
Package ‘matrixStats’
January 7, 2025

Version 1.5.0

Depends R (>= 3.4.0)

Suggests utils, base64enc, ggplot2, knitr, markdown, microbenchmark,
R.devices, R.rsp

VignetteBuilder R.rsp

Title Functions that Apply to Rows and Columns of Matrices (and to
Vectors)

Author Henrik Bengtsson [aut, cre, cph],
Constantin Ahlmann-Eltze [ctb],
Hector Corrada Bravo [ctb],
Robert Gentleman [ctb],
Jan Gleixner [ctb],
Peter Hickey [ctb],
Ola Hossjer [ctb],
Harris Jaffee [ctb],
Dongcan Jiang [ctb],
Peter Langfelder [ctb],
Brian Montgomery [ctb],
Angelina Panagopoulou [ctb],
Hugh Parsonage [ctb],
Jakob Peder Pettersen [ctb]

Maintainer Henrik Bengtsson <henrikb@braju.com>

Description High-performing functions operating on rows and columns of matrices, e.g. col / rowMe-
dians(), col / rowRanks(), and col / rowSds(). Functions optimized per data type and for subset-
ted calculations such that both memory usage and processing time is mini-
mized. There are also optimized vector-based methods, e.g. binMeans(), madDiff() and weight-
edMedian().

License Artistic-2.0

LazyLoad TRUE

NeedsCompilation yes

ByteCompile TRUE

URL https://github.com/HenrikBengtsson/matrixStats

1

https://github.com/HenrikBengtsson/matrixStats

2 Contents

BugReports https://github.com/HenrikBengtsson/matrixStats/issues

RoxygenNote 7.3.2

Repository CRAN

Date/Publication 2025-01-07 19:50:02 UTC

Contents

matrixStats-package . 3
anyMissing . 3
binCounts . 4
binMeans . 5
indexByRow . 7
logSumExp . 8
product . 10
rowAlls . 11
rowCollapse . 13
rowCounts . 14
rowCumsums . 16
rowDiffs . 18
rowIQRs . 19
rowLogSumExps . 20
rowMads . 21
rowMeans2 . 22
rowMedians . 23
rowOrderStats . 24
rowQuantiles . 26
rowRanges . 27
rowRanks . 28
rowSums2 . 30
rowTabulates . 31
rowVars . 33
rowWeightedMeans . 35
rowWeightedMedians . 37
varDiff . 38
weightedMad . 40
weightedMean . 42
weightedMedian . 44
weightedVar . 46

Index 49

https://github.com/HenrikBengtsson/matrixStats/issues

matrixStats-package 3

matrixStats-package Package matrixStats

Description

High-performing functions operating on rows and columns of matrices, e.g. col / rowMedians(), col
/ rowRanks(), and col / rowSds(). Functions optimized per data type and for subsetted calculations
such that both memory usage and processing time is minimized. There are also optimized vector-
based methods, e.g. binMeans(), madDiff() and weightedMedian().

How to cite this package

Henrik Bengtsson (2017). matrixStats: Functions that Apply to Rows and Columns of Matrices
(and to Vectors). R package version 0.52.2. https://github.com/HenrikBengtsson/matrixStats

Author(s)

Henrik Bengtsson, Hector Corrada Bravo, Robert Gentleman, Ola Hossjer, Harris Jaffee, Dongcan
Jiang, Peter Langfelder

See Also

Useful links:

• https://github.com/HenrikBengtsson/matrixStats

• Report bugs at https://github.com/HenrikBengtsson/matrixStats/issues

anyMissing Checks if there are any missing values in an object or not

Description

Checks if there are any missing values in an object or not. Please use base::anyNA() instead of
anyMissing(), colAnyNAs() instead of colAnyMissings(), and rowAnyNAs() instead of rowAnyMissings().

Usage

anyMissing(x, idxs = NULL, ...)

colAnyMissings(x, rows = NULL, cols = NULL, ..., useNames = TRUE)

rowAnyMissings(x, rows = NULL, cols = NULL, ..., useNames = TRUE)

colAnyNAs(x, rows = NULL, cols = NULL, ..., useNames = TRUE)

rowAnyNAs(x, rows = NULL, cols = NULL, ..., useNames = TRUE)

https://github.com/HenrikBengtsson/matrixStats
https://github.com/HenrikBengtsson/matrixStats/issues

4 binCounts

Arguments

x A vector, a list, a matrix, a data.frame, or NULL.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

... Not used.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

The implementation of this method is optimized for both speed and memory. The method will
return TRUE as soon as a missing value is detected.

Value

Returns TRUE if a missing value was detected, otherwise FALSE.

Author(s)

Henrik Bengtsson

See Also

Starting with R v3.1.0, there is anyNA() in the base, which provides the same functionality as
anyMissing().

Examples

x <- rnorm(n = 1000)
x[seq(300, length(x), by = 100)] <- NA
stopifnot(anyMissing(x) == any(is.na(x)))

binCounts Fast element counting in non-overlapping bins

Description

Counts the number of elements in non-overlapping bins

Usage

binCounts(x, idxs = NULL, bx, right = FALSE, ...)

binMeans 5

Arguments

x A numeric vector of K positions for to be binned and counted.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

bx A numeric vector of B + 1 ordered positions specifying the B > 0 bins [bx[1],
bx[2]), [bx[2], bx[3]), ..., [bx[B], bx[B + 1]).

right If TRUE, the bins are right-closed (left open), otherwise left-closed (right open).

... Not used.

Details

binCounts(x, bx, right = TRUE) gives equivalent results as rev(binCounts(-x, bx = rev(-bx),
right = FALSE)), but is faster and more memory efficient.

Value

Returns an integer vector of length B with non-negative integers.

Missing and non-finite values

Missing values in x are ignored/dropped. Missing values in bx are not allowed and gives an error.

Author(s)

Henrik Bengtsson

See Also

An alternative for counting occurrences within bins is hist, e.g. hist(x, breaks = bx,plot =
FALSE)$counts. That approach is ~30-60% slower than binCounts(..., right = TRUE).

To count occurrences of indices x (positive integers) in [1, B], use tabulate(x,nbins = B),
where x does not have to be sorted first. For details, see tabulate().

To average values within bins, see binMeans().

binMeans Fast mean calculations in non-overlapping bins

Description

Computes the sample means in non-overlapping bins

Usage

binMeans(y, x, idxs = NULL, bx, na.rm = TRUE, count = TRUE,
right = FALSE, ...)

6 binMeans

Arguments

y A numeric or logical vector of K values to calculate means on.

x A numeric vector of K positions for to be binned.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

bx A numeric vector of B + 1 ordered positions specifying the B > 0 bins [bx[1],
bx[2]), [bx[2], bx[3]), ..., [bx[B], bx[B + 1]).

na.rm If TRUE, missing values in y are dropped before calculating the mean, otherwise
not.

count If TRUE, the number of data points in each bins is returned as attribute count,
which is an integer vector of length B.

right If TRUE, the bins are right-closed (left open), otherwise left-closed (right open).

... Not used.

Details

binMeans(x, bx, right = TRUE) gives equivalent results as rev(binMeans(-x, bx = sort(-bx),
right = FALSE)), but is faster.

Value

Returns a numeric vector of length B.

Missing and non-finite values

Data points where either of y and x is missing are dropped (and therefore are also not counted).
Non-finite values in y are not allowed and gives an error. Missing values in bx are not allowed and
gives an error.

Author(s)

Henrik Bengtsson with initial code contributions by Martin Morgan [1].

References

[1] R-devel thread Fastest non-overlapping binning mean function out there? on Oct 3, 2012

See Also

binCounts(). aggregate and mean().

indexByRow 7

Examples

x <- 1:200
mu <- double(length(x))
mu[1:50] <- 5
mu[101:150] <- -5
y <- mu + rnorm(length(x))

Binning
bx <- c(0, 50, 100, 150, 200) + 0.5
y_s <- binMeans(y, x = x, bx = bx)

plot(x, y)
for (kk in seq_along(y_s)) {

lines(bx[c(kk, kk + 1)], y_s[c(kk, kk)], col = "blue", lwd = 2)
}

indexByRow Translates matrix indices by rows into indices by columns

Description

Translates matrix indices by rows into indices by columns.

Usage

indexByRow(dim, idxs = NULL, ...)

Arguments

dim A numeric vector of length two specifying the length of the "template" matrix.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

... Not used.

Value

Returns an integer vector of indices.

Known limitations

The current implementation does not support long-vector indices, because both input and output
indices are of type integers. This means that the indices in argument idxs can only be in range
[1,2^31-1]. Using a greater value will be coerced to NA_integer_. Moreover, returned indices can
only be in the same range [1,2^31-1].

Author(s)

Henrik Bengtsson

8 logSumExp

Examples

dim <- c(5, 4)
X <- matrix(NA_integer_, nrow = dim[1], ncol = dim[2])
Y <- t(X)
idxs <- seq_along(X)

Assign by columns
X[idxs] <- idxs
print(X)

Assign by rows
Y[indexByRow(dim(Y), idxs)] <- idxs
print(Y)

stopifnot(X == t(Y))

logSumExp Accurately computes the logarithm of the sum of exponentials

Description

Accurately computes the logarithm of the sum of exponentials, that is, log(sum(exp(lx))). If
lx = log(x), then this is equivalently to calculating log(sum(x)).

Usage

logSumExp(lx, idxs = NULL, na.rm = FALSE, ...)

Arguments

lx A numeric vector. Typically lx are log(x) values.
idxs A vector indicating subset of elements to operate over. If NULL, no subsetting

is done.
na.rm If TRUE, missing values are excluded.
... Not used.

Details

This function, which avoid numerical underflow, is often used when computing the logarithm of the
sum of small numbers (|x| << 1) such as probabilities.

This is function is more accurate than log(sum(exp(lx))) when the values of x = exp(lx) are
|x| << 1. The implementation of this function is based on the observation that

log(a+ b) = [la = log(a), lb = log(b)] = log(exp(la) + exp(lb)) = la+ log(1 + exp(lb− la))

Assuming la > lb, then |lb− la| < |lb|, and it is less likely that the computation of 1+exp(lb− la)
will not underflow/overflow numerically. Because of this, the overall result from this function
should be more accurate. Analogously to this, the implementation of this function finds the maxi-
mum value of lx and subtracts it from the remaining values in lx.

logSumExp 9

Value

Returns a numeric scalar.

Benchmarking

This method is optimized for correctness, that avoiding underflowing. It is implemented in native
code that is optimized for speed and memory.

Author(s)

Henrik Bengtsson

References

[1] R Core Team, Writing R Extensions, v3.0.0, April 2013.
[2] Laurent El Ghaoui, Hyper-Textbook: Optimization Models and Applications, University of Cal-
ifornia at Berkeley, August 2012. (Chapter ’Log-Sum-Exp (LSE) Function and Properties’)
[3] R-help thread logsumexp function in R, 2011-02-17. https://stat.ethz.ch/pipermail/
r-help/2011-February/269205.html

See Also

To compute this function on rows or columns of a matrix, see rowLogSumExps().

For adding two double values in native code, R provides the C function logspace_add() [1]. For
properties of the log-sum-exponential function, see [2].

Examples

EXAMPLE #1
lx <- c(1000.01, 1000.02)
y0 <- log(sum(exp(lx)))
print(y0) ## Inf

y1 <- logSumExp(lx)
print(y1) ## 1000.708

EXAMPLE #2
lx <- c(-1000.01, -1000.02)
y0 <- log(sum(exp(lx)))
print(y0) ## -Inf

y1 <- logSumExp(lx)
print(y1) ## -999.3218

EXAMPLE #3
R-help thread 'Beyond double-precision?' on May 9, 2009.

https://stat.ethz.ch/pipermail/r-help/2011-February/269205.html
https://stat.ethz.ch/pipermail/r-help/2011-February/269205.html

10 product

set.seed(1)
x <- runif(50)

The logarithm of the harmonic mean
y0 <- log(1 / mean(1 / x))
print(y0) ## -1.600885

lx <- log(x)
y1 <- log(length(x)) - logSumExp(-lx)
print(y1) ## [1] -1.600885

Sanity check
stopifnot(all.equal(y1, y0))

product Calculates the product for each row (column) in a matrix

Description

Calculates the product for each row (column) in a matrix.

Usage

product(x, idxs = NULL, na.rm = FALSE, ...)

rowProds(x, rows = NULL, cols = NULL, na.rm = FALSE,
method = c("direct", "expSumLog"), ..., useNames = TRUE)

colProds(x, rows = NULL, cols = NULL, na.rm = FALSE,
method = c("direct", "expSumLog"), ..., useNames = TRUE)

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

... Not used.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

method A character string specifying how each product is calculated.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

rowAlls 11

Details

If method = "expSumLog", then then product() function is used, which calculates the product via
the logarithmic transform (treating negative values specially). This improves the precision and
lowers the risk for numeric overflow. If method = "direct", the direct product is calculated via the
prod() function.

Value

Returns a numeric vector of length N (K).

Missing values

Note, if method = "expSumLog", na.rm = FALSE, and x contains missing values (NA or NaN), then
the calculated value is also missing value. Note that it depends on platform whether NaN or NA is
returned when an NaN exists, cf. is.nan().

Author(s)

Henrik Bengtsson

rowAlls Checks if a value exists / does not exist in each row (column) of a
matrix

Description

Checks if a value exists / does not exist in each row (column) of a matrix.

Usage

rowAlls(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ..., useNames = TRUE)

colAlls(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ..., useNames = TRUE)

allValue(x, idxs = NULL, value = TRUE, na.rm = FALSE, ...)

rowAnys(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ..., useNames = TRUE)

colAnys(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ..., useNames = TRUE)

anyValue(x, idxs = NULL, value = TRUE, na.rm = FALSE, ...)

12 rowAlls

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

value A value to search for.

na.rm If TRUE, missing values are excluded.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

Details

These functions takes either a matrix or a vector as input. If a vector, then argument dim. must be
specified and fulfill prod(dim.) == length(x). The result will be identical to the results obtained
when passing matrix(x, nrow = dim.[1L], ncol = dim.[2L]), but avoids having to temporarily
create/allocate a matrix, if only such is needed only for these calculations.

Value

rowAlls() (colAlls()) returns an logical vector of length N (K). Analogously for rowAnys()
(rowAlls()).

Logical value

When value is logical, the result is as if the function is applied on as.logical(x). More specifi-
cally, if x is numeric, then all zeros are treated as FALSE, non-zero values as TRUE, and all missing
values as NA.

Author(s)

Henrik Bengtsson

See Also

rowCounts

rowCollapse 13

Examples

x <- matrix(FALSE, nrow = 10, ncol = 5)
x[3:7, c(2, 4)] <- TRUE
x[2:4,] <- TRUE
x[, 1] <- TRUE
x[5,] <- FALSE
x[, 5] <- FALSE
print(x)

print(rowCounts(x)) # 1 4 4 4 0 3 3 1 1 1
print(colCounts(x)) # 9 5 3 5 0

print(rowAnys(x))
print(which(rowAnys(x))) # 1 2 3 4 6 7 8 9 10
print(colAnys(x))
print(which(colAnys(x))) # 1 2 3 4

rowCollapse Extracts one cell per row (column) from a matrix

Description

Extracts one cell per row (column) from a matrix. The implementation is optimized for memory
and speed.

Usage

rowCollapse(x, idxs, rows = NULL, dim. = dim(x), ..., useNames = TRUE)

colCollapse(x, idxs, cols = NULL, dim. = dim(x), ..., useNames = TRUE)

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

idxs An index vector of (maximum) length N (K) specifying the columns (rows) to
be extracted.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

14 rowCounts

Value

Returns a vector of length N (K).

Author(s)

Henrik Bengtsson

See Also

Matrix indexing to index elements in matrices and arrays, cf. [().

Examples

x <- matrix(1:27, ncol = 3)

y <- rowCollapse(x, 1)
stopifnot(identical(y, x[, 1]))

y <- rowCollapse(x, 2)
stopifnot(identical(y, x[, 2]))

y <- rowCollapse(x, c(1, 1, 1, 1, 1, 3, 3, 3, 3))
stopifnot(identical(y, c(x[1:5, 1], x[6:9, 3])))

y <- rowCollapse(x, 1:3)
print(y)
y_truth <- c(x[1, 1], x[2, 2], x[3, 3], x[4, 1], x[5, 2],

x[6, 3], x[7, 1], x[8, 2], x[9, 3])
stopifnot(identical(y, y_truth))

rowCounts Counts the number of occurrences of a specific value

Description

The row- and column-wise functions take either a matrix or a vector as input. If a vector, then
argument dim. must be specified and fulfill prod(dim.) == length(x). The result will be identical
to the results obtained when passing matrix(x, nrow = dim.[1L], ncol = dim.[2L]), but avoids
having to temporarily create/allocate a matrix, if only such is needed only for these calculations.

Usage

rowCounts(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ..., useNames = TRUE)

colCounts(x, rows = NULL, cols = NULL, value = TRUE, na.rm = FALSE,
dim. = dim(x), ..., useNames = TRUE)

count(x, idxs = NULL, value = TRUE, na.rm = FALSE, ...)

rowCounts 15

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

value A value to search for.

na.rm If TRUE, missing values are excluded.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

Value

rowCounts() (colCounts()) returns an integer vector of length N (K). count() returns a scalar
of type integer if the count is less than 2^31-1 (= .Machine$integer.max) otherwise a scalar of
type double.

Author(s)

Henrik Bengtsson

See Also

rowAlls

Examples

x <- matrix(0:11, nrow = 4, ncol = 3)
x[2:3, 2:3] <- 2:5
x[3, 3] <- NA_integer_
print(x)

print(rowCounts(x, value = 2))
[1] 0 1 NA 0
print(colCounts(x, value = 2))
[1] 1 1 NA
print(colCounts(x, value = NA_integer_))
[1] 0 0 1

print(rowCounts(x, value = 2, na.rm = TRUE))
[1] 0 1 1 0
print(colCounts(x, value = 2, na.rm = TRUE))
[1] 1 1 0

16 rowCumsums

print(rowAnys(x, value = 2))
[1] FALSE TRUE TRUE FALSE
print(rowAnys(x, value = NA_integer_))
[1] FALSE FALSE TRUE FALSE

print(colAnys(x, value = 2))
[1] TRUE TRUE NA
print(colAnys(x, value = 2, na.rm = TRUE))
[1] TRUE TRUE FALSE

print(colAlls(x, value = 2))
[1] FALSE FALSE FALSE

rowCumsums Cumulative sums, products, minima and maxima for each row (col-
umn) in a matrix

Description

Cumulative sums, products, minima and maxima for each row (column) in a matrix.

Usage

rowCumsums(x, rows = NULL, cols = NULL, dim. = dim(x), ...,
useNames = TRUE)

colCumsums(x, rows = NULL, cols = NULL, dim. = dim(x), ...,
useNames = TRUE)

rowCumprods(x, rows = NULL, cols = NULL, dim. = dim(x), ...,
useNames = TRUE)

colCumprods(x, rows = NULL, cols = NULL, dim. = dim(x), ...,
useNames = TRUE)

rowCummins(x, rows = NULL, cols = NULL, dim. = dim(x), ...,
useNames = TRUE)

colCummins(x, rows = NULL, cols = NULL, dim. = dim(x), ...,
useNames = TRUE)

rowCummaxs(x, rows = NULL, cols = NULL, dim. = dim(x), ...,
useNames = TRUE)

colCummaxs(x, rows = NULL, cols = NULL, dim. = dim(x), ...,
useNames = TRUE)

rowCumsums 17

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Value

Returns a numeric NxK matrix of the same mode as x, except when x is of mode logical, then
the return type is integer.

Author(s)

Henrik Bengtsson

See Also

See cumsum(), cumprod(), cummin(), and cummax().

Examples

x <- matrix(1:12, nrow = 4, ncol = 3)
print(x)

yr <- rowCumsums(x)
print(yr)

yc <- colCumsums(x)
print(yc)

yr <- rowCumprods(x)
print(yr)

yc <- colCumprods(x)
print(yc)

yr <- rowCummaxs(x)
print(yr)

yc <- colCummaxs(x)
print(yc)

yr <- rowCummins(x)

18 rowDiffs

print(yr)

yc <- colCummins(x)
print(yc)

rowDiffs Calculates difference for each row (column) in a matrix

Description

Calculates difference for each row (column) in a matrix.

Usage

rowDiffs(x, rows = NULL, cols = NULL, lag = 1L, differences = 1L,
dim. = dim(x), ..., useNames = TRUE)

colDiffs(x, rows = NULL, cols = NULL, lag = 1L, differences = 1L,
dim. = dim(x), ..., useNames = TRUE)

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

lag An integer specifying the lag.

differences An integer specifying the order of difference.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Value

Returns a numeric Nx(K-1) or (N-1)xK matrix.

Author(s)

Henrik Bengtsson

See Also

See also diff2().

rowIQRs 19

Examples

x <- matrix(1:27, ncol = 3)

d1 <- rowDiffs(x)
print(d1)

d2 <- t(colDiffs(t(x)))
stopifnot(all.equal(d2, d1))

rowIQRs Estimates of the interquartile range for each row (column) in a matrix

Description

Estimates of the interquartile range for each row (column) in a matrix.

Usage

rowIQRs(x, rows = NULL, cols = NULL, na.rm = FALSE, ...,
useNames = TRUE)

colIQRs(x, rows = NULL, cols = NULL, na.rm = FALSE, ...,
useNames = TRUE)

iqr(x, idxs = NULL, na.rm = FALSE, ...)

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

... Additional arguments passed to rowQuantiles() (colQuantiles()).

useNames If TRUE (default), names attributes of the result are set, otherwise not.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

Value

Returns a numeric vector of length N (K).

Missing values

Contrary to IQR, which gives an error if there are missing values and na.rm = FALSE, iqr() and its
corresponding row and column-specific functions return NA_real_.

20 rowLogSumExps

Author(s)

Henrik Bengtsson

See Also

See IQR. See rowSds().

Examples

set.seed(1)

x <- matrix(rnorm(50 * 40), nrow = 50, ncol = 40)
str(x)

Row IQRs
q <- rowIQRs(x)
print(q)
q0 <- apply(x, MARGIN = 1, FUN = IQR)
stopifnot(all.equal(q0, q))

Column IQRs
q <- colIQRs(x)
print(q)
q0 <- apply(x, MARGIN = 2, FUN = IQR)
stopifnot(all.equal(q0, q))

rowLogSumExps Accurately computes the logarithm of the sum of exponentials across
rows or columns

Description

Accurately computes the logarithm of the sum of exponentials across rows or columns.

Usage

rowLogSumExps(lx, rows = NULL, cols = NULL, na.rm = FALSE,
dim. = dim(lx), ..., useNames = TRUE)

colLogSumExps(lx, rows = NULL, cols = NULL, na.rm = FALSE,
dim. = dim(lx), ..., useNames = TRUE)

Arguments

lx A numeric NxK matrix. Typically lx are log(x) values.

rows, cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, any missing values are ignored, otherwise not.

rowMads 21

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Value

A numeric vector of length N (K).

Benchmarking

These methods are implemented in native code and have been optimized for speed and memory.

Author(s)

Native implementation by Henrik Bengtsson. Original R code by Nakayama ??? (Japan).

See Also

To calculate the same on vectors, logSumExp().

rowMads Standard deviation estimates for each row (column) in a matrix

Description

Standard deviation estimates for each row (column) in a matrix.

Usage

rowMads(x, rows = NULL, cols = NULL, center = NULL, constant = 1.4826,
na.rm = FALSE, dim. = dim(x), ..., useNames = TRUE)

colMads(x, rows = NULL, cols = NULL, center = NULL, constant = 1.4826,
na.rm = FALSE, dim. = dim(x), ..., useNames = TRUE)

rowSds(x, rows = NULL, cols = NULL, na.rm = FALSE, refine = TRUE,
center = NULL, dim. = dim(x), ..., useNames = TRUE)

colSds(x, rows = NULL, cols = NULL, na.rm = FALSE, refine = TRUE,
center = NULL, dim. = dim(x), ..., useNames = TRUE)

22 rowMeans2

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

center (optional) The center, defaults to the row means for the SD estimators and row
medians for the MAD estimators.

constant A scale factor. See mad for details.

na.rm If TRUE, missing values are excluded.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Additional arguments passed to rowMeans() and rowSums().

useNames If TRUE (default), names attributes of the result are set, otherwise not.

refine If TRUE, ‘center‘ is NULL, and x is numeric, then extra effort is used to calculate
the average with greater numerical precision, otherwise not.

Value

Returns a numeric vector of length N (K).

Author(s)

Henrik Bengtsson

See Also

sd, mad and var. rowIQRs().

rowMeans2 Calculates the mean for each row (column) in a matrix

Description

Calculates the mean for each row (column) in a matrix.

Usage

rowMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE, refine = TRUE,
dim. = dim(x), ..., useNames = TRUE)

colMeans2(x, rows = NULL, cols = NULL, na.rm = FALSE, refine = TRUE,
dim. = dim(x), ..., useNames = TRUE)

rowMedians 23

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

refine If TRUE and x is numeric, then extra effort is used to calculate the average with
greater numerical precision, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

The implementation of rowMeans2() and colMeans2() is optimized for both speed and memory.

Value

Returns a numeric vector of length N (K).

Author(s)

Henrik Bengtsson

rowMedians Calculates the median for each row (column) in a matrix

Description

Calculates the median for each row (column) in a matrix.

Usage

rowMedians(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x),
..., useNames = TRUE)

colMedians(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x),
..., useNames = TRUE)

24 rowOrderStats

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows, cols A vector indicating subset of rows (and/or columns) to operate over. If NULL,
no subsetting is done.

na.rm If TRUE, NAs are excluded first, otherwise not.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix.

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

The implementation of rowMedians() and colMedians() is optimized for both speed and mem-
ory. To avoid coercing to doubles (and hence memory allocation), there is a special implementa-
tion for integer matrices. That is, if x is an integer matrix, then rowMedians(as.double(x))
(rowMedians(as.double(x))) would require three times the memory of rowMedians(x) (colMedians(x)),
but all this is avoided.

Value

Returns a numeric vector of length N (K).

Author(s)

Henrik Bengtsson, Harris Jaffee

See Also

See rowWeightedMedians() and colWeightedMedians() for weighted medians. For mean esti-
mates, see rowMeans2() and rowMeans().

rowOrderStats Gets an order statistic for each row (column) in a matrix

Description

Gets an order statistic for each row (column) in a matrix.

Usage

rowOrderStats(x, rows = NULL, cols = NULL, which, dim. = dim(x), ...,
useNames = TRUE)

colOrderStats(x, rows = NULL, cols = NULL, which, dim. = dim(x), ...,
useNames = TRUE)

rowOrderStats 25

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

which An integer index in [1,K] ([1,N]) indicating which order statistic to be re-
turned.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

The implementation of rowOrderStats() is optimized for both speed and memory. To avoid co-
ercing to doubles (and hence memory allocation), there is a unique implementation for integer
matrices.

Value

Returns a numeric vector of length N (K).

Missing values

This method does not handle missing values, that is, the result corresponds to having na.rm = FALSE
(if such an argument would be available).

Author(s)

The native implementation of rowOrderStats() was adopted by Henrik Bengtsson from Robert
Gentleman’s rowQ() in the Biobase package.

See Also

See rowMeans() in colSums().

26 rowQuantiles

rowQuantiles Estimates quantiles for each row (column) in a matrix

Description

Estimates quantiles for each row (column) in a matrix.

Usage

rowQuantiles(x, rows = NULL, cols = NULL, probs = seq(from = 0, to = 1,
by = 0.25), na.rm = FALSE, type = 7L, digits = 7L, ...,
useNames = TRUE, drop = TRUE)

colQuantiles(x, rows = NULL, cols = NULL, probs = seq(from = 0, to = 1,
by = 0.25), na.rm = FALSE, type = 7L, digits = 7L, ...,
useNames = TRUE, drop = TRUE)

Arguments

x An integer, numeric or logical NxK matrix with N >= 0.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

probs A numeric vector of J probabilities in [0, 1].

na.rm If TRUE, missing values are excluded.

type An integer specifying the type of estimator. See quantile for more details.

digits An integer specifying the precision of the formatted percentages. Not used
when ‘useNames = FALSE‘. In **matrixStats** (< 0.63.0), the default used to
be ‘max(2L, getOption("digits"))‘ in line with R (< 4.1.0).

... Additional arguments passed to quantile.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

drop If TRUE, singleton dimensions in the result are dropped, otherwise not.

Value

Returns a NxJ (KxJ) matrix, where N (K) is the number of rows (columns) for which the J quantiles
are calculated. The return type is either integer or numeric depending on type.

Author(s)

Henrik Bengtsson

See Also

quantile.

rowRanges 27

Examples

set.seed(1)

x <- matrix(rnorm(50 * 40), nrow = 50, ncol = 40)
str(x)

probs <- c(0.25, 0.5, 0.75)

Row quantiles
q <- rowQuantiles(x, probs = probs)
print(q)
q_0 <- apply(x, MARGIN = 1, FUN = quantile, probs = probs)
stopifnot(all.equal(q_0, t(q)))

Column IQRs
q <- colQuantiles(x, probs = probs)
print(q)
q_0 <- apply(x, MARGIN = 2, FUN = quantile, probs = probs)
stopifnot(all.equal(q_0, t(q)))

rowRanges Gets the range of values in each row (column) of a matrix

Description

Gets the range of values in each row (column) of a matrix.

Usage

rowRanges(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x),
..., useNames = TRUE)

rowMins(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...,
useNames = TRUE)

rowMaxs(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...,
useNames = TRUE)

colRanges(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x),
..., useNames = TRUE)

colMins(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...,
useNames = TRUE)

colMaxs(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x), ...,
useNames = TRUE)

28 rowRanks

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Value

rowRanges() (colRanges()) returns a numeric Nx2 (Kx2) matrix, where N (K) is the number of
rows (columns) for which the ranges are calculated.

rowMins()/rowMaxs() (colMins()/colMaxs()) returns a numeric vector of length N (K).

Author(s)

Henrik Bengtsson

See Also

rowOrderStats() and pmin.int().

rowRanks Gets the rank of the elements in each row (column) of a matrix

Description

Gets the rank of the elements in each row (column) of a matrix.

Usage

rowRanks(x, rows = NULL, cols = NULL, ties.method = c("max", "average",
"first", "last", "random", "max", "min", "dense"), dim. = dim(x), ...,
useNames = TRUE)

colRanks(x, rows = NULL, cols = NULL, ties.method = c("max", "average",
"first", "last", "random", "max", "min", "dense"), dim. = dim(x),
preserveShape = FALSE, ..., useNames = TRUE)

rowRanks 29

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

ties.method A character string specifying how ties are treated. For details, see below.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

preserveShape A logical specifying whether the matrix returned should preserve the input
shape of x, or not.

Details

These functions rank values and treats missing values the same way as rank(). For equal values
("ties"), argument ties.method determines how these are ranked among each other. More pre-
cisely, for the following values of ties.method, each index set of ties consists of:

• "first" - increasing values that are all unique

• "last" - decreasing values that are all unique

• "min" - identical values equaling the minimum of their original ranks

• "max" - identical values equaling the maximum of their original ranks

• "average" - identical values that equal the sample mean of their original ranks. Because the
average is calculated, the returned ranks may be non-integer values

• "random" - randomly shuffled values of their original ranks.

• "dense" - increasing values that are all unique and, contrary to "first", never contain any
gaps

For more information on ties.method = "dense", see frank() of the data.table package. For
more information on the other alternatives, see rank().

Note that, due to different randomization strategies, the shuffling order produced by these functions
when using ties.method = "random" does not reproduce that of rank().

WARNING: For backward-compatibility reasons, the default is ties.method = "max", which differs
from rank() which uses ties.method = "average" by default. Since we plan to change the default
behavior in a future version, we recommend to explicitly specify the intended value of argument
ties.method.

30 rowSums2

Value

A matrix of type integer is returned, unless ties.method = "average" when it is of type numeric.

The rowRanks() function always returns an NxK matrix, where N (K) is the number of rows
(columns) whose ranks are calculated.

The colRanks() function returns an NxK matrix, if preserveShape = TRUE, otherwise a KxN
matrix.

Any names of x are ignored and absent in the result.

Missing values

Missing values are ranked as NA_integer_, as with na.last = "keep" in the rank() function.

Performance

The implementation is optimized for both speed and memory. To avoid coercing to doubles (and
hence memory allocation), there is a unique implementation for integer matrices. Furthermore,
it is more memory efficient to do colRanks(x, preserveShape = TRUE) than t(colRanks(x,
preserveShape = FALSE)).

Author(s)

Hector Corrada Bravo and Harris Jaffee. Peter Langfelder for adding ’ties.method’ support. Brian
Montgomery for adding more ’ties.method’s. Henrik Bengtsson adapted the original native imple-
mentation of rowRanks() from Robert Gentleman’s rowQ() in the Biobase package.

See Also

For developers, see also Section Utility functions’ in ’Writing R Extensions manual’, particularly
the native functions R_qsort_I() and R_qsort_int_I().

rowSums2 Calculates the sum for each row (column) in a matrix

Description

Calculates the sum for each row (column) in a matrix.

Usage

rowSums2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x),
..., useNames = TRUE)

colSums2(x, rows = NULL, cols = NULL, na.rm = FALSE, dim. = dim(x),
..., useNames = TRUE)

rowTabulates 31

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

The implementation of rowSums2() and colSums2() is optimized for both speed and memory.

Value

Returns a numeric vector of length N (K).

Author(s)

Henrik Bengtsson

rowTabulates Tabulates the values in a matrix by row (column).

Description

Tabulates the values in a matrix by row (column).

Usage

rowTabulates(x, rows = NULL, cols = NULL, values = NULL, ...,
useNames = TRUE)

colTabulates(x, rows = NULL, cols = NULL, values = NULL, ...,
useNames = TRUE)

32 rowTabulates

Arguments

x An integer, a logical, or a raw NxK matrix.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

values An vector of J values of count. If NULL, all (unique) values are counted.

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

An alternative to these functions, is to use table(x, row(x)) and table(x, col(x)), with the
exception that the latter do not support the raw data type. When there are no missing values in
x, we have that all(rowTabulates(x) == t(table(x, row(x)))) and all(colTabulates(x) ==
t(table(x, col(x)))). When there are missing values, we have that all(rowTabulates(x) ==
t(table(x, row(x), useNA = "always")[, seq_len(nrow(x))])) and all(colTabulates(x)
== t(table(x, col(x), useNA = "always")[, seq_len(ncol(x))])).

Value

Returns a NxJ (KxJ) matrix where N (K) is the number of row (column) vectors tabulated and J
is the number of values counted.

Author(s)

Henrik Bengtsson

Examples

x <- matrix(1:5, nrow = 10, ncol = 5)
print(x)
print(rowTabulates(x))
print(colTabulates(x))
Count only certain values
print(rowTabulates(x, values = 1:3))

y <- as.raw(x)
dim(y) <- dim(x)
print(y)
print(rowTabulates(y))
print(colTabulates(y))

rowVars 33

rowVars Variance estimates for each row (column) in a matrix

Description

Variance estimates for each row (column) in a matrix.

Usage

rowVars(x, rows = NULL, cols = NULL, na.rm = FALSE, refine = TRUE,
center = NULL, dim. = dim(x), ..., useNames = TRUE)

colVars(x, rows = NULL, cols = NULL, na.rm = FALSE, refine = TRUE,
center = NULL, dim. = dim(x), ..., useNames = TRUE)

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

refine If TRUE, ‘center‘ is NULL, and x is numeric, then extra effort is used to calculate
the average with greater numerical precision, otherwise not.

center (optional; a vector or length N (K)) If the row (column) means are already esti-
mated, they can be pre-specified using this argument. This avoid re-estimating
them again. _Warning: It is important that a non-biased sample mean estimate
is passed. If not, then the variance estimate of the spread will also be biased._ If
NULL (default), the row/column means are estimated internally.

dim. An integer vector of length two specifying the dimension of x, also when not
a matrix. Comment: The reason for this argument being named with a period
at the end is purely technical (we get a run-time error if we try to name it dim).

... Additional arguments passed to rowMeans() and rowSums().

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Value

Returns a numeric vector of length N (K).

34 rowVars

Providing center estimates

The sample variance is estimated as

n/(n− 1) ∗mean((x− center)2),

where center is estimated as the sample mean, by default. In matrixStats (< 0.58.0),

n/(n− 1) ∗ (mean(x2)− center2)

was used. Both formulas give the same result _when_ ‘center‘ is the sample mean estimate.

Argument ‘center‘ can be used to provide an already existing estimate. It is important that the
sample mean estimate is passed. If not, then the variance estimate of the spread will be biased.

For the time being, in order to lower the risk for such mistakes, argument ‘center‘ is occasionally
validated against the sample-mean estimate. If a discrepancy is detected, an informative error is pro-
vided to prevent incorrect variance estimates from being used. For performance reasons, this check
is only performed once every 50 times. The frequency can be controlled by R option ‘matrixS-
tats.vars.formula.freq‘, whose default can be set by environment variable ‘R_MATRIXSTATS_VARS_FORMULA_FREQ‘.

Author(s)

Henrik Bengtsson

See Also

See rowMeans() and rowSums() in colSums().

Examples

set.seed(1)

x <- matrix(rnorm(20), nrow = 5, ncol = 4)
print(x)

Row averages
print(rowMeans(x))
print(rowMedians(x))

Column averages
print(colMeans(x))
print(colMedians(x))

Row variabilities
print(rowVars(x))
print(rowSds(x))
print(rowMads(x))
print(rowIQRs(x))

Column variabilities
print(rowVars(x))
print(colSds(x))
print(colMads(x))
print(colIQRs(x))

rowWeightedMeans 35

Row ranges
print(rowRanges(x))
print(cbind(rowMins(x), rowMaxs(x)))
print(cbind(rowOrderStats(x, which = 1), rowOrderStats(x, which = ncol(x))))

Column ranges
print(colRanges(x))
print(cbind(colMins(x), colMaxs(x)))
print(cbind(colOrderStats(x, which = 1), colOrderStats(x, which = nrow(x))))

x <- matrix(rnorm(2000), nrow = 50, ncol = 40)

Row standard deviations
d <- rowDiffs(x)
s1 <- rowSds(d) / sqrt(2)
s2 <- rowSds(x)
print(summary(s1 - s2))

Column standard deviations
d <- colDiffs(x)
s1 <- colSds(d) / sqrt(2)
s2 <- colSds(x)
print(summary(s1 - s2))

rowWeightedMeans Calculates the weighted means for each row (column) in a matrix

Description

Calculates the weighted means for each row (column) in a matrix.

Usage

rowWeightedMeans(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE,
..., useNames = TRUE)

colWeightedMeans(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE,
..., useNames = TRUE)

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

w A numeric vector of length K (N).

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

36 rowWeightedMeans

na.rm If TRUE, missing values are excluded.

... Not used.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

The implementations of these methods are optimized for both speed and memory. If no weights are
given, the corresponding rowMeans()/colMeans() is used.

Value

Returns a numeric vector of length N (K).

Author(s)

Henrik Bengtsson

See Also

See rowMeans() and colMeans() in colSums() for non-weighted means. See also weighted.mean.

Examples

x <- matrix(rnorm(20), nrow = 5, ncol = 4)
print(x)

Non-weighted row averages
mu_0 <- rowMeans(x)
mu <- rowWeightedMeans(x)
stopifnot(all.equal(mu, mu_0))

Weighted row averages (uniform weights)
w <- rep(2.5, times = ncol(x))
mu <- rowWeightedMeans(x, w = w)
stopifnot(all.equal(mu, mu_0))

Weighted row averages (excluding some columns)
w <- c(1, 1, 0, 1)
mu_0 <- rowMeans(x[, (w == 1), drop = FALSE])
mu <- rowWeightedMeans(x, w = w)
stopifnot(all.equal(mu, mu_0))

Weighted row averages (excluding some columns)
w <- c(0, 1, 0, 0)
mu_0 <- rowMeans(x[, (w == 1), drop = FALSE])
mu <- rowWeightedMeans(x, w = w)
stopifnot(all.equal(mu, mu_0))

Weighted averages by rows and columns
w <- 1:4
mu_1 <- rowWeightedMeans(x, w = w)

rowWeightedMedians 37

mu_2 <- colWeightedMeans(t(x), w = w)
stopifnot(all.equal(mu_2, mu_1))

rowWeightedMedians Calculates the weighted medians for each row (column) in a matrix

Description

Calculates the weighted medians for each row (column) in a matrix.

Usage

rowWeightedMedians(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ..., useNames = TRUE)

colWeightedMedians(x, w = NULL, rows = NULL, cols = NULL,
na.rm = FALSE, ..., useNames = TRUE)

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

w A numeric vector of length K (N).

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

... Additional arguments passed to weightedMedian().

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

The implementations of these methods are optimized for both speed and memory. If no weights are
given, the corresponding rowMedians()/colMedians() is used.

Value

Returns a numeric vector of length N (K).

Author(s)

Henrik Bengtsson

See Also

Internally, weightedMedian() is used. See rowMedians() and colMedians() for non-weighted
medians.

38 varDiff

Examples

x <- matrix(rnorm(20), nrow = 5, ncol = 4)
print(x)

Non-weighted row averages
mu_0 <- rowMedians(x)
mu <- rowWeightedMedians(x)
stopifnot(all.equal(mu, mu_0))

Weighted row averages (uniform weights)
w <- rep(2.5, times = ncol(x))
mu <- rowWeightedMedians(x, w = w)
stopifnot(all.equal(mu, mu_0))

Weighted row averages (excluding some columns)
w <- c(1, 1, 0, 1)
mu_0 <- rowMedians(x[, (w == 1), drop = FALSE])
mu <- rowWeightedMedians(x, w = w)
stopifnot(all.equal(mu, mu_0))

Weighted row averages (excluding some columns)
w <- c(0, 1, 0, 0)
mu_0 <- rowMedians(x[, (w == 1), drop = FALSE])
mu <- rowWeightedMedians(x, w = w)
stopifnot(all.equal(mu, mu_0))

Weighted averages by rows and columns
w <- 1:4
mu_1 <- rowWeightedMedians(x, w = w)
mu_2 <- colWeightedMedians(t(x), w = w)
stopifnot(all.equal(mu_2, mu_1))

varDiff Estimation of scale based on sequential-order differences

Description

Estimation of scale based on sequential-order differences, corresponding to the scale estimates pro-
vided by var, sd, mad and IQR.

Usage

varDiff(x, idxs = NULL, na.rm = FALSE, diff = 1L, trim = 0, ...)

sdDiff(x, idxs = NULL, na.rm = FALSE, diff = 1L, trim = 0, ...)

madDiff(x, idxs = NULL, na.rm = FALSE, diff = 1L, trim = 0,
constant = 1.4826, ...)

varDiff 39

iqrDiff(x, idxs = NULL, na.rm = FALSE, diff = 1L, trim = 0, ...)

rowVarDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ..., useNames = TRUE)

colVarDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ..., useNames = TRUE)

rowSdDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ..., useNames = TRUE)

colSdDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ..., useNames = TRUE)

rowMadDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ..., useNames = TRUE)

colMadDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ..., useNames = TRUE)

rowIQRDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ..., useNames = TRUE)

colIQRDiffs(x, rows = NULL, cols = NULL, na.rm = FALSE, diff = 1L,
trim = 0, ..., useNames = TRUE)

Arguments

x A numeric vector of length N or a numeric NxK matrix.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

diff The positional distance of elements for which the difference should be calcu-
lated.

trim A double in [0,1/2] specifying the fraction of observations to be trimmed from
each end of (sorted) x before estimation.

... Not used.

constant A scale factor adjusting for asymptotically normal consistency.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

40 weightedMad

Details

Note that n-order difference MAD estimates, just like the ordinary MAD estimate by mad, apply a
correction factor such that the estimates are consistent with the standard deviation under Gaussian
distributions.

The interquartile range (IQR) estimates does not apply such a correction factor. If asymptotically
normal consistency is wanted, the correction factor for IQR estimate is 1 / (2 * qnorm(3/4)),
which is half of that used for MAD estimates, which is 1 / qnorm(3/4). This correction factor
needs to be applied manually, i.e. there is no constant argument for the IQR functions.

Value

Returns a numeric vector of length 1, length N, or length K.

Author(s)

Henrik Bengtsson

References

[1] J. von Neumann et al., The mean square successive difference. Annals of Mathematical Statis-
tics, 1941, 12, 153-162.

See Also

For the corresponding non-differentiated estimates, see var, sd, mad and IQR. Internally, diff2() is
used which is a faster version of diff().

weightedMad Weighted Median Absolute Deviation (MAD)

Description

Computes a weighted MAD of a numeric vector.

Usage

weightedMad(x, w = NULL, idxs = NULL, na.rm = FALSE, constant = 1.4826,
center = NULL, ...)

rowWeightedMads(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE,
constant = 1.4826, center = NULL, ..., useNames = TRUE)

colWeightedMads(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE,
constant = 1.4826, center = NULL, ..., useNames = TRUE)

weightedMad 41

Arguments

x vector of type integer, numeric, or logical.

w a vector of weights the same length as x giving the weights to use for each
element of x. Negative weights are treated as zero weights. Default value is
equal weight to all values.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

constant A numeric scale factor, cf. mad.

center Optional numeric scalar specifying the center location of the data. If NULL, it is
estimated from data.

... Not used.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Value

Returns a numeric scalar.

Missing values

Missing values are dropped at the very beginning, if argument na.rm is TRUE, otherwise not.

Author(s)

Henrik Bengtsson

See Also

For the non-weighted MAD, see mad. Internally weightedMedian() is used to calculate the weighted
median.

Examples

x <- 1:10
n <- length(x)

m1 <- mad(x)
m2 <- weightedMad(x)
stopifnot(identical(m1, m2))

w <- rep(1, times = n)
m1 <- weightedMad(x, w)
stopifnot(identical(m1, m2))

42 weightedMean

All weight on the first value
w[1] <- Inf
m <- weightedMad(x, w)
stopifnot(m == 0)

All weight on the first two values
w[1:2] <- Inf
m1 <- mad(x[1:2])
m2 <- weightedMad(x, w)
stopifnot(identical(m1, m2))

All weights set to zero
w <- rep(0, times = n)
m <- weightedMad(x, w)
stopifnot(is.na(m))

weightedMean Weighted Arithmetic Mean

Description

Computes the weighted sample mean of a numeric vector.

Usage

weightedMean(x, w = NULL, idxs = NULL, na.rm = FALSE, refine = FALSE,
...)

Arguments

x An NxK matrix or, if dim. is specified, an N * K vector.

w a vector of weights the same length as x giving the weights to use for each
element of x. Negative weights are treated as zero weights. Default value is
equal weight to all values. If a missing-value weight exists, the result is always
a missing value.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

refine If TRUE and x is numeric, then extra effort is used to calculate the average with
greater numerical precision, otherwise not.

... Not used.

Value

Returns a numeric scalar. If x is of zero length, then NaN is returned, which is consistent with
mean().

weightedMean 43

Missing values

This function handles missing values consistently with weighted.mean. More precisely, if na.rm
= FALSE, then any missing values in either x or w will give result NA_real_. If na.rm = TRUE, then
all (x, w) data points for which x is missing are skipped. Note that if both x and w are missing for
a data points, then it is also skipped (by the same rule). However, if only w is missing, then the final
results will always be NA_real_ regardless of na.rm.

Author(s)

Henrik Bengtsson

See Also

mean() and weighted.mean.

Examples

x <- 1:10
n <- length(x)

w <- rep(1, times = n)
m0 <- weighted.mean(x, w)
m1 <- weightedMean(x, w)
stopifnot(identical(m1, m0))

Pull the mean towards zero
w[1] <- 5
m0 <- weighted.mean(x, w)
m1 <- weightedMean(x, w)
stopifnot(identical(m1, m0))

Put even more weight on the zero
w[1] <- 8.5
m0 <- weighted.mean(x, w)
m1 <- weightedMean(x, w)
stopifnot(identical(m1, m0))

All weight on the first value
w[1] <- Inf
m0 <- weighted.mean(x, w)
m1 <- weightedMean(x, w)
stopifnot(identical(m1, m0))

All weight on the last value
w[1] <- 1
w[n] <- Inf
m0 <- weighted.mean(x, w)
m1 <- weightedMean(x, w)
stopifnot(identical(m1, m0))

All weights set to zero

44 weightedMedian

w <- rep(0, times = n)
m0 <- weighted.mean(x, w)
m1 <- weightedMean(x, w)
stopifnot(identical(m1, m0))

weightedMedian Weighted Median Value

Description

Computes a weighted median of a numeric vector.

Usage

weightedMedian(x, w = NULL, idxs = NULL, na.rm = FALSE,
interpolate = is.null(ties), ties = NULL, ...)

Arguments

x vector of type integer, numeric, or logical.

w a vector of weights the same length as x giving the weights to use for each
element of x. Negative weights are treated as zero weights. Default value is
equal weight to all values.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

na.rm a logical value indicating whether NA values in x should be stripped before the
computation proceeds, or not. If NA, no check at all for NAs is done.

interpolate If TRUE, linear interpolation is used to get a consistent estimate of the weighted
median.

ties If interpolate == FALSE, a character string specifying how to solve ties be-
tween two x’s that are satisfying the weighted median criteria. Note that at most
two values can satisfy the criteria. When ties is "min" ("lower weighted me-
dian"), the smaller value of the two is returned and when it is "max" ("upper
weighted median"), the larger value is returned. If ties is "mean", the mean of
the two values is returned. Finally, if ties is "weighted" (or NULL) a weighted
average of the two are returned, where the weights are weights of all values x[i]
<= x[k] and x[i] >= x[k], respectively.

... Not used.

Value

Returns a numeric scalar.

For the n elements x = c(x[1], x[2], ..., x[n]) with positive weights w = c(w[1], w[2], ...,
w[n]) such that sum(w) = S, the weighted median is defined as the element x[k] for which the total
weight of all elements x[i] < x[k] is less or equal to S/2 and for which the total weight of all
elements x[i] > x[k] is less or equal to S/2 (c.f. [1]).

weightedMedian 45

When using linear interpolation, the weighted mean of x[k-1] and x[k] with weights S[k-1] and
S[k] corresponding to the cumulative weights of those two elements is used as an estimate.

If w is missing then all elements of x are given the same positive weight. If all weights are zero,
NA_real_ is returned.

If one or more weights are Inf, it is the same as these weights have the same weight and the others
have zero. This makes things easier for cases where the weights are result of a division with zero.

If there are missing values in w that are part of the calculation (after subsetting and dropping missing
values in x), then the final result is always NA of the same type as x.

The weighted median solves the following optimization problem:

α∗ = argα min

n∑
i=1

wi|xi − α|

where x = (x1, x2, . . . , xn) are scalars and w = (w1, w2, . . . , wn) are the corresponding "weights"
for each individual x value.

Author(s)

Henrik Bengtsson and Ola Hossjer, Centre for Mathematical Sciences, Lund University. Thanks to
Roger Koenker, Econometrics, University of Illinois, for the initial ideas.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, The MIT Press, Mas-
sachusetts Institute of Technology, 1989.

See Also

median, mean() and weightedMean().

Examples

x <- 1:10
n <- length(x)

m1 <- median(x) # 5.5
m2 <- weightedMedian(x) # 5.5
stopifnot(identical(m1, m2))

w <- rep(1, times = n)
m1 <- weightedMedian(x, w) # 5.5 (default)
m2 <- weightedMedian(x, ties = "weighted") # 5.5 (default)
m3 <- weightedMedian(x, ties = "min") # 5
m4 <- weightedMedian(x, ties = "max") # 6
stopifnot(identical(m1, m2))

Pull the median towards zero
w[1] <- 5
m1 <- weightedMedian(x, w) # 3.5
y <- c(rep(0, times = w[1]), x[-1]) # Only possible for integer weights

46 weightedVar

m2 <- median(y) # 3.5
stopifnot(identical(m1, m2))

Put even more weight on the zero
w[1] <- 8.5
weightedMedian(x, w) # 2

All weight on the first value
w[1] <- Inf
weightedMedian(x, w) # 1

All weight on the last value
w[1] <- 1
w[n] <- Inf
weightedMedian(x, w) # 10

All weights set to zero
w <- rep(0, times = n)
weightedMedian(x, w) # NA

Simple benchmarking
bench <- function(N = 1e5, K = 10) {

x <- rnorm(N)
gc()
t <- c()
t[1] <- system.time(for (k in 1:K) median(x))[3]
t[2] <- system.time(for (k in 1:K) weightedMedian(x))[3]
t <- t / t[1]
names(t) <- c("median", "weightedMedian")
t

}

print(bench(N = 5, K = 100))
print(bench(N = 50, K = 100))
print(bench(N = 200, K = 100))
print(bench(N = 1000, K = 100))
print(bench(N = 10e3, K = 20))
print(bench(N = 100e3, K = 20))

weightedVar Weighted variance and weighted standard deviation

Description

Computes a weighted variance / standard deviation of a numeric vector or across rows or columns
of a matrix.

Usage

weightedVar(x, w = NULL, idxs = NULL, na.rm = FALSE, center = NULL,

weightedVar 47

...)

weightedSd(...)

rowWeightedVars(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE,
..., useNames = TRUE)

colWeightedVars(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE,
..., useNames = TRUE)

rowWeightedSds(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE,
..., useNames = TRUE)

colWeightedSds(x, w = NULL, rows = NULL, cols = NULL, na.rm = FALSE,
..., useNames = TRUE)

Arguments

x vector of type integer, numeric, or logical.

w a vector of weights the same length as x giving the weights to use for each
element of x. Negative weights are treated as zero weights. Default value is
equal weight to all values.

idxs A vector indicating subset of elements to operate over. If NULL, no subsetting
is done.

na.rm If TRUE, missing values are excluded.

center Optional numeric scalar specifying the center location of the data. If NULL, it is
estimated from data.

... Not used.

rows A vector indicating subset of rows to operate over. If NULL, no subsetting is
done.

cols A vector indicating subset of columns to operate over. If NULL, no subsetting
is done.

useNames If TRUE (default), names attributes of the result are set, otherwise not.

Details

The estimator used here is the same as the one used by the "unbiased" estimator of the Hmisc
package. More specifically, weightedVar(x, w = w) == Hmisc::wtd.var(x, weights = w),

Value

Returns a numeric scalar.

Missing values

This function handles missing values consistently with weightedMean(). More precisely, if na.rm
= FALSE, then any missing values in either x or w will give result NA_real_. If na.rm = TRUE, then

48 weightedVar

all (x, w) data points for which x is missing are skipped. Note that if both x and w are missing for
a data points, then it is also skipped (by the same rule). However, if only w is missing, then the final
results will always be NA_real_ regardless of na.rm.

Author(s)

Henrik Bengtsson

See Also

For the non-weighted variance, see var.

Index

∗ array
product, 10
rowAlls, 11
rowCounts, 14
rowCumsums, 16
rowDiffs, 18
rowIQRs, 19
rowLogSumExps, 20
rowMads, 21
rowMeans2, 22
rowMedians, 23
rowOrderStats, 24
rowQuantiles, 26
rowRanges, 27
rowRanks, 28
rowSums2, 30
rowVars, 33
rowWeightedMeans, 35
rowWeightedMedians, 37

∗ iteration
anyMissing, 3
indexByRow, 7
product, 10
rowAlls, 11
rowCounts, 14
rowCumsums, 16
rowDiffs, 18
rowIQRs, 19
rowMads, 21
rowMeans2, 22
rowMedians, 23
rowOrderStats, 24
rowQuantiles, 26
rowRanges, 27
rowRanks, 28
rowSums2, 30
rowVars, 33
rowWeightedMeans, 35
rowWeightedMedians, 37

varDiff, 38
∗ logic

anyMissing, 3
indexByRow, 7
rowAlls, 11
rowCounts, 14

∗ package
matrixStats-package, 3

∗ robust
product, 10
rowDiffs, 18
rowIQRs, 19
rowMads, 21
rowMeans2, 22
rowMedians, 23
rowOrderStats, 24
rowQuantiles, 26
rowRanges, 27
rowRanks, 28
rowSums2, 30
rowVars, 33
rowWeightedMeans, 35
rowWeightedMedians, 37
varDiff, 38
weightedMad, 40
weightedMean, 42
weightedMedian, 44
weightedVar, 46

∗ univar
binCounts, 4
binMeans, 5
product, 10
rowAlls, 11
rowCounts, 14
rowCumsums, 16
rowDiffs, 18
rowIQRs, 19
rowMads, 21
rowMeans2, 22

49

50 INDEX

rowMedians, 23
rowOrderStats, 24
rowQuantiles, 26
rowRanges, 27
rowRanks, 28
rowSums2, 30
rowVars, 33
rowWeightedMeans, 35
rowWeightedMedians, 37
varDiff, 38
weightedMad, 40
weightedMean, 42
weightedMedian, 44
weightedVar, 46

∗ utilities
rowCollapse, 13
rowTabulates, 31

[, 14

aggregate, 6
allValue (rowAlls), 11
anyMissing, 3
anyValue (rowAlls), 11

binCounts, 4, 6
binMeans, 5, 5

character, 10, 29
colAlls (rowAlls), 11
colAnyMissings (anyMissing), 3
colAnyNAs (anyMissing), 3
colAnys (rowAlls), 11
colCollapse (rowCollapse), 13
colCounts (rowCounts), 14
colCummaxs (rowCumsums), 16
colCummins (rowCumsums), 16
colCumprods (rowCumsums), 16
colCumsums (rowCumsums), 16
colDiffs (rowDiffs), 18
colIQRDiffs (varDiff), 38
colIQRs (rowIQRs), 19
colLogSumExps (rowLogSumExps), 20
colMadDiffs (varDiff), 38
colMads (rowMads), 21
colMaxs (rowRanges), 27
colMeans2 (rowMeans2), 22
colMedians (rowMedians), 23
colMins (rowRanges), 27
colOrderStats (rowOrderStats), 24

colProds (product), 10
colQuantiles (rowQuantiles), 26
colRanges (rowRanges), 27
colRanks (rowRanks), 28
colSdDiffs (varDiff), 38
colSds (rowMads), 21
colSums, 25, 34, 36
colSums2 (rowSums2), 30
colTabulates (rowTabulates), 31
colVarDiffs (varDiff), 38
colVars (rowVars), 33
colWeightedMads (weightedMad), 40
colWeightedMeans (rowWeightedMeans), 35
colWeightedMedians

(rowWeightedMedians), 37
colWeightedSds (weightedVar), 46
colWeightedVars (weightedVar), 46
count (rowCounts), 14
cummax, 17
cummin, 17
cumprod, 17
cumsum, 17

data.frame, 4
diff, 40
diff2, 18, 40
double, 15, 24, 25, 30, 39

FALSE, 4

hist, 5

indexByRow, 7
integer, 5–7, 12, 13, 15, 17, 18, 21–26,

28–33, 41, 44, 47
IQR, 19, 20, 38, 40
iqr (rowIQRs), 19
iqrDiff (varDiff), 38
is.nan, 11

list, 4
logical, 6, 12, 17, 26, 29, 32, 41, 44, 47
logSumExp, 8, 21

mad, 22, 38, 40, 41
madDiff (varDiff), 38
matrix, 4, 10, 12, 13, 15, 17–26, 28–33, 35,

37, 39, 42
matrixStats (matrixStats-package), 3
matrixStats-package, 3

INDEX 51

mean, 6, 42, 43, 45
median, 45

NA, 11, 19, 24, 44
NA_real_, 45
names, 30
NaN, 11
NULL, 4–8, 10, 12, 13, 15, 17–20, 22–26, 28,

29, 31–33, 35, 37, 39, 41, 42, 44, 47
numeric, 5–9, 11, 17–26, 28, 30, 31, 33,

35–37, 39–42, 44, 47

pmin.int, 28
prod, 11
product, 10, 11

quantile, 26

rank, 29, 30
raw, 32
rowAlls, 11
rowAnyMissings (anyMissing), 3
rowAnyNAs (anyMissing), 3
rowAnys (rowAlls), 11
rowCollapse, 13
rowCounts, 14
rowCummaxs (rowCumsums), 16
rowCummins (rowCumsums), 16
rowCumprods (rowCumsums), 16
rowCumsums, 16
rowDiffs, 18
rowIQRDiffs (varDiff), 38
rowIQRs, 19, 22
rowLogSumExps, 9, 20
rowMadDiffs (varDiff), 38
rowMads, 21
rowMaxs (rowRanges), 27
rowMeans, 24
rowMeans2, 22, 24
rowMedians, 23, 37
rowMins (rowRanges), 27
rowOrderStats, 24, 28
rowProds (product), 10
rowQuantiles, 19, 26
rowRanges, 27
rowRanks, 28
rowSdDiffs (varDiff), 38
rowSds, 20
rowSds (rowMads), 21

rowSums2, 30
rowTabulates, 31
rowVarDiffs (varDiff), 38
rowVars, 33
rowWeightedMads (weightedMad), 40
rowWeightedMeans, 35
rowWeightedMedians, 24, 37
rowWeightedSds (weightedVar), 46
rowWeightedVars (weightedVar), 46

sd, 22, 38, 40
sdDiff (varDiff), 38

tabulate, 5
TRUE, 4–6, 8, 10, 12, 13, 15, 17–26, 28, 29,

31–33, 36, 37, 39, 41, 42, 44, 47

var, 22, 38, 40, 48
varDiff, 38
vector, 4–8, 10–15, 17–26, 28, 29, 31–33,

35–37, 39–42, 44, 47

weighted.mean, 36, 43
weightedMad, 40
weightedMean, 42, 45, 47
weightedMedian, 37, 41, 44
weightedSd (weightedVar), 46
weightedVar, 46

	matrixStats-package
	anyMissing
	binCounts
	binMeans
	indexByRow
	logSumExp
	product
	rowAlls
	rowCollapse
	rowCounts
	rowCumsums
	rowDiffs
	rowIQRs
	rowLogSumExps
	rowMads
	rowMeans2
	rowMedians
	rowOrderStats
	rowQuantiles
	rowRanges
	rowRanks
	rowSums2
	rowTabulates
	rowVars
	rowWeightedMeans
	rowWeightedMedians
	varDiff
	weightedMad
	weightedMean
	weightedMedian
	weightedVar
	Index

