File:Gd Heat Capacity DE.svg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (SVG file, nominally 720 × 540 pixels, file size: 17 KB)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: the heat capacity of gadolinium as a function of temperature
Date
Source Own work
Author Martin Teichmann
SVG development
InfoField
 
The source code of this SVG is invalid due to 28 errors.
 
This W3C-invalid plot was created with Matplotlib.
Source code
InfoField

Python code

#encoding: utf8
from __future__ import division
from numpy import array, atleast_1d, pi, exp, vectorize, sqrt, log
from scipy.optimize import leastsq
from scipy import interpolate

class Adeb3(object):
    left = -1
    right = 1
    coefficients = [
        2.707737068327440945,
        0.340068135211091751,
        -0.12945150184440869e-01,
        0.7963755380173816e-03,
        -0.546360009590824e-04,
        0.39243019598805e-05,
        -0.2894032823539e-06,
        0.217317613962e-07,
        -0.16542099950e-08,
        0.1272796189e-09,
        -0.987963460e-11,
        0.7725074e-12,
        -0.607797e-13,
        0.48076e-14,
        -0.3820e-15,
        0.305e-16,
        -0.24e-17]

def cheb_eval(cs, x):
    d = 0
    dd = 0
    y = (2 * x - cs.right - cs.left) / (cs.right - cs.left)
    y2 = 2 * y

    for c in cs.coefficients[:0:-1]:
        d, dd = y2 * d - dd   c, d
    return y * d - dd   0.5 * cs.coefficients[0]

@vectorize
def debye3(x):
    val_infinity = 19.4818182068004875
    xcut = 7.0839641853226408e 02

    if x < 0:
        raise ValueError("x must be > 0!")
    elif x < 2.0 * sqrt(2) * 1.5e-8:
        return 1 - (3 / 8) * x   x ** 2 / 20
    elif x <= 4:
        t = x ** 2 / 8 - 1
        c = cheb_eval(Adeb3, t)
        return c - 0.375 * x
    elif x < 36 - log(2):
        nexp = int(xcut / x)
        ex = exp(-x)
        sum = 0

        for rk in range(nexp, 0, -1):
            xk_inv = 1 / (rk * x)
            sum *= ex
            sum  = (((6 * xk_inv   6) * xk_inv   3) * xk_inv   1) / rk
        return val_infinity / x ** 3 - 3 * sum * ex
    elif x < xcut:
        sum = ((x   3) * x   6) * x   6
        return (val_infinity - 3 * sum * exp(-x)) / x ** 3
    else:
        return val_infinity / x ** 3

def capacity(x):
    return 4 * debye3(x) - 3 * x / (exp(x) - 1)

#wikipedia
m = 157.25 # g / mol
density = 7.886e6 # g / m^3

# following Tsang et al., PRB 31, 235 (1985)
#td = 163.4 # K
#gamma = 6.38e-3 # J / mol K^2

# Lounasmaa et al., PR 150, 399 (1966) (= Tb)
#gamma = 10.5e-3 # J / mol K^2

# Hill et al., J Phys F 17, 1867 (1987)
gamma = 4.48e-3 # J / mol K^2
td = 169 # K

# CRC Handbook, 87 ed
# http://ingemeca.org/docs/Genie_chimique/Handbook of chemistry and physics/Section 04/04_03_86.pdf
gamma = 4.48e-3 # J / mol K^2
td = 169 # K
lamda = 0.30 

# from wikipedia
# very large error bars since temperature dependent
kappa = 11 # W / m K

# Palik (ed.), Handbook of Optical Constants of Solids, Academic Press, 1998
# very large error bars
n = 2.5 2.5j

# from wikipedia, Dulong-Petit
gasR = 8.314472 # J / mol K

# from Lewis, PRB 1, 4368 (1970)
tc = 291 # K
alpha = -0.09
alphap = -0.32

cal = 4.184 # J

# from Griffel et al., PR 93, 657 (1954)
# data deleted for copyright reasons
#data = [ ]
#data = array(data)
#t = data[:, 0]
#
#rdata = data[:, 1] * cal - (gamma * t   capacity(td / t) * 3 * gasR)
#
#spline1 = interpolate.splrep(t[t < tc], rdata[t < tc], s=0.01)
#spline2 = interpolate.splrep(t[t >= tc], rdata[t >= tc], s=0.01)

# the resulte of the above spline interpolation:
spline1 = (array([15., 15., 15., 15., 35., 50., 60., 65., 70.,
         80.,   85.,  105.,  120.,  155.,  175.,  190.,  210.,  225.,
        260.,  275.,  285.,  290.,  290.,  290.,  290.]),
      array([0.49389679, 1.27420175, 2.77687614, 4.02375527,
         4.76956233, 5.22356252, 5.59837477, 5.92009627,
         6.49799508, 6.85174211, 7.75186406, 8.48986024,
         9.70070657, 10.58583945, 11.7457047, 13.56042647,
        16.1996443, 20.93242938, 24.73094546, 28.80272272,
        30.5090826, 0., 0., 0., 0.]), 3)
spline2 = (array([ 295.,  295.,  295.,  295.,  305.,  310.,  325., 340., 355.,
        355., 355., 355.]),
  array([ 13.45959205,  10.78000421,   9.00637154,   7.23686324,
         6.11750324,   5.3514927 ,   4.38785726,   4.33129557,
         0.        ,   0.        ,   0.        ,   0.        ]), 3)

def critical(t, alpha, a, b):
    return b   a * abs((t - tc) / tc) ** -alpha

left = [-1, 1]
right = [1, 1]

def spincapacity(t): # in J / mol K
    t = array(t)
    return (t > tc).choose(interpolate.splev(t, spline1),
        interpolate.splev(t, spline2))

def electroncapacity(t): # in J / mol K
    return gamma * t

def phononcapacity(t): # in J / mol K
    return capacity(td / t) * 3 * gasR

if __name__ == "__main__":
    from pylab import plot, show, xlabel, ylabel, savefig
    from numpy import linspace
    tt = linspace(15, 355, 300)
    xlabel("Temperatur (K)")
    ylabel(u"Wärmekapazität (J / mol)")
    plot(tt, spincapacity(tt))
    plot(tt, spincapacity(tt)   phononcapacity(tt)   electroncapacity(tt))
    tt = linspace(0, 355, 300)
    plot(tt, phononcapacity(tt))
    plot(tt, electroncapacity(tt))

    energy = 4 * pi * n.imag * 1.2 / 780e-7 # mJ / cm^3
    energy *= 1e3 # J / m^3
    energy *= m / density # J / mol
    t = 100 # K

    savefig("gadolinium.svg")
    show()

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current09:57, 26 September 2011Thumbnail for version as of 09:57, 26 September 2011720 × 540 (17 KB)Tecki (talk | contribs)

The following page uses this file:

File usage on other wikis

The following other wikis use this file:

Metadata