File:Complex number illustration.svg
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this PNG preview of this SVG file: 180 × 180 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,048 × 2,048 pixels.
Original file (SVG file, nominally 180 × 180 pixels, file size: 1 KB)
File information
Structured data
Captions
Summary
[edit]DescriptionComplex number illustration.svg |
Afrikaans: 'n komplekse getal kan visueel voorgestel word as 'n getalpaar wat 'n vektor vorm op 'n diagram wat 'n Arganddiagram genoem word.
العربية: الشكل العام للعدد المركب.
বাংলা: একটি জটিল সংখ্যাকে দুইটি বাস্তব সংখ্যার একটা ক্রমজোড় হিসেবে দেখা যেতে পারে যেটা আসলে আরগ্যান্ড সমতলে একটা ভেক্টর নির্দেশ করে। এখানে (a,b) ভেক্টরটি জটিল সংখ্যা a ib কে নির্দেশ করছে.
Ελληνικά: Ένας μιγαδικός z=a bi παριστάνεται και με το διάνυσμα με αρχή το κέντρο των αξόνων και πέρας το σημείο (a,b).
English: A complex number can be visually represented as a pair of numbers forming a vector on a diagram called an Argand diagram, representing the complex plane. Argand diagram.
Español: Un número puede ser visualmente representado por un par de números formando un vector en un diagrama llamado diagrama de Argand.
فارسی: نمایش یک عدد مختلط در صفحه مختلط. در این شکل، a، قسمت حقیقی و b، قسمت موهومی است.
Võro: Kompleksarvo geomeetriline kujo.
Suomi: Kompleksilukua voidaan havainnollistaa kompleksitasolla, jonka vaaka-akseli kuvaa reaaliosan ja pystyakseli imaginaariosan suuruutta.
Français : Forme cartésienne d'un nombre complexe.
Gaeilge: Uimhir Choimpléascach ar an plána coimpléascach.
עברית: יצוג חזותי נפוץ של המספרים המרוכבים הוא בשילוב של ציר המספרים הרגיל, ובמאונך לו ציר דומה למספרים מדומים, כאשר המספרים המרוכבים מתקבלים מחיבור נקודות על שני הצירים.
हिन्दी: किसी समिश्र संख्या का अर्गेन्ड आरेख पर प्रदर्शन.
Latviešu: Kompleksu skaitli vizuāli var attēlot kā vektoru ar divām komponentēm jeb kā punktu plaknē.
മലയാളം: മിശ്ര സംഖ്യകളെ, ആർഗണ്ട് രേഖാചിത്രത്തിൽ ഒരു വെക്ടർ രൂപവത്കരിക്കുന്ന ഒരു ജോഡി സംഖ്യകളായി ചിത്രീകരിക്കാം.
Polski: Liczby zespolone mogą być przedstawione jako współrzędne wektora na płaszczyźnie zespolonej. Związek pomiędzy liczbą zespoloną i wskazem.
Português: Um número complexo representado como um par ordenado de números reais compondo um vetor bidimensional no Plano de Argand-Gauss.
Русский: Геометрическое представление комплексного числа. Illustration of a complex number |
Date | 14 January 2008 (original upload date) |
Source | Own work (Original text: self-made) |
Author | Wolfkeeper at English Wikipedia |
Other versions |
Derivative works of this file: |
Licensing
[edit]Wolfkeeper at English Wikipedia, the copyright holder of this work, hereby publishes it under the following licenses:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license.
Attribution: Wolfkeeper at English Wikipedia
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
You may select the license of your choice.
Original upload log
[edit]The original description page was here. All following user names refer to en.wikipedia.
- 2008-01-14 12:28 Wolfkeeper 249×328×0 (53238 bytes)
- 2008-01-14 12:22 Wolfkeeper 249×328×0 (54383 bytes) {{Information |Description= |Source=self-made |Date= |Location= |Author= |Permission= |other_versions={{DerivativeVersions|Complex number illustration modarg.svg}} }}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 16:04, 31 March 2023 | 180 × 180 (1 KB) | Ponor (talk | contribs) | please fork: can't change labels, many wikis use (a,b) | |
10:38, 13 March 2023 | 180 × 180 (4 KB) | Nomen4Omen (talk | contribs) | {{Information |Description= |Source={{own}} |Date= |Author= Nomen4Omen |Permission= |other_versions= }} a bi ===============> x yi | ||
22:55, 7 December 2020 | 180 × 180 (1 KB) | Ponor (talk | contribs) | a,b closer to the axes; using as template for File:Complex_number_illustration_modarg.svg | ||
20:24, 3 May 2017 | 183 × 197 (6 KB) | SemperVinco (talk | contribs) | Cleaned up fonts and code somewhat | ||
16:50, 16 March 2013 | 183 × 197 (12 KB) | AnonMoos (talk | contribs) | remove unused code | ||
16:04, 16 March 2013 | 183 × 197 (53 KB) | Incnis Mrsi (talk | contribs) | Commons is an educational resource, isn’t it? Throwing away Sans for math, oblique “ ” and “0”, and other thoughtless and non-standard typesetting | ||
17:40, 29 December 2011 | 183 × 197 (53 KB) | JohnBlackburne (talk | contribs) | Reverted to version as of 17:51, 16 August 2009: new version has serious problems with text overlapping in two places | ||
22:16, 22 December 2011 | 150 × 150 (2 KB) | Krishnavedala (talk | contribs) | specified text properties explicitly | ||
22:13, 22 December 2011 | 150 × 150 (2 KB) | Krishnavedala (talk | contribs) | Hand drawn. | ||
17:51, 16 August 2009 | 183 × 197 (53 KB) | Kan8eDie (talk | contribs) | Reverted to version as of 22:26, 27 January 2008 |
You cannot overwrite this file.
File usage on Commons
The following 3 pages use this file:
File usage on other wikis
The following other wikis use this file:
- Usage on af.wikipedia.org
- Usage on am.wikipedia.org
- Usage on anp.wikipedia.org
- Usage on ar.wikipedia.org
- Usage on as.wikipedia.org
- Usage on az.wikipedia.org
- Usage on be-tarask.wikipedia.org
- Usage on be.wikipedia.org
- Usage on bg.wikipedia.org
- Usage on bn.wikipedia.org
- Usage on bs.wikipedia.org
- Usage on ca.wikipedia.org
- Usage on ckb.wikipedia.org
- Usage on cy.wikipedia.org
- Usage on da.wikipedia.org
- Usage on de.wikibooks.org
- Usage on de.wikiversity.org
- Kurs:Mathematik (Osnabrück 2009-2011)/Teil I/Vorlesung 9
- Komplexe Zahlen/Realteil, Konjugation, Betrag/Einführung/Textabschnitt
- Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 3
- Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Vorlesung 8
- Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Vorlesung 8/kontrolle
- Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Vorlesung 8
- Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Vorlesung 8/kontrolle
- Kurs:Elemente der Algebra (Osnabrück 2015)/Vorlesung 3
- Komplexe Zahlen/Einführung/Textabschnitt
- Kurs:Elemente der Algebra (Osnabrück 2015)/Vorlesung 3/kontrolle
- Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Vorlesung 5
- Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Vorlesung 5/kontrolle
- Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Repetitorium/Vorlesung 5
- Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Vorlesung 5
- Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Vorlesung 5/kontrolle
- Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Vorlesung 8
- Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Vorlesung 8/kontrolle
- Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 3/kontrolle
- Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Teil I/Vorlesung 5
- Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Teil I/Vorlesung 5/kontrolle
- Kurs:Elemente der Algebra (Osnabrück 2024-2025)/Vorlesung 3
- Kurs:Elemente der Algebra (Osnabrück 2024-2025)/Vorlesung 3/kontrolle
- Komplexe Zahlen/2/Einführung/Textabschnitt
- Usage on el.wikipedia.org
- Usage on en.wikipedia.org
View more global usage of this file.
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Width | 180 |
---|---|
Height | 180 |