

Security Overview of AWS
Fargate

First published April, 2022

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Abstract .. 1

Terminology .. 1

Introduction .. 1

Benefits of Fargate .. 2

Container orchestration and Fargate .. 3

Fargate Platform Versions .. 3

Security considerations with Fargate .. 4

Shared Security Responsibility Model .. 6

Fargate Control Plane and Data Plane ... 8

Fargate on EC2 and Firecracker ... 8

Fargate Control Plane .. 8

Fargate Data Plane .. 9

Security in Fargate .. 12

Isolation by Design ... 12

Network Security .. 13

Patching and security updates ... 14

Storage Security ... 15

Fargate Compliance ... 15

Fargate Security Partners ... 17

Conclusion ... 17

Contributors ... 18

Further Reading ... 18

Document revisions ... 18

Amazon Web Services Whitepaper Title

 1

Abstract

This paper is intended for existing and potential Amazon Elastic Container Service

(Amazon ECS) and Amazon Elastic Kubernetes Service (Amazon EKS) customers that

choose to run their containerized workloads on AWS Fargate. It provides a security

overview of Fargate, which is helpful for new adopters and deepens understanding of

Fargate for current customers.

This white paper aims to inform customers running Linux workloads on Fargate using

ECS or EKS. It’s intended audience is anyone interested in understanding the

foundations of Fargate.

Terminology

This document applies to workloads managed by Amazon ECS and Amazon EKS,

therefore, we have preferred using generic terms to avoid overusing container

orchestrator-specific parlance. For example, the concept of a task in Amazon ECS is

very similar to that of a pod in Amazon EKS. At a high level, they both refer to a

container or a group of container replicas. We have used both the terms task and pod

as much as the flow of the text permitted, but unless specifically called out, the terms

task and pods are interchangeable in this document.

We have used the term host to refer to the virtual machine that runs containers. Unless

specifically called out, a cluster can mean either an Amazon ECS or an Amazon EKS

cluster.

Introduction

Fargate is a serverless compute engine for Amazon ECS and Amazon EKS. Fargate

allows developers and engineers to focus on their business capabilities while managing

the underlying compute infrastructure on their behalf. It handles operational tasks such

as provisioning, configuration, and scaling of compute infrastructure required to run

containerized workloads. Fargate runs your containers on a highly available compute

infrastructure and performs the administration of compute resources, including server

and operating system maintenance, code and security updates, and automatic data

plane scaling.

https://aws.amazon.com/serverless/

Fargate helps you improve security by isolating workloads by design. It uses hardware

virtualization to run each task or pod in its own kernel, providing each task and pod an

isolated compute environment. These are the reasons why AWS customers

like Vanguard, Accenture, Square, Ancestry, and Vodafone have chosen to run their

mission-critical applications on Fargate.

Benefits of Fargate

AWS Fargate is a serverless, pay-as-you-go compute engine that lets you focus on

building applications without managing servers.

Fargate offers the following key benefits:

• Isolation by design: Fargate runs every task and pod in a dedicated virtual

machine environment. Workloads running on Fargate have their own isolation

boundary and do not share the underlying kernel, CPU and memory resources,

or local storage with another task or pod. Fargate is architected with a secure

approach to running containerized workloads that reduces the blast radius of

attacks by isolating tasks and pods. If a vulnerable pod or task gets

compromised, the tightened security boundary of Fargate is designed to prevent

attackers from controlling other pods or tasks in the cluster.

• Simplified data plane scaling: Fargate helps you automatically scale the data

plane as ECS and EKS scale your applications. Kubernetes add-ons such as

Cluster Autoscaler that automate data plane scaling are not required with

Fargate.

• Up-to-date: Fargate customers don’t have to install and maintain components

such as container runtime, kubelet, and kube-proxy. Fargate workloads run on

newly provisioned hosts that use up-to-date compatible runtime components.

Fargate workloads run on a newly created virtual machine, one that has not run

any other task or pod. Fargate customers are not responsible for creating and

updating the underlying host. Once a task or pod stops, Fargate terminates the

virtual machine.

• Resource-based pricing: With Fargate, you pay only for the compute, storage,

and network resources reserved by your containerized applications. It offers

granular, per-second billing with flexible configuration and pricing options.

Customers can further reduce their spend on Fargate by utilizing Fargate Spot

and Compute Savings Plans.

https://aws.amazon.com/fargate/customers/
https://aws.amazon.com/fargate/pricing/
https://aws.amazon.com/fargate/pricing/

Container orchestration and Fargate

Container orchestrators manage the operation of containerized workloads on the user’s

behalf. AWS offers customers a choice of two managed container

orchestrators: Amazon ECS and Amazon EKS. Container orchestrators create,

terminate, scale containers, and provide networking support for services to interconnect.

The implementation of these operations depends on the orchestrator — for example,

the procedure to scale workloads may differ in ECS and EKS — but the eventual result

is conceptually identical. Both ECS and EKS help you autoscale workloads by adding or

removing containers to maintain an application’s performance as its workload

fluctuates.

Fargate is the underlying serverless compute engine for ECS and EKS and AWS Batch;

it provides Batch, ECS, and EKS compute infrastructure to run containerized workloads.

In this context, Fargate is similar to Amazon EC2. Customers orchestrate containers

using Batch, ECS, or EKS and use Fargate or EC2 to run containers. Customers never

interact directly with Fargate but through ECS, EKS or Batch. Fargate assumes the

responsibility of maintaining the underlying infrastructure that runs your containers; the

container orchestrator manages container creation, execution, and termination.

Fargate Platform Versions

For ECS, Fargate Platform Versions (PV) refer to a specific runtime environment for the

Fargate task infrastructure, comprised of a combination of the kernel and container

runtime versions. New platform versions and platform version revisions are released as

the runtime environment evolves, such as kernel or operating system updates, new

features, bug fixes, or security updates.

Customers receive a task retirement notice when AWS determines that a security or

infrastructure update is needed for a Fargate task. For more information, please

see AWS Fargate task maintenance.

For EKS, customers use the latest Fargate Platform Version and revision for new

deployments. Existing workloads move to the latest PV when redeploying the pods.

Customers with long-running pods will want stop their pods periodically to ensure their

pods use the latest Fargate PV revision.

https://aws.amazon.com/ecs/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&ecs-blogs.sort-by=item.additionalFields.createdDate&ecs-blogs.sort-order=desc
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-maintenance.html

Security considerations with Fargate

Fargate runs each workload in an isolated hardware virtualized environment. As a

result, each pod or task gets dedicated infrastructure capacity. Containerized workloads

running on Fargate do not share network interfaces, Fargate ephemeral storage, CPU,

or memory with other tasks or pods. Customers can run multiple containers within a

task or pod, including application containers and sidecar containers, or simply sidecars.

A sidecar is a container that runs alongside an application container in a Kubernetes

pod or an ECS task. While the application container runs core application code,

processes running in sidecars can augment the application. Sidecars help you

segregate applications functions into dedicated containers, making it easier for you to

update parts of your application.

Containers that are part of the same pod or task share resources when running on

Fargate, as these containers will always run on the same host and share compute

resources. Such containers can also share the ephemeral storage that Fargate

provides. Linux containers in a task or pod share network namespaces, including the IP

address and network ports. Inside a pod or a task, containers that belong to the pod or

task can inter-communicate over the local loopback interface.

Fargate runs one task or pod per VM

The security hardened runtime environment in Fargate disallows using certain

orchestrator features that are supported on EC2 instances. Following are the security

considerations customers should be aware of when architecting workloads that run on

Fargate:

No privileged containers or access. Use cases such as running Docker in Docker

require containers to be run in privileged mode. Features such as privileged containers

or access are currently unavailable on Fargate.

Limited access to Linux capabilities. The execution environment in which containers

run in Fargate is restrictive to prevent container breakouts. ECS on Fargate supports

adding CAP_SYS_PTRACE Linux capability, allowing observability tools like Sysdig

Falco for workloads running on Fargate. Workloads including third party solutions such

as Istio that require additional Linux capabilities are currently unsupported on Fargate.

The list of capabilities Fargate workloads run with is available here.

No access to the underlying host. Neither customers nor AWS operators can connect

to a host running customer workloads. Customers can use kubectl exec for EKS

or ECS Exec for ECS to run commands in or get a shell to a container running on

Fargate. This feature is helpful with collecting diagnostic information and debugging.

Additionally, Fargate prevents containers from accessing underlying host’s resources,

such as the filesystem, devices, networking, container runtime, etc.

Networking. Fargate customers can use security groups and network ACLs to control

inbound and outbound traffic. Fargate pods or tasks receive an IP address from the

configured subnet in your VPC.

https://sysdig.com/blog/falco-support-on-aws-fargate/
https://sysdig.com/blog/falco-support-on-aws-fargate/
https://github.com/moby/moby/blob/deda3d4933d3c0bd57f2cef672da5d28fc653706/oci/caps/defaults.go#L4
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-exec.html

Shared Security Responsibility Model

Security and Compliance is a shared responsibility between AWS and the customer.

This model reduces the customer’s operational burden as AWS operates, manages,

and controls the components from the host operating system and virtualization layer

down to the physical security of the facilities in which the service operates.

Shared Responsibility Model for Fargate

Fargate reduces your team’s operational burden as AWS assumes the responsibility of

managing the underlying Fargate infrastructure, operating system, and execution

environment.

Shared Responsibility Model differences between EC2 and Fargate. Customers are responsible

for securing their workloads when using Fargate.

When using Fargate, customers are not responsible for securing the compute

infrastructure that runs their containers. Fargate will provision and patch the

infrastructure upon which customer workloads run. Please see the Patching and

security updates section for more details.

Fargate Control Plane and Data Plane

Fargate on EC2 and Firecracker

Fargate provides a managed data plane for customers to run ECS and EKS workloads.

Fargate uses both EC2 instances and Firecracker micro-VMs running on EC2 bare-

metal instances to run tasks and pods. The next section explains EC2 and Firecracker

Control Plane and Data Plane.

Firecracker

Firecracker runs workloads in lightweight virtual machines, called microVMs, which

combine the security and isolation properties provided by hardware virtualization

technology with the speed and flexibility of containers. Firecracker is built on KVM, the

same hypervisor on which EC2 Nitro instances are based. Hardware virtualization is

designed to securely run tasks from different customers on the same physical server.

Firecracker is a Virtual Machine Monitor (VMM) and not a full hypervisor.

For more information on Firecracker refer to the launch blog and https://firecracker-

microvm.github.io/.

Fargate Control Plane

Fargate Control Plane

The preceding diagram gives a high-level overview of the interaction between the

Control Plane and the Data Plane where a RunTask API call is made to start a new task

using a specified task definition. The Control Plane consists of the services that are

https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/

running the Fargate business logic to orchestrate the task launches. The Data Plane

consists of the fleet of services and underlying infrastructure that runs the container

workloads using EC2 instances and Firecracker. These two data planes are described

in further detail in the next section. The choice of which of the two data planes a task or

pod is placed on is managed by Fargate, and customers do not need to configure this.

As shown in the preceding figure, when the ECS RunTask API call is made, ECS calls

the Fargate control plane to place the task on appropriate compute based on task/pod

parameters such as the requested number of vCPUs and amount of memory.

Asynchronously, the Control Plane issues the instruction to launch the container in your

task definition within the reserved server capacity. The status of this container in the

Data Plane is then reported to the Control Plane.

Fargate Data Plane

Fargate Data Plane

The EC2 instances used by Fargate are fully managed by AWS and run in AWS

accounts and VPCs that Fargate owns and are invisible to customers. When a customer

task is placed on an instance, an ENI is provisioned that connects the instance to the

VPC designated by the customer. The instance runs a slimmed-down Amazon Linux 2

as the guest OS, with a Fargate Agent installed to communicate with the control plane.

The container runtime is used to launch the container workloads. The primary network

interface is in the Fargate VPC, where the instance is launched. When the instance gets

selected to host a task, an ENI is created within customer VPC and attached to the

instance as a secondary network interface.

Additionally for Firecracker, the firecracker-containerd plugin is responsible for running

containers within a Firecracker virtual machine (VM). Firecracker VMs do not execute

as root on the host. Seccomp filters limit the host system calls Firecracker can use. The

default filters only allow the bare minimum set of system calls and parameters that

Firecracker needs to function correctly. Another jailer process can start the Firecracker

process. You can find additional information in the Firecracker open-source design

documentation and seccomp in Firecracker documentation.

The following figure shows a rough sequence of events that lead to Fargate agent

running customer containers on a VM when starting an ECS task.

Fargate container start sequence

The Fargate agent receives a message that it needs to start a task. This message also

contains details about the elastic network interface (ENI) that has been provisioned for

the task.

It then sets up the networking for that task by creating a new network namespace and

provisioning the network interface to this newly created network namespace.

https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker/blob/main/docs/design.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/design.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/seccomp.md

Next, it downloads the container images, any secrets and configuration needed to

bootstrap containers using the ENI from customer’s account.

Customer containers are started next using Containerd APIs.

Containerd in turn creates shim processes that server as parent processes for

containers. These shim processes are also used to spin up containers using runC.

The Fargate agent also specifies what kind of Containerd logger shims need to be

started based on the configuration specified by customers. Containerd uses this to start

logging plugins for containers.

The following diagram shows how a high-level view of how Fargate data plane

components are laid out.

Fargate components

Security in Fargate

Isolation by Design

Fargate data plane components

EC2: At the bottom of the Fargate Data Plane stack, the EC2 hypervisor uses trusted

hardware virtualization to isolate instances running on the same physical server. As

mentioned in the previous section, the EC2 instance runs Amazon Linux 2, Fargate

Agent, and a container runtime. The container isolation boundary is composed of

abstractions like cgroups, namespaces, and seccomp policies. Although they provide

some isolation, we decided to avoid collocating tasks by running a one-to-one mapping

of tasks to instances. This execution model offers multiple layers of isolation. Hence,

Fargate never collocates two tasks on the same EC2 instance, even from the same

customer. Each instance runs one and only one task. When RunTask API is called, a

fresh EC2 instance is used, and when the task stops, the instance is terminated. This

provides a task-level isolation guarantee for Fargate on the EC2 data plane.

Fargate isolation with Firecracker

Firecracker: A Firecracker microVM is created for every task placed on the host. All the

containers belonging to the task are executed in the microVM to facilitate a secure task

boundary. Firecracker is responsible for securing the microVM. The firecracker process

itself will be jailed using cgroups and seccomp profiles. Container/task credentials and

secrets will be made available to only the appropriate Firecracker microVM. Hence the

primary security consideration in Firecracker is to isolate tasks from each other reliably.

Network Security

Security groups block communication between the Fargate Data Plane EC2 instances

to segregate instance-to-instance traffic within the Fargate VPC. VPC flow logs,

CloudTrail, and DNS logs are enabled and monitored to detect and respond to security

events within the Fargate VPC.

For Firecracker, the network interfaces are attached and made available only to the

VMs where tasks/pods run. A dedicated ENI in the customer VPC is created and

attached to the customer task/pod.

Security groups for pods integrate Amazon EC2 security groups with Kubernetes pods

in Amazon EKS. You can use Amazon EC2 security groups to define rules that allow

inbound and outbound network traffic to and from pods that you deploy to nodes

running on many Amazon EC2 instance types and Fargate. See Introducing security

http://aws.amazon.com/blogs/containers/introducing-security-groups-for-pods/

groups for pods blog post and related documentation for a detailed explanation of this

capability.

Patching and security updates

Fargate deploys security updates and patches automatically based on the platform

version. If a security issue is found that impacts a platform version revision, AWS

creates an updated platform version revision. The platform version revisions are

immutable; when Fargate needs to address a CVE, Fargate creates a new platform

version revision and deploy that across the fleet of instances, followed by retiring old

tasks.

The standard patching process for ECS on Fargate has three milestones. First, a

patched platform version is released. This milestone comprises evaluating and

preparing the patch for the platform version, building the AMI with patched packages,

scale and regression testing, and finally, deployment to production. At this point, all new

task launches happen on fully patched platform versions. Next, impacted customers are

sent a task retirement notification. For non-managed tasks that are started with the

RunTask API, after the patched platform version is deployed to production, a Personal

Health Dashboard (PHD) notification is sent to inform customers that have running

tasks impacted by the CVE. Usually, customers are given 15 calendar days to relaunch

their impacted tasks. The ECS service scheduler automatically replaces tasks that run

as part of an ECS service. Finally, after the deadline specified in PHD notification,

impacted customer tasks still running are retired by Fargate task retirement workflows.

The scheduler automatically restarts managed tasks on the patched platform version.

Unmanaged tasks are stopped by workflow and require customer intervention to be

restarted. For more information, see Task retirement.

EKS on Fargate also has a similar three-step process for patching. First, a patched task

image is released by the EKS Fargate team. This milestone involves evaluating and

building the necessary changes into the task image and running the EKS Fargate

regression test suite. After testing, this new task image is deployed so that pods within

new Fargate Profiles use this new patched task image. Second, all existing EKS

Fargate Profiles are updated so that any new pods created within these existing Fargate

Profiles use the new patched task image as well. Third, depending on the severity, EKS

Fargate may terminate existing pod deployments so that pods are relaunched with the

new patched task image. When EKS Fargate has to terminate existing pods, we

leverage the Kubernetes eviction API so that any Pod Disruption Budgets(PDBs)

configured, which is highly recommended, are respected. If EKS Fargate is unable to

gracefully evict a pod due to overly restrictive PDBs, we create an Event Bridge event

http://aws.amazon.com/blogs/containers/introducing-security-groups-for-pods/
https://docs.aws.amazon.com/eks/latest/userguide/security-groups-for-pods.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-retirement.html
https://kubernetes.io/docs/concepts/scheduling-eviction/api-eviction/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/

notifying the customer that we will forcibly evict the pod at a specific time in the future,

by default in 5 days. Customers have until then to update their PDBs to allow graceful

eviction of the pod so that it can be terminated and relaunched with the new patched

task image. If customers do not update their PDBs to allow for graceful eviction before

the specified time, EKS Fargate will forcibly terminate the pod at the time specified

which has the potential to be disruptive.

Since patching and security updates are integral parts of achieving compliance (e.g.,

PCI-DSS requirement 6.2), please refer to the Fargate Compliance section in this

document to further understand security controls in place for achieving the third-party

security certifications and attestations for Fargate.

Storage Security

Fargate supports the two types of storage:

• Ephemeral storage

• Amazon EFS volumes for persistent storage

With platform version 1.4.0, Fargate offers a single 20GiB ephemeral storage volume.

Amazon ECS tasks launched in PV 1.4 benefit from server-side encryption of the 20GiB

ephemeral storage using Fargate-managed keys. Amazon EKS pods launched in

Fargate also use this feature as Amazon EKS uses Fargate PV 1.4.

EKS pods running on Fargate have slightly less usable storage as about 1 GiB is used

by the required Kubernetes components (kubelet, kube-proxy, and containerd).

To use Amazon EFS volumes for persistent storage with Fargate, refer to the three part

blog series. For encrypting EFS volumes in general, including data at rest, refer to

the Encrypting File Data with Amazon EFS white paper. Refer to this walkthrough for

enforcing encryption on an Amazon EFS file system at rest.

Fargate Compliance

Amazon ECS on Fargate meets the standards for PCI DSS Level 1, ISO 9001, ISO

27001, ISO 27017, ISO 27018, SOC 1, SOC 2, SOC 3, and HIPAA eligibility. We are in

the process to achieve similar compliance for EKS on Fargate. Third-party auditors

assess the security and compliance of Amazon ECS and Amazon EKS as part of

multiple AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and

others. For a list of AWS services in scope of specific compliance programs, see AWS

Services in Scope by Compliance Program. For general information, see AWS

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-storage.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-task-storage.html
https://aws.amazon.com/blogs/containers/developers-guide-to-using-amazon-efs-with-amazon-ecs-and-aws-fargate-part-1/
https://aws.amazon.com/blogs/containers/developers-guide-to-using-amazon-efs-with-amazon-ecs-and-aws-fargate-part-1/
https://d1.awsstatic.com/whitepapers/Security/amazon-efs-encrypted-filesystems.pdf
https://docs.aws.amazon.com/efs/latest/ug/efs-enforce-encryption.html
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/

Compliance Programs. You can download third-party audit reports using AWS Artifact.

For more information, see Downloading reports in AWS Artifact.

HIPAA

Fargate is HIPAA eligible. If you have an executed Business Associate Addendum

(BAA) with AWS, you can process encrypted Protected Health Information (PHI) using

containers deployed onto Fargate in an account designated as a HIPAA account.

For more information, please visit our page on HIPAA compliance. If you plan to

process, store, or transmit PHI and do not have an executed BAA from AWS, please

see AWS Compliance for more information.

Processing sensitive Controlled Unclassified Information (CUI)

Fargate is available in AWS GovCloud (US-East) and (US-West) Regions. For a full list

of AWS Regions where Fargate is available, please visit our Region table.

Your compliance responsibility when using AWS is determined by the sensitivity of your

data, your company's compliance objectives, and applicable laws and regulations. AWS

provides the following resources to help with compliance:

Security and Compliance Quick Start Guides – These deployment guides discuss

architectural considerations and describe steps for deploying security-hardened

baseline environments on AWS.

Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper

describes how customers can run sensitive workloads regulated under the U.S. Health

Insurance Portability and Accountability Act (HIPAA).

AWS Compliance Resources – This collection of workbooks and guides that might be

applicable to your industry and geography.

AWS Config – This AWS service enables you to assess, audit, and evaluate the

configurations of your AWS resources. Config helps you monitor configuration data for

container-based resources, such as monitoring configuration changes to EKS cluster

settings and tracking compliance for cluster configurations. AWS Config supports ECS,

EKS, and Amazon ECR.

AWS Security Hub – This AWS service helps you assess your high-priority security

alerts and security posture across AWS accounts in one comprehensive view. Security

Hub has built in mapping capabilities for common frameworks like CIS, PCI DSS,

and more.

http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://aws.amazon.com/security-hub/
https://docs.aws.amazon.com/securityhub/latest/userguide/standards-available.html

Fargate Security Partners

The following AWS Partner products are available to help you add additional security

and features to Fargate workloads.

Aqua Security

You can use Aqua Security to secure your cloud-native applications from development

to production. The Aqua Cloud Native Security Platform integrates with your cloud-

native resources and orchestration tools to provide transparent and automated security.

It can prevent suspicious activity and attacks in real time, and help to enforce policy and

simplify regulatory compliance.

Palo Alto Networks

Palo Alto Networks provides security and protection for your hosts, containers, and

serverless infrastructure in the cloud and throughout the development and software

lifecycle. Twistlock is supplied by Palo Alto Networks and can be integrated with

Amazon ECS FireLens. With it, you have access to high fidelity security logs and

incidents that are seamlessly aggregated into several AWS services. These include

Amazon CloudWatch, Amazon Athena, and Amazon Kinesis. Twistlock secures

workloads that are deployed on AWS container services.

Sysdig

You can use Sysdig to build, detect and respond to threats, continuously validate cloud

posture and compliance, and monitor performance. The Sysdig Secure DevOps

Platform has embedded security and compliance features to protect your cloud-native

workloads, and offers enterprise-grade scalability, performance, and customization.

Sysdig has also authored Fargate-specific blogs like Securing Fargate workloads:

Meeting File Integrity Monitoring (FIM) requirements, Falco Support on

Fargate and Digging into Fargate runtime security approaches: Beyond ptrace and

LD_PRELOAD.

Conclusion

This document explains how AWS Fargate enables you to securely run containerized

workloads without managing servers. This whitepaper described the key benefits of

https://partners.amazonaws.com/partners/001E000001LiLQqIAN/Aqua%20Security
https://partners.amazonaws.com/partners/001E0000013FeQXIA0/Palo%20Alto%20Networks
https://partners.amazonaws.com/partners/001E000000wNQeoIAG/Sysdig
https://sysdig.com/blog/securing-aws-fargate/
https://sysdig.com/blog/securing-aws-fargate/
https://sysdig.com/blog/falco-support-on-aws-fargate/
https://sysdig.com/blog/falco-support-on-aws-fargate/
https://sysdig.com/blog/aws-fargate-runtime-security-ptrace-ld_preload/
https://sysdig.com/blog/aws-fargate-runtime-security-ptrace-ld_preload/

Fargate, its suitability for different types of applications, and its security model. It also

reviews the security measures used in AWS Fargate infrastructure to protect customer

data and workloads. For more information about Fargate, please visit AWS Fargate

webpage.

Contributors

• Re Alvarez Parmar, Principal Specialist Solutions Architect, AWS

• Paavan Mistry, Senior Developer Advocate, AWS

Further Reading

For additional information, refer to:

• Amazon EKS Best Practices Guide

• Amazon ECS Best Practices Guide

• Shared Responsibility Model

• AWS Security Best Practices in IAM

• Under the hood: AWS Fargate data plane

• The open-source AWS for Fluent Bit project on GitHub

• AWS Architecture Center

Document revisions

Date Description

April 15, 2022 First publication

https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.github.io/aws-eks-best-practices/
https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/intro.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://aws.amazon.com/blogs/containers/under-the-hood-fargate-data-plane/
https://github.com/aws/aws-for-fluent-bit
https://aws.amazon.com/architecture/

	Abstract
	Terminology

	Introduction
	Benefits of Fargate
	Container orchestration and Fargate
	Fargate Platform Versions
	Security considerations with Fargate
	Shared Security Responsibility Model
	Fargate Control Plane and Data Plane
	Fargate on EC2 and Firecracker
	Firecracker

	Fargate Control Plane
	Fargate Data Plane

	Security in Fargate
	Isolation by Design
	Network Security
	Patching and security updates
	Storage Security
	Fargate Compliance
	HIPAA
	Processing sensitive Controlled Unclassified Information (CUI)

	Fargate Security Partners
	Aqua Security
	Palo Alto Networks
	Sysdig

	Conclusion
	Contributors
	Further Reading
	Document revisions

