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FunChisq-package Model-Free Functional Chi-Squared and Exact Tests

Description

Statistical hypothesis testing methods for model-free functional dependency using asymptotic chi-
squared or exact distributions. Functional chi-squared test statistics (Zhang and Song 2013; Zhang
2014; Nguyen 2018; Zhong 2019; Zhong and Song 2019a; Nguyen et al. 2020) are asymmetric,
functionally optimal, and model-free, unique from other related statistical measures.

Tests in this package reveal evidence for causality based on the causality-by-functionality principle
(Simon and Rescher 1966). The tests require data from two or more variables be formatted as a
contingency table. Continuous variables need to be discretized first, for example, using R packages
Ckmeans.1d.dp or GridOnClusters.

The package implements an asymptotic functional chi-squared test (Zhang and Song 2013; Zhang
2014), an adapted functional chi-squared test (Kumar2022AFT), and an exact functional test (Nguyen
2018; Zhong 2019; Zhong and Song 2019a; Nguyen et al. 2020). The normalized functional chi-
squared test was used by Best Performer NMSUSongLab in HPN-DREAM (DREAM8) Breast
Cancer Network Inference Challenges (Hill et al. 2016).

A function index derived from the functional chi-squared offers a new effect size measure for the
strength of function dependency. It is asymmetrically functionally optimal, different from the sym-
metric Cramer’s V, also a better alternative to conditional entropy in many aspects.

A simulator is provided to generate functional, dependent non-functional, and independent patterns
(Sharma et al. 2017).

For continuous data, these tests offer an advantage over regression analysis when a parametric form
cannot be reliably assumed for the underlying function. For categorical data, they provide a novel
means to assess directional dependency not possible with symmetrical Pearson’s chi-squared test,
G-test, or Fisher’s exact test.

Details

Package: FunChisq
Type: Package
Current version: 2.5.3
Initial release version: 1.0
Initial release date: 2014-03-08
License: LGPL (>= 3)

Author(s)

Yang Zhang, Hua Zhong, Hien Nguyen, Ruby Sharma, Sajal Kumar, Yiyi Li, and Joe Song
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References

Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, Zhang Y, Sokolov A, Paull EO,
Wong CK, Graim K, Bivol A, Wang H, Zhu F, Afsari B, Danilova LV, Favorov AV, Lee WS, Tay-
lor D, Hu CW, Long BL, Noren DP, Bisberg AJ, The HPN-DREAM Consortium, Mills GB, Gray
JW, Kellen M, Norman T, Friend S, Qutub AA, Fertig EJ, Guan Y, Song M, Stuart JM, Spellman
PT, Koeppl H, Stolovitzky G, Saez-Rodriguez J, Mukherjee S (2016). “Inferring causal molecular
networks: empirical assessment through a community-based effort.” Nat Methods, 13, 310–318.
doi:10.1038/nmeth.3773.

Nguyen HH (2018). Inference of Functional Dependency via Asymmetric, Optimal, and Model-
free Statistics. Ph.D. thesis, Department of Computer Science, New Mexico State University, Las
Cruces, NM, USA.

Nguyen HH, Zhong H, Song M (2020). “Optimality, accuracy, and efficiency of an exact functional
test.” In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, 2683–2689. doi:10.24963/ijcai.2020/372.

Sharma R, Kumar S, Zhong H, Song M (2017). “Simulating noisy, nonparametric, and multi-
variate discrete patterns.” The R Journal, 9(2), 366–377. doi:10.32614/RJ2017053.

Simon HA, Rescher N (1966). “Cause and counterfactual.” Philosophy of Science, 33(4), 323–
340.

Zhang Y (2014). Nonparametric Statistical Methods for Biological Network Inference. Ph.D. the-
sis, Department of Computer Science, New Mexico State University, Las Cruces, NM, USA.

Zhang Y, Song M (2013). “Deciphering interactions in causal networks without parametric as-
sumptions.” arXiv Molecular Networks, arXiv:1311.2707. https://arxiv.org/abs/1311.2707.

Zhong H (2019). Model-free Gene-to-zone Network Inference of Molecular Mechanisms in Bi-
ology. Ph.D. thesis, Department of Computer Science, New Mexico State University, Las Cruces,
NM, USA.

Zhong H, Song M (2019a). “A fast exact functional test for directional association and cancer biol-
ogy applications.” IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(3),
818–826. doi:10.1109/TCBB.2018.2809743.

See Also

For data discretization, an option is optimal univariate clustering via package Ckmeans.1d.dp. A
second option is joint multivariate discretization via package GridOnClusters.

For symmetric dependency tests on discrete data, see Pearson’s chi-squared test (chisq.test),
Fisher’s exact test (fisher.test), mutual information (package entropy), and G-test, implemented
in packages DescTools and RVAideMemoire.

https://doi.org/10.1038/nmeth.3773
https://doi.org/10.24963/ijcai.2020/372
https://doi.org/10.32614/RJ-2017-053
https://arxiv.org/abs/1311.2707
https://doi.org/10.1109/TCBB.2018.2809743


add.noise 5

add.noise Apply Noise to Discrete-Valued Tables

Description

The function can apply two types of noise to contingency tables of discrete values. A house noise
model is designed for ordinal variables; a candle noise model is for categorical variables. Noise is
applied independently for each data point in a table.

Usage

add.noise(tables, u, noise.model, margin=0)
add.house.noise(tables, u, margin=0)
add.candle.noise(tables, u, margin=0)

Arguments

tables a list of tables or one table. A table can be either a matrix or a data frame of
integer values.

u a numeric value between 0 and 1 to specify the noise level to be applied to the
input tables. See Details.

noise.model a character string indicating the noise model of either "house" for ordinal vari-
ables or "candle" for categorical variables. See Details.

margin a value of either 0, 1, or 2. Default is 0.
0: noise is applied along both rows and columns in a table. The sum of values
in the table is the same before and after noise application.
1: noise is applied along each row. The sum of each row is the same before and
after noise application.
2: noise is applied along each column. The sum of each column is the same
before and after noise application.

Details

Each noise model defines a conditional probability function of a noisy version given an original
discrete value and a noise level. In the house noise model for ordinal variables, defined in (Zhang
et al. 2015), the probability decreases as the noisy version deviates from the original ordinal value.
The shape of the function is like a pitched house roof. In the candle noise model for categorical
variables, the probability of the noisy version for any value other than the original categorical value
is the same given the noise level. The function shape is like a candle.

At a minimum level of 0, no noise is applied on the input table(s). A maximum level of 1 indicates
that the original sample will be changed to some other values with a probability of 1. For a discrete
random variable of two possible values, a noise level of 1 will flip the values and create a non-
random pattern; a noise level of 0.5 creates the most random pattern.
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Value

If tables is a list, the function returns a list of tables with noised applied. If tables is a numeric
matrix or a data frame, the function returns one table with noise applied.

Author(s)

Hua Zhong, Yang Zhang, and Joe Song.

References

Zhang Y, Liu ZL, Song M (2015). “ChiNet uncovers rewired transcription subnetworks in tolerant
yeast for advanced biofuels conversion.” Nucleic Acids Research, 43(9), 4393–4407. doi:10.1093/
nar/gkv358.

See Also

simulate_tables.

Examples

# Example 1. Add house noise to a single table

# Create a 4x4 table
t <- matrix(c(3,0,0,0,

0,2,2,0,
0,0,0,4,
3,3,2,0),

nrow=4, ncol=4, byrow=TRUE)
# Two ways to apply house noise at level 0.1 along both rows
# and columns of the table:
add.noise(t, 0.1, "house", 0)
add.house.noise(t, 0.1, 0)

# Example 2. Add candle noise to a list of tables

# Create a list of tables
t.list <- list(t+5, t*10, t*2)
# Two ways to apply candle noise at level 0.2 along the rows
# of the table:
add.noise(t.list, 0.2, "candle", 1)
add.candle.noise(t.list, 0.2, 1)

https://doi.org/10.1093/nar/gkv358
https://doi.org/10.1093/nar/gkv358
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cond.fun.chisq.test Conditional Functional Chi-Squared Test

Description

Asymptotic chi-squared test to determine the model-free functional dependency of effect variable
Y on a cause variable X , conditioned on a third variable Z.

Usage

cond.fun.chisq.test(x, y, z=NULL, data=NULL, log.p = FALSE,
method = c("fchisq", "nfchisq"))

Arguments

x vector or character; either a discrete random variable (cause) represented as vec-
tor or a character column name in data.

y vector or character; either a discrete random variable (effect) represented as vec-
tor or a character column name in data.

z vector or character; either a discrete random variable (condition) represented as
vector or a character column name in data. In case of NULL, a fun.chisq.test
on a contingency table, with x as row variable and y as column variable, is
returned. See fun.chisq.test for details. The default is NULL.

data a data frame containing three or more columns whose names can be used as
values for x, y and z. In case of NULL, x, y and z must be vectors. The default is
NULL.

log.p logical; if TRUE, the p-value is given as log(p). Taking the log improves numer-
ical precision when the p-value is close to zero. The default is FALSE.

method a character string to specify the method to compute the conditional functional
chi-squared test statistic and its p-value. The options are "fchisq" (default) and
"nfchisq". See Details.

Details

The conditional functional chi-squared test introduces the concept of conditional functional depe-
dency, where the functional association between two variables (x and y) is tested conditioned on a
third variable (z) (Zhang 2014). Two methods are provided to compute the chi-squared statistic and
its p-value. When method = "fchisq", the p-value is computed using the chi-squared distribution;
when method = "nfchisq", a normalized statistic is obtained by shifting and scaling the original
chi-squared statistic and a p-value is computed using the standard normal distribution (Box et al.
2005). The normalized test is more conservative on the degrees of freedom.
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Value

A list with class "htest" containing the following components:

statistic the conditional functional chi-squared statistic if method = "fchisq"; or the
normalized conditional functional chi-squared statistic if method = "nfchisq".

parameter degrees of freedom for the conditional functional chi-squared statistic.

p.value p-value of the conditional functional test. If method = "fchisq", the p-value
is computed by an asymptotic chi-squared distribution; if method = "nfchisq",
the p-value is computed by the standard normal distribution.

estimate an estimate of the conditional function index between 0 and 1. The value of 1
indicates strong functional dependency between x and y, given z. It is asym-
metrical with respect to whether x was chosen as the cause of effect y or vice
versa.

Author(s)

Sajal Kumar and Mingzhou Song

References

Box GE, Hunter JS, Hunter WG (2005). Statistics for Experimenters: Design, Innovation and Dis-
covery, 2nd edition. Wiley-Interscience, New York.

Zhang Y (2014). Nonparametric Statistical Methods for Biological Network Inference. Ph.D. the-
sis, Department of Computer Science, New Mexico State University, Las Cruces, NM, USA.

See Also

See (unconditional) functional chi-squared test fun.chisq.test.

Examples

# Generate a relationship between variables X and Z
xz = matrix(c(30,2,2, 2,2,40, 2,30,2),ncol=3,nrow=3,

byrow = TRUE)
# Re-construct X
x = rep(c(1:nrow(xz)),rowSums(xz))
# Re-construct Z
z = c()
for(i in 1:nrow(xz))

z = c(z,rep(c(1:ncol(xz)),xz[i,]))

# Generate a relationship between variables Z and Y
# Make sure Z retains its distribution
zy = matrix(c(4,30, 30,4, 4,40),ncol=2,nrow=3,

byrow = TRUE)
# Re-construct Y
y = rep(0,length(z))
for(i in unique(z))

y[z==i] = rep(c(1:ncol(zy)),zy[i,])
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# Tables
table(x,z)
table(z,y)
table(x,y)

# Conditional functional dependency
# Y = f(X) | Z should be false
cond.fun.chisq.test(x=x,y=y,z=z)
# Z = f(X) | Y should be true
cond.fun.chisq.test(x=x,y=z,z=y)
# Y = f(Z) | X should be true
cond.fun.chisq.test(x=z,y=y,z=x)

cp.fun.chisq.test Comparative Chi-Squared Test for Model-Free Functional Hetero-
geneity

Description

Comparative functional chi-squared tests on two or more contingency tables.

Usage

cp.fun.chisq.test(
x, method = c("fchisq", "nfchisq", "default", "normalized"),
log.p = FALSE

)

Arguments

x a list of at least two matrices representing contingency tables of the same dimen-
sionality.

method a character string to specify the method to compute the functional chi-squared
statistic and its p-value. The default is "fchisq" (equivalent to "default").
See Details.
Note: "default" and "normalized" are deprecated.

log.p logical; if TRUE, the p-value is given as log(p). Taking the log improves the
accuracy when p-value is close to zero. The default is FALSE.

Details

The comparative functional chi-squared test determines whether the patterns underlying the contin-
gency tables are heterogeneous in a functional way (Zhang 2014). Specifically, it evaluates whether
the column variable is a changed function of the row variable across the contingency tables.

Two methods are provided to compute the functional chi-squared statistic and its p-value. When
method = "fchisq" (or "default"), the p-value is computed using the chi-squared distribution;
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when method = "nfchisq" (or "normalized") a normalized statistic is obtained by shifting and
scaling the original statistic and a p-value is computed using the standard normal distribution (Box
et al. 2005) (Box et al., 2005). The normalized test is more conservative on the degrees of freedom.

Value

A list with class "htest" containing the following components:

statistic functional heterogeneity statistic if method = "fchisq" (equivalent to "default"),
or normalized statistic if method = "nfchisq" (equivalent to "normalized").

parameter degrees of freedom.

p.value p-value of the comparative functional chi-squared test. By default, it is com-
puted by the chi-squared distribution. If method = "normalized", it is the p-
value of the normalized statistic computed by the standard normal distribution.

Author(s)

Yang Zhang and Joe Song

References

Box GE, Hunter JS, Hunter WG (2005). Statistics for Experimenters: Design, Innovation and Dis-
covery, 2nd edition. Wiley-Interscience, New York.

Zhang Y (2014). Nonparametric Statistical Methods for Biological Network Inference. Ph.D. the-
sis, Department of Computer Science, New Mexico State University, Las Cruces, NM, USA.

See Also

For comparative chi-squared test that does not consider functional dependencies, cp.chisq.test.

Examples

x <- matrix(c(4,0,4,0,4,0,1,0,1), 3)
y <- t(x)
z <- matrix(c(1,0,1,4,0,4,0,4,0), 3)
data <- list(x,y,z)
cp.fun.chisq.test(data)
cp.fun.chisq.test(data, method="nfchisq")
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Exact Functional Test Exact Functional Test on Two Discrete Random Variables

Description

Perform the exact functional test on a contingency table to determine if the column variable is
a function of the row variable. The null population includes tables with fixed row and column
sums as in the observed table. The null distribution follows an exact multivariate hypergeometric
distribution.

Usage

EFTDP(nm)
EFTDQP(nm)

Arguments

nm a matrix of nonnegative integers representing a contingency table.

Details

The exact functional test is performed using branch-and-bound with two algorithms (DP and DQP)
to avoid re-calculation of bounds (Nguyen 2018; Nguyen et al. 2020).

Value

The exact p-value of the test.

Note

The functions provide a direct entry into the C++ implementations of the exact functional test
(Nguyen 2018; Nguyen et al. 2020).

Author(s)

Hien Nguyen, Hua Zhong, Yiyi Li, and Joe Song

References

Nguyen HH (2018). Inference of Functional Dependency via Asymmetric, Optimal, and Model-
free Statistics. Ph.D. thesis, Department of Computer Science, New Mexico State University, Las
Cruces, NM, USA.

Nguyen HH, Zhong H, Song M (2020). “Optimality, accuracy, and efficiency of an exact functional
test.” In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, 2683–2689. doi:10.24963/ijcai.2020/372.

https://doi.org/10.24963/ijcai.2020/372
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See Also

fun.chisq.test

Examples

x = matrix(c(0, 6, 3, 0, 10, 5, 4, 4, 1), nrow=3)
EFTDQP(x)
EFTDQP(t(x))

EFTDP(x)
EFTDP(t(x))

fun.chisq.test Model-Free Functional Chi-Squared and Exact Tests

Description

Asymptotic chi-squared, normalized chi-squared or exact tests on contingency tables to determine
model-free functional dependency of the column variable on the row variable.

Usage

fun.chisq.test(
x,
method = c("fchisq", "nfchisq", "adapted",

"exact", "exact.qp", "exact.dp", "exact.dqp",
"default", "normalized", "simulate.p.value"),

alternative = c("non-constant", "all"), log.p=FALSE,
index.kind = c("conditional", "unconditional"),
simulate.nruns = 2000,
exact.mode.bound=TRUE

)

Arguments

x a matrix representing a contingency table. The row variable represents the inde-
pendent variable or all unique combinations of multiple independent variables.
The column variable is the dependent variable.

method a character string to specify the method to compute the functional chi-squared
test statistic and its p-value. The options are "fchisq" (equivalent to "default",
the default), "nfchisq" (equivalent to "normalized"), "exact", "adapted",
"exact.qp", "exact.dp", "exact.dqp" or "simulate.p.value". See De-
tails.
Note: "default" and "normalized" are deprecated.

alternative a character string to specify the alternative hypothesis. The options are "non-constant"
(default, non-constant functions) and "all" (all types of functions including
constant ones).
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log.p logical; if TRUE, the p-value is given as log(p). Taking the log improves the
accuracy when p-value is close to zero. The default is FALSE.

index.kind a character string to specify the kind of function index xi.f to be estimated. The
options are "conditional" (default) and "unconditional". See Details.

simulate.nruns A number to specify the number of tables generated to simulate the null distri-
bution. Default is 2000. Only used when method="simulate.p.value".

exact.mode.bound

logical; if TRUE, a fast branch-and-bound algorithm is used for the exact func-
tional test (method="exact"). If FALSE, a slow brute-force enumeration method
is used to provide a reference for runtime analysis. Both options provide the
same exact p-value. The default is TRUE.

Details

The functional chi-squared test determines whether the column variable is a function of the row
variable in contingency table x (Zhang and Song 2013; Zhang 2014). This function supports three
hypothesis testing methods:

When method="fchisq" (equivalent to "default", the default), the test statistic is computed as
described in (Zhang and Song 2013; Zhang 2014) and the p-value is computed using the chi-squared
distribution.

When method="nfchisq" (equivalent to "normalized"), the test statistic is obtained by shifting
and scaling the original test statistic (Zhang and Song 2013; Zhang 2014); and the p-value is com-
puted using the standard normal distribution (Box et al. 2005). The normalized chi-squared, more
conservative on the degrees of freedom, was used by the Best Performer NMSUSongLab in HPN-
DREAM (DREAM8) Breast Cancer Network Inference Challenges.

When method="exact", "exact.qp" (quadratic programming) (Zhong and Song 2019a; Zhong
2019), "exact.dp" (dynamic programming) (Nguyen 2018; Nguyen et al. 2020), or "exact.dqp"
(dynamic and quadratic programming) (Nguyen 2018; Nguyen et al. 2020), an exact functional test
is performed. The option of "exact" uses "exact.dqp", the fastest method. All methods compute
an exact p-value.

When method="adapted", the adapted functional chi-squared test (Kumar and Song 2022) is used.
The test statistic is obtained by evaluating the most populous portrait or square (number of rows <=
number of columns) table in the contingency table x. The p-value is computed using the chi-squared
distribution. This option should be used to determine the functional direction between variables in
x.

For the "exact.qp" and "exact.dp" options, if the sample size is no more than 200 or the average
cell count is less than five, and the table size is no more than 10 in either row or column, the exact
test will not be called and the asymptotic functional chi-squared test (method="fchisq") is used
instead.

For "exact.dqp", the exact functional test will always be performed.

For 2-by-2 contingency tables, the asymptotic test options (method="fchisq" or "nfchisq") are
recommended to test functional dependency, instead of the exact functional test.

When method="simulate.p.value", a simulated null distribution is used to calculate p-value.
The null distribution is a multinomial distribution that is the product of two marginal distributions.
Like other Monte Carlo based methods, this method is slower but may be more accurate than other
methods based on asymptotic distributions.
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index.kind specifies the kind of function index to be computed. If the experimental design controls
neither the row nor column marginal sums, index.kind = "unconditional" is recommended; If
the column marginal sums are controlled, index.kind = "conditional" is recommended. The
conditional function index is the square root of Goodman-Kruskal’s tau (Goodman and Kruskal
1954). The choice of index.kind affects only the function index xi.f value, but not the test statistic
or p-value.

Value

A list with class "htest" containing the following components:

statistic the functional chi-squared statistic if method = "fchisq", "default", or "exact";
or the normalized functional chi-squared statistic if method = "nfchisq" or "normalized".

parameter degrees of freedom for the functional chi-squared statistic.

p.value p-value of the functional test. If method = "fchisq" (or "default"), it is com-
puted by an asymptotic chi-squared distribution; if method = "nfchisq" (or
"normalized"), it is computed by the standard normal distribution; if method =
"exact", it is computed by an exact hypergeometric distribution.

estimate an estimate of function index between 0 and 1. The value of 1 indicates a strictly
mathematical function. It is asymmetrical with respect to transpose of the input
contingency table, different from the symmetrical Cramer’s V based on the Pear-
son’s chi-squared test statistic. See (Zhong and Song 2019b; Kumar et al. 2018)
for the definition of function index.

Author(s)

Yang Zhang, Hua Zhong, Hien Nguyen, Sajal Kumar, and Joe Song

References
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See Also

For data discretization, an option is optimal univariate clustering via package Ckmeans.1d.dp. A
second option is joint multivariate discretization via package GridOnClusters.

For symmetrical dependency tests on discrete data, see Pearson’s chi-squared test chisq.test,
Fisher’s exact test fisher.test, and mutual information methods in package entropy.

Examples

# Example 1. Asymptotic functional chi-squared test
x <- matrix(c(20,0,20,0,20,0,5,0,5), 3)
fun.chisq.test(x) # strong functional dependency
fun.chisq.test(t(x)) # weak functional dependency

# Example 2. Normalized functional chi-squared test
x <- matrix(c(8,0,8,0,8,0,2,0,2), 3)
fun.chisq.test(x, method="nfchisq") # strong functional dependency
fun.chisq.test(t(x), method="nfchisq") # weak functional dependency

# Example 3. Exact functional chi-squared test
x <- matrix(c(4,0,4,0,4,0,1,0,1), 3)
fun.chisq.test(x, method="exact") # strong functional dependency
fun.chisq.test(t(x), method="exact") # weak functional dependency

# Example 4. Exact functional chi-squared test on a real data set
# (Shen et al., 2002)
# x is a contingency table with row variable for p53 mutation and
# column variable for CIMP
x <- matrix(c(12,26,18,0,8,12), nrow=2, ncol=3, byrow=TRUE)

https://doi.org/10.24963/ijcai.2020/372
https://arxiv.org/abs/1311.2707
https://doi.org/10.1109/TCBB.2018.2809743
https://doi.org/10.1186/s12920-019-0565-9
https://doi.org/10.1186/s12920-019-0565-9
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# Example 5. Adpated functional chi-squared test
x <- matrix(c(20, 0, 1, 0, 1, 20, 3, 2, 15, 2, 5, 2), 3, 4, byrow=TRUE)
fun.chisq.test(x, method="adapted") # strong functional dependency
fun.chisq.test(t(x), method="adapted") # weak functional dependency

# Test the functional dependency: p53 mutation -> CIMP
fun.chisq.test(x, method="exact")

# Test the functional dependency CIMP -> p53 mutation
fun.chisq.test(t(x), method="exact")

# Example 6. Asymptotic functional chi-squared test with simulated distribution
x <- matrix(c(20,0,20,0,20,0,5,0,5), 3)
fun.chisq.test(x, method="simulate.p.value")
fun.chisq.test(x, method="simulate.p.value", simulate.n = 1000)

FunChisq-deprecated Deprecated Functions in Package FunChisq

Description

These functions are provided for compatibility with older versions of package FunChisq only, and
may be removed eventually.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:

• cp.chisq.test: now available as cp.chisq.test in package DiffXTables

plot_table Plot a Table Using Color Intensity for Counts

Description

A table is visualized as a matrix whose cells are shown with intensity of a given color proportional
to the count in each cell. The count in a cell must be real: negative numbers or non-integers are
acceptable. It provides a global understanding of the underlying pattern.

Usage

plot_table(table, xlab = "Column", ylab = "Row", col = "green3",
xaxt = "n", yaxt = "n", main = NULL,
show.value = TRUE, value.cex = 2,
highlight=c("row.maxima", "none"),
highlight.col=col,
mgp=c(0.5,0,0), mar=c(2,2,3,1.5), ...)
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Arguments

table A data frame or a matrix.

xlab The lable of the horizontal axis.

ylab The lable of the vertical axis.

col The color corresponding to the maximum value in the table.

xaxt The style of the horizontal axis. See par.

yaxt The style of the vertical axis. See par.

main The title of the plot.

show.value logical. Show the value of each cell in the table on the plot.

value.cex Relative magnification factor if values are to be put in the cell.

... Parameters acceptable to image function in the graphics package.

highlight Specify to highlight row maxima or no highlight. When highlighted, a box is
placed around each row maximum.

highlight.col The color used to highlight a cell in the table.

mgp The margin (in mex units) for the axis title, labels and line. See par.

mar The margins of the four sides of the plot. See par.

Author(s)

Joe Song

Examples

opar <- par(mfrow=c(2,2))
plot_table(matrix(1:6, nrow=2), col="seagreen2")

plot_table(matrix(rnorm(20), nrow=5), col="orange", show.value=FALSE)

plot_table(matrix(rpois(16, 2), nrow=4), col="cornflowerblue", highlight="none")

plot_table(matrix(rbinom(15, 8, 0.5), nrow=3), col="sienna2", highlight="none")
par(opar)

simulate_tables Simulate Noisy Contingency Tables to Represent Diverse Discrete Pat-
terns

Description

Generate random contingency tables representing various functional, non-functional, dependent, or
independent patterns, without specifying a parametric model for the patterns.
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Usage

simulate_tables(
n = 100, nrow = 3, ncol = 3,
type = c("functional", "many.to.one",

"discontinuous", "independent",
"dependent.non.functional"),

n.tables = 1,
row.marginal = NULL,
col.marginal = NULL,
noise = 0.0, noise.model = c("house", "candle"),
margin = 0

)

Arguments

n a positive integer specifying the sample size to be distributed in each table. For
"functional", "many.to.one", and "discontinuous" tables, n must be no
less than nrow. For "dependent.non.functional" tables, n must be no less
than nrow*ncol. For "independent" tables, n must be a positive integer.

nrow a positive integer specifying the number of rows in each table. The value must
be no less than 2. For "many.to.one" tables, nrow must be no less than 3.

ncol a positive integer specifying the number of columns in output table. ncol must
be no less than 2.

type a character string to specify the type of pattern underlying the table. The options
are "functional" (default), "many.to.one", "discontinuous", "independent",
and "dependent.non.functional". See Details.

n.tables a positive integer value specifying the number of tables to be generated.

row.marginal a non-negative numeric vector of length nrow specifying row marginal probabil-
ities. The vector is linearly scaled so that the sum is 1. The default is a uniform
distribution.

col.marginal a non-negative numeric vector of length ncol specifying column marginal prob-
abilities. The vector is linearly scaled so that the sum is 1. This argument is
ignored by "dependent.non.functional" tables.

noise a numeric value between 0 and 1 specifying the noise level to be added to a
table using function add.noise. The noise can be applied along row, column,
or both, which can be specified by the margin argument. See add.noise for
details.

noise.model a character string indicating the noise model of either "house" for ordinal vari-
ables (Zhang et al. 2015) or "candle" for categorical variables. See add.noise
for details.

margin a numeric value of either 0, 1 or 2. Default is 0. 0: noise is applied along both
rows and columns. 1: noise is applied along each row. 2: noise is applied along
each column. See add.noise for details.
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Details

This function generates five types of table representing different interaction patterns between row
and column discrete random variables X and Y . Three of the five types are non-constant functional
patterns (Y is a non-constant function of X):

type="functional": Y is a function of X but X may or may not be a function of Y .

type="many.to.one": Y is a many-to-one function of X but X is not a function of Y .

type="discontinuous": Y is a function of X , where the function value of X must differ from its
neighbors. X may or may not be a function of Y . A discontinuous function forms a contrast with
those that are close to constant functions.

The fourth type "dependent.non.functional" is non-functional patterns where X and Y are
statistically dependent but not function of each other. The samples are distributed according to
row.marginal probabilities.

The fifth type "independent" represents patterns where X and Y are statistically independent
whose joint probability mass function is the product of their marginal probability mass functions.

For all functional tables (type="functional", type="many.to.one", type="discontinuous"),
the samples are distributed using either the given row or column marginal probabilities. Theoreti-
cally, it is not always possible to enforce both marginals in a functional pattern. If both marginals
are provided, one will be randomly selected to generate a table; about half of the time each equested
marginal is used. If neither is provided, either row or column uniform marginal will be randomly
selected to generate a table; half of the time a table will have a uniform row marginal and the other
half a uniform column marginal.

Random noise can be optionally applied to the tables using either the house or the candle noise
model. See add.noise for details.

Sharma et al. (2017) provide full mathematical and statistical details of the simulation strategies for
the above table types except the "discontinuous" type which was introduced after the publication.

Value

A list containing the following components:

pattern.list a list of tables containing binary patterns in 0’s and 1’s. Each table is created by
setting all non-zero entries in the corresponding sampled contingency table from
sample.list to 1. Each table strictly satisfies the mathematical relationship
required for a given pattern type requested, but it does not meet the statistical
requirements. As each table represents the truth regarding the mathematical
relationship between the row and column variables, they can be used as the
ground truth or gold standard for benchmarking.

sample.list a list of tables satisfying both the mathematical and statistical requirements.
These tables are noise free.

noise.list a list of tables after applying noise to the corresponding tables in sample.list.
Each table is the noisy version of the corresponding sampled contingency table.
Due to the added noise, each table may no longer strictly satisfy the required
mathematical or statistical relationships. These tables are the main output to be
used for the evaluation of a discrete pattern discovery algorithm.
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pvalue.list a list of p-values reporting the statistical significance of the generated tables for
the required type. When the pattern type specifies a functional relationship, the
p-values are computed by the functional chi-square test (Zhang and Song 2013);
otherwise, the Pearson’s chi-square test of independence is used to calculate the
p-value.

Author(s)

Ruby Sharma, Sajal Kumar, Hua Zhong, and Joe Song

References

Sharma R, Kumar S, Zhong H, Song M (2017). “Simulating noisy, nonparametric, and multivariate
discrete patterns.” The R Journal, 9(2), 366–377. doi:10.32614/RJ2017053.

Zhang Y, Liu ZL, Song M (2015). “ChiNet uncovers rewired transcription subnetworks in tolerant
yeast for advanced biofuels conversion.” Nucleic Acids Research, 43(9), 4393–4407. doi:10.1093/
nar/gkv358.

Zhang Y, Song M (2013). “Deciphering interactions in causal networks without parametric as-
sumptions.” arXiv Molecular Networks, arXiv:1311.2707. https://arxiv.org/abs/1311.2707.

See Also

add.noise for details of the noise model.

Examples

# In all examples, x is the row variable and y is the column
# variable of a table.

# Example 1. Simulating a noisy function where y=f(x),
# x may or may not be g(y) with given row.marginal.

tbls <- simulate_tables(n=100, nrow=4, ncol=5, type="functional",
noise=0.2, n.tables = 1,
row.marginal = c(0.3,0.2,0.3,0.2))

par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 1. Functional pattern")
plot_table(tbls$sample.list[[1]], main="Ex 1. Sampled pattern (noise free)")
plot_table(tbls$noise.list[[1]], main="Ex 1. Sampled pattern with 0.2 noise")
plot.new()

# Example 2. Simulating a noisy functional pattern where
# y=f(x), x may or may not be g(y) with given row.marginal.

tbls <- simulate_tables(n=100, nrow=4, ncol=5, type="functional",
noise=0.5, n.tables = 1,
row.marginal = c(0.3,0.2,0.3,0.2))

https://doi.org/10.32614/RJ-2017-053
https://doi.org/10.1093/nar/gkv358
https://doi.org/10.1093/nar/gkv358
https://arxiv.org/abs/1311.2707
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par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 2. Functioal pattern", col="seagreen2")
plot_table(tbls$sample.list[[1]], main="Ex 2. Sampled pattern (noise free)", col="seagreen2")
plot_table(tbls$noise.list[[1]], main="Ex 2. Sampled pattern with 0.5 noise", col="seagreen2")
plot.new()

# Example 3. Simulating a noisy many.to.one function where
# y=f(x), x!=f(y) with given row.marginal.

tbls <- simulate_tables(n=100, nrow=4, ncol=5, type="many.to.one",
noise=0.2, n.tables = 1,
row.marginal = c(0.4,0.3,0.1,0.2))

par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 3. Many-to-one pattern", col="limegreen")
plot_table(tbls$sample.list[[1]], main="Ex 3. Sampled pattern (noise free)", col="limegreen")
plot_table(tbls$noise.list[[1]], main="Ex 3. Sampled pattern with 0.2 noise", col="limegreen")
plot.new()

# Example 4. Simulating noisy discontinuous
# pattern where y=f(x), x may or may not be g(y) with given row.marginal.

tbls <- simulate_tables(n=100, nrow=4, ncol=5,
type="discontinuous", noise=0.2,
n.tables = 1, row.marginal = c(0.2,0.4,0.2,0.2))

par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 4. Discontinuous pattern", col="springgreen3")
plot_table(tbls$sample.list[[1]], main="Ex 4. Sampled pattern (noise free)", col="springgreen3")
plot_table(tbls$noise.list[[1]], main="Ex 4. Sampled pattern with 0.2 noise", col="springgreen3")
plot.new()

# Example 5. Simulating noisy dependent.non.functional
# pattern where y!=f(x) and x and y are statistically
# dependent.

tbls <- simulate_tables(n=100, nrow=4, ncol=5,
type="dependent.non.functional", noise=0.3,
n.tables = 1, row.marginal = c(0.2,0.4,0.2,0.2))

par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 5. Dependent.non.functional pattern",
col="sienna2", highlight="none")
plot_table(tbls$sample.list[[1]], main="Ex 5. Sampled pattern (noise free)",
col="sienna2", highlight="none")
plot_table(tbls$noise.list[[1]], main="Ex 5. Sampled pattern with 0.3 noise",
col="sienna2", highlight="none")
plot.new()

# Example 6. Simulating a pattern where x and y are
# statistically independent.
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tbls <- simulate_tables(n=100, nrow=4, ncol=5, type="independent",
noise=0.3, n.tables = 1,
row.marginal = c(0.4,0.3,0.1,0.2),
col.marginal = c(0.1,0.2,0.4,0.2,0.1))

par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 6. Independent pattern",
col="cornflowerblue", highlight="none")
plot_table(tbls$sample.list[[1]], main="Ex 6. Sampled pattern (noise free)",
col="cornflowerblue", highlight="none")
plot_table(tbls$noise.list[[1]], main="Ex 6. Sampled pattern with 0.3 noise",
col="cornflowerblue", highlight="none")
plot.new()

# Example 7. Simulating a noisy function where y=f(x),
# x may or may not be g(y), with given column marginal

tbls <- simulate_tables(n=100, nrow=4, ncol=5, type="functional",
noise=0.2, n.tables = 1,
col.marginal = c(0.2,0.1,0.4,0.2,0.1))

par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 7. Functional pattern")
plot_table(tbls$sample.list[[1]], main="Ex 7. Sampled pattern (noise free)")
plot_table(tbls$noise.list[[1]], main="Ex 7. Sampled pattern with 0.2 noise")
plot.new()

# Example 8. Simulating a noisy many.to.one function where
# y=f(x), x!=f(y) with given column marginal.

tbls <- simulate_tables(n=100, nrow=4, ncol=4, type="many.to.one",
noise=0.2, n.tables = 1,
col.marginal = c(0.4,0.3,0.1,0.2))

par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 8. Many-to-one pattern", col="limegreen")
plot_table(tbls$sample.list[[1]], main="Ex 8. Sampled pattern (noise free)", col="limegreen")
plot_table(tbls$noise.list[[1]], main="Ex 8. Sampled pattern with 0.2 noise", col="limegreen")
plot.new()

# Example 9. Simulating noisy discontinuous
# pattern where y=f(x), x may or may not be g(y) with given column marginal

tbls <- simulate_tables(n=100, nrow=4, ncol=4,
type="discontinuous", noise=0.2,
n.tables = 1, col.marginal = c(0.1,0.4,0.2,0.3))

par(mfrow=c(2,2))
plot_table(tbls$pattern.list[[1]], main="Ex 9. Discontinuous pattern", col="springgreen3")
plot_table(tbls$sample.list[[1]], main="Ex 9. Sampled pattern (noise free)", col="springgreen3")
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plot_table(tbls$noise.list[[1]], main="Ex 9. Sampled pattern with 0.2 noise", col="springgreen3")
plot.new()

test.interactions Functional Chi-Squared Test of Functional Dependency among Many
Variables in a Data Set

Description

Apply functional chi-squared tests on many-to-one combinatorial relationships for functional de-
pendency using multivariate discrete data.

Usage

test.interactions(
x, list.ind.vars, dep.vars, var.names = rownames(x),
index.kind = c("conditional", "unconditional")

)

Arguments

x A numeric matrix or data frame of discrete values. Rows represent variables and
columns represent samples. Thus, each row index is a variable index, used by
list.ind.vars and dep.vars.

list.ind.vars A list of numeric or integer vectors, each vector representing independent vari-
able indices in one interaction. Each vector (parents) forms a pair with a depen-
dent variable (child) of the same position in dep.vars to represent a many-to-
one directional interaction.

dep.vars A numeric vector representing indices of dependent variables (children) in mul-
tiple interactions.

var.names Optional. A character vector specifying names of all variables (rows). If not
provided, the default is the row names of x; or 1:nrow(x) if x does not have
row names.

index.kind A character string to specify the kind of function index to return, identical to
the same argument in fun.chisq.test. The value can be "unconditional"
(default) or "conditional".
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Details

test.interactions tests functional dependencies in multiple directional interactions. Each inter-
action, either one-to-one or many-to-one, is a parents-child pair representing a relationship from
independent variables (parents) to a dependent variable (child). The parents-child pairs are speci-
fied in two input arguments list.ind.vars (a list of parents for each interaction) and dep.vars
(vector of children in each interaction).

The function automatically creates contingency tables for interactions of interest, thus convenient to
use on multivariate data sets. As the function is implemented in C++ and capable of testing multiple
many-to-one interactions in one call, it is much faster than calling the R function fun.chisq.test
multiple times.

test.interactions implements only the method="fchisq" option in fun.chisq.test.

When a contingency table is created for each interaction, all combinations of unique values of the
independent variables (parents) form the rows and the unique values of dependent variable (child)
form the columns in the contingency table. The table entries are the counts of the corresponding
combination of parent and child values. Either rows or columns with all zero counts are removed
from the contingency table before functional chi-squared test is applied.

Value

A data frame with five columns. Each row represents the testing result of each directional inter-
action. The 1st column is either the indices or names (if var.names is not NULL) of independent
variables (parents); The 2nd column is the indices or names of the dependent variable (child); The
3rd column named p.value are p-values; The 4th column named statistic is chi-squared values;
and the 5th column named estimate is the function indices for each interaction.

Author(s)

Hua Zhong and Joe Song

See Also

This function calls functional chi-squared test implemented in C++ and is thus much faster than the
R version fun.chisq.test.

For data discretization by optimal univariate k -means clustering, see Ckmeans.1d.dp.

Examples

x <- matrix(
c(0,0,1,0,1,
1,0,2,1,0,
2,2,0,0,0,
1,2,1,1,2,
1,0,2,1,2),

nrow = 5, ncol = 5, byrow = TRUE)

list.ind.vars <-list(
c(1),c(1),c(1),
c(2),c(2),c(2),
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c(1,2), c(2,3),
c(3,4), c(4,5))

dep.vars <- c(
3,4,5,
3,4,5,
3,4,
5,1)

# list.ind.vars and dep.vars together specify
# the following ten interactions:
# 1 -> 3
# 1 -> 4
# 1 -> 5
# 2 -> 3
# 2 -> 4
# 2 -> 5
# 1,2 -> 3
# 2,3 -> 4
# 3,4 -> 5
# 4,5 -> 1

var.names <- paste0("var", 1:5)

test.interactions(
x = x,
list.ind.vars = list.ind.vars,
dep.vars = dep.vars,
var.names = var.names,
index.kind = "unconditional")
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