup-dump.html
https://www.postgresql.org/docs/13/static/app-pgrestore.html

aws

Feature Com- SCT/DMS Auto- | SCT Action .

patibility mation Level Code Index ey ey
s N/A N/A View logs from the Amazon RDS console, the Amazon
= = = == RDS API, the AWS CLI, or the AWS SDKs

SQL Server logs system and user generated events to the SQL Server Error Log and to the Windows Application
Log. Itlogs recovery messages, kernel messages, security events, maintenance events, and other general server
level error and informational messages. The Windows Application Log contains events from all windows applic-
ations including SQL Server and SQL Server agent.

SQL Server Management Studio Log Viewer unifies all logs into a single consolidated view. You can also view
the logs with any text editor.

Administrators typically use the SQL Server Error Log to confirm successful completion of processes, such as
backup or batches, and to investigate the cause of run time errors. These logs can help detect current risks or
potential future problem areas.

To view the log for SQL Server, SQL Server Agent, Database Mail, and Windows applications, open the SQL
Server Management Studio Object Explorer pane, navigate to Management > SQL Server Logs , and double-
click the current log.

The following table identifies some common error codes database administrators typically look for in the error
logs:

Error Code Error Message

1105 Could not allocate space
3041 Backup Failed

9002 Transaction Log Full

14151 Replication agent failed
17053 Operating System Error
18452 Login Failed

9003 Possible database corruption

The following screenshot shows typical Log File Viewer content:

-310-

aws

{E Log File Viewer - . - O X
5=| [y Load Log (i Export [2] Refresh T Filter... & Search . Stop [Help
- B
- 3/20/2018 111500 pM || Lo@ file summary: No fiker applied
[Acchive #1- 3202018 62600 M| B8 ¥ ... Soucs Message A
[Archive #2 - 3/15/2018 1:46:00 PM|§ 7] 3/21/201810:21:11AM | spid55 Using %psqlbot dil’ version "2015.130.1601' to execute extended stored procedure p_av'. This is an
[archive #3 - 3/13/2018 4:55:00 M £l 3212018 10:21:11 AM spid55 Attempting to load library peglbot dll' inte memory. This is an informational message only. No user ac
[archive #4 - 3/8/2018 3.55:00 P] 3/21/201810:2109 AM spid54 DBCC TRACEQFF 3604, server process 1D (SPID) 54. This is an informational message only: no use
Ex:fua i:' ijg;g::: }gggg im & 3/21/2018 10:21:09 AM spid54 DBCC TRACEON 3604, server process |D (SPID) 54. This is an informational message only; no user
saL Sar\lr‘: Agent] 3/21/2018 10:21.06 AM spid55 Using wpstar dll' version "2015.130.1601" to execute extended stored procedure 'sp_instance_regrea
% [| Database Mai] 32172018 10:21:06 AM spid55 Attempting to load library xpstar dil’ into memory. This is an informational message only. No user actio
[Windows NT £l 3/21/201810:21:06 AM spid54 DBCC TRACEOFF 3604, server process ID (SPID) 54. This is an informational message only; no use
&l 3/21/2018 10:21:06 AM spid54 DBCC TRACEON 3604, server process |D (SPID) 54. This is an informational message only; na user
Tl 3/21/2018 12:00:56 AM spidZ3s Thig instance of SQL Server has been using a process |D of 6576 since 3/20/2018 11:15:52 PM {lo
71 3/20/2018 11:21.43 PM spid51 Using ‘dbghelp dIl' version '4.0.5"
< >] 3/20/2018 11:16:24 PM spid51 Using %plog70.dlI" version "2015.130.1601"to execute extended stored procedure xp_msver’. This ig
Status T 3/20/2018 11:16:24 PM spid51 Atempting to load library %plog70.dll"into memary. This is an informational message only. No user act
Last Refresh: &l 3/20/2018 11:16:23 PM Server Software Usage Metrice is dizabled
/21,2018 22353 PM Fl 32072018 111604 PM spidds Recovery is complete. This is an informational message only. No user action is required.
o F] 3/20/201811:1604 PM spidds Recovery completed for database WideWorldImporters {database |D 6)in 8 second(s) (analysis 704°
Fiter: None F1 3/20/2018 11:16:04 PM_ spid4s 0 transactions rolled back in database WideWorldimoorters' (6:0). This is an informational message ¢ ¥
< >
Y View fiter settings Selected row details:
Progress Date I2/2018 10:21:11 AM "
. Log SQL Server (Cument - 3/20/2018 11:15:00 PM)
. Done (191 reconds).
'@ Source spid55
Meszage "]

Close

For more information, see Microsoft-us/sql/tools/configuration-manager/monitoring-the-error-logs ?view=sgql-server-ver15

Aurora PostgreSQL provides administrators with access to the PostgreSQL error log.

The PostgreSQL Error Log is generated by default. To generate the slow query and general logs, set the cor-
responding parameters in the database parameter group. For more details about parameter groups, see Server

Options.

You can view Aurora PostgreSQL logs directly from the Amazon RDS console, the Amazon RDS API, the AWS
CLI, or the AWS SDKs. You can also direct the logs to a database table in the main database and use
SQL queries to view the data. To download a binary log, use the AWS Console.

Several parameters control how and where PostgreSQL log and errors files are placed:

Parameter Description

log_filename Sets the file name pattern for log files.
Modifiable via an Aurora Database Parameter Group.

log_rotation_age (min) Automatic log file rotation will occur after N minutes.
Modifiable via an Aurora Database Parameter Group.

log_rotation_size (kB) Automatic log file rotation will occur after N kilobytes.
Modifiable via an Aurora Database Parameter Group.

log_min_messages |Setsthe message levels that are logged (DEBUG, ERROR, INFO, etc....).
Modifiable via an Aurora Database Parameter Group.

log_min_error_state- | Causes all statements generating errors at or above this level to be logged (DEBUG,
ment ERROR, INFO, etc....).
Modifiable via an Aurora Database Parameter Group.

log_min_duration_ Sets the minimum execution time above which statements will be logged (ms).

-311-

https://docs.microsoft.com/en-us/sql/tools/configuration-manager/monitoring-the-error-logs?view=sql-server-ver15

aws

Parameter Description

statement Modifiable via an Aurora Database Parameter Group.

Note: Modifications to certain parameters, such as log_directory (which sets the destination directory
for log files) or logging_ collector (which starts a sub-process to capture stderr output and/or csvlogs into

log files) are disabled for Aurora PostgreSQL instances.

For more information, see https.//www.postgresql.org/docs/13/static/runtime-config-logging. html

Examples

The following walk-through demonstrates how to view the Aurora PostgreSQL error logs in the RDS console.

Using a web browser, navigate to https://console.aws.amazon.com/rds/home and click Databases.

Amazon RDS X

Resources
Dashboard

a Edit You are using the following Amazon RDS resources in the EU (Frankfurt) region (used/quota)
uery Editor

DB Instances (4/40) Parameter groups (6)
Perf I ht:
ertormance Insights Allocated storage (0.02 TB/100 TB) Default (5)
Snapshots Click here to increase DB instances limit Custom (1/100)
Automated backups DB Clusters (2/40) Option groups (3)
Reserved instances Reserved instances (0/40) Default (3)
Snapshots (7) Custom (0/20)
Proxies
Manual (0/100) Subnet groups (1/50)
Subnet groups Automated (7) Supported platforms VPC
Recent events (8) Default network vpc-9bc94ff1

Parameter groups
Event subscriptions (0/20)
Option groups

Click the instance for which you want to view the error log.

RDS Databases

Databases @ Group resources Modify Ac

Q
DB identifier 'y Role w Engine v Region & AZ
(] mysql-aurora-playbook Regional Aurora MySQL eu-central-1
mysql-aurora-playbook-instance-1 Writer Aurora MySQL eu-central-1a

Scroll down to the logs section and click the log name.

-312-

https://www.postgresql.org/docs/13/static/runtime-config-logging.html
https://console.aws.amazon.com/rds/home

aws

RDS Databases mysqgl-aurora-playbook

mysql-aurora-playbook

Related
Q
DB identifier r'S Role w Engine v Region & AZ v Size
| (o] mysql-aurora-playbook Regional Aurora MySQL eu-central-1 1 instar
I mysql-aurora-playbook-instance-1 Writer Aurora MySQL eu-central-1a db.t3.m
Connectivity & security Monitoring Logs & events Configuration Maintenance & backups Tags

The log viewer displays the log content.

For more information, see
https.//docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL. html

SQL Server Maintenance Plans vs.
PostgreSQL Viewing Server Logs

Feature Com- SCT/DMS Automation | SCT Action Code

patibility Level Index Key Differences
ess==e= (NA N/A Backups via the RDS services Table main-

tenance via SQL

SQL Server Usage

A Maintenance plan is a set of automated tasks used to optimize a database, performs regular backups, and
ensure it is free of inconsistencies. Maintenance plans are implemented as SQL Server Integration Services

(SSIS) packages and are executed by SQL Server Agent jobs. They can be run manually or automatically at
scheduled time intervals.

SQL Server provides a variety of pre-configured maintenance tasks. You can create custom tasks using T-
SQL scripts or operating system batch files.

Maintenance plans are typically used for the following tasks:

« Backing up database and transaction log files.
« Performing cleanup of database backup files in accordance with retention policies.
» Performing database consistency checks.

-313-

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html

aws

Rebuilding or reorganizing indexes.

Decreasing data file size by removing empty pages (shrink a database).

Updating statistics to help the query optimizer obtain updated data distributions.

Running SQL Server Agent jobs for custom actions.
o Executinga T-SQL task.

Maintenance plans can include tasks for operator notifications and history/maintenance cleanup. They can also
generate reports and output the contents to a text file or the maintenance plan tables in msdb.

Maintenance plans can be created and managed using the maintenance plan wizard in SQL Server Management
Studio, Maintenance Plan Design Surface (provides enhanced functionality over the wizard), Management Stu-
dio Object Explorer, and T-SQL system stored procedures.

For more information about SQL Server Agent migration, see SQL Server Agent.

The DBCC DBREINDEX, INDEXDEFRAG, and SHOWCONTIG commands have been deprecated as of SQL
Server 2008R2 in accordance with
https://docs.microsoft.com/en-us/previous-versions/sgl/sgl-server-2008-r2/ms143729(v=sqgl.105).

In place of the deprecated DBCC, SQL Server provides newer syntax alternatives as detailed in the following
table.

Deprecated DBCC Command Use Instead

DBCC DBREINDEX ALTER INDEX ... REBUILD
DBCC INDEXDEFRAG ALTER INDEX ... REORGANIZE
DBCC SHOWCONTIG sys.dm_db_index_physical_stats

For the Aurora PostgreSQL alternatives to these maintenance commands, see Aurora PostgreSQL Main-
tenance Plans.

Enable Agent XPs, which are disabled by default.

EXEC [sys].[sp configure] @configname = 'show advanced options', Q@configvalue = 1
RECONFIGURE ;

EXEC [sys].[sp configure] @configname = 'agent xps', (@configvalue = 1
RECONFIGURE;

Create a T-SQL maintenance plan for a single index rebuild.
USE msdb;

Addthe Index Maintenance IDX1jobtoSQL Server Agent.

EXEC dbo.sp add job @job name = N'Index Maintenance IDX1', @enabled = 1, @description
= N'Optimize IDX1 for INSERT' ;

Add the T-SQL job step "Rebuild IDX1 to 50 percent fill".
-314 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

aws

EXEC dbo.sp add jobstep @job name = N'Index Maintenance IDX1', @step name = N'Rebuild
IDX1 to 50 percent fill', @subsystem = N'TSQL',

@command = N'Use MyDatabase; ALTER INDEX IDX1 ON Shcema.Table REBUILD WITH (FILL
FACTOR = 50), Q@retry attempts = 5, Q@retry interval = 5;

Add a schedule to run every day at 01:00 AM.

EXEC dbo.sp add schedule @schedule name = N'Daily0100', @freq type = 4, @freq interval
= 1, Qactive start time = 010000;

Associate the schedule Daily0100 with the job Index Maintenance IDX1.

EXEC sp attach schedule @job name = N'Index Maintenance IDX1' @schedule name =
N'Daily0100' ;

For more information, see https.//docs. microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-
plans ?view=sql-server-ver15

PostgreSQL Usage

Amazon RDS performs automated database backups by creating storage volume snapshots that back up entire
instances, not individual databases.

RDS creates snapshots during the backup window for individual database instances and retains snapshots in
accordance with the backup retention period. You can use the snapshots to restore a database to any point in
time within the backup retention period.

Note: The state of a database instance must be ACTIVE for automated backups to occur.

You can backup database instances manually by creating an explicit database snapshot. Use the AWS console,
the AWS CLI, or the AWS API to take manual snapshots.

Examples

Create a Manual Database Snapshot Using the RDS Console

1. Navigate to the RDS Databases Page.

2. Selectan Aurora MySQL instance, click Instance actions and select Take Snapshot.

-315-

https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15
https://console.aws.amazon.com/rds/home#databases:

aws

Databases
@ Group resources l @ H Modify H Actions a H Restore from 53 l Create database
' Reboot
Q 1 &
. Delete
DB identifier Engine v Region & A

Take snapshot

mysgl-aurora-playbook Aurora MySQL eu-central-
ysqi-au piay Start database activity stream ysQ

o mysql-aurora-playbook-instance-1 Writer Aurora MySQL eu-central-

Restoring Snapshots on the RDS Console

Follow the steps below to restore an Aurora database from a snapshot.

1. Navigate to the RDS System Snapshots (link will refer to System snapshots but another tab can be used to
view Manual snapshots).

2. Selectthe snapshot to restore, click Actions on the context menu, and select Restore snapshot. This
action creates a new instance.

Snapshots
Manual System Shared with me Public Backup service Exports in Amazon 53
——
System snapshots (G) c Actions A
Rastore snapshot
Q
Copy snapshot
=2 Snapshot name 2 v DB instance or cluster ¥ mw
4 ds: |-aurora-playbook-2021-02-26-02-32 I -playbook 3
] rds:mysql-aurora-playboo mysql-aurora-playboo Exportto AmazonS3 -
rds:pg-playbooks-2021-02-25-21-26 pg-playbooks Delete snapshot 2
rds:oraplaybook-2021-02-25-21-03 oraplaybook February 25, 2021, 9:0
rds:mysql-aurora-playbook-2021-02-25-02-32 mysgl-aurora-playbook February 25, 2021, 2:3
rds:pg-playbooks-2021-02-24-21-26 pg-playbooks February 24, 2021, 5:2

3. The web page displays a wizard for creating a new Aurora database instance from the selected snapshot.
Enter the required configuration options and click Restore DB Instance.

You can also restore a database instance to a point-in-time. For more details see Backup and Restore.

For all other tasks, use a third-party or a custom application scheduler.

-316-

https://console.aws.amazon.com/rds/home?#snapshots-list:tab=automated

Rebuild and Reorganize a table

aws

Aurora PostgreSQL supports the VACUUM, ANALYZE and REINDEX commands, which are similar to the

REORGANIZE option of SQL S

VACUUM MyTable;
ANALYZE MyTable;
REINDEX TABLE MyTable;

erver indexes.

« VACUUM: Reclaims storage
o« ANALYZE: Collect statistics
« REINDEX: Recreate all indexes

For more information see

« https://www.postgresql.org/docs/13/static/sqgl-analyze.html|

« https://www.postgresql.org/docs/13/static/sqgl-vacuum.htm|

« https://www.postgresql.org/docs/13/static/sqgl-reindex. html

Converting Deprecated DBCC Index and Table Maintenance

Commands

Deprecated DBCC Command

Aurora PostgreSQL Equivalent

DBCC DBREINDEX

REINDEXINDEX or REINDEX TABLE

DBCC INDEXDEFRAG

VACUUM table_name or VACUUM table_name column_name

Update Statistics to Help the Query Optimizer Get Updated Data

Distribution

For more information, see Managing Statistics.

Summary

The following table summarizes the key tasks that use SQL Server maintenance Plans and a comparable Aurora
PostgreSQL solutions.

Task SQL Server Aurora PostgreSQL

Rebuild or reorganize indexes

ALTER INDEX/ALTER TABLE

REINDEX INDEX/REINDEX
TABLE

query optimizer get updated
data distribution

ats

Decrease data file size by DBCC SHRINKDATABASE /DBCC |VACUUM
removing empty pages SHRINKFILE
Update statisticsto helpthe |UPDATE STATISTICS /sp_updatest- | ANALYZE

-317-

https://www.postgresql.org/docs/13/static/sql-analyze.html
https://www.postgresql.org/docs/13/static/sql-vacuum.html
https://www.postgresql.org/docs/13/static/sql-reindex.html

aws

Task SQL Server Aurora PostgreSQL
Perform database con- DBCC CHECKDB/DBCC N/A
sistency checks CHECKTABLE

Back up the database and BACKUP DATABASE /BACKUP Automatically (can be use with CLI)
transaction log files LOG

Run SQL Server Agentjobs |sp_start_job, scheduled N/A
for custom actions

For more information, see
https.//docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html!

Feature Com- SCT/DMS Automation SCT Action Code .
patibility Level Index oy DR
cssses N/A N/A Use Amazon Cloud Watch ser-

Monitoring server performance and behavior is a critical aspect of maintaining service quality and includes ad-hoc
data collection, ongoing data collection, root cause analysis, preventative actions, and reactive actions. SQL
Server provides an array of interfaces to monitor and collect server data.

SQL Server 2017 introduces several new dynamic management views:

« sys.dm_db_log_stats exposes summary level attributes and information on transaction log files, helpful for
monitoring transaction log health.

« sys.dm_tran_version_store_space_usage tracks version store usage per database, useful for proactively
planning tempdb sizing based on the version store usage per database.

« sys.dm_db_log_info exposes VLF information to monitor, alert, and avert potential transaction log issues.
« sys.dm_db_stats_histogram is a new dynamic management view for examining statistics.
« sys.dm_os_host_info provides operating system information for both Windows and Linux.

SQL Server 2019 adds new configuration parameter, LIGHTWEIGHT_QUERY_PROFILING. It enables or dis-
ables the lightweight query profiling infrastructure. The lightweight query profiling infrastructure (LWP) provides
query performance data more efficiently than standard profiling mechanisms and is enabled by default. For more
information see Lightweight Query Profiling Infrastructure

The Windows Scheduler can be used to trigger execution of script files(CMD, Powershell etc) to collect, store,
and process performance data.

System Monitor is a graphical tool for measuring and recording performance of SQL Server and other windows
related metrics using the Windows Management Interface (WMI) performance objects.

-318-

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15

aws

Note: Performance objects can also be accessed directly from T-SQL using the SQL Server Operating
System Related DMVs. For a full list of the DMVs, see: sql-server-operating-system-related-dynamic-
management-views-transact-sql

Performance counters exist for both real time measurements such as CPU Utilization and for aggregated history
such as average active transactions.

For afull list of the object hierarchy, see:
https://docs.microsoft.com/en-us/sgl/relational-databases/performance-monitor/use-sql-server-object-
s?view=sql-server-ver15

SQL Server Extended Events

SQL Server's latest tracing framework provides very lightweight and robust event collection and storage. SQL
Server Management Studio features the New Session Wizard and New Session graphic user interfaces for man-
aging and analyzing captured data. SQL Server Extended Events consists of the following items:

» SQL Server Extended Events Package is a logical container for Extended Events objects.

« SQL Server Extended Events Targets are consumers of events. Targets include Event File, which writes
data to the file Ring Buffer for retention in memory, or for processing aggregates such as Event Counters
and Histograms.

« SQL Server Extended Events Engine is a collection of services and tools that comprise the framework.

« SQL Server Extended Events Sessions are logical containers mapped many-to-many with packages,
events, and filters.

The following example creates a session that logs lock escalations and lock timeouts to a file.

CREATE EVENT SESSION Locking Demo
ON SERVER

ADD EVENT sglserver.lock escalation,

ADD EVENT sglserver.lock timeout

ADD TARGET package0O.etw classic sync target

(SET default etw session logfile path = N'C:\ExtendedEvents\Locking\Demo

20180502.etl")

WITH (MAX MEMORY=8MB, MAX EVENT SIZE=8MB) ;
GO

SQL Server Tracing Framework and the SQL Server Profiler
Tool

The SQL Server trace framework is the predecessor to the Extended Events framework and remains popular
among database administrators. The lighter and more flexible Extended Events Framework is recommended for
development of new monitoring functionality. For more information about SQL Server Profiler Tool, see : sql-

server-profiler

SQL Server Management Studio

SQL Server management studio provides several monitoring extensions:

« SQL Server Activity Monitor is an in-process, real-time, basic high-level information graphical tool.

» Query Graphical Show Plan provides easy exploration of estimated and actual query execution plans.

-319-

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15

aws

« Query Live Statistics displays query execution progress in real time.

« Replication Monitor presents a Publisher-focused view or Distributor-focused view of all replication activ-
ity. For more details, see: overview-of-the-replication-monitor-interface

« Log Shipping Monitor displays the status of any log shipping activity whose status is available from the
server instance to which you are connected. For more details, see: view-the-log-shipping-report-sql-
server-management-studio

- Standard Performance Reports SSMS provides a set of reports, there are more than 20 reports that show
the most important performance metrics, change history, memory usage, activity, transactions, HA, and
more.

T-SQL

From the T-SQL interface, SQL Server provides many system stored procedures, system views, and functions
for monitoring data.

System stored procedures such as sp_who and sp_lock provide real-time information. sp_monitor provides
aggregated data.

Builtin functions such as @@CONNECTIONS, @@I0_BUSY, @@TOTAL_ERRORS, and others provide
high level server information.

A rich set of System Dynamic Management functions and views are provided for monitoring almost every aspect
of the server. These functions reside in the sys schema and are prefixed with dm_string. For more information
about Dynamic Management Views, see https://docs.microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15

Trace Flags

Trace flags can be set to log events. For example, set trace flag 1204 to log deadlock information. For more
information about Trace flags, see: dbcc-traceon-trace-flags-transact-sql

SQL Server Query Store

Query Store is a database level framework supporting automatic collection of queries, execution plans, and run
time statistics. This data is stored in system tables and can be used to diagnose performance issues, understand
patterns, and understand trends. It can also be set to automatically revert plans when a performance regression
is detected.

For more information, see
https.//docs. microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-
store?view=sgql-server-ver15

PostgreSQL Usage

Amazon RDS provide a rich monitoring infrastructure for Aurora PostgreSQL clusters and instances with the nat-
ive Cloud Watch service. See the following up-to-date articles that include examples and walkthroughs for mon-
itoring Aurora PostgreSQL clusters and instances:

-320 -

https://docs.microsoft.com/en-us/sql/relational-databases/replication/monitor/overview-of-the-replication-monitor-interface?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/view-the-log-shipping-report-sql-server-management-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/view-the-log-shipping-report-sql-server-management-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver15

aws

« https://docs.aws.amazon.com/AmazonRD S/latest/UserGuide/CHAP Monitoring.html

« https://docs.aws.amazon.com/AmazonRD S/latest/UserGuide/USER_Monitoring.OS.html

You can also use the Performance Insights AWS tool to monitor PostgreSQL.
PostgreSQL can also be monitored by querying system catalog table and views.

Starting with PostgreSQL 12 it is now possible to monitor progress of CREATE INDEX and REINDEX and
CLUSTER and VACUUM FULL operations by querying system views pg_stat_progress_create_index and pg_
stat_progress_cluster.

RDS ONLY: Starting with PostgreSQL 13 following features have been added:

1. Itis now possible to monitor progress of ANALYZE operations by querying system view pg_stat_
progress_analyze

2. Itis now possible to monitor shared memory usage with system view pg_shmem_allocations

Example

The following walk-through demonstrates how to access the Amazon Aurora Performance Insights Console:
Navigate to the RDS section of the AWS Console, and select Performance Insights.

Amazon RDS X

Dashboard

Databases
You are using the following Amazon RDS resources in the EU (Frankfurt) region

Query Editor (used/quota)

Performance Insights DB Instances (4/40) Parameter groups (7)
Snapshots Allocated storage (0.02 TB/100 TEB) Default (5)
Automated backups C-lic-k here to increase DB instances Custom (2/100)
. e limit Option groups (3)

eserved instances DB Clusters (2/40) Default (3)
Proxies Reserved instances (0/40) Custom (0/20)

Snapshots (7) Subnet groups (1/50)
Subnet groups M (a/
anual (0/100) Supported platforms VPC

Parameter groups Automated (7) Default network vpc-9bc94ff1
Option groups Recent events (8)

Event subscriptions (0/20)
Events

The web page displays a dashboard containing current and past database performance metrics. You can choose
the period of the displayed performance data (5m, 1h, 6h or 24h) as well as different criteria to filter and slice the
information (waits, SQL, Hosts or Users, etc.).

-321-

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html

aws

N

L Fad
| ticse O = B =
&m 1h Bh 24h
Load: Averags Active Sessions (AAS) Taitad 10
@ﬂ. Elicw by Waids ~
A R e Em e ——————————————————————————— . & oSy 1.16

& cru 44

W Locicfrenyactonid (iR]

@ Lwlock:bufar_content "]

@ Locictuphe]

i 1 e erelabinn n
F

SepDE 1530000

TR -] 15:08 1510 1520 (L]
Wilts SOL Hosts Users Qisearch SOL quaries *
Load By Waits s0L
v T 4EATINTO authors fd.nameemall) VALUES | nedval(T) 7,7, (nextval(®) 7,7, nectval(?) 7,7, | nestval...
» T diete from authors whans id < { select mafid) - 7 from authors) and id > (select max(id) - 7 from authors)
T WITH e AS | SELECT id FROM suthars LIMIT 7 | UPDATE authors s SET small = 7 FROM e WHERE 8...,
» seiect counti”) from suthars whens id < { sskect max{d) - 7 from aushors) and id = | sslect masx(id) - 7 from _..
r B salect count(™) rom suthors whare i < | ssect maxid) - 7 from authors) and id » | seiect max(d) - 7 from ...

Enabling Performance Insights

Performance Insights is enabled by default for Amazon Aurora clusters. If you have more than one database in
your Aurora cluster, performance data for all databases is aggregated. Database performance data is retained
for 24 hours.

For additional details, see http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER _Perflnsights.html

SQL Server Resource Governor vs.
PostgreSQL Dedicated Amazon Aurora Clusters or
Aurora Read-Replicas

ss=s==e= NA N/A Distribute load/applications/users across mul-
- T T tiple instances

SQL Server Usage

SQL Server Resource Governor provides the capability to control and manage resource consumption. Admin-
istrators can specify and enforce workload limits on CPU, physical I/O, and Memory. Resource configurations are
dynamic and can be changed in real time.

In SQL Server 2019 configurable value for the REQUEST_MAX_MEMORY_GRANT_PERCENT option of
CREATE WORKLOAD GROUP and ALTER WORKLOAD GROUP has been changed from an integer to a float

-322-

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

aws

data type to allow more granular control of memory limits. See ALTER WORKLOAD GROUP and CREATE
WORKLOAD GROUP

The following list identifies typical Resource Governor use cases:

« Minimize performance bottlenecks and inconsistencies to better support Service Level Agreements
(SLA) for multiple workloads and users.

« Protect against runaway queries that consume a large amount of resources or explicitly throttle I/O intens-
ive operations. For example, consistency checks with DBCC that may bottleneck the 1/0 subsystem and
negatively impact concurrent workloads.

« Allow tracking and control for resource-based pricing scenarios to improve predictability of user
charges.

The three basic concepts in Resource Governor are Resource Pools, Workload Groups, and Classification.

« Resource Pools represent physical resources. Two built-in resource pools, internal and default, are cre-
ated when SQL Server is installed. You can create custom user-defined resource pools for specific work-
load types.

« Workload Groups are logical containers for session requests with similar characteristics. Workload
Groups allow aggregate resource monitoring of multiple sessions. Resource limit policies are defined for a
Workload Group. Each Workload Group belongs to a Resource Pool.

« Classification is a process that inspects incoming connections and assigns them to a specific Workload
Group based on the common attributes. User-defined functions are used to implement Classification. For
more information, see User Defined Functions.

Enable the Resource Governor.

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Resource Pool.

CREATE RESOURCE POOL ReportingWorkloadPool
WITH (MAX CPU_PERCENT = 20);

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Workload Group.

CREATE WORKLOAD GROUP ReportingWorkloadGroup USING poolAdhoc;

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a classifier function.

CREATE FUNCTION dbo.WorkloadClassifier ()
RETURNS sysname WITH SCHEMABINDING

-323 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-workload-group-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql?view=sql-server-ver15

aws

AS

BEGIN

RETURN (CASE
WHEN HOST NAME ()= 'ReportServer'

THEN 'ReportingWorkloadGroup'

ELSE 'Default'
END)

END;

Register the classifier function.

ALTER RESOURCE GOVERNOR with (CLASSIFIER FUNCTION = dbo.WorkloadClassifier);

ALTER RESOURCE GOVERNOR RECONFIGURE;

For more information, see
https.//docs. microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-ver15

PostgreSQL does not have built-in resource management capabilities equivalent to the functionality provided by
SQL Server's Resource Governor. However, due to the elasticity and flexibility provided by “cloud economics”,
workarounds could be applicable and such capabilities might not be as of similar importance to monolithic on-
premises databases.

The SQL Server's Resource Governor primarily exists because traditionally, SQL Server instances were installed
on very powerful monolithic servers that powered multiple applications simultaneously. The monolithic model
made the most sense in an environment where the licensing for the SQL Server database was per-CPU and
where SQL Server instances were deployed on physical hardware. In these scenarios, it made sense to con-
solidate as many workloads as possible into fewer servers. With cloud databases, the strict requirement to max-
imize the usage of each individual “server” is often not as important and a different approach can be employed.

Individual Amazon Aurora clusters can be deployed, with varying sizes, each dedicated to a specific application or
workload. Additional read-only Aurora Replica servers can be used to offload any reporting workloads from the
master instance.

With Amazon Aurora, separate and dedicated database clusters can be deployed, each dedicated to a specific
application/workload creating isolation between multiple connected sessions and applications.

Each Amazon Aurora instance (Primary/Replica) can scale independently in terms of CPU and memory
resources using different instance types. Because multiple Amazon Aurora Instances can be instantly deployed
and much less overhead is associated with the deployment and management of Aurora instances when com-
pared to physical servers, separating different workloads to different instance classes could be a suitable solution
for controlling resource management.

For more information about instance types and resources, see
https://aws.amazon.com/ec2/instance-types/

In addition, each Amazon Aurora instance can also be directly accessed from your applications using its own end-
point. This capability is especially useful if you have multiple Aurora read-replicas for a given cluster and you want
to use different Aurora replicas to segment your workload.

-324 -

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-ver15
https://aws.amazon.com/ec2/instance-types/

aws

You can adjust the resources and some parameters for Aurora read-replicas in the same cluster to avoid having
additional cluster, however, this will allow to be used only for read operations.

Examples

To create an Aurora cluster please follow this steps:

Navigate to the Databases section under RDS and click on "Create database", follow the wizrd, click on "Create
database", and then your cluster will appear in the Databases section

RDS Databases

1
Databases @) Group resources
Q 1 &
DB identifier A Role ¥ Engine v Region & AZ ¥
mssql-aurora-playbook Instance SQL Server Express Edition eu-central-1b
mysql-aurora-playbook Regional Aurora MySQL eu-central-1
mysql-aurora-playbook-instance-1 Writer Aurora MySQL eu-central-1a
oraplaybook 2 Instance Oracle Standard Edition Two eu-central-1a
pg-playbooks Regional Aurora PostgreSQL eu-central-1
pg-playbooks-instance-1 Writer Aurora PostgreSQL eu-central-1a
pg-playbooks-reader Reader Aurora PostgreSQL eu-central-1c

Suppose that you were using a single SQL Server instance for multiple separate applications and used SQL
Server's Resource Governor to enforce a workload separation, allocating a specific amount of server resources
for each application. With Amazon Aurora, you might want to create multiple separate databases for each indi-
vidual application.

Follow these steps to add additional replica instances to an existing Amazon Aurora cluster:

Navigate to the Databases section under RDS.

Select the Amazon Aurora cluster that you want to scale-out by adding an additional read Replica, click the
Instance Actions button, and click Create Aurora Replica.

aws; Services v Resource Groups *
Amazon RDS X RDS nstances
Dashboard Instances (4) I| Instance actions ¥ |Im
Instances See details

Q

Clusters 3 Create aurora replica

Performance Insights [N T Failover

Snapshots 1 Create cross region read replica
(o] mysql57test

Reserved instances

muranlira Talia emanchat

-325-

https://console.aws.amazon.com/rds/home?#dbinstances:
https://console.aws.amazon.com/rds/home?#dbinstances:

aws

Select the instance class depending on the amount of compute resources your application requires.

DB instance class

DB instance class Info
Choose a DB

limited to those supported by the en

nstance class that mee

=r and memory requirements. The DB instance class options below are

© Memory optimized classes (includes r classes)

Burstable classes (includes t classes)

db.r5.large -
2 vCPUs 16 GiB RAM Metwork: 4,750 Mbps
db.r5.large
2 wCPUs 16 GiB RAM Metwork: 4,750 Mbps
db.r5.xlarge
4 vCPUs 32 GiB RAM Metwork: 4,750 Mbps
db.r5.2xlarge
8 wCPUs 64 GiB RAM Network: 4,750 Mbps
db.r5.4xlarge
16 vCPUs 128 GiB RAM Metwork: 4,750 Mbps
recommended for
db.r5.8xlarge
32 wCPUs 256 GiB RAM Network: 6,800 Mbps
db.r5.12xlarge
48 vCPUs 384 GiB RAM Metwork: 9,500 Mbps
. db.r5.16xlarge
64 vCPUs 512 GiB RAM Network: 13,600 Mbps
db.r5.24xlarge
96 vCPUs 768 GiB RAM Network: 19,000 Mbps
db.rég.large
2vCPUs 16 GiB RAM Metwork: 4,750 Mbps -

Virtual private cloud (WVPC) Info

Click Create Aurora Replica.

Dedicated Aurora PostgreSQL Instances

Feature

Amazon Aurora Instances

Set the maximum
CPU usage fora
resource group

Create a dedicated Aurora Instance for a specific application.

Limit the degree of
parallelism for spe-
cific queries

SET max_parallel_workers_per_gather TO x;

Setting the PostgreSQL
max_parallel_workers_per_gather parameter should be done as part of your application
database connection.

Limit parallel exe-
cution

SET max_parallel_workers_per_gather TO 0;
OR
SET max_parallel_workers TO x; -- for the whole system (since PostgreSQL 10)

Limit the number
of active sessions

Manually detect the number of connections that are open from a specific application and
restrict connectivity either via database procedures or within the application DAL itself.

select pid from pg_stat_activity where usename in(select usename from pg_stat_activity
where state = 'active' group by usename having count(*) > 10) and state = 'active' order by
query_Start;

Restrict maximum
runtime of queries

Manually terminate sessions that exceed the required threshold. You can detect the length
of running queries using SQL commands and restrict max execution duration using either
database procedures or within the application DAL itself.

- 326 -

aws

Feature

Amazon Aurora Instances

SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE now()-pg_stat_
activity.query_start > interval 'S minutes';

Limit the maximum
idle time for ses-
sions

Manually terminate sessions that exceed the required threshold. You can detect the length
of your idle sessions using SQL queries and restrict maximum execution using either data-
base procedures or within the application DAL itself.

SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE datname =
'regress' AND pid <> pg_backend_pid() AND state = "idle' AND state_change < current_
timestamp - INTERVAL '5' MINUTE;

Limit the time that
an idle session
holding open locks
can block other
sessions

Manually terminate sessions that exceed the required threshold. You can detect the length
of blocking idle sessions using SQL queries and restrict max execution duration using
either database procedures or within the application DAL itself.

SELECT pg_terminate_backend(blocking_locks.pid)

FROM pg_catalog.pg_locks AS blocked_locks

JOIN pg_catalog.pg_stat_activity AS blocked_activity ON blocked_activity.pid = blocked_
locks.pid

JOIN pg_catalog.pg_locks AS blocking_locks ON blocking_locks.locktype = blocked_lock-
s.locktype AND blocking_locks.DATABASE IS NOT DISTINCT FROM blocked_lock-
s.DATABASE AND blocking_locks.relation IS NOT DISTINCT FROM blocked_
locks.relation AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page
AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple AND blocking_
locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid AND blocking_lock-
s.transactionid IS NOT DISTINCT FROM blocked_locks.transactionid AND blocking_lock-
s.classid IS NOT DISTINCT FROM blocked_locks.classid AND blocking_locks.objid IS
NOT DISTINCT FROM blocked_locks.objid AND blocking_locks.objsubid IS NOT
DISTINCT FROM blocked_locks.objsubid AND blocking_locks.pid != blocked_locks.pid
JOIN pg_catalog.pg_stat_activity AS blocking_activity ON blocking_activity.pid = blocking_
locks.pid WHERE NOT blocked_locks.granted and blocked_activity.state_change < cur-
rent_timestamp - INTERVAL '5' minute;

For additional details, see:https.//www.postgresql.org/docs/13/static/runtime-config-resource.html|

Feature Com- SCT/DMS Automation |SCT Action Code .

patibility Level Index Key Differences
ss=e=e= NA Linked Servers Syntax and option differences, similar
=T T == functionality

Linked Servers enable the database engine to connect to external Object Linking and Embedding for Data Bases
(OLE-DB) sources. They are typically used to execute T-SQL commands and include tables in other instances of

- 327 -

https://www.postgresql.org/docs/13/static/runtime-config-resource.html

aws

SQL Server, or other RDBMS engines such as Oracle. SQL Server supports multiple types of OLE-DB sources
as linked servers, including Microsoft Access, Microsoft Excel, text files and others.

The main benefits of using linked servers are:

» Reading external data for import or processing.
« Executing distributed queries, data modifications, and transactions for enterprise-wide data sources.

« Querying heterogeneous data source using the familiar T-SQL API.

Linked servers can be configured using either SQL Server Management Studio, or the system stored procedure
sp_addlinkedserver. The available functionality and the specific requirements vary significantly between the vari-
ous OLE-DB sources. Some sources may allow read only access, others may require specific security context set-
tings, etc.

The Linked Server Definition contains the linked server alias, the OLE DB provider, and all the parameters
needed to connect to a specific OLE-DB data source.

The OLE-DB provider is a .Net Dynamic Link Library (DLL) that handles the interaction of SQL Server with all
data sources of its type. For example, OLE-DB Provider for Oracle. The OLE-DB data source is the specific data
source to be accessed, using the specified OLE-DB provider.

Note: SQL Server distributed queries can be used with any custom OLE DB provider as long as the
required interfaces are implemented correctly.

SQL Server parses the T-SQL commands that access the linked server and sends the appropriate requests to
the OLE-DB provider. There are several access methods for remote data, including opening the base table for
read or issuing SQL queries against the remote data source.

Linked servers can be managed using SQL Server Management Studio graphical user interface or T-SQL sys-
tem stored procedres.

o EXECUTE sp_addlinkedserver toadd new server definitions.
o EXECUTE sp_ addlinkedserverlogin to define security context.

e« EXECUTE sp linkedservers or SELECT * FROM sys.servers system catalog view to
retrieve meta data.

o EXECUTE sp_ dropserver todelete alinked server.

Linked server data sources are accessed from T-SQL using a fully qualified, four part naming scheme: <Server
Name>.<Database Name>.<Schema Name>.<Object Name>.

Additionally, the OPENQUERY row set function can be used to explicitly invoke pass-through queries on the
remote linked server, and the OPENROWSET and OPENDATASOURCE row set functions can be used for ad-
hoc remote data access without defining the linked server in advance.

EXECUTE sp_ addlinkedserver

[@server=] <Linked Server Name>
[, [@srvproduct=] <Product Name>]
[, [@provider=] <OLE DB Provider>]
[, [@datasrc=] <Data Source>]
[, [Qlocation=] <Data Source Address>]
[, [@provstr=] <Provider Connection String>]
[, [@catalog=] <Database>];

- 328 -

aws

Examples

Create a linked server to a local text file.

EXECUTE sp_ addlinkedserver MyTextLinkedServer, N'Jet 4.0',
N'Microsoft.Jet.OLEDB.4.0",
N'D:\TextFiles\MyFolder',
NULL,
N'Text';

Define security context.

EXECUTE sp addlinkedsrvlogin MyTextLinkedServer, FALSE, Admin, NULL;

Use sp_tables_exto list tables in folder.

EXEC sp tables ex MyTextLinkedServer;

Issue a SELECT query using 4 part name.

SELECT *
FROM MyTextLinkedServer...[FileName#text];

For more information, see

« https://docs.microsoft.com/en-us/sgl/relational-databases/system-stored-procedures/sp-addlinkedserver-
transact-sqgl?view=sqgl-server-ver15

« https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-
stored-procedures-transact-sqgl?view=sqgl-server-ver15

PostgreSQL Usage

Querying data in remote databases is available via two primary options:

« dblink database link function

» postgresql_fdw (Foreign Data Wrapper, FDW) extension

The Postgres foreign data wrapper extension is new to PostgreSQL and provides functionality similar to dblink.
However, the Postgres foreign data wrapper aligns closer with the SQL standard and can provide improved per-
formance.

Examples

Load the dblink extension into PostgreSQL.
CREATE EXTENSION dblink;
Create a persistent connection to a remote PostgreSQL database using the dblink_connect function specifying a

connection name (myconn), database name (postgresql), port (5432), host (hostname), user (username), and
password (password).

-329-

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql?view=sql-server-ver15

aws

SELECT dblink connect
('myconn', 'dbname=postgres port=5432 host=hostname user=username password=password');

The connection can be used to execute queries against the remote database.

Execute a query using the previously created connection (myconn) via the dblink function. The query returns the
id and name columns from the employees table. On the remote database, you must specify the connection name
and the SQL query to execute as well as parameters and datatypes for selected columns (id and name in this
example).

SELECT * from dblink
('myconn', 'SELECT id, name FROM EMPLOYEES') AS p(id int, fullname text);

Close the connection using the dblink_disconnect function.

SELECT dblink disconnect ('myconn');

Alternatively, you can use the dblink function specifying the full connection string to the remote PostgreSQL data-
base including the database name, port, hosthname, username, and password. This can be done instead of using
a previously defined connection. You must also specify the SQL query to execute as well as parameters and data-
types for the selected columns (id and name, in this example).

SELECT * from dblink
('dbname=postgres port=5432 host=hostname user=username password=password',
'SELECT id, name FROM EMPLOYEES') AS p(id int, fullname text);

DML commands are supported on tables referenced via the dblink function. For example, you can insert a new
row and then delete it from the remote table.

SELECT * FROM dblink ('myconn', $$INSERT into employees VALUES (3, 'New Employees No.
31')$$) AS t(message text);

SELECT * FROM dblink ('myconn', $$SDELETE FROM employees WHERE 1d=3$$) AS t (message
text) ;

Create a new local table (new_employees_table) by querying data from a remote table.

SELECT emps.* INTO new employees table FROM dblink ('myconn', 'SELECT * FROM employees')
AS emps (id int, name varchar);

Join remote data with local data.

SELECT local emps.id , local emps.name, s.sale year, s.sale amount

FROM local emps INNER JOIN

dblink ('myconn', 'SELECT * FROM working hours') AS s(id int, hours worked int)
ON local emps.id = s.id;

Execute DDL statements in the remote database.

SELECT * FROM dblink('myconn', $SSCREATE table new remote tbl (a int, b text)$$) AS t(a
text) ;

For additional details, see https.//www.postgresqgl.org/docs/13/static/dblink. html|

-330-

https://www.postgresql.org/docs/13/static/dblink.html

aws

SQL Server Scripting vs. PostgreSQL Scripting

Feature Com- SCT/DMS Auto- | SCT Action .
patibility mation Level Code Index #E PIEETERE
- = N/A N/A Non-compatible tool sets and scripting languages

e
—

((
((
()
()

Use PostgreSQL pgAdmin, Amazon RDS API, AWS
Management Console, and Amazon CLI

SQL Server Usage

SQL Server supports T-SQL and XQuery scripting within multiple execution frameworks such as SQL Server
Agent, and stored procedures.

The SQLCMD command line utility can also be used to execute T-SQL scripts. However, the most extensive and
feature-rich scripting environment is PowerShell.

SQL Server provides two PowerShell snap-ins that implement a provider exposing the entire SQL Server Man-
agement Object Model (SMO) as PowerShell paths. Additionally, a SQL Server cmd can be used to execute spe-
cific SQL Server commands.

Note: Invoke-Sqlcmd can be used to execute scripts using the SQLCMD uitility.

The sqlps utility launches the PowerShell scripting environment and automatically loads the SQL Server mod-
ules. sqlps can be launched from a command prompt or from the Object Explorer pane of SQL Server Man-
agement Studio. You can execute ad-hoc PowerShell commands and script files (for example,
ASomeFolder\SomeScript.ps1).

Note: SQL Server Agent supports executing PowerShell scripts in job steps. For more information, see
SQL Server Agent.

SQL Server also supports three types of direct database engine queries: T-SQL, XQuery, and the SQLCMD util-
ity. T-SQL and XQuery can be called from stored procedures, SQL Server Management Studio (or other IDE),
and SQL Server agent Jobs. The SQLCMD utility also supports commands and variables.

Examples

Backup a database with PowerShell using the default backup options.

PS C:\> Backup-SglDatabase -ServerInstance "MyServer\SQLServerInstance" -Database
"MyDB "w

Get all rows from the MyTable table in they MyDB database.

PS C:\> Read-SglTableData -ServerInstance MyServer\SQLServerInstance" -DatabaseName
"MyDB" -TableName "MyTable"

-331-

https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/

aws

For more information, see:

« https://docs.microsoft.com/en-us/sql/powershell/sqgl-server-powershell ?view=sgl-server-ver15

« https://docs.microsoft.com/en-us/sql/relational-databases/scripting/database-engine-scripting?view=sqgl-server-
ver1s

« https://docs.microsoft.com/en-us/sqgl/tools/sqglcmd-utility ?view=sql-server-ver15

PostgreSQL Usage

As a Platform as a Service (PaaS), Aurora PostgreSQL accepts connections from any compatible client, but you
cannot access the PostgreSQL command line utility typically used for database administration. However, you can
use PostgreSQL tools installed on a network host and the Amazon RDS API. The most common tools for Aurora
PostgreSQL scripting and automation include PostgreSQL pgAdmin, PostgreSQL Utilities, and the Amazon
RDS API. The following sections describe each tool.

PostgreSQL pgAdmin

PostgreSQL pgAdmin is the most commonly used tool for development and administration of PostgreSQL serv-
ers. Itis available as a free Community Edition and paid support is available.

The PostgreSQL pgAdmin also supports a Python scripting shell that you can use interactively and pro-
grammatically. For more information see: https://www.pgadmin.org/

Amazon RDS API

The Amazon RDS APl is a web service for managing and maintaining Aurora PostgreSQL (and other) relational
databases. It can be used to setup, operate, scale, backup, and perform many common administration tasks. The
RDS API supports multiple database platforms and can integrate administration seamlessly for heterogeneous
environments.

Note: The Amazon RDS APl is asynchronous. Some interfaces may require polling or callback func-
tions to receive command status and results.

You can access Amazon RDS using the AWS Management Console, the AWS Command Line Interface (CLI),
and the Amazon RDS Progammatic API as described in the following sections.

AWS Management Console

The AWS Management Console is a simple web-based set of tools for interactive management of Aurora Post-
greSQL and other RDS services. It can be accessed at https://console.aws.amazon.com/rds/

AWS Command Line Interface (CLI)

The Amazon AWS Command Line Interface is an open source tool that runs on Linux, Windows, or MacOS hav-
ing Python 2 version 2.6.5 and higher or Python 3 version 3.3 and higher.

-332-

https://docs.microsoft.com/en-us/sql/powershell/sql-server-powershell?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/database-engine-scripting?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/database-engine-scripting?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15
https://www.pgadmin.org/
https://console.aws.amazon.com/rds/

aws

The AWS CLI is built on top of the AWS SDK for Python (Boto), which provides commands for interacting with
AWS services. With minimal configuration, you can start using all AWS Management Console functionality from
your favorite terminal application.

« Linux shells: Use common shell programs such as Bash, Zsh, or tsch.
« Windows command line: Run commands in PowerShell or the Windows Command Processor.

« Remotely: Run commands on Amazon EC2 instances through a remote terminal such as PuTTY or SSH.

The AWS Tools for Windows PowerShell and AWS Tools for PowerShell Core are PowerShell modules built on
the functionality exposed by the AWS SDK for .NET. These Tools enable scripting operations for AWS resources
using the PowerShell command line.

Note: You cannot use SQL Server cmdlets in PowerShell.

Amazon RDS Programmatic API

The Amazon RDS API can be used to automate management of DB instances and other Amazon RDS objects.

For more information about Amazon RDS API, see:

« APl actions: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations. html

« Data Types: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/AP|_Types.html

« Common query parameters: http://-
docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters. html

« Error codes: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors. html

Examples

The following walk-through describes how to connect to an Aurora PostgreSQL DB instance using the Post-
greSQL Utility:

Log on to the Amazon RDS Console and select PostgreSQL database you want to connect to.

Amazon RD> X Kelatea

a (]
Dashboard

Databases DB identifier a Role ¥ Engine ¥ Region & AZ ¥ size v Status ¥ cPU Current activity Maintenance
Query Editor

Performance Insights] mysql-aurora-playbook Regional Aurora MySQL eu-central-1 1 instance @ Available = none

Snapshots mysql-aurora-playbook-instance-1 Writer Aurora MySQL eu-central-1a db.t3.medium @ Available [17.00% 171 2 Selects/Sec none
Automated backups

Reserved instances

Proxies. Connectivity & security Monitoring Logs & events Configuration Maintenance & backups Tags

Subnet groups

Parameter groups .)
Endpoints (2
Option groups

Q 1 ®
Events

Event subscriptions

Recommendations
e Available Writer 3306
Certificate update

Available Reader 3306

Copy the cluster endpoint address.

-333-

http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html

aws

Note: You can also connect to individual DB instances. For more information, see
High Availability Essentials.

From a command shell, type the following:

psgl —--host=mypostgresqgl.c6c8mwvidgv0.us-west-2.rds.amazonaws.com —--port=5432 --user-
name=awsuser --password —--dbname=mypgdb

« The --host parameter is the endpoint DNS name of the Aurora PostgreSQL DB cluster.

o The --port parameter is the port number .

For more information, see

« https://docs.aws.amazon.com/cli/latest/reference/

« https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome. html

-334-

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html

aws

Performance Tuning

SQL Server Execution Plans vs.
PostgreSQL Execution Plans

Feature Com- |[SCT/DMS Auto- SCT Action Code
patibility mation Level Index

Key Differences

== (NA N/A Syntax differences

Completely different optimizer with different
operators and rules

SQL Server Usage

Execution plans provide users detailed information about the data access and processing methods chosen by the
SQL Server Query Optimizer. They also provide estimated or actual costs of each operator and sub-tree. Exe-
cution plans provide critical data for troubleshooting query performance issues.

SQL Server creates execution plans for most queries and returns them to client applications as plain text or XML
documents. SQL Server produces an execution plan when a query executes, but it can also generate estimated
plans without executing a query.

SQL Server Management Studio provides a graphical view of the underlying XML plan document using icons and
arrows instead of textual information. This graphical view is extremely helpful when investigating the performance
aspects of a query.

To request an estimated execution plan, use the SET SHOWPLAN_XML, SHOWPLAN_ALL, or SHOWPLAN_
TEXT statements.

SQL Server 2017 introduces automatic tuning, which notifies users whenever a potential performance issue is
detected and lets them apply corrective actions, or lets the Database Engine automatically fix performance prob-
lems. Automatic tuning SQL Server enables users to identify and fix performance issues caused by query exe-
cution plan choice regressions. See Automatic tuning.

-335-

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15

aws

Examples

Show the estimated execution plan for a query.

SET SHOWPLAN XML ONj;
SELECT *

FROM MyTable

WHERE SomeColumn = 3;
SET SHOWPLAN XML OFF;

Actual execution plans return after execution of the query or batch of queries completes. Actual execution plans
include run-time statistics about resource usage and warnings. To request the actual execution plan, use the SET
STATISTICS XML statement to return the XML document object. Alternatively, use the STATISTICS PROFILE
statement, which returns an additional result set containing the query execution plan.

Show the actual execution plan for a query.

SET STATISTICS XML ON;
SELECT *

FROM MyTable

WHERE SomeColumn = 3;
SET STATISTICS XML OFF;

The following example shows a (partial) graphical execution plan from SQL Server Management Studio.

[Resuts P Messages & Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT [Sensor], [Date], CAST(ISNULL ([Measurement], [Last Non Wull Measurement] + { (([Next Non Null Measurement] - [Last Non Null Measurement]) / MAX([Sequence Within Group..

= = T > = = i
= (A ey
- - B = e
) [B = 2L = G
oin Compuze Sealar Compuse Sealar Stream Aggregate Sore Parallelism Computa Scalar | Parallelism Clustered Index Scan (Clustersd)
x Join) c: i 08 l:ch - 0 (Aggregste) Cose: 0 % (Repsrtition Streams) et 0 % {Distribute Streams) [Measurements] . [PK_Measurement £s]
1 e : : Cost: 0 & - Cost: 0 % : Cost: 0 & Cost: 0 &
y 32 ‘5:: I)! A (¥
B LPt :t = 3t th B B
Darallelism Nested Loops Stream Aggregate Parallelism Stream kggregate Sert Parallelism Cangrate Seal
(Repartition Streams) (Inner Join) (kggragata) {Reparrition Streams) (Aggragata) (Distinct Sort) (Repartition Streams) '";H:_ 28
Cost: 3 % Cost: 1% Cost: 0 % Cost: 0 % Cost: 0 % Cost: 0 % Cast: 0 % -
b
)
at 13

Clustered Index Seek (Clustered)
[Calendar] . [PK_Calendar] [C]
Cost: 2 %

For more information, see
https.//docs. microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans ?view=sql-
server-ver15

PostgreSQL Usage

When using the EXPLAIN command, PostgreSQL will generate the estimated execution plan for actions, such as
SELECT, INSERT, UPDATE and DELETE. EXPLAIN builds a structured tree of plan nodes representing the dif-
ferent actions taken (the sign “->” represents a root line in the PostgreSQL execution plan). In addition, the
EXPLAIN statement will provide statistical information regarding each action, such as cost, rows, time and loops.

When using the EXPLAIN command as part of a SQL statement, the statement will not execute, and the exe-
cution plan will be an estimation. By using the EXPLAIN ANALYZE command, the statement will execute in addi-
tion to displaying the execution plan.

- 336 -

https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans

aws

EXPLAIN [(option value[, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option and values can be one of:

ANALYZE [boolean]
VERBOSE [boolean]
COSTS [boolean]
BUFFERS [boolean]
TIMING [boolean]
SUMMARY [boolean] (since PostgreSQL 10)

FORMAT { TEXT | XML | JSON | YAML }

By default, planning and execution time are displayed when using EXPLAIN ANALYZE, but not in other cases. A
new option "SUMMARY" allows explicit control of this information. Use SUMMARY to include planning and exe-
cution time metrics in your output.

PostgreSQL provides configurations options that will cancel SQL statements running longer than provided time
limit. To use this option, you can set the statement_timeout instance-level parameter.
If value is specified without units, it is taken as milliseconds. A value of zero (the default) disables the timeout.

Third-party connection pooler solutions like Pgbouncer and PgPool build on that and allow more flexibility in con-
trolling how long connection to DB can run, be in idle state etc.

The Aurora PostgreSQL Query Plan Management (QPM) feature solves the problem of plan instability by allow-
ing database users to maintain stable, yet optimal, performance for a set of managed SQL statements. QPM
primarily serves two main objectives:

Plan Stability. QPM prevents plan regression and improves plan stability when any of the above changes occur in
the system.

Plan Adaptability. QPM automatically detects new minimum-cost plans and controls when new plans may be
used and adapts to the changes.

The quality and consistency of query optimization have a major impact on the performance and stability of any
relational database management system (RDBMS). Query optimizers create a query execution plan fora SQL
statement at a specific point in time. As conditions change, the optimizer might pick a different plan that makes per-
formance better or worse. In some cases, a number of changes can all cause the query optimizer to choose a dif-
ferent plan and lead to performance regression. These changes include changes in statistics, constraints,
environment settings, query parameter bindings, and software upgrades. Regression is a major concern for high-
performance applications.

With query plan management, you can control execution plans for a set of statements that you want to manage.
You can do the following:

« Improve plan stability by forcing the optimizer to choose from a small number of known, good plans.
« Optimize plans centrally and then distribute the best plans globally.

« Identify indexes that aren't used and assess the impact of creating or dropping an index.

- 337 -

aws

« Automatically detect a new minimum-cost plan discovered by the optimizer.

« Try new optimizer features with less risk, because you can choose to approve only the plan changes that
improve performance.

1. Displaying the execution plan of a SQL statement using the EXPLAIN command:

EXPLAIN
SELECT EMPLOYEE ID, LAST NAME, FIRST NAME FROM EMPLOYEES
WHERE LAST NAME='King' AND FIRST NAME='Steven';

Index Scan using idx _emp name on employees (cost=0.14..8.16 rows=1 width=18)
Index Cond: (((last name)::text = 'King'::text) AND ((first name) ::text =

'Steven'::text))

(2 rows)

2. Running the same statement with the ANALYZE keyword:

EXPLAIN ANALYZE
SELECT EMPLOYEE ID, LAST NAME, FIRST NAME FROM EMPLOYEES
WHERE LAST NAME='King' AND FIRST NAME='Steven';

Seqg Scan on employees (cost=0.00..3.60 rows=1l width=18) (actual
time=0.012..0.024 rows=1 loops=1)
Filter: (((last name)::text = 'King'::text) AND ((first name) ::text =
'Steven'::text))
Rows Removed by Filter: 106
Planning time: 0.073 ms
Execution time: 0.037 ms
(5 rows)

By adding the ANALYZE keyword and executing the statement, we get additional information in addition to the
execution plan.

3. Viewing a PostgreSQL execution plan showing a FULL TABLE SCAN:

EXPLAIN ANALYZE
SELECT EMPLOYEE ID, LAST NAME, FIRST NAME FROM EMPLOYEES
WHERE SALARY > 10000;

Seq Scan on employees (cost=0.00..3.34 rows=15 width=18) (actual time=0.012..0.036
rows=15 loops=1)
Filter: (salary > '10000'::numeric)
Rows Removed by Filter: 92
Planning time: 0.069 ms
Execution time: 0.052 ms
(5 rows)

- 338 -

aws

PostgreSQL can perform several scan types for processing and retrieving data from tables including sequential
scans, index scans, and bitmap index scans. The sequential scan (“Seq Scan”) is PostgreSQL equivalent for
SQL Server “Table Scan” (full table scan).

For additional information see:https.//www.postgresgl.org/docs/13/static/sql-explain.htm|

SQL Server Query Hints and Plan Guides vs.
PostgreSQL DB Query Planning

Feature Com- SCT/DMS Auto- SCT Action
patibility mation Level Code Index

Key Differences

ss=== |NA N/A Very limited set of hints - Index hints and optim-
=== izer hints as comments

Syntax differences

SQL Server Usage

SQL Server hints are instructions that override automatic choices made by the query processor for DML and
DQL statements. The term hintis misleading because, in reality, it forces an override to any other choice of exe-
cution plan.

JOIN Hints

LOOP, HASH, MERGE, and REMOTE hints can be explicitly added to a JOIN. For example, ... Table1
INNER LOOP JOIN Table2 ON These hints force the optimizer to use Nested Loops, Hash Match, or Merge
physical join algorithms. REMOTE enables processing a join with a remote table on the local server.

Table Hints

Table hints override the default behavior of the query optimizer. Table hints are used to explicitly force a particular
locking strategy or access method for a table operation clause. These hints do not modify the defaults and apply
only for the duration of the DML or DQL statement.

Some common table hints are INDEX = <Index value>, FORCESEEK, NOLOCK, and TABLOCKX.

Query Hints

Query hints affect the entire set of query operators, not just the individual clause in which they appear. Query hints
may be JOIN Hints, Table Hints, or from a set of hints that are only relevant for Query Hints.

Some common table hints include OPTIMIZE FOR, RECOMPILE, FORCE ORDER, FAST <rows>.

Query hints are specified after the query itself following the WITH options clause.

Plan Guides

Plan guides provide similar functionality to query hints in the sense they allow explicit user intervention and control
over query optimizer plan choices. Plan guides can use either query hints or a full fixed, pre-generated plan

-339-

https://www.postgresql.org/docs/13/static/sql-explain.html

aws

attached to a query. The difference between query hints and plan guides is the way they are associated with a
query.

While query or table hints need to be explicitly stated in the query text, they are not an option if you have no control
over the source code generating these queries. If an application uses ad-hoc queries instead of stored pro-
cedures, views, and functions, the only way to affect query plans is to use plan guides. They are often used to mit-
igate performance issues with third-party software

A plan guide consists of the statement whose execution plan needs to be adjusted and either an OPTION clause
that lists the desired query hints or a full XML query plan that is enforced as long it is valid.

Atruntime, SQL Server matches the text of the query specified by the guide and attaches the OPTION hints.
Alternatively, it assigns the provided plan for execution.

SQL Server supports three types of Plan Guides:

« Object Plan Guides target statements that run within the scope of a code object such as a stored pro-
cedure, function, or trigger. If the same statement is found in another context, the plan guide is not be
applied.

« SQL Plan Guides are used for matching general ad-hoc statements not within the scope of code objects.
In this case, any instance of the statement regardless of the originating client is assigned the plan guide.

» Template Plan Guides can be used to abstract statement templates that differ only in parameter values. It
can be used to override the PARAMETERIZATION database option setting for a family of queries.

Query Hints:
Note: The following syntax is for SELECT. Query hints can be used in all DQL and DML statements.

SELECT <statement>

OPTION

(

{ {HASH|ORDER} GROUP

| {CONCAT |HASH|MERGE} UNION

| {LOOP |MERGE | HASH} JOIN

|EXPAND VIEWS

| FAST <Rows>

| FORCE ORDER

| {FORCE | DISABLE} EXTERNALPUSHDOWN
| IGNORE NONCLUSTERED COLUMNSTORE INDEX
| KEEP PLAN

| KEEPFIXED PLAN

IMAX GRANT PERCENT = <Percent>
IMIN GRANT PERCENT = <Percent>
|[MAXDOP <Number of Processors>
|[MAXRECURSION <Number>

|NO PERFORMANCE SPOOL

|OPTIMIZE FOR (@<Variable> {UNKNOWN |= <Value>}[,...])
|OPTIMIZE FOR UNKNOWN

| PARAMETERIZATION {SIMPLE|FORCED}
| RECOMPILE

|ROBUST PLAN

|USE HINT ('<Hint>' [,...1])

|USE PLAN N'<XML Plan>'

-340-

aws

| TABLE HINT (<Object Name> [,<Table Hint>[[,...]])
)

Create a Plan Guide:

EXECUTE sp create plan guide @name = '<Plan Guide Name>'
,@stmt = '<Statement>'
,@type = '<OBJECT|SQL|TEMPLATE>"
,@module or batch = 'Object Name>'|'<Batch Text>'| NULL
, @params = '<Parameter List>'|NULL }
,@hints = 'OPTION (<Query Hints>'|'<XML Plan>'|NULL;
Examples

Limit parallelism for a sales report query.

EXEC sp create plan guide
@name = N'SalesReportPlanGuideMAXDOP',
@stmt = N'SELECT *
FROM dbo.fn SalesReport (GETDATE ())
@type = N'SQL',
@module or batch = NULL,
@params = NULL,
@hints = N'OPTION (MAXDOP 1)°';

Use table and query hints.

SELECT *
FROM MyTablel AS T1
WITH (FORCESCAN)
INNER LOOP JOIN
MyTable2 AS T2
WITH (TABLOCK, HOLDLOCK)
ON T1.Coll = T2.Coll
WHERE T1.Date BETWEEN DATEADD (DAY, -7, GETDATE ()) AND GETDATE ()

For more information, see:

« https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql?view=sqgl-server-ver15
« https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides ?view=sql-server-ver15

PostgreSQL Usage

PostgreSQL does not support database hints to influence the behavior of the query planner, and you cannot influ-
ence how execution plans are generated from within SQL queries. Although database hints are not directly sup-
ported, session parameters (also known as Query Planning Parameters) can influence the behavior of the query
optimizer at the session level.

Example

Configure the query planner to use indexes instead of full table scans (disable SEQSCAN).

-341 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides

aws

SET ENABLE SEQSCAN=FALSE;

Set the query planner’s estimated “cost” of a disk page fetch that is part of a series of sequential fetches (SEQ_
PAGE_COST) and set the planner's estimate of the cost of a non-sequentially-fetched disk page (RANDOM_
PAGE_COST). Reducing the value of RANDOM_PAGE_COST relative to SEQ_PAGE_COST causes the
query planner to prefer index scans, while raising the value makes index scans more “expensive”.

SET SEQ PAGE COST to 4;
SET RANDOM PAGE COST to 1;

Enable or disable the query planner's use of nested-loops when performing joins. While it is impossible to com-
pletely disable the usage of nested-loop joins, setting the ENABLE_NESTLOOP to OFF discourages the query
planner from choosing nested-loop joins compared to alternative join methods.

SET ENABLE NESTLOOP to FALSE;

For additional details, see https.://www.postgresql.org/docs/13/static/runtime-config-query.html

Feature Com- SCT/DMS Automation |SCT Action Code

patibility Level Index Key Differences

N/A N/A Syntax and option differences, similar
functionality

()
(@

—
'

(@
(@

Statistics objects in SQL Server are designed to support SQL Server's cost-based query optimizer. It uses stat-
istics to evaluate the various plan options and choose an optimal plan for optimal query performance.

Statistics are stored as BLOBs in system tables and contain histograms and other statistical information about the
distribution of values in one or more columns. A histogram is created for the first column only and samples the
occurrence frequency of distinct values. Statistics and histograms are collected by either scanning the entire table
or by sampling only a percentage of the rows.

You can view Statistics manually using the DBCC SHOW_STATISTICS statement or the more recent sys.dm_
db_stats_properties and sys.dm_db_stats_histogram system views.

SQL Server provides the capability to create filtered statistics containing a WHERE predicate. Filtered statistics
are useful for optimizing histogram granularity by eliminating rows whose values are of less interest, for example
NULLs.

SQL Server can manage the collection and refresh of statistics automatically (the default). Use the AUTO_
CREATE_STATISTICS and AUTO_UPDATE_STATISTICS database options to change the defaults.

When a query is submitted with AUTO_CREATE_STATISTICS on and the query optimizer may benefit from a
statistics that do not yet exist, SQL Server creates the statistics automatically. You can use the AUTO_UPDATE_
STATISTICS_ASYNC database property to set new statistics creation to occur immediately (causing queries to

-342-

https://www.postgresql.org/docs/13/static/runtime-config-query.html

aws

wait) or to run asynchronously. When run asynchronously, the triggering execution cannot benefit from optim-
izations the optimizer may derive from it.

After creation of a new statistics object, either automatically or explicitly using the CREATE STATISTICS state-
ment, the refresh of the statistics is controlled by the AUTO_UPDATE_STATISTICS database option. When set
to ON, statistics are recalculated when they are stale, which happens when significant data modifications have
occurred since the last refresh.

Syntax

CREATE STATISTICS <Statistics Name>
ON <Table Name> (<Column> [,...])
[WHERE <Filter Predicate>]

[WITH <Statistics Options>;

Examples

Create new statistics on multiple columns. Set to use a full scan and to not refresh.

CREATE STATISTICS MyStatistics
ON MyTable (Coll, Col2)
WITH FULLSCAN, NORECOMPUTE;

Update statistics with a 50% sampling rate.

UPDATE STATISTICS MyTable (MyStatistics)
WITH SAMPLE 50 PERCENT;

View the statistics histogram and data.

DBCC SHOW_STATISTICS ('MyTable', 'MyStatistics');

Turn off automatic statistics creation for a database.

ALTER DATABASE MyDB SET AUTO CREATE STATS OFF;

For more information, see:

« https.//docs. microsoft.com/en-us/sql/relational-databases/statistics/statistics ?view=sql-server-ver15

« https.//docs. microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql ?view=sql-server-ver15

« https.//docs. microsoft.com/en-us/sql/t-sqgl/database-console-commands/dbcc-show-statistics-transact-sql ?view-
w=sqgl-server-ver15

PostgreSQL Usage

Use the ANALYZE command to collect statistics about a database, a table, or a specific table column. The Post-
greSQL ANALYZE command collects table statistics that support the generation of efficient query execution
plans by the query planner.

-343-

https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql

aws

« Histograms: ANALYZE collects statistics on table column values and creates a histogram of the approx-
imate data distribution in each column.

» Pages and Rows: ANALYZE collects statistics on the number of database pages and rows from which
each table is comprised.

» Data Sampling: For large tables, the ANALYZE command takes random samples of values rather than
examining each row. This allows the ANALYZE command to scan very large tables in a relatively small
amount of time.

« Statistic Collection Granularity: Executing the ANALYZE command without parameters instructs Post-
greSQL to examine every table in the current schema. Supplying the table name or column name to
ANALYZE instructs the database to examine a specific table or table column.

By default, PostgreSQL is configured with an autovacuum daemon which automates the execution of statistics
collection via the ANALYZE commands (in addition to automation of the VACUUM command). The autovacuum
daemon scans for tables that show signs of large modifications in data to collect the current statistics. Auto-
vacuum is controlled by several parameters.

Individual tables have several storage parameters which can trigger autovacuum process sooner or later. These
parameters, like autovacuum_enabled, autovacuum_vacuum_threshold and others can be set or changed using
CREATE TABLE or ALTER TABLE statements.

ALTER TABLE custom autovaccum SET (autovacuum enabled = true, autovacuum vacuum cost
delay = 10ms, autovacuum vacuum scale factor = 0.01, autovacuum analyze scale factor =
0.005);

The command above will enable autovaccum for the custom_autovaccum table and will specify the autovacuum
process to sleep for 10 milliseconds each run.

It will also specify a 1% of the table size to be added to autovacuum_vacuum_threshold and 0.5% of the table size
to be added to autovacuum_analyze_threshold when deciding whether to trigger a VACUUM

For additional details, see https://www.postgresgl.org/docs/13/static/runtime-config-autovacuum.html

PostgreSQL allows collecting statistics on-demand using the ANALYZE command at the database level, table-
level, or table column-level.

o ANALYZE on indexes is not currently supported.
o ANALYZE requires only a read-lock on the target table. It can run in parallel with other activity on the table.

« Forlarge tables, ANALYZE takes a random sample of the table contents. It is configured via the show
default_statistics_target parameter. The default value is 100 entries. Raising the limit might allow more
accurate planner estimates to be made at the price of consuming more space in the pg_statistic table.

Since PostgreSQL 10, there is a new command "CREATE STATISTICS", which will create a new extended stat-
istics object tracking data about the specified table.

The STATISTICS object will tell the server to collect more detailed statistics.

Gather statistics for the entire database.

-344 -

https://www.postgresql.org/docs/13/static/runtime-config-autovacuum.html

aws

ANALYZE;

Gather statistics for a specific table. The VERBOSE keyword displays progress.

ANALYZE VERBOSE EMPLOYEES;
Gather statistics for a specific column.

ANALYZE EMPLOYEES (HIRE DATE) ;

Specify the default_statistics_target parameter for an individual table column and reset it back to default.
ALTER TABLE EMPLOYEES ALTER COLUMN SALARY SET STATISTICS 150;

ALTER TABLE EMPLOYEES ALTER COLUMN SALARY SET STATISTICS -1;

Larger values increase the time needed to complete an ANALYZE, but improve the quality of the collected plan-
ner's statistics, which can potentially lead to better execution plans.

View the current (session / global) default_statistics_target, modify it to 150, and analyze the EMPLOYEES table:
SHOW default statistics_ target ;

SET default statistics target to 150;
ANALYZE EMPLOYEES ;

View the last time statistics were collected for a table.

select relname, last analyze from pg stat all tables;

Feature SQL Server PostgreSQL

Analyze a specific data- | CREATE STATISTICS MyStatistics ANALYZE EMPLOYEES;

base table ON MyTable (Col1, Col2)

Analyze a database UPDATE STATISTICS MyTable(MyStatistics) | Configure via number of entries for
table while only WITH SAMPLE 50 PERCENT; the table:

sampling certain rows
SET default_statistics_target to

150;

ANALYZE EMPLOYEES;
View last time statistics | DBCC SHOW_STATISTICS ('MyT- select relname, last_analyze from
were collected able','MyStatistics'); pg_stat_all_tables;

For additional information, see:

» https://www.postgresql.org/docs/13/static/sqgl-analyze.html|

o https.:.//www.postgresql.org/docs/13/static/routine-vacuuming. htmi#AUTOVACUUM

- 345 -

https://www.postgresql.org/docs/13/static/sql-analyze.html
https://www.postgresql.org/docs/13/static/routine-vacuuming.html#AUTOVACUUM

aws

N

Physical Storage

SQL Server Columnstore Index vs.
PostgreSQL Columnstore

oaaoa N/A Aurora PostgreSQL offers no com-

parable feature

([
([
([
((
((

SQL Server Usage

SQL Server provides Columnstore Indexes that use column-based data storage to compress data and improve
query performance in data warehouses. Columnstore indexes are the preferred data storage format for data
warehousing and analytic workloads. As a best practice, use Columnstore indexes with fact tables and large
dimension workloads.

Examples

Create a table with a columnar store index.

CREATE TABLE products (ID [int] NOT NULL, OrderDate [int] NOT NULL, ShipDate [int] NOT
NULL) ;
GO

CREATE CLUSTERED COLUMNSTORE INDEX cci Tl ON products;
GO

For more information, see :
https://docs. microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview ?view=sql-server-ver15

-346-

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-2017

aws

PostgreSQL Usage

Amazon Aurora PostgreSQL does not currently provide a directly comparable alternative for SQL Server's
Columstore Index.

SQL Server Indexed Views vs.
PostgreSQL Materialized Views

Feature Com- SCT/DMS Auto- |SCT Action Code Kev Differences

patibility mation Level Index y
A= N/A Different paradigm and syntax will require
- = = == aaaaa rewriting the application

SQL Server Usage

The firstindex created on a view must be a clustered index. Subsequent indexes can be non-clustered indexes.
For more information about clustered and non-clustered indexes, see:
https://docs.microsoft.com/en-us/sgl/relational-databases/indexes/clustered-and-nonclustered-indexes-
described?view=sqgl-server-ver15

Before creating an index on a view, the following requirements must be met:

« The WITH SCHEMABINDING option must be used when creating the view.

« Verify the SET options are correct for all existing tables referenced in the view and for the session (the the
link at the end of this section for required values).

o Ensure that a clustered index on the view is exists.

Note: Indexed views cannot be used with temporal queries (FOR SYSTEM_TIME).

Examples

Set the required SET options, create a view (with the WITH SCHEMABINDING option), and create an index on
this view.

SET NUMERIC ROUNDABORT OFF;

SET ANSI PADDING, ANSI WARNINGS, CONCAT NULL YIELDS NULL, ARITHABORT,
QUOTED IDENTIFIER, ANSI NULLS ON;

GO

CREATE VIEW Sales.Ord_view
WITH SCHEMABINDING
AS
SELECT SUM(Price*Qty* (1.00-Discount)) AS Revenue,
OrdTime, ID, COUNT BIG(*) AS COUNT
FROM Sales.OrderDetail AS ordet, Sales.OrderHeader AS ordhead
WHERE ordet.SalesOrderID = ordhead.SalesOrderID
GROUP BY OrdTime, ID;
GO

-347 -

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-2017

aws

CREATE UNIQUE CLUSTERED INDEX IDX_Vl
ON Sales.Ord view (OrdTime, ID);
GO

For more information, see :
https.//docs. microsoft.com/en-us/sql/relational-databases/views/create-indexed-views ?view=sgl-server-ver15

PostgreSQL Usage

PostgreSQL does not support view indexes, but does provide similar functionality with Materialized Views. Quer-
ies associated with Materialized Views are executed and the view data is populated when the REFRESH com-
mand is issued.

The PostgreSQL implementation of Materialized Views has three primary limitations:

» PostgreSQL Materialized Views may be refreshed either manually or using a job running the REFRESH
MATERIALIZED VIEW command. Automatic refresh of Materialized Views require the creation of a trig-
ger.

» PostgreSQL Materialized Views only support complete (full) refresh.

« DML on Materialized Views is not supported.

In some cases, when the tables are big, full REFRESH can cause performance issues, in this case, triggers can
be used to sync between one table to the new table (the new table can be used as a view) that can indexed.

Examples

Create a Materialized View named sales_summary using the sales table as the source.

CREATE MATERIALIZED VIEW sales summary AS

SELECT seller no,sale date,sum(sale amt) ::numeric(10,2) as sales amt
FROM sales

WHERE sale date < CURRENT DATE

GROUP BY seller no, sale date

ORDER BY seller no, sale date;

Execute a manual refresh of the Materialized View:

REFRESH MATERIALIZED VIEW sales summary;
Note: The Materialized View data is not refreshed automatically if changes occur to its underlying

tables. For automatic refresh of materialized view data, a trigger on the underlying tables must be cre-
ated.

Creating a Materialized View

When you create a Materialized View in PostgreSQL, it uses a regular database table underneath. You can cre-
ate database indexes on the Materialized View directly and improve performance of queries that access the
Materialized View.

-348-

https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?view=sql-server-2017

aws

Create an index on the sellerno and sale_date columns of the sales_summary Materialized View.

CREATE UNIQUE INDEX sales summary seller
ON sales summary (seller no, sale date);

Indexed views

Materialized view

Create Mater{ SET NUMERIC_ROUNDABORT OFF;
ialized View |SET ANSI_PADDING, ANSI_
WARNINGS, CONCAT_NULL_
YIELDS_NULL, ARITHABORT,
QUOTED_IDENTIFIER, ANSI_NULLS
ON; GO

CREATE VIEW Sales.Ord_view WITH
SCHEMABINDING AS SELECT SUM
(Price*Qty*(1.00-Discount)) AS Rev-
enue, OrdTime, ID, COUNT_BIG(*) AS
COUNT FROM Sales.OrderDetail AS
ordet, Sales.OrderHeader AS ordhead
WHERE ordet.SalesOrderlID = ord-
head.SalesOrderID GROUP BY
OrdTime, ID; GO

CREATE UNIQUE CLUSTERED
INDEXIDX_ V1 ON Sales.Ord_view
(OrdTime, ID); GO

CREATE MATERIALIZED VIEW mv1 AS SELECT
* FROM employees;

Indexed Automatic
refreshed

Manual. You can automate refreshes using triggers:

Create atrigger that initiates a refresh after every
DML command on the underlying tables:

CREATE OR REPLACE FUNCTION
refresh_mv1()

returns trigger language plpgsql as

$$ begin

refresh materialized view mv1;

return null;

end $$;

Create trigger refresh_ mv1 after insert, update,
delete or truncate on employees for each statement
execute procedure refresh_mv1();

DML Supported

Not Supported

For more details, see: https://www.postgresgl.org/docs/13/static/rules-materializedviews. htm

-349 -

https://www.postgresql.org/docs/13/static/rules-materializedviews.htm

aws

Feature Com- SCT/DMS Auto- |SCT Action Code

Key Differences

patibility mation Level Index
sssss= Ooooo SCT Action Codes - | Does not support LEFT partition or foreign keys

Partitions referencing partitioned tables

SQL Server provides a logical and physical framework for partitioning table and index data. SQL Server 2017 sup-
ports up to 15,000 partitions.

Partitioning separates data into logical units that can be stored in more than one file group. SQL Server par-
titioning is horizontal, where data sets of rows are mapped to individual partitions. A partitioned table or index is a
single object and must reside in a single schema within a single database. Objects composed of disjointed par-
titions is not allowed.

AllDQL and DML operations are partition agnostic except for the special predicate $partition, which can be used
for explicit partition elimination.

Partitioning is typically needed for very large tables to address the following management and performance chal-
lenges:

Deleting or inserting large amounts of data in a single operation with partition switching instead of individual
row processing while maintaining logical consistency.

Maintenance operations can be split and customized per partition. For example, older data partitions can
be compressed and more active partitions can be rebuilt or reorganized more frequently.

Partitioned tables may use internal query optimization techniques such as collocated and parallel par-
titioned joins.

Physical storage performance can be optimized by distributing 1O across partitions and physical storage
channels.

Concurrency improvements due to the engine's ability to escalate locks to the partition level rather than the
whole table.

Partitioning in SQL Server uses the following three objects:

Partitioning Column: A Partitioning column is the column (or columns) used by the partition function to par-
tition the table or index. The value of this column determines the logical partition to which it belongs. You
can use computed columns in a partition function as long as they are explicity PERSISTED. Partitioning
columns may be any data type that is a valid index column with less than 900 bytes per key except
timestamp and LOB data types.

Partition Function: A Partition function is a database object that defines how the values of the partitioning
columns for individual tables or index rows are mapped to a logical partition. The partition function
describes the partitions for the table or index and their boundaries.

Partition Scheme: A partition scheme is a database object that maps individual logical partitions of a table
or an index to a set of file groups, which in turn consist of physical operating system files. Placing individual
partitions on individual file groups enables backup operations for individual partitions (by backing their asso-
ciated file groups).

- 350 -

Syntax

CREATE PARTITION FUNCTION <Partition Function>(<Data Type>)

AS RANGE [LEFT | RIGHT]
FOR VALUES (<Boundary Value 1>,...)1[;]

CREATE PARTITION SCHEME <Partition Scheme>
AS PARTITION <Partition Function>
[ALL] TO (<File Group> | [PRIMARY] [,...1)1[;]

CREATE TABLE <Table Name> (<Table Definition>)
ON <Partition Schema> (<Partitioning Column>) ;

Examples

Create a partitioned table.

CREATE PARTITION FUNCTION PartitionFunctionl (INT)
AS RANGE LEFT FOR VALUES (1, 1000, 100000);

CREATE PARTITION SCHEME PartitionSchemel
AS PARTITION PartitionFunctionl
ALL TO (PRIMARY) ;

CREATE TABLE PartitionTable (
Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20)

)
ON PartitionSchemel (Coll);

For more information, see

aws

« https://docs.microsoft.com/en-us/sqgl/relational-databases/partitions/partitioned-tables-and-indexes ?view=sql-

server-ver15

« https.//docs. microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql ?view=sql-server-ver15

« https.//docs. microsoft.com/en-us/sql/t-sqgl/statements/create-partition-scheme-transact-sql?view=sql-server-ver15

« https.//docs. microsoft.com/en-us/sql/t-sqgl/statements/create-partition-function-transact-sql?view=sql-server-ver15

PostgreSQL Usage

Starting with PostgreSQL 10, there is an equivalent option to the SQL Server Partitions when using RANGE or

LIST partitions. Support for HASH partitions is expected to be included in PostgreSQL 11.

Prior to PostgreSQL 10, the table partitioning mechanism in PostgreSQL differed from SQL Server. Partitioning
in PostgreSQL was implemented using “table inheritance”. Each table partition was represented by a child table
which was referenced to a single parent table. The parent table remained empty and was only used to represent

the entire table data set (as a meta-data dictionary and as a query source).

In PostgreSQL 10, you still need to create the partition tables manually, but you do not need to create triggers or

functions to redirect data to the right partition.

-351 -

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-function-transact-sql

aws

Some of the Partitioning management operations are performed directly on the sub-partitions (sub-tables).
Querying can be performed directly on the partitioned table itself.

Starting with PostgreSQL 11 following features were added:

For partitioned tables, a default partition can now be created that will store data which can't be redirected to
any other explicit partitions

In addition to partitioning by ranges and lists, tables can now be partitioned by a hashed key.

When UPDATE changes values in a column that's used as partition key in partitioned table, data is moved
to proper partitions.

An index can now be created on a partitioned table. Corresponding indexes will be automatically created
on individual partitions.

Foreign keys can now be created on a partitioned table. Corresponding foreign key constraints will be
propagated to individual partitions

Triggers FOR EACH ROW can now be created on a partitioned table. Corresponding triggers will be auto-
matically created on individual partitions as well.

When attaching or detaching new partition to a partitioned table with the foreign key, foreign key enforce-
ment triggers are correctly propagated to a new partition.

For more information, see:
https.//www.postgresgl.org/docs/13/static/ddl-inherit. htm

https.//www.postgresql.org/docs/13/ddl-partitioning. html

- 352 -

https://www.postgresql.org/docs/13/static/ddl-inherit.html
https://www.postgresql.org/docs/13/ddl-partitioning.html

aws

Using The Partition Mechanism

List Partition
CREATE TABLE emps (
emp_id SERTAL NOT NULL,
emp_name VARCHAR (30) NOT NULL)

PARTITION BY LIST (left (lower (emp name), 1));
CREATE TABLE emp_abc
PARTITION OF emps (
CONSTRAINT emp id nonzero CHECK (emp id != 0)
) FOR VALUES IN ('a', 'b', 'c');
CREATE TABLE emp def
PARTITION OF emps (
CONSTRAINT emp id nonzero CHECK (emp id != 0)
) FOR VALUES IN ('d', 'e', 'f');
INSERT INTO emps VALUES (DEFAULT, 'Andrew');
row inserted.
INSERT INTO emps VALUES (DEFAULT, 'Chris');
row inserted.
INSERT INTO emps VALUES (DEFAULT, 'Frank');
row inserted.

INSERT INTO emps VALUES (DEFAULT, 'Pablo');

SQL Error [23514]: ERROR: no partition of relation "emps" found for row
Detail: Partition key of the failing row contains ("left" (lower (emp name::text), 1))

= (p).

Note: To prevent the above error, ensure that all partitions exist for all possible values in the column that
partitions the table. The default partition feature was added in PostgreSQL 11.

Note: Use the MAXVALUE and MINVALUE in your FROM/TO clause. This can help you get all values
with RANGE partitions without the risk of creating new partitions.

- 353 -

Range Partition

CREATE TABLE sales (

saledate DATE NOT NULL,

item id INT,
price FLOAT

) PARTITION BY RANGE (saledate);

CREATE TABLE sales 2018qgl

PARTITION OF sales (
price DEFAULT O

) FOR VALUES FROM ('2018-01-01'"') TO ('2018-03-31")

CREATE TABLE sales 2018g2

PARTITION OF sales (
price DEFAULT O

) FOR VALUES FROM ('2018-04-01'"') TO ('2018-06-30")

CREATE TABLE sales 2018g3

PARTITION OF sales (
price DEFAULT O

) FOR VALUES FROM ('2018-07-01'"') TO ('2018-09-30")

INSERT INTO sales VALUES

row inserted.

INSERT INTO sales VALUES

row inserted.

INSERT INTO sales VALUES

row inserted.

(('2018-01-08"),3121121,

(('2018-04-20"'),4378623) ;

(('2018-08-13"),3278621,

’

’

’

100) ;

200) ;

aws

When creating a table with PARTITION OF clause, you can still use the "PARTITION BY" clause with it. Using
the "PARTITION BY" clause will create a sub-partition.

A sub-partition can be the same type as the partition table it is related to, or another partition type.

-354 -

aws

List Combined With Range Partition

This is an example of creating a LIST partition and sub partitions by RANGE.

CREATE TABLE salers (

emp id serial not null,

emp name varchar (30) not null,
sales in usd int not null,

sale date date not null

) PARTITION BY LIST (left (lower (emp name), 1));

CREATE TABLE emp_ abc
PARTITION OF salers (
CONSTRAINT emp id nonzero CHECK (emp id != 0)
) FOR VALUES IN ('a', 'b', 'c') PARTITION BY RANGE (sale_date);

CREATE TABLE emp def
PARTITION OF salers (
CONSTRAINT emp id nonzero CHECK (emp id != 0)
) FOR VALUES IN ('d', 'e', 'f') PARTITION BY RANGE (sale date);

CREATE TABLE sales abc 2018ql
PARTITION OF emp abc (
sales _in usd DEFAULT 0
) FOR VALUES FROM ('2018-01-01') TO ('2018-03-31");

CREATE TABLE sales abc 2018g2
PARTITION OF emp abc (
sales in usd DEFAULT O
) FOR VALUES FROM ('2018-04-01') TO ('2018-06-30");

CREATE TABLE sales abc 2018g3
PARTITION OF emp abc (
sales in usd DEFAULT O
) FOR VALUES FROM ('2018-07-01") TO ('2018-09-30"');

CREATE TABLE sales def 2018gl
PARTITION OF emp def (
sales in usd DEFAULT 0
) FOR VALUES FROM ('2018-01-01'") TO ('2018-03-31"'");

CREATE TABLE sales def 2018g2
PARTITION OF emp def (
sales in usd DEFAULT O
) FOR VALUES FROM ('2018-04-01'"') TO ('2018-06-30");

CREATE TABLE sales def 2018g3
PARTITION OF emp_def (
sales _in usd DEFAULT O
) FOR VALUES FROM ('2018-07-01') TO ('2018-09-30"');

- 355 -

aws

Implementing List “Table Partitioning” with inheritance
tables

For older PostgreSQL versions, follow these steps to implement list table partitioning using inherited tables:

1. Create a parent table (“master table”) from which all child tables (“partitions”) will inherit.

2. Create child tables that inherit from the parent table (this is similar to Table Partitions). The child tables
should have an identical structure to the parent table.

3. Create Indexes on each child table. Optionally, add constraints to define allowed values in each table (for
example, primary keys or check constraints).

4. Create a database trigger to redirect data inserted into the parent table to the appropriate child table.
5. Ensure the PostgreSQL constraint_exclusion parameter is enabled and set to partition. This parameter
ensures the queries are optimized for working with table partitions.

show constraint exclusion;

constraint exclusion

partition

For additional information on PostgreSQL constraint_exclusion parameter:
https.//www.postgresqgl.org/docs/13/static/runtime-config-query. htmi#GUC-CONSTRAINT-EXCLUSION

PostgreSQL 9.6 does not support “declarative partitioning”, nor several of the table partitioning features available
in SQL Server.

Note:

* PostgreSQL 9.6 Table Partitioning does not support the creation of foreign keys on the parent table.
Alternative solutions include application-centric methods such as using triggers/functions or creating
these on the individual tables .

* PostgreSQL does not support SPLIT and EXCHANGE of table partitions. For these actions, you will
need to plan your data migrations manually (between tables) to re-place the data into the right partition.

- 356 -

https://www.postgresql.org/docs/10/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION

aws

Examples

Create a PostgreSQL “list-partitioned table”:

Create the parent table.

CREATE TABLE SYSTEM LOGS
(EVENT_ NO NUMERIC NOT NULL,
EVENT DATE DATE NOT NULL,
EVENT STR VARCHAR (500) ,
ERROR CODE VARCHAR (10)) ;

Create child tables (“partitions”) with check constraints.

CREATE TABLE SYSTEM LOGS WARNING (
CHECK (ERROR CODE IN('errl', 'err2', 'err3'))) INHERITS (SYSTEM LOGS) ;

CREATE TABLE SYSTEM LOGS CRITICAL (
CHECK (ERROR CODE IN('err4', 'err5', 'err6'))) INHERITS (SYSTEM LOGS) ;

Create indexes on each of the child tables (“partitions”).
CREATE INDEX IDX SYSTEM LOGS WARNING ON SYSTEM LOGS WARNING (ERROR CODE) ;
CREATE INDEX IDX SYSTEM LOGS CRITICAL ON SYSTEM LOGS CRITICAL (ERROR CODE) ;

Create a function to redirect data inserted into the Parent Table.

CREATE OR REPLACE FUNCTION SYSTEM LOGS ERR CODE_ INS ()
RETURNS TRIGGER AS

$S
BEGIN
IF (NEW.ERROR CODE IN('errl', 'err2', 'err3')) THEN
INSERT INTO SYSTEM LOGS WARNING VALUES (NEW.*);
ELSIF (NEW.ERROR CODE IN('errd', 'err5', 'erro')) THEN
INSERT INTO SYSTEM LOGS CRITICAL VALUES (NEW.¥*);
ELSE
RAISE EXCEPTION 'Value out of range, check SYSTEM LOGS ERR CODE INS () Function!';
END IF;
RETURN NULL;
END;
$S

LANGUAGE plpgsql;

Attach the trigger function created above to log to the table.

CREATE TRIGGER SYSTEM LOGS ERR TRIG
BEFORE INSERT ON SYSTEM LOGS
FOR EACH ROW EXECUTE PROCEDURE SYSTEM LOGS ERR CODE INS () ;

Insert data directly into the parent table.

INSERT INTO SYSTEM LOGS VALUES (1, '2015-05-15', 'a...', 'errl');
INSERT INTO SYSTEM LOGS VALUES (2, '2016-06-16', 'b...', 'err3');
INSERT INTO SYSTEM LOGS VALUES (3, '2017-07-17', 'c...', 'err6');

-357 -

View results from across all the different child tables.

SELECT * FROM SYSTEM LOGS;

event no | event date | event str
__________ o
1 | 2015-05-15 | a.
2 | 2016-06-16 | b.
3 | 2017-07-17 | c.

SELECT * FROM SYSTEM LOGS WARNING;

event no | event date | event str | error code
—————————— e e
1 | 2015-05-15 | a | errl
2 | 2016-06-16 | b | err3

SELECT * FROM SYSTEM LOGS CRITICAL;
event no | event date | event str | error cod
—————————— e
3] 2017-07-17 | c... | erro

Create a PostgreSQL “range-partitioned table”:

Create the parent table.

CREATE TABLE SYSTEM LOGS
(EVENT NO NUMERIC NOT NULL,
EVENT DATE DATE NOT NULL,
EVENT STR VARCHAR (500)) ;

Create the child tables (“partitions”) with check constraints.

aws

CREATE TABLE SYSTEM LOGS 2015 (CHECK (EVENT DATE >= DATE '2015-01-01' AND EVENT DATE <

DATE '2016- 01-01")) INHERITS (SYSTEM LOGS);

CREATE TABLE SYSTEM LOGS 2016 (CHECK (EVENT DATE >= DATE '2016-01-01"

DATE '2017-01-01')) INHERITS (SYSTEM LOGS) ;

AND EVENT DATE <

CREATE TABLE SYSTEM LOGS 2017 (CHECK (EVENT DATE >= DATE '2017-01-01' AND EVENT DATE

<= DATE '2017-12-31")) INHERITS (SYSTEM LOGS) ;

Create indexes on each child table (“partitions”).

CREATE INDEX IDX SYSTEM LOGS 2015 ON SYSTEM LOGS_ 2015 (EVENT DATE) ;
CREATE INDEX IDX_ SYSTEM LOGS_ 2016 ON SYSTEM LOGS_ 2016 (EVENT DATE) ;
CREATE INDEX IDX_ SYSTEM LOGS_ 2017 ON SYSTEM LOGS_ 2017 (EVENT DATE) ;

Create a function to redirect data inserted into the parent table.

CREATE OR REPLACE FUNCTION SYSTEM LOGS INS ()
RETURNS TRIGGER AS
$9
BEGIN
IF (NEW.EVENT DATE >= DATE '2015-01-01' AND
NEW.EVENT DATE < DATE '2016-01-01') THEN
INSERT INTO SYSTEM LOGS 2015 VALUES (NEW.*);
ELSIF (NEW.EVENT DATE >= DATE '2016-01-01"' AND
NEW.EVENT DATE < DATE '2017-01-01'") THEN

- 358 -

aws

INSERT INTO SYSTEM LOGS 2016 VALUES (NEW.*);
ELSIF (NEW.EVENT_DATE >= DATE '2017-01-01"' AND
NEW.EVENT DATE <= DATE '2017-12-31"') THEN
INSERT INTO SYSTEM_LOGS_2017 VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Date out of range. check SYSTEM LOGS INS () function!';
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsql;

Attach the trigger function created above to log to the SYSTEM_LOGS table.

CREATE TRIGGER SYSTEM LOGS TRIG BEFORE INSERT ON SYSTEM LOGS
FOR EACH ROW EXECUTE PROCEDURE SYSTEM LOGS INS ();

Insert data directly to the parent table.

INSERT INTO SYSTEM LOGS VALUES (1, '2015-05-15', 'a...'");
INSERT INTO SYSTEM LOGS VALUES (2, '2016-06-16', 'b...");
INSERT INTO SYSTEM LOGS VALUES (3, '2017-07-17', 'c...'");

Test the solution by selecting data from the parent and child tables.

SELECT * FROM SYSTEM LOGS;

event no | event date | event str
__________ o
1 | 2015-05-15 | a.
2 | 2016-06-16 | b..
3 | 2017-07-17 | c.

SELECT * FROM SYSTEM LOGS 2015;
event no | event date | event str
__________ o
1 | 2015-05-15 | a...

Examples of new partitioning features of PostgreSQL 11

Default partitions

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);

CREATE TABLE tst_partl PARTITION OF tst_part FOR VALUES FROM (1) TO (5);

CREATE TABLE tst_part_dflt PARTITION OF tst_part DEFAULT; INSERT INTO tst_part SELECT generate_
series(1,10,1);

SELECT * FROM tst_partil;i

1
2
3
4
4
SELECT * FROM tst_part_dflt;

-359-

aws

Hash partitioning:

CREATE TABLE tst_hash(i INT) PARTITION BY HASH(i);
CREATE TABLE tst_hash_1 PARTITION OF tst_hash FOR VALUES WITH (MODULUS 2, REMAINDER 9);
CREATE TABLE tst_hash_2 PARTITION OF tst_hash FOR VALUES WITH (MODULUS 2, REMAINDER 1);

INSERT INTO tst_hash SELECT generate_series(1,10,1);

SELECT * FROM tst_hash_1;
i

1
2
(2 rows)

SELECT * FROM tst_hash_2;
i

O VOO NOOUV A~ W

Jany

(8 rows)

UPDATE on partition key:

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);

CREATE TABLE tst_partl PARTITION OF tst_part FOR VALUES FROM (1) TO (5);
CREATE TABLE tst_part_dflt PARTITION OF tst_part DEFAULT;

INSERT INTO tst_part SELECT generate_series(1,10,1);

SELECT * FROM tst_partl;
i

1
2
3
4
(4 rows)

SELECT * FROM tst_part_dflt;
i

-360 -

00N OwU

9
10
(6 rows)

UPDATE tst_part SET i=1 WHERE i IN (5,6);

SELECT * FROM tst_part_dflt;
i

7

8

9

10

(4 rows)

SELECT * FROM tst_partil;

[

Index propagation on partitioned tables:

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);

CREATE TABLE tst_partl PARTITION OF tst_part FOR VALUES FROM (1) TO (5);
CREATE TABLE tst_part2 PARTITION OF tst_part FOR VALUES FROM (5) TO (10);
CREATE INDEX tst_part_ind ON tst_part(i);

\d+ tst_part
Partitioned table "public.tst part”

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
———————— e e e e e et T
i | integer | | | | plain |

Partition key: RANGE (i)

Indexes:

"tst_part_ind" btree (i)
Partitions: tst_partl FOR VALUES FROM (1) TO (5),
tst_part2 FOR VALUES FROM (5) TO (10)

\d+ tst_partl
Table "public.tst_partl”
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

i | integer | | | | plain |
Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:
"tst partl i idx" btree (i)
Access method: heap

\d+ tst_part2

-361-

aws

aws

Table "public.tst_part2"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

i | integer | | | | plain |
Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 1@))
Indexes:
"tst_part2_i_idx" btree (i)
Access method: heap

Foerign keys propagation on partitioned tables:

CREATE TABLE tst_ref(i INT PRIMARY KEY);

ALTER TABLE tst_part ADD CONSTRAINT tst_part_fk FOREIGN KEY (i) REFERENCES tst_ref(i);

\d+ tst_part
Partitioned table "public.tst part”

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
———————— e e e e e et T
i | integer | | | | plain |
Partition key: RANGE (i)
Indexes:

"tst_part_ind" btree (i)
Foreign-key constraints:
"tst part fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Partitions: tst_partl FOR VALUES FROM (1) TO (5),
tst_part2 FOR VALUES FROM (5) TO (10)

\d+ tst_partl
Table "public.tst partl”
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

i | integer | | | | plain |
Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:
"tst_partl_i_idx" btree (i)
Foreign-key constraints:
TABLE "tst _part" CONSTRAINT "tst part fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Access method: heap

\d+ tst_part2
Table "public.tst part2"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

i | integer | | | | plain |
Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 10))
Indexes:
"tst_part2_i_idx" btree (i)
Foreign-key constraints:
TABLE "tst_part" CONSTRAINT "tst part fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Access method: heap

Triggers propagation on partitioned tables:

-362 -

aws

CREATE TRIGGER some_trigger AFTER UPDATE ON tst_part FOR EACH ROW EXECUTE FUNCTION some_func();

\d+ tst_part
Partitioned table "public.tst_part”

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
———————— e e e B et T TP S
i | integer | | | | plain |
Partition key: RANGE (i)
Indexes:

"tst_part_ind" btree (i)
Foreign-key constraints:
"tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:
some_trigger AFTER UPDATE ON tst_part FOR EACH ROW EXECUTE FUNCTION some_func()
Partitions: tst_partl FOR VALUES FROM (1) TO (5),
tst_part2 FOR VALUES FROM (5) TO (10)

\d+ tst_partl
Table "public.tst_partil”
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

i | integer | | | | plain |
Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:
"tst_partl_i_idx" btree (i)
Foreign-key constraints:
TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:
some_trigger AFTER UPDATE ON tst_partl FOR EACH ROW EXECUTE FUNCTION some_func()
Access method: heap

\d+ tst_part2
Table "public.tst part2"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

i | integer | | | | plain |
Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 10))
Indexes:
"tst_part2_i_idx" btree (i)
Foreign-key constraints:
TABLE "tst_part" CONSTRAINT "tst part fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:
some_trigger AFTER UPDATE ON tst_part2 FOR EACH ROW EXECUTE FUNCTION some_func()
Access method: heap

-363 -

aws

The following table identifies similarities, differences, and key migration considerations.

Feature

SQL Server

Aurora PostgreSQL

Partition types

RANGE only

RANGE, LIST

Partitioned tables scope

Alltables are partitioned, some have more than
one partition

Alltables are partitioned, some
have more than one partition

Partition boundary dir-
ection

LEFT or RIGHT

RIGHT

Exchange partition

Any partition to any partition

N/A

Partition function

Abstract function object, Independent of individual
column

Abstract function object,
Independent of individual column

Partition scheme

Abstract partition storage mapping object

Abstract partition storage map-
ping object

Limitations on par-
titioned tables

None — all tables are partitioned

Not all commands are com-
patible with table inheritance

For more information, see https.//www.postgresql.org/docs/13/static/ddl-partitioning. html

- 364 -

https://www.postgresql.org/docs/10/static/ddl-partitioning.html

aws

Security

A
SQL Server Column Encryption vs.
PostgreSQL Column Encryption
E:tailta?lri?y Com- E;ZDMS Automation ﬁ‘(g:xAction Code Key Differences
ss=e=e= NA N/A Syntax and option differences, similar
= T T == functionality

SQL Server Usage

SQL Server provides encryption and decryption functions to secure the content of individual columns. The fol-
lowing list identifies common encryption functions:

« EncryptByKey and DecryptByKey

« EncryptByCert and DecryptByCert

« EncryptByPassPhrase and DecryptByPassPhrase
« EncryptByAsymKey and DecryptByAsymKey

You can use these functions anywhere in your code; they are not limited to encrypting table columns. A common
use case is to increase run time security by encrypting of application user security tokens passed as parameters.

These functions follow the general SQL Server encryption hierarchy, which in turn use the Windows Server Data
Protection API.

Symmetric encryption and decryption consume minimal resources and can be used for large data sets.

Note: This section does not cover Transparent Data Encryption (TDE) or AlwaysEncrypted end-to-end
encryption.

Syntax

General syntax for EncryptByKey and DecryptByKey:

- 365 -

aws

EncryptByKey (<key GUID> , { 'text to be encrypted' }, { <use authenticator flag>}, {
<authenticator> });

DecryptByKey ('Encrypted Text' , <use authenticator flag>, { <authenticator>)

Examples

The following example demonstrates how to encrypt an employee Social Security Number:
Create a database master key.

USE MyDatabase;
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = '<MyPassword>"';

Create a certificate and a key.

CREATE CERTIFICATE CertOl
WITH SUBJECT = 'SSN';

CREATE SYMMETRIC KEY SSN_ Key
WITH ALGORITHM = AES 256
ENCRYPTION BY CERTIFICATE CertOl;

Create an employees table.

CREATE TABLE Employees

(
EmployeeID INT PRIMARY KEY,

SSN_encrypted VARBINARY (128) NOT NULL
) ;

Open the symmetric key for encryption.

OPEN SYMMETRIC KEY SSN Key
DECRYPTION BY CERTIFICATE Cert01l;

Insert the encrypted data.

INSERT INTO Employees (EmployeeID, SSN encrypted)
VALUES
(1, EncryptByKey(Key GUID('SSN Key') , '1112223333', 1, HashBytes('SHAl', CONVERT

(VARBINARY, 1)));

SELECT EmployeelD,

CONVERT (CHAR (10) , DecryptByKey (SSN, 1 , HashBytes('SHAl', CONVERT (VARBINARY,
EmployeeID)))) AS SSN
FROM Employees;

EmployeeID SSN_Encrypted SSN

1 0x00F983FF436E32418132. .. 1112223333

- 366 -

aws

For more information, see:

« https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data?view=sql-
server-ver15

« https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy ?view=sql-
server-ver15

PostgreSQL Usage

Aurora PostgreSQL provides encryption and decryption functions similar to SQL Server using the pgcrypto exten-
sion. To use this feature, you must first install the pgcrypto extension.

CREATE EXTENSION pgcrypto;

Aurora PostgreSQL supports many encryption algorithms:

. MD5

« SHA1

o SHA224/256/384/512

» Blowfish

« AES

« Raw encryption

o PGP Symmetric encryption
o PGP Public-Key encryption

This section describes the use of PGP_SYM_ENCRYPT and PGP_SYM_DECRYPT, but there are many more
options available (see at the link and the end of this section).

Syntax

Encrypt columns using PGP_SYM_ENCRYPT.

pgp_sym encrypt (data text, psw text [, options text]) returns bytea
pgp_sym decrypt (msg bytea, psw text [, options text]) returns text

The following example demonstrates how to encrypt an employee's Social Security Number:

Create a users table.

CREATE TABLE users (id SERIAL, name VARCHAR(60), pass TEXT);

Insert the encrypted data.

INSERT INTO users (name, pass) VALUES ('John',PGP_ SYM ENCRYPT ('123456', 'AES KEY'));

Verify the data is encrypted.

- 367 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy

aws

SELECT * FROM users;

id |name |pass

2 |John |\x-
c30d04070302c30d07££8b3bl12f26ad233015a72bab4d3b-
b73£f5a80d5187b1b043149dd9%61da58e76440ca%eb4a5£f7483¢cc8ce957b47e39p0143¢cf4b1192bb39 |

Query using the encryption key.

SELECT name, PGP _SYM DECRYPT (pass::bytea, 'AES KEY') as pass
FROM users WHERE (name LIKE '%John%'):;

name |pass |
————— |=======|
John [123465 |

Update the data.

UPDATE users SET (name, pass) = ('John',6PGP_SYM ENCRYPT ('0000', 'AES KEY')) WHERE
id='2";

SELECT name, PGP _SYM DECRYPT (pass::bytea, 'AES KEY') as pass
FROM users WHERE (name LIKE '%John%'):;

John |0000 |

For more information, see https.:.//www.postgresql.org/docs/13/static/pgcrypto. html

SQL Server Data Control Language vs.
PostgreSQL Data Control Language

Fea-tu..lr.e Com- SCT/DMS Automation SCT Action Code Key Differences

patibility Level Index

sses=e= |NA N/A Similar syntax and similar func-
= = = == tionality

SQL Server Usage

The ANSI standard specifies, and most Relational Database Management Systems (RDBMS) use, GRANT and
REVOKE commands to control permissions.

However, SQL Server also provides a DENY command to explicitly restrict access to a resource. DENY takes
precedence over GRANT and is needed to avoid potentially conflicting permissions for users having multiple
logins. For example, if a user has DENY for a resource through group membership but GRANT access for a per-
sonal login, the user is denied access to that resource.

- 368 -

https://www.postgresql.org/docs/13/static/pgcrypto.html

aws

SQL Server allows granting permissions at multiple levels from lower-level objects such as columns to higher
level objects such as servers. Permissions are categorized for specific services and features such as the service
broker.

Permissions are used in conjunction with database users and roles. See Users and Roles for more details.

Simplified syntax for SQL Server DCL commands:

GRANT { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>
DENY { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>
REVOKE [GRANT OPTION FOR] {[ALL [PRIVILEGES]] |<permission>} [ON <securable>] {

TO | FROM } <principal>

For more information, see
https.//docs. microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine ?view=sql-
server-veris

Aurora PostgreSQL supports the ANSI Data Control Language (DCL) commands GRANT and REVOKE.

Administrators can grant or revoke permissions for individual objects such as a column, a stored function, or a
table. Permissions can be granted to multiple objects using ALL % IN SCHEMA.. % can be TABLES,
SEQUENCES or FUNCTIONS.

Use the following command to grant select on all tables in schema to a specific user.

GRANT SELECT ON ALL TABLES IN SCHEMA <Schema Name> TO <Role Name>;

Aurora PostgreSQL provides a GRANT permission option that is similar to SQL Server's WITH GRANT
OPTION clause. This permission grants a user permission to further grant the same permission to other users.

GRANT EXECUTE

ON FUNCTION demo.Procedurel
TO UserY

WITH GRANT OPTION;

The following table identifies Aurora MyPostgreSQL privileges.

Permissions Useto

SELECT Allows to query rows from table.
INSERT Allows to insert rows into a table.
UPDATE Allows to update rows in table.
DELETE Allows to delete rows from table.
TRUNCATE Allows to truncate a table.

- 369 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine

aws

Permissions Use to

REFERENCES Allows to create a foreign key constraint.

TRIGGER Allows the creation of a trigger on the specified table.

CREATE The purpose of this permission depends on the target object. For more information,
see the links at the end of this section.

CONNECT Allows the role to connect to the specified database.

TEMPORARY / TEMP | Allows creation of temporary tables.

EXECUTE Allow the user to execute a function.

USAGE The purpose of this permission depends on the target object. For more information,
see the links at the end of this section.

ALL/ALL PRIVILEGES |Grantall available privileges.

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }

[, ...] | ALL [PRIVILEGES] }
ON { [TABLE] table name [, ...]
| ALL TABLES IN SCHEMA schema name [, ...] }
TO role specification [, ...] [WITH GRANT OPTION]
GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column name [, ...])
[, ...]1 | ALL [PRIVILEGES] (column name [, ...]) }
ON [TABLE] table name [, ...]
TO role specification [, ...] [WITH GRANT OPTION]
GRANT { { USAGE | SELECT | UPDATE }
[, ...] | ALL [PRIVILEGES] }
ON { SEQUENCE sequence name [, ...]
| ALL SEQUENCES IN SCHEMA schema name [, ...] }
TO role specification [, ...] [WITH GRANT OPTION]
GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
ON DATABASE database name [, ...]
TO role specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL

PRIVILEGES] 1}

ON DOMAIN domain name [, ...]
TO role specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL

PRIVILEGES] }

ON FOREIGN DATA WRAPPER fdw_name [, ...1
TO role specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL

ON FOREIGN SERVER server name [,

PRIVILEGES] }
]

TO role specification [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON { FUNCTION function name ([[argmode] [arg name] arg type [, ...] 1) [,

-]

-370-

aws

ALL FUNCTIONS IN SCHEMA schema name [, ...] }
[, ...] [WITH GRANT OPTION]

TO role specification

ALL [PRIVILEGES] }
...
rov..l

GRANT { USAGE

ON LANGUAGE lang name
TO role specification [WITH GRANT OPTION]

| ALL [PRIVILEGES] }

UPDATE } [, ...]
-]

[

GRANT { { SELECT

ON LARGE OBJECT loid [,
TO role specification WITH GRANT OPTION]

| ALL [PRIVILEGES] }

USAGE } [, ...]
Ly, ...1]
Ly ...1]

GRANT { { CREATE
ON SCHEMA schema name

TO role specification [WITH GRANT OPTION]

GRANT { CREATE ALL [PRIVILEGES] }
ON TABLESPACE tablespace name [, ...]
[WITH GRANT OPTION]

TO role specification [, ...]

GRANT { USAGE | ALL [PRIVILEGES] }

ON TYPE type name [, ...]
TO role specification [, ...] [WITH GRANT OPTION]

where role specification can be:

[GROUP] role name

PUBLIC
CURRENT USER
SESSTION_USER

GRANT role name [, .] TO role name [, .] [WITH ADMIN OPTION]

Examples

Grant SELECT Permission to a user on all tables in the demo database.
GRANT SELECT ON ALL TABLES IN SCHEMA emps TO John;

Revoke EXECUTE permissions from a user on the EmployeeReport stored procedure.

REVOKE EXECUTE ON FUNCTION EmployeeReport FROM Johnj;

For more information, see https.:.//www.postgresql.org/docs/13/static/sql-grant. html|

-371-

https://www.postgresql.org/docs/13/static/sql-grant.html

aws

SQL Server Transparent Data Encryption vs.
PostgreSQL Transparent Data Encryption

Fea-tt.xr.e Com- SCT/DMS Automation |SCT Action Code Key Differences

patibility Level Index

== NA N/A Storage level encryption managed by
= = === Amazon RDS

SQL Server Usage

Transparent Data Encryption (TDE) is an SQL Server feature designed to protect "data at rest" in the event an
attacker obtains the physical media containing database files.

TDE does not require application changes and is completely transparent to users. The storage engine encrypts
and decrypts data on-the-fly. Data is not encrypted while in memory or on the network. TDE can be turned on or
off individually for each database.

TDE encryption uses a Database Encryption Key (DEK) stored in the database boot record, making it available
during database recovery. The DEK is a symmetric key signed with a server certificate from the master system
database.

In many instances, security compliance laws require TDE for data at rest.

Examples

The following example demonstrates how to enable TDE for a database:

Create a master key and certificate.

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'MyPassword';
CREATE CERTIFICATE TDECert WITH SUBJECT = 'TDE Certificate';

Create a database encryption key.

USE MyDatabase;

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES 128

ENCRYPTION BY SERVER CERTIFICATE TDECert;

Enable TDE.

ALTER DATABASE MyDatabase SET ENCRYPTION ONj;

For more information, see
https.//docs. microsoft.com/en-us/sql/relational-databases/security/encryption/trans parent-data-encryption?view=sql-
server-ver1s

-372-

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption

aws

Amazon Aurora PostgreSQL provides the ability to encrypt data at rest (data stored in persistent storage) for new
database instances. When data encryption is enabled, Amazon Relational Database Service (RDS) auto-
matically encrypts the database server storage, automated backups, read replicas, and snapshots using the
AES-256 encryption algorithm.

You can manage the keys used for RDS encrypted instances from the Identity and Access Management (IAM)
console using the AWS Key Management Service (AWS KMS). If you require full control of a key, you must man-
age it yourself. You cannot delete, revoke, or rotate default keys provisioned by AWS KMS.

The following limitations exist for Amazon RDS encrypted instances:

« You can only enable encryption for an Amazon RDS database instance when you create it, not afterward.
Itis possible to encrypt an existing database by creating a snapshot of the database instance and then cre-
ating an encrypted copy of the snapshot. You can restore the database from the encrypted snapshot, see:
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER CopySnapshot.html

Encrypted database instances cannot be modified to disable encryption.

Encrypted Read Replicas must be encrypted with the same key as the source database instance.

An unencrypted backup or snapshot can not be restored to an encrypted database instance.

KMS encryption keys are specific to the region where they are created. Copying an encrypted snapshot
from one region to another requires the KMS key identifier of the destination region.

Note: Disabling the key for an encrypted database instance prevents reading from, or writing to, that
instance. When Amazon RDS encounters a database instance encrypted by a key to which Amazon
RDS does not have access, it puts the database instance into a terminal state. In this state, the data-
base instance is no longer available and the current state of the database can't be recovered. To restore
the database instance, you must re-enable access to the encryption key for Amazon RDS and then
restore the database instance from a backup.

The following walk-through demonstrates how to enable TDE.

In the database settings, enable encryption and choose a master key. You can choose the default key provided
for the account or define a specific key based on an IAM KMS ARN from your account or a different account.

-

Encryption Master key

This is the master key that will be
Encryption used to protect the key used to
encrypt this database volume. You
can select from master keys in
Learn More. your account or type/paste the
ARN of a key from a different
account. You can create a new
master encryption key by going to
Master key info the Encryption Keys tab of the

© Enable Encryption

Disable Encryption

(default) aws/rds v IAM console

-373 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

aws

Create an Encryption Key

To create your own key, browse to the Key Management Service (KMS) and click on "Customer managed keys"
and create a new key.

El“\iVFS Services ¥ Q

Key Management X KMS Customer managed keys
Service (KMS)

Customer managed keys (0) Create key
AWS managed keys

I Customer managed keys I 1 Q

Custom key stores 1 &

Aliases ¥ KeylD ¥ Status Key spec ® Key usage

Empty Resources

Mo resources to display

Choose relevant options and click on “Next”.

Configure key

Step 1 of 5

Key type Help me choose [

© Symmetric Asymmetric
A single encryption key that is used for both encrypt A public and private key pair that can be used for
and decrypt operations encrypt/decrypt or sign/verify operations

¥ Advanced options

Key material origin
Help me choose E

[2

External
Custom key store (CloudHSM)

3
Cancel

Define Alias as the name of the key, add description and click "Next".

-374 -

Add labels

Step 2 of 5

Create alias and description

Enter an alias and a description for this key. You can change the properties of the key at any time. Learn more [}
Alias

db-rds-finance

Description - optional

This encryption key should be used to finance data.

Tags - optional

You can use tags to categorize and identify your CMKs and help you track your AWS costs. When you add tags to
AWS resources, AWS generates a cost allocation report for each tag. Learn more [4

This key has no tags.

Add tag

You can add up to 50 more tags

Cancel Previous

You can skip “Define Key Administrative Permissions” (step 3 of 5), click on “Next”.

On the next step make sure to assign the key to the relevant users who will need to interact with Aurora:

Define key usage permissions

Step 4 of 5

This account

Select the IAM users and roles that can use the CMK in cryptographic operations. Learn more E

Q
-] Name v Path
g am.com /

Other AWS accounts

Specify the AWS accounts that can use this key. Administrators of the accounts you specify are responsible for
managing the permissions that allow their IAM users and roles to use this key. Learn more [4

Add another AWS account

On the last step you will be able to see the ARN of the key and its account.

-375-

aws

aws

N

Review and edit key policy

ra

"Id": "key-consolepolicy-3",
"Version": "2812-18-17",

w

4 "Statement™: [

5 {

& "sid": "Enable IAM User Permissions”,

7 "Effect”: "Allow",

g "Principal”: {

3 "AWS": "arn:iaws:iam:: ‘root”
10 b

11 “"Action": "kms:*",

12 "Resource”: "*"

13 b

14 {

15 "sid": "Allow use of the key", -

Click on “Finish” and now this key will be listed in under customer managed keys.

Now you will be able to set Master encryption key by using the ARN of the key that you have created or picking it
from the list.

Encryption

Encryption
© Enable Encryption

Select to encrypt the given instance. Master key ids and aliases appear in the list after they have been created using the Key
Management Service(KMS) console. Learn More.

() Disable Encryption

Master key info ARN

Enter a key ARN v ‘

arniaws:kms:us-east-1:270324613865:key/ 7578611

e.g.arn:awskms:<region>:<accountlD>:key/<key-id>

Description Account KMS key ID

None None None

Proceed to finish and launch the instance.

For more information, see
http://docs.aws.amazon.com/AmazonS3/latest/dev/SSEUsingRESTAPI.html and

http://docs.aws.amazon.com/cli/latest/reference/s 3/cp.htm

SQL Server Users and Roles vs. PostgreSQL Users
and Roles

ss=s=e= |NA N/A Syntax and option differences, similar
= T T == functionality
There are no users - only roles

-376-

http://docs.aws.amazon.com/AmazonS3/latest/dev/SSEUsingRESTAPI.html
http://docs.aws.amazon.com/cli/latest/reference/s3/cp.htm

aws

SQL Server provides two layers of security principals: Logins at the server level and Users at the database level.
Logins are mapped to users in one or more databases. Administrators can grant logins server-level permissions
that are not mapped to particular databases such as Database Creator, System Administrator, and Security
Administrator.

SQL Server also supports Roles for both the server and the database levels. At the database level, admin-
istrators can create custom roles in addition to the general purpose built-in roles.

For each database, administrators can create users and associate them with logins. At the database level, the
built-in roles include db_owner, db_datareader, db_securityadmin and others. A database user can belong to
one or more roles (users are assigned to the publicrole by default and can't be removed). Administrators can
grant permissions to roles and then assign individual users to the roles to simplify security management.

Logins are authenticated using either Windows Authentication, which uses the Windows Server Active Directory
framework for integrated single sign-on, or SQL authentication, which is managed by the SQL Server service and
requires a password, certificate, or asymmetric key for identification. Logins using windows authentication can be
created for individual users and domain groups.

In previous versions of SQL server, the concepts of user and schema were interchangeable. For backward com-

patibility, each database has several existing schemas, including a default schema named dbo which is owned by
the db_ownerrole. Logins with system administrator privileges are automatically mapped to the dbo user in each

database. Typically, you do not need to migrate these schemas.

Create alogin.

CREATE LOGIN MyLogin WITH PASSWORD = 'MyPassword'

Create a database user for MyLogin.

USE MyDatabase; CREATE USER MyUser FOR LOGIN MyLogin;

Assign MyLogin to a server role.

ALTER SERVER ROLE dbcreator ADD MEMBER 'MyLogin'

AssignMyUsertothedb datareader role.

ALTER ROLE db datareader ADD MEMBER 'MyUser';

For more information, see
https.//docs. microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles ?view=sql-
server-ver15

PostgreSQL supports only roles; there are no users. However, there isa CREATE USER command, which is an
alias for CREATE ROLE that automatically includes the LOGIN permission.

-377 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles

Roles are defined at the database cluster level and are valid in all databases in the PostgreSQL cluster.

Syntax

Simplified syntax for CREATE ROLE in Aurora PostgreSQL:

CREATE ROLE name [[WITH] option [...]

where option can be:

SUPERUSER | NOSUPERUSER
CREATEDB | NOCREATEDB
CREATEROLE | NOCREATEROLE
INHERIT | NOINHERIT

LOGIN | NOLOGIN

REPLICATION | NOREPLICATION
BYPASSRLS | NOBYPASSRLS
CONNECTION LIMIT connlimit

[ENCRYPTED | UNENCRYPTED] PASSWORD 'password'

VALID UNTIL 'timestamp'

IN ROLE role name [, ...]
IN GROUP role name [, ...]
ROLE role name [, ...]
ADMIN role name [, ...]
USER role name [, ...]
SYSID uid

]

aws

Note: The UNENCRYPTED PASSWORD option was dropped in PostgreSQL 10, the password must
be kept encrypted.

-378 -

aws

Create a new database role called "hr_role" that allows users to create new databases in the PostgreSQL
cluster. Note that this role is not able to login to the database and act as a “database user”. In addition, grant
SELECT, INSERT and DELETE privileges on the hr.employees table to the role.

CREATE ROLE hr role;

GRANT SELECT,

INSERT, DELETE on hr.employees to hr role;

The following table summarizes common security tasks and the differences between SQL Server and Aurora

PostgerSQL

Task

SQL Server

Aurora PostgreSQL

View database
users

SELECT Name FROM sys.sysusers

SELECT * FROM pg roles where

rolcanlogin = true;

Create a user and
password

CREATE USER <User Name> WITH
PASSWORD = <PassWord>;

CREATE USER <User Name> WITH
PASSWORD '<PassWord>"';

Create arole

CREATE ROLE <Role Name>

CREATE ROLE <Role Name>

Change a user's
password

ALTER LOGIN <SQL Login> WITH
PASSWORD = <PassWord>;

ALTER USER <SQL Login> WITH
PASSWORD '<PassWord>"';

External authen-
tication

Windows Authentication

N/A

Add a user to a role

ALTER ROLE <Role Name> ADD
MEMBER <User Name>

ALTER ROLE <Role Name> SET
<property and value>

Lock a user ALTER LOGIN <Login Name> REVOKE CONNECT ON DATABASE
DISABLE <database name> from <Role
Name>;
Grant SELECT on |GRANT SELECT ON SCHEMA: :<S- GRANT SELECT ON ALL TABLES IN
a schema chema Name> to <User Name> SCHEMA <Schema Name> TO <User

Name>;

For more details, see:https://www.postgresql.org/docs/13/static/sql-createrole. html

-379-

https://www.postgresql.org/docs/13/static/sql-createrole.html

aws

Appendix A: SQL Server 2018 Deprecated Feature

List

SQL Server 2018 Deprecated
Feature

Section

TEXT, NTEXT, and IMAGE data
types

SQL Server Data Types topic and Aurora PostgreSQL Data Types topic

SET ROWCOUNT for DML

SQL Server Session Options topic and Aurora PostgreSQL Session
Options topic

TIMESTAMP syntax for CREATE
TABLE

SQL Server Creating Tables topic and Aurora PostgreSQL Creating
Tables topic

DBCC DBREINDEX,
INDEXDEFRAG, and
SHOWCONTIG

SQL Server Maintenance Plans topic

Old SQL Mail

SQL Server Database Mail

IDENTITY Seed, Increment, non
PK, and compound

SQL Server Sequences and Identity and Aurora PostgreSQL
Sequences and Identity

Stored Procedures RETURN Values

SQL Server Stored Procedures and Aurora PostgreSQL Stored Pro-
cedures

GROUP BY ALL, Cube, and Com-
pute By

SQL Server GROUP BY and Aurora PostgreSQL GROUP BY

DTS

SQL Server ETL and Aurora PostgreSQL ETL

Old outer join syntax *= and =*

SQL Server Table JOIN and Aurora PostgreSQL Table JOIN

statements

'String Alias' = Expression Migration Tips
DEFAULT keyword for INSERT Migration Tips

- 380 -

aws

N

Migration Quick Tips

-381-

aws

This section provides migration tips that can help save time as you transition from SQL Server to Aurora Post-
greSQL. They address many of the challenges faced by administrators new to Aurora PostgreSQL. Some of
these tips describe functional differences in similar features between SQL Server and Aurora PostgreSQL.

« The equivalent of SQL Server's CREATE DATABASE... AS SNAPSHOT OF... resembles Aurora Post-
greSQL Database cloning. However, unlike SQL Server snapshots, which are read only, Aurora Post-
greSQL cloned databases are updatable.

« InAurora PostgreSQL, the term "Database Snapshot" is equivalent to SQL Server's BACKUP
DATABASE... WITH COPY_ONLY.

« Partitioning in Aurora PostgreSQL is called "INHERITS" tables and act completely different in terms of
management

« Unlike SQL Server's statistics, Aurora PostgreSQL does not collect detailed key value distribution; it relies
on selectivity only. When troubleshooting execution, be aware that parameter values are insignificant to
plan choices.

« Many missing features such as sending emails can be achieved with quick implementations of Amazon's
services (like Lambda).

« Parameters and backups are managed by Amazon's RDS. Itis very useful in terms of checking para-
meter's value against its default and comparing them to another parameter group.

« High Availability can be implemented in few clicks to create Replicas.

« With Database Links, there are two options. The db_link extension is similar to SQL Server.

« Triggers work differently in Aurora PostgreSQL. Triggers can be also executed for each row (not just
once). The syntax for inserted and deleted is new and old.

» Aurora PostgreSQL does not support the @@FETCH_STATUS system parameter for cursors. When
declaring cursors in Aurora PostgreSQL, you must create an explicit HANDLER object.

« Toexecute a stored procedure (functions), use SELECT instead of EXECUTE.

« Toexecute a string as a query, use Aurora PostgreSQL Prepared Statements instead of either sp_execut-
esql, or EXECUTE(<String>) syntax.

« InAurora PostgreSQL, IF blocks must be terminated with END IF. WHILE..LOOP loops must be ter-
minated with END LOOP.

« Aurora PostgreSQL syntax for opening a transaction is START TRANSACTION as opposed to BEGIN
TRANSACTION. COMMIT and ROLLBACK are used without the TRANSACTION keyword.

« Aurora PostgreSQL does not use special data types for UNICODE data. All string types may use any char-
acter set and any relevant collation.

« Collations can be defined at the server, database, and column level, similar to SQL Server. They cannot be
defined at the table level.

o SQL Server's DELETE <Table Name> syntax, which allows omitting the FROM keyword, is invalid in Aur-
ora PostgreSQL. Add the FROM keyword to all delete statements.

- 382 -

aws

Aurora PostgreSQL allows multiple rows with NULL for a UNIQUE constraint; SQL Server allows only
one. Aurora PostgreSQL follows the behavior specified in the ANSI standard.

Aurora PostgreSQL SERIAL column property is similar to IDENTITY in SQL Server. However, there is a
maijor difference in the way sequences are maintained. While SQL Server caches a set of values in
memory, the last allocation is recorded on disk. When the service restarts, some values may be lost, but the
sequence continues from where it left off. In Aurora PostgreSQL, each time the service is restarted, the
seed value to SERIAL is reset to one increment interval larger than the largest existing value. Sequence
position is not maintained across service restarts.

Parameter names in Aurora PostgreSQL do not require a preceding "@". You can declare local variables
such as SET schema.test = 'value' and get the value by SELECT current_setting(‘'username.test');

Local parameter scope is not limited to an execution scope. You can define or set a parameter in one state-
ment, execute it, and then query it in the following batch.

Error handling in Aurora PostgreSQL has less features, but for special requirements, you can log or send
alerts by inserting into tables or catching errors.

Aurora PostgreSQL does not support the MERGE statement. Use the REPLACE statement and the
INSERT... ON DUPLICATE KEY UPDATE statement as alternatives.

You cannot concatenate strings in Aurora PostgreSQL using the "+" operator. 'A' + 'B' is not a valid expres-
sion. Use the CONCAT function instead. For example, CONCAT('A", 'B").

Aurora PostgreSQL does not support aliasing in the select list using the 'String Alias' = Expression. Aurora
PostgreSQL treats it as a logical predicate, returns 0 or FALSE, and will alias the column with the full
expression. USE the AS syntax instead. Also note that this syntax has been deprecated as of SQL Server
2008 R2.

Aurora PostgreSQL has a large set of string functions that is much more diverse than SQL Server. Some
of the more useful string functions are:

« TRIMis not limited to full trim or spaces. The syntax is TRIM({BOTH | LEADING | TRAILING}
[<remove string>] FROM] <source string>)).

o LENGTH in PostgreSQL is equivalentto DATALENGTH in T-SQL. CHAR_LENGTH is the equi-
valent of T-SQL LENGTH.

« SUBSTRING_INDEX returns a substring from a string before the specified number of occurrences
of the delimiter.

« FIELD returns the index (position) of the first argument in the subsequent arguments.
o POSITION returns the index position of the first argument within the second argument.
« REGEXP_MATCHES provides support for regular expressions.

« For more string functions, see https://www.postgresgl.org/docs/13/static/functions-string.html

The Aurora PostgreSQL CAST function is for casting between collation and not other data types. Use
CONVERT for casting data types.

Aurora PostgreSQL is much stricter than SQL Server in terms of statement terminators. Be sure to always
use a semicolon at the end of statements.

There is no CREATE PROCEDURE syntax; only CREATE FUNCTION. You can create a function that
returns void.

Beware of control characters when copying and pasting a script to Aurora PostgreSQL clients. Aurora
PostgreSQL is much more sensitive to control characters than SQL Server and they result in frustrating
syntax errors that are hard to find.

- 383 -

https://www.postgresql.org/docs13/static/functions-string.html

aws

ACID

Atomicity, Consistency, Isolation, Durability

AES
Advanced Encryption Standard

ANSI

American National Standards Institute

API

Application Programming Interface

ARN

Amazon Resource Name

AWS

Amazon Web Services

BLOB
Binary Large Object

CDATA

Character Data

CLI

Command Line Interface

CLOB
Character Large Object

CLR

Common Language Runtime

CPU

Central Processing Unit

CRI

Cascading Referential Integrity

CSV

Comma Separated Values

CTE

Common Table Expression

-384 -

aws

DB

Database
DBCC

Database Console Commands
DDL

Data Definition Language
DEK

Database Encryption Key
DES

Data Encryption Standard
DML

Data Manipulation Language
DQL

Data Query Language
FCI

Failover Cluster Instances
HADR

High Availability and Disaster Recovery
IAM

Identity and Access Management
IP

Internet Protocol
ISO

International Organization for Standardization
JSON

JavaScript Object Notation
KMS

Key Management Service
NUMA

Non-Uniform Memory Access
OLE

Object Linking and Embedding

-385-

aws

OLTP

Online Transaction Processing
PaaS

Platform as a Service
PDF

Portable Document Format
QA

Quality Assurance
RDMS

Relational Database Management System
RDS

Amazon Relational Database Service
REGEXP

Regular Expression
SCT

Schema Conversion Tool
SHA

Secure Hash Algorithm
SLA

Service Level Agreement
SMB

Server Message Block
SQL

Structured Query Language
SQL/PSM

SQL/Persistent Stored Modules
SSD

Solid State Disk
SSH

Secure Shell
T-SQL

Transact-SQL

- 386 -

aws

TDE

Transparent Data Encryption
UDF

User Defined Function
uDpT

User Defined Type
UTC

Universal Time Coordinated
WMI

Windows Management Instumentation
waQL

Windows Management Instrumentation Query Language
WSFC

Windows Server Failover Clustering
XML

Extensible Markup Language

- 387 -

	Introduction
	Tables of Feature Compatibility
	What's New
	AWS Schema and Data Migration Tools
	AWS Schema Conversion Tool (SCT)
	SCT Action Code Index
	AWS Database Migration Service (DMS)
	Amazon RDS on Outposts
	Amazon RDS Proxy
	Amazon Aurora Serverless v1
	Amazon Aurora Backtrack
	Migration Quick Tips

	ANSI SQL
	Case Sensitivity Differences for SQL Server and PostgreSQL
	SQL Server Constraints vs. PostgreSQL Table Constraints
	PostgreSQL Usage
	SQL Server Creating Tables vs. PostgreSQL Creating Tables
	PostgreSQL Usage
	SQL Server Common Table Expressions vs. PostgreSQL Common Table Expressions (...
	PostgreSQL Usage
	SQL Server Data Types vs. PostgreSQL Data Types
	PostgreSQL Usage
	SQL Server Derived Tables vs. PostgreSQL Derived Tables
	PostgreSQL Usage
	SQL Server GROUP BY vs. PostgreSQL GROUP BY
	PostgreSQL Usage
	SQL Server Table JOIN vs. PostgreSQL Table JOIN
	PostgreSQL Overview
	SQL Server Temporal Tables vs. PostgreSQL Triggers (Temporal Tables alternative)
	PostgreSQL Usage(Temporal Tables alternative)
	SQL Server Views vs. PostgreSQL Views
	PostgreSQL Usage
	SQL Server Window Functions vs. PostgreSQL Window Functions
	PostgreSQL Usage

	T-SQL
	SQL Server Service Broker Essentials vs. PostgreSQL AWS Lambda or DB links
	PostgreSQL Usage
	SQL Server Cast and Convert vs. PostgreSQL CAST and CONVERSION
	PostgreSQL Usage
	SQL Server Common Library Runtime (CLR) vs. PostgreSQL PL/Perl
	PostgreSQL Usage
	SQL Server Collations vs. PostgreSQL Encoding
	PostgreSQL Usage
	SQL Server Cursors vs. PostgreSQL Cursors
	PostgreSQL Usage
	SQL Server Date and Time Functions vs. PostgreSQL Date and Time Functions
	PostgreSQL Usage
	SQL Server String Functions vs. PostgreSQL String Functions
	PostgreSQL Usage
	SQL Server Databases and Schemas vs. PostgreSQL Databases and Schemas
	PostgreSQL Usage
	SQL Server Dynamic SQL vs. PostgreSQL EXECUTE and PREPARE
	PostgreSQL Overview
	SQL Server Transactions vs. PostgreSQL Transactions
	PostgreSQL Usage
	SQL Server Synonyms vs. PostgreSQL Views, Types & Functions
	PostgreSQL Usage
	SQL Server DELETE and UPDATE FROM vs. PostgreSQL DELETE and UPDATE FROM
	PostgreSQL Usage
	SQL Server Stored Procedures vs. PostgreSQL Stored Procedures
	PostgreSQL Overview
	SQL Server Error Handling vs. PostgreSQL Error Handling
	PostgreSQL Usage
	SQL Server Flow Control vs. PostgreSQL Control Structures
	PostgreSQL Usage
	SQL Server Full-Text Search vs. PostgreSQL Full-Text Search
	PostgreSQL Usage
	SQL Server Graph vs. PostgreSQL Apache AGE extension
	PostgreSQL Usage
	SQL Server JSON and XML vs. PostgreSQL JSON and XML
	PostgreSQL Usage
	SQL Server MERGE vs. PostgreSQL MERGE
	PostgreSQL Usage
	SQL Server PIVOT and UNPIVOT vs. PostgreSQL PIVOT and UNPIVOT
	PostgreSQL Usage
	SQL Server Triggers vs. PostgreSQL Triggers
	PostgreSQL Usage
	SQL Server TOP and FETCH vs. PostgreSQL LIMIT and OFFSET (TOP and FETCH Equiv...
	PostgreSQL Usage
	SQL Server User DefinedFunctions vs. PostgreSQL User Defined Functions
	PostgreSQL Usage
	SQL Server User Defined Types vs. PostgreSQL User Defined Types
	PostgreSQL Usage
	SQL Server Sequences and Identity vs. PostgreSQL Sequences and SERIAL/IDENTITY
	PostgreSQL Usage

	Configuration
	SQL Server Upgrades vs. PostgreSQL Upgrades
	PostgreSQL Usage
	SQL Server Session Options vs. PostgreSQL Session Options
	PostgreSQL Usage
	SQL Server Database Options vs. PostgreSQL Database Options
	PostgreSQL Usage
	SQL Server Server Options vs. PostgreSQL Aurora Parameter Groups
	PostgreSQL Usage

	High Availability and Disaster Recovery (HADR)
	SQL Server Backup and Restore vs. PostgreSQL Backup and Restore
	PostgreSQL Usage
	SQL Server High Availability Essentials vs. PostgreSQL High Availability Esse...
	PostgreSQL Usage

	Indexes
	SQL Server Clustered and Non Clustered Indexes vs. PostgreSQL Clustered and N...
	PostgreSQL Usage

	Management
	SQL Server Agent vs. PostgreSQL Scheduled Lambda
	PostgreSQL Usage
	SQL Server Alerting vs. PostgreSQL Alerting
	PostgreSQL Usage
	SQL Server Database Mail vs. PostgreSQL Database Mail
	PostgreSQL Usage
	SQL Server ETL vs. PostgreSQL ETL
	PostgreSQL Usage
	SQL Server Export and Import with Text files vs. PostgreSQL pg_dump and pg_re...
	PostgreSQL Usage
	SQL Server Viewing Server Logs vs. PostgreSQL Viewing Server Logs
	PostgreSQL Usage
	SQL Server Maintenance Plans vs. PostgreSQL Viewing Server Logs
	PostgreSQL Usage
	SQL Server Monitoring vs. PostgreSQL Monitoring
	PostgreSQL Usage
	SQL Server Resource Governor vs. PostgreSQL Dedicated Amazon Aurora Clusters ...
	PostgreSQL Usage
	SQL Server Linked Servers vs. PostgreSQL DBLink and FDWrapper
	PostgreSQL Usage
	SQL Server Scripting vs. PostgreSQL Scripting
	PostgreSQL Usage

	Performance Tuning
	SQL Server Execution Plans vs. PostgreSQL Execution Plans
	PostgreSQL Usage
	SQL Server Query Hints and Plan Guides vs. PostgreSQL DB Query Planning
	PostgreSQL Usage
	SQL Server Managing Statistics vs. PostgreSQL Table Statistics
	PostgreSQL Usage

	Physical Storage
	SQL Server Columnstore Index vs. PostgreSQL Columnstore
	PostgreSQL Usage
	SQL Server Indexed Views vs. PostgreSQL Materialized Views
	PostgreSQL Usage
	SQL Server Partitioning vs. PostgreSQL Partitions or Table Inheritance
	PostgreSQL Usage

	Security
	SQL Server Column Encryption vs. PostgreSQL Column Encryption
	PostgreSQL Usage
	SQL Server Data Control Language vs. PostgreSQL Data Control Language
	PostgreSQL Usage
	SQL Server Transparent Data Encryption vs. PostgreSQL Transparent Data Encryp...
	PostgreSQL Usage
	SQL Server Users and Roles vs. PostgreSQL Users and Roles
	PostgreSQL Usage

	Appendix A: SQL Server 2018 Deprecated Feature List
	Migration Quick Tips
	Migration Quick Tips

	Glossary

