File:MDKQ6 anim.gif
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
MDKQ6_anim.gif (450 × 350 pixels, file size: 42 KB, MIME type: image/gif, looped, 10 frames, 1.0 s)
File information
Structured data
Captions
Contents
Summary
[edit]DescriptionMDKQ6 anim.gif |
Deutsch: Teilbild einer Animation Polynomapproximation unterschiedlicher Polynomordnung |
Date | |
Source | MDKQ anim.gif |
Author | Johannes Kalliauer |
Other versions | File:MDKQ_anim.gif |
Licensing
[edit]I, the copyright holder of this work, hereby publish it under the following license:
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Quellen: Skript zur Bildgenerierung
[edit]Erzeugungsskript, um die Grafik zu erstellen.
Anleitung
[edit]Benötigte Open-Source-Software:
- Python
- Python-Paket: numpy
- Python-Paket: matplotlib
Nach der Installation von Python den Quelltext in eine Datei mdkq.py kopieren und starten durch Doppelklicken oder in der Konsole durch Eingabe von
python mdkq.py
Python-Skript
[edit]This plot was created with Matplotlib by v.
#This source code is public domain
#Created by Christian Schirm
#Edited by Johannes Kalliauer
import numpy, pylab
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from numpy.random import randn
x=[1,2,3,4,5,6]
y=[2.0,2.5,2.5,3.4,3.7,6.6]
for N in range(1,7):
A=numpy.zeros((N,N))
for i in range(N):
for j in range(N):
A[i,j]=sum(xi**(i j) for xi in x)
b=numpy.zeros((N))
for i in range(N):
b[i]=sum(xi**(i)*yi for xi,yi in zip(x,y))
c=numpy.linalg.solve(A, b)
xr=numpy.asarray(x)
yr=numpy.sum([c[i]*xr**i for i in range(len(c))],axis=0)
residuen=[]
for i in range(len(x)): residuen =[[xr[i],xr[i]],[y[i],yr[i]],'g-']
xneu=numpy.linspace(0, 8, num=100)
yneu=numpy.sum([c[i]*xneu**i for i in range(len(c))],axis=0)
plt.clf()
fig = plt.figure(figsize=(4.5, 3.5))
fig.subplotpars.bottom=0.13
y0=plt.plot(*residuen[:-3])
plt.setp(y0, color='#80d080', linewidth=1.5)
#y0=plt.plot(*residuen[-3:], label="Residuen")
y0,=plt.plot(*residuen[-3:])
plt.setp(y0, color='#80d080', linewidth=1.5)
#y2=plt.plot(xneu,yneu,'r-', label="Modellfunktion")
y2,=plt.plot(xneu,yneu,'r-')
#y1=plt.plot(x,y,'o', label="Messpunkte")
y1,=plt.plot(x,y,'o')
plt.xlabel('x')
plt.ylabel('y')
font = FontProperties()
font.set_size('medium')
leg = plt.legend([y1,y2,y0],['Messpunkte','Modellfunktion','Residuen'],frameon=True,loc='lower right',labelspacing=0.3,prop=font)
#leg = plt.legend(frameon=True,loc='lower right',labelspacing=0.3,prop=font)
plt.grid(True)
plt.axis([0, 8, 0, 8])
plt.text(1,7, "Polynomgrad " str(N-1),bbox=dict(boxstyle="square,pad=0.5",color='white',ec='black',fill=True))
#plt.show()
plt.savefig('MDKQ_anim%i.png'%N)
plt.savefig('test.eps', format='eps', dpi=900)
plt.savefig("MDKQ_anim%i.svg"%N)
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 16:23, 25 June 2017 | 450 × 350 (42 KB) | JoKalliauer (talk | contribs) |
You cannot overwrite this file.
File usage on Commons
The following 2 pages use this file:
File usage on other wikis
The following other wikis use this file:
- Usage on de.wikipedia.org
- Usage on zh-yue.wikipedia.org