Uvažuje se Gaussova věta ve trojrozměrném euklidovském prostoru. Množinou M tedy budeme v tomto případě rozumět daný objem a ∂M plochu, která jej uzavírá. Vyjdeme z toho, že máme po ploše ∂M integrovat tok vektorového pole:
Forma dS má v kartézských složkách poměrně jednoduchý tvar (dy^dz,dz^dx,dx^dy) - je snadné zjistit, že první složka této formy musí být element plochy, ke kterému je vektor (1,0,0) kolmý. je vnější součin forem. Pořadí forem dy,dz určujících plochu je libovolné. Zbylé souřadnice se určí cyklickou záměnou, aby nedošlo ke změně orientace diferenciální formy (pokud by za plošku kolmou k (1,0,0) byla zvolena naopak dz^dy, pak pokud ostatní složky budou určeny cyklickou záměnou, výsledek bude stejný). Nyní zderivujme integrovanou formu, v jejích členech jsou vždy derivace podle dvou souřadnic nulové, takže zbývá vždy jedna:
Jakmile jsou souřadnicové formy ve správném pořadí, tak lze převést integrál formy na běžný integrál přes objem:
Uvažuje se Stokesova věta ve trojrozměrném euklidovském prostoru. Množinou Σ tedy budeme v tomto případě rozumět danou plochu a ∂Σ křivku, která ji uzavírá, obdobným postupem jako u odvození Gaussovy věty tedy dostaneme:
↑SPIVAK, Michael. Calculus on manifolds : a modern approach to classical theorems of advanced calculus. New York: [s.n.], 1965. Dostupné online. ISBN0-8053-9021-9. OCLC187146Je zde použita šablona {{Cite book}} označená jako k „pouze dočasnému použití“.