File:Mars elevation.stl

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (5,120 × 2,880 pixels, file size: 27.93 MB, MIME type: application/sla)

Captions

Captions

Add a one-line explanation of what this file represents

View Mars elevation.stl  on viewstl.com

Summary

[edit]
Description
English: Mars 20-times-exaggerated elevation model by CMG Lee, using MGS MOLA data.
Date
Source Own work
Author Cmglee
Other versions
Mars elevation 2.stl

Python source

[edit]
#!/usr/bin/env python

exaggeration = 20
header       = ('Mars %s-times-exaggerated elevation model by CMG Lee using MGS MOLA data.'
                % (exaggeration))
path_png_alt = 'mars_elevation.png' ## 1-channel equirectangular PNG
luma_datum   = 42                   ## of 0-255 intensity levels
radius_datum = 3389.5               ## in km
f_wgs84      = 1 - 3376.2 / 3396.2  ## WGS84 flattening factor
km_per_luma  = 0.155 * exaggeration ## found from Olympus Mons
scale        = 1e-2                 ## overall scale of model
lat_offset   = 1.0 / 8              ## rotation around planet axis in revolutions
n_division   = 200                  ## each cubic face divided into n_division^2 squares

class Png:
 def __init__(self, path):
  (self.width, self.height, self.pixels, self.metadatas) = png.Reader(path).read_flat()
 def __str__(self): return str((self.width, self.height, len(self.pixels), self.metadatas))

import time, re, math, struct, png
time.start = time.time()
def log(string): print('%6.3fs\t%s' % (time.time() - time.start, string))
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
 def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0 $', '', str(eval(tag[1:-1])))
  if (i_sep < 0) else ('{:%s}' % tag[i_sep   1:-1]).format(eval(tag[1:i_sep])))
 return (re.sub(r'(?<!{){[^{}] }', lambda m:f(m.group()), string)
         .replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def tabbify(cellss, separator='|'):
 cellpadss = [list(rows)   [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
 fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
 return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
 return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def viscam_colour(colour):
 colour_hex      = hex_rgb(colour)
 colour_top5bits = [int(colour_hex[i:i 2], 16) >> 3 for i in range(1,7,2)]
 return (1 << 15)   (colour_top5bits[0] << 10)   (colour_top5bits[1] << 5)   colour_top5bits[2]
def roundm(x, multiple=1):
 if   (isinstance(x, tuple)): return tuple(roundm(list(x), multiple))
 elif (isinstance(x, list )): return [roundm(x_i, multiple) for x_i in x]
 else: return int(math.floor(float(x) / multiple   0.5)) * multiple
def average(xs): return None if (len(xs) == 0) else float(sum(xs)) / len(xs)
def flatten(lss): return [l for ls in lss for l in ls]
def rotate(facetss, degs): ## around x then y then z axes
 (deg_x,deg_y,deg_z) = degs
 (sin_x,cos_x) = (math.sin(math.radians(deg_x)), math.cos(math.radians(deg_x)))
 (sin_y,cos_y) = (math.sin(math.radians(deg_y)), math.cos(math.radians(deg_y)))
 (sin_z,cos_z) = (math.sin(math.radians(deg_z)), math.cos(math.radians(deg_z)))
 facet_rotatess = []
 for facets in facetss:
  facet_rotates = []
  for i_point in range(4):
   (x,y,z) = [facets[3 * i_point   i_xyz] for i_xyz in range(3)]
   if (x is None or y is None or z is None): facet_rotates  = [x,y,z]

   else:
    (y,z) = (y * cos_x - z * sin_x, y * sin_x   z * cos_x) ## rotate about x
    (x,z) = (x * cos_y   z * sin_y,-x * sin_y   z * cos_y) ## rotate about y
    (x,y) = (x * cos_z - y * sin_z, x * sin_z   y * cos_z) ## rotate about z
    facet_rotates  = [round(value, 9) for value in [x,y,z]]
  facet_rotatess.append(facet_rotates)
 return facet_rotatess
def translate(facetss, ds): ## ds = (dx,dy,dz)
 return [facets[:3]   [facets[3 * i_point   i_xyz]   ds[i_xyz]
                       for i_point in range(1,4) for i_xyz in range(3)]  for facets in facetss]
def flip(facetss): return [facets[:3] facets[6:9] facets[3:6] facets[9:] for facets in facetss]

def cube_xyz_to_sphere_xyz(cube_xyzs):
 (x,y,z)                         = [float(xyz) for xyz in cube_xyzs]
 (x_squared,y_squared,z_squared) = (x * x,y * y,z * z)
 return (x * (1 - (y_squared   z_squared) / 2   y_squared * z_squared / 3) ** 0.5,
         y * (1 - (x_squared   z_squared) / 2   x_squared * z_squared / 3) ** 0.5,
         z * (1 - (y_squared   x_squared) / 2   y_squared * x_squared / 3) ** 0.5)
def xyz_to_lla(xyzs):
 (x,y,z) = xyzs
 alt     = (x * x   y * y   z * z) ** 0.5
 lon     = math.atan2(y, x)
 lat     = math.asin(z / alt)
 return (lat,lon,alt)
deg_90 = math.pi / 2
def find_alt(lat_lons, altss):
  (lat,lon) = lat_lons
  if   (lat ==  deg_90): alt = average(altss[ 0])
  elif (lat == -deg_90): alt = average(altss[-1])
  else:
   (width,height) = (len(altss[0]),len(altss))
   x              = (0.5   lon / (deg_90 * 4)   lat_offset) * width
   y              = (0.5 - lat / (deg_90 * 2)             ) * height
   (x_int,y_int)  = (int(x)   , int(y)   )
   (x_dec,y_dec)  = (x - x_int, y - y_int)
   (x0,x1)        = (x_int % width , (x_int   1) % width )
   (y0,y1)        = (y_int % height, (y_int   1) % height)
   alt            = ((altss[y0][x0] * (1 - x_dec)   altss[y1][x0] * x_dec) * (1 - y_dec)  
                     (altss[y0][x1] * (1 - x_dec)   altss[y1][x1] * x_dec) *      y_dec)
  # print(map(math.degrees, lat_lons), y,x, alt)
  return alt
def radius_wgs84(lat):
 if (lat in radius_wgs84.cachess): return radius_wgs84.cachess[lat]
 (sin_lat, cos_lat)        = (math.sin(lat), math.cos(lat))
 ff                        = (1 - f_wgs84) ** 2
 c                         = 1 / (cos_lat ** 2   ff * sin_lat ** 2) ** 0.5
 s                         = c * ff
 radius_c_s_s              = (radius_datum * c, radius_datum * s)
 radius_wgs84.cachess[lat] = radius_c_s_s
 return radius_c_s_s
radius_wgs84.cachess = {}
def lla_to_sphere_xyz(llas):
 (lat,lon,alt)        = llas
 (sin_lat,sin_lon)    = (math.sin(lat),math.sin(lon))
 (cos_lat,cos_lon)    = (math.cos(lat),math.cos(lon))
 (radius_c, radius_s) = [(c_s_radius   alt * km_per_luma) * scale
                         for c_s_radius in radius_wgs84(lat)]
 return (radius_c * cos_lat * cos_lon,radius_c * cos_lat * sin_lon,radius_s * sin_lat)
def xyz_alt_to_xyza(xyzs, altss):
 (lat,lon,alt) = xyz_to_lla(xyzs)
 alt           = find_alt((lat,lon), altss)
 lla_alts      = [list(lla_to_sphere_xyz((lat,lon,alt))), alt]
 return lla_alts

log("Read elevation data")
png_alt = Png(path_png_alt)
if (png_alt.metadatas['planes'] != 1): print("%s not 1-channel PNG" % (path_png_alt)); sys.exit(1)
log(png_alt)
altss = [[png_alt.pixels[png_alt.width * y   x] - luma_datum
          for x in range(png_alt.width)] for y in range(png_alt.height)] ## altss[y][x]

log("Find vertices")
k       = 2.0 / n_division
range_k = range(n_division   1)
face_vertex_llassss = [ ## [0=top][i_y][i_x][xyz,alt]
 [[xyz_alt_to_xyza((x*k-1,y*k-1,    1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((x*k-1,   -1,y*k-1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((    1,x*k-1,y*k-1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((y*k-1,x*k-1,   -1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((y*k-1,    1,x*k-1), altss) for y in range_k] for x in range_k],
 [[xyz_alt_to_xyza((   -1,y*k-1,x*k-1), altss) for y in range_k] for x in range_k],
]

log("Add facets") ## cube xyz -> ll(a) -> image xy -> a -> sphere xyz
facetss = []
for (i_face,face_vertex_llasss) in enumerate(face_vertex_llassss):
 for  v in range(n_division):
  for u in range(n_division):
   (xyz00, alt00) = face_vertex_llasss[v    ][u    ]
   (xyz01, alt01) = face_vertex_llasss[v    ][u   1]
   (xyz10, alt10) = face_vertex_llasss[v   1][u    ]
   (xyz11, alt11) = face_vertex_llasss[v   1][u   1]
   (xyz_m, alt_m) = xyz_alt_to_xyza([average(xyzs) for xyzs in zip(*(xyz00,xyz01,xyz10,xyz11))],
                                    altss)
   if (alt_m > max(alt00,alt01,alt10,alt11) or alt_m < min(alt00,alt01,alt10,alt11)):
    facetss.append([None,0,0]   xyz_m   xyz00   xyz10)
    facetss.append([None,0,0]   xyz_m   xyz10   xyz11)
    facetss.append([None,0,0]   xyz_m   xyz11   xyz01)
    facetss.append([None,0,0]   xyz_m   xyz01   xyz00)
   else:
    if (abs(alt00 - alt11) < abs(alt01 - alt10)):
     facetss.append([None,0,0]   xyz00   xyz10   xyz11)
     facetss.append([None,0,0]   xyz11   xyz01   xyz00)
    else:
     facetss.append([None,0,0]   xyz10   xyz11   xyz01)
     facetss.append([None,0,0]   xyz01   xyz00   xyz10)

log("Calculate normals")
for facets in facetss:
 if (facets[0] is None or facets[1] is None or facets[2] is None):
  us      = [facets[i_xyz   9] - facets[i_xyz   6] for i_xyz in range(3)]
  vs      = [facets[i_xyz   6] - facets[i_xyz   3] for i_xyz in range(3)]
  normals = [us[1]*vs[2] - us[2]*vs[1], us[2]*vs[0] - us[0]*vs[2], us[0]*vs[1] - us[1]*vs[0]]
  normal_length = sum([component * component for component in normals]) ** 0.5
  facets[:3] = [-round(component / normal_length, 10) for component in normals]

# log(tabbify([['N%s'  % (xyz   )                   for xyz in list('xyz')]  
#              ['%s%d' % (xyz, n) for n in range(3) for xyz in list('XYZ')]   ['RGB']]   facetss))

log("Compile STL")
outss = ([[('STL\n\n%-73s\n\n' % (header[:73])).encode('utf-8'), struct.pack('<L',len(facetss))]]  
         [[struct.pack('<f',float(value)) for value in facets[:12]]  
          [struct.pack('<H',0 if (len(facets) <= 12) else
                            viscam_colour(facets[12]))] for facets in facetss])
out   = b''.join([bytes(out) for outs in outss for out in outs])
# out  = ('\n\n## Python script to generate STL\n\n%s\n' % (open(__file__).read())).encode('utf-8')
log("Write STL")
with open(__file__[:__file__.rfind('.')]   '.stl', 'wb') as f_out: f_out.write(out)
log("#bytes:%d\t#facets:%d\ttitle:\"%-73s\"" % (len(out), len(facetss), header[:73]))

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Wikimedia Foundation
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I own now or in the future, to make, have made, use, offer to sell, sell, import, and distribute this file and any 3D objects depicted in the file that would otherwise infringe any claims of any patents I hold now or in the future.

Please note that in the event of any differences in meaning or interpretation between the original English version of this license and a translation, the original English version takes precedence.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current00:15, 16 April 2018Thumbnail for version as of 00:15, 16 April 20185,120 × 2,880 (27.93 MB)Cmglee (talk | contribs)Fix facets facing wrong way, subdivide facets with local minima/maxima and rotate planet to show Valles Marineris.
18:25, 12 April 2018Thumbnail for version as of 18:25, 12 April 20185,120 × 2,880 (22.89 MB)Cmglee (talk | contribs)Use cubic subdivision to allow smoother terrain by triangulating each quadrilateral along diagonal with the smaller height difference.
22:09, 4 April 2018Thumbnail for version as of 22:09, 4 April 20185,120 × 2,880 (25 MB)Cmglee (talk | contribs)Use octahedron subdivision to increase resolution and fix poles.
00:40, 3 April 2018Thumbnail for version as of 00:40, 3 April 20185,120 × 2,880 (24.72 MB)Cmglee (talk | contribs)User created page with UploadWizard

File usage on other wikis

The following other wikis use this file: