File:Mars elevation.stl
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this PNG preview of this STL file: 800 × 600 pixels. Other resolutions: 320 × 240 pixels | 640 × 480 pixels | 1,024 × 768 pixels | 1,280 × 960 pixels | 2,560 × 1,920 pixels | 5,120 × 3,840 pixels.
Original file (5,120 × 2,880 pixels, file size: 27.93 MB, MIME type: application/sla)
File information
Structured data
Captions
View Mars elevation.stl on viewstl.com
Summary
[edit]DescriptionMars elevation.stl |
English: Mars 20-times-exaggerated elevation model by CMG Lee, using MGS MOLA data. |
Date | |
Source | Own work |
Author | Cmglee |
Other versions |
Python source
[edit]#!/usr/bin/env python
exaggeration = 20
header = ('Mars %s-times-exaggerated elevation model by CMG Lee using MGS MOLA data.'
% (exaggeration))
path_png_alt = 'mars_elevation.png' ## 1-channel equirectangular PNG
luma_datum = 42 ## of 0-255 intensity levels
radius_datum = 3389.5 ## in km
f_wgs84 = 1 - 3376.2 / 3396.2 ## WGS84 flattening factor
km_per_luma = 0.155 * exaggeration ## found from Olympus Mons
scale = 1e-2 ## overall scale of model
lat_offset = 1.0 / 8 ## rotation around planet axis in revolutions
n_division = 200 ## each cubic face divided into n_division^2 squares
class Png:
def __init__(self, path):
(self.width, self.height, self.pixels, self.metadatas) = png.Reader(path).read_flat()
def __str__(self): return str((self.width, self.height, len(self.pixels), self.metadatas))
import time, re, math, struct, png
time.start = time.time()
def log(string): print('%6.3fs\t%s' % (time.time() - time.start, string))
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0 $', '', str(eval(tag[1:-1])))
if (i_sep < 0) else ('{:%s}' % tag[i_sep 1:-1]).format(eval(tag[1:i_sep])))
return (re.sub(r'(?<!{){[^{}] }', lambda m:f(m.group()), string)
.replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def tabbify(cellss, separator='|'):
cellpadss = [list(rows) [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def viscam_colour(colour):
colour_hex = hex_rgb(colour)
colour_top5bits = [int(colour_hex[i:i 2], 16) >> 3 for i in range(1,7,2)]
return (1 << 15) (colour_top5bits[0] << 10) (colour_top5bits[1] << 5) colour_top5bits[2]
def roundm(x, multiple=1):
if (isinstance(x, tuple)): return tuple(roundm(list(x), multiple))
elif (isinstance(x, list )): return [roundm(x_i, multiple) for x_i in x]
else: return int(math.floor(float(x) / multiple 0.5)) * multiple
def average(xs): return None if (len(xs) == 0) else float(sum(xs)) / len(xs)
def flatten(lss): return [l for ls in lss for l in ls]
def rotate(facetss, degs): ## around x then y then z axes
(deg_x,deg_y,deg_z) = degs
(sin_x,cos_x) = (math.sin(math.radians(deg_x)), math.cos(math.radians(deg_x)))
(sin_y,cos_y) = (math.sin(math.radians(deg_y)), math.cos(math.radians(deg_y)))
(sin_z,cos_z) = (math.sin(math.radians(deg_z)), math.cos(math.radians(deg_z)))
facet_rotatess = []
for facets in facetss:
facet_rotates = []
for i_point in range(4):
(x,y,z) = [facets[3 * i_point i_xyz] for i_xyz in range(3)]
if (x is None or y is None or z is None): facet_rotates = [x,y,z]
else:
(y,z) = (y * cos_x - z * sin_x, y * sin_x z * cos_x) ## rotate about x
(x,z) = (x * cos_y z * sin_y,-x * sin_y z * cos_y) ## rotate about y
(x,y) = (x * cos_z - y * sin_z, x * sin_z y * cos_z) ## rotate about z
facet_rotates = [round(value, 9) for value in [x,y,z]]
facet_rotatess.append(facet_rotates)
return facet_rotatess
def translate(facetss, ds): ## ds = (dx,dy,dz)
return [facets[:3] [facets[3 * i_point i_xyz] ds[i_xyz]
for i_point in range(1,4) for i_xyz in range(3)] for facets in facetss]
def flip(facetss): return [facets[:3] facets[6:9] facets[3:6] facets[9:] for facets in facetss]
def cube_xyz_to_sphere_xyz(cube_xyzs):
(x,y,z) = [float(xyz) for xyz in cube_xyzs]
(x_squared,y_squared,z_squared) = (x * x,y * y,z * z)
return (x * (1 - (y_squared z_squared) / 2 y_squared * z_squared / 3) ** 0.5,
y * (1 - (x_squared z_squared) / 2 x_squared * z_squared / 3) ** 0.5,
z * (1 - (y_squared x_squared) / 2 y_squared * x_squared / 3) ** 0.5)
def xyz_to_lla(xyzs):
(x,y,z) = xyzs
alt = (x * x y * y z * z) ** 0.5
lon = math.atan2(y, x)
lat = math.asin(z / alt)
return (lat,lon,alt)
deg_90 = math.pi / 2
def find_alt(lat_lons, altss):
(lat,lon) = lat_lons
if (lat == deg_90): alt = average(altss[ 0])
elif (lat == -deg_90): alt = average(altss[-1])
else:
(width,height) = (len(altss[0]),len(altss))
x = (0.5 lon / (deg_90 * 4) lat_offset) * width
y = (0.5 - lat / (deg_90 * 2) ) * height
(x_int,y_int) = (int(x) , int(y) )
(x_dec,y_dec) = (x - x_int, y - y_int)
(x0,x1) = (x_int % width , (x_int 1) % width )
(y0,y1) = (y_int % height, (y_int 1) % height)
alt = ((altss[y0][x0] * (1 - x_dec) altss[y1][x0] * x_dec) * (1 - y_dec)
(altss[y0][x1] * (1 - x_dec) altss[y1][x1] * x_dec) * y_dec)
# print(map(math.degrees, lat_lons), y,x, alt)
return alt
def radius_wgs84(lat):
if (lat in radius_wgs84.cachess): return radius_wgs84.cachess[lat]
(sin_lat, cos_lat) = (math.sin(lat), math.cos(lat))
ff = (1 - f_wgs84) ** 2
c = 1 / (cos_lat ** 2 ff * sin_lat ** 2) ** 0.5
s = c * ff
radius_c_s_s = (radius_datum * c, radius_datum * s)
radius_wgs84.cachess[lat] = radius_c_s_s
return radius_c_s_s
radius_wgs84.cachess = {}
def lla_to_sphere_xyz(llas):
(lat,lon,alt) = llas
(sin_lat,sin_lon) = (math.sin(lat),math.sin(lon))
(cos_lat,cos_lon) = (math.cos(lat),math.cos(lon))
(radius_c, radius_s) = [(c_s_radius alt * km_per_luma) * scale
for c_s_radius in radius_wgs84(lat)]
return (radius_c * cos_lat * cos_lon,radius_c * cos_lat * sin_lon,radius_s * sin_lat)
def xyz_alt_to_xyza(xyzs, altss):
(lat,lon,alt) = xyz_to_lla(xyzs)
alt = find_alt((lat,lon), altss)
lla_alts = [list(lla_to_sphere_xyz((lat,lon,alt))), alt]
return lla_alts
log("Read elevation data")
png_alt = Png(path_png_alt)
if (png_alt.metadatas['planes'] != 1): print("%s not 1-channel PNG" % (path_png_alt)); sys.exit(1)
log(png_alt)
altss = [[png_alt.pixels[png_alt.width * y x] - luma_datum
for x in range(png_alt.width)] for y in range(png_alt.height)] ## altss[y][x]
log("Find vertices")
k = 2.0 / n_division
range_k = range(n_division 1)
face_vertex_llassss = [ ## [0=top][i_y][i_x][xyz,alt]
[[xyz_alt_to_xyza((x*k-1,y*k-1, 1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza((x*k-1, -1,y*k-1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza(( 1,x*k-1,y*k-1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza((y*k-1,x*k-1, -1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza((y*k-1, 1,x*k-1), altss) for y in range_k] for x in range_k],
[[xyz_alt_to_xyza(( -1,y*k-1,x*k-1), altss) for y in range_k] for x in range_k],
]
log("Add facets") ## cube xyz -> ll(a) -> image xy -> a -> sphere xyz
facetss = []
for (i_face,face_vertex_llasss) in enumerate(face_vertex_llassss):
for v in range(n_division):
for u in range(n_division):
(xyz00, alt00) = face_vertex_llasss[v ][u ]
(xyz01, alt01) = face_vertex_llasss[v ][u 1]
(xyz10, alt10) = face_vertex_llasss[v 1][u ]
(xyz11, alt11) = face_vertex_llasss[v 1][u 1]
(xyz_m, alt_m) = xyz_alt_to_xyza([average(xyzs) for xyzs in zip(*(xyz00,xyz01,xyz10,xyz11))],
altss)
if (alt_m > max(alt00,alt01,alt10,alt11) or alt_m < min(alt00,alt01,alt10,alt11)):
facetss.append([None,0,0] xyz_m xyz00 xyz10)
facetss.append([None,0,0] xyz_m xyz10 xyz11)
facetss.append([None,0,0] xyz_m xyz11 xyz01)
facetss.append([None,0,0] xyz_m xyz01 xyz00)
else:
if (abs(alt00 - alt11) < abs(alt01 - alt10)):
facetss.append([None,0,0] xyz00 xyz10 xyz11)
facetss.append([None,0,0] xyz11 xyz01 xyz00)
else:
facetss.append([None,0,0] xyz10 xyz11 xyz01)
facetss.append([None,0,0] xyz01 xyz00 xyz10)
log("Calculate normals")
for facets in facetss:
if (facets[0] is None or facets[1] is None or facets[2] is None):
us = [facets[i_xyz 9] - facets[i_xyz 6] for i_xyz in range(3)]
vs = [facets[i_xyz 6] - facets[i_xyz 3] for i_xyz in range(3)]
normals = [us[1]*vs[2] - us[2]*vs[1], us[2]*vs[0] - us[0]*vs[2], us[0]*vs[1] - us[1]*vs[0]]
normal_length = sum([component * component for component in normals]) ** 0.5
facets[:3] = [-round(component / normal_length, 10) for component in normals]
# log(tabbify([['N%s' % (xyz ) for xyz in list('xyz')]
# ['%s%d' % (xyz, n) for n in range(3) for xyz in list('XYZ')] ['RGB']] facetss))
log("Compile STL")
outss = ([[('STL\n\n%-73s\n\n' % (header[:73])).encode('utf-8'), struct.pack('<L',len(facetss))]]
[[struct.pack('<f',float(value)) for value in facets[:12]]
[struct.pack('<H',0 if (len(facets) <= 12) else
viscam_colour(facets[12]))] for facets in facetss])
out = b''.join([bytes(out) for outs in outss for out in outs])
# out = ('\n\n## Python script to generate STL\n\n%s\n' % (open(__file__).read())).encode('utf-8')
log("Write STL")
with open(__file__[:__file__.rfind('.')] '.stl', 'wb') as f_out: f_out.write(out)
log("#bytes:%d\t#facets:%d\ttitle:\"%-73s\"" % (len(out), len(facetss), header[:73]))
Licensing
[edit]I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I own now or in the future, to make, have made, use, offer to sell, sell, import, and distribute this file and any 3D objects depicted in the file that would otherwise infringe any claims of any patents I hold now or in the future. Please note that in the event of any differences in meaning or interpretation between the original English version of this license and a translation, the original English version takes precedence. |
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 00:15, 16 April 2018 | 5,120 × 2,880 (27.93 MB) | Cmglee (talk | contribs) | Fix facets facing wrong way, subdivide facets with local minima/maxima and rotate planet to show Valles Marineris. | |
18:25, 12 April 2018 | 5,120 × 2,880 (22.89 MB) | Cmglee (talk | contribs) | Use cubic subdivision to allow smoother terrain by triangulating each quadrilateral along diagonal with the smaller height difference. | ||
22:09, 4 April 2018 | 5,120 × 2,880 (25 MB) | Cmglee (talk | contribs) | Use octahedron subdivision to increase resolution and fix poles. | ||
00:40, 3 April 2018 | 5,120 × 2,880 (24.72 MB) | Cmglee (talk | contribs) | User created page with UploadWizard |
You cannot overwrite this file.
File usage on Commons
The following 7 pages use this file:
File usage on other wikis
The following other wikis use this file:
- Usage on ar.wikiversity.org
- Usage on ca.wikipedia.org
- Usage on crh.wikipedia.org
- Usage on el.wikipedia.org
- Usage on en.wikipedia.org
- Usage on es.wikipedia.org
- Usage on he.wikipedia.org
- Usage on hr.wikipedia.org
- Usage on myv.wikipedia.org
- Usage on pt.wikipedia.org
- Usage on test.wikidata.org
- Usage on tg.wikipedia.org
- Usage on tt.wikipedia.org
- Usage on vi.wikipedia.org
- Usage on www.wikidata.org
- Usage on zh.wikipedia.org