Binární relace
Binární relace je pojem z matematiky. Vyjadřuje vztah (relaci) prvků jedné množiny k prvkům množiny druhé.
Příklad: Mějme množiny čísel , . Definujeme vztah (binární relaci) „je větší“ prvků z k prvkům z . Vidíme, že číslo z množiny „je větší“ než číslo z množiny . Říkáme, že prvek je v binární relaci „je větší“ s prvkem , zkráceně „je větší“ . Většinou prvky, které jsou v binární relaci, značíme jen jako uspořádanou dvojici . Binární relaci z tohoto příkladu lze popsat jako množinu uspořádaných dvojic . Na množinu lze nahlížet jako na podmnožinu kartézského součinu . Trojici množin lze považovat za definici binární relace.
Definice
editovatBinární relace je uspořádaná trojice , kde a jsou libovolné množiny a je podmnožina kartézského součinu . Množině se říká definiční obor, množině obor hodnot a množinu nazýváme graf relace.
To, že prvek je v relaci s prvkem značíme zápisem , nebo zápisem , kde a .
Druhy relací
editovatBinární relace je:
- symetrická: pokud platí , pak platí i .
- Příkladem může být relace „je sourozenec“. Je-li i množinou všech mých příbuzných, a platí-li (já sestra), pak také platí (sestra já). Pokud sourozence nemám, je graf relace prázdnou množinou. I taková relace je symetrická.
- antisymetrická: pokud a současně , pak platí .
- tranzitivní: pokud a současně , pak platí .
- Příkladem může být už zmíněná relace "je sourozenec" nebo relace "je vyšší". Já jsem vyšší než Petr a současně Petr je vyšší než Ondřej, z toho plyne: Já jsem vyšší než Ondřej. Tranzitivní relací například není relace "být kamarád". Já jsem kamarád Petra, on je kamarád Ondřeje, z toho ale nevyplývá kamarádství mezi mnou a Ondřejem.
- reflexivní: pokud pro každé platí . (Prvek je v relaci sám se sebou.)
- Příklad reflexivní relace je "je stejný", příklad nereflexivní relace je "je vyšší". Neplatí, já "je vyšší" (než) já.
Relaci, která je reflexivní, symetrická, a tranzitivní nazýváme relace ekvivalence.
Relaci, která je reflexivní, antisymetrická a tranzitivní nazýváme částečné uspořádání.
Další typy: úplné uspořádání, dobré uspořádání.
Operace s relacemi
editovatNa množině binárních relací jsou definovány následující operace, jejichž výsledkem je opět relace:
- Inverzní relace k relaci mezi množinami a je relace
- Relace složená z relací a je relace
- Průnik relací a je relace
- Sjednocení relací a je relace
Literatura
editovatBARTSCH, Hans-Jochen. Matematické vzorce. 4. vyd. Praha: Academia, 1994. 832 s. ISBN 80-200-1448-9.
Externí odkazy
editovat- Obrázky, zvuky či videa k tématu binární relace na Wikimedia Commons