Category:Neural networks
Jump to navigation
Jump to search
network or circuit of neurons | |||||
Upload media | |||||
Subclass of |
| ||||
---|---|---|---|---|---|
Part of |
| ||||
Different from | |||||
| |||||
This category are for articles about biological neural networks.
Articles about artificial neural networks are in Category:Artificial neural networks.
Subcategories
This category has the following 12 subcategories, out of 12 total.
A
C
- Chandelier cells (1 P, 5 F)
D
G
- Galves–Löcherbach model (4 F)
H
- Human connectome (19 F)
L
N
- Neural decoding (10 F)
Media in category "Neural networks"
The following 200 files are in this category, out of 386 total.
(previous page) (next page)-
2D data training SOM.gif 635 × 801; 1.39 MB
-
-
-
-
-
-
-
-
-
-
-
-
A-Distinct-Layer-of-the-Medulla-Integrates-Sky-Compass-Signals-in-the-Brain-of-an-Insect-pone.0027855.s004.ogv 6.7 s, 1,264 × 960; 5.43 MB
-
-
A-Neurocomputational-Model-of-Goal-Directed-Navigation-in-Insect-Inspired-Artificial-Agents-Video1.ogv 3 min 3 s, 1,280 × 1,024; 11.37 MB
-
A-Novel-Robot-System-Integrating-Biological-and-Mechanical-Intelligence-Based-on-Dissociated-Neural-pone.0165600.s001.ogv 2 min 5 s, 856 × 480; 10.76 MB
-
A-Theory-of-Cheap-Control-in-Embodied-Systems-pcbi.1004427.s007.ogv 30 s, 1,280 × 720; 11.61 MB
-
A-Theory-of-Cheap-Control-in-Embodied-Systems-pcbi.1004427.s008.ogv 30 s, 1,280 × 720; 8.81 MB
-
A-Theory-of-Cheap-Control-in-Embodied-Systems-pcbi.1004427.s009.ogv 30 s, 1,280 × 720; 8.85 MB
-
A-Theory-of-Cheap-Control-in-Embodied-Systems-pcbi.1004427.s010.ogv 30 s, 1,280 × 720; 9.56 MB
-
Accuracy per T allN dec13 submission.png 640 × 480; 46 KB
-
-
-
-
-
-
-
-
-
-
-
-
-
AdobeSpeechEnhancementScreenshot.png 1,896 × 1,077; 105 KB
-
Agrupamento (pooling).svg 832 × 510; 12 KB
-
AlexNet architecture.png 1,426 × 626; 44 KB
-
AlexNet block diagram.svg 333 × 497; 87 KB
-
AlexNet Original block diagram.svg 800 × 251; 247 KB
-
Amplitude-of-the-SCN-Clock-Enhanced-by-the-Behavioral-Activity-Rhythm-pone.0039693.s003.ogv 1 min 1 s, 640 × 480; 1.29 MB
-
Amplitude-of-the-SCN-Clock-Enhanced-by-the-Behavioral-Activity-Rhythm-pone.0039693.s004.ogv 59 s, 640 × 480; 1.21 MB
-
-
Ann Recurrente.jpg 2,448 × 3,264; 284 KB
-
Asegsde.PNG 653 × 776; 101 KB
-
Attention Is All You Need - another encoder self-attention at layer 5 of 6.png 1,196 × 662; 269 KB
-
Attention Is All You Need - Attention Head.png 445 × 884; 26 KB
-
Attention Is All You Need - Encoder-decoder Architecture.png 1,520 × 2,239; 155 KB
-
Attention Is All You Need - Full attentions for head 5.png 1,196 × 644; 231 KB
-
Attention Is All You Need - Multiheaded Attention.png 835 × 1,282; 64 KB
-
Attention Is All You Need - one encoder self-attention at layer 5 of 6.png 1,196 × 648; 154 KB
-
Attention mechanism output.svg 465 × 241; 68 KB
-
Attention mechanism overview.svg 251 × 187; 28 KB
-
Attention-qkv.png 2,634 × 1,145; 234 KB
-
-
-
BERT embedding sequences.svg 605 × 195; 89 KB
-
BERT embeddings 01.png 1,426 × 532; 36 KB
-
BERT encoder-only attention.svg 532 × 252; 62 KB
-
BERT input embeddings.png 1,338 × 344; 13 KB
-
BERT masked language modelling task.png 1,426 × 708; 40 KB
-
BERT next sequence prediction task.png 1,426 × 738; 34 KB
-
BERT on multiple-choice question-answering.svg 481 × 267; 76 KB
-
BERT on sentence classification.svg 481 × 267; 53 KB
-
BERT on sentiment classification.svg 267 × 193; 27 KB
-
BERT on tagging.svg 497 × 267; 81 KB
-
BERT on two sequences.svg 481 × 267; 50 KB
-
Beta-but-Not-Gamma-Band-Oscillations-Index-Visual-Form-Motion-Integration-pone.0095541.s001.ogv 1.3 s, 160 × 120; 11 KB
-
-
Bidirectional RNN.png 1,426 × 700; 37 KB
-
-
-
Bipolar Rectified Linear Unit (BReLU).png 120 × 101; 1 KB
-
BPM input space wiki.pdf 1,239 × 1,752; 381 KB
-
BPM MLP wiki.pdf 1,239 × 1,752; 383 KB
-
Brainstem-and-Spinal-Cord-Circuitry-Regulating-REM-Sleep-and-Muscle-Atonia-pone.0024998.s001.ogv 16 s, 1,664 × 860; 1.39 MB
-
Caption 1.jpg 640 × 400; 10 KB
-
Cayley Tree Branch with Branching Ratio = 2.jpg 2,188 × 1,906; 1.05 MB
-
CerebCircuit.png 388 × 377; 23 KB
-
Characterization-of-the-Gbx1−−-Mouse-Mutant-A-Requirement-for-Gbx1-in-Normal-Locomotion-and-pone.0056214.s002.ogv 1 min 14 s, 480 × 360; 6.57 MB
-
Clasification.png 454 × 340; 455 KB
-
Closed Cayley Tree with Branching Ratio = 4.jpg 2,666 × 1,584; 1.14 MB
-
Codi 16bit cell.png 553 × 181; 46 KB
-
Codi chromosome start growth.png 583 × 177; 51 KB
-
Comparison of Loss functions for binary classification.png 1,920 × 756; 45 KB
-
Comparison of loss functions.png 1,545 × 811; 41 KB
-
Comparison of speed and accuracy of detectors.png 1,094 × 1,021; 363 KB
-
Competitive network.svg 436 × 398; 15 KB
-
Connectome extraction procedure.jpg 3,652 × 3,127; 1.11 MB
-
Continuous Bag of Words model (CBOW).svg 237 × 156; 21 KB
-
Continuous-Attractor-Network-Model-for-Conjunctive-Position-by-Velocity-Tuning-of-Grid-Cells-pcbi.1003558.s001.ogv 5 min 0 s, 1,500 × 1,000; 5.74 MB
-
Contrastive Language-Image Pretraining.png 2,162 × 762; 247 KB
-
Convolutional neural network, boundary conditions.png 1,426 × 475; 47 KB
-
Convolutional neural network, convolution worked example.png 1,426 × 1,000; 254 KB
-
Convolutional neural network, maxpooling.png 1,426 × 551; 42 KB
-
Cortical Columns.jpg 2,304 × 1,800; 1.85 MB
-
Cortical-Neurovascular-Coupling-Driven-by-Stimulation-of-Channelrhodopsin-2-pone.0046607.s001.ogv 35 s, 500 × 670; 5.11 MB
-
Decaying Sine Unit (DSU).png 3,000 × 2,000; 420 KB
-
Decoder RNN.png 1,426 × 613; 22 KB
-
Decoder self-attention with causal masking, detailed diagram.png 1,426 × 1,000; 40 KB
-
Deep RNN architecture.svg 267 × 301; 39 KB
-
-
-
Deep-Learning-Automates-the-Quantitative-Analysis-of-Individual-Cells-in-Live-Cell-Imaging-pcbi.1005177.s021.ogv 6.4 s, 1,220 × 1,020; 2.13 MB
-
Deep-Learning-Automates-the-Quantitative-Analysis-of-Individual-Cells-in-Live-Cell-Imaging-pcbi.1005177.s022.ogv 6.4 s, 1,280 × 1,080; 5.76 MB
-
Deep-Learning-Automates-the-Quantitative-Analysis-of-Individual-Cells-in-Live-Cell-Imaging-pcbi.1005177.s023.ogv 6.4 s, 1,220 × 1,020; 2.16 MB
-
Deep-Learning-Automates-the-Quantitative-Analysis-of-Individual-Cells-in-Live-Cell-Imaging-pcbi.1005177.s024.ogv 6.4 s, 1,220 × 1,020; 1.16 MB
-
Deep-Learning-Automates-the-Quantitative-Analysis-of-Individual-Cells-in-Live-Cell-Imaging-pcbi.1005177.s025.ogv 6.4 s, 1,280 × 1,080; 11.76 MB
-
Default-network-graph-maturation.jpeg 3,006 × 2,827; 588 KB
-
-
-
-
-
-
Diagram of the Microanatomy of Human Cerebellar Cortex-es.svg 512 × 497; 18 KB
-
Diagram of the Microanatomy of Human Cerebellar Cortex.svg 512 × 497; 18 KB
-
Diagrama Flujo red ART.png 490 × 620; 5 KB
-
DiagramElmanNet deutsch.png 2,051 × 736; 58 KB
-
DiagramElmanNet english.png 2,017 × 739; 52 KB
-
DiagramElmanNet.png 1,463 × 739; 28 KB
-
DiagramTDNN.png 956 × 2,383; 88 KB
-
Dibujo2.jpg 640 × 400; 13 KB
-
Dictionnaire Sparse Coding.png 2,400 × 1,800; 248 KB
-
Discriminative vs Generative Neural Networks (large).png 2,215 × 2,584; 3.27 MB
-
Discriminative vs Generative Neural Networks.png 1,071 × 1,250; 1.63 MB
-
Domino Analogy.jpg 2,479 × 1,379; 3.69 MB
-
Dropout mechanism.png 1,426 × 585; 61 KB
-
-
DZOpQ44X4AM8m t.jpg 2,048 × 1,152; 167 KB
-
Electrical-Responses-and-Spontaneous-Activity-of-Human-iPS-Derived-Neuronal-Networks-Characterized-Video1.ogv 28 s, 1,440 × 1,080; 5.79 MB
-
Elementary perceptron.jpg 2,126 × 1,024; 181 KB
-
ELMo embedding.png 1,426 × 260; 19 KB
-
ELMo LSTM.png 1,426 × 745; 56 KB
-
Emergence-of-Assortative-Mixing-between-Clusters-of-Cultured-Neurons-pcbi.1003796.s007.ogv 20 s, 342 × 312; 16.33 MB
-
Encoder cross-attention, computing the context vector by a linear sum.png 1,426 × 520; 16 KB
-
Encoder cross-attention, multiheaded version.png 1,426 × 1,150; 64 KB
-
Encoder cross-attention.png 1,426 × 570; 21 KB
-
Encoder self-attention, block diagram.png 1,426 × 520; 19 KB
-
Encoder self-attention, detailed diagram.png 1,426 × 958; 39 KB
-
-
-
-
-
-
-
Esquema RedeNeuralConvolucional.svg 589 × 172; 18 KB
-
Evil Shōki NN.svg 4,260 × 2,472; 3.16 MB
-
Example of a deep neural network.png 1,114 × 624; 178 KB
-
Exploring-the-Morphospace-of-Communication-Efficiency-in-Complex-Networks-pone.0058070.s007.ogv 41 s, 1,600 × 1,200; 6.15 MB
-
Exploring-the-Morphospace-of-Communication-Efficiency-in-Complex-Networks-pone.0058070.s008.ogv 42 s, 1,600 × 1,200; 4.49 MB
-
ExtendedCorrelationFunction.jpg 2,960 × 2,416; 300 KB
-
Fast-rcnn.svg 316 × 277; 78 KB
-
Faster-rcnn.svg 517 × 287; 91 KB
-
Fcell-10-1071961-g001.jpg 920 × 540; 141 KB
-
FederalGovernanceStructure.png 966 × 653; 78 KB
-
Feedforward-vs-feedback-driven-eye-movements.svg 661 × 248; 25 KB
-
Figura6.Marcha.jpg 1,313 × 721; 107 KB
-
Fitting a straight line to a data with outliers.png 1,011 × 610; 48 KB
-
Five scenarios of evolution from chaos to stagnation depending on selfishness level.ogv 2 min 5 s, 1,564 × 880; 89.78 MB
-
Fphy-08-525731.pdf 1,239 × 1,622, 8 pages; 2.64 MB
-
From-Spontaneous-Motor-Activity-to-Coordinated-Behaviour-A-Developmental-Model-pcbi.1003653.s006.ogv 1 min 31 s, 853 × 480; 1.8 MB
-
Fully connected architecture.pdf 2,310 × 3,247; 81 KB
-
Functional-Brain-Networks-Develop-from-a-“Local-to-Distributed”-Organization-pcbi.1000381.s009.ogv 49 s, 1,024 × 768; 18.46 MB
-
Gated Recurrent Unit 1.svg 412 × 283; 111 KB
-
Gated Recurrent Unit 2.svg 552 × 283; 171 KB
-
Gated Recurrent Unit 3.svg 552 × 277; 186 KB
-
Generative adversarial network.svg 176 × 205; 32 KB
-
Gia Dvali.webm 12 min 27 s, 640 × 360; 33.52 MB
-
Global Brain - centralized information processing.gif 400 × 300; 17 KB
-
Global Brain - columns and layes in neural structure.gif 749 × 818; 35 KB
-
Global Brain - exformation as invisible output.gif 735 × 558; 17 KB
-
Global Brain - human neurons forming communication patterns.gif 150 × 450; 5 KB
-
Global Brain - neural company (neuro-bionics).png 996 × 1,130; 374 KB
-
Global Brain - philosophical dualisms.gif 182 × 141; 17 KB
-
Global Brain - single neuron represents activity pattern.gif 450 × 450; 154 KB
-
Global Brain - supranational communication patterns.gif 400 × 300; 29 KB
-
Glutamatergic-Neurotransmission-from-Melanopsin-Retinal-Ganglion-Cells-Is-Required-for-Neonatal-pone.0083974.s001.ogv 3 min 0 s, 640 × 480; 4.08 MB
-
Glutamatergic-Neurotransmission-from-Melanopsin-Retinal-Ganglion-Cells-Is-Required-for-Neonatal-pone.0083974.s002.ogv 3 min 0 s, 640 × 480; 3.98 MB
-
Glutamatergic-Neurotransmission-from-Melanopsin-Retinal-Ganglion-Cells-Is-Required-for-Neonatal-pone.0083974.s003.ogv 3 min 1 s, 720 × 480; 10.32 MB
-
Glutamatergic-Neurotransmission-from-Melanopsin-Retinal-Ganglion-Cells-Is-Required-for-Neonatal-pone.0083974.s004.ogv 3 min 1 s, 720 × 480; 9.35 MB
-
GoogLeNet architecture (rotated).svg 427 × 145; 80 KB
-
GoogLeNet architecture.svg 148 × 439; 67 KB
-
Growing Cosine Unit (GCU) activation function.png 3,000 × 2,186; 273 KB
-
-
GWNN and GWR prediction differences.jpg 1,200 × 1,179; 110 KB
-
Hidden space linear classifier on Gaussian data.png 500 × 350; 7 KB
-
Hindmarsh-Rose membrane potential.png 1,032 × 593; 7 KB
-
-
Hypothesized Propagation of Activity in Human Neocortex.jpeg 611 × 538; 26 KB
-
-
-
-
Imgmulticamadas.png 278 × 205; 21 KB
-
Imgperceptron.png 404 × 166; 19 KB
-
-
Inception dimension-reduced module.svg 517 × 155; 40 KB
-
Inception-v3 model module.png 1,426 × 450; 28 KB
-
Inception-v3 model.png 1,426 × 350; 14 KB