
Package ‘LEGIT’
January 20, 2025

Title Latent Environmental & Genetic InTeraction (LEGIT) Model

Version 1.4.1

Date 2024-01-23

Author Alexia Jolicoeur-Martineau <alexia.jolicoeur-martineau@mail.mcgill.ca>

Maintainer Alexia Jolicoeur-Martineau <alexia.jolicoeur-martineau@mail.mcgill.ca>

Description Constructs genotype x environment interaction (GxE) models where
G is a weighted sum of genetic variants (genetic score) and E is a weighted
sum of environments (environmental score) using the alternating optimization algorithm
by Jolicoeur-Martineau et al. (2017) <arXiv:1703.08111>. This approach has greatly
enhanced predictive power over traditional GxE models which include only a single
genetic variant and a single environmental exposure. Although this approach was
originally made for GxE modelling, it is flexible and does not require the use of
genetic and environmental variables. It can also handle more than 2 latent variables
(rather than just G and E) and 3-way interactions or more. The LEGIT model produces
highly interpretable results and is very parameter-efficient thus it can even be
used with small sample sizes (n < 250). Tools to determine the type of interaction
(vantage sensitivity, diathesis-stress or differential susceptibility), with any
number of genetic variants or environments, are available <arXiv:1712.04058>. The
software can now produce mixed-effects LEGIT models through the lme4 package.

License GPL-3

Imports pROC, foreach, snow, doSNOW, utils, iterators, Hmisc,
grDevices, boot, RColorBrewer, glmnet, lme4, methods

Depends formula.tools, stats, graphics

Encoding UTF-8

RoxygenNote 7.3.0

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2024-01-24 15:12:49 UTC

1

https://arxiv.org/abs/1703.08111
https://arxiv.org/abs/1712.04058

2 best_model

Contents

best_model . 2
best_model.elastic_net_var_select . 3
bootstrap_var_select . 4
elastic_net_var_select . 8
example_2way . 11
example_2way_lme4 . 12
example_3way . 13
example_3way_3latent . 15
example_with_crossover . 16
genetic_var_select . 17
GxE_interaction_RoS . 20
GxE_interaction_test . 22
IMLEGIT . 26
IMLEGIT_cv . 28
IMLEGIT_net . 30
IMLEGIT_to_LEGIT . 32
LEGIT . 34
LEGIT_cv . 36
LEGIT_to_IMLEGIT . 39
longitudinal_folds . 40
nes_var_select . 41
plot.elastic_net_var_select . 44
plot.LEGIT . 46
predict.IMLEGIT . 48
predict.LEGIT . 49
r1nes_var_select . 49
rGE . 52
rGE.IMLEGIT . 53
rGE.LEGIT . 54
stepwise_search . 55
stepwise_search_IM . 58
summary.elastic_net_var_select . 62
summary.IMLEGIT . 63
summary.LEGIT . 64

Index 65

best_model Best model

Description

Best model

best_model.elastic_net_var_select 3

Usage

best_model(object, ...)

Arguments

object An object

... Further arguments passed to or from other methods.

Value

Best model

best_model.elastic_net_var_select

Best model from elastic net variable selection

Description

Best model from elastic net variable selection (based on selected criteria)

Usage

S3 method for class 'elastic_net_var_select'
best_model(object, criterion, ...)

Arguments

object An object of class "elastic_net_var_select", usually, a result of a call to elas-
tic_net_var_select.

criterion Criteria used to determine which model is the best. If search_criterion="AIC",
uses the AIC, if search_criterion="AICc", uses the AICc, if search_criterion="BIC",
uses the BIC, if search_criterion="cv_R2", uses the cross-validation R-squared,
if
search_criterion="cv_AUC", uses the cross-validated AUC, if search_criterion="cv_Huber",
uses the Huber cross-validation error, if search_criterion="cv_L1", uses the
L1-norm cross-validation error (Default = "AIC"). The Huber and L1-norm
cross-validation errors are alternatives to the usual cross-validation L2-norm er-
ror (which the R2 is based on) that are more resistant to outliers. For all cri-
terion, lower is better, with the exception of search_criterion="cv_R2" and
search_criterion="cv_AUC".

... Further arguments passed to or from other methods.

Value

Returns the best IMLEGIT model resulting from the glmnet path with associated information.

4 bootstrap_var_select

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

Examples

Not run:
N = 1000
train = example_3way(N, sigma=1, logit=FALSE, seed=7)
g1_bad = rbinom(N,1,.30)
g2_bad = rbinom(N,1,.30)
g3_bad = rbinom(N,1,.30)
g4_bad = rbinom(N,1,.30)
g5_bad = rbinom(N,1,.30)
train$G = cbind(train$G, g1_bad, g2_bad, g3_bad, g4_bad, g5_bad)
lv = list(G=train$G, E=train$E)
fit = elastic_net_var_select(train$data, lv, y ~ G*E)
summary(fit)
best_model(fit, criterion="BIC")
Instead of taking the best, if you want the model with "Model index"=17 from summary, do
plot(fit)
With Cross-validation
fit = elastic_net_var_select(train$data, lv, y ~ G*E, cross_validation=TRUE, cv_iter=1, cv_folds=5)
best_model(fit, criterion="cv_R2")
Elastic net only applied on G
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(1))
Elastic net only applied on E
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(2))
Most E variables not removed, use lambda_mult > 1 to remove more
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(2), lambda_mult=5)
Lasso (only L1 regularization)
fit = elastic_net_var_select(train$data, lv, y ~ G*E, alpha=1)
Want more lambdas (useful if # of variables is large)
fit = elastic_net_var_select(train$data, lv, y ~ G*E, n_lambda = 200)

End(Not run)

bootstrap_var_select Bootstrap variable selection (for IMLEGIT)

Description

[Very slow, not recommended] Creates bootstrap samples, runs a stepwise search on all of them and
then reports the percentage of times that each variable was selected. This is very computationally
demanding. With small sample sizes, variable selection can be unstable and bootstrap can be used
to give us an idea of the degree of certitude that a variable should be included or not.

bootstrap_var_select 5

Usage

bootstrap_var_select(
data,
formula,
boot_iter = 1000,
boot_size = NULL,
boot_group = NULL,
latent_var_original = NULL,
latent_var_extra = NULL,
search_type = "bidirectional-forward",
search = 0,
search_criterion = "AIC",
forward_exclude_p_bigger = 0.2,
backward_exclude_p_smaller = 0.01,
exclude_worse_AIC = TRUE,
max_steps = 100,
start_latent_var = NULL,
eps = 0.01,
maxiter = 100,
family = gaussian,
ylim = NULL,
seed = NULL,
progress = TRUE,
n_cluster = 1,
best_subsets = 5,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

formula Model formula. The names of latent_var can be used in the formula to repre-
sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can
be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

boot_iter number of bootstrap samples (Default = 1000).

boot_size Optional size of the bootstrapped samples (Default = number of observations).

boot_group Optional vector which represents the group associated with each observation.
Sampling will be done by group instead of by observations (very important if
you have longitudinal data). The sample sizes of the bootstrap samples might
differ by up to "boot_size - maximum group size" observations.

latent_var_original

list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ...

6 bootstrap_var_select

latent_var_extra

list of data.frame (with the same structure as latent_var_original) containing the
additional elements to try including inside the latent variables. Set to NULL if
using a backward search.

search_type If search_type="forward", uses a forward search. If search_type="backward",
uses backward search. If search_type="bidirectional-forward", uses bidi-
rectional search (that starts as a forward search). If search_type="bidirectional-backward",
uses bidirectional search (that starts as a backward search).

search If search=0, uses a stepwise search for all latent variables. Otherwise, if search
= i, uses a stepwise search on the i-th latent variable (Default = 0).

search_criterion

Criterion used to determine which variable is the best to add or worst to drop. If
search_criterion="AIC", uses the AIC, if search_criterion="AICc", uses
the AICc, if search_criterion="BIC", uses the BIC (Default = "AIC").

forward_exclude_p_bigger

If p-value > forward_exclude_p_bigger, we do not consider the variable for
inclusion in the forward steps (Default = .20). This is an exclusion option which
purpose is skipping variables that are likely not worth looking to make the algo-
rithm faster, especially with cross-validation. Set to 1 to prevent any exclusion
here.

backward_exclude_p_smaller

If p-value < backward_exclude_p_smaller, we do not consider the variable
for removal in the backward steps (Default = .01). This is an exclusion option
which purpose is skipping variables that are likely not worth looking to make
the algorithm faster, especially with cross-validation. Set to 0 to prevent any
exclusion here.

exclude_worse_AIC

If AIC with variable > AIC without variable, we ignore the variable (Default
= TRUE). This is an exclusion option which purpose is skipping variables that
are likely not worth looking to make the algorithm faster, especially with cross-
validation. Set to FALSE to prevent any exclusion here.

max_steps Maximum number of steps taken (Default = 50).
start_latent_var

Optional list of starting points for each latent variable (The list must have the
same length as the number of latent variables and each element of the list must
have the same length as the number of variables of the corresponding latent
variable).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

bootstrap_var_select 7

seed Optional seed for bootstrap.

progress If TRUE, shows the progress done (Default=TRUE).

n_cluster Number of parallel clusters, I recommend using the number of CPU cores - 1
(Default = 1).

best_subsets If best_subsets = k, the output will show the k most frequently chosen subsets
of variables (Default = 5)

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

Returns a list of vectors containing the percentage of times that each variable was selected within
each latent variable.

References

Peter C Austin and Jack V Tu. Bootstrap Methods for Developing Predictive Models (2012).
dx.doi.org/10.1198/0003130043277.

Mark Reiser, Lanlan Yao, Xiao Wang, Jeanne Wilcox and Shelley Gray. A Comparison of Bootstrap
Confidence Intervals for Multi-level Longitudinal Data Using Monte-Carlo Simulation (2017).
10.1007/978-981-10-3307-0_17.

Examples

Not run:
Example
train = example_3way_3latent(250, 2, seed=777)
Bootstrap with Bidirectional-backward search for everything based on AIC
Normally you should use a lot more than 10 iterations and extra CPUs (n_cluster)
boot = bootstrap_var_select(train$data, latent_var_extra=NULL,
latent_var_original=train$latent_var,
formula=y ~ E*G*Z,search_type="bidirectional-backward", search=0,
search_criterion="AIC", boot_iter=10, n_cluster=1)
Assuming it's longitudinal with 5 timepoints, even though it's not
id = factor(rep(1:50,each=5))
boot_longitudinal = bootstrap_var_select(train$data, latent_var_extra=NULL,
latent_var_original=train$latent_var,
formula=y ~ E*G*Z,search_type="bidirectional-backward", search=0,
search_criterion="AIC", boot_iter=10, n_cluster=1, boot_group=id)

End(Not run)

8 elastic_net_var_select

elastic_net_var_select

Elastic net for variable selection in IMLEGIT model

Description

[Fast and accurate, highly recommended] Apply Elastic Net (from the glmnet package) with IM-
LEGIT to obtain the order of variable removal that makes the most sense. The output shows the
information criterion at every step, so you can decide which variable to retain. It is significantly
faster (seconds/minutes instead of hours) than all other variable selection approaches (except for
stepwise) and it is very accurate. Note that, as opposed to LEGIT/IMLEGIT, the parameters of
variables inside the latent variables are not L1-normalized; instead, its the main model parameters
which are L1-normalized. This is needed to make elastic net works. It doesn’t matter in the end, be-
cause we only care about which variables were removed and we only output the IMLEGIT models
without elastic net penalization.

Usage

elastic_net_var_select(
data,
latent_var,
formula,
latent_var_searched = NULL,
cross_validation = FALSE,
alpha = 0.75,
standardize = TRUE,
lambda_path = NULL,
lambda_mult = 1,
lambda_min = 1e-04,
n_lambda = 100,
start_latent_var = NULL,
eps = 0.001,
maxiter = 100,
family = gaussian,
ylim = NULL,
cv_iter = 5,
cv_folds = 10,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,
print = TRUE,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

elastic_net_var_select 9

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ... (See examples below
for more details)

formula Model formula. The names of latent_var can be used in the formula to repre-
sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can
be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

latent_var_searched

Optional If not null, you must specify a vector containing all indexes of the
latent variables you want to use elastic net on. Ex: If latent_var=list(G=genes,
E=env), specifying latent_var_search=c(1,2) will use both, latent_var_search=1
will only do it for G, and latent_var_search=2 will only do it for E.

cross_validation

(Optional) If TRUE, will return cross-validation criterion (slower, but very good
criterion).

alpha The elasticnet mixing parameter (between 0 and 1). 1 leads to lasso, 0 leads
to ridge. See glmnet package manual for more information. We recommend
somewhere betwen .50 and 1.

standardize If TRUE, standardize all variables inside every latent_var component. Note that
if FALSE, glmnet will still standardize and unstandardize, but it will do so for
each model (i.e., when at the step of estimating the parameters of latent variable
G it standardize them, apply glmnet, then unstandarize them). This means that
fixed parameters in the alternating steps are not standardized when standard-
ize=FALSE. In practice, we found that standardize=FALSE leads to weird paths
that do not always make sense. In the end, we only care about the order of the
variable removal from the glmnet. We highly recommend standardize=TRUE
for best results.

lambda_path Optional vector of all lambda (penalty term for elastic net, see glmnet package
manual). By default, we automatically determine it.

lambda_mult scalar which multiplies the maximum lambda (penalty term for elastic net, see
glmnet package manual) from the lambda path determined automatically. Some-
times, the maximum lambda found automatically is too big or too small and you
may not want to spend the effort to manually set your own lambda path. This is
where this comes in, you can simply scale lambda max up or down. (Default =
1)

lambda_min minimum lambda (penalty term for elastic net, see glmnet package manual) from
the lambda path. (Default = .0001)

n_lambda Number of lambda (penalty term for elastic net, see glmnet package manual) in
lambda path. Make lower for faster training, or higher for more precision. If
you have many variables, make it bigger than 100 (Default = 100).

start_latent_var

Optional list of starting points for each latent variable (The list must have the
same length as the number of latent variables and each element of the list must

10 elastic_net_var_select

have the same length as the number of variables of the corresponding latent
variable).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

cv_iter Number of cross-validation iterations (Default = 5).

cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)
will lead to leave-one-out cross-validation.

folds Optional list of vectors containing the fold number for each observation. Bypass
cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).

classification Set to TRUE if you are doing classification (binary outcome).

print If FALSE, nothing except warnings will be printed. (Default = TRUE).

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

Returns an object of the class "elastic_net_var_select" which is list containing, in the following
order: the criterion at each lambda, the coefficients of the latent variables at each lambda, the fits of
each IMLEGIT models for each variable retained at each lambda, and the vector of lambda used.

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

Examples

Not run:
N = 1000
train = example_3way(N, sigma=1, logit=FALSE, seed=7)
g1_bad = rbinom(N,1,.30)
g2_bad = rbinom(N,1,.30)
g3_bad = rbinom(N,1,.30)
g4_bad = rbinom(N,1,.30)

example_2way 11

g5_bad = rbinom(N,1,.30)
train$G = cbind(train$G, g1_bad, g2_bad, g3_bad, g4_bad, g5_bad)
lv = list(G=train$G, E=train$E)
fit = elastic_net_var_select(train$data, lv, y ~ G*E)
summary(fit)
best_model(fit, criterion="BIC")
Instead of taking the best, if you want the model with "Model index"=17 from summary, do
plot(fit)
With Cross-validation
fit = elastic_net_var_select(train$data, lv, y ~ G*E, cross_validation=TRUE, cv_iter=1, cv_folds=5)
best_model(fit, criterion="cv_R2")
Elastic net only applied on G
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(1))
Elastic net only applied on E
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(2))
Most E variables not removed, use lambda_mult > 1 to remove more
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(2), lambda_mult=5)
Lasso (only L1 regularization)
fit = elastic_net_var_select(train$data, lv, y ~ G*E, alpha=1)
Want more lambdas (useful if # of variables is large)
fit = elastic_net_var_select(train$data, lv, y ~ G*E, n_lambda = 200)

End(Not run)

example_2way Simulated example of a 2 way interaction GxE model.

Description

Simulated example of a 2 way interaction GxE model (where G and E are latent variables).

gj ∼ Binomial(n = 1, p = .30)

j = 1, 2, 3, 4

el ∼ Normal(µ = 0, σ = 1.5)

l = 1, 2, 3

g = .2g1 + .15g2 − .3g3 + .1g4 + .05g1g3 + .2g2g3

e = −.45e1 + .35e2 + .2e3

µ = −1 + 2g + 3e+ 4ge

y ∼ Normal(µ = µ, σ = sigma) if logit=FALSE
y ∼ Binomial(n = 1, p = logit(µ)) if logit=TRUE

Usage

example_2way(N, sigma = 1, logit = FALSE, seed = NULL)

12 example_2way_lme4

Arguments

N Sample size.

sigma Standard deviation of the gaussian noise (if logit=FALSE).

logit If TRUE, the outcome is transformed to binary with a logit link.

seed RNG seed.

Value

Returns a list containing, in the following order: data.frame with the observed outcome (with noise)
and the true outcome (without noise), data.frame of the genetic variants (G), data.frame of the en-
vironments (E), vector of the true genetic coefficients, vector of the true environmental coefficients,
vector of the true main model coefficients

Examples

example_2way(5,1,logit=FALSE)
example_2way(5,0,logit=TRUE)

example_2way_lme4 Simulated example of a 3 way interaction GxExZ model

Description

Simulated example of a 3 way interaction GxExZ model (where G, E and Z are latent variables).

gj ∼ Binomial(n = 1, p = .30)

j = 1, 2, 3, 4

ek ∼ Normal(µ = 0, σ = 1.5)

k = 1, 2, 3

zl ∼ Normal(µ = 3, σ = 1)

l = 1, 2, 3

g = .2g1 + .15g2 − .3g3 + .1g4 + .05g1g3 + .2g2g3

e = −.45e1 + .35e2 + .2e3

z = .15z1 + .60z2 + .25z3

µ = −2 + 2g + 3e+ z + 5ge− 1.5ez + 2gz + 2gez

y ∼ Normal(µ = µ, σ = sigma) if logit=FALSE
y ∼ Binomial(n = 1, p = logit(µ)) if logit=TRUE

Usage

example_2way_lme4(N, sigma = 1, logit = FALSE, seed = NULL)

example_3way 13

Arguments

N Sample size.

sigma Standard deviation of the gaussian noise (if logit=FALSE).

logit If TRUE, the outcome is transformed to binary with a logit link.

seed RNG seed.

Value

Returns a list containing, in the following order: data.frame with the observed outcome (with noise)
and the true outcome (without noise), list containing the data.frame of the genetic variants (G),
the data.frame of the e environments (E) and the data.frame of the z environments (Z), vector of
the true genetic coefficients, vector of the true e environmental coefficients, vector of the true z
environmental coefficients, vector of the true main model coefficients

Examples

Doing only one iteration so its faster
train = example_2way_lme4(250, 1, seed=777)
D = train$data
G = train$G
E = train$E

F = y ~ G*E
fit = LEGIT(D, G, E, F, lme4=FALSE, maxiter=1)
summary(fit)
F = y ~ 1
fit_test = GxE_interaction_test(D, G, E, F, criterion="AIC", lme4=FALSE, maxiter=1)
fit_test
#fit_test = GxE_interaction_test(D, G, E, F, criterion="cv", lme4=FALSE, maxiter=1, cv_iter=1)
#fit_test

F = y ~ G*E + (1|subject)
fit = LEGIT(D, G, E, F, lme4=TRUE, maxiter=1)
summary(fit)
F = y ~ (1|subject)
fit_test = GxE_interaction_test(D, G, E, F, criterion="AIC", lme4=TRUE, maxiter=1)
fit_test
#fit_test = GxE_interaction_test(D, G, E, F, criterion="cv", lme4=TRUE, maxiter=1, cv_iter=1)
#fit_test

example_3way Simulated example of a 3 way interaction GxExz model

14 example_3way

Description

Simulated example of a 3 way interaction GxExz model (where G and E are latent variables).

gj ∼ Binomial(n = 1, p = .30)

j = 1, 2, 3, 4

el ∼ Normal(µ = 0, σ = 1.5)

l = 1, 2, 3

z ∼ Normal(µ = 3, σ = 1)

g = .2g1 + .15g2 − .3g3 + .1g4 + .05g1g3 + .2g2g3

e = −.45e1 + .35e2 + .2e3

µ = −2 + 2g + 3e+ z + 5ge− 1.5ez + 2gz + 2gez

y ∼ Normal(µ = µ, σ = sigma) if logit=FALSE
y ∼ Binomial(n = 1, p = logit(µ)) if logit=TRUE

Usage

example_3way(N, sigma = 2.5, logit = FALSE, seed = NULL)

Arguments

N Sample size.

sigma Standard deviation of the gaussian noise (if logit=FALSE).

logit If TRUE, the outcome is transformed to binary with a logit link.

seed RNG seed.

Value

Returns a list containing, in the following order: data.frame with the observed outcome (with noise),
the true outcome (without noise) and z, data.frame of the genetic variants (G), data.frame of the en-
vironments (E), vector of the true genetic coefficients, vector of the true environmental coefficients,
vector of the true main model coefficients

Examples

example_3way(5,2.5,logit=FALSE)
example_3way(5,0,logit=TRUE)

example_3way_3latent 15

example_3way_3latent Simulated example of a 3 way interaction GxExZ model

Description

Simulated example of a 3 way interaction GxExZ model (where G, E and Z are latent variables).

gj ∼ Binomial(n = 1, p = .30)

j = 1, 2, 3, 4

ek ∼ Normal(µ = 0, σ = 1.5)

k = 1, 2, 3

zl ∼ Normal(µ = 3, σ = 1)

l = 1, 2, 3

g = .2g1 + .15g2 − .3g3 + .1g4 + .05g1g3 + .2g2g3

e = −.45e1 + .35e2 + .2e3

z = .15z1 + .60z2 + .25z3

µ = −2 + 2g + 3e+ z + 5ge− 1.5ez + 2gz + 2gez

y ∼ Normal(µ = µ, σ = sigma) if logit=FALSE
y ∼ Binomial(n = 1, p = logit(µ)) if logit=TRUE

Usage

example_3way_3latent(N, sigma = 1, logit = FALSE, seed = NULL)

Arguments

N Sample size.
sigma Standard deviation of the gaussian noise (if logit=FALSE).
logit If TRUE, the outcome is transformed to binary with a logit link.
seed RNG seed.

Value

Returns a list containing, in the following order: data.frame with the observed outcome (with noise)
and the true outcome (without noise), list containing the data.frame of the genetic variants (G),
the data.frame of the e environments (E) and the data.frame of the z environments (Z), vector of
the true genetic coefficients, vector of the true e environmental coefficients, vector of the true z
environmental coefficients, vector of the true main model coefficients

Examples

example_3way_3latent(5,1,logit=FALSE)
example_3way_3latent(5,0,logit=TRUE)

16 example_with_crossover

example_with_crossover

Simulated example of a 2 way interaction GxE model with crossover
point.

Description

Simulated example of a 2 way interaction GxE model with crossover point (where G and E are
latent variables).

gj ∼ Binomial(n = 1, p = .30)

j = 1, 2, 3, 4

el ∼ 10Beta(α, β))

l = 1, 2, 3

g = .30g1 + .10g2 + .20g3 + .40g4

e = .45e1 + .35e2 + .2e3

µ = coef [1] + coef [2]e+ coef [3]ge

y ∼ Normal(µ = µ, σ = sigma) if logit=FALSE
y ∼ Binomial(n = 1, p = logit(µ)) if logit=TRUE

Usage

example_with_crossover(
N,
sigma = 1,
c = 0,
coef_main = c(0, 1, 2),
coef_G = c(0.3, 0.1, 0.2, 0.4),
coef_E = c(0.45, 0.35, 0.2),
logit = FALSE,
seed = NULL,
beta_param = c(2, 2)

)

Arguments

N Sample size.

sigma Standard deviation of the gaussian noise (if logit=FALSE).

c crossover point

coef_main Coefficients of the main model, must be a vector of size 3 for intercept, E main
effect and GxE effect (Default = c(0,1,2)).

coef_G Coefficients of the 4 genes, must be a vector of size 4 (Default = c(.30, .10, .20,
.40)).

genetic_var_select 17

coef_E Coefficients of the 3 environments, must be a vector of size 3 (Default = c(.45,
.35, .2)).

logit If TRUE, the outcome is transformed to binary with a logit link.

seed RNG seed.

beta_param Vector of size two for the parameters of the beta distribution of the environmen-
tal variables (Default = c(2,2)).

Value

Returns a list containing, in the following order: data.frame with the observed outcome (with noise)
and the true outcome (without noise), data.frame of the genetic variants (G), data.frame of the en-
vironments (E), vector of the true genetic coefficients, vector of the true environmental coefficients,
vector of the true main model coefficients, the crossover point.

Examples

Examples
Diathesis Stress WEAK
ex_dia = example_with_crossover(250, c=10, coef_main = c(3,1,2), sigma=1)
Diathesis Stress STRONG
ex_dia_s = example_with_crossover(250, c=10, coef_main = c(3,0,2), sigma=1)
Differential Susceptibility WEAK
ex_ds = example_with_crossover(250, c=5, coef_main = c(3+5,1,2), sigma=1)
Differential Susceptibility STRONG
ex_ds_s = example_with_crossover(250, c=5, coef_main = c(3+5,0,2), sigma=1)

genetic_var_select Parallel genetic algorithm variable selection (for IMLEGIT)

Description

[Very slow, recommended when the number of variables is large] Use a standard genetic algorithm
with single-point crossover and a single mutation ran in parallel to find the best subset of variables.
The percentage of times that each variable is included the final populations is also given. This is
very computationally demanding but this finds much better solutions than either stepwise search or
bootstrap variable selection.

Usage

genetic_var_select(
data,
formula,
parallel_iter = 10,
entropy_threshold = 0.1,
popsize = 25,
mutation_prob = 0.5,
first_pop = NULL,

18 genetic_var_select

latent_var = NULL,
search_criterion = "AIC",
maxgen = 100,
eps = 0.01,
maxiter = 100,
family = gaussian,
ylim = NULL,
seed = NULL,
progress = TRUE,
n_cluster = 1,
best_subsets = 5,
cv_iter = 5,
cv_folds = 5,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.
formula Model formula. The names of latent_var can be used in the formula to repre-

sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can
be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

parallel_iter number of parallel genetic algorithms (Default = 10). I recommend using 2-4
times the number of CPU cores used.

entropy_threshold

Entropy threshold for convergence of the population (Default = .10). Note that
not reaching the entropy threshold just means that the population has some diver-
sity, this is not necessarily a bad thing. Reaching the threshold is not necessary
but if a population reach the threshold, we want it to stop reproducing (rather
than continuing until maxgen) since the future generations won’t change much.

popsize Size of the population (Default = 25). Between 25 and 100 is generally adequate.
mutation_prob Probability of mutation (Default = .50). A single variable is selected for muta-

tion and it is mutated with probability mutation_prob. If the mutation causes a
latent variable to become empty, no mutation is done. Using a small value (close
to .05) will lead to getting more stuck in suboptimal solutions but using a large
value (close to 1) will greatly increase the computing time because it will have
a hard time reaching the entropy threshold.

first_pop optional Starting initial population which is used instead of a fully random one.
Mutation is also done on the initial population to increase variability.

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ...

genetic_var_select 19

search_criterion

Criterion used to determine which variable is the best to add or worst to drop. If
search_criterion="AIC", uses the AIC, if search_criterion="AICc", uses
the AICc, if search_criterion="BIC", uses the BIC, if search_criterion="cv",
uses the cross-validation error, if
search_criterion="cv_AUC", uses the cross-validated AUC, if search_criterion="cv_Huber",
uses the Huber cross-validation error, if search_criterion="cv_L1", uses the
L1-norm cross-validation error (Default = "AIC"). The Huber and L1-norm
cross-validation errors are alternatives to the usual cross-validation L2-norm er-
ror (which the R2 is based on) that are more resistant to outliers, the lower the
values the better.

maxgen Maximum number of generations (iterations) of the genetic algorithm (Default
= 100). Between 50 and 200 generations is generally adequate.

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results). Note that using .001 rather than .01 (default) can more than double or
triple the computing time of genetic_var_select.

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

seed Optional seed.

progress If TRUE, shows the progress done (Default=TRUE).

n_cluster Number of parallel clusters, I recommend using the number of CPU cores - 1
(Default = 1).

best_subsets If best_subsets = k, the output will show the k best subsets of variables (De-
fault = 5)

cv_iter Number of cross-validation iterations (Default = 5).

cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)
will lead to leave-one-out cross-validation.

folds Optional list of vectors containing the fold number for each observation. Bypass
cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).

classification Set to TRUE if you are doing classification and cross-validation (binary out-
come).

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

20 GxE_interaction_RoS

Value

Returns a list of vectors containing the percentage of times that each variable was included in the
final populations, the criterion of the best k models, the starting points of the best k models (with
the names of the best variables) and the entropy of the populations.

References

Mu Zhu, & Hugh Chipman. Darwinian evolution in parallel universes: A parallel genetic algorithm
for variable selection (2006). Technometrics, 48(4), 491-502.

Examples

Not run:
Example
train = example_3way_3latent(250, 2, seed=777)
Genetic algorithm based on BIC
Normally you should use a lot more than 2 populations with 10 generations
ga = genetic_var_select(train$data, latent_var=train$latent_var,
formula=y ~ E*G*Z, search_criterion="AIC", parallel_iter=2, maxgen = 10)

End(Not run)

GxE_interaction_RoS Regions of significance using Johnson-Neyman technique

Description

Constructs a LEGIT model and returns the regions of significance (RoS) with the predicted type
of interaction (diathesis-stress, vantage-sensitivity, or differential susceptibility). RoS is not recom-
mended due to poor accuracy with small samples and small effect sizes, GxE_interaction_test has
much better accuracy overall. Only implemented for family=gaussian.

Usage

GxE_interaction_RoS(
data,
genes,
env,
formula_noGxE,
t_alpha = 0.05,
start_genes = NULL,
start_env = NULL,
eps = 0.001,
maxiter = 100,
ylim = NULL,
reverse_code = FALSE,
rescale = FALSE

)

GxE_interaction_RoS 21

Arguments

data data.frame of the dataset to be used.

genes data.frame of the variables inside the genetic score G (can be any sort of variable,
doesn’t even have to be genetic).

env data.frame of the variables inside the environmental score E (can be any sort of
variable, doesn’t even have to be environmental).

formula_noGxE formula WITHOUT G or E (y ~ covariates). G and E will automatically be
added.

t_alpha Alpha level of the student-t distribution for the regions of significance (Default
= .05)

start_genes Optional starting points for genetic score (must be the same length as the number
of columns of genes).

start_env Optional starting points for environmental score (must be the same length as the
number of columns of env).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

reverse_code If TRUE, after fitting the model, the genes with negative weights are reverse
coded (ex: grev = 1 - g). It assumes that the original coding is in [0,1]. The
purpose of this option is to prevent genes with negative weights which cause
interpretation problems (ex: depression normally decreases attention but with a
negative genetic score, it increases attention). Warning, using this option with
GxG interactions could cause nonsensical results since GxG could be inverted.
Also note that this may fail with certain models (Default=FALSE).

rescale If TRUE, the environmental variables are automatically rescaled to the range
[-1,1]. This improves interpretability (Default=FALSE).

Value

Returns a list containing the RoS and the predicted type of interaction.

References

Alexia Jolicoeur-Martineau, Jay Belsky, Eszter Szekely, Keith F. Widaman, Michael Pluess, Celia
Greenwood and Ashley Wazana. Distinguishing differential susceptibility, diathesis-stress and van-
tage sensitivity: beyond the single gene and environment model (2017). https://osf.io/preprints/psyarxiv/27uw8.
10.17605/OSF.IO/27UW8.

Daniel J. Bauer & Patrick J. Curran. Probing Interactions in Fixed and Multilevel Regression:
Inferential and Graphical Techniques (2005). Multivariate Behavioral Research, 40:3, 373-400,
DOI: 10.1207/s15327906mbr4003_5.

22 GxE_interaction_test

Examples

train = example_2way(500, 1, seed=777)
ros = GxE_interaction_RoS(train$data, train$G, train$E, y ~ 1)
ros

GxE_interaction_test Testing of the GxE interaction

Description

Testing of the GxE interaction using the competitive-confirmatory approach adapted from Belsky,
Pluess et Widaman (2013). Reports the different hypotheses (diathesis-stress, vantage-sensitivity,
or differential susceptibility), assuming or not assuming a main effect for E (WEAK vs STRONG)
using the LEGIT model.

Usage

GxE_interaction_test(
data,
genes,
env,
formula_noGxE,
crossover = c("min", "max"),
include_noGxE_models = TRUE,
reverse_code = FALSE,
rescale = FALSE,
boot = NULL,
criterion = "BIC",
start_genes = NULL,
start_env = NULL,
eps = 0.001,
maxiter = 100,
family = gaussian,
ylim = NULL,
cv_iter = 5,
cv_folds = 10,
folds = NULL,
Huber_p = 1.345,
id = NULL,
classification = FALSE,
seed = NULL,
test_only = FALSE,
lme4 = FALSE

)

GxE_interaction_test 23

Arguments

data data.frame of the dataset to be used.

genes data.frame of the variables inside the genetic score G (can be any sort of variable,
doesn’t even have to be genetic).

env data.frame of the variables inside the environmental score E (can be any sort of
variable, doesn’t even have to be environmental).

formula_noGxE formula WITHOUT G or E (y ~ covariates). G and E will automatically be
added properly based on the hypotheses tested.

crossover A tuple containting the minimum and maximum of the environment used as
crossover point of E used in the vantage sensitivity and diathesis-stress mod-
els. Instead of providing two number, you can also write c("min","max") to
automatically choose the expected minimum or maximum of the environmental
score which is calculated based on the min/max of the environments and the
current weights.

include_noGxE_models

If True, we test for models with only G, only E, both G and E, neither G and E
(four models without a GxE). This is to verify for false positives, if one of those
models has the best fit, then it is possible that there is no GxE, thus no type
of GxE. With a single gene and environment, simply looking at the p-value of
the GxE is good enough to get around 5-10 percent false positive rate, but with
multiple genes and environments, we need to compare model fits to get a low
false positive rate. Use your own judgment when using this because if you have
multiple genes and environments and small/moderate N, a model without GxE
could have a lower BIC but still not be the actual best model. However, if you
see little difference in BIC between all 4 GxE models and the non-GxE models
have much lower BIC, than it is likely that there is no GxE. Note that this is only
implemented for AIC, AICc and BIC. (Default = True)

reverse_code If TRUE, after fitting the model, the genes with negative weights are reverse
coded (ex: grev = 1 - g). It assumes that the original coding is in [0,1]. The
purpose of this option is to prevent genes with negative weights which cause
interpretation problems (ex: depression normally decreases attention but with a
negative genetic score, it increases attention). Warning, using this option with
GxG interactions could cause nonsensical results since GxG could be inverted.
Also note that this may fail with certain models (Default=FALSE).

rescale If TRUE, the environmental variables are automatically rescaled to the range
[-1,1]. This improves interpretability (Default=FALSE).

boot Optional number of bootstrap samples. If not NULL, we use bootstrap to find
the confidence interval of the crossover point. This provides more realistic con-
fidence intervals. Make sure to use a bigger number (>= 1000) to get good
precision; also note that a too small number could return an error ("estimated
adjustment ’a’ is NA").

criterion Criterion used to assess which model is the best. It can be set to "AIC", "AICc",
"BIC", "cv", "cv_AUC", "cv_Huber" (Default="BIC").

start_genes Optional starting points for genetic score (must be the same length as the number
of columns of genes).

24 GxE_interaction_test

start_env Optional starting points for environmental score (must be the same length as the
number of columns of env).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.
family Outcome distribution and link function (Default = gaussian).
ylim Optional vector containing the known min and max of the outcome variable.

Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

cv_iter Number of cross-validation iterations (Default = 5).
cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)

will lead to leave-one-out cross-validation.
folds Optional list of vectors containing the fold number for each observation. Bypass

cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).
id Optional id of observations, can be a vector or data.frame (only used when re-

turning list of possible outliers).
classification Set to TRUE if you are doing classification (binary outcome).
seed Seed for cross-validation folds.
test_only If TRUE, only uses the first fold for training and predict the others folds; do not

train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

lme4 If TRUE, uses lme4::lmer or lme4::glmer; Note that is an experimental fea-
ture, bugs may arise and certain functions may fail. Currently only summary(),
plot(), GxE_interaction_test(), LEGIT(), LEGIT_cv() work. Also note that the
AIC and certain elements ignore the existence of the genes and environment
variables, thus the AIC may not be used for variable selection of the genes and
the environment. However, the AIC can still be used to compare models with
the same genes and environments. (Default=FALSE).

Value

Returns a list containing 1) the six models ordered from best to worse (vantage sensitivity WEAK/STRONG,
diathesis-stress WEAK/STRONG, differential susceptibility WEAK/STRONG) and 2) a data frame
with the criterion, the crossover, 95% coverage of the crossover, whether the crossover 95% inter-
val is within the observable range and the percentage of observations below the crossover point in
order from best to worst based on the selected criterion. Models not within the observable range
should be rejected even if the criterion is slightly better. An extremely low percentage of observa-
tions below the crossover point is also evidence toward diathesis-stress. Note that we assume that
the environmental score is from bad to good but if this is not the case, then the models labelled as
"diathesis-stress" could actually reflect vantage sensitivity and vice-versa. If outcome is Good-to-
Bad: C=min(E) is diathesis-stress, C=max(E) is vantage sensitivity. If outcome is Bad-to-Good:
C=max(E) is diathesis-stress, C=min(E) is vantage sensitivity.

GxE_interaction_test 25

References

Alexia Jolicoeur-Martineau, Jay Belsky, Eszter Szekely, Keith F. Widaman, Michael Pluess, Celia
Greenwood and Ashley Wazana. Distinguishing differential susceptibility, diathesis-stress and van-
tage sensitivity: beyond the single gene and environment model (2017). https://osf.io/preprints/psyarxiv/27uw8.
10.17605/OSF.IO/27UW8.

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

Jay Belsky, Michael Pluess and Keith F. Widaman. Confirmatory and competitive evaluation of
alternative gene-environment interaction hypotheses (2013). Journal of Child Psychology and Psy-
chiatry, 54(10), 1135-1143.

Examples

Not run:
Examples where x is in [0, 10]
Diathesis Stress WEAK
ex_dia = example_with_crossover(250, c=10, coef_main = c(3,1,2), sigma=1)
Diathesis Stress STRONG
ex_dia_s = example_with_crossover(250, c=10, coef_main = c(3,0,2), sigma=1)
Assuming there is a crossover point at x=5
Differential Susceptibility WEAK
ex_ds = example_with_crossover(250, c=5, coef_main = c(3+5,1,2), sigma=1)
Differential Susceptibility STRONG
ex_ds_s = example_with_crossover(250, c=5, coef_main = c(3+5,0,2), sigma=1)

If true model is "Diathesis Stress WEAK"
GxE_test_BIC = GxE_interaction_test(ex_dia$data, ex_dia$G, ex_dia$E,
formula_noGxE = y ~ 1, start_genes = ex_dia$coef_G, start_env = ex_dia$coef_E,
criterion="BIC")
GxE_test_BIC$results

If true model is "Diathesis Stress STRONG"
GxE_test_BIC = GxE_interaction_test(ex_dia_s$data, ex_dia_s$G, ex_dia_s$E,
formula_noGxE = y ~ 1, start_genes = ex_dia_s$coef_G, start_env = ex_dia_s$coef_E,
criterion="BIC")
GxE_test_BIC$results

If true model is "Differential susceptibility WEAK"
GxE_test_BIC = GxE_interaction_test(ex_ds$data, ex_ds$G, ex_ds$E,
formula_noGxE = y ~ 1, start_genes = ex_ds$coef_G, start_env = ex_ds$coef_E,
criterion="BIC")
GxE_test_BIC$results

If true model is "Differential susceptibility STRONG"
GxE_test_BIC = GxE_interaction_test(ex_ds_s$data, ex_ds_s$G, ex_ds_s$E,
formula_noGxE = y ~ 1, start_genes = ex_ds_s$coef_G, start_env = ex_ds_s$coef_E,
criterion="BIC")
GxE_test_BIC$results

26 IMLEGIT

Example of plots
plot(GxE_test_BIC$fits$diff_suscept_STRONG, xlim=c(0,10), ylim=c(3,13))
plot(GxE_test_BIC$fits$diff_suscept_WEAK, xlim=c(0,10), ylim=c(3,13))
plot(GxE_test_BIC$fits$diathesis_stress_STRONG, xlim=c(0,10), ylim=c(3,13))
plot(GxE_test_BIC$fits$diathesis_stress_WEAK, xlim=c(0,10), ylim=c(3,13))

End(Not run)

IMLEGIT Independent Multiple Latent Environmental & Genetic InTeraction
(IMLEGIT) model

Description

Constructs a generalized linear model (glm) with latent variables using alternating optimization.
This is an extension of the LEGIT model to accommodate more than 2 latent variables.

Usage

IMLEGIT(
data,
latent_var,
formula,
start_latent_var = NULL,
eps = 0.001,
maxiter = 100,
family = gaussian,
ylim = NULL,
print = TRUE

)

Arguments

data data.frame of the dataset to be used.

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ... (See examples below
for more details)

formula Model formula. The names of latent_var can be used in the formula to repre-
sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can
be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

start_latent_var

Optional list of starting points for each latent variable (The list must have the
same length as the number of latent variables and each element of the list must

IMLEGIT 27

have the same length as the number of variables of the corresponding latent
variable).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

print If FALSE, nothing except warnings will be printed. (Default = TRUE).

Value

Returns an object of the class "IMLEGIT" which is list containing, in the following order: a glm fit
of the main model, a list of the glm fits of the latent variables and a list of the true model parameters
(AIC, BIC, rank, df.residual, null.deviance) for which the individual model parts (main, genetic,
environmental) don’t estimate properly.

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

Examples

train = example_2way(500, 1, seed=777)
fit_best = IMLEGIT(train$data, list(G=train$G, E=train$E), y ~ G*E,
list(train$coef_G, train$coef_E))
fit_default = IMLEGIT(train$data, list(G=train$G, E=train$E), y ~ G*E)
summary(fit_default)
summary(fit_best)
train = example_3way_3latent(500, 1, seed=777)
fit_best = IMLEGIT(train$data, train$latent_var, y ~ G*E*Z,
list(train$coef_G, train$coef_E, train$coef_Z))
fit_default = IMLEGIT(train$data, train$latent_var, y ~ G*E*Z)
summary(fit_default)
summary(fit_best)

28 IMLEGIT_cv

IMLEGIT_cv Cross-validation for the IMLEGIT model

Description

Uses cross-validation on the IMLEGIT model. Note that this is not a very fast implementation since
it was written in R.

Usage

IMLEGIT_cv(
data,
latent_var,
formula,
cv_iter = 5,
cv_folds = 10,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,
start_latent_var = NULL,
eps = 0.001,
maxiter = 100,
family = gaussian,
ylim = NULL,
seed = NULL,
id = NULL,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ...

formula Model formula. The names of latent_var can be used in the formula to repre-
sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can
be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

cv_iter Number of cross-validation iterations (Default = 5).

cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)
will lead to leave-one-out cross-validation.

IMLEGIT_cv 29

folds Optional list of vectors containing the fold number for each observation. Bypass
cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).

classification Set to TRUE if you are doing classification (binary outcome).
start_latent_var

Optional list of starting points for each latent variable (The list must have the
same length as the number of latent variables and each element of the list must
have the same length as the number of variables of the corresponding latent
variable).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

seed Seed for cross-validation folds.

id Optional id of observations, can be a vector or data.frame (only used when re-
turning list of possible outliers).

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

If classification = FALSE, returns a list containing, in the following order: a vector of the cross-
validated R2 at each iteration, a vector of the Huber cross-validation error at each iteration, a vector
of the L1-norm cross-validation error at each iteration, a matrix of the possible outliers (standardized
residuals > 2.5 or < -2.5) and their corresponding standardized residuals and standardized pearson
residuals. If classification = TRUE, returns a list containing, in the following order: a vector of
the cross-validated R2 at each iteration, a vector of the Huber cross-validation error at each iteration,
a vector of the L1-norm cross-validation error at each iteration, a vector of the AUC at each iteration,
a matrix of the best choice of threshold (based on Youden index) and the corresponding specificity
and sensitivity at each iteration, and a list of objects of class "roc" (to be able to make roc curve
plots) at each iteration. The Huber and L1-norm cross-validation errors are alternatives to the usual
cross-validation L2-norm error (which the R2 is based on) that are more resistant to outliers, the
lower the values the better.

References

Denis Heng-Yan Leung. Cross-validation in nonparametric regression with outliers. Annals of
Statistics (2005): 2291-2310.

30 IMLEGIT_net

Examples

Not run:
train = example_3way_3latent(250, 1, seed=777)
Cross-validation 4 times with 5 Folds
cv_5folds = IMLEGIT_cv(train$data, train$latent_var, y ~ G*E*Z, cv_iter=4, cv_folds=5)
cv_5folds
Leave-one-out cross-validation (Note: very slow)
cv_loo = IMLEGIT_cv(train$data, train$latent_var, y ~ G*E*Z, cv_iter=1, cv_folds=250)
cv_loo
Cross-validation 4 times with 5 Folds (binary outcome)
train_bin = example_2way(500, 2.5, logit=TRUE, seed=777)
cv_5folds_bin = IMLEGIT_cv(train_bin$data, list(G=train_bin$G, E=train_bin$E), y ~ G*E,
cv_iter=4, cv_folds=5, classification=TRUE, family=binomial)
cv_5folds_bin
par(mfrow=c(2,2))
pROC::plot.roc(cv_5folds_bin$roc_curve[[1]])
pROC::plot.roc(cv_5folds_bin$roc_curve[[2]])
pROC::plot.roc(cv_5folds_bin$roc_curve[[3]])
pROC::plot.roc(cv_5folds_bin$roc_curve[[4]])

End(Not run)

IMLEGIT_net Independent Multiple Latent Environmental & Genetic InTeraction
(IMLEGIT) model with Elastic Net on the latent variables. Do not
use on it’s own, use elastic_net_var_select instead.

Description

Constructs a generalized linear model (glm) with latent variables using alternating optimization.
This is an extension of the LEGIT model to accommodate more than 2 latent variables. Note that,
as opposed to LEGIT/IMLEGIT, the parameters of variables inside the latent variables are not L1-
normalized; instead, its the main model parameters which are L1-normalized. This is needed to
make elastic net works. It doesn’t matter in the end, because we only care about which variables
were removed and we only give the IMLEGIT models without elastic net penalization.

Usage

IMLEGIT_net(
data,
latent_var,
formula,
latent_var_searched = NULL,
cross_validation = FALSE,
alpha = 1,
lambda = 1e-04,
start_latent_var = NULL,
eps = 0.001,

IMLEGIT_net 31

maxiter = 100,
family = gaussian,
ylim = NULL,
cv_iter = 5,
cv_folds = 10,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,
print = TRUE,
warn = TRUE,
family_string = NULL,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ... (See examples below
for more details)

formula Model formula. The names of latent_var can be used in the formula to repre-
sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can
be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

latent_var_searched

Optional If not null, you must specify a vector containing all indexes of the
latent variables you want to use elastic net on. Ex: If latent_var=list(G=genes,
E=env), specifying latent_var_search=c(1,2) will use both, latent_var_search=1
will only do it for G, and latent_var_search=2 will only do it for E.

cross_validation

If TRUE, will return cross-validation criterion (slower)

alpha The elasticnet mixing parameter (between 0 and 1). 1 leads to lasso, 0 leads
to ridge. See glmnet package manual for more information. We recommend
somewhere betwen .50 and 1.

lambda Lambda (penalty term for elastic net, see glmnet package manual) (Default =
.0001)

start_latent_var

Optional list of starting points for each latent variable (The list must have the
same length as the number of latent variables and each element of the list must
have the same length as the number of variables of the corresponding latent
variable).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

32 IMLEGIT_to_LEGIT

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

cv_iter Number of cross-validation iterations (Default = 5).

cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)
will lead to leave-one-out cross-validation.

folds Optional list of vectors containing the fold number for each observation. Bypass
cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).

classification Set to TRUE if you are doing classification (binary outcome).

print If FALSE, nothing except warnings will be printed. (Default = TRUE).

warn If FALSE, it will not show warnings when all variables inside a latent vari-
able are removed. This serves to prevent lots of warning when running elas-
tic_net_var_select (Default = TRUE).

family_string Optional String version of the family (gaussian leads to "gaussian"). This is only
needed when using elastic_net_var_select. Please ignore this.

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

Returns a list containing, in the following order: a IMLEGIT model, the coefficients of the variables
in the latent variables from glmnet models, and the cross-validation results (if asked).

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

IMLEGIT_to_LEGIT IMLEGIT to LEGIT

Description

Transforms a IMLEGIT model into a LEGIT model

IMLEGIT_to_LEGIT 33

Usage

IMLEGIT_to_LEGIT(
fit,
data,
genes,
env,
formula,
eps = 0.001,
maxiter = 100,
family = gaussian,
ylim = NULL,
print = TRUE

)

Arguments

fit IMLEGIT model

data data.frame of the dataset to be used.

genes data.frame of the variables inside the genetic score G (can be any sort of variable,
doesn’t even have to be genetic).

env data.frame of the variables inside the environmental score E (can be any sort of
variable, doesn’t even have to be environmental).

formula Model formula. Use E for the environmental score and G for the genetic score.
Do not manually code interactions, write them in the formula instead (ex: G*E*z
or G:E:z).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

print If FALSE, nothing except warnings will be printed (Default = TRUE).

Value

Returns an object of the class "LEGIT" which is list containing, in the following order: a glm fit of
the main model, a glm fit of the genetic score, a glm fit of the environmental score, a list of the true
model parameters (AIC, BIC, rank, df.residual, null.deviance) for which the individual model parts
(main, genetic, environmental) don’t estimate properly and the formula.

34 LEGIT

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

Examples

train = example_2way(500, 1, seed=777)
fit = LEGIT(train$data, train$G, train$E, y ~ G*E, train$coef_G, train$coef_E)
fit_IMLEGIT = LEGIT_to_IMLEGIT(fit,train$data, train$G, train$E, y ~ G*E)
fit_LEGIT = IMLEGIT_to_LEGIT(fit_IMLEGIT,train$data, train$G, train$E, y ~ G*E)

LEGIT Latent Environmental & Genetic InTeraction (LEGIT) model

Description

Constructs a generalized linear model (glm) with a weighted latent environmental score and weighted
latent genetic score using alternating optimization.

Usage

LEGIT(
data,
genes,
env,
formula,
start_genes = NULL,
start_env = NULL,
eps = 0.001,
maxiter = 100,
family = gaussian,
ylim = NULL,
print = TRUE,
print_steps = FALSE,
crossover = NULL,
crossover_fixed = FALSE,
reverse_code = FALSE,
rescale = FALSE,
lme4 = FALSE

)

Arguments

data data.frame of the dataset to be used.

LEGIT 35

genes data.frame of the variables inside the genetic score G (can be any sort of variable,
doesn’t even have to be genetic).

env data.frame of the variables inside the environmental score E (can be any sort of
variable, doesn’t even have to be environmental).

formula Model formula. Use E for the environmental score and G for the genetic score.
Do not manually code interactions, write them in the formula instead (ex: G*E*z
or G:E:z).

start_genes Optional starting points for genetic score (must be the same length as the number
of columns of genes).

start_env Optional starting points for environmental score (must be the same length as the
number of columns of env).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

print If FALSE, nothing except warnings will be printed (Default = TRUE).

print_steps If TRUE, print the parameters at all iterations, good for debugging (Default =
FALSE).

crossover If not NULL, estimates the crossover point of E using the provided value as
starting point (To test for diathesis-stress vs differential susceptibility).

crossover_fixed

If TRUE, instead of estimating the crossover point of E, we force/fix it to the
value of "crossover". (Used when creating a diathes-stress model) (Default =
FALSE).

reverse_code If TRUE, after fitting the model, the genes with negative weights are reverse
coded (ex: grev = 1 - g). It assumes that the original coding is in [0,1]. The
purpose of this option is to prevent genes with negative weights which cause
interpretation problems (ex: depression normally decreases attention but with a
negative genetic score, it increases attention). Warning, using this option with
GxG interactions could cause nonsensical results since GxG could be inverted.
Also note that this may fail with certain models (Default=FALSE).

rescale If TRUE, the environmental variables are automatically rescaled to the range
[-1,1]. This improves interpretability (Default=FALSE).

lme4 If TRUE, uses lme4::lmer or lme4::glmer; Note that is an experimental fea-
ture, bugs may arise and certain functions may fail. Currently only summary(),
plot(), GxE_interaction_test(), LEGIT(), LEGIT_cv() work. Also note that the
AIC and certain elements ignore the existence of the genes and environment
variables, thus the AIC may not be used for variable selection of the genes and
the environment. However, the AIC can still be used to compare models with
the same genes and environments. (Default=FALSE).

36 LEGIT_cv

Value

Returns an object of the class "LEGIT" which is list containing, in the following order: a glm fit of
the main model, a glm fit of the genetic score, a glm fit of the environmental score, a list of the true
model parameters (AIC, BIC, rank, df.residual, null.deviance) for which the individual model parts
(main, genetic, environmental) don’t estimate properly and the formula.

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

Examples

train = example_2way(500, 1, seed=777)
fit_best = LEGIT(train$data, train$G, train$E, y ~ G*E, train$coef_G, train$coef_E)
fit_default = LEGIT(train$data, train$G, train$E, y ~ G*E)
summary(fit_default)
summary(fit_best)

train = example_3way(500, 2.5, seed=777)
fit_best = LEGIT(train$data, train$G, train$E, y ~ G*E*z, train$coef_G, train$coef_E)
fit_default = LEGIT(train$data, train$G, train$E, y ~ G*E*z)
summary(fit_default)
summary(fit_best)

LEGIT_cv Cross-validation for the LEGIT model

Description

Uses cross-validation on the LEGIT model. Note that this is not a very fast implementation since it
was written in R.

Usage

LEGIT_cv(
data,
genes,
env,
formula,
cv_iter = 5,
cv_folds = 10,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,

LEGIT_cv 37

start_genes = NULL,
start_env = NULL,
eps = 0.001,
maxiter = 100,
family = gaussian,
ylim = NULL,
seed = NULL,
id = NULL,
crossover = NULL,
crossover_fixed = FALSE,
lme4 = FALSE,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

genes data.frame of the variables inside the genetic score G (can be any sort of variable,
doesn’t even have to be genetic).

env data.frame of the variables inside the environmental score E (can be any sort of
variable, doesn’t even have to be environmental).

formula Model formula. Use E for the environmental score and G for the genetic score.
Do not manually code interactions, write them in the formula instead (ex: G*E*z
or G:E:z).

cv_iter Number of cross-validation iterations (Default = 5).

cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)
will lead to leave-one-out cross-validation.

folds Optional list of vectors containing the fold number for each observation. Bypass
cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).

classification Set to TRUE if you are doing classification (binary outcome).

start_genes Optional starting points for genetic score (must be the same length as the number
of columns of genes).

start_env Optional starting points for environmental score (must be the same length as the
number of columns of env).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

38 LEGIT_cv

seed Seed for cross-validation folds.

id Optional id of observations, can be a vector or data.frame (only used when re-
turning list of possible outliers).

crossover If not NULL, estimates the crossover point of E using the provided value as
starting point (To test for diathesis-stress vs differential susceptibility).

crossover_fixed

If TRUE, instead of estimating the crossover point of E, we force/fix it to the
value of "crossover". (Used when creating a diathes-stress model) (Default =
FALSE).

lme4 If TRUE, uses lme4::lmer or lme4::glmer; Note that is an experimental fea-
ture, bugs may arise and certain functions may fail. Currently only summary(),
plot(), GxE_interaction_test(), LEGIT(), LEGIT_cv() work. Also note that the
AIC and certain elements ignore the existence of the genes and environment
variables, thus the AIC may not be used for variable selection of the genes and
the environment. However, the AIC can still be used to compare models with
the same genes and environments. (Default=FALSE).

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

If classification = FALSE, returns a list containing, in the following order: a vector of the cross-
validated R2 at each iteration, a vector of the Huber cross-validation error at each iteration, a vector
of the L1-norm cross-validation error at each iteration, a matrix of the possible outliers (standardized
residuals > 2.5 or < -2.5) and their corresponding standardized residuals and standardized pearson
residuals. If classification = TRUE, returns a list containing, in the following order: a vector of
the cross-validated R2 at each iteration, a vector of the Huber cross-validation error at each iteration,
a vector of the L1-norm cross-validation error at each iteration, a vector of the AUC at each iteration,
a matrix of the best choice of threshold (based on Youden index) and the corresponding specificity
and sensitivity at each iteration, and a list of objects of class "roc" (to be able to make roc curve
plots) at each iteration. The Huber and L1-norm cross-validation errors are alternatives to the usual
cross-validation L2-norm error (which the R2 is based on) that are more resistant to outliers, the
lower the values the better.

References

Denis Heng-Yan Leung. Cross-validation in nonparametric regression with outliers. Annals of
Statistics (2005): 2291-2310.

Examples

Not run:
train = example_3way(250, 2.5, seed=777)
Cross-validation 4 times with 5 Folds
cv_5folds = LEGIT_cv(train$data, train$G, train$E, y ~ G*E*z, cv_iter=4, cv_folds=5)
cv_5folds
Leave-one-out cross-validation (Note: very slow)

LEGIT_to_IMLEGIT 39

cv_loo = LEGIT_cv(train$data, train$G, train$E, y ~ G*E*z, cv_iter=1, cv_folds=250)
cv_loo
Test set only
cv_test = LEGIT_cv(train$data, train$G, train$E, y ~ G*E*z, cv_iter=1, cv_folds=5, test_only=TRUE)
cv_test
Cross-validation 4 times with 5 Folds (binary outcome)
train_bin = example_2way(500, 2.5, logit=TRUE, seed=777)
cv_5folds_bin = LEGIT_cv(train_bin$data, train_bin$G, train_bin$E, y ~ G*E,
cv_iter=4, cv_folds=5, classification=TRUE, family=binomial)
cv_5folds_bin
par(mfrow=c(2,2))
pROC::plot.roc(cv_5folds_bin$roc_curve[[1]])
pROC::plot.roc(cv_5folds_bin$roc_curve[[2]])
pROC::plot.roc(cv_5folds_bin$roc_curve[[3]])
pROC::plot.roc(cv_5folds_bin$roc_curve[[4]])

End(Not run)

LEGIT_to_IMLEGIT LEGIT to IMLEGIT

Description

Transforms a LEGIT model into a IMLEGIT model (Useful if you want to do plot() or GxE_interaction_test()
with a model resulting from a variable selection method which gave a IMLEGIT model)

Usage

LEGIT_to_IMLEGIT(
fit,
data,
genes,
env,
formula,
eps = 0.001,
maxiter = 100,
family = gaussian,
ylim = NULL,
print = TRUE

)

Arguments

fit LEGIT model

data data.frame of the dataset to be used.

genes data.frame of the variables inside the genetic score G (can be any sort of variable,
doesn’t even have to be genetic).

40 longitudinal_folds

env data.frame of the variables inside the environmental score E (can be any sort of
variable, doesn’t even have to be environmental).

formula Model formula. Use E for the environmental score and G for the genetic score.
Do not manually code interactions, write them in the formula instead (ex: G*E*z
or G:E:z).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

print If FALSE, nothing except warnings will be printed (Default = TRUE).

Value

Returns an object of the class "IMLEGIT" which is list containing, in the following order: a glm fit
of the main model, a list of the glm fits of the latent variables and a list of the true model parameters
(AIC, BIC, rank, df.residual, null.deviance) for which the individual model parts (main, genetic,
environmental) don’t estimate properly.

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

Examples

train = example_2way(500, 1, seed=777)
fit = LEGIT(train$data, train$G, train$E, y ~ G*E, train$coef_G, train$coef_E)
fit_IMLEGIT = LEGIT_to_IMLEGIT(fit,train$data, train$G, train$E, y ~ G*E)
fit_LEGIT = IMLEGIT_to_LEGIT(fit_IMLEGIT,train$data, train$G, train$E, y ~ G*E)

longitudinal_folds Longitudinal folds

Description

Function to create folds adequately for longitudinal datasets by forcing every observation with the
same id to be in the same fold. Can be used with LEGIT_cv to make sure that the cross-validation
folds are appropriate when using longitudinal data.

nes_var_select 41

Usage

longitudinal_folds(
cv_iter = 1,
cv_folds = 10,
id,
formula = NULL,
data = NULL,
data_needed = NULL,
print = TRUE

)

Arguments

cv_iter Number of cross-validation iterations (Default = 1).

cv_folds Number of cross-validation folds (Default = 10).

id Factor vector containing the id number of each observation.

formula Optional Model formula. If data and formula are provided, only the non-missing
observations will be used when creating the folds (Put "formula" here if you have
missing data).

data Optional data.frame used for the formula. If data and formula are provided, only
the non-missing observations will be used when creating the folds (Put "data"
here if you have missing data).

data_needed Optional data.frame with variables that have to be included (Put "cbind(genes,env)""
or "latent_var" here if you have missing data).

print If FALSE, nothing except warnings will be printed. (Default = TRUE).

Value

Returns a list of vectors containing the fold number for each observation

Examples

train = example_2way(500, 1, seed=777)
Assuming it's longitudinal with 4 timepoints, even though it's not
id = factor(rep(1:125,each=4))
fit_cv = LEGIT_cv(train$data, train$G, train$E, y ~ G*E, folds=longitudinal_folds(1,10, id))

nes_var_select Parallel natural evolutionary variable selection assuming bernouilli
distribution (for IMLEGIT)

42 nes_var_select

Description

[Slow, highly recommended when the number of variables is large] Use natural evolution strategy
(nes) gradient descent ran in parallel to find the best subset of variables. It is often as good as genetic
algorithms but much faster so it is the recommended variable selection function to use as default.
Note that this approach assumes that the inclusion of a variable does not depends on whether other
variables are included (i.e. it assumes independent bernouilli distributions); this is generally not true
but this approach still converge well and running it in parallel increases the probability of reaching
the global optimum.

Usage

nes_var_select(
data,
formula,
parallel_iter = 3,
alpha = c(1, 5, 10),
entropy_threshold = 0.05,
popsize = 25,
lr = 0.2,
prop_ignored = 0.5,
latent_var = NULL,
search_criterion = "AICc",
n_cluster = 3,
eps = 0.01,
maxiter = 100,
family = gaussian,
ylim = NULL,
seed = NULL,
progress = TRUE,
cv_iter = 5,
cv_folds = 5,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,
print = FALSE,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

formula Model formula. The names of latent_var can be used in the formula to repre-
sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can
be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

parallel_iter number of parallel tries (Default = 3). For speed, I recommend using the number
of CPU cores.

nes_var_select 43

alpha vector of the parameter for the Dirichlet distribution of the starting points (As-
suming a symmetric Dirichlet distribution with only one parameter). If the vec-
tor has size N and parralel_iter=K, we use alpha[1], ..., alpha[N], alpha[1], ...
, alpha[N], ... for parallel_iter 1 to K respectively. We assume a dirichlet dis-
tribution for the starting points to get a bit more variability and make sure we
are not missing on a great subset of variable that doesn’t converge to the global
optimum with the default starting points. Use bigger values for less variability
and lower values for more variability (Default = c(1,5,10)).

entropy_threshold

Entropy threshold for convergence of the population (Default = .10). The smaller
the entropy is, the less diversity there is in the population, which means conver-
gence.

popsize Size of the population, the number of subsets of variables sampled at each iter-
ation (Default = 25). Between 25 and 100 is generally adequate.

lr learning rate of the gradient descent, higher will converge faster but more likely
to get stuck in local optium (Default = .2).

prop_ignored The proportion of the population that are given a fixed fitness value, thus their
importance is greatly reduce. The higher it is, the longer it takes to converge.
Highers values makes the algorithm focus more on favorizing the good subsets
of variables than penalizing the bad subsets (Default = .50).

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ...

search_criterion

Criterion used to determine which variable subset is the best. If search_criterion="AIC",
uses the AIC, if search_criterion="AICc", uses the AICc, if search_criterion="BIC",
uses the BIC, if search_criterion="cv", uses the cross-validation error, if
search_criterion="cv_AUC", uses the cross-validated AUC, if search_criterion="cv_Huber",
uses the Huber cross-validation error, if search_criterion="cv_L1", uses the
L1-norm cross-validation error (Default = "AIC"). The Huber and L1-norm
cross-validation errors are alternatives to the usual cross-validation L2-norm er-
ror (which the R2 is based on) that are more resistant to outliers, the lower the
values the better.

n_cluster Number of parallel clusters, I recommend using the number of CPU cores (De-
fault = 1).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results). Note that using .001 rather than .01 (default) can more than double or
triple the computing time of genetic_var_select.

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures

44 plot.elastic_net_var_select

that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

seed Optional seed.

progress If TRUE, shows the progress done (Default=TRUE).

cv_iter Number of cross-validation iterations (Default = 5).

cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)
will lead to leave-one-out cross-validation.

folds Optional list of vectors containing the fold number for each observation. Bypass
cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).

classification Set to TRUE if you are doing classification and cross-validation (binary out-
come).

print If TRUE, print the parameters of the search distribution and the entropy at each
iteration. Note: Only works using Rterm.exe in Windows due to parallel clus-
ters. (Default = FALSE).

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

Returns a list containing the best subset’s fit, cross-validation output, latent variables and starting
points.

Examples

Not run:
Example
train = example_3way_3latent(250, 2, seed=777)
nes = nes_var_select(train$data, latent_var=train$latent_var,
formula=y ~ E*G*Z)

End(Not run)

plot.elastic_net_var_select

Plot function for the output of elastic_net_var_select

Description

Plot of the coefficients of variables inside the latent variables with respect to the log(lambda). This
is your typical elastic-net plot.

plot.elastic_net_var_select 45

Usage

S3 method for class 'elastic_net_var_select'
plot(x, lwd = 2, start = 1, ...)

Arguments

x An object of class "elastic_net_var_select", usually, a result of a call to elas-
tic_net_var_select.

lwd Thickness of the lines (Default = 2)

start At which lambda to start (from large lambda to small lambda). If start is not
1, we remove some of the large lambda, this can make plot easier to visualize
(Default = 1).

... Further arguments passed to or from other methods.

Value

Returns the plot of the coefficients of variables inside the latent variables with respect to the
log(lambda).

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

Examples

Not run:
N = 1000
train = example_3way(N, sigma=1, logit=FALSE, seed=7)
g1_bad = rbinom(N,1,.30)
g2_bad = rbinom(N,1,.30)
g3_bad = rbinom(N,1,.30)
g4_bad = rbinom(N,1,.30)
g5_bad = rbinom(N,1,.30)
train$G = cbind(train$G, g1_bad, g2_bad, g3_bad, g4_bad, g5_bad)
lv = list(G=train$G, E=train$E)
fit = elastic_net_var_select(train$data, lv, y ~ G*E)
summary(fit)
best_model(fit, criterion="BIC")
Instead of taking the best, if you want the model with "Model index"=17 from summary, do
plot(fit)
With Cross-validation
fit = elastic_net_var_select(train$data, lv, y ~ G*E, cross_validation=TRUE, cv_iter=1, cv_folds=5)
best_model(fit, criterion="cv_R2")
Elastic net only applied on G
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(1))
Elastic net only applied on E
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(2))

46 plot.LEGIT

Most E variables not removed, use lambda_mult > 1 to remove more
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(2), lambda_mult=5)
Lasso (only L1 regularization)
fit = elastic_net_var_select(train$data, lv, y ~ G*E, alpha=1)
Want more lambdas (useful if # of variables is large)
fit = elastic_net_var_select(train$data, lv, y ~ G*E, n_lambda = 200)

End(Not run)

plot.LEGIT Plot

Description

Plot of LEGIT models. By default, variables that are not in G or E are fixed to the mean.

Usage

S3 method for class 'LEGIT'
plot(
x,
cov_values = NULL,
gene_quant = c(0.025, 0.5, 0.975),
env_quant = c(0.025, 0.5, 0.975),
outcome_quant = c(0.025, 0.5, 0.975),
cols = c("#3288BD", "#CAB176", "#D53E4F"),
ylab = "Outcome",
xlab = "Environment",
legtitle = "Genetic score",
leglab = NULL,
xlim = NULL,
ylim = NULL,
x_at = NULL,
y_at = NULL,
cex.axis = 1.9,
cex.lab = 2,
cex.main = 2.2,
cex.leg = 2.2,
legend = "topleft",
...

)

Arguments

x An object of class "LEGIT", usually, a result of a call to LEGIT.
cov_values Vector of the values, for each covariate, that will be used in the plotting, if there

are any covariates. It must contain the names of the variables. Covariates are the
variables that are not G nor E but still are adjusted for in the model. By default,
covariates are fixed to the mean.

plot.LEGIT 47

gene_quant Vector of the genes quantiles used to make the plot. We use quantiles instead of
fixed values because genetic scores can vary widely depending on the weights,
thus looking at quantiles make this simpler. (Default = c(.025,.50,.975))

env_quant Vector of the environments quantiles used to make the plot. We use quantiles
instead of fixed values because environmental scores can vary widely depend-
ing on the weights, thus looking at quantiles make this simpler. (Default =
c(.025,.50,.975))

outcome_quant Vector of the outcome quantiles used to make the plot. We use quantiles in-
stead of fixed values because environmental scores can vary widely depend-
ing on the weights, thus looking at quantiles make this simpler. (Default =
c(.025,.50,.975))

cols Colors for the slopes with different genetic score. Must be a vector same length
as "gene_range". (Default = c("#3288BD", "#CAB176", #D53E4F"))

ylab Y-axis label (Default = "Outcome")

xlab X-axis label (Default = "Environment")

legtitle Title of the Legend for the genes slopes label (Default = "Genetic score")

leglab Optional vector of labels of the Legend for the genes slopes label

xlim X-axis vector of size two with min and max (Default = NULL which leads to
min="2.5 percentile" and max="97.5 percentile").

ylim Y-axis vector of size two with min and max (Default = NULL which leads to
min="2.5 percentile" and max="97.5 percentile").

x_at specific ticks for the X-axis, first and last will be min and max respectively
(Default = NULL which leads to 2.5, 50 and 97.5 percentiles).

y_at specific ticks for the Y-axis, first and last will be min and max respectively (De-
fault = NULL which leads to 2.5, 50 and 97.5 percentiles).

cex.axis relative scale of axis (Default = 1.9)

cex.lab relative scale of labels (Default = 2)

cex.main relative scale overall (Default = 2.2)

cex.leg relative scale of legend (Default = 2.2)

legend The location may of the legend be specified by setting legend to a single key-
word from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top",
"topright", "right" and "center" (Default = "topleft").

... Further arguments passed to or from other methods.

Value

Returns a list containing the different models (diathesis-stress, differential susceptibility and van-
tage sensitivity WEAK or STRONG) in order from best to worst for each selected criterion.

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

48 predict.IMLEGIT

Examples

train = example_2way(500, 1, seed=777)
fit = LEGIT(train$data, train$G, train$E, y ~ G*E, train$coef_G, train$coef_E)
plot(fit)

predict.IMLEGIT Predictions of IMLEGIT fits

Description

Predictions of IMLEGIT fits.

Usage

S3 method for class 'IMLEGIT'
predict(object, data, latent_var, ...)

Arguments

object An object of class "IMLEGIT", usually, a result of a call to IMLEGIT.

data data.frame of the dataset to be used.

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ...

... Further arguments passed to or from other methods.

Value

Returns a vector with the predicted values.

Examples

train = example_2way(250, 1, seed=777)
test = example_2way(100, 1, seed=666)
fit = IMLEGIT(train$data, list(G=train$G, E=train$E), y ~ G*E)
ssres = sum((test$data$y - predict(fit, test$data, list(G=test$G, E=test$E)))^2)
sstotal = sum((test$data$y - mean(test$data$y))^2)
R2 = 1 - ssres/sstotal
R2

predict.LEGIT 49

predict.LEGIT Predictions of LEGIT fits

Description

Predictions of LEGIT fits.

Usage

S3 method for class 'LEGIT'
predict(object, data, genes, env, ...)

Arguments

object An object of class "LEGIT", usually, a result of a call to LEGIT.
data data.frame of the dataset to be used.
genes data.frame of the variables inside the genetic score G (can be any sort of variable,

doesn’t even have to be genetic).
env data.frame of the variables inside the environmental score E (can be any sort of

variable, doesn’t even have to be environmental).
... Further arguments passed to or from other methods.

Value

Returns a vector with the predicted values.

Examples

train = example_2way(250, 1, seed=777)
test = example_2way(100, 1, seed=666)
fit = LEGIT(train$data, train$G, train$E, y ~ G*E)
ssres = sum((test$data$y - predict(fit, test$data, test$G, test$E))^2)
sstotal = sum((test$data$y - mean(test$data$y))^2)
R2 = 1 - ssres/sstotal

r1nes_var_select Parallel natural evolutionary variable selection assuming multivari-
ate normal search distribution with a simple covariance matrix
parametrization (for IMLEGIT)

Description

[Slow, highly recommended when the number of variables is large] Use natural evolution strategy
(nes) gradient descent ran in parallel to find the best subset of variables. It is often as good as
genetic algorithms but much faster so it is the recommended variable selection function to use as
default. This is slower than nes_var_select but much less likely to get stuck into local optimum so
the parallelization is not really needed.

50 r1nes_var_select

Usage

r1nes_var_select(
data,
formula,
parallel_iter = 3,
alpha = c(1, 5, 10),
entropy_threshold = 0.05,
popsize = 25,
lr = 0.2,
prop_ignored = 0.5,
latent_var = NULL,
search_criterion = "AICc",
n_cluster = 3,
eps = 0.01,
maxiter = 100,
family = gaussian,
ylim = NULL,
seed = NULL,
progress = TRUE,
cv_iter = 5,
cv_folds = 5,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,
print = FALSE,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

formula Model formula. The names of latent_var can be used in the formula to repre-
sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can
be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

parallel_iter number of parallel tries (Default = 3). For speed, I recommend using the number
of CPU cores.

alpha vector of the parameter for the Dirichlet distribution of the starting points (As-
suming a symmetric Dirichlet distribution with only one parameter). If the vec-
tor has size N and parralel_iter=K, we use alpha[1], ..., alpha[N], alpha[1], ...
, alpha[N], ... for parallel_iter 1 to K respectively. We assume a dirichlet dis-
tribution for the starting points to get a bit more variability and make sure we
are not missing on a great subset of variable that doesn’t converge to the global
optimum with the default starting points. Use bigger values for less variability
and lower values for more variability (Default = c(1,5,10)).

entropy_threshold

Entropy threshold for convergence of the population (Default = .10). The smaller

r1nes_var_select 51

the entropy is, the less diversity there is in the population, which means conver-
gence.

popsize Size of the population, the number of subsets of variables sampled at each iter-
ation (Default = 25). Between 25 and 100 is generally adequate.

lr learning rate of the gradient descent, higher will converge faster but more likely
to get stuck in local optium (Default = .2).

prop_ignored The proportion of the population that are given a fixed fitness value, thus their
importance is greatly reduce. The higher it is, the longer it takes to converge.
Highers values makes the algorithm focus more on favorizing the good subsets
of variables than penalizing the bad subsets (Default = .50).

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ...

search_criterion

Criterion used to determine which variable subset is the best. If search_criterion="AIC",
uses the AIC, if search_criterion="AICc", uses the AICc, if search_criterion="BIC",
uses the BIC, if search_criterion="cv", uses the cross-validation error, if
search_criterion="cv_AUC", uses the cross-validated AUC, if search_criterion="cv_Huber",
uses the Huber cross-validation error, if search_criterion="cv_L1", uses the
L1-norm cross-validation error (Default = "AIC"). The Huber and L1-norm
cross-validation errors are alternatives to the usual cross-validation L2-norm er-
ror (which the R2 is based on) that are more resistant to outliers, the lower the
values the better.

n_cluster Number of parallel clusters, I recommend using the number of CPU cores (De-
fault = 1).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results). Note that using .001 rather than .01 (default) can more than double or
triple the computing time of genetic_var_select.

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

seed Optional seed.

progress If TRUE, shows the progress done (Default=TRUE).

cv_iter Number of cross-validation iterations (Default = 5).

cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)
will lead to leave-one-out cross-validation.

folds Optional list of vectors containing the fold number for each observation. Bypass
cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

52 rGE

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).

classification Set to TRUE if you are doing classification and cross-validation (binary out-
come).

print If TRUE, print the parameters of the search distribution and the entropy at each
iteration. Note: Only works using Rterm.exe in Windows due to parallel clus-
ters. (Default = FALSE).

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

Returns a list containing the best subset’s fit, cross-validation output, latent variables and starting
points.

Examples

Not run:
Example
train = example_3way_3latent(250, 2, seed=777)
nes = r1nes_var_select(train$data, latent_var=train$latent_var,
formula=y ~ E*G*Z)

End(Not run)

rGE Gene-Environment correlation estimation and testing

Description

Estimates the gene-environment correlation (rGE) and tests for a GxE using a residual environmen-
tal score. If there is an important correlation between G and E, the model is still valid prediction-
wise but the interpretation is affected as the question becomes: is it really a GxE or a GxG since E
is partially caused by G? To account for this, we remove the influence of G on E (If E = b0 + b1*G
+ e, we use E_resid = E - b1*G) and refit the model to see if the model parameters changed. The
residual environmental score (E_resid) is uncorrelated with G. This does not account for passive
rGE but only active rGE.

Usage

rGE(object, ...)

Arguments

object An object of class "LEGIT" or "IMLEGIT".

... Further arguments passed to or from other methods.

rGE.IMLEGIT 53

rGE.IMLEGIT Gene-Environment correlation estimation and testing of IMLEGIT
models

Description

Estimates the gene-environment correlation (rGE) and tests for a GxE using a residual environmen-
tal score. If there is an important correlation between G and E, the model is still valid prediction-
wise but the interpretation is affected as the question becomes: is it really a GxE or a GxG since E
is partially caused by G? To account for this, we remove the influence of G on E (If E = b0 + b1*G
+ e, we use E_resid = E - b1*G) and refit the model to see if the model parameters changed. The
residual environmental score (E_resid) is uncorrelated with G. This does not account for passive
rGE but only active rGE.

Usage

S3 method for class 'IMLEGIT'
rGE(object, formula, latent_var, index_E, index_G, ...)

Arguments

object An object of class "IMLEGIT", usually, a result of a call to IMLEGIT.

formula Model formula. The names of latent_var can be used in the formula to rep-
resent the latent variables. If names(latent_var) is NULL, then L1, L2, ...
can be used in formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

latent_var list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise the latent variables will be named L1, L2, ... (See examples below for
more details)

index_E vector or scalar representing the index of each latent variable that is part of the
"environment"

index_G scalar representing the index of the latent variable for the "genetic" part

... Further arguments passed to or from other methods.

Value

Returns a list containing the Pearson correlation and Kendall tau correlation of G and E and a glm fit
of the main model part when removing the influence of G on E so that E and G are now uncorrelated.

54 rGE.LEGIT

Examples

Note: These examples don't have G and E correlation so the model fit doesn't change
but this shows how to use the rGE function
train = example_3way_3latent(500, 1, seed=777)
fit = IMLEGIT(train$data, train$latent_var, y ~ G*E*Z)
If we assume Z not to be an "environment"
fit_rGE1 = rGE(fit, y ~ G*E, train$latent_var, 2, 1)
fit_rGE1
summary(fit_rGE1$fit_main_resid)
If we assume Z to be an "environment"
fit_rGE2 = rGE(fit, y ~ G*E, train$latent_var, c(2,3), 1)
fit_rGE2
summary(fit_rGE2$fit_main_resid)

rGE.LEGIT Gene-Environment correlation estimation and testing of LEGIT mod-
els

Description

Estimates the gene-environment correlation (rGE) and tests for a GxE using a residual environmen-
tal score. If there is an important correlation between G and E, the model is still valid prediction-
wise but the interpretation is affected as the question becomes: is it really a GxE or a GxG since E
is partially caused by G? To account for this, we remove the influence of G on E (If E = b0 + b1*G
+ e, we use E_resid = E - b1*G) and refit the model to see if the model parameters changed. The
residual environmental score (E_resid) is uncorrelated with G. This does not account for passive
rGE but only active rGE.

Usage

S3 method for class 'LEGIT'
rGE(object, formula, ...)

Arguments

object An object of class "LEGIT", usually, a result of a call to LEGIT.

formula Model formula. The names of latent_var can be used in the formula to rep-
resent the latent variables. If names(latent_var) is NULL, then L1, L2, ...
can be used in formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

... Further arguments passed to or from other methods.

Value

Returns a list containing the Pearson correlation and Kendall tau correlation of G and E and a glm fit
of the main model part when removing the influence of G on E so that E and G are now uncorrelated.

stepwise_search 55

Examples

Note: These examples don't have G and E correlation so the model fit doesn't change
but this shows how to use the rGE function
train = example_2way(500, 1, seed=777)
fit = LEGIT(train$data, train$G, train$E, y ~ G*E)
fit_rGE = rGE(fit, y ~ G*E)
fit_rGE
summary(fit_rGE$fit_main_resid)

stepwise_search Stepwise search for the best subset of genetic variants or environments
with the LEGIT model

Description

[Fast, recommended for small number of variables] Adds the best variable or drops the worst vari-
able one at a time in the genetic (if search="genes") or environmental score (if search="env").
You can select the desired search criterion (AIC, BIC, cross-validation error, cross-validation AUC)
to determine which variable is the best/worst and should be added/dropped. Note that when the
number of variables in G and E is large, this does not generally converge to the optimal subset, this
function is only recommended when you have a small number of variables (e.g. 2 environments, 6
genetic variants). If using cross-validation (search_criterion="cv" or search_criterion="cv_AUC"),
to prevent cross-validating with each variable (extremely slow), we recommend setting a p-value
threshold (p_threshold) and forcing the algorithm not to look at models with bigger AIC (exclude_worse_AIC=TRUE).

Usage

stepwise_search(
data,
formula,
interactive_mode = FALSE,
genes_original = NULL,
env_original = NULL,
genes_extra = NULL,
env_extra = NULL,
search_type = "bidirectional-forward",
search = "both",
search_criterion = "AIC",
forward_exclude_p_bigger = 0.2,
backward_exclude_p_smaller = 0.01,
exclude_worse_AIC = TRUE,
max_steps = 100,
cv_iter = 5,
cv_folds = 10,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,

56 stepwise_search

start_genes = NULL,
start_env = NULL,
eps = 0.01,
maxiter = 100,
family = gaussian,
ylim = NULL,
seed = NULL,
print = TRUE,
remove_miss = FALSE,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

formula Model formula. Use E for the environmental score and G for the genetic score.
Do not manually code interactions, write them in the formula instead (ex: G*E*z
or G:E:z).

interactive_mode

If TRUE, uses interactive mode. In interactive mode, at each iteration, the user is
shown the AIC, BIC, p-value and also the cross-validation R2 if search_criterion="cv"
and the cross-validation AUC if search_criterion="cv_AUC" for the best 5
variables. The user must then enter a number between 1 and 5 to select the
variable to be added, entering anything else will stop the search.

genes_original data.frame of the variables inside the genetic score G (can be any sort of variable,
doesn’t even have to be genetic).

env_original data.frame of the variables inside the environmental score E (can be any sort of
variable, doesn’t even have to be environmental).

genes_extra data.frame of the additionnal variables to try including inside the genetic score
G (can be any sort of variable, doesn’t even have to be genetic). Set to NULL if
using a backward search.

env_extra data.frame of the variables to try including inside the environmental score E (can
be any sort of variable, doesn’t even have to be environmental). Set to NULL if
using a backward search.

search_type If search_type="forward", uses a forward search. If search_type="backward",
uses backward search. If search_type="bidirectional-forward", uses bidi-
rectional search (that starts as a forward search). If search_type="bidirectional-backward",
uses bidirectional search (that starts as a backward search).

search If search="genes", uses a stepwise search for the genetic score variables. If
search="env", uses a stepwise search for the environmental score variables. If
search="both", uses a stepwise search for both the gene and environmental
score variables (Default = "both").

search_criterion

Criterion used to determine which variable is the best to add or worst to drop. If
search_criterion="AIC", uses the AIC, if search_criterion="AICc", uses
the AICc, if search_criterion="BIC", uses the BIC, if search_criterion="cv",

stepwise_search 57

uses the cross-validation error, if
search_criterion="cv_AUC", uses the cross-validated AUC, if search_criterion="cv_Huber",
uses the Huber cross-validation error, if search_criterion="cv_L1", uses the
L1-norm cross-validation error (Default = "AIC"). The Huber and L1-norm
cross-validation errors are alternatives to the usual cross-validation L2-norm er-
ror (which the R2 is based on) that are more resistant to outliers, the lower the
values the better.

forward_exclude_p_bigger

If p-value > forward_exclude_p_bigger, we do not consider the variable for
inclusion in the forward steps (Default = .20). This is an exclusion option which
purpose is skipping variables that are likely not worth looking to make the algo-
rithm faster, especially with cross-validation. Set to 1 to prevent any exclusion
here.

backward_exclude_p_smaller

If p-value < backward_exclude_p_smaller, we do not consider the variable
for removal in the backward steps (Default = .01). This is an exclusion option
which purpose is skipping variables that are likely not worth looking to make
the algorithm faster, especially with cross-validation. Set to 0 to prevent any
exclusion here.

exclude_worse_AIC

If AIC with variable > AIC without variable, we ignore the variable (Default
= TRUE). This is an exclusion option which purpose is skipping variables that
are likely not worth looking to make the algorithm faster, especially with cross-
validation. Set to FALSE to prevent any exclusion here.

max_steps Maximum number of steps taken (Default = 50).
cv_iter Number of cross-validation iterations (Default = 5).
cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)

will lead to leave-one-out cross-validation.
folds Optional list of vectors containing the fold number for each observation. Bypass

cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).
classification Set to TRUE if you are doing classification (binary outcome).
start_genes Optional starting points for genetic score (must be the same length as the number

of columns of genes).
start_env Optional starting points for environmental score (must be the same length as the

number of columns of env).
eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate

results).
maxiter Maximum number of iterations.
family Outcome distribution and link function (Default = gaussian).
ylim Optional vector containing the known min and max of the outcome variable.

Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

58 stepwise_search_IM

seed Seed for cross-validation folds.

print If TRUE, print all the steps and notes/warnings. Highly recommended unless
you are batch running multiple stepwise searchs. (Default=TRUE).

remove_miss If TRUE, remove missing data completely, otherwise missing data is only re-
moved when adding or dropping a variable (Default = FALSE).

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

Returns an object of the class "LEGIT" which is list containing, in the following order: a glm fit of
the main model, a glm fit of the genetic score, a glm fit of the environmental score, a list of the true
model parameters (AIC, BIC, rank, df.residual, null.deviance) for which the individual model parts
(main, genetic, environmental) don’t estimate properly.

Examples

Not run:
Continuous example
train = example_3way(250, 2.5, seed=777)
Forward search for genes based on BIC (in interactive mode)
forward_genes_BIC = stepwise_search(train$data, genes_extra=train$G, env_original=train$E,
formula=y ~ E*G*z,search_type="forward", search="genes", search_criterion="BIC",
interactive_mode=TRUE)
Bidirectional-backward search for environments based on cross-validation error
bidir_backward_env_cv = stepwise_search(train$data, genes_original=train$G, env_original=train$E,
formula=y ~ E*G*z,search_type="bidirectional-backward", search="env", search_criterion="cv")
Binary example
train_bin = example_2way(500, 2.5, logit=TRUE, seed=777)
Forward search for genes based on cross-validated AUC (in interactive mode)
forward_genes_AUC = stepwise_search(train_bin$data, genes_extra=train_bin$G,
env_original=train_bin$E, formula=y ~ E*G,search_type="forward", search="genes",
search_criterion="cv_AUC", classification=TRUE, family=binomial, interactive_mode=TRUE)
Forward search for genes based on AIC
bidir_forward_genes_AIC = stepwise_search(train_bin$data, genes_extra=train_bin$G,
env_original=train_bin$E, formula=y ~ E*G,search_type="bidirectional-forward", search="genes",
search_criterion="AIC", classification=TRUE, family=binomial)

End(Not run)

stepwise_search_IM Stepwise search for the best subset of elements in the latent variables
with the IMLEGIT model

stepwise_search_IM 59

Description

[Fast, recommended when the number of variables is small] Adds the best variable or drops the
worst variable one at a time in the latent variables. You can select the desired search criterion (AIC,
BIC, cross-validation error, cross-validation AUC) to determine which variable is the best/worst
and should be added/dropped. Note that when the number of variables in G and E is large, this
does not generally converge to the optimal subset, this function is only recommended when you
have a small number of variables (e.g. 2 environments, 6 genetic variants). If using cross-validation
(search_criterion="cv" or search_criterion="cv_AUC"), to prevent cross-validating with each
variable (extremely slow), we recommend setting a p-value threshold (p_threshold) and forcing
the algorithm not to look at models with bigger AIC (exclude_worse_AIC=TRUE).

Usage

stepwise_search_IM(
data,
formula,
interactive_mode = FALSE,
latent_var_original = NULL,
latent_var_extra = NULL,
search_type = "bidirectional-forward",
search = 0,
search_criterion = "AIC",
forward_exclude_p_bigger = 0.2,
backward_exclude_p_smaller = 0.01,
exclude_worse_AIC = TRUE,
max_steps = 100,
cv_iter = 5,
cv_folds = 10,
folds = NULL,
Huber_p = 1.345,
classification = FALSE,
start_latent_var = NULL,
eps = 0.01,
maxiter = 100,
family = gaussian,
ylim = NULL,
seed = NULL,
print = TRUE,
remove_miss = FALSE,
test_only = FALSE

)

Arguments

data data.frame of the dataset to be used.

formula Model formula. The names of latent_var can be used in the formula to repre-
sent the latent variables. If names(latent_var) is NULL, then L1, L2, ... can

60 stepwise_search_IM

be used in the formula to represent the latent variables. Do not manually code
interactions, write them in the formula instead (ex: G*E1*E2 or G:E1:E2).

interactive_mode

If TRUE, uses interactive mode. In interactive mode, at each iteration, the user is
shown the AIC, BIC, p-value and also the cross-validation R2 if search_criterion="cv"
and the cross-validation AUC if search_criterion="cv_AUC" for the best 5
variables. The user must then enter a number between 1 and 5 to select the
variable to be added, entering anything else will stop the search.

latent_var_original

list of data.frame. The elements of the list are the datasets used to construct
each latent variable. For interpretability and proper convergence, not using the
same variable in more than one latent variable is highly recommended. It is
recommended to set names to the list elements to prevent confusion because
otherwise, the latent variables will be named L1, L2, ...

latent_var_extra

list of data.frame (with the same structure as latent_var_original) containing the
additionnal elements to try including inside the latent variables. Set to NULL if
using a backward search.

search_type If search_type="forward", uses a forward search. If search_type="backward",
uses backward search. If search_type="bidirectional-forward", uses bidi-
rectional search (that starts as a forward search). If search_type="bidirectional-backward",
uses bidirectional search (that starts as a backward search).

search If search=0, uses a stepwise search for all latent variables. Otherwise, if search
= i, uses a stepwise search on the i-th latent variable (Default = 0).

search_criterion

Criterion used to determine which variable is the best to add or worst to drop. If
search_criterion="AIC", uses the AIC, if search_criterion="AICc", uses
the AICc, if search_criterion="BIC", uses the BIC, if search_criterion="cv",
uses the cross-validation error, if
search_criterion="cv_AUC", uses the cross-validated AUC, if search_criterion="cv_Huber",
uses the Huber cross-validation error, if search_criterion="cv_L1", uses the
L1-norm cross-validation error (Default = "AIC"). The Huber and L1-norm
cross-validation errors are alternatives to the usual cross-validation L2-norm er-
ror (which the R2 is based on) that are more resistant to outliers, the lower the
values the better.

forward_exclude_p_bigger

If p-value > forward_exclude_p_bigger, we do not consider the variable for
inclusion in the forward steps (Default = .20). This is an exclusion option which
purpose is skipping variables that are likely not worth looking to make the algo-
rithm faster, especially with cross-validation. Set to 1 to prevent any exclusion
here.

backward_exclude_p_smaller

If p-value < backward_exclude_p_smaller, we do not consider the variable
for removal in the backward steps (Default = .01). This is an exclusion option
which purpose is skipping variables that are likely not worth looking to make
the algorithm faster, especially with cross-validation. Set to 0 to prevent any
exclusion here.

stepwise_search_IM 61

exclude_worse_AIC

If AIC with variable > AIC without variable, we ignore the variable (Default
= TRUE). This is an exclusion option which purpose is skipping variables that
are likely not worth looking to make the algorithm faster, especially with cross-
validation. Set to FALSE to prevent any exclusion here.

max_steps Maximum number of steps taken (Default = 50).

cv_iter Number of cross-validation iterations (Default = 5).

cv_folds Number of cross-validation folds (Default = 10). Using cv_folds=NROW(data)
will lead to leave-one-out cross-validation.

folds Optional list of vectors containing the fold number for each observation. Bypass
cv_iter and cv_folds. Setting your own folds could be important for certain data
types like time series or longitudinal data.

Huber_p Parameter controlling the Huber cross-validation error (Default = 1.345).

classification Set to TRUE if you are doing classification (binary outcome).
start_latent_var

Optional list of starting points for each latent variable (The list must have the
same length as the number of latent variables and each element of the list must
have the same length as the number of variables of the corresponding latent
variable).

eps Threshold for convergence (.01 for quick batch simulations, .0001 for accurate
results).

maxiter Maximum number of iterations.

family Outcome distribution and link function (Default = gaussian).

ylim Optional vector containing the known min and max of the outcome variable.
Even if your outcome is known to be in [a,b], if you assume a Gaussian distri-
bution, predict() could return values outside this range. This parameter ensures
that this never happens. This is not necessary with a distribution that already
assumes the proper range (ex: [0,1] with binomial distribution).

seed Seed for cross-validation folds.

print If TRUE, print all the steps and notes/warnings. Highly recommended unless
you are batch running multiple stepwise searchs. (Default=TRUE).

remove_miss If TRUE, remove missing data completely, otherwise missing data is only re-
moved when adding or dropping a variable (Default = FALSE).

test_only If TRUE, only uses the first fold for training and predict the others folds; do not
train on the other folds. So instead of cross-validation, this gives you train/test
and you get the test R-squared as output.

Value

Returns an object of the class "IMLEGIT" which is list containing, in the following order: a glm fit
of the main model, a list of the glm fits of the latent variables and a list of the true model parameters
(AIC, BIC, rank, df.residual, null.deviance) for which the individual model parts (main, genetic,
environmental) don’t estimate properly.

62 summary.elastic_net_var_select

Examples

Not run:
Example
train = example_3way_3latent(250, 1, seed=777)
Forward search for genes based on BIC (in interactive mode)
forward_genes_BIC = stepwise_search_IM(train$data,
latent_var_original=list(G=NULL, E=train$latent_var$E, Z=train$latent_var$Z),
latent_var_extra=list(G=train$latent_var$G,E=NULL,Z=NULL),
formula=y ~ E*G*Z,search_type="forward", search=1, search_criterion="BIC",
interactive_mode=TRUE)
Bidirectional-backward search for everything based on AIC
bidir_backward_AIC = stepwise_search_IM(train$data, latent_var_extra=NULL,
latent_var_original=train$latent_var,
formula=y ~ E*G*Z,search_type="bidirectional-backward", search=0, search_criterion="AIC")

End(Not run)

summary.elastic_net_var_select

Summary function for the output of elastic_net_var_select

Description

Summary function for the output of elastic_net_var_select

Usage

S3 method for class 'elastic_net_var_select'
summary(object, ...)

Arguments

object An object of class "elastic_net_var_select", usually, a result of a call to elas-
tic_net_var_select.

... Further arguments passed to or from other methods.

Value

Returns the unique IMLEGIT models resulting from the glmnet path with associated information.
Also gives the cross-validation information if asked.

References

Alexia Jolicoeur-Martineau, Ashley Wazana, Eszter Szekely, Meir Steiner, Alison S. Fleming,
James L. Kennedy, Michael J. Meaney, Celia M.T. Greenwood and the MAVAN team. Alternating
optimization for GxE modelling with weighted genetic and environmental scores: examples from
the MAVAN study (2017). arXiv:1703.08111.

summary.IMLEGIT 63

Examples

Not run:
N = 1000
train = example_3way(N, sigma=1, logit=FALSE, seed=7)
g1_bad = rbinom(N,1,.30)
g2_bad = rbinom(N,1,.30)
g3_bad = rbinom(N,1,.30)
g4_bad = rbinom(N,1,.30)
g5_bad = rbinom(N,1,.30)
train$G = cbind(train$G, g1_bad, g2_bad, g3_bad, g4_bad, g5_bad)
lv = list(G=train$G, E=train$E)
fit = elastic_net_var_select(train$data, lv, y ~ G*E)
summary(fit)
best_model(fit, criterion="BIC")
Instead of taking the best, if you want the model with "Model index"=17 from summary, do
plot(fit)
With Cross-validation
fit = elastic_net_var_select(train$data, lv, y ~ G*E, cross_validation=TRUE, cv_iter=1, cv_folds=5)
best_model(fit, criterion="cv_R2")
Elastic net only applied on G
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(1))
Elastic net only applied on E
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(2))
Most E variables not removed, use lambda_mult > 1 to remove more
fit = elastic_net_var_select(train$data, lv, y ~ G*E, c(2), lambda_mult=5)
Lasso (only L1 regularization)
fit = elastic_net_var_select(train$data, lv, y ~ G*E, alpha=1)
Want more lambdas (useful if # of variables is large)
fit = elastic_net_var_select(train$data, lv, y ~ G*E, n_lambda = 200)

End(Not run)

summary.IMLEGIT Summarizing IMLEGIT fits

Description

Shows the summary for all parts (main and latent variables) of the LEGIT model.

Usage

S3 method for class 'IMLEGIT'
summary(object, ...)

Arguments

object An object of class "IMLEGIT", usually, a result of a call to IMLEGIT.

... Further arguments passed to or from other methods.

64 summary.LEGIT

Value

Returns a list of objects of class "summary.glm" containing the summary of each parts (main and
latent variables) of the model.

Examples

train = example_2way(250, 1, seed=777)
fit_default = IMLEGIT(train$data, list(G=train$G, E=train$E), y ~ G*E)
summary(fit_default)

summary.LEGIT Summarizing LEGIT fits

Description

Shows the summary for all parts (main, genetic, environmental) of the LEGIT model.

Usage

S3 method for class 'LEGIT'
summary(object, ...)

Arguments

object An object of class "LEGIT", usually, a result of a call to LEGIT.

... Further arguments passed to or from other methods.

Value

Returns a list of objects of class "summary.glm" containing the summary of each parts (main, ge-
netic, environmental) of the model.

Examples

train = example_2way(250, 1, seed=777)
fit_default = LEGIT(train$data, train$G, train$E, y ~ G*E)
summary(fit_default)

Index

best_model, 2
best_model.elastic_net_var_select, 3
bootstrap_var_select, 4

elastic_net_var_select, 8
example_2way, 11
example_2way_lme4, 12
example_3way, 13
example_3way_3latent, 15
example_with_crossover, 16

genetic_var_select, 17
GxE_interaction_RoS, 20
GxE_interaction_test, 22

IMLEGIT, 26
IMLEGIT_cv, 28
IMLEGIT_net, 30
IMLEGIT_to_LEGIT, 32

LEGIT, 34
LEGIT_cv, 36
LEGIT_to_IMLEGIT, 39
longitudinal_folds, 40

nes_var_select, 41

plot.elastic_net_var_select, 44
plot.LEGIT, 46
predict.IMLEGIT, 48
predict.LEGIT, 49

r1nes_var_select, 49
rGE, 52
rGE.IMLEGIT, 53
rGE.LEGIT, 54

stepwise_search, 55
stepwise_search_IM, 58
summary.elastic_net_var_select, 62
summary.IMLEGIT, 63
summary.LEGIT, 64

65

	best_model
	best_model.elastic_net_var_select
	bootstrap_var_select
	elastic_net_var_select
	example_2way
	example_2way_lme4
	example_3way
	example_3way_3latent
	example_with_crossover
	genetic_var_select
	GxE_interaction_RoS
	GxE_interaction_test
	IMLEGIT
	IMLEGIT_cv
	IMLEGIT_net
	IMLEGIT_to_LEGIT
	LEGIT
	LEGIT_cv
	LEGIT_to_IMLEGIT
	longitudinal_folds
	nes_var_select
	plot.elastic_net_var_select
	plot.LEGIT
	predict.IMLEGIT
	predict.LEGIT
	r1nes_var_select
	rGE
	rGE.IMLEGIT
	rGE.LEGIT
	stepwise_search
	stepwise_search_IM
	summary.elastic_net_var_select
	summary.IMLEGIT
	summary.LEGIT
	Index

