File:15-152-Pluto-NewHorizons-HighResolution-20150714-IFV.jpg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,515 × 1,005 pixels, file size: 528 KB, MIME type: image/jpeg)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: July 15, 2015 - 15-152 - PLUTO NEAR EQUATOR


UPDATED NOTES (from JHUAPL):


Uploaded "official" JPG image (1515x1005/527KB) from JHUAPL => http://pluto.jhuapl.edu/Multimedia/Science-Photos/pics/nh-pluto-surface-scale.jpg - Enjoy! :) Drbogdan (talk) 16:19, 16 July 2015 (UTC)


http://pluto.jhuapl.edu/Multimedia/Science-Photos/image.php?gallery_id=2&image_id=229

The Icy Mountains of Pluto (annotated)
Release Date: July 15, 2015
Keywords: equator, LORRI, Pluto

New close-up images of a region near Pluto’s equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body.

The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building, says Jeff Moore of New Horizons’ Geology, Geophysics and Imaging Team (GGI). That suggests the close-up region, which covers less than one percent of Pluto’s surface, may still be geologically active today.

Moore and his colleagues base the youthful age estimate on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered -- unless recent activity had given the region a facelift, erasing those pockmarks.

“This is one of the youngest surfaces we’ve ever seen in the solar system,” says Moore.

Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape.

“This may cause us to rethink what powers geological activity on many other icy worlds,” says GGI deputy team leader John Spencer of the Southwest Research Institute in Boulder, Colo.

The mountains are probably composed of Pluto’s water-ice “bedrock.” Although methane and nitrogen ice covers much of the surface of Pluto, these materials are not strong enough to build the mountains. Instead, a stiffer material, most likely water-ice, created the peaks. “At Pluto’s temperatures, water-ice behaves more like rock,” said deputy GGI lead Bill McKinnon of Washington University, St. Louis.

The close-up image was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (77,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across.


EARLIER NOTES:


UPLOADER NOTE (Drbogdan (talk) 21:16, 15 July 2015 (UTC)): To minimize possible raster rendering issues with PNG Files, Converted original PNG File (843x601/546KB) to JPG File (843x601/233KB) - later - uploaded annotated JPG version - by converting from orginal PNG File (1182x819/1164KB) to JPG File (1182x819/436KB) - via IrFanView v4.38


From Mountains to Moons: Multiple Discoveries from NASA’s New Horizons Pluto Mission Mountains on Pluto[1]

http://www.nasa.gov/press-release/from-mountains-to-moons-multiple-discoveries-from-nasa-s-new-horizons-pluto-mission


IMAGE CAPTION:

New close-up images of a region near Pluto’s equator reveal a giant surprise -- a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body.


FILE DESCRIPTION: Icy mountains on Pluto and a new, crisp view of its largest moon, Charon, are among the several discoveries announced Wednesday by the NASA's New Horizons team, just one day after the spacecraft’s first ever Pluto flyby.

"Pluto New Horizons is a true mission of exploration showing us why basic scientific research is so important," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "The mission has had nine years to build expectations about what we would see during closest approach to Pluto and Charon. Today, we get the first sampling of the scientific treasure collected during those critical moments, and I can tell you it dramatically surpasses those high expectations."

“Home run!” said Alan Stern, principal investigator for New Horizons at the Southwest Research Institute (SwRI) in Boulder, Colorado. “New Horizons is returning amazing results already. The data look absolutely gorgeous, and Pluto and Charon are just mind blowing."

A new close-up image of an equatorial region near the base of Pluto’s bright heart-shaped feature shows a mountain range with peaks jutting as high as 11,000 feet (3,500 meters) above the surface of the icy body.

The mountains on Pluto likely formed no more than 100 million years ago -- mere youngsters in a 4.56-billion-year-old solar system. This suggests the close-up region, which covers about one percent of Pluto’s surface, may still be geologically active today.

“This is one of the youngest surfaces we’ve ever seen in the solar system,” said Jeff Moore of the New Horizons Geology, Geophysics and Imaging Team (GGI) at NASA’s Ames Research Center in Moffett Field, California.

Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape.

“This may cause us to rethink what powers geological activity on many other icy worlds,” says GGI deputy team leader John Spencer at SwRI.

The new view of Charon reveals a youthful and varied terrain. Scientists are surprised by the apparent lack of craters. A swath of cliffs and troughs stretching about 600 miles (1,000 kilometers) suggests widespread fracturing of Charon’s crust, likely the result of internal geological processes. The image also shows a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep. In Charon’s north polar region, the dark surface markings have a diffuse boundary, suggesting a thin deposit or stain on the surface.

New Horizons also observed the smaller members of the Pluto system, which includes four other moons: Nix, Hydra, Styx and Kerberos. A new sneak-peek image of Hydra is the first to reveal its apparent irregular shape and its size, estimated to be about 27 by 20 miles (43 by 33 kilometers).

The observations also indicate Hydra's surface is probably coated with water ice. Future images will reveal more clues about the formation of this and the other moon billions of years ago. Spectroscopic data from New Horizons’ Ralph instruments reveal an abundance of methane ice, but with striking differences among regions across the frozen surface of Pluto.

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland designed, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. SwRI leads the mission, science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

Follow the New Horizons mission on Twitter and use the hashtag #PlutoFlyby to join the conversation. Live updates also will be available on the mission Facebook page.

For more information on the New Horizons mission, including fact sheets, schedules, video and all the new images, visit:

http://www.nasa.gov/newhorizons

and

http://solarsystem.nasa.gov/planets/plutotoolkit.cfm

-end-
Date
Source http://www.nasa.gov/sites/default/files/thumbnails/image/15-152.png
Author NASA/JHU APL/SwRI
Other versions

[edit]

PNG:

JPG:


Licensing

[edit]
Public domain This file is in the public domain in the United States because it was solely created by NASA. NASA copyright policy states that "NASA material is not protected by copyright unless noted". (See Template:PD-USGov, NASA copyright policy page or JPL Image Use Policy.)
Warnings:
  1. Chang, Kenneth (15 July 2015). "Pluto as New Horizons Saw It: Up Close and Personal". New York Times. Retrieved on 15 July 2015.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:08, 16 July 2015Thumbnail for version as of 16:08, 16 July 20151,515 × 1,005 (528 KB)Drbogdan (talk | contribs)Uploaded "official" JPG image (1515x1005/527KB) from JHUAPL => http://pluto.jhuapl.edu/Multimedia/Science-Photos/pics/nh-pluto-surface-scale.jpg - Enjoy! :) ~~~~
21:47, 15 July 2015Thumbnail for version as of 21:47, 15 July 20151,182 × 819 (436 KB)Drbogdan (talk | contribs)uploaded annotated JPG version - converted from orginal PNG File (1182x819/1164KB) to JPG File (1182x819/436KB) - via IrFanView v4.38
20:26, 15 July 2015Thumbnail for version as of 20:26, 15 July 2015843 × 601 (234 KB)Drbogdan (talk | contribs)User created page with UploadWizard

File usage on other wikis

The following other wikis use this file:

Metadata