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Introduction
“Psiphon  Inc.  is  a  company  based  in  Toronto,  producing  open-source  multi-platform  
software that helps over 3 million people every week connect to content on the Internet.  
We’re a team focused on delivering the best software we can, introducing new products  
regularly  and  making  sure  we  develop  to  the  needs  of  our  constantly  growing  global  
audience.”

From https://www.psiphon.ca/en/about.html

This report describes the results of a security assessment of the Psiphon complex, with the 
focus on the Psiphon Tunnel Core codebase. The project, which included a penetration test  
and a dedicated source code audit, was carried out by Cure53 in the spring of 2024.

Registered as PSI-08, the examination was requested by Psiphon Inc. in January 2024 and 
then  scheduled  to  start  in  late  April  2024.  This  means both  parties  had ample  time to  
prepare, although best practices have already been in place given prior cooperation.

In fact, this audit marks the eighth collaboration between Psiphon and Cure53. While it is 
worth  clarifying  that  the  Psiphon  Tunnel  Core  code  was  part  of  the  scope  during  the  
previous examination, this was the case during PSI-01, implemented back in June and July 
2017. As such, quite a lot of time has passed since the last review.

In terms of the exact timeline and specific resources allocated to PSI-08, Cure53 completed 
the research from CW19 to CW21, which specifically signifies April  and May in 2024. In  
order to achieve the expected coverage for this task, a total of thirty-two days were invested 
and a team of four senior testers was formed and assigned to the preparations, execution,  
documentation and delivery of this project.

Given the scope of this  PSI-08  project, the assessment was set to contain just one work 
package (WP):

• WP1: White-box pentests & audits against Psiphon Tunnel Core codebase

As the title of the WP indicates, white-box methodology was utilized. Cure53 was provided 
with binaries, as well as all  further means of access required to complete the tests, the  
methodology chosen here was white-box. Additionally, all sources corresponding to the test 
targets were shared to make sure the project can be executed in line with the agreed-upon 
framework.

The project could be completed without any major problems. To facilitate a smooth transition 
into the testing phase, all preparations were completed in CW18, i.e., in the week prior to the  
technical examinations. Throughout the engagement, communications were conducted via a 
private, dedicated and shared Slack channel. Stakeholders - including the Cure53 testers 
and the internal staff from Psiphon Inc. - could participate in discussions in this space.
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Not  many  questions  had  to  be  posed  by  Cure53  and  the  quality  of  all  project-related 
interactions  was consistently  excellent.  Ongoing  exchanges contributed  positively  to  the 
overall outcomes of this project. Significant roadblocks could be avoided thanks to clear and 
diligent preparation of the scope.

Cure53 offered frequent status updates about the test and the emerging findings. Selected 
discoveries were live-reported in the form of Markdown files, as requested by Psiphon.

The Cure53 team succeeded in achieving very good coverage of the WP1 targets. Of the 
ten security-related discoveries, four were classified as security vulnerabilities and six were 
categorized as general weaknesses with lower exploitation potential. It can be argued that 
this audit of the Psiphon Tunnel Core codebase revealed only a moderate number of flaws 
negatively affecting the scope. As such, the results testify to a solid security posture of the 
complex.

Supporting this verdict,  no vulnerabilities of  Critical nature were identified during  PSI-08. 
Only one issue received a High score in terms of impact. Quite clearly, this issue should not 
be ignored and Cure53 advises treating it as a top priority. Specifically, the problem presents 
a  way  to  identify  the  Psiphon  servers  (see  PSI-08-008).  Nevertheless,  the  overall 
impressions are positive, as the targets clearly received security attention from a skilled and 
committed team at Psiphon.

The following sections first describe the scope and key test parameters, as well as how the 
WP was structured and organized. Next, all findings are discussed in grouped vulnerability 
and  miscellaneous  categories.  Flaws  assigned  to  each  group  are  then  discussed 
chronologically.  In  addition  to  technical  descriptions,  PoC and  mitigation  advice  will  be 
provided where applicable.

The report closes with drawing broader conclusions relevant to this spring 2024 project.  
Based on the test team's observations and collected evidence, Cure53 elaborates on the 
general  impressions  and  reiterates  the  verdict.  The  final  section  also  includes  tailored 
hardening recommendations for the Psiphon Tunnel Core codebase.
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Scope
• Pentests & audits against Psiphon Tunnel Core codebase

◦ WP1: White-box pentests & audits against Psiphon Tunnel Core codebase
▪ Source code repository:

• URL:
◦ https://github.com/Psiphon-Labs/psiphon-tunnel-core  

• Commit:
◦ a77d3ca70bafcf6bcf060ea7337a7dee01fccbdc

▪ Out-of-scope aspects of the repository:
• All parts of the inproxy branch

◦ https://github.com/Psiphon-Labs/psiphon-tunnel-core/compare/  
master...inproxy

◦ Client binaries were provided to Cure53 upon request
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53
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Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the 
testing period. Notably, findings are cited in chronological order rather than by degree of 
impact,  with  the  severity  rank  offered  in  brackets  following  the  title  heading  for  each 
vulnerability. Furthermore, each ticket has been given a unique identifier (e.g., PSI-08-001) 
to facilitate any future follow-up correspondence.

PSI-08-003 WP1: Fetching local URLs crashes psiphond service (Medium)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

Under  certain  circumstances,  the  psiphond server  crashes  when  resolving  local  URLs 
through the proxy.  This is because the application is built  statically with  netdns=cgo.  As 
such, the implementation can trigger an issue in glibc.

Even though these types of problems are known, they have not been addressed, neither by 
the go nor the glibc maintainers1.

At the same time, the flaw could only be reliably reproduced when running a psiphond binary 
that  was built  on another  system with  a different  version of  glibc.  These circumstances 
render real world occurrences less likely. Similarly, it remained infeasible to reproduce the 
issue with the officially released binaries.

Steps to reproduce:

1. Build psiphond from the GitHub repository. A static binary should be created.
2. Copy the binary to a different Linux system and run it.
3. On the client's side, access a local URL through the proxy:

curl --proxy 127.0.0.1:8080 https://ads.local
4. The psiphond server crashes due to an issue in glibc's getaddrinfo() function.

Backtrace:

% ./psiphond run
[...]
SIGFPE: floating-point exception
PC=0x72163497250f m=7 sigcode=1
signal arrived during cgo execution
instruction bytes: 0x49 0xf7 0xf0 0x48 0x29 0xd1 0x48 0x89 0xf2 0x48 0x8d 
0x84 0xe 0x0 0x8 0x0

goroutine 91 gp=0xc000103340 m=7 mp=0xc00030a008 [syscall]:
runtime.cgocall(0x9c2340, 0xc00006cda8)

1 https://github.com/golang/go/issues/30310
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/usr/lib/go/src/runtime/cgocall.go:157 +0x4b fp=0xc00006cd80 
sp=0xc00006cd48 pc=0x406a0b
net._C2func_getaddrinfo(0xc00011f650, 0x0, 0xc00057e660, 0xc00041c0f8)

_cgo_gotypes.go:105 +0x55 fp=0xc00006cda8 sp=0xc00006cd80 pc=0x54ae55
net._C_getaddrinfo.func1(0xc00011f650, 0x0, 0xc00057e660, 0xc00041c0f8)

/usr/lib/go/src/net/cgo_unix_cgo.go:78 +0x7a fp=0xc00006cdf0 
sp=0xc00006cda8 pc=0x54b21a
[...]

It should be investigated why this problem is present, especially as it happens when the 
sources are compiled from scratch but not in the official binaries. What is more, Psiphon 
should consider using the build option netdns=go rather than netdns=cgo. This would help 
mitigate this issue.

PSI-08-007 WP1: Partial DoS of meek connections via buffer monopolization (Low)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

The Psiphon solution complex offers several protocols to evade censorship and establish 
secure connections. These protocols include a variant of the pluggable transport meek2, also 
available in the Tor browser.

In case a Psiphon server uses meek as its transport protocol, meek connections utilize two 
kinds of buffers for keeping responses in memory. One of the buffers is exclusive to the  
connection and has the size of 65kB. For responses larger than 65kB, all connections share 
a  buffer  pool  which  amounts  to  roughly  135MB.  The  purpose  of  keeping  responses  in 
memory is to cache them in case of connection failures noticed for clients.

Sharing the buffer pool has consequences, since an attacker who is a legitimate user of the 
Psiphon server could mount a partial Denial-of-Service attack against other users via meek 
as a transport protocol. For that purpose, the attacker monopolizes all memory from the  
shared  buffer  pool  by  producing traffic  resulting in  very  large  responses.  This  binds  all  
memory offered through the buffer pool to the attacker, resulting in a DoS for responses 
larger than 65kB for legitimate users. In other words, the affected users would not be able to 
write them to the shared buffer pool from then on.

The code excerpt below demonstrates that the meek server uses the shared pool of memory 
from the field server.bufferPool on creating a new meek session of a client.

Affected file:
psiphon-tunnel-core-master/psiphon/server/meek.go

2 https://blog.torproject.org/how-use-meek-pluggable-transport/
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Affected code:
func (server *MeekServer) getSessionOrEndpoint(

request *http.Request, meekCookie *http.Cookie) (string, 
*meekSession, net.Conn, string, *GeoIPData, error) {

[...]
bufferLength := MEEK_DEFAULT_RESPONSE_BUFFER_LENGTH
if server.support.Config.MeekCachedResponseBufferSize != 0 {

bufferLength = 
server.support.Config.MeekCachedResponseBufferSize

}
cachedResponse := NewCachedResponse(bufferLength, server.bufferPool)

session = &meekSession{
meekProtocolVersion: clientSessionData.MeekProtocolVersion,
sessionIDSent:       false,
cachedResponse:      cachedResponse,
cookieName:          meekCookie.Name,
contentType:         request.Header.Get("Content-Type"),

}
[...]
server.sessionsLock.Lock()
server.sessions[sessionID] = session
server.sessionsLock.Unlock()
[...]

}

To mitigate this issue Cure53 advises creating individual buffers for individual connections. 
These items should not be shared across connections.

PSI-08-008 WP1: Replaying client preamble identifies Psiphon servers (High)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

In order to make sure that Psiphon servers cannot be easily identified or enumerated, replay 
attacks against obfuscated protocols have been accounted for. Specifically, their mitigation 
entails using a random nonce for each connection.

This deployment is important as the strategy to prevent attackers from identifying Psiphon 
servers  via  response  and  traffic  patterns.  Unfortunately,  the  measure  has  not  been 
implemented sufficiently, making it possible to replay obfuscated packets within a limited 
period. As the server responds to these replayed packets with mostly static data streams 
where only 30 bytes vary on each attempt, it gives enough reason to believe that is running 
a Psiphon service.

For possibly malicious actors, including governments, this is particularly interesting when 
individuals  are  under  suspicion,  but  further  evidence  is  needed  for  a  more  thorough 
observation. The steps below show how this issue can be reproduced. However, it should 
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be noted that the replay attack must be conducted from the IP address of the original client,  
as the code would successfully catch the reuse attack otherwise. This makes the issue a 
little bit harder to exploit for attackers with limited capabilities.

Steps to reproduce:

1. Set up a server and client with OSSH on port 9999.
2. With the server stopped, listen on port 9999 using netcat and write received data to 

a file at nc -lvp 9999 > test
3. Start the client which connects to port 9999 and stop it after netcat receives the 

connection.
4. Start the Psiphon server.
5. Send the previously recorded data to psiphond listening on port 9999, specifically 

using cat test | nc localhost 9999
6. Repeat Step 5 a few times and observe the results.

The code below gets invoked when the client sends the preamble of an obfuscated stream 
and checks the received seed against a list of recently used values.

Affected file:
psiphon-tunnel-core/psiphon/common/obfuscator/obfuscator.go

Affected code:
if config.SeedHistory != nil {

// Adds the seed to the seed history only if the magic value is 
valid.

// This is to prevent malicious clients from filling up the history 
cache.

ok, duplicateLogFields := config.SeedHistory.AddNew(
config.StrictHistoryMode, clientIP, "obfuscator-seed", 

osshSeed)
errStr := "duplicate obfuscation seed"
if duplicateLogFields != nil {

if config.IrregularLogger != nil {
config.IrregularLogger(

clientIP,
errors.BackTraceNew(errBackTrace, errStr),
*duplicateLogFields)

}
}
if !ok {

return nil, nil, nil, nil, errors.TraceNew(errStr)
}

}
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The highlighted section of the code below is reached when a new connection with a known 
seed value is established. If the  strictMode parameter was set to  true, the returned code 
would actually prevent this issue. Since this option is not set in the codebase, it defaults to  
false.

Affected file:
psiphon-tunnel-core/psiphon/common/obfuscator/history.go

Affected code:
func (h *SeedHistory) AddNew(

strictMode bool,
clientIP string,
seedType string,
seed []byte) (bool, *common.LogFields) {

return h.AddNewWithTTL(
strictMode, clientIP, seedType, seed, 

lrucache.DefaultExpiration)
}
[...]
func (h *SeedHistory) AddNewWithTTL(

strictMode bool,
clientIP string,
seedType string,
seed []byte,
TTL time.Duration) (bool, *common.LogFields) {

[...]

previousClientIP, ok := h.seedToClientIP.Get(key)
if ok {

if clientIP == previousClientIP.(string) {
logFields["duplicate_client_ip"] = "equal"
return !strictMode, &logFields

} else {
logFields["duplicate_client_ip"] = "unequal"
return false, &logFields

}
}

logFields["duplicate_client_ip"] = "unknown"
return false, &logFields

}

It  should  be  investigated  why  the  StrictHistoryMode option  is  disabled,  given  that  it 
effectively makes this attack possible. As the code actually accounts for replay attacks, it is  
recommended to turn this setting on by default.
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PSI-08-010 WP1: Potential fingerprinting of Psiphon servers via gQUIC (Medium)
Note:  No  changes  have  been  made  to  address  this  issue,  as  the  problem is  already  
documented and Psiphon is working on phasing out QUIC support for production networks.

Psiphon  servers  support  the  QUIC  protocol  for  tunnel  transport.  To  that  end,  the 
administrator generates configurations for both server and client,  indicating that  a tunnel 
uses QUIC. Psiphon servers support, in principle, two variants of QUIC, namely IETF and 
Google QUIC (gQUIC).

It  was  discovered  that  the  QUIC  protocol  handler  of  a  Psiphon  server  requires  an 
obfuscation key, known by both the client and server, as a precondition to completing the  
initial  handshake  between them.  The  initial  handshake  involves  obfuscation  in  terms  of 
encryption  and  serves  to  authenticate  legitimate  clients  before  establishing  QUIC 
connections. For IETF QUIC connections, the server does not provide a response in case a  
client sends a  client-hello message that is obfuscated with the wrong obfuscation key. On 
the contrary,  the QUIC server responds for gQUIC channels in case a client  provides a 
client-hello message protected by the provenly wrong obfuscation key.

An attacker could use this observation to probe for a potential Psiphon server which uses 
QUIC in the following way. First, the attacker attempts to establish a connection using IETF 
QUIC with a random obfuscation key. In case the server fails to provide any response but 
rather drops the connection silently, the attacker sends another connection attempt using 
Google QUIC with another random obfuscation key.  In case the server responds to this 
second connection attempt, the attacker successfully identifies a potential Psiphon server.

It must be noted that this issue was discussed with the Psiphon team. Over the course of  
this exchange, it became clear that this appears to be an indicator of a Psiphon server. At 
that junction, it was mutually agreed to cease further investigation of the behavior of other  
and unrelated QUIC server implementations, as well as their responses to Psiphon clients 
using the QUIC implementation of  Psiphon for further differentiation. The unit-test  below 
demonstrates the issue.

Unit-test:

func TestQUIC(t *testing.T) {
serverIdleTimeout = 1 * time.Second
irregularTunnelLogger := func(_ string, err error, _ 

common.LogFields) {}

realObfuscationKey := prng.HexString(32)
listener, err := Listen(

nil,
irregularTunnelLogger,
"127.0.0.1:0",
realObfuscationKey,
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true)
defer listener.Close()

if err != nil {
t.Fatalf("Listen failed: %s", err)

}
serverAddress := listener.Addr().String()

t.Run(fmt.Sprintf("OBFUSCATED-QUICv1(real-key)"), func(t *testing.T) 
{

runQUIC(t, "OBFUSCATED-QUICv1", false, serverAddress, 
realObfuscationKey)

})
t.Run(fmt.Sprintf("OBFUSCATED-QUICv1(wrong-key)"), func(t *testing.T) 

{
runQUIC(t, "OBFUSCATED-QUICv1", true, serverAddress, 

prng.HexString(32))
})
t.Run(fmt.Sprintf("gQUICv44(wrong-key)"), func(t *testing.T) {

runQUIC(t, "gQUICv44", true, serverAddress, 
prng.HexString(32))

})
}

func runQUIC(
t *testing.T,
quicClientVersion string,
shouldNotGetProbeResponse bool,
serverAddress string,
clientObfuscationKey string) {

testGroup, testCtx := errgroup.WithContext(context.Background())
testGroup.Go(func() error {

ctx, cancelFunc := context.WithTimeout(
context.Background(), 1*time.Second)

defer cancelFunc()

remoteAddr, err := net.ResolveUDPAddr("udp", serverAddress)
if err != nil {

return errors.Trace(err)
}
packetConn, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {

return errors.Trace(err)
}
packetConn = &countReadsConn{PacketConn: packetConn}
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obfuscationPaddingSeed, err := prng.NewSeed()
if err != nil {

return errors.Trace(err)
}

var clientHelloSeed *prng.Seed
if isClientHelloRandomized(quicClientVersion) {

clientHelloSeed, err = prng.NewSeed()
if err != nil {

return errors.Trace(err)
}

}

quicSNIAddress, _, err := net.SplitHostPort(serverAddress)
if err != nil {

return errors.Trace(err)
}

_, err = Dial(
ctx,
packetConn,
remoteAddr,
quicSNIAddress,
quicClientVersion,
clientHelloSeed,
clientObfuscationKey,
obfuscationPaddingSeed,
nil,
false)

fmt.Println("Dial error: ", err)
if err == nil {

readCount := packetConn.
(*countReadsConn).getReadCount()

fmt.Println("Read bytes from accepted con: ", 
readCount)

if shouldNotGetProbeResponse {
fmt.Println("Failed anti-probing for ", 
quicClientVersion)
panic("Should not be raised")

}
}

return nil
})

go func() {
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testGroup.Wait()
}()

<-testCtx.Done()
err := testGroup.Wait()
if err != nil {

t.Errorf("goroutine failed: %s", err)
}

}

The unit-test establishes three connections to a Psiphon server using two different protocol  
variants, namely  OBFUSCATED-QUICv1 and gQUICv44. The goal of the tests is to verify 
the anti-probing measures of  Psiphon servers.  The first  test  for  OBFUSCATED-QUICv1 
uses  the  correct  obfuscation  key,  therefore  the  connection  should  be  established 
successfully, with no panic raised.

The second test attempts to establish a connection using OBFUSCATED-QUICv1 but now 
doing so with a truly random key. Here, the test should conclude that no connection was 
established,  and  no  packets  have  been  received  by  the  test-client.  The  last  test  case 
attempts to establish a connection using gQUICv44, again with a random obfuscation key.

Test output:

=== RUN   TestQUIC
=== RUN   TestQUIC/OBFUSCATED-QUICv1(real-key)
Dial error:  <nil>
Read bytes from accepted con:  2
--- PASS: TestQUIC/OBFUSCATED-QUICv1(real-key) (0.00s)
=== RUN   TestQUIC/OBFUSCATED-QUICv1(wrong-key)
Dial error:  quic.Dial#494: quic.dialQUIC#1025: context deadline exceeded
--- PASS: TestQUIC/OBFUSCATED-QUICv1(wrong-key) (1.00s)
=== RUN   TestQUIC/gQUICv44(wrong-key)
Dial error:  <nil>
Read bytes from accepted con:  6
Failed anti-probing for  gQUICv44
panic: Should not be raised

From the output of the tests, it can be seen that the Psiphon server establishes a connection 
for  OBFUSCATED-QUICv1 with the correct obfuscation key, and fails to send a response 
for  OBFUSCATED-QUICv1 with  a  random  key.  The  test  for  gQUICv44, however, 
demonstrates  that  the server  sends six  packets in  response  to  the  connection attempt, 
thereby failing to mitigate probing attacks.

To address this problem, Cure53 advises the provision of uniform responses for all QUIC 
protocol variants. This should become standard procedure in case a client provides a client-
hello message protected with a wrong obfuscation key.
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Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may 
assist an attacker in successfully achieving malicious objectives in the future. Most of these 
results are vulnerable code snippets that did not provide an easy method by which to be 
called. Conclusively, whilst a vulnerability is present, an exploit may not always be possible.

PSI-08-001 WP1: No upper limit on sessions potentially leads to DoS (Low)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

Clients connecting to a Psiphon server provide a session ID during the initial establishment  
of  the SSH connection.  After  successfully  verifying the client,  the server  creates a  new 
session  for  that  client  with  the  provided  session  ID.  Such  a  session  includes  several 
resources  like  TCP  connection  but  also  in-memory  channels  and  threads  for  reading 
packets from the client. In this context, Cure53 confirmed that the server fails to impose a  
restriction on the maximum number of sessions it can manage.

An attacker could abuse this lack of resource restrictions. For example, they could attempt 
to  establish  numerous  sessions  on  a  single  Psiphon  server.  When  representing  very 
powerful adversaries, like nation state-level threat actors, the attacker could potentially bring 
a Psiphon server into a Denial-of-Service (DoS) situation due to insufficient memory.

The excerpt below shows that the SSH server implementation, responsible for managing 
SSH sessions, fails to enforce an upper limit on the number of concurrent sessions.

Affected file #1:
psiphon-tunnel-core-master/psiphon/server/tunnelServer.go

Affected code #1:
func (sshServer *sshServer) registerEstablishedClient(client *sshClient) 
bool {

[...]
if sshServer.clients[client.sessionID] != nil {

[...]
}
[...]
sshServer.clients[client.sessionID] = client
[...]

}

Furthermore, it was identified that the handling of  meek connections suffers from a similar 
issue.  Specifically,  as  demonstrated  in  the  code  excerpt  below,  if  the  Psiphon  server 
supports  meek  transport, the corresponding  meek  server (running on the Psiphon server) 
also fails to restrict the number of concurrent meek connections. As in the example above, 
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this could also potentially lead to a DoS situation similar to the one observed for the SSH 
connections.

Affected file #2:
psiphon-tunnel-core-master/psiphon/server/meek.go

Affected code #2:
func (server *MeekServer) getSessionOrEndpoint(

request *http.Request, meekCookie *http.Cookie) (string, 
*meekSession, net.Conn, string, *GeoIPData, error) {

[...]
session = &meekSession{

meekProtocolVersion: clientSessionData.MeekProtocolVersion,
sessionIDSent:       false,
cachedResponse:      cachedResponse,
cookieName:          meekCookie.Name,
contentType:         request.Header.Get("Content-Type"),

}
[...]
sessionID := meekCookie.Value
if clientSessionData.MeekProtocolVersion >= MEEK_PROTOCOL_VERSION_2 {

sessionID, err = makeMeekSessionID()
if err != nil {

return "", nil, nil, "", nil, errors.Trace(err)
}

}

server.sessionsLock.Lock()
server.sessions[sessionID] = session
server.sessionsLock.Unlock()
[...]

}

To mitigate this issue Cure53 recommends supplying a configurable limit of the number of 
concurrent sessions for a Psiphon server. Concrete limits should depend on the hardware 
settings that characterize individual Psiphon servers.
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PSI-08-002 WP1: Session impersonation through SSH API requests (Medium)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

During the initial SSH handshake, a client sends their session ID together with the SSH 
password to a Psiphon server. After successfully authenticating the client, the server adds 
the client's session to its internal cache, and then starts threads for reading new messages 
from the client.

When reading  SSH requests,  which  correspond to  a  special  kind  of  API  requests  sent 
through a SSH connection, the server forwards these requests to its SSH API. This API 
includes several functions, for example those for completing a handshake. Cure53 observed 
that the server actually fails to cross-validate the session ID of the SSH API payload with the 
session ID of the connection that received the request.

In case an attacker manages to acquire a session ID of a victim, they could send SSH API 
requests through its own connection but using the session ID of the victim. This results in an 
impersonation of the victim for SSH API requests. More broadly, it could lead to other issues 
like session hijacking, DoS or information leakages.

The code excerpt below shows that the function responsible for handling SSH requests of a  
client fails to use the session ID of the sshClient instance. Furthermore, it is evident that the 
function does not check if the provided client session ID within the request.Payload instance 
matches the session ID of the sshClient.

Affected file:
psiphon-tunnel-core-master/psiphon/server/tunnelServer.go

Affected code:
func (sshClient *sshClient) handleSSHRequests(requests <-chan *ssh.Request) 
{

for request := range requests {
[...]
if request.Type == "keepalive@openssh.com" {

[...]
} else {

[...]
responsePayload, err = sshAPIRequestHandler(

sshClient.sshServer.support,
clientAddr,
sshClient.geoIPData,
authorizedAccessTypes,
request.Type,
request.Payload)
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}
[...]

}

}

To  mitigate  this  issue  Cure53  advises  implementing  an  additional  cross-check.  This 
mechanism should verify that the session ID of the SSH API request payload matches the 
session ID of the SSH client connection through which the server received the SSH API 
request.

PSI-08-004 WP1: OOB packet reading in psiphond tunnel handlers (High)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

The  Psiphon  software  complex  permits  usage  of  tunnel  interfaces  for  establishing 
connections. For that purpose, a client creates a tunnel interface locally and sends outbound 
traffic through there. The client application of Psiphon, for example the ConsoleClient, picks 
up network data from this interface and sends it to the connected Psiphon server.

In  response,  the  server  sends  the  packet  through  its  own  tunnel  interface.  When  an 
upstream service responds to the Psiphon server's tunnel interface, the server reads the 
packet from the tunnel interface and sends it downstream to the client. In this context, it was 
found that the packet parsing of the tunnel interface fails to validate the length of raw TCP 
packets. Moreover, it makes implicit assumptions about the lengths of the packets.

Failing to validate the lengths of packets can result in numerous complications. For buffers 
shared  across  connections  with  sufficient  lengths,  it  could  lead  to  out-of-bounds  reads 
across client connections, potentially leaking connection information across clients. Another 
case  would  concern  the  application  which  allocates  or  slices  buffers  according  to  the 
observed yet  too short  lengths.  If  it  additionally  assumes a certain  but  unmet  minimum 
length, the application will read out-of-bounds. This would signify a  panic that results in a 
shutdown of the server.

It must be noted that packets and their length are out of control for a Psiphon server, and 
are potentially  fully  and maliciously  controlled by upstream services.  The excerpt  below 
demonstrates the issue for IPv4 TCP packet parsing. It is evident that - for TCP connections 
- the minimum packet length enforced by the server corresponds to 34 bytes. However, the 
server's interface attempts to access the packet array at indices  [36:38] (TCP), which are 
clearly out-of-bounds for packets that have the length of 34.

The team attempted to verify this dynamically by debugging the psiphond server. Instead of 
the  expected  panic,  the  testers  encountered  out-of-bounds  reads  without  panic,  which 
meant reading data from previous connections.
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Affected file:
psiphon-tunnel-core-master/psiphon/common/tun/tun.go

Affected code:
func processPacket(

metrics *packetMetrics,
session *session,
clientTransparentDNS *clientTransparentDNS,
direction packetDirection,
packet []byte) bool {
[...]
if version == 4 {

[...]
if len(packet) < 20 {

metrics.rejectedPacket(direction, packetRejectLength)
return false

}
[...]
protocol = internetProtocol(packet[9])
[...]
if protocol == internetProtocolTCP {

if len(packet) < 33 {
metrics.rejectedPacket(direction, 
packetRejectTCPProtocolLength)
return false

}
dataOffset = 20 + 4*int(packet[32]>>4)
if len(packet) < dataOffset {

metrics.rejectedPacket(direction, 
packetRejectTCPProtocolLength)
return false

}
} else if protocol == internetProtocolUDP {

dataOffset = 28
if len(packet) < dataOffset {

metrics.rejectedPacket(direction, 
packetRejectUDPProtocolLength)
return false

}
} else {

[...]
}

applicationData = packet[dataOffset:]
[...]
sourceIPAddress = packet[12:16]
destinationIPAddress = packet[16:20]
IPChecksum = packet[10:12]
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[...]
if protocol == internetProtocolTCP {

TCPChecksum = packet[36:38]
} else { // UDP

UDPChecksum = packet[26:28]
}

} else { // IPv6
[...]

}
[...]

}

It must be noted that the same issue is also present for the IPv6 packet parsing functionality.

To mitigate this issue, Cure53 advises to rigorously verify that the lengths of packets align 
with the elements the servers access. Better controls are needed to prevent out-of-bounds 
access.

PSI-08-005 WP1: Checks of SSH public keys omit host validation (Info)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

A source code review of the Psiphon client application revealed that the client - at its core - 
establishes an SSH connection to a Psiphon server instance. As part of establishing the 
SSH connection, the client verifies the public key of the server against a known, expected 
public key. Yet, the client application fails to also validate the IP address of the server, with  
its actions limited to checking the public key.

This circumstance poses a security issue in case an attacker manages to steal a private key 
of a Psiphon server. To succeed, they would also need to successfully trick the victim into 
connecting to a different IP address than the expected Psiphon server address. In such a 
case, the victim's client application would successfully authenticate against the bogus SSH 
server  of  the  attacker.  Notably,  this  is  possible  because the attacker  utilizes  the stolen 
private key.

The  code  excerpt  below  demonstrates  that  the  client  application  only  compares  the 
publicKey of a server rather than verifying the public key and the  remote address of the 
server.

Affected file:
psiphon-tunnel-core-master/psiphon/tunnel.go
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Affected code:
func dialTunnel(

ctx context.Context,
config *Config,
dialParams *DialParameters) (_ *dialResult, retErr error) {
[...]
expectedPublicKey, err := base64.StdEncoding.DecodeString(

dialParams.ServerEntry.SshHostKey)
if err != nil {

return nil, errors.Trace(err)
}
sshCertChecker := &ssh.CertChecker{

IsHostAuthority: func(auth ssh.PublicKey, address string) bool 
{

[...]
return false

},
HostKeyFallback: func(addr string, remote net.Addr, publicKey 

ssh.PublicKey) error {
if !bytes.Equal(expectedPublicKey, publicKey.Marshal()) 

{
return errors.TraceNew("unexpected host public 

key")
}
return nil

},
}
[...]

}

Cure53 recommends to also validate the remote address as part of the SSH server key  
verification.

PSI-08-006 WP1: Weak MAC ciphers in SSH configuration (Low)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

While dynamically analyzing the SSH configuration of Psiphon servers and its clients, the 
testers  identified  support  for  multiple  authentication  schemes  in  terms  of  message 
authentication codes (MACs). Among others, the configuration supports the hmac-sha1-96 
algorithm, which is considered insecure due to its rather short length in relation to the HMAC 
authentication tags3.

Using a message authentication code with truncated length introduces a security risk of  
broken message authentication, as it increases the probability of an attacker successfully 
breaking the MAC. Subsequently, breaking the authentication scheme makes it possible for 

3 https://www.virtuesecurity.com/kb/ssh-weak-mac-algorithms-enabled/

Cure53, Berlin · Jul 18, 24  20/27

https://cure53.de/
https://www.virtuesecurity.com/kb/ssh-weak-mac-algorithms-enabled/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de  · mario@cure53.de

an attacker to alter encrypted messages without any of the parties - neither client nor server  
- ever noticing.

The code excerpt below demonstrates that the supported MAC modes of a Psiphon server 
include the insecure hmac-sha1-96 algorithm.

Affected file:
psiphon-tunnel-core-master/psiphon/common/crypto/ssh/mac.go

Affected code:
var macModes = map[string]*macMode{

"hmac-sha2-512-etm@openssh.com": {64, true, func(key []byte) 
hash.Hash {

return hmac.New(sha512.New, key)
}},
"hmac-sha2-256-etm@openssh.com": {32, true, func(key []byte) 

hash.Hash {
return hmac.New(sha256.New, key)

}},
"hmac-sha2-512": {64, false, func(key []byte) hash.Hash {

return hmac.New(sha512.New, key)
}},
"hmac-sha2-256": {32, false, func(key []byte) hash.Hash {

return hmac.New(sha256.New, key)
}},
"hmac-sha1": {20, false, func(key []byte) hash.Hash {

return hmac.New(sha1.New, key)
}},
"hmac-sha1-96": {20, false, func(key []byte) hash.Hash {

return truncatingMAC{12, hmac.New(sha1.New, key)}
}},

}

To mitigate this issue Cure53 advises removal  of  the  hmac-sha1-96 from the list  of  the 
supported MAC algorithms. Only strong cryptographic MAC modes with full authentication 
tag lengths should be used as MAC schemes.
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PSI-08-009 WP1: Missing integrity check for obfuscated traffic (Low)
Note: The issue was fixed and the fix was verified by Cure53 who had access to the diff.

Investigating the obfuscated SSH transport scheme revealed that the obfuscation applied 
during  the  initial  handshake  used  the  RC4  cipher  to  hide  information  from a  potential 
eavesdropper.  The  encryption  key  for  the  cipher  uses  a  pre-shared  master  secret  for 
derivation. In this realm, obfuscation strategies fail to protect the integrity of the obfuscated 
data, as they solely focus on protecting its confidentiality.

The format of the messages during the initial obfuscated SSH handshake are rather fixed. 
Due  to  the  missing  integrity  protection,  an  attacker  could  alter  bytes  in  the  handshake 
packets  without  the  victim  noticing.  For  example,  the  attacker  could  flip  bytes  of  the 
specName field which is exchanged during the original and obfuscated SSH handshake.

To reiterate, the code excerpt below highlights the use of RC4 as an obfuscation scheme.  
As the RC4 solely protects the confidentiality of data, but not its integrity, an attacker can  
alter the obfuscated traffic without either client or server being able to detect the malicious 
modification.

Affected file:
psiphon-tunnel-core-master/psiphon/common/obfuscator/obfuscator.go

Affected code:
func initObfuscatorCiphers(

config *ObfuscatorConfig, obfuscatorSeed []byte) (*rc4.Cipher, 
*rc4.Cipher, error) {

clientToServerKey, err := deriveKey(obfuscatorSeed, 
[]byte(config.Keyword), []byte(OBFUSCATE_CLIENT_TO_SERVER_IV))

if err != nil {
return nil, nil, errors.Trace(err)

}

serverToClientKey, err := deriveKey(obfuscatorSeed, 
[]byte(config.Keyword), []byte(OBFUSCATE_SERVER_TO_CLIENT_IV))

if err != nil {
return nil, nil, errors.Trace(err)

}

clientToServerCipher, err := rc4.NewCipher(clientToServerKey)
if err != nil {

return nil, nil, errors.Trace(err)
}
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serverToClientCipher, err := rc4.NewCipher(serverToClientKey)
if err != nil {

return nil, nil, errors.Trace(err)
}

return clientToServerCipher, serverToClientCipher, nil
}

Further, reviewing the QUIC obfuscation revealed that also the QUIC obfuscation applies an 
encryption scheme without any integrity protection. For QUIC, client and server utilize the 
ChaCha20 stream cipher  for  obfuscation,  without  the  often  used  Poly1305 algorithm to 
protect the integrity of the data in question.

The code excerpt below highlights the use of ChaCha20 without Poly1305. Once again, the 
lack of integrity protection fosters an attack in between Psiphon client and server, resulting 
in modification of obfuscated data with no alerts.

Affected file:
psiphon-tunnel-core-master/psiphon/common/quic/obfuscator.go

Affected code:
func (conn *ObfuscatedPacketConn) readPacket(

p, oob []byte) (int, int, int, *net.UDPAddr, bool, error) {
[...]
isObfuscated := true
[...]
if n > 0 {

[...]
if isObfuscated {

[...]
cipher, err := 
chacha20.NewCipher(conn.obfuscationKey[:], 
p[0:NONCE_SIZE])
if err != nil {

return n, oobn, flags, addr, true, 
errors.Trace(err)
}
cipher.XORKeyStream(p[NONCE_SIZE:], p[NONCE_SIZE:])
[...]

}
}
[...]

}
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To mitigate this issue Cure53 advises to either compute an HMAC checksum in addition to 
the encryption of data in transit, or to switch an authenticated encryption mode (e.g.,  Galois 
Counter  Mode)  characterized  by  using  a  de  facto strong  block  cipher  like  AES.  For 
ChaCha20 encryption, it is advisable to also use Poly1305 as an authentication scheme that 
is capable of protecting the obfuscated data's integrity.
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Conclusions
As the short list of findings and the absence of  Critical  flaws suggest, Cure53 is happy to 
report that the Psiphon Tunnel Core codebase appears to be in good shape from a security  
perspective. Four testers involved in this spring 2024 assessment were impressed with the 
coding style and source code quality,  which both clearly demonstrate that  security  work 
focused on improving protections has been done successfully  prior to this  PSI-08  audit. 
Despite spotting ten flaws, Cure53 still commends the Psiphon team for their commitment to 
security.

To clarify, Cure53 has a long-standing cooperation with Psiphon. As such, this white-box 
April-May 2024 audit was informed by past projects, including  PSI-01  as the examination 
which  tackled  the  Tunnel  Core  as  well.  From a  meta-level  perspective,  it  is  crucial  to  
underscore that the Psiphon software complex constitutes a client-server complex with the 
aim  to  obfuscate  traffic  for  evading  censorship.  It  supports  a  large  variety  of  different 
protocols and tactics, many of which were subject to Cure53’s scrutiny in earlier iterations 
(see PSI-01 to PSI-07 reports).

At  its  heart,  the protocols  utilize  SSH connections,  which  are  potentially  obfuscated,  to 
establish a secure tunnel between client and server. The client and server wrap the SSH 
connection, depending on the configuration, in other protocols such as  meek or QUIC. In 
scope of this assessment, both client and server were considered, with an explicit focus on 
the core components used by both applications.

To assess the security of the Psiphon complex, the team conducted dynamic tests paired 
with static code analysis in terms of source code reviews. It was straightforward for the team 
to build client and server applications, however, the configuration of the system turned out to 
be rather complicated. This was generally due to the complexity of the product(s) and lack of 
documentation regarding some of the configuration options. While no major roadblocks were 
encountered, it is important to keep this in mind.

The Cure53 team started with conducting tests dedicated to SSRF issues that could affect 
the Psiphon servers.  It  was investigated if  servers allow forwarding of  requests into the  
internal  network.  A source code review highlighted the impossibility  of  this  task,  barring 
certain conditions. In particular, the intervention of an admin who allows such traffic through 
the AllowBogon flag could change the outcomes of SSRF attack attempts. At any rate, the 
deployment was considered correct for the use-case.

It  is clear that Psiphon servers correspond to valuable targets for censors, therefore the 
identification of a potential Psiphon server imposes an immediate risk for a server. Hence, 
the testing team was investigating ways to find a Psiphon server through traffic patterns,  
referred to as fingerprinting.
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It  turned out  that  the QUIC protocol  implementation is  vulnerable to  fingerprinting when 
alternating between supported QUIC protocol variants, for instance when moving between 
"(obfuscated) IETF QUIC" to "Google QUIC". The server responds differently in case that 
the attacker  does not  know the obfuscation key of  the connection,  fostering adversarial 
mapping of potential Psiphon servers (PSI-08-010).

A focused inspection of the obfuscation protocol further revealed that MitM attackers could 
use  recorded  sessions  to  fingerprint  Psiphon  servers  by  replaying  initial  packets  and 
observing the responses. Even though better code choices could mitigate this problem, the 
corresponding option was disabled at the time of testing (see PSI-08-008).

The Psiphon applications use operating system commands to  configure their  respective 
interfaces for some settings. Cure53 wished to know if such configurations could lead to the 
execution of arbitrary commands, however, no issues in this direction could be spotted.

Since the ultimate purpose of Psiphon servers is to relay requests of clients, availability was 
considered a fundamental requirement for the setup. Therefore, the team comprehensively 
analyzed  the  source  code  for  potential  Denial-of-Service  situations.  The  envisioned 
scenarios included unhandled panics (for example, by accessing nil pointers or reading out-
of-bounds) and unbounded memory allocations.

Indeed,  it  turned  out  that  Psiphon  servers  suffer  from several  issues  in  this  area.  For 
instance, the issue of PSI-08-007 highlights a partial DoS for  meek connections, whereas 
the issue of  PSI-08-004 describes an out-of-bounds read issue for Psiphon servers using 
tunnel interfaces.  Lastly,  PSI-08-001 sheds light  on the missing checks in regard to the 
number of concurrent sessions held by Psiphon servers.

Another Denial-of-Service issue can occur when local hostnames are resolved through the 
tunnel,  as described in PSI-08-003. However, this issue relies on certain conditions and 
could not be reproduced using the official binaries.

As the SSH connections require authentication in terms of an SSH username and password, 
the team was investigating the authentication scheme that the applications rely on. Here, it  
must  be  positively  noted  no  flaws  transpired  in  the  authentication  scheme  of  SSH 
connections.  Also,  the team attempted to mount a Man-in-the-Middle attack on the SSH 
connection between client  and server,  however,  the client  successfully  pins the server's 
public key.

Next, the team was checking for potential flaws in authorizing access to the Psiphon server. 
The authorization scheme -  in  terms of  signed authorizations -  was found to  be robust 
against threats like signature bypasses, the use of expired authorizations or sharing them 
with other clients.
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As a topic closely related to authorization, the team was investigating impersonation attacks 
against other legitimate users of a Psiphon server. It was identified that an attacker could 
impersonate other legitimate clients through their own SSH tunnel. Solely knowing the SSH 
session ID of a victim would suffice for this approach, as can be seen in PSI-08-002.

The cryptography used by the complex was also investigated.  The auditors checked for 
insecure  randomness  in  key  generations,  outdated  cryptographic  primitives,  and  other 
common  flaws  like  reusing  cryptographic  keys  with  constant  IVs  or  non-constant  time 
comparisons  of  secrets.  Generally  speaking,  the  cryptography  appears  sturdy,  with  just 
minor observations and recommendations ensuing.

For example, it was found that the obfuscation as part of SSH and QUIC connections fails to  
apply integrity checks on the obfuscated data (PSI-08-009). Moreover, SSH connections in 
principle allow the use of  hmac-sha1-96 as MAC scheme (PSI-08-006), which should be 
reconsidered.

All  in  all,  it  was concluded that  the Psiphon complex is in a good state from a security  
standpoint. From the data gathered during PSI-08, it is evident from the coding style and the 
source  code  quality  are  underpinned by  solid  design  choices  and  multiple  iterations  of  
security testing. Therefore, Cure53 congratulates the Psiphon team for a product with an 
excellent security posture.

Cure53 would like to thank Adam Kruger, Rod Hynes and Joe Arshat from the Psiphon Inc. 
team for their excellent project coordination, support and assistance, both before and during 
this assignment.
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