University of
BRISTOL

COMS20012:
Format Strings

Joseph Hallett

bristol.ac.uk




What is all this about then?

[$ cat example3.c && make example3 ]
#include <stdio.h>

int main(int argc, char xargv[]) {
printf("This program is called: ");
printf(argvl[el);
printf("\n");

return 0;

}

cc -I/opt/homebrew/opt/openjdk/include example3.c -o example3

example3.c:5:10: warning: format string is not a string literal (potentially insecure) [-Wformat-security]
printf(argvlel);

example3.c:5:10: note: treat the string as an argument to avoid this
printf(argvl[el);
A

II%SII 2
1 warning generated.

$




man 3 printf

BUGS top

Because sprintf() and vsprintf() assume an arbitrarily long
string, callers must be careful not to overflow the actual space;
this is often impossible to assure. Note that the length of the
strings produced is locale-dependent and difficult to predict.
Use snprintf() and vsnprintf() instead (or asprintf(3) and
vasprintf(3)).

Code such as printf(foo); often indicates a bug, since foo may

contain a % character. If foo comes from untrusted user input,
it may contain %n, causing the printf() call to write to memory
and creating a security hole.




%n?

= LibC’s printf function handles formatted output...
—%s prints a string...
—%d or %i prints a decimal integer...

n The number of characters written so far is stored into the
integer pointed to by the corresponding argument. That
argument shall be an int *, or variant whose size matches
the (optionally) supplied integer length modifier. No
argument is converted. (This specifier is not supported
by the bionic C library.) The behavior is undefined if
the conversion specification includes any flags, a field
width, or a precision.




Say you wanted to do columnar output
(and were really weird)

= Say we have an address book we want to print like the following

Joseph Hallett: 3.16 MVB, Bristol
01234 567890
Born 1987-11-08

#include <stdio.h>

void print_address_book(char xname,
char xdatall) {
int align;
printf("%s: %n", name, &align);
if (data != NULL)
do { 7 '
printf("%s\n", xdata); u..‘.-:;ﬁm
for (int i = @; i < align; i++)
putchar(' ');
} while (x(++data) != NULL);
putchar('\n');
}




S0 why is this dangerous?

= Say you control the format string...

= Format string arguments typically passed via the stack
— (once you've printed a few... if not using cdecl)

= What happens if you print more arguments than you have?

#include <stdio.h>
int main(void) {
int target = 0x31337;
char *args =
"91: %p\n0@2: %p\n@3: %p\nd4: %p\n"
"95: %p\nB6: %p\nd7: %p\n@8: %p\n"
"99: %p\nla: %p\ndb: %p\ndc: %p\n"
"9d: %p\nle: %p\ndf: %p\nld: %p\n";
printf(args);
return 0;

5




Hmm!

$ ./example5

01:
02:
03:
04:
05:
06:
07:
08:
09:
Qa:
Ob:
Qc:
od:
Qe:
of:
10:

Ox16T147700
Oxdéeb3c
0x100cbbf44
0x31337
0x16T147850
0x100d690f4
0x0

0x0

0x0

0x0

0x0

0x0
0x100dc8138
0x0
0x4d55545a
0x20a000000000

#include <stdio.h>

int main(void) {

int target = @x31337;

char xargs =
"91: %p\no2:
"95: %p\nob:
"99: %p\noa:
"ed: %p\noe:

printf(args);

return 0;

i

%p\n@3:
%p\no7:
%p\nBb:
%p\nof:

%p\no4:
%p\no8:
%p\n0@c:
%p\nlo:

%p\nn
%p\n"
%p\nn
%p\nll .



S0 why is this dangerous?

= By careful choice of format string we can write to arbitrary
addresses somewhere after the stack pointer...

» This could be a local variable...
—Data corruption

= This could be return address...
— Control flow corruption and arbitrary code execution




Going further...

= See Exploiting format string vulnerabilities by scut/team teso

= See Exploiting a format string bug in Solaris CDE (Phrack
Magazine, Volume 0x16, Issue 0x46) by Marco Ivaldi

= (or take Systems and Software Security in Year 4 ;-) )




Why is this even still a thing?

= We don’t need dangerous cruft from the 1970s in our programming
languages just to save a call to strlen() anymore.

—We didn’t really back then either...




OpenBSD 7.0

Released Oct 14, 2021. (51st OpenBSD release)
Copyright 1997-2021, Theo de Raadt.

7.0 Song: "The Style Hymn".
Artwork by Natasha Allegri.

See the information on the FTP page for a list of mirror machines.
Go to the pub/OpenBSD/7.0/ directory on one of the mirror sites.
Have a look at the 7.0 errata page for a list of bugs and workarounds.
See a detailed log of changes between the 6.9 and 7.0 releases.

signify(1) pubkeys for this release:

openbsd-7@-base.pub: RWR3KL+gSrd4QZ5mOvKhc00gGe61ogHp5PyB0j2RrmyCpgqchk9A7NVPzh
openbsd-70-fw.pub: RWS8nd7vy+I+fRHtnpxVBeX+P+9rBqJMPvSU6z8LYyAv5p73WcdFXs3B
openbsd-7@-pkg.pub: RWR3iauEtA8/bLN/zfIQhOc5ramL/fARX7256xw8BwAUebxik7KioCvL

openbsd-70-syspatch.pub: RWSD33kMDKsQH8j@Q8FzfYk+vsgTKiP8Q5DcrkQQtrZoWg48yxuQgLxu

All applicable copyrights and credits are in the src.tar.gz, sys.tar.gz, xenocara.tar.gz, ports.tar.gz files,

What's New

This is a partial list of new features and systems included in OpenBSD 7.0. For a comprehensive list, see the changelog leading to 7.0.

¢ Security improvements:
o Moved objcopy to base set to allow KARL to work on all installs.
o Added unveil(2) calls to xterm in the case where there are no exec-formatted or exec-selected resources
o Changed usage of %n from a syslog warning to syslog and abort for printf(3) (and associated variants).
o Made kernel stop all threads when terminating via pledge fail().




