
Package ‘SimInf’
January 20, 2025

Title A Framework for Data-Driven Stochastic Disease Spread
Simulations

Version 9.8.1

Description Provides an efficient and very flexible framework to
conduct data-driven epidemiological modeling in realistic large
scale disease spread simulations. The framework integrates
infection dynamics in subpopulations as continuous-time Markov
chains using the Gillespie stochastic simulation algorithm and
incorporates available data such as births, deaths and movements
as scheduled events at predefined time-points. Using C code for
the numerical solvers and 'OpenMP' (if available) to divide work
over multiple processors ensures high performance when simulating
a sample outcome. One of our design goals was to make the package
extendable and enable usage of the numerical solvers from other R
extension packages in order to facilitate complex epidemiological
research. The package contains template models and can be extended
with user-defined models. For more details see the paper by
Widgren, Bauer, Eriksson and Engblom (2019)
<doi:10.18637/jss.v091.i12>. The package also provides
functionality to fit models to time series data using the
Approximate Bayesian Computation Sequential Monte Carlo
('ABC-SMC') algorithm of Toni and others (2009)
<doi:10.1098/rsif.2008.0172>.

Acknowledgements This software has been made possible by support from
the Swedish Research Council within the UPMARC Linnaeus center
of Excellence (Pavol Bauer, Robin Eriksson, and Stefan
Engblom), the Swedish Research Council Formas (Stefan Engblom
and Stefan Widgren), the Swedish Board of Agriculture (Stefan
Widgren), the Swedish strategic research program eSSENCE
(Stefan Widgren), and in the framework of the Full Force
project, supported by funding from the European Union’s Horizon
2020 Research and Innovation programme under grant agreement No
773830: One Health European Joint Programme (Stefan Widgren).

License GPL-3

URL https://github.com/stewid/SimInf

1

https://doi.org/10.18637/jss.v091.i12
https://doi.org/10.1098/rsif.2008.0172
https://github.com/stewid/SimInf

2 Contents

BugReports https://github.com/stewid/SimInf/issues

Type Package

LazyData true

Biarch true

NeedsCompilation yes

SystemRequirements GNU Scientific Library (GSL)

Depends R (>= 4.0)

Imports digest, graphics, grDevices, MASS, methods, stats, utils,
Matrix (>= 1.3-0)

Suggests knitr, rmarkdown

Collate 'C-generator.R' 'check_arguments.R' 'init.R' 'valid.R'
'classes.R' 'SimInf_model.R' 'SEIR.R' 'SIR.R' 'SIS.R' 'SISe.R'
'SISe3.R' 'SISe3_sp.R' 'SISe_sp.R' 'SimInf-package.R'
'SimInf.R' 'SimInf_events.R' 'SimInf_indiv_events.R' 'run.R'
'density_ratio.R' 'abc.R' 'degree.R' 'distance.R'
'distributions.R' 'edge_properties.R' 'match_compartments.R'
'mparse.R' 'n.R' 'openmp.R' 'package_skeleton.R' 'pfilter.R'
'plot.R' 'prevalence.R' 'print.R' 'punchcard.R' 'trajectory.R'
'u0.R' 'v0.R'

Encoding UTF-8

RoxygenNote 7.3.1

VignetteBuilder utils, knitr

Author Stefan Widgren [aut, cre] (<https://orcid.org/0000-0001-5745-2284>),
Robin Eriksson [aut] (<https://orcid.org/0000-0002-4291-712X>),
Stefan Engblom [aut] (<https://orcid.org/0000-0002-3614-1732>),
Pavol Bauer [aut] (<https://orcid.org/0000-0003-4328-7171>),
Thomas Rosendal [ctb] (<https://orcid.org/0000-0002-6576-9668>),
Ivana Rodriguez Ewerlöf [ctb] (<https://orcid.org/0000-0002-9678-9813>),
Attractive Chaos [cph] (Author of 'kvec.h'.)

Maintainer Stefan Widgren <stefan.widgren@gmail.com>

Repository CRAN

Date/Publication 2024-06-21 12:10:02 UTC

Contents
abc . 4
as.data.frame.SimInf_abc . 8
as.data.frame.SimInf_events . 8
as.data.frame.SimInf_indiv_events . 9
boxplot,SimInf_model-method . 9
continue . 10
C_code . 11
distance_matrix . 12

https://github.com/stewid/SimInf/issues
https://orcid.org/0000-0001-5745-2284
https://orcid.org/0000-0002-4291-712X
https://orcid.org/0000-0002-3614-1732
https://orcid.org/0000-0003-4328-7171
https://orcid.org/0000-0002-6576-9668
https://orcid.org/0000-0002-9678-9813

Contents 3

edge_properties_to_matrix . 13
events . 14
events_SEIR . 15
events_SIR . 16
events_SIS . 17
events_SISe . 18
events_SISe3 . 19
gdata . 21
gdata<- . 21
get_individuals . 22
indegree . 23
individual_events . 23
ldata . 24
logLik,SimInf_pfilter-method . 25
mparse . 26
nodes . 28
node_events . 29
n_generations . 30
n_nodes . 31
outdegree . 31
package_skeleton . 32
pairs,SimInf_model-method . 33
pfilter . 34
plot,SimInf_abc-method . 36
plot,SimInf_events-method . 36
plot,SimInf_indiv_events-method . 37
plot,SimInf_model-method . 37
plot,SimInf_pfilter-method . 39
prevalence . 40
prevalence,SimInf_model-method . 41
prevalence,SimInf_pfilter-method . 42
punchcard<- . 43
run . 45
SEIR . 47
SEIR-class . 48
select_matrix . 49
select_matrix<- . 49
set_num_threads . 50
shift_matrix . 51
shift_matrix<- . 51
show,SimInf_abc-method . 52
show,SimInf_events-method . 53
show,SimInf_indiv_events-method . 53
show,SimInf_model-method . 54
show,SimInf_pfilter-method . 55
SimInf . 55
SimInf_abc-class . 56
SimInf_events . 57

4 abc

SimInf_events-class . 60
SimInf_indiv_events-class . 61
SimInf_model . 61
SimInf_model-class . 63
SimInf_pfilter-class . 64
SIR . 64
SIR-class . 66
SIS . 66
SIS-class . 68
SISe . 68
SISe-class . 71
SISe3 . 71
SISe3-class . 74
SISe3_sp . 74
SISe3_sp-class . 77
SISe_sp . 77
SISe_sp-class . 80
summary,SimInf_abc-method . 80
summary,SimInf_events-method . 81
summary,SimInf_indiv_events-method . 81
summary,SimInf_model-method . 82
summary,SimInf_pfilter-method . 82
trajectory . 83
trajectory,SimInf_model-method . 83
trajectory,SimInf_pfilter-method . 85
u0 . 86
u0<- . 87
u0_SEIR . 88
u0_SIR . 89
u0_SIS . 90
u0_SISe . 91
u0_SISe3 . 92
v0<- . 93

Index 95

abc Approximate Bayesian computation

Description

Approximate Bayesian computation

abc 5

Usage

abc(
model,
priors = NULL,
npart = NULL,
ninit = NULL,
distance = NULL,
tolerance = NULL,
...,
verbose = getOption("verbose", FALSE),
post_gen = NULL

)

S4 method for signature 'SimInf_model'
abc(
model,
priors = NULL,
npart = NULL,
ninit = NULL,
distance = NULL,
tolerance = NULL,
...,
verbose = getOption("verbose", FALSE),
post_gen = NULL

)

Arguments

model The SimInf_model object to generate data from.

priors The priors for the parameters to fit. Each prior is specified with a formula no-
tation, for example, beta ~ uniform(0, 1) specifies that beta is uniformly dis-
tributed between 0 and 1. Use c() to provide more than one prior, for example,
c(beta ~ uniform(0, 1), gamma ~ normal(10, 1)). The following distribu-
tions are supported: gamma, normal and uniform. All parameters in priors
must be only in either gdata or ldata.

npart An integer (>1) specifying the number of particles to approximate the posterior
with.

ninit Specify a positive integer (>npart) to adaptively select a sequence of tolerances
using the algorithm of Simola and others (2021). The initial tolerance is adap-
tively selected by sampling ninit draws from the prior and then retain the npart
particles with the smallest distances. Note there must be enough initial particles
to satisfactorily explore the parameter space, see Simola and others (2021). If
the tolerance parameter is specified, then ninit must be NULL.

distance A function for calculating the summary statistics for a simulated trajectory. For
each particle, the function must determine the distance and return that infor-
mation. The first argument, result, passed to the distance function is the
result from a run of the model with one trajectory attached to it. The second

6 abc

argument, generation, to distance is an integer with the generation of the
particle(s). Further arguments that can passed to the distance function comes
from ... in the abc function. Depending on the underlying model structure,
data for one or more particles have been generated in each call to distance. If
the model only contains one node and all the parameters to fit are in ldata, then
that node will be replicated and each of the replicated nodes represent one par-
ticle in the trajectory (see ‘Examples’). On the other hand if the model contains
multiple nodes or the parameters to fit are contained in gdata, then the trajec-
tory in the result argument represents one particle. The function can return a
numeric matrix (number of particles × number of summary statistics). Or, if the
distance contains one summary statistic, a numeric vector with the length equal
to the number of particles. Note that when using adaptive tolerance selection,
only one summary statistic can be used, i.e., the function must return a matrix
(number of particles × 1) or a numeric vector.

tolerance A numeric matrix (number of summary statistics × number of generations)
where each column contains the tolerances for a generation and each row con-
tains a sequence of gradually decreasing tolerances. Can also be a numeric vec-
tor if there is only one summary statistic. The tolerance determines the number
of generations of ABC-SMC to run. If the ninit parameter is specified, then
tolerance must be NULL.

... Further arguments to be passed to fn.

verbose prints diagnostic messages when TRUE. The default is to retrieve the global op-
tion verbose and use FALSE if it is not set.

post_gen An optional function that, if non-NULL, is applied after each completed gen-
eration. The function must accept one argument of type SimInf_abc with the
current state of the fitting process. This function can be useful to, for example,
save and inspect intermediate results.

Value

A SimInf_abc object.

References

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf. Approximate Bayesian compu-
tation scheme for parameter inference and model selection in dynamical systems. Journal of the
Royal Society Interface 6, 187–202, 2009. doi:10.1098/rsif.2008.0172

U. Simola, J. Cisewski-Kehe, M. U. Gutmann, J. Corander. Adaptive Approximate Bayesian Com-
putation Tolerance Selection. Bayesian Analysis, 16(2), 397–423, 2021. doi: 10.1214/20-BA1211

Examples

Not run:
Let us consider an SIR model in a closed population with N = 100
individuals of whom one is initially infectious and the rest are
susceptible. First, generate one realisation (with a specified
seed) from the model with known parameters \code{beta = 0.16} and
\code{gamma = 0.077}. Then, use \code{abc} to infer the (known)

https://doi.org/10.1098/rsif.2008.0172

abc 7

parameters from the simulated data.
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the SIR model and plot the number of infectious.
set.seed(22)
infectious <- trajectory(run(model), "I")$I
plot(infectious, type = "s")

The distance function to accept or reject a proposal. Each node
in the simulated trajectory (contained in the 'result' object)
represents one proposal.
distance <- function(result, ...) {

Extract the time-series of infectious in each node as a
data.frame.
sim <- trajectory(result, "I")

Split the 'sim' data.frame by node and calculate the sum of the
squared distance at each time-point for each node.
dist <- tapply(simI, simnode, function(sim_infectious) {

sum((infectious - sim_infectious)^2)
})

Return the distance for each node. Each proposal will be
accepted or rejected depending on if the distance is less than
the tolerance for the current generation.
dist

}

Fit the model parameters using ABC-SMC and adaptive tolerance
selection. The priors for the parameters are specified using a
formula notation. Here we use a uniform distribtion for each
parameter with lower bound = 0 and upper bound = 1. Note that we
use a low number particles here to keep the run-time of the example
short. In practice you would want to use many more to ensure better
approximations.
fit <- abc(model = model,

priors = c(beta ~ uniform(0, 1), gamma ~ uniform(0, 1)),
npart = 100,
ninit = 1000,
distance = distance,
verbose = TRUE)

Print a brief summary.
fit

Display the ABC posterior distribution.
plot(fit)

End(Not run)

8 as.data.frame.SimInf_events

as.data.frame.SimInf_abc

Coerce to data frame

Description

Coerce to data frame

Usage

S3 method for class 'SimInf_abc'
as.data.frame(x, ...)

Arguments

x any R object.

... additional arguments to be passed to or from methods.

as.data.frame.SimInf_events

Coerce events to a data frame

Description

Coerce events to a data frame

Usage

S3 method for class 'SimInf_events'
as.data.frame(x, ...)

Arguments

x any R object.

... additional arguments to be passed to or from methods.

as.data.frame.SimInf_indiv_events 9

as.data.frame.SimInf_indiv_events

Coerce to data frame

Description

Coerce to data frame

Usage

S3 method for class 'SimInf_indiv_events'
as.data.frame(x, ...)

Arguments

x any R object.

... additional arguments to be passed to or from methods.

boxplot,SimInf_model-method

Box plot of number of individuals in each compartment

Description

Produce box-and-whisker plot(s) of the number of individuals in each model compartment.

Usage

S4 method for signature 'SimInf_model'
boxplot(x, compartments = NULL, index = NULL, ...)

Arguments

x The model to plot

compartments specify the names of the compartments to extract data from. The compart-
ments can be specified as a character vector e.g. compartments = c('S', 'I',
'R'), or as a formula e.g. compartments = ~S+I+R (see ‘Examples’). Default
(compartments=NULL) includes all compartments.

index indices specifying the nodes to include when plotting data. Default index =
NULL include all nodes in the model.

... Additional arguments affecting the plot produced.

10 continue

Examples

Create an 'SIR' model with 10 nodes and initialise
it with 99 susceptible individuals and one infected
individual. Let the model run over 100 days.
model <- SIR(u0 = data.frame(S = rep(99, 10),

I = rep(1, 10),
R = rep(0, 10)),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the model and save the result.
result <- run(model)

Create a boxplot that includes all compartments in all nodes.
boxplot(result)

Create a boxplot that includes the S and I compartments in
nodes 1 and 2.
boxplot(result, ~S+I, 1:2)

continue Run more generations of ABC SMC

Description

Run more generations of ABC SMC

Usage

continue(object, ...)

S4 method for signature 'SimInf_abc'
continue(
object,
tolerance = NULL,
...,
verbose = getOption("verbose", FALSE),
post_gen = NULL

)

Arguments

object The SimInf_abc to continue from.

... Further arguments to be passed to the SimInf_abc@fn.

C_code 11

tolerance A numeric matrix (number of summary statistics × number of generations)
where each column contains the tolerances for a generation and each row con-
tains a sequence of gradually decreasing tolerances. Can also be a numeric vec-
tor if there is only one summary statistic. The tolerance determines the number
of generations of ABC-SMC to run.

verbose prints diagnostic messages when TRUE. The default is to retrieve the global op-
tion verbose and use FALSE if it is not set.

post_gen An optional function that, if non-NULL, is applied after each completed gen-
eration. The function must accept one argument of type SimInf_abc with the
current state of the fitting process. This function can be useful to, for example,
save and inspect intermediate results.

Value

A SimInf_abc object.

C_code Extract the C code from a SimInf_model object

Description

Extract the C code from a SimInf_model object

Usage

C_code(model)

Arguments

model The SimInf_model object to extract the C code from.

Value

Character vector with C code for the model.

Examples

Use the model parser to create a 'SimInf_model' object that
expresses an SIR model, where 'b' is the transmission rate and
'g' is the recovery rate.
model <- mparse(transitions = c("S -> b*S*I/(S+I+R) -> I", "I -> g*I -> R"),

compartments = c("S", "I", "R"),
gdata = c(b = 0.16, g = 0.077),
u0 = data.frame(S = 99, I = 1, R = 0),
tspan = 1:10)

View the C code.
C_code(model)

12 distance_matrix

distance_matrix Create a distance matrix between nodes for spatial models

Description

Calculate the euclidian distances beween coordinates for all coordinates within the cutoff.

Usage

distance_matrix(x, y, cutoff, min_dist = NULL, na_fail = TRUE)

Arguments

x Projected x coordinate

y Projected y coordinate

cutoff The distance cutoff

min_dist The minimum distance to separate two nodes. If the coordinates for two nodes
are identical, the min_dist must be assigned or an error is raised. Default is
NULL, i.e., to raise an error.

na_fail A logical indicating whether missing values in x or y should raise an error or
assign zero to all distances involving missing values. Default is TRUE, i.e., to
raise an error.

Value

dgCMatrix

Examples

Generate a grid 10 x 10 and place one node in each cell
separated by 100m.
nodes <- expand.grid(x = (0:9) * 100, y = (0:9) * 100)
plot(y ~ x, nodes)

Define the cutoff to only include neighbors within 300m.
d <- distance_matrix(x = nodes$x, y = nodes$y, cutoff = 300)

View the first 10 rows and columns in the distance matrix
d[1:10, 1:10]

edge_properties_to_matrix 13

edge_properties_to_matrix

Convert an edge list with properties to a matrix

Description

A utility function to facilitate preparing edge properties for ldata in a model.

Usage

edge_properties_to_matrix(edges, n_nodes)

Arguments

edges a data.frame with properties assigned for each edge ’from’ –> ’to’, for exam-
ple, weight or count. The data.frame must contain the columns ’from’ and
’to’ with valid indices to the nodes (1 <= index <= n_nodes).

n_nodes the total number of nodes in the model. The resulting matrix will have the
number of columns equal to n_nodes.

Details

The edge properties will be converted to a matrix where each row in edges will become a sequence
of (index, value_1, value_2, ..., value_n) where ’index’ is the zero-based index of the from node.
The reason for a zero-based index is to facilitate it’s usage in C code. The sequence will be added
to the ’to’ column in the matrix. There will always be at least one stop value=-1 in each column.
All other values in the matrix will be set to NaN. See ‘Examples’.

Value

a numeric matrix with the number of rows equal to max(table(edges$to)) * (ncol(edges) - 1)
+ 1 and the number of columns equal to n_nodes.

Examples

Let us consider the following edge properties.
edges <- data.frame(

from = c(2, 3, 4, 1, 4, 5, 1, 3, 1, 3),
to = c(1, 1, 1, 2, 3, 3, 4, 4, 5, 5),
rate = c(0.2, 0.01, 0.79, 1, 0.2, 0.05, 0.2, 0.8, 0.2, 0.8),
count = c(5, 5, 5, 50, 10, 10, 5, 5, 5, 5))

Converting the edge properties into a matrix
edge_properties_to_matrix(edges, 6)

Gives the following output. The first column contains first the
properties for the edge from = 2 --> to = 1, where the first
row is the zero-based index of from, i.e., 1. The second row

14 events

contains the rate=0.2 and the third row count=5. On the fourth
row starts the next sequence with the values in the second row
in the edges data.frame. The stop value in the first column is
on row 10. As can be seen in column 6, there are no edge
properties for node=6.
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.00 0 3.00 0.0 0.0 -1
[2,] 0.20 1 0.20 0.2 0.2 NaN
[3,] 5.00 50 10.00 5.0 5.0 NaN
[4,] 2.00 -1 4.00 2.0 2.0 NaN
[5,] 0.01 NaN 0.05 0.8 0.8 NaN
[6,] 5.00 NaN 10.00 5.0 5.0 NaN
[7,] 3.00 NaN -1.00 -1.0 -1.0 NaN
[8,] 0.79 NaN NaN NaN NaN NaN
[9,] 5.00 NaN NaN NaN NaN NaN
[10,] -1.00 NaN NaN NaN NaN NaN

events Extract the events from a SimInf_model object

Description

Extract the scheduled events from a SimInf_model object.

Usage

events(object, ...)

S4 method for signature 'SimInf_model'
events(object, ...)

Arguments

object The model to extract the events from.

... Additional arguments affecting the generated events.

Value

SimInf_events object.

Examples

Create an SIR model that includes scheduled events.
model <- SIR(u0 = u0_SIR(),

tspan = 1:(4 * 365),
events = events_SIR(),
beta = 0.16,
gamma = 0.077)

events_SEIR 15

Extract the scheduled events from the model and display summary
summary(events(model))

Extract the scheduled events from the model and plot them
plot(events(model))

events_SEIR Example data to initialize events for the ‘SEIR’ model

Description

Example data to initialize scheduled events for a population of 1600 nodes and demonstrate the
SEIR model.

Usage

events_SEIR()

Details

Example data to initialize scheduled events (see SimInf_events) for a population of 1600 nodes
and demonstrate the SEIR model. The dataset contains 466692 events for 1600 nodes distributed
over 4 * 365 days. The events are divided into three types: ‘Exit’ events remove individuals from
the population (n = 182535), ‘Enter’ events add individuals to the population (n = 182685), and
‘External transfer’ events move individuals between nodes in the population (n = 101472). The
vignette contains a detailed description of how scheduled events operate on a model.

Value

A data.frame

Examples

For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SEIR' model with 1600 nodes and initialize
it to run over 4*365 days. Add one infected individual
to the first node.
u0 <- u0_SEIR()
u0$I[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SEIR(u0 = u0,

tspan = tspan,
events = events_SEIR(),
beta = 0.16,

16 events_SIR

epsilon = 0.25,
gamma = 0.01)

Display the number of individuals affected by each event type
per day.
plot(events(model))

Run the model to generate a single stochastic trajectory.
result <- run(model)
plot(result)

Summarize the trajectory. The summary includes the number of
events by event type.
summary(result)

events_SIR Example data to initialize events for the ‘SIR’ model

Description

Example data to initialize scheduled events for a population of 1600 nodes and demonstrate the SIR
model.

Usage

events_SIR()

Details

Example data to initialize scheduled events (see SimInf_events) for a population of 1600 nodes
and demonstrate the SIR model. The dataset contains 466692 events for 1600 nodes distributed
over 4 * 365 days. The events are divided into three types: ‘Exit’ events remove individuals from
the population (n = 182535), ‘Enter’ events add individuals to the population (n = 182685), and
‘External transfer’ events move individuals between nodes in the population (n = 101472). The
vignette contains a detailed description of how scheduled events operate on a model.

Value

A data.frame

Examples

For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIR' model with 1600 nodes and initialize

events_SIS 17

it to run over 4*365 days. Add one infected individual
to the first node.
u0 <- u0_SIR()
u0$I[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SIR(u0 = u0,

tspan = tspan,
events = events_SIR(),
beta = 0.16,
gamma = 0.01)

Display the number of individuals affected by each event type
per day.
plot(events(model))

Run the model to generate a single stochastic trajectory.
result <- run(model)
plot(result)

Summarize the trajectory. The summary includes the number of
events by event type.
summary(result)

events_SIS Example data to initialize events for the ‘SIS’ model

Description

Example data to initialize scheduled events for a population of 1600 nodes and demonstrate the SIS
model.

Usage

events_SIS()

Details

Example data to initialize scheduled events (see SimInf_events) for a population of 1600 nodes
and demonstrate the SIS model. The dataset contains 466692 events for 1600 nodes distributed
over 4 * 365 days. The events are divided into three types: ‘Exit’ events remove individuals from
the population (n = 182535), ‘Enter’ events add individuals to the population (n = 182685), and
‘External transfer’ events move individuals between nodes in the population (n = 101472). The
vignette contains a detailed description of how scheduled events operate on a model.

Value

A data.frame

18 events_SISe

Examples

For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIS' model with 1600 nodes and initialize
it to run over 4*365 days. Add one infected individual
to the first node.
u0 <- u0_SIS()
u0$I[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SIS(u0 = u0,

tspan = tspan,
events = events_SIS(),
beta = 0.16,
gamma = 0.01)

Display the number of individuals affected by each event type
per day.
plot(events(model))

Run the model to generate a single stochastic trajectory.
result <- run(model)
plot(result)

Summarize the trajectory. The summary includes the number of
events by event type.
summary(result)

events_SISe Example data to initialize events for the ‘SISe’ model

Description

Example data to initialize scheduled events for a population of 1600 nodes and demonstrate the
SISe model.

Usage

events_SISe()

Details

Example data to initialize scheduled events (see SimInf_events) for a population of 1600 nodes
and demonstrate the SISe model. The dataset contains 466692 events for 1600 nodes distributed
over 4 * 365 days. The events are divided into three types: ‘Exit’ events remove individuals from
the population (n = 182535), ‘Enter’ events add individuals to the population (n = 182685), and

events_SISe3 19

‘External transfer’ events move individuals between nodes in the population (n = 101472). The
vignette contains a detailed description of how scheduled events operate on a model.

Value

A data.frame

Examples

For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SISe' model with 1600 nodes and initialize
it to run over 4*365 days. Add one infected individual
to the first node.
u0 <- u0_SISe()
u0$I[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SISe(u0 = u0, tspan = tspan, events = events_SISe(),

phi = 0, upsilon = 1.8e-2, gamma = 0.1, alpha = 1,
beta_t1 = 1.0e-1, beta_t2 = 1.0e-1, beta_t3 = 1.25e-1,
beta_t4 = 1.25e-1, end_t1 = 91, end_t2 = 182,
end_t3 = 273, end_t4 = 365, epsilon = 0)

Display the number of individuals affected by each event type
per day.
plot(events(model))

Run the model to generate a single stochastic trajectory.
result <- run(model)

Summarize the trajectory. The summary includes the number of
events by event type.
summary(result)

events_SISe3 Example data to initialize events for the ‘SISe3’ model

Description

Example data to initialize scheduled events for a population of 1600 nodes and demonstrate the
SISe3 model.

Usage

data(events_SISe3)

20 events_SISe3

Format

A data.frame

Details

Example data to initialize scheduled events (see SimInf_events) for a population of 1600 nodes
and demonstrate the SISe3 model. The dataset contains 783773 events for 1600 nodes distributed
over 4 * 365 days. The events are divided into three types: ‘Exit’ events remove individuals from
the population (n = 182535), ‘Enter’ events add individuals to the population (n = 182685), ‘Internal
transfer’ events move individuals between compartmens within one node e.g. ageing (n = 317081),
and ‘External transfer’ events move individuals between nodes in the population (n = 101472). The
vignette contains a detailed description of how scheduled events operate on a model.

Examples

For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SISe3' model with 1600 nodes and initialize
it to run over 4*365 days. Add one infected individual
to the first node.
data("u0_SISe3", package = "SimInf")
data("events_SISe3", package = "SimInf")
u0_SISe3$I_1[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SISe3(u0 = u0_SISe3, tspan = tspan, events = events_SISe3,

phi = rep(0, nrow(u0_SISe3)), upsilon_1 = 1.8e-2,
upsilon_2 = 1.8e-2, upsilon_3 = 1.8e-2,
gamma_1 = 0.1, gamma_2 = 0.1, gamma_3 = 0.1,
alpha = 1, beta_t1 = 1.0e-1, beta_t2 = 1.0e-1,
beta_t3 = 1.25e-1, beta_t4 = 1.25e-1, end_t1 = 91,
end_t2 = 182, end_t3 = 273, end_t4 = 365, epsilon = 0)

Display the number of individuals affected by each event type
per day.
plot(events(model))

Run the model to generate a single stochastic trajectory.
result <- run(model)

Summarize the trajectory. The summary includes the number of
events by event type.
summary(result)

gdata 21

gdata Extract global data from a SimInf_model object

Description

The global data is a numeric vector that is common to all nodes. The global data vector is passed as
an argument to the transition rate functions and the post time step function.

Usage

gdata(model)

S4 method for signature 'SimInf_model'
gdata(model)

Arguments

model The model to get global data from.

Value

a numeric vector

Examples

Create an SIR model
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:5, beta = 0.16, gamma = 0.077)

Set 'beta' to a new value
gdata(model, "beta") <- 2

Extract the global data vector that is common to all nodes
gdata(model)

gdata<- Set a global data parameter for a SimInf_model object

Description

The global data is a numeric vector that is common to all nodes. The global data vector is passed as
an argument to the transition rate functions and the post time step function.

22 get_individuals

Usage

gdata(model, parameter) <- value

S4 replacement method for signature 'SimInf_model'
gdata(model, parameter) <- value

Arguments

model The model to set a global model parameter for.

parameter The name of the parameter to set.

value A numeric value.

Value

a SimInf_model object

Examples

Create an SIR model
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:5, beta = 0.16, gamma = 0.077)

Set 'beta' to a new value
gdata(model, "beta") <- 2

Extract the global data vector that is common to all nodes
gdata(model)

get_individuals Extract individuals from SimInf_indiv_events

Description

Lookup individuals, in which node they are located and their age at a specified time-point.

Usage

get_individuals(x, time = NULL)

S4 method for signature 'SimInf_indiv_events'
get_individuals(x, time = NULL)

Arguments

x an individual events object of class SimInf_indiv_events.

time the time-point for the lookup of individuals. Default is NULL which means to
extract the individuals at the minimum time-point in the events object x.

indegree 23

Value

a data.frame with the columns id, node, and age.

indegree Determine in-degree for each node in a model

Description

The number of nodes with inward external transfer events to each node.

Usage

indegree(model)

Arguments

model determine in-degree for each node in the model.

Value

vector with in-degree for each node.

Examples

Create an 'SIR' model with 1600 nodes and initialize
it with example data.
model <- SIR(u0 = u0_SIR(), tspan = 1:1460, events = events_SIR(),

beta = 0.16, gamma = 0.077)

Display indegree for each node in the model.
plot(indegree(model))

individual_events Individual events

Description

In many countries, individual-based livestock data are collected to enable contact tracing during
disease outbreaks. However, the livestock databases are not always structured in such a way that
relevant information for disease spread simulations is easily retrieved. The aim of this function is
to facilitate cleaning livestock event data and prepare it for usage in SimInf.

Usage

individual_events(events)

24 ldata

Arguments

events a data.frame with the columns id, event, time, node, and dest to define the
events, see details.

Details

The argument events in individual_events must be a data.frame with the following columns:

• id: an integer or character identifier of the individual.

• event: four event types are supported: exit, enter, internal transfer, and external transfer.
When assigning the events, they can either be coded as a numerical value or a character string:
exit; 0 or 'exit', enter; 1 or 'enter', internal transfer; 2 or 'intTrans', and external
transfer; 3 or 'extTrans'.

• time: an integer, character, or date (of class Date) for when the event occured. If it’s a
character it must be able to coerce to Date.

• node: an integer or character identifier of the source node.

• dest: an integer or character identifier of the destination node for movement events, and ’dest’
will be replaced with NA for non-movement events.

Value

SimInf_indiv_events

See Also

node_events.

ldata Extract local data from a node

Description

The local data is a numeric vector that is specific to a node. The local data vector is passed as an
argument to the transition rate functions and the post time step function.

Usage

ldata(model, node)

S4 method for signature 'SimInf_model'
ldata(model, node)

Arguments

model The model to get local data from.

node index to node to extract local data from.

logLik,SimInf_pfilter-method 25

Value

a numeric vector

Examples

Create an 'SISe' model with 1600 nodes.
model <- SISe(u0 = u0_SISe(), tspan = 1:100, events = events_SISe(),

phi = 0, upsilon = 1.8e-2, gamma = 0.1, alpha = 1,
beta_t1 = 1.0e-1, beta_t2 = 1.0e-1, beta_t3 = 1.25e-1,
beta_t4 = 1.25e-1, end_t1 = c(91, 101), end_t2 = c(182, 185),
end_t3 = c(273, 275), end_t4 = c(365, 360), epsilon = 0)

Display local data from the first two nodes.
ldata(model, node = 1)
ldata(model, node = 2)

logLik,SimInf_pfilter-method

Log likelihood

Description

Extract the estimated log likelihood from a SimInf_pfilter object.

Usage

S4 method for signature 'SimInf_pfilter'
logLik(object)

Arguments

object The SimInf_pfilter object.

Value

the estimated log likelihood.

26 mparse

mparse Model parser to define new models to run in SimInf

Description

Describe your model in a logical way in R. mparse creates a SimInf_model object with your model
definition that is ready to run.

Usage

mparse(
transitions = NULL,
compartments = NULL,
ldata = NULL,
gdata = NULL,
u0 = NULL,
v0 = NULL,
tspan = NULL,
events = NULL,
E = NULL,
N = NULL,
pts_fun = NULL,
use_enum = FALSE

)

Arguments

transitions character vector containing transitions on the form "X -> ... -> Y". The left
(right) side is the initial (final) state and the propensity is written in between
the ->-signs. The special symbol @ is reserved for the empty set. For example,
transitions = c("S -> beta*S*I/(S+I+R) -> I", "I -> gamma*I -> R") ex-
presses the SIR model. It is also possible to define variables which can then be
used in calculations of propensities or in calculations of other variables. A vari-
able is defined by the operator <-. Using a variable for the size of the population,
the SIR model can instead be written transitions = c("S -> beta*S*I/N ->
I","I -> gamma*I -> R", "N <- S+I+R"). By default, the type of a variable is
defined as a double in the generated C code, but it is possible to also define it as
an integer by writing (int) before the variable name. For example, for the SIR
model, the population size can be defined as "(int)N <- S+I+R". It is also pos-
sible to explicitly use (double) in front of the variable name, but it is not needed
because it is the default. Note that the order of propensities and variables does
not matter.

compartments contains the names of the involved compartments, for example, compartments
= c("S", "I","R").

ldata optional data for the nodes. Can be specified as a data.frame with one row
per node, as a numeric matrix where column ldata[, j] contains the local data

mparse 27

vector for the node j, or as a as a named vector when the model only contains
one node. If ldata is specified as a data.frame, each column is one parameter.
If v0 is specified as a matrix, it must have row names to identify the parameters
in the transitions. If v0 is specified as a named vector, the names identify the
parameters. The local data vector is passed as an argument to the transition rate
functions and the post time step function.

gdata optional data that are common to all nodes in the model. Can be specified either
as a named numeric vector or as as a one-row data.frame. The names are used
to identify the parameters in the transitions. The global data vector is passed as
an argument to the transition rate functions and the post time step function.

u0 A data.frame with the initial state in each node, i.e., the number of individuals
in each compartment in each node when the simulation starts (see ‘Details’).
The parameter u0 can also be an object that can be coerced to a data.frame,
e.g., a named numeric vector will be coerced to a one row data.frame.

v0 optional data with the initial continuous state in each node. v0 can be specified
as a data.frame with one row per node, as a numeric matrix where column
v0[,j] contains the initial state vector for the node j, or as a named vector
when the model only contains one node. If v0 is specified as a data.frame,
each column is one parameter. If v0 is specified as a matrix, the row names
identify the parameters. If v0 is specified as a named vector, the names identify
the parameters. The ‘v’ vector is passed as an argument to the transition rate
functions and the post time step function. The continuous state can be updated
in the post time step function.

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events A data.frame with the scheduled events. Default is NULL i.e. no scheduled
events in the model.

E matrix to handle scheduled events, see SimInf_events. Default is NULL i.e. no
scheduled events in the model.

N matrix to handle scheduled events, see SimInf_events. Default is NULL i.e. no
scheduled events in the model.

pts_fun optional character vector with C code for the post time step function. The C
code should contain only the body of the function i.e. the code between the
opening and closing curly brackets.

use_enum generate enumeration constants for the indices to each parameter in the ’u’, ’v’,
’ldata’, and ’gdata’ vectors in the generated C code. The name of each enumer-
ation constant will be transformed to the upper-case name of the corresponding
parameter, for example, a parameter ’beta’ will become ’BETA’. Using enumer-
ation constants can make it easier to modify the C code afterwards, or when
writing C code for the pts_fun parameter. Default is FALSE, i.e., the parameters
are specified by using integer indices for the parameters.

28 nodes

Value

a SimInf_model object

Examples

Not run:
Use the model parser to create a 'SimInf_model' object that
expresses the SIR model, where 'beta' is the transmission rate
and 'gamma' is the recovery rate.
model <- mparse(transitions = c("S -> beta*S*I/N -> I",

"I -> gamma*I -> R",
"N <- S+I+R"),

compartments = c("S", "I", "R"),
gdata = c(beta = 0.16, gamma = 0.077),
u0 = data.frame(S = 100, I = 1, R = 0),
tspan = 1:100)

Run and plot the result
set.seed(22)
result <- run(model)
plot(result)

End(Not run)

nodes Example data with spatial distribution of nodes

Description

Example data to initialize a population of 1600 nodes and demonstrate various models.

Usage

data(nodes)

Format

A data.frame

Examples

Not run:
For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIR' model with 1600 nodes and initialize

node_events 29

it to run over 4*365 days. Add one infected individual
to the first node.
u0 <- u0_SIR()
u0$I[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SIR(u0 = u0,

tspan = tspan,
events = events_SIR(),
beta = 0.16,
gamma = 0.077)

Run the model to generate a single stochastic trajectory.
result <- run(model)

Determine nodes with one or more infected individuals in the
trajectory. Extract the 'I' compartment and check for any
infected individuals in each node.
infected <- colSums(trajectory(result, ~ I, format = "matrix")) > 0

Display infected nodes in 'blue' and non-infected nodes in 'yellow'.
data("nodes", package = "SimInf")
col <- ifelse(infected, "blue", "yellow")
plot(y ~ x, nodes, col = col, pch = 20, cex = 2)

End(Not run)

node_events Transform individual events to node events for a model

Description

In many countries, individual-based livestock data are collected to enable contact tracing during
disease outbreaks. However, the livestock databases are not always structured in such a way that
relevant information for disease spread simulations is easily retrieved. The aim of this function is
to facilitate cleaning livestock event data and prepare it for usage in SimInf.

Usage

node_events(x, time = NULL, target = NULL, age = NULL)

S4 method for signature 'SimInf_indiv_events'
node_events(x, time = NULL, target = NULL, age = NULL)

Arguments

x an individual events object of class SimInf_indiv_events.

time All events that occur after ‘time’ are included. Default is NULL which means to
extract the events after the minimum time-point in the SimInf_indiv_events
object.

30 n_generations

target The SimInf model (’SEIR’, ’SIR’, ’SIS’, ’SISe3’, ’SISe3_sp’, ’SISe’, or ’SISe_sp’)
to target the events and u0 for. The default, NULL, creates events but they might
have to be post-processed to fit the specific use case.

age Integer vector with break points in days for the ageing events.

Details

The individual-based events will be aggregated on node-level. The select value is determined by
the event type and age category. If there is only one age category, i.e., age=NULL, then select=1 for
the enter events, and select=2 for all other events. If there are two age categories, then select=1
for the enter events in the first age category, and select=2 for the enter events in the second age cat-
egory. Similarly, select=3 for all other events in the first age category, and select=4 for all other
events in the first second category. With three age categories, it works similarly with select=1,2,3
for the enter events in each age category, respectively. And select=4,5,6 for all other events.

Value

a data.frame with the columns event, time, node, dest, n, proportion, select, and shift.

See Also

individual_events.

n_generations Determine the number of generations

Description

Determine the number of generations

Usage

n_generations(object)

S4 method for signature 'SimInf_abc'
n_generations(object)

Arguments

object the SimInf_abc object to determine the number of generations for.

Value

an integer with the number of generations.

n_nodes 31

n_nodes Determine the number of nodes in a model

Description

Determine the number of nodes in a model

Usage

n_nodes(model)

S4 method for signature 'SimInf_model'
n_nodes(model)

Arguments

model the model object to extract the number of nodes from.

Value

the number of nodes in the model.

Examples

Create an 'SIR' model with 100 nodes, with 99 susceptible,
1 infected and 0 recovered in each node.
u0 <- data.frame(S = rep(99, 100), I = rep(1, 100), R = rep(0, 100))
model <- SIR(u0 = u0, tspan = 1:10, beta = 0.16, gamma = 0.077)

Display the number of nodes in the model.
n_nodes(model)

outdegree Determine out-degree for each node in a model

Description

The number nodes that are connected with external transfer events from each node.

Usage

outdegree(model)

Arguments

model determine out-degree for each node in the model.

32 package_skeleton

Value

vector with out-degree for each node.

Examples

Create an 'SIR' model with 1600 nodes and initialize
it with example data.
model <- SIR(u0 = u0_SIR(), tspan = 1:1460, events = events_SIR(),

beta = 0.16, gamma = 0.077)

Display outdegree for each node in the model.
plot(outdegree(model))

package_skeleton Create a package skeleton from a SimInf_model

Description

Describe your model in a logical way in R, then mparse creates a SimInf_model object with your
model definition that can be installed as an add-on R package.

Usage

package_skeleton(
model,
name = NULL,
path = ".",
author = NULL,
email = NULL,
maintainer = NULL,
license = "GPL-3"

)

Arguments

model The model SimInf_model object with your model to create the package skeleton
from.

name Character string with the package name. It should contain only (ASCII) letters,
numbers and dot, have at least two characters and start with a letter and not end
in a dot. The package name is also used for the class name of the model and the
directory name of the package.

path Path to put the package directory in. Default is ’.’ i.e. the current directory.

author Author of the package.

email Email of the package maintainer.

maintainer Maintainer of the package.

license License of the package. Default is ’GPL-3’.

pairs,SimInf_model-method 33

Value

invisible NULL.

References

Read the Writing R Extensions manual for more details.

Once you have created a source package you need to install it: see the R Installation and Adminis-
tration manual, INSTALL and install.packages.

pairs,SimInf_model-method

Scatterplot of number of individuals in each compartment

Description

A matrix of scatterplots with the number of individuals in each compartment is produced. The ijth
scatterplot contains x[,i] plotted against x[,j].

Usage

S4 method for signature 'SimInf_model'
pairs(x, compartments = NULL, index = NULL, ...)

Arguments

x The model to plot

compartments specify the names of the compartments to extract data from. The compart-
ments can be specified as a character vector e.g. compartments = c('S', 'I',
'R'), or as a formula e.g. compartments = ~S+I+R (see ‘Examples’). Default
(compartments=NULL) includes all compartments.

index indices specifying the nodes to include when plotting data. Default index =
NULL include all nodes in the model.

... Additional arguments affecting the plot produced.

Examples

For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIR' model with 10 nodes and initialise
it with 99 susceptible individuals and one infected
individual. Let the model run over 100 days.
model <- SIR(u0 = data.frame(S = rep(99, 10),

I = rep(1, 10),

34 pfilter

R = rep(0, 10)),
tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the model and save the result.
result <- run(model)

Create a scatter plot that includes all compartments in all
nodes.
pairs(result)

Create a scatter plot that includes the S and I compartments in
nodes 1 and 2.
pairs(result, ~S+I, 1:2)

pfilter Bootstrap particle filter

Description

The bootstrap filtering algorithm. Systematic resampling is performed at each observation.

Usage

pfilter(model, obs_process, data, npart)

S4 method for signature 'SimInf_model'
pfilter(model, obs_process, data, npart)

Arguments

model The SimInf_model object to simulate data from.
obs_process Specification of the stochastic observation process. The obs_process can be

specified as a formula if the model contains only one node and there is only
one data point for each time in data. The left hand side of the formula must
match a column name in the data data.frame and the right hand side of the
formula is a character specifying the distribution of the observation process,
for example, Iobs ~ poisson(I). The following distributions are supported:
x ~ binomial(size, prob), x ~ poisson(rate) and x ~ uniform(min, max).
The observation process can also be a function to evaluate the probability den-
sity of the observations given the simulated states. The first argument passed to
the obs_process function is the result from a run of the model and it contains
one trajectory with simulated data for a time-point. The second argument to
the obs_process function is a data.frame containing the rows for the specific
time-point that the function is called for. Note that the function must return the
log of the density.

data A data.frame holding the time series data.
npart An integer with the number of particles (> 1) to use at each timestep.

pfilter 35

Value

A SimInf_pfilter object.

References

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel Approach to Nonlinear/Non-Gaussian
Bayesian State Estimation. Radar and Signal Processing, IEE Proceedings F, 140(2) 107–113,
1993. doi:10.1049/ipf2.1993.0015

Examples

Not run:
Let us consider an SIR model in a closed population with N = 100
individuals of whom one is initially infectious and the rest are
susceptible. First, generate one realisation (with a specified
seed) from the model with known parameters 'beta = 0.16' and
'gamma = 0.077'. Then, use 'pfilter' to apply the bootstrap
particle algorithm on the simulated data.
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = seq(1, 100, by = 3),
beta = 0.16,
gamma = 0.077)

Run the SIR model to generate simulated observed data for the
number of infected individuals.
set.seed(22)
infected <- trajectory(run(model), "I")[, c("time", "I")]
colnames(infected) <- c("time", "Iobs")

Use a Poison observation process for the infected individuals, such
that 'Iobs ~ poison(I + 1e-6)'. A small constant '1e-6' is added to
prevent numerical errors, since the simulated counts 'I' could be
zero, which would result in the Poisson rate parameter being zero,
which violates the conditions of the Poisson distribution. Use 1000
particles.
pf <- pfilter(model,

obs_process = Iobs ~ poisson(I + 1e-6),
data = infected,
npart = 1000)

Print a brief summary.
pf

Compare the number infected 'I' in the filtered trajectory with the
infected 'Iobs' in the observed data.
plot(pf, ~I)
lines(Iobs ~ time, infected, col = "blue", lwd = 2, type = "s")

End(Not run)

https://doi.org/10.1049/ip-f-2.1993.0015

36 plot,SimInf_events-method

plot,SimInf_abc-method

Display the ABC posterior distribution

Description

Display the ABC posterior distribution

Usage

S4 method for signature 'SimInf_abc'
plot(x, y, ...)

Arguments

x The SimInf_abc object to plot.

y The generation to plot. The default is to display the last generation.

... Additional arguments affecting the plot.

plot,SimInf_events-method

Display the distribution of scheduled events over time

Description

Display the distribution of scheduled events over time

Usage

S4 method for signature 'SimInf_events'
plot(x, frame.plot = FALSE, ...)

Arguments

x The events data to plot.

frame.plot Draw a frame around each plot. Default is FALSE.

... Additional arguments affecting the plot

plot,SimInf_indiv_events-method 37

plot,SimInf_indiv_events-method

Display the distribution of individual events over time

Description

Display the distribution of individual events over time

Usage

S4 method for signature 'SimInf_indiv_events'
plot(x, frame.plot = FALSE, ...)

Arguments

x The individual events data to plot.

frame.plot a logical indicating whether a box should be drawn around the plot.

... Other graphical parameters that are passed on to the plot function.

plot,SimInf_model-method

Display the outcome from a simulated trajectory

Description

Plot either the median and the quantile range of the counts in all nodes, or plot the counts in specified
nodes.

Usage

S4 method for signature 'SimInf_model'
plot(
x,
y,
level = 1,
index = NULL,
range = 0.5,
type = "s",
lwd = 2,
frame.plot = FALSE,
legend = TRUE,
...

)

38 plot,SimInf_model-method

Arguments

x The model to plot.

y Character vector or formula with the compartments in the model to include in
the plot. Default includes all compartments in the model. Can also be a formula
that specifies the compartments that define the cases with a disease or that have
a specific characteristic (numerator), and the compartments that define the entire
population of interest (denominator). The left-hand-side of the formula defines
the cases, and the right-hand-side defines the population, for example, I~S+I+R
in a ‘SIR’ model (see ‘Examples’). The . (dot) is expanded to all compartments,
for example, I~. is expanded to I~S+I+R in a ‘SIR’ model (see ‘Examples’).

level The level at which the prevalence is calculated at each time point in tspan. 1
(population prevalence): calculates the proportion of the individuals (cases) in
the population. 2 (node prevalence): calculates the proportion of nodes with at
least one case. 3 (within-node prevalence): calculates the proportion of cases
within each node. Default is 1.

index Indices specifying the nodes to include when plotting data. Plot one line for
each node. Default (index = NULL) is to extract data from all nodes and plot the
median count for the specified compartments.

range Show the quantile range of the count in each compartment. Default is to show
the interquartile range i.e. the middle 50% of the count in transparent color. The
median value is shown in the same color. Use range = 0.95 to show the middle
95% of the count. To display individual lines for each node, specify range =
FALSE.

type The type of plot to draw. The default type = "s" draws stair steps. See base plot
for other values.

lwd The line width. Default is 2.

frame.plot a logical indicating whether a box should be drawn around the plot.

legend a logical indicating whether a legend for the compartments should be added to
the plot. A legend is not drawn for a prevalence plot.

... Other graphical parameters that are passed on to the plot function.

Examples

Not run:
For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIR' model with 100 nodes and initialise
it with 990 susceptible individuals and 10 infected
individuals in each node. Run the model over 100 days.
model <- SIR(u0 = data.frame(S = rep(990, 100),

I = rep(10, 100),
R = rep(0, 100)),

tspan = 1:100,

plot,SimInf_pfilter-method 39

beta = 0.16,
gamma = 0.077)

Run the model and save the result.
result <- run(model)

Plot the median and interquartile range of the number
of susceptible, infected and recovered individuals.
plot(result)

Plot the median and the middle 95\
number of susceptible, infected and recovered individuals.
plot(result, range = 0.95)

Plot the median and interquartile range of the number
of infected individuals.
plot(result, "I")

Use the formula notation instead to plot the median and
interquartile range of the number of infected individuals.
plot(result, ~I)

Plot the number of susceptible, infected
and recovered individuals in the first
three nodes.
plot(result, index = 1:3, range = FALSE)

Use plot type line instead.
plot(result, index = 1:3, range = FALSE, type = "l")

Plot the number of infected individuals in the first node.
plot(result, "I", index = 1, range = FALSE)

Plot the proportion of infected individuals (cases)
in the population.
plot(result, I ~ S + I + R)

Plot the proportion of nodes with infected individuals.
plot(result, I ~ S + I + R, level = 2)

Plot the median and interquartile range of the proportion
of infected individuals in each node
plot(result, I ~ S + I + R, level = 3)

Plot the proportion of infected individuals in the first
three nodes.
plot(result, I ~ S + I + R, level = 3, index = 1:3, range = FALSE)

End(Not run)

40 prevalence

plot,SimInf_pfilter-method

Diagnostic plot of a particle filter object

Description

Diagnostic plot of a particle filter object

Usage

S4 method for signature 'SimInf_pfilter'
plot(x, y, ...)

Arguments

x The SimInf_pfilter object to plot.

y If y is NULL or missing (default), the filtered trajectory (top) and the effective
sample size (bottom) are displayed. If y is a character vector or a formula, the
plot function for a SimInf_model object is called with the filtered trajectory, see
plot,SimInf_model-method for more details about the specification a plot.

... Other graphical parameters that are passed on to the plot function.

prevalence Generic function to calculate prevalence from trajectory data

Description

Calculate the proportion of individuals with disease in the population, or the proportion of nodes
with at least one diseased individual, or the proportion of individuals with disease in each node.

Usage

prevalence(model, formula, level = 1, index = NULL, ...)

Arguments

model The model with trajectory data to calculate the prevalence from.

formula A formula that specifies the compartments that define the cases with a disease
or that have a specific characteristic (numerator), and the compartments that
define the entire population of interest (denominator). The left-hand-side of the
formula defines the cases, and the right-hand-side defines the population, for
example, I~S+I+R in a ‘SIR’ model (see ‘Examples’). The . (dot) is expanded
to all compartments, for example, I~. is expanded to I~S+I+R in a ‘SIR’ model
(see ‘Examples’). The formula can also contain a condition (indicated by |)
for each node and time step to further control the population to include in the
calculation, for example, I ~ . | R == 0 to calculate the prevalence when the

prevalence,SimInf_model-method 41

recovered is zero in a ‘SIR’ model. The condition must evaluate to TRUE or
FALSE in each node and time step. Note that if the denominator is zero, the
prevalence is NaN.

level The level at which the prevalence is calculated at each time point in tspan. 1
(population prevalence): calculates the proportion of the individuals (cases) in
the population. 2 (node prevalence): calculates the proportion of nodes with at
least one case. 3 (within-node prevalence): calculates the proportion of cases
within each node. Default is 1.

index indices specifying the subset of nodes to include when extracting data. Default
(index = NULL) is to extract data from all nodes.

... Additional arguments, see prevalence,SimInf_model-method

prevalence,SimInf_model-method

Calculate prevalence from a model object with trajectory data

Description

Calculate the proportion of individuals with disease in the population, or the proportion of nodes
with at least one diseased individual, or the proportion of individuals with disease in each node.

Usage

S4 method for signature 'SimInf_model'
prevalence(model, formula, level, index, format = c("data.frame", "matrix"))

Arguments

model The model with trajectory data to calculate the prevalence from.

formula A formula that specifies the compartments that define the cases with a disease
or that have a specific characteristic (numerator), and the compartments that
define the entire population of interest (denominator). The left-hand-side of the
formula defines the cases, and the right-hand-side defines the population, for
example, I~S+I+R in a ‘SIR’ model (see ‘Examples’). The . (dot) is expanded
to all compartments, for example, I~. is expanded to I~S+I+R in a ‘SIR’ model
(see ‘Examples’). The formula can also contain a condition (indicated by |)
for each node and time step to further control the population to include in the
calculation, for example, I ~ . | R == 0 to calculate the prevalence when the
recovered is zero in a ‘SIR’ model. The condition must evaluate to TRUE or
FALSE in each node and time step. Note that if the denominator is zero, the
prevalence is NaN.

level The level at which the prevalence is calculated at each time point in tspan. 1
(population prevalence): calculates the proportion of the individuals (cases) in
the population. 2 (node prevalence): calculates the proportion of nodes with at
least one case. 3 (within-node prevalence): calculates the proportion of cases
within each node. Default is 1.

42 prevalence,SimInf_pfilter-method

index indices specifying the subset of nodes to include when extracting data. Default
(index = NULL) is to extract data from all nodes.

format The default (format = "data.frame") is to generate a data.frame with one
row per time-step with the prevalence. Using format = "matrix" returns the
result as a matrix.

Value

A data.frame if format = "data.frame", else a matrix.

Examples

Create an 'SIR' model with 6 nodes and initialize
it to run over 10 days.
u0 <- data.frame(S = 100:105, I = c(0, 1, 0, 2, 0, 3), R = rep(0, 6))
model <- SIR(u0 = u0, tspan = 1:10, beta = 0.16, gamma = 0.077)

Run the model to generate a single stochastic trajectory.
result <- run(model)

Determine the proportion of infected individuals (cases)
in the population at the time-points in 'tspan'.
prevalence(result, I ~ S + I + R)

Identical result is obtained with the shorthand 'I~.'
prevalence(result, I ~ .)

Determine the proportion of nodes with infected individuals at
the time-points in 'tspan'.
prevalence(result, I ~ S + I + R, level = 2)

Determine the proportion of infected individuals in each node
at the time-points in 'tspan'.
prevalence(result, I ~ S + I + R, level = 3)

Determine the proportion of infected individuals in each node
at the time-points in 'tspan' when the number of recovered is
zero.
prevalence(result, I ~ S + I + R | R == 0, level = 3)

prevalence,SimInf_pfilter-method

Extract prevalence from running a particle filter

Description

Extract prevalence from running a particle filter

punchcard<- 43

Usage

S4 method for signature 'SimInf_pfilter'
prevalence(model, formula, level, index, format = c("data.frame", "matrix"))

Arguments

model the SimInf_pfilter object to extract the prevalence from.
formula A formula that specifies the compartments that define the cases with a disease

or that have a specific characteristic (numerator), and the compartments that
define the entire population of interest (denominator). The left-hand-side of the
formula defines the cases, and the right-hand-side defines the population, for
example, I~S+I+R in a ‘SIR’ model (see ‘Examples’). The . (dot) is expanded
to all compartments, for example, I~. is expanded to I~S+I+R in a ‘SIR’ model
(see ‘Examples’). The formula can also contain a condition (indicated by |)
for each node and time step to further control the population to include in the
calculation, for example, I ~ . | R == 0 to calculate the prevalence when the
recovered is zero in a ‘SIR’ model. The condition must evaluate to TRUE or
FALSE in each node and time step. Note that if the denominator is zero, the
prevalence is NaN.

level The level at which the prevalence is calculated at each time point in tspan. 1
(population prevalence): calculates the proportion of the individuals (cases) in
the population. 2 (node prevalence): calculates the proportion of nodes with at
least one case. 3 (within-node prevalence): calculates the proportion of cases
within each node. Default is 1.

index indices specifying the subset of nodes to include when extracting data. Default
(index = NULL) is to extract data from all nodes.

format The default (format = "data.frame") is to generate a data.frame with one
row per time-step with the prevalence. Using format = "matrix" returns the
result as a matrix.

Value

A data.frame if format = "data.frame", else a matrix.

punchcard<- Set a template for where to record result during a simulation

Description

Using a sparse result matrix can save a lot of memory if the model contains many nodes and time-
points, but where only a few of the data points are of interest for post-processing.

Usage

punchcard(model) <- value

S4 replacement method for signature 'SimInf_model'
punchcard(model) <- value

44 punchcard<-

Arguments

model The model to set a template for where to record result.

value A data.frame that specify the nodes, time-points and compartments to record
the number of individuals at tspan. Use NULL to reset the model to record the
number of inidividuals in each compartment in every node at each time-point in
tspan.

Details

Using a sparse result matrix can save a lot of memory if the model contains many nodes and time-
points, but where only a few of the data points are of interest for post-processing. To use this feature,
a template has to be defined for which data points to record. This is done using a data.frame
that specifies the time-points (column ‘time’) and nodes (column ‘node’) to record the state of the
compartments, see ‘Examples’. The specified time-points, nodes and compartments must exist in
the model, or an error is raised. Note that specifying a template only affects which data-points are
recorded for post-processing, it does not affect how the solver simulates the trajectory.

Examples

For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIR' model with 6 nodes and initialize it to run over 10 days.
u0 <- data.frame(S = 100:105, I = 1:6, R = rep(0, 6))
model <- SIR(u0 = u0, tspan = 1:10, beta = 0.16, gamma = 0.077)

Run the model.
result <- run(model)

Display the trajectory with data for every node at each
time-point in tspan.
trajectory(result)

Assume we are only interested in nodes '2' and '4' at the
time-points '3' and '5'
df <- data.frame(time = c(3, 5, 3, 5),

node = c(2, 2, 4, 4),
S = c(TRUE, TRUE, TRUE, TRUE),
I = c(TRUE, TRUE, TRUE, TRUE),
R = c(TRUE, TRUE, TRUE, TRUE))

punchcard(model) <- df
result <- run(model)
trajectory(result)

We can also specify to record only some of the compartments in
each time-step.
df <- data.frame(time = c(3, 5, 3, 5),

node = c(2, 2, 4, 4),

run 45

S = c(FALSE, TRUE, TRUE, TRUE),
I = c(TRUE, FALSE, TRUE, FALSE),
R = c(TRUE, FALSE, TRUE, TRUE))

punchcard(model) <- df
result <- run(model)
trajectory(result)

A shortcut to specify to record all of the compartments in
each time-step is to only inlude node and time.
df <- data.frame(time = c(3, 5, 3, 5),

node = c(2, 2, 4, 4))
punchcard(model) <- df
result <- run(model)
trajectory(result)

It is possible to use an empty 'data.frame' to specify
that no data-points should be recorded for the trajectory.
punchcard(model) <- data.frame()
result <- run(model)
trajectory(result)

Use 'NULL' to reset the model to record data for every node at
each time-point in tspan.
punchcard(model) <- NULL
result <- run(model)
trajectory(result)

run Run the SimInf stochastic simulation algorithm

Description

Run the SimInf stochastic simulation algorithm

Usage

run(model, ...)

S4 method for signature 'SimInf_model'
run(model, solver = c("ssm", "aem"), ...)

S4 method for signature 'SEIR'
run(model, solver = c("ssm", "aem"), ...)

S4 method for signature 'SIR'
run(model, solver = c("ssm", "aem"), ...)

S4 method for signature 'SIS'
run(model, solver = c("ssm", "aem"), ...)

46 run

S4 method for signature 'SISe'
run(model, solver = c("ssm", "aem"), ...)

S4 method for signature 'SISe3'
run(model, solver = c("ssm", "aem"), ...)

S4 method for signature 'SISe3_sp'
run(model, solver = c("ssm", "aem"), ...)

S4 method for signature 'SISe_sp'
run(model, solver = c("ssm", "aem"), ...)

S4 method for signature 'SimInf_abc'
run(model, ...)

Arguments

model The SimInf model to run.

... Additional arguments.

solver Which numerical solver to utilize. Default is ’ssm’.

Value

SimInf_model object with result from simulation.

References

S. Widgren, P. Bauer, R. Eriksson and S. Engblom. SimInf: An R Package for Data-Driven Stochas-
tic Disease Spread Simulations. Journal of Statistical Software, 91(12), 1–42. doi:10.18637/
jss.v091.i12. An updated version of this paper is available as a vignette in the package.

P. Bauer, S. Engblom and S. Widgren. Fast Event-Based Epidemiological Simulations on National
Scales. International Journal of High Performance Computing Applications, 30(4), 438–453, 2016.
doi: 10.1177/1094342016635723

P. Bauer and S. Engblom. Sensitivity Estimation and Inverse Problems in Spatial Stochastic Models
of Chemical Kinetics. In: A. Abdulle, S. Deparis, D. Kressner, F. Nobile and M. Picasso (eds.),
Numerical Mathematics and Advanced Applications - ENUMATH 2013, pp. 519–527, Lecture
Notes in Computational Science and Engineering, vol 103. Springer, Cham, 2015. doi:10.1007/
9783319107059_51

Examples

For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIR' model with 10 nodes and initialise

https://doi.org/10.18637/jss.v091.i12
https://doi.org/10.18637/jss.v091.i12
https://doi.org/10.1007/978-3-319-10705-9_51
https://doi.org/10.1007/978-3-319-10705-9_51

SEIR 47

it to run over 100 days.
model <- SIR(u0 = data.frame(S = rep(99, 10),

I = rep(1, 10),
R = rep(0, 10)),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the model and save the result.
result <- run(model)

Plot the proportion of susceptible, infected and recovered
individuals.
plot(result)

SEIR Create an SEIR model

Description

Create an SEIR model to be used by the simulation framework.

Usage

SEIR(u0, tspan, events = NULL, beta = NULL, epsilon = NULL, gamma = NULL)

Arguments

u0 A data.frame with the initial state in each node, i.e., the number of individuals
in each compartment in each node when the simulation starts (see ‘Details’).
The parameter u0 can also be an object that can be coerced to a data.frame,
e.g., a named numeric vector will be coerced to a one row data.frame.

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events a data.frame with the scheduled events, see SimInf_model.

beta A numeric vector with the transmission rate from susceptible to infected where
each node can have a different beta value. The vector must have length 1 or
nrow(u0). If the vector has length 1, but the model contains more nodes, the
beta value is repeated in all nodes.

epsilon A numeric vector with the incubation rate from exposed to infected where each
node can have a different epsilon value. The vector must have length 1 or
nrow(u0). If the vector has length 1, but the model contains more nodes, the
epsilon value is repeated in all nodes.

48 SEIR-class

gamma A numeric vector with the recovery rate from infected to recovered where each
node can have a different gamma value. The vector must have length 1 or
nrow(u0). If the vector has length 1, but the model contains more nodes, the
beta value is repeated in all nodes.

Details

The SEIR model contains four compartments; number of susceptible (S), number of exposed (E)
(those who have been infected but are not yet infectious), number of infectious (I), and number of
recovered (R). Moreover, it has three state transitions,

S
βSI/N−→ E

E
ϵE−→ I

I
γI−→ R

where β is the transmission rate, ϵ is the incubation rate, γ is the recovery rate, and N = S + E +
I +R.

The argument u0 must be a data.frame with one row for each node with the following columns:

S The number of sucsceptible in each node
E The number of exposed in each node
I The number of infected in each node
R The number of recovered in each node

Value

A SimInf_model of class SEIR

Examples

Create a SEIR model object.
model <- SEIR(u0 = data.frame(S = 99, E = 0, I = 1, R = 0),

tspan = 1:100,
beta = 0.16,
epsilon = 0.25,
gamma = 0.077)

Run the SEIR model and plot the result.
set.seed(3)
result <- run(model)
plot(result)

SEIR-class Definition of the ‘SEIR’ model

Description

Class to handle the SEIR SimInf_model.

select_matrix 49

select_matrix Extract the select matrix from a SimInf_model object

Description

Utility function to extract events@E from a SimInf_model object, see SimInf_events

Usage

select_matrix(model)

S4 method for signature 'SimInf_model'
select_matrix(model)

Arguments

model The model to extract the select matrix E from.

Value

dgCMatrix object.

Examples

Create an SIR model
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:5, beta = 0.16, gamma = 0.077)

Extract the select matrix from the model
select_matrix(model)

select_matrix<- Set the select matrix for a SimInf_model object

Description

Utility function to set events@E in a SimInf_model object, see SimInf_events

Usage

select_matrix(model) <- value

S4 replacement method for signature 'SimInf_model'
select_matrix(model) <- value

50 set_num_threads

Arguments

model The model to set the select matrix for.
value A matrix.

Examples

Create an SIR model
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:5, beta = 0.16, gamma = 0.077)

Set the select matrix
select_matrix(model) <- matrix(c(1, 0, 0, 1, 1, 1, 0, 0, 1), nrow = 3)

Extract the select matrix from the model
select_matrix(model)

set_num_threads Specify the number of threads that SimInf should use

Description

Set the number of threads to be used in SimInf code that is parallelized with OpenMP (if available).
The number of threads is initialized when SimInf is first loaded in the R session using optional
envioronment variables (see ‘Details’). It is also possible to specify the number of threads by
calling set_num_threads. If the environment variables that affect the number of threads change,
then set_num_threads must be called again for it to take effect.

Usage

set_num_threads(threads = NULL)

Arguments

threads integer with maximum number of threads to use in functions that are parallelized
with OpenMP (if available). Default is NULL, i.e. to use all available processors
and then check for limits in the environment varibles (see ‘Details’).

Details

The omp_get_num_procs() function is used to determine the number of processors that are avail-
able to the device at the time the routine is called. The number of threads is then limited by
omp_get_thread_limit() and the current values of the environmental variables (if set)

• Sys.getenv("OMP_THREAD_LIMIT")

• Sys.getenv("OMP_NUM_THREADS")

• Sys.getenv("SIMINF_NUM_THREADS")

Additionally, the maximum number of threads can be controlled by the threads argument, given
that its value is not above any of the limits described above.

shift_matrix 51

Value

The previous value is returned (invisible).

shift_matrix Extract the shift matrix from a SimInf_model object

Description

Utility function to extract the shift matrix events@N from a SimInf_model object, see SimInf_events

Usage

shift_matrix(model)

S4 method for signature 'SimInf_model'
shift_matrix(model)

Arguments

model The model to extract the shift matrix events@N from.

Value

A mtrix.

Examples

Create an SIR model
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:5, beta = 0.16, gamma = 0.077)

Extract the shift matrix from the model
shift_matrix(model)

shift_matrix<- Set the shift matrix for a SimInf_model object

Description

Utility function to set events@N in a SimInf_model object, see SimInf_events

Usage

shift_matrix(model) <- value

S4 replacement method for signature 'SimInf_model'
shift_matrix(model) <- value

52 show,SimInf_abc-method

Arguments

model The model to set the shift matrix events@N.

value A matrix.

Value

SimInf_model object

Examples

Create an SIR model
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:5, beta = 0.16, gamma = 0.077)

Set the shift matrix
shift_matrix(model) <- matrix(c(2, 1, 0), nrow = 3)

Extract the shift matrix from the model
shift_matrix(model)

show,SimInf_abc-method

Print summary of a SimInf_abc object

Description

Print summary of a SimInf_abc object

Usage

S4 method for signature 'SimInf_abc'
show(object)

Arguments

object The SimInf_abc object.

Value

invisible(object).

show,SimInf_events-method 53

show,SimInf_events-method

Brief summary of SimInf_events

Description

Shows the number of scheduled events.

Usage

S4 method for signature 'SimInf_events'
show(object)

Arguments

object The SimInf_events object

Value

None (invisible ’NULL’).

show,SimInf_indiv_events-method

Print summary of a SimInf_indiv_events object

Description

Print summary of a SimInf_indiv_events object

Usage

S4 method for signature 'SimInf_indiv_events'
show(object)

Arguments

object The SimInf_indiv_events object.

Value

invisible(object).

54 show,SimInf_model-method

show,SimInf_model-method

Brief summary of SimInf_model

Description

Brief summary of SimInf_model

Usage

S4 method for signature 'SimInf_model'
show(object)

Arguments

object The SimInf_model object

Value

None (invisible ’NULL’).

Examples

Create an 'SIR' model with 10 nodes and initialise
it to run over 100 days.
model <- SIR(u0 = data.frame(S = rep(99, 10),

I = rep(1, 10),
R = rep(0, 10)),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Brief summary of the model
model

Run the model and save the result
result <- run(model)

Brief summary of the result. Note that 'U' and 'V' are
non-empty after running the model.
result

show,SimInf_pfilter-method 55

show,SimInf_pfilter-method

Brief summary of a SimInf_pfilter object

Description

Brief summary of a SimInf_pfilter object

Usage

S4 method for signature 'SimInf_pfilter'
show(object)

Arguments

object The SimInf_pfilter object.

Value

invisible(object).

SimInf A Framework for Data-Driven Stochastic Disease Spread Simulations

Description

The SimInf package provides a flexible framework for data-driven spatio-temporal disease spread
modeling, designed to efficiently handle population demographics and network data. The frame-
work integrates infection dynamics in each subpopulation as continuous-time Markov chains (CTMC)
using the Gillespie stochastic simulation algorithm (SSA) and incorporates available data such as
births, deaths or movements as scheduled events. A scheduled event is used to modify the state of
a subpopulation at a predefined time-point.

Details

The SimInf_model is central and provides the basis for the framework. A SimInf_model object
supplies the state-change matrix, the dependency graph, the scheduled events, and the initial state
of the system.

All predefined models in SimInf have a generating function, with the same name as the model, for
example SIR.

A model can also be created from a model specification using the mparse method.

After a model is created, a simulation is started with a call to the run method and if execution is
successful, it returns a modified SimInf_model object with a single stochastic solution trajectory
attached to it.

56 SimInf_abc-class

SimInf provides several utility functions to inspect simulated data, for example, show, summary
and plot. To facilitate custom analysis, it provides the trajectory,SimInf_model-method and
prevalence methods.

One of our design goal was to make SimInf extendable and enable usage of the numerical solvers
from other R extension packages in order to facilitate complex epidemiological research. To support
this, SimInf has functionality to generate the required C and R code from a model specification, see
package_skeleton

Author(s)

Maintainer: Stefan Widgren <stefan.widgren@gmail.com> (ORCID)

Authors:

• Robin Eriksson (ORCID)

• Stefan Engblom (ORCID)

• Pavol Bauer (ORCID)

Other contributors:

• Thomas Rosendal (ORCID) [contributor]

• Ivana Rodriguez Ewerlöf (ORCID) [contributor]

• Attractive Chaos (Author of ’kvec.h’.) [copyright holder]

References

S. Widgren, P. Bauer, R. Eriksson and S. Engblom. SimInf: An R Package for Data-Driven Stochas-
tic Disease Spread Simulations. Journal of Statistical Software, 91(12), 1–42. doi:10.18637/
jss.v091.i12. An updated version of this paper is available as a vignette in the package.

See Also

Useful links:

• https://github.com/stewid/SimInf

• Report bugs at https://github.com/stewid/SimInf/issues

SimInf_abc-class Class "SimInf_abc"

Description

Class "SimInf_abc"

https://orcid.org/0000-0001-5745-2284
https://orcid.org/0000-0002-4291-712X
https://orcid.org/0000-0002-3614-1732
https://orcid.org/0000-0003-4328-7171
https://orcid.org/0000-0002-6576-9668
https://orcid.org/0000-0002-9678-9813
https://doi.org/10.18637/jss.v091.i12
https://doi.org/10.18637/jss.v091.i12
https://github.com/stewid/SimInf
https://github.com/stewid/SimInf/issues

SimInf_events 57

Slots

model The SimInf_model object to estimate parameters in.

priors A data.frame containing the four columns parameter, distribution, p1 and p2. The
column parameter gives the name of the parameter referred to in the model. The column
distribution contains the name of the prior distribution. Valid distributions are ’gamma’,
’normal’ or ’uniform’. The column p1 is a numeric vector with the first hyperparameter for
each prior: ’gamma’) shape, ’normal’) mean, and ’uniform’) lower bound. The column p2
is a numeric vector with the second hyperparameter for each prior: ’gamma’) rate, ’normal’)
standard deviation, and ’uniform’) upper bound.

target Character vector (gdata or ldata) that determines if the ABC-SMC method estimates
parameters in model@gdata or in model@ldata.

pars Index to the parameters in target.

nprop An integer vector with the number of simulated proposals in each generation.

fn A function for calculating the summary statistics for the simulated trajectory and determine the
distance for each particle, see abc for more details.

tolerance A numeric matrix (number of summary statistics × number of generations) where each
column contains the tolerances for a generation and each row contains a sequence of gradually
decreasing tolerances.

x A numeric array (number of particles × number of parameters × number of generations) with
the parameter values for the accepted particles in each generation. Each row is one particle.

weight A numeric matrix (number of particles × number of generations) with the weights for the
particles x in the corresponding generation.

distance A numeric array (number of particles × number of summary statistics × number of
generations) with the distance for the particles x in each generation. Each row contains the
distance for a particle and each column contains the distance for a summary statistic.

ess A numeric vector with the effective sample size (ESS) in each generation. The effective sample
size is computed as (

N∑
i=1

(w(i)
g)2

)−1

,

where w
(i)
g is the normalized weight of particle i in generation g.

See Also

abc and continue.

SimInf_events Create a SimInf_events object

58 SimInf_events

Description

The argument events must be a data.frame with the following columns:

event Four event types are supported by the current solvers: exit, enter, internal transfer, and
external transfer. When assigning the events, they can either be coded as a numerical value or
a character string: exit; 0 or 'exit', enter; 1 or 'enter', internal transfer; 2 or 'intTrans',
and external transfer; 3 or 'extTrans'. Internally in SimInf, the event type is coded as a
numerical value.

time When the event occurs i.e., the event is processed when time is reached in the simulation. Can
be either an integer or a Date vector. A Date vector is coerced to a numeric vector as days,
where t0 determines the offset to match the time of the events to the model tspan vector.

node The node that the event operates on. Also the source node for an external transfer event. 1
<= node[i] <= Number of nodes.

dest The destination node for an external transfer event i.e., individuals are moved from node to
dest, where 1 <= dest[i] <= Number of nodes. Set event = 0 for the other event types.
dest is an integer vector.

n The number of individuals affected by the event. n[i] >= 0.

proportion If n[i] equals zero, the number of individuals affected by event[i] is calculated by
sampling the number of individuals from a binomial distribution using the proportion[i]
and the number of individuals in the compartments. Numeric vector. 0 <= proportion[i] <= 1.

select To process an event[i], the compartments affected by the event are specified with select[i]
together with the matrix E, where select[i] determines which column in E to use. The spe-
cific individuals affected by the event are sampled from the compartments corresponding to
the non-zero entries in the specified column in E[, select[i]], where select is an integer
vector.

shift Determines how individuals in internal transfer and external transfer events are shifted to en-
ter another compartment. The sampled individuals are shifted according to column shift[i]
in matrix N i.e., N[, shift[i]], where shift is an integer vector. See above for a description
of N. Unsued for the other event types.

Usage

SimInf_events(E = NULL, N = NULL, events = NULL, t0 = NULL)

Arguments

E Each row corresponds to one compartment in the model. The non-zero entries
in a column indicates the compartments to include in an event. For the exit, in-
ternal transfer and external transfer events, a non-zero entry indicate the com-
partments to sample individuals from. For the enter event, all individuals enter
first non-zero compartment. E is sparse matrix of class dgCMatrix.

N Determines how individuals in internal transfer and external transfer events are
shifted to enter another compartment. Each row corresponds to one compart-
ment in the model. The values in a column are added to the current compartment
of sampled individuals to specify the destination compartment, for example, a
value of 1 in an entry means that sampled individuals in this compartment are

SimInf_events 59

moved to the next compartment. Which column to use for each event is specified
by the shift vector (see below). N is an integer matrix.

events A data.frame with events.

t0 If events$time is a Date vector, then t0 determines the offset to match the
time of the events to the model tspan vector, see details. If events$time is a
numeric vector, then t0 must be NULL.

Value

S4 class SimInf_events

Examples

Let us illustrate how movement events can be used to transfer
individuals from one node to another. Use the built-in SIR
model and start with 2 nodes where all individuals are in the
first node (100 per compartment).
u0 <- data.frame(S = c(100, 0), I = c(100, 0), R = c(100, 0))

Then create 300 movement events to transfer all individuals,
one per day, from the first node to the second node. Use the
fourth column in the select matrix where all compartments
can be sampled with equal weight.
events <- data.frame(event = rep("extTrans", 300),

time = 1:300,
node = 1,
dest = 2,
n = 1,
proportion = 0,
select = 4,
shift = 0)

Create an SIR model without disease transmission to
demonstrate the events.
model <- SIR(u0 = u0,

tspan = 1:300,
events = events,
beta = 0,
gamma = 0)

Run the model and plot the number of individuals in
the second node. As can be seen in the figure, all
indivuduals have been moved to the second node when
t = 300.
plot(run(model), index = 1:2, range = FALSE)

Let us now double the weight to sample from the 'I'
compartment and rerun the model.
model@events@E[2, 4] <- 2
plot(run(model), index = 1:2, range = FALSE)

And much larger weight to sample from the I compartment.

60 SimInf_events-class

model@events@E[2, 4] <- 10
plot(run(model), index = 1:2, range = FALSE)

Increase the weight for the R compartment.
model@events@E[3, 4] <- 4
plot(run(model), index = 1:2, range = FALSE)

SimInf_events-class Class "SimInf_events"

Description

Class to hold data for scheduled events to modify the discrete state of individuals in a node at a
pre-defined time t.

Slots

E Each row corresponds to one compartment in the model. The non-zero entries in a column
indicates the compartments to include in an event. For the exit, internal transfer and external
transfer events, a non-zero entry indicate the compartments to sample individuals from. For
the enter event, all individuals enter first non-zero compartment. E is sparse matrix of class
dgCMatrix.

N Determines how individuals in internal transfer and external transfer events are shifted to enter
another compartment. Each row corresponds to one compartment in the model. The values in a
column are added to the current compartment of sampled individuals to specify the destination
compartment, for example, a value of 1 in an entry means that sampled individuals in this
compartment are moved to the next compartment. Which column to use for each event is
specified by the shift vector (see below). N is an integer matrix.

event Type of event: 0) exit, 1) enter, 2) internal transfer, and 3) external transfer. Other values
are reserved for future event types and not supported by the current solvers. Integer vector.

time Time of when the event occurs i.e., the event is processed when time is reached in the simu-
lation. time is an integer vector.

node The node that the event operates on. Also the source node for an external transfer event.
Integer vector. 1 <= node[i] <= Number of nodes.

dest The destination node for an external transfer event i.e., individuals are moved from node to
dest, where 1 <= dest[i] <= Number of nodes. Set event = 0 for the other event types.
dest is an integer vector.

n The number of individuals affected by the event. Integer vector. n[i] >= 0.

proportion If n[i] equals zero, the number of individuals affected by event[i] is calculated by
sampling the number of individuals from a binomial distribution using the proportion[i]
and the number of individuals in the compartments. Numeric vector. 0 <= proportion[i] <= 1.

select To process event[i], the compartments affected by the event are specified with select[i]
together with the matrix E, where select[i] determines which column in E to use. The spe-
cific individuals affected by the event are proportionally sampled from the compartments cor-
responding to the non-zero entries in the specified column in E[, select[i]], where select
is an integer vector.

SimInf_indiv_events-class 61

shift Determines how individuals in internal transfer and external transfer events are shifted
to enter another compartment. The sampled individuals are shifted according to column
shift[i] in matrix N i.e., N[, shift[i]], where shift is an integer vector. See above for a
description of N. Unsued for the other event types.

SimInf_indiv_events-class

Class "SimInf_indiv_events"

Description

Class "SimInf_indiv_events"

Slots

id an integer or character identifier of the individual.

event four event types are supported: exit, enter, internal transfer, and external transfer. When
assigning the events, they can either be coded as a numerical value or a character string: exit;
0 or 'exit', enter; 1 or 'enter', internal transfer; 2 or 'intTrans', and external transfer;
3 or 'extTrans'.

time an integer, character, or date (of class Date) for when the event occured. If it’s a character it
must be able to coerce to Date.

node an integer or character identifier of the source node.

dest an integer or character identifier of the destination node.

SimInf_model Create a SimInf_model

Description

Create a SimInf_model

Usage

SimInf_model(
G,
S,
tspan,
events = NULL,
ldata = NULL,
gdata = NULL,
U = NULL,
u0 = NULL,
v0 = NULL,

62 SimInf_model

V = NULL,
E = NULL,
N = NULL,
C_code = NULL

)

Arguments

G Dependency graph that indicates the transition rates that need to be updated
after a given state transition has occured. A non-zero entry in element G[i, i]
indicates that transition rate i needs to be recalculated if the state transition j
occurs. Sparse matrix (Nt×Nt) of object class dgCMatrix.

S Each column corresponds to a transition, and execution of state transition j
amounts to adding the S[, j] to the state vector of the node where the state
transition occurred. Sparse matrix (Nc×Nt) of object class dgCMatrix.

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events A data.frame with the scheduled events.
ldata local data for the nodes. Can either be specified as a data.frame with one row

per node. Or as a matrix where each column ldata[, j] contains the local data
vector for the node j. The local data vector is passed as an argument to the
transition rate functions and the post time step function.

gdata A numeric vector with global data that is common to all nodes. The global data
vector is passed as an argument to the transition rate functions and the post time
step function.

U The result matrix with the number of individuals in each disease state in every
node (NnNc× length(tspan)). U[, j] contains the number of individuals
in each disease state at tspan[j]. U[1:Nc, j] contains the state of node 1 at
tspan[j]. U[(Nc + 1):(2 * Nc), j] contains the state of node 2 at tspan[j]
etc.

u0 The initial state vector. Either a matrix (Nc ×Nn) or a a data.frame with the
number of individuals in each compartment in every node.

v0 The initial continuous state vector in every node. (dim(ldata)[1] ×NN). The
continuous state vector is updated by the specific model during the simulation
in the post time step function.

V The result matrix for the real-valued continous compartment state (Nndim(ldata)[1]
× length(tspan)). V[, j] contains the real-valued state of the system at
tspan[j].

E Sparse matrix to handle scheduled events, see SimInf_events.
N Sparse matrix to handle scheduled events, see SimInf_events.
C_code Character vector with optional model C code. If non-empty, the C code is written

to a temporary C-file when the run method is called. The temporary C-file is
compiled and the resulting DLL is dynamically loaded. The DLL is unloaded
and the temporary files are removed after running the model.

SimInf_model-class 63

Value

SimInf_model

SimInf_model-class Class "SimInf_model"

Description

Class to handle data for the SimInf_model.

Slots

G Dependency graph that indicates the transition rates that need to be updated after a given state
transition has occured. A non-zero entry in element G[i, i] indicates that transition rate i
needs to be recalculated if the state transition j occurs. Sparse matrix (Nt × Nt) of object
class dgCMatrix.

S Each column corresponds to a state transition, and execution of state transition j amounts to
adding the S[, j] column to the state vector u[, i] of node i where the transition occurred.
Sparse matrix (Nc×Nt) of object class dgCMatrix.

U The result matrix with the number of individuals in each compartment in every node. U[, j] con-
tains the number of individuals in each compartment at tspan[j]. U[1:Nc, j] contains the
number of individuals in node 1 at tspan[j]. U[(Nc + 1):(2 * Nc), j] contains the number
of individuals in node 2 at tspan[j] etc. Integer matrix (NnNc× length(tspan)).

U_sparse If the model was configured to write the solution to a sparse matrix (dgCMatrix) the
U_sparse contains the data and U is empty. The layout of the data in U_sparse is identical to
U. Please note that U_sparse is numeric and U is integer.

V The result matrix for the real-valued continuous state. V[, j] contains the real-valued state of
the system at tspan[j]. Numeric matrix (Nndim(ldata)[1] × length(tspan)).

V_sparse If the model was configured to write the solution to a sparse matrix (dgCMatrix) the
V_sparse contains the data and V is empty. The layout of the data in V_sparse is identical to
V.

ldata A matrix with local data for the nodes. The column ldata[, j] contains the local data
vector for the node j. The local data vector is passed as an argument to the transition rate
functions and the post time step function.

gdata A numeric vector with global data that is common to all nodes. The global data vector is
passed as an argument to the transition rate functions and the post time step function.

tspan A vector of increasing time points where the state of each node is to be returned.
u0 The initial state vector (Nc ×Nn) with the number of individuals in each compartment in every

node.
v0 The initial value for the real-valued continuous state. Numeric matrix (dim(ldata)[1] ×Nn).
events Scheduled events SimInf_events
C_code Character vector with optional model C code. If non-empty, the C code is written to a

temporary C-file when the run method is called. The temporary C-file is compiled and the re-
sulting DLL is dynamically loaded. The DLL is unloaded and the temporary files are removed
after running the model.

64 SIR

SimInf_pfilter-class Class "SimInf_pfilter"

Description

Class "SimInf_pfilter"

Slots

model A SimInf_model object with one filtered trajectory attached.

npart An integer with the number of particles that was used at each timestep.

loglik The estimated log likelihood.

ess A numeric vector with the effective sample size (ESS). The effective sample size is computed
as (

N∑
i=1

(wi
t)

2

)−1

,

where wi
t is the normalized weight of particle i at time t.

SIR Create an SIR model

Description

Create an SIR model to be used by the simulation framework.

Usage

SIR(u0, tspan, events = NULL, beta = NULL, gamma = NULL)

Arguments

u0 A data.frame with the initial state in each node, i.e., the number of individuals
in each compartment in each node when the simulation starts (see ‘Details’).
The parameter u0 can also be an object that can be coerced to a data.frame,
e.g., a named numeric vector will be coerced to a one row data.frame.

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events a data.frame with the scheduled events, see SimInf_model.

SIR 65

beta A numeric vector with the transmission rate from susceptible to infected where
each node can have a different beta value. The vector must have length 1 or
nrow(u0). If the vector has length 1, but the model contains more nodes, the
beta value is repeated in all nodes.

gamma A numeric vector with the recovery rate from infected to recovered where each
node can have a different gamma value. The vector must have length 1 or
nrow(u0). If the vector has length 1, but the model contains more nodes, the
beta value is repeated in all nodes.

Details

The SIR model contains three compartments; number of susceptible (S), number of infectious (I),
and number of recovered (R). Moreover, it has two state transitions,

S
βSI/N−→ I

I
γI−→ R

where β is the transmission rate, γ is the recovery rate, and N = S + I +R.

The argument u0 must be a data.frame with one row for each node with the following columns:

S The number of sucsceptible in each node

I The number of infected in each node

R The number of recovered in each node

Value

A SimInf_model of class SIR

Examples

Create an SIR model object.
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the SIR model and plot the result.
set.seed(22)
result <- run(model)
plot(result)

66 SIS

SIR-class Definition of the SIR model

Description

Class to handle the SIR SimInf_model.

Details

The SIR model contains three compartments; number of susceptible (S), number of infectious (I),
and number of recovered (R). Moreover, it has two state transitions,

S
βSI/N−→ I

I
γI−→ R

where β is the transmission rate, γ is the recovery rate, and N = S + I +R.

Examples

Create an SIR model object.
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the SIR model and plot the result.
set.seed(22)
result <- run(model)
plot(result)

SIS Create an SIS model

Description

Create an SIS model to be used by the simulation framework.

Usage

SIS(u0, tspan, events = NULL, beta = NULL, gamma = NULL)

SIS 67

Arguments

u0 A data.frame with the initial state in each node, i.e., the number of individuals
in each compartment in each node when the simulation starts (see ‘Details’).
The parameter u0 can also be an object that can be coerced to a data.frame,
e.g., a named numeric vector will be coerced to a one row data.frame.

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events a data.frame with the scheduled events, see SimInf_model.
beta A numeric vector with the transmission rate from susceptible to infected where

each node can have a different beta value. The vector must have length 1 or
nrow(u0). If the vector has length 1, but the model contains more nodes, the
beta value is repeated in all nodes.

gamma A numeric vector with the recovery rate from infected to recovered where each
node can have a different gamma value. The vector must have length 1 or
nrow(u0). If the vector has length 1, but the model contains more nodes, the
beta value is repeated in all nodes.

Details

The SIS model contains two compartments; number of susceptible (S), and number of infectious (I).
Moreover, it has two state transitions,

S
βSI/N−→ I

I
γI−→ S

where β is the transmission rate, γ is the recovery rate, and N = S + I .
The argument u0 must be a data.frame with one row for each node with the following columns:

S The number of sucsceptible in each node
I The number of infected in each node

Value

A SimInf_model of class SIS

Examples

Create an SIS model object.
model <- SIS(u0 = data.frame(S = 99, I = 1),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the SIS model and plot the result.
set.seed(22)
result <- run(model)
plot(result)

68 SISe

SIS-class Definition of the SIS model

Description

Class to handle the SIS SimInf_model.

Details

The SIS model contains two compartments; number of susceptible (S), and number of infectious (I).
Moreover, it has two state transitions,

S
βSI/N−→ I

I
γI−→ S

where β is the transmission rate, γ is the recovery rate, and N = S + I .

Examples

Create an SIS model object.
model <- SIS(u0 = data.frame(S = 99, I = 1),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the SIS model and plot the result.
set.seed(22)
result <- run(model)
plot(result)

SISe Create a SISe model

Description

Create an ‘SISe’ model to be used by the simulation framework.

Usage

SISe(
u0,
tspan,
events = NULL,
phi = NULL,
upsilon = NULL,
gamma = NULL,
alpha = NULL,

SISe 69

beta_t1 = NULL,
beta_t2 = NULL,
beta_t3 = NULL,
beta_t4 = NULL,
end_t1 = NULL,
end_t2 = NULL,
end_t3 = NULL,
end_t4 = NULL,
epsilon = NULL

)

Arguments

u0 A data.frame with the initial state in each node, i.e., the number of individuals
in each compartment in each node when the simulation starts (see ‘Details’).
The parameter u0 can also be an object that can be coerced to a data.frame,
e.g., a named numeric vector will be coerced to a one row data.frame.

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events a data.frame with the scheduled events, see SimInf_model.

phi A numeric vector with the initial environmental infectious pressure in each node.
Will be repeated to the length of nrow(u0). Default is NULL which gives 0 in
each node.

upsilon Indirect transmission rate of the environmental infectious pressure

gamma The recovery rate from infected to susceptible

alpha Shed rate from infected individuals

beta_t1 The decay of the environmental infectious pressure in interval 1.

beta_t2 The decay of the environmental infectious pressure in interval 2.

beta_t3 The decay of the environmental infectious pressure in interval 3.

beta_t4 The decay of the environmental infectious pressure in interval 4.

end_t1 vector with the non-inclusive day of the year that ends interval 1 in each node.
Will be repeated to the length of nrow(u0).

end_t2 vector with the non-inclusive day of the year that ends interval 2 in each node.
Will be repeated to the length of nrow(u0).

end_t3 vector with the non-inclusive day of the year that ends interval 3 in each node.
Will be repeated to the length of nrow(u0).

end_t4 vector with the non-inclusive day of the year that ends interval 4 in each node.
Will be repeated to the length of nrow(u0).

epsilon The background environmental infectious pressure

70 SISe

Details

The ‘SISe’ model contains two compartments; number of susceptible (S) and number of infectious
(I). Additionally, it contains an environmental compartment to model shedding of a pathogen to the
environment. Consequently, the model has two state transitions,

S
υφS−→ I

I
γI−→ S

where the transition rate per unit of time from susceptible to infected is proportional to the con-
centration of the environmental contamination φ in each node. Moreover, the transition rate from
infected to susceptible is the recovery rate γ, measured per individual and per unit of time. Finally,
the environmental infectious pressure in each node is evolved by,

dφ(t)

dt
=

αI(t)

N(t)
− β(t)φ(t) + ϵ

where α is the average shedding rate of the pathogen to the environment per infected individual
and N = S + I the size of the node. The seasonal decay and removal of the pathogen is captured
by β(t). It is also possible to include a small background infectious pressure ϵ to allow for other
indirect sources of environmental contamination. The environmental infectious pressure φ(t) in
each node is evolved each time unit by the Euler forward method. The value of φ(t) is saved at the
time-points specified in tspan.

The argument u0 must be a data.frame with one row for each node with the following columns:

S The number of sucsceptible in each node
I The number of infected in each node

Value

SISe

Beta

The time dependent beta is divided into four intervals of the year

where 0 <= day < 365

Case 1: END_1 < END_2 < END_3 < END_4
INTERVAL_1 INTERVAL_2 INTERVAL_3 INTERVAL_4 INTERVAL_1
[0, END_1) [END_1, END_2) [END_2, END_3) [END_3, END_4) [END_4, 365)

Case 2: END_3 < END_4 < END_1 < END_2
INTERVAL_3 INTERVAL_4 INTERVAL_1 INTERVAL_2 INTERVAL_3
[0, END_3) [END_3, END_4) [END_4, END_1) [END_1, END_2) [END_2, 365)

Case 3: END_4 < END_1 < END_2 < END_3
INTERVAL_4 INTERVAL_1 INTERVAL_2 INTERVAL_3 INTERVAL_4
[0, END_4) [END_4, END_1) [END_1, END_2) [END_2, END_3) [END_3, 365)

SISe-class 71

SISe-class Definition of the SISe model

Description

Class to handle the SISe SimInf_model.

SISe3 Create a SISe3 model

Description

Create a SISe3 model to be used by the simulation framework.

Usage

SISe3(
u0,
tspan,
events = NULL,
phi = NULL,
upsilon_1 = NULL,
upsilon_2 = NULL,
upsilon_3 = NULL,
gamma_1 = NULL,
gamma_2 = NULL,
gamma_3 = NULL,
alpha = NULL,
beta_t1 = NULL,
beta_t2 = NULL,
beta_t3 = NULL,
beta_t4 = NULL,
end_t1 = NULL,
end_t2 = NULL,
end_t3 = NULL,
end_t4 = NULL,
epsilon = NULL

)

Arguments

u0 A data.frame with the initial state in each node, i.e., the number of individuals
in each compartment in each node when the simulation starts (see ‘Details’).
The parameter u0 can also be an object that can be coerced to a data.frame,
e.g., a named numeric vector will be coerced to a one row data.frame.

72 SISe3

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events a data.frame with the scheduled events, see SimInf_model.

phi A numeric vector with the initial environmental infectious pressure in each node.
Will be repeated to the length of nrow(u0). Default is NULL which gives 0 in
each node.

upsilon_1 Indirect transmission rate of the environmental infectious pressure in age cate-
gory 1

upsilon_2 Indirect transmission rate of the environmental infectious pressure in age cate-
gory 2

upsilon_3 Indirect transmission rate of the environmental infectious pressure in age cate-
gory 3

gamma_1 The recovery rate from infected to susceptible for age category 1

gamma_2 The recovery rate from infected to susceptible for age category 2

gamma_3 The recovery rate from infected to susceptible for age category 3

alpha Shed rate from infected individuals

beta_t1 The decay of the environmental infectious pressure in interval 1.

beta_t2 The decay of the environmental infectious pressure in interval 2.

beta_t3 The decay of the environmental infectious pressure in interval 3.

beta_t4 The decay of the environmental infectious pressure in interval 4.

end_t1 vector with the non-inclusive day of the year that ends interval 1 in each node.
Will be repeated to the length of nrow(u0).

end_t2 vector with the non-inclusive day of the year that ends interval 2 in each node.
Will be repeated to the length of nrow(u0).

end_t3 vector with the non-inclusive day of the year that ends interval 3 in each node.
Will be repeated to the length of nrow(u0).

end_t4 vector with the non-inclusive day of the year that ends interval 4 in each node.
Will be repeated to the length of nrow(u0).

epsilon The background environmental infectious pressure

Details

The SISe3 model contains two compartments in three age categories; number of susceptible (S_1,
S_2, S_3) and number of infectious (I_1, I_2, I_3). Additionally, it contains an environmental
compartment to model shedding of a pathogen to the environment. Consequently, the model has six
state transitions,

S1
υ1φS1−→ I1

I1
γ1I1−→ S1

SISe3 73

S2
υ2φS2−→ I2

I2
γ2I2−→ S2

S3
υ3φS3−→ I3

I3
γ3I3−→ S3

where the transition rate per unit of time from susceptible to infected is proportional to the con-
centration of the environmental contamination φ in each node. Moreover, the transition rate from
infected to susceptible is the recovery rate γ1, γ2, γ3, measured per individual and per unit of time.
Finally, the environmental infectious pressure in each node is evolved by,

dφ(t)

dt
=

α (I1(t) + I2(t) + I3(t))

N(t)
− β(t)φ(t) + ϵ

where α is the average shedding rate of the pathogen to the environment per infected individual and
N = S1 + S2 + S3 + I1 + I2 + I3 the size of the node. The seasonal decay and removal of the
pathogen is captured by β(t). It is also possible to include a small background infectious pressure
ϵ to allow for other indirect sources of environmental contamination. The environmental infectious
pressure φ(t) in each node is evolved each time unit by the Euler forward method. The value of
φ(t) is saved at the time-points specified in tspan.

The argument u0 must be a data.frame with one row for each node with the following columns:

S_1 The number of sucsceptible in age category 1

I_1 The number of infected in age category 1

S_2 The number of sucsceptible in age category 2

I_2 The number of infected in age category 2

S_3 The number of sucsceptible in age category 3

I_3 The number of infected in age category 3

Value

SISe3

Beta

The time dependent beta is divided into four intervals of the year

where 0 <= day < 365

Case 1: END_1 < END_2 < END_3 < END_4
INTERVAL_1 INTERVAL_2 INTERVAL_3 INTERVAL_4 INTERVAL_1
[0, END_1) [END_1, END_2) [END_2, END_3) [END_3, END_4) [END_4, 365)

74 SISe3_sp

Case 2: END_3 < END_4 < END_1 < END_2
INTERVAL_3 INTERVAL_4 INTERVAL_1 INTERVAL_2 INTERVAL_3
[0, END_3) [END_3, END_4) [END_4, END_1) [END_1, END_2) [END_2, 365)

Case 3: END_4 < END_1 < END_2 < END_3
INTERVAL_4 INTERVAL_1 INTERVAL_2 INTERVAL_3 INTERVAL_4
[0, END_4) [END_4, END_1) [END_1, END_2) [END_2, END_3) [END_3, 365)

SISe3-class Definition of the ‘SISe3’ model

Description

Class to handle the SISe3 SimInf_model model.

SISe3_sp Create an SISe3_sp model

Description

Create an SISe3_sp model to be used by the simulation framework.

Usage

SISe3_sp(
u0,
tspan,
events = NULL,
phi = NULL,
upsilon_1 = NULL,
upsilon_2 = NULL,
upsilon_3 = NULL,
gamma_1 = NULL,
gamma_2 = NULL,
gamma_3 = NULL,
alpha = NULL,
beta_t1 = NULL,
beta_t2 = NULL,
beta_t3 = NULL,
beta_t4 = NULL,
end_t1 = NULL,
end_t2 = NULL,
end_t3 = NULL,
end_t4 = NULL,
distance = NULL,
coupling = NULL

)

SISe3_sp 75

Arguments

u0 A data.frame with the initial state in each node, i.e., the number of individuals
in each compartment in each node when the simulation starts (see ‘Details’).
The parameter u0 can also be an object that can be coerced to a data.frame,
e.g., a named numeric vector will be coerced to a one row data.frame.

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events a data.frame with the scheduled events, see SimInf_model.

phi A numeric vector with the initial environmental infectious pressure in each node.
Will be repeated to the length of nrow(u0). Default is NULL which gives 0 in
each node.

upsilon_1 Indirect transmission rate of the environmental infectious pressure in age cate-
gory 1

upsilon_2 Indirect transmission rate of the environmental infectious pressure in age cate-
gory 2

upsilon_3 Indirect transmission rate of the environmental infectious pressure in age cate-
gory 3

gamma_1 The recovery rate from infected to susceptible for age category 1

gamma_2 The recovery rate from infected to susceptible for age category 2

gamma_3 The recovery rate from infected to susceptible for age category 3

alpha Shed rate from infected individuals

beta_t1 The decay of the environmental infectious pressure in interval 1.

beta_t2 The decay of the environmental infectious pressure in interval 2.

beta_t3 The decay of the environmental infectious pressure in interval 3.

beta_t4 The decay of the environmental infectious pressure in interval 4.

end_t1 vector with the non-inclusive day of the year that ends interval 1 in each node.
Will be repeated to the length of nrow(u0).

end_t2 vector with the non-inclusive day of the year that ends interval 2 in each node.
Will be repeated to the length of nrow(u0).

end_t3 vector with the non-inclusive day of the year that ends interval 3 in each node.
Will be repeated to the length of nrow(u0).

end_t4 vector with the non-inclusive day of the year that ends interval 4 in each node.
Will be repeated to the length of nrow(u0).

distance The distance matrix between neighboring nodes

coupling The coupling between neighboring nodes

76 SISe3_sp

Details

The SISe3_sp model contains two compartments in three age categories; number of susceptible
(S_1, S_2, S_3) and number of infectious (I_1, I_2, I_3). Additionally, it contains an environmental
compartment to model shedding of a pathogen to the environment. Moreover, it also includes a spa-
tial coupling of the environmental contamination among proximal nodes to capture between-node
spread unrelated to moving infected individuals. Consequently, the model has six state transitions,

S1
υ1φS1−→ I1

I1
γ1I1−→ S1

S2
υ2φS2−→ I2

I2
γ2I2−→ S2

S3
υ3φS3−→ I3

I3
γ3I3−→ S3

where the transition rate per unit of time from susceptible to infected is proportional to the con-
centration of the environmental contamination φ in each node. Moreover, the transition rate from
infected to susceptible is the recovery rate γ1, γ2, γ3, measured per individual and per unit of time.
Finally, the environmental infectious pressure in each node is evolved by,

dφi(t)

dt
=

α (Ii,1(t) + Ii,2(t) + Ii,3(t))

Ni(t)
+
∑
k

φk(t)Nk(t)− φi(t)Ni(t)

Ni(t)
· D

dik
− β(t)φi(t)

where α is the average shedding rate of the pathogen to the environment per infected individual and
N = S1 + S2 + S3 + I1 + I2 + I3 the size of the node. Next comes the spatial coupling among
proximal nodes, where D is the rate of the local spread and dik the distance between holdings i
and k. The seasonal decay and removal of the pathogen is captured by β(t). The environmental
infectious pressure φ(t) in each node is evolved each time unit by the Euler forward method. The
value of φ(t) is saved at the time-points specified in tspan.

The argument u0 must be a data.frame with one row for each node with the following columns:

S_1 The number of sucsceptible in age category 1

I_1 The number of infected in age category 1

S_2 The number of sucsceptible in age category 2

I_2 The number of infected in age category 2

S_3 The number of sucsceptible in age category 3

I_3 The number of infected in age category 3

SISe3_sp-class 77

Value

SISe3_sp

Beta

The time dependent beta is divided into four intervals of the year

where 0 <= day < 365

Case 1: END_1 < END_2 < END_3 < END_4
INTERVAL_1 INTERVAL_2 INTERVAL_3 INTERVAL_4 INTERVAL_1
[0, END_1) [END_1, END_2) [END_2, END_3) [END_3, END_4) [END_4, 365)

Case 2: END_3 < END_4 < END_1 < END_2
INTERVAL_3 INTERVAL_4 INTERVAL_1 INTERVAL_2 INTERVAL_3
[0, END_3) [END_3, END_4) [END_4, END_1) [END_1, END_2) [END_2, 365)

Case 3: END_4 < END_1 < END_2 < END_3
INTERVAL_4 INTERVAL_1 INTERVAL_2 INTERVAL_3 INTERVAL_4
[0, END_4) [END_4, END_1) [END_1, END_2) [END_2, END_3) [END_3, 365)

SISe3_sp-class Definition of the ‘SISe3_sp’ model

Description

Class to handle the SISe3_sp SimInf_model model.

SISe_sp Create a SISe_sp model

Description

Create a SISe_sp model to be used by the simulation framework.

Usage

SISe_sp(
u0,
tspan,
events = NULL,
phi = NULL,
upsilon = NULL,
gamma = NULL,
alpha = NULL,

78 SISe_sp

beta_t1 = NULL,
beta_t2 = NULL,
beta_t3 = NULL,
beta_t4 = NULL,
end_t1 = NULL,
end_t2 = NULL,
end_t3 = NULL,
end_t4 = NULL,
coupling = NULL,
distance = NULL

)

Arguments

u0 A data.frame with the initial state in each node, i.e., the number of individuals
in each compartment in each node when the simulation starts (see ‘Details’).
The parameter u0 can also be an object that can be coerced to a data.frame,
e.g., a named numeric vector will be coerced to a one row data.frame.

tspan A vector (length >= 1) of increasing time points where the state of each node
is to be returned. Can be either an integer or a Date vector. A Date vector is
coerced to a numeric vector as days, where tspan[1] becomes the day of the
year of the first year of tspan. The dates are added as names to the numeric
vector.

events a data.frame with the scheduled events, see SimInf_model.

phi A numeric vector with the initial environmental infectious pressure in each node.
Will be repeated to the length of nrow(u0). Default is NULL which gives 0 in
each node.

upsilon Indirect transmission rate of the environmental infectious pressure

gamma The recovery rate from infected to susceptible

alpha Shed rate from infected individuals

beta_t1 The decay of the environmental infectious pressure in interval 1.

beta_t2 The decay of the environmental infectious pressure in interval 2.

beta_t3 The decay of the environmental infectious pressure in interval 3.

beta_t4 The decay of the environmental infectious pressure in interval 4.

end_t1 vector with the non-inclusive day of the year that ends interval 1 in each node.
Will be repeated to the length of nrow(u0).

end_t2 vector with the non-inclusive day of the year that ends interval 2 in each node.
Will be repeated to the length of nrow(u0).

end_t3 vector with the non-inclusive day of the year that ends interval 3 in each node.
Will be repeated to the length of nrow(u0).

end_t4 vector with the non-inclusive day of the year that ends interval 4 in each node.
Will be repeated to the length of nrow(u0).

coupling The coupling between neighboring nodes

distance The distance matrix between neighboring nodes

SISe_sp 79

Details

The SISe_sp model contains two compartments; number of susceptible (S) and number of infec-
tious (I). Additionally, it contains an environmental compartment to model shedding of a pathogen
to the environment. Moreover, it also includes a spatial coupling of the environmental contamina-
tion among proximal nodes to capture between-node spread unrelated to moving infected individu-
als. Consequently, the model has two state transitions,

S
υφS−→ I

I
γI−→ S

where the transition rate per unit of time from susceptible to infected is proportional to the con-
centration of the environmental contamination φ in each node. Moreover, the transition rate from
infected to susceptible is the recovery rate γ, measured per individual and per unit of time. Finally,
the environmental infectious pressure in each node is evolved by,

dφi(t)

dt
=

αIi(t)

Ni(t)
+
∑
k

φk(t)Nk(t)− φi(t)Ni(t)

Ni(t)
· D

dik
− β(t)φi(t)

where α is the average shedding rate of the pathogen to the environment per infected individual and
N = S + I the size of the node. Next comes the spatial coupling among proximal nodes, where
D is the rate of the local spread and dik the distance between holdings i and k. The seasonal decay
and removal of the pathogen is captured by β(t). The environmental infectious pressure φ(t) in
each node is evolved each time unit by the Euler forward method. The value of φ(t) is saved at the
time-points specified in tspan.

The argument u0 must be a data.frame with one row for each node with the following columns:

S The number of sucsceptible

I The number of infected

Value

SISe_sp

Beta

The time dependent beta is divided into four intervals of the year

where 0 <= day < 365

Case 1: END_1 < END_2 < END_3 < END_4
INTERVAL_1 INTERVAL_2 INTERVAL_3 INTERVAL_4 INTERVAL_1
[0, END_1) [END_1, END_2) [END_2, END_3) [END_3, END_4) [END_4, 365)

Case 2: END_3 < END_4 < END_1 < END_2
INTERVAL_3 INTERVAL_4 INTERVAL_1 INTERVAL_2 INTERVAL_3
[0, END_3) [END_3, END_4) [END_4, END_1) [END_1, END_2) [END_2, 365)

80 summary,SimInf_abc-method

Case 3: END_4 < END_1 < END_2 < END_3
INTERVAL_4 INTERVAL_1 INTERVAL_2 INTERVAL_3 INTERVAL_4
[0, END_4) [END_4, END_1) [END_1, END_2) [END_2, END_3) [END_3, 365)

SISe_sp-class Definition of the SISe_sp model

Description

Class to handle the SISe_sp SimInf_model.

summary,SimInf_abc-method

Detailed summary of a SimInf_abc object

Description

Detailed summary of a SimInf_abc object

Usage

S4 method for signature 'SimInf_abc'
summary(object, ...)

Arguments

object The SimInf_abc object

... Additional arguments affecting the summary produced.

Value

None (invisible ’NULL’).

summary,SimInf_events-method 81

summary,SimInf_events-method

Detailed summary of a SimInf_events object

Description

Shows the number of scheduled events and the number of scheduled events per event type.

Usage

S4 method for signature 'SimInf_events'
summary(object, ...)

Arguments

object The SimInf_events object

... Additional arguments affecting the summary produced.

Value

None (invisible ’NULL’).

summary,SimInf_indiv_events-method

Detailed summary of a SimInf_indiv_events object

Description

Detailed summary of a SimInf_indiv_events object

Usage

S4 method for signature 'SimInf_indiv_events'
summary(object, ...)

Arguments

object The SimInf_indiv_events object

... Additional arguments affecting the summary produced.

Value

None (invisible ’NULL’).

82 summary,SimInf_pfilter-method

summary,SimInf_model-method

Detailed summary of a SimInf_model object

Description

Detailed summary of a SimInf_model object

Usage

S4 method for signature 'SimInf_model'
summary(object, ...)

Arguments

object The SimInf_model object

... Additional arguments affecting the summary produced.

Value

None (invisible ’NULL’).

summary,SimInf_pfilter-method

Detailed summary of a SimInf_pfilter object

Description

Detailed summary of a SimInf_pfilter object

Usage

S4 method for signature 'SimInf_pfilter'
summary(object, ...)

Arguments

object The SimInf_pfilter object.

... Unused additional arguments.

Value

invisible(NULL).

trajectory 83

trajectory Generic function to extract data from a simulated trajectory

Description

Generic function to extract data from a simulated trajectory

Usage

trajectory(model, compartments = NULL, index = NULL, ...)

Arguments

model the object to extract the trajectory from.

compartments specify the names of the compartments to extract data from. The compart-
ments can be specified as a character vector e.g. compartments = c('S', 'I',
'R'), or as a formula e.g. compartments = ~S+I+R (see ‘Examples’). Default
(compartments=NULL) is to extract the number of individuals in each compart-
ment i.e. the data from all discrete state compartments in the model. In models
that also have continuous state variables e.g. the SISe model, they are also in-
cluded.

index indices specifying the subset of nodes to include when extracting data. Default
(index = NULL) is to extract data from all nodes.

... Additional arguments, see trajectory,SimInf_model-method

trajectory,SimInf_model-method

Extract data from a simulated trajectory

Description

Extract the number of individuals in each compartment in every node after generating a single
stochastic trajectory with run.

Usage

S4 method for signature 'SimInf_model'
trajectory(model, compartments, index, format = c("data.frame", "matrix"))

84 trajectory,SimInf_model-method

Arguments

model the SimInf_model object to extract the result from.

compartments specify the names of the compartments to extract data from. The compart-
ments can be specified as a character vector e.g. compartments = c('S', 'I',
'R'), or as a formula e.g. compartments = ~S+I+R (see ‘Examples’). Default
(compartments=NULL) is to extract the number of individuals in each compart-
ment i.e. the data from all discrete state compartments in the model. In models
that also have continuous state variables e.g. the SISe model, they are also in-
cluded.

index indices specifying the subset of nodes to include when extracting data. Default
(index = NULL) is to extract data from all nodes.

format the default (format = "data.frame") is to generate a data.frame with one row
per node and time-step with the number of individuals in each compartment.
Using format = "matrix" returns the result as a matrix, which is the internal
format (see ‘Details’).

Value

A data.frame if format = "data.frame", else a matrix.

Internal format of the discrete state variables

Description of the layout of the internal matrix (U) that is returned if format = "matrix". U[, j]
contains the number of individuals in each compartment at tspan[j]. U[1:Nc, j] contains the
number of individuals in node 1 at tspan[j]. U[(Nc + 1):(2 * Nc), j] contains the number of
individuals in node 2 at tspan[j] etc, where Nc is the number of compartments in the model. The
dimension of the matrix is NnNc× length(tspan) where Nn is the number of nodes.

Internal format of the continuous state variables

Description of the layout of the matrix that is returned if format = "matrix". The result matrix for
the real-valued continuous state. V[, j] contains the real-valued state of the system at tspan[j].
The dimension of the matrix is Nndim(ldata)[1] × length(tspan).

Examples

Create an 'SIR' model with 6 nodes and initialize
it to run over 10 days.
u0 <- data.frame(S = 100:105, I = 1:6, R = rep(0, 6))
model <- SIR(u0 = u0, tspan = 1:10, beta = 0.16, gamma = 0.077)

Run the model to generate a single stochastic trajectory.
result <- run(model)

Extract the number of individuals in each compartment at the
time-points in 'tspan'.
trajectory(result)

Extract the number of recovered individuals in the first node

trajectory,SimInf_pfilter-method 85

at the time-points in 'tspan'.
trajectory(result, compartments = "R", index = 1)

Extract the number of recovered individuals in the first and
third node at the time-points in 'tspan'.
trajectory(result, compartments = "R", index = c(1, 3))

Create an 'SISe' model with 6 nodes and initialize
it to run over 10 days.
u0 <- data.frame(S = 100:105, I = 1:6)
model <- SISe(u0 = u0, tspan = 1:10, phi = rep(0, 6),

upsilon = 0.02, gamma = 0.1, alpha = 1, epsilon = 1.1e-5,
beta_t1 = 0.15, beta_t2 = 0.15, beta_t3 = 0.15, beta_t4 = 0.15,
end_t1 = 91, end_t2 = 182, end_t3 = 273, end_t4 = 365)

Run the model
result <- run(model)

Extract the continuous state variable 'phi' which represents
the environmental infectious pressure.
trajectory(result, "phi")

trajectory,SimInf_pfilter-method

Extract filtered trajectory from running a particle filter

Description

Extract filtered trajectory from running a particle filter

Usage

S4 method for signature 'SimInf_pfilter'
trajectory(model, compartments, index, format = c("data.frame", "matrix"))

Arguments

model the SimInf_pfilter object to extract the result from.

compartments specify the names of the compartments to extract data from. The compart-
ments can be specified as a character vector e.g. compartments = c('S', 'I',
'R'), or as a formula e.g. compartments = ~S+I+R (see ‘Examples’). Default
(compartments=NULL) is to extract the number of individuals in each compart-
ment i.e. the data from all discrete state compartments in the model. In models
that also have continuous state variables e.g. the SISe model, they are also in-
cluded.

index indices specifying the subset of nodes to include when extracting data. Default
(index = NULL) is to extract data from all nodes.

86 u0

format the default (format = "data.frame") is to generate a data.frame with one row
per node and time-step with the number of individuals in each compartment.
Using format = "matrix" returns the result as a matrix, which is the internal
format (see ‘Details’ in trajectory,SimInf_model-method).

Value

A data.frame if format = "data.frame", else a matrix.

u0 Get the initial compartment state

Description

Get the initial compartment state

Usage

u0(object, ...)

S4 method for signature 'SimInf_model'
u0(object, ...)

S4 method for signature 'SimInf_indiv_events'
u0(object, time = NULL, target = NULL, age = NULL)

Arguments

object The object to get the initial compartment state u0 from.

... Additional arguments.

time Only used when object is of class SimInf_indiv_events object. The time-
point that will be used to create u0. If left empty (the default), the earliest time
among the events will be used.

target Only used when object is of class SimInf_indiv_events object. The SimInf
model (’SEIR’, ’SIR’, ’SIS’, ’SISe3’, ’SISe3_sp’, ’SISe’, or ’SISe_sp’) to target
the events and u0 for. The default, NULL, creates an u0, but where the compart-
ments might have to be renamed and post-processed to fit the specific use case.

age Only used when object is of class SimInf_indiv_events object. An integer
vector with break points in days for the ageing events. The default, NULL, creates
an u0 where all individuals belong to the same age category.

Value

a data.frame with the initial compartment state.

u0<- 87

Examples

Create an SIR model object.
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Get the initial compartment state.
u0(model)

u0<- Update the initial compartment state u0 in each node

Description

Update the initial compartment state u0 in each node

Usage

u0(model) <- value

S4 replacement method for signature 'SimInf_model'
u0(model) <- value

Arguments

model The model to update the initial compartment state u0.
value A data.frame with the initial state in each node. Each row is one node, and

the number of rows in u0 must match the number of nodes in model. Only the
columns in u0 with a name that matches a compartment in the model will be
used.

Examples

Create an SIR model object.
model <- SIR(u0 = data.frame(S = 99, I = 1, R = 0),

tspan = 1:100,
beta = 0.16,
gamma = 0.077)

Run the SIR model and plot the result.
set.seed(22)
result <- run(model)
plot(result)

Update u0 and run the model again
u0(model) <- data.frame(S = 990, I = 10, R = 0)
result <- run(model)
plot(result)

88 u0_SEIR

u0_SEIR Example data to initialize the ‘SEIR’ model

Description

Example data to initialize a population of 1600 nodes and demonstrate the SEIR model.

Usage

u0_SEIR()

Details

A data.frame with the number of individuals in the ‘S’, ‘E’, ‘I’ and ‘R’ compartments in 1600
nodes. Note that the ‘E’, ‘I’ and ‘R’ compartments are zero.

Value

A data.frame

Examples

Not run:
For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SEIR' model with 1600 nodes and initialize it to
run over 4*365 days and record data at weekly time-points.
Add ten infected individuals to the first node.
u0 <- u0_SEIR()
u0$I[1] <- 10
tspan <- seq(from = 1, to = 4*365, by = 7)
model <- SEIR(u0 = u0,

tspan = tspan,
events = events_SEIR(),
beta = 0.16,
epsilon = 0.25,
gamma = 0.01)

Run the model to generate a single stochastic trajectory.
result <- run(model)
plot(result)

Summarize trajectory
summary(result)

End(Not run)

u0_SIR 89

u0_SIR Example data to initialize the ‘SIR’ model

Description

Example data to initialize a population of 1600 nodes and demonstrate the SIR model.

Usage

u0_SIR()

Details

A data.frame with the number of individuals in the ‘S’, ‘I’ and ‘R’ compartments in 1600 nodes.
Note that the ‘I’ and ‘R’ compartments are zero.

Value

A data.frame

Examples

Not run:
For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIR' model with 1600 nodes and initialize
it to run over 4*365 days. Add one infected individual
to the first node.
u0 <- u0_SIR()
u0$I[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SIR(u0 = u0,

tspan = tspan,
events = events_SIR(),
beta = 0.16,
gamma = 0.01)

Run the model to generate a single stochastic trajectory.
result <- run(model)
plot(result)

Summarize trajectory
summary(result)

End(Not run)

90 u0_SIS

u0_SIS Example data to initialize the ‘SIS’ model

Description

Example data to initialize a population of 1600 nodes and demonstrate the SIS model.

Usage

u0_SIS()

Details

A data.frame with the number of individuals in the ‘S’, and ‘I’ compartments in 1600 nodes. Note
that the ‘I’ compartment is zero.

Value

A data.frame

Examples

Not run:
For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SIS' model with 1600 nodes and initialize
it to run over 4*365 days. Add one infected individual
to the first node.
u0 <- u0_SIS()
u0$I[1] <- 1
tspan <- seq(from = 1, to = 4*365, by = 1)
model <- SIS(u0 = u0,

tspan = tspan,
events = events_SIS(),
beta = 0.16,
gamma = 0.01)

Run the model to generate a single stochastic trajectory.
result <- run(model)
plot(result)

Summarize trajectory
summary(result)

End(Not run)

u0_SISe 91

u0_SISe Example data to initialize the ‘SISe’ model

Description

Example data to initialize a population of 1600 nodes and demonstrate the SISe model.

Usage

u0_SISe()

Details

A data.frame with the number of individuals in the ‘S’ and ‘I’ compartments in 1600 nodes. Note
that the ‘I’ compartment is zero.

Value

A data.frame

Examples

Not run:
For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SISe' model with 1600 nodes and initialize it to
run over 4*365 days and record data at weekly time-points.

Load the initial population and add ten infected individuals to
the first node.
u0 <- u0_SISe()
u0$I[1] <- 10

Define 'tspan' to run the simulation over 4*365 and record the
state of the system at weekly time-points.
tspan <- seq(from = 1, to = 4*365, by = 7)

Load scheduled events for the population of nodes with births,
deaths and between-node movements of individuals.
events <- events_SISe()

Create an 'SISe' model
model <- SISe(u0 = u0, tspan = tspan, events = events_SISe(),

phi = 0, upsilon = 1.8e-2, gamma = 0.1, alpha = 1,
beta_t1 = 1.0e-1, beta_t2 = 1.0e-1, beta_t3 = 1.25e-1,
beta_t4 = 1.25e-1, end_t1 = 91, end_t2 = 182,

92 u0_SISe3

end_t3 = 273, end_t4 = 365, epsilon = 0)

Run the model to generate a single stochastic trajectory.
result <- run(model)

Summarize trajectory
summary(result)

Plot the proportion of nodes with at least one infected
individual.
plot(result, I~S+I, level = 2, type = "l")

End(Not run)

u0_SISe3 Example data to initialize the ‘SISe3’ model

Description

Example data to initialize a population of 1600 nodes and demonstrate the SISe3 model.

Usage

data(u0_SISe3)

Format

A data.frame

Details

A data.frame with the number of individuals in the ‘S_1’, ‘S_2’, ‘S_3’, ‘I_1’, ‘I_2’ and ‘I_3’
compartments in 1600 nodes. Note that the ‘I_1’, ‘I_2’ and ‘I_3’ compartments are zero.

Examples

Not run:
For reproducibility, call the set.seed() function and specify
the number of threads to use. To use all available threads,
remove the set_num_threads() call.
set.seed(123)
set_num_threads(1)

Create an 'SISe3' model with 1600 nodes and initialize it to
run over 4*365 days and record data at weekly time-points.

Load the initial population and add ten infected individuals to
I_1 in the first node.
u0 <- u0_SISe3
u0$I_1[1] <- 10

v0<- 93

Define 'tspan' to run the simulation over 4*365 and record the
state of the system at weekly time-points.
tspan <- seq(from = 1, to = 4*365, by = 7)

Load scheduled events for the population of nodes with births,
deaths and between-node movements of individuals.
events <- events_SISe3

Create a 'SISe3' model
model <- SISe3(u0 = u0, tspan = tspan, events = events,

phi = rep(0, nrow(u0)), upsilon_1 = 1.8e-2,
upsilon_2 = 1.8e-2, upsilon_3 = 1.8e-2,
gamma_1 = 0.1, gamma_2 = 0.1, gamma_3 = 0.1,
alpha = 1, beta_t1 = 1.0e-1, beta_t2 = 1.0e-1,
beta_t3 = 1.25e-1, beta_t4 = 1.25e-1, end_t1 = 91,
end_t2 = 182, end_t3 = 273, end_t4 = 365, epsilon = 0)

Run the model to generate a single stochastic trajectory.
result <- run(model)

Summarize trajectory
summary(result)

Plot the proportion of nodes with at least one infected
individual.
plot(result, I_1 + I_2 + I_3 ~ ., level = 2, type = "l")

End(Not run)

v0<- Update the initial continuous state v0 in each node

Description

Update the initial continuous state v0 in each node

Usage

v0(model) <- value

S4 replacement method for signature 'SimInf_model'
v0(model) <- value

Arguments

model The model to update the initial continuous state v0.

94 v0<-

value the initial continuous state in each node. Must be a data.frame or an object
that can be coerced to a data.frame. A named numeric vector will be coerced
to a one-row data.frame. Each row is one node, and the number of rows in v0
must match the number of nodes in model. Only the columns in v0 with a name
that matches a continuous state in v0 in the model will be used

Examples

Create an 'SISe' model with no infected individuals and no
infectious pressure (phi = 0, epsilon = 0).
model <- SISe(u0 = data.frame(S = 100, I = 0), tspan = 1:100,

phi = 0, upsilon = 0.02, gamma = 0.1, alpha = 1,
epsilon = 0, beta_t1 = 0.15, beta_t2 = 0.15,
beta_t3 = 0.15, beta_t4 = 0.15, end_t1 = 91,
end_t2 = 182, end_t3 = 273, end_t4 = 365)

Run the 'SISe' model and plot the result.
set.seed(22)
result <- run(model)
plot(result)

Update the infectious pressure 'phi' in 'v0' and run
the model again.
v0(model) <- data.frame(phi = 1)
result <- run(model)
plot(result)

Index

∗ dataset
events_SISe3, 19
nodes, 28
u0_SISe3, 92

abc, 4, 57
abc,SimInf_model-method (abc), 4
as.data.frame.SimInf_abc, 8
as.data.frame.SimInf_events, 8
as.data.frame.SimInf_indiv_events, 9

boxplot,SimInf_model-method, 9

C_code, 11
continue, 10, 57
continue,SimInf_abc-method (continue),

10

dgCMatrix, 12, 49, 58, 60, 62, 63
distance_matrix, 12

edge_properties_to_matrix, 13
events, 14
events,SimInf_model-method (events), 14
events_SEIR, 15
events_SIR, 16
events_SIS, 17
events_SISe, 18
events_SISe3, 19

gdata, 21
gdata,SimInf_model-method (gdata), 21
gdata<-, 21
gdata<-,SimInf_model-method (gdata<-),

21
get_individuals, 22
get_individuals,SimInf_indiv_events-method

(get_individuals), 22

indegree, 23
individual_events, 23, 30

INSTALL, 33
install.packages, 33

ldata, 24
ldata,SimInf_model-method (ldata), 24
logLik,SimInf_pfilter-method, 25

mparse, 26, 55

n_generations, 30
n_generations,SimInf_abc-method

(n_generations), 30
n_nodes, 31
n_nodes,SimInf_model-method (n_nodes),

31
node_events, 24, 29
node_events,SimInf_indiv_events-method

(node_events), 29
nodes, 28

outdegree, 31

package_skeleton, 32, 56
pairs,SimInf_model-method, 33
pfilter, 34
pfilter,SimInf_model-method (pfilter),

34
plot,SimInf_abc-method, 36
plot,SimInf_events-method, 36
plot,SimInf_indiv_events-method, 37
plot,SimInf_model-method, 37
plot,SimInf_pfilter-method, 39
prevalence, 40, 56
prevalence,SimInf_model-method, 41
prevalence,SimInf_pfilter-method, 42
punchcard<-, 43
punchcard<-,SimInf_model-method

(punchcard<-), 43

run, 26, 45, 55, 83
run,SEIR-method (run), 45

95

96 INDEX

run,SimInf_abc-method (run), 45
run,SimInf_model-method (run), 45
run,SIR-method (run), 45
run,SIS-method (run), 45
run,SISe-method (run), 45
run,SISe3-method (run), 45
run,SISe3_sp-method (run), 45
run,SISe_sp-method (run), 45

SEIR, 15, 47, 88
SEIR-class, 48
select_matrix, 49
select_matrix,SimInf_model-method

(select_matrix), 49
select_matrix<-, 49
select_matrix<-,SimInf_model-method

(select_matrix<-), 49
set_num_threads, 50
shift_matrix, 51
shift_matrix,SimInf_model-method

(shift_matrix), 51
shift_matrix<-, 51
shift_matrix<-,SimInf_model-method

(shift_matrix<-), 51
show,SimInf_abc-method, 52
show,SimInf_events-method, 53
show,SimInf_indiv_events-method, 53
show,SimInf_model-method, 54
show,SimInf_pfilter-method, 55
SimInf, 55
SimInf-package (SimInf), 55
SimInf_abc-class, 56
SimInf_events, 14–18, 20, 27, 49, 51, 57, 57,

62, 63
SimInf_events-class, 60
SimInf_indiv_events, 24
SimInf_indiv_events-class, 61
SimInf_model, 26, 28, 32, 46–48, 55, 61,

63–69, 71, 72, 74, 75, 77, 78, 80
SimInf_model-class, 63
SimInf_pfilter-class, 64
SIR, 16, 55, 64, 89
SIR-class, 66
SIS, 17, 66, 90
SIS-class, 68
SISe, 18, 68, 91
SISe-class, 71
SISe3, 19, 20, 71, 92
SISe3-class, 74

SISe3_sp, 74
SISe3_sp-class, 77
SISe_sp, 77
SISe_sp-class, 80
summary,SimInf_abc-method, 80
summary,SimInf_events-method, 81
summary,SimInf_indiv_events-method, 81
summary,SimInf_model-method, 82
summary,SimInf_pfilter-method, 82

trajectory, 83
trajectory,SimInf_model-method, 83
trajectory,SimInf_pfilter-method, 85

u0, 86
u0,SimInf_indiv_events-method (u0), 86
u0,SimInf_model-method (u0), 86
u0<-, 87
u0<-,SimInf_model-method (u0<-), 87
u0_SEIR, 88
u0_SIR, 89
u0_SIS, 90
u0_SISe, 91
u0_SISe3, 92

v0<-, 93
v0<-,SimInf_model-method (v0<-), 93

	abc
	as.data.frame.SimInf_abc
	as.data.frame.SimInf_events
	as.data.frame.SimInf_indiv_events
	boxplot,SimInf_model-method
	continue
	C_code
	distance_matrix
	edge_properties_to_matrix
	events
	events_SEIR
	events_SIR
	events_SIS
	events_SISe
	events_SISe3
	gdata
	gdata<-
	get_individuals
	indegree
	individual_events
	ldata
	logLik,SimInf_pfilter-method
	mparse
	nodes
	node_events
	n_generations
	n_nodes
	outdegree
	package_skeleton
	pairs,SimInf_model-method
	pfilter
	plot,SimInf_abc-method
	plot,SimInf_events-method
	plot,SimInf_indiv_events-method
	plot,SimInf_model-method
	plot,SimInf_pfilter-method
	prevalence
	prevalence,SimInf_model-method
	prevalence,SimInf_pfilter-method
	punchcard<-
	run
	SEIR
	SEIR-class
	select_matrix
	select_matrix<-
	set_num_threads
	shift_matrix
	shift_matrix<-
	show,SimInf_abc-method
	show,SimInf_events-method
	show,SimInf_indiv_events-method
	show,SimInf_model-method
	show,SimInf_pfilter-method
	SimInf
	SimInf_abc-class
	SimInf_events
	SimInf_events-class
	SimInf_indiv_events-class
	SimInf_model
	SimInf_model-class
	SimInf_pfilter-class
	SIR
	SIR-class
	SIS
	SIS-class
	SISe
	SISe-class
	SISe3
	SISe3-class
	SISe3_sp
	SISe3_sp-class
	SISe_sp
	SISe_sp-class
	summary,SimInf_abc-method
	summary,SimInf_events-method
	summary,SimInf_indiv_events-method
	summary,SimInf_model-method
	summary,SimInf_pfilter-method
	trajectory
	trajectory,SimInf_model-method
	trajectory,SimInf_pfilter-method
	u0
	u0<-
	u0_SEIR
	u0_SIR
	u0_SIS
	u0_SISe
	u0_SISe3
	v0<-
	Index

