User:Methodios/Bernburg 1

Bernburg 1

Pawel Kröger

edit

er legte zuvor das Abitur im Fach Mathematik ab


1972 DDR Pawel Kröger 29 July 1958


Jahr Land P1 P2 P3 P4 P5 P6 Summe Rang Preis Abs Rang

  • 1973 Deutsche Demokratische Republik 6 0 1 6 6 8 27 19 85,48% Silbermedaille
  • 1972 Deutsche Demokratische Republik 5 6 7 7 7 8 40 1 100,00% Goldmedaille, Spezialpreis

http://www.imo-official.org/participant_r.aspx?id=10230


educated at University of Erlangen-Nuremberg

academic degree Doctor rerum naturalium end time 1986 1 reference DNB editions 870990586

  • Vergleichssätze für Diffusionsprozesse, Kröger, Pawel (Verfasser), Erscheinungsdatum: 1986, Umfang/Format 109 S. ; 21 cm, Hochschulschrift Erlangen, Nürnberg, Univ., Diss., 1986, Schlagwörter: Differentialgleichungen / Diffusionsprozesse ; Diffusion / Vergleichssätze f. ̃prozesse, Sachgruppe(n) 27 Mathematik ; 0300 Mathematik, Physik, Astronomie https://d-nb.info/870990586
  • doctoral advisor: Heinz Bauer, 1 reference, stated in Mathematics Genealogy Project

https://mathgenealogy.org/id.php?id=26511

Bestätigte E-Mail-Adresse bei uni-jena.de - 20 Arbeiten von 1989 bis 2018

https://scholar.google.com/citations?user=c-k-ujUAAAAJ

Kröger, Pawel

MR Author ID: 244139

Earliest Indexed Publication: 1975

Total Publications: 23

Total Citations: 199

https://mathscinet.ams.org/mathscinet/MRAuthorID/244139


Photography

edit
 
Mit elf Jahren studiert der Leipziger Schüler Pawel Kröger bereits an der Sektion Mathematik der Karl-Marx-Universität.

Photography

"Leipzig, Universität, Mathematikvorlesung Zentralbild Raphael 30.1.70 Leipzig: Jüngster Mathematikstudent- Mit elf Jahren studiert der Leipziger Schüler Pawel Kröger bereits an der Sektion Mathematik der Karl-Marx-Universität. Er kann mit seinen Kommilitonen des ersten Studienjahres Schritt halten. II DDR M Vorigen Jahr legte Pawel das Abitur im Fach Mathematik ab, den übrigen Unterricht erhält er jedoch seinem Alter entsprechend in der Klasse 5a der Leipziger Nikolai-Rumjanzew-Oberschule, wo seine Mutter als Lehrerin tätig ist. Bitte beachten Sie dazu unser Foto J0130-07-1N"

See also:

https://geheimtipp-leipzig.de/neuigkeiten-aus-der-vergangenheit/

In der LVZ vom 1. Februar 1970 lernen wir den damals elfjährigen Pawel Kröger kennen, der seit September 1969 an der Sektion Mathematik der Karl-Marx-Universität Leipzig studierte und ansonsten in eine 5. Klasse der Nikolai-Rumjanzew-Oberschule (Ratzelstraße) ging. Was ist wohl aus diesem Mathe-As geworden?

https://geheimtipp-leipzig.de/neuigkeiten-aus-der-vergangenheit/zeitung-be-1/

Methodios (Diskussion) 12:38, 23 November 2022 (UTC)

Biography

edit

29. Juli 1958


Besuchte Schulen von Pawel

1965-1969:

55. POS "Nikolai Rumjanzew" Grünau-Siedlung, Leipzig

1969-1973:

49. POS "Ho Chi Minh", Leipzig

https://www.stayfriends.de/Personen/Leipzig/Pawel-Kroeger-P-LEKGJ-P


Dr. nat. 1986 Erlangen


"Kröger, Pawel: Goldmedaille und Zusatzpreis 14. IMO, Silbermedaille 15. IMO. 49.

OS Leipzig, ab 70 Schule und Studium der Mathematik nach Sonderplan an der Uni Leipzig, 77 Diplom, danach Dissertationsprojekt (Betreuer G. Laßner),


79 Ausreise in die BRD,

Promotion (86, Betreuer H. Bauer) und Habilitation in Mathematik, bis 95 an der Uni Erlangen,

95–98 USA,

seit 98 Valparaíso (Chile)

Schulzeit: langjahriger Frühstarter, bereits als Schüler der Klasse 4 Teilnehmer der DDR-Olympiade in Klasse 10, ab 70 Schule und Studium der Mathematik nach Sonderplan an der Uni Leipzig (Betreuung durch R. Schimming, 71–73 K. Schmudgen, Diplombetreuer G. Laßner)"

https://lsgm.uni-leipzig.de/lsgm/Geschichte/IMO-Leipzig.pdf


Antecedentes académicos email: [email protected]

Participación en olimpiadas de matemáticas:

IMO 1972: Medalla de oro, Premio especial imo-official1972

IMO 1973: Medalla de plata imo-official1973

Doctorado Universität Erlangen-Nürnberg 1986

Habilitación Universität Erlangen-Nürnberg 1993

Coordinaciones UTFSM:

MAT-023 semestres 1-2000, 2-2007, 1-2008, 2-2008

MAT-022 semestres 2-2003, 1-2004

MAT-024 semestre 2-2000

Página del curso MAT-023: MAT-023 2-2008

Maestro destacado UTFSM: 2007, 2008, 2009, 2012, 2013

Investigación, links: Research Pawel Kröger

Autor Pawel Kröger en scholar.google.com: Pawel Kröger

Pawel Kröger en ResearchGate

https://sites.google.com/site/pawelkroeger/curriculum-1



Dr. rer. nat. Friedrich-Alexander-Universität Erlangen-Nürnberg 1986 Germany Dissertation: Vergleichssätze für Diffusionsprozesse Advisor: Heinz Bauer

No students known.

https://www.mathgenealogy.org/id.php?id=26511




28

Publications

1,233

Reads

410

Citations

Introduction

Pawel does research in Spectral Geometry, Analysis and Stochastic Processes.

https://sites.google.com/site/pawelkroeger

Skills and Expertise

Mathematical Analysis

Real and Complex Analysis

Publications
edit

https://www.researchgate.net/profile/Pawel-Kroeger

Publications (28)

Regular Boundary Points and Exit Distributions for Parabolic Differential Operators
edit

Regular Boundary Points and Exit Distributions for Parabolic Differential Operators


https://www.researchgate.net/publication/319634339_Regular_Boundary_Points_and_Exit_Distributions_for_Parabolic_Differential_Operators

Article

Full-text available

Jul 2018

Pawel Kröger

Abstract

We show that the regularity of a boundary point for a parabolic differential operator in divergence form is under some geometric assumptions equivalent to the property that the density of the exit distribution for a time reversed process vanishes at that point. We give regularity and irregularity criterions for equations with variable coefficients. Thus, the known result on the Fulks measure that states that the density with respect to the Lebesgue measure vanishes at the point opposite to the center of the heat ball (see Fulks (Proc. Am. Math. Soc. 17, 6–11 1966)) can be extended to exit distributions for more general regions and parabolic differential operators.

Keywords Regular boundary points ·Exit distributionsMathematics Subject Classification (2010) 31B25 ·60J60

View

July 2018 Potential Analysis 49(3)

49(3)

DOI:10.1007/s11118-017-9652-8

Received: 29 April 2016 / Accepted: 4 September 2017 / Published online: 9 September 2017 © Springer Science Business Media B.V. 2017

Pawel Kröger

[email protected]

Departamento de Matematica, UTFSM, Valparaıso, Chile


FIG. 1: (a) Complex Q 2 plane; (b) complex z plane where z = ln(Q 2 /Q...

FIG. 2: |β(F (z))| as a function of z = x iy for the beta function...

FIG. 9: The function e Fr(t) appearing in the integral (A14) of r (LB)...

Perturbative QCD in acceptable schemes with holomorphic coupling
edit

Perturbative QCD in acceptable schemes with holomorphic coupling

https://www.researchgate.net/publication/263057317_Perturbative_QCD_in_acceptable_schemes_with_holomorphic_coupling

Article

Full-text available

May 2015

Carlos Contreras

G. Cvetic

Koegerler Reinhart[...]

Oscar Orellana

View

World Scientific

International Journal of Modern Physics A

30(15)

DOI:10.1142/S0217751X15500827

Authors:

Carlos Contreras

Universidad Técnica Federico Santa María Valparaíso, Chile

G. Cvetic

Universidad Técnica Federico Santa María

Koegerler Reinhart

Pawel Kröger

Abstract and Figures

Perturbative QCD in mass independent schemes leads in general to running coupling a(Q²) which is nonanalytic (nonholomorphic) in the regime of low spacelike momenta |Q²|≲1 GeV². Such (Landau) singularities are inconvenient in the following sense: evaluations of spacelike physical quantities 𝒟(Q²) with such a running coupling a(κQ²)(κ~1) give us expressions with the same kind of singularities, while the general principles of local quantum field theory require that the mentioned physical quantities have no such singularities. In a previous work, certain classes of perturbative mass independent beta functions were found such that the resulting coupling was holomorphic. However, the resulting perturbation series showed explosive increase of coefficients already at N⁴LO order, as a consequence of the requirement that the theory reproduce the correct value of the τ lepton semihadronic strangeless decay ratio rτ. In this paper, we successfully extend the construction to specific classes of perturbative beta functions such that the perturbation series do not show explosive increase of coefficients, the perturbative coupling is holomorphic, and the correct value of rτ is reproduced. In addition, we extract, with Borel sum rule analysis of the V A channel of the semihadronic strangeless decays of τ lepton, reasonable values of the corresponding D = 4 and D = 6 condensates.

(a) Complex Q 2 plane; (b) complex z plane where z = ln(Q 2 /Q 2 in ); the non-timelike stripe is −π ≤ Imz < π.

(a) Complex Q 2 plane; (b) complex z plane where z = ln(Q 2 /Q 2 in ); the non-timelike stripe is −π ≤ Imz < π. … |β(F (z))| as a function of z = x iy for the beta function (8) with f (Y ) having the form (10) with: (a) r 2 = 0; (b) r 2 = −2.

|β(F (z))| as a function of z = x iy for the beta function (8) with f (Y ) having the form (10) with: (a) r 2 = 0; (b) r 2 = −2. … The function e Fr(t) appearing in the integral (A14) of r (LB) τ : (a) as function of t; (b) as function of ln t.

The function e Fr(t) appearing in the integral (A14) of r (LB) τ : (a) as function of t; (b) as function of ln t. … Figures - uploaded by G. Cvetic


Invariance of cones and comparison results for some classes of diffusion processes
edit

Invariance of cones and comparison results for some classes of diffusion processes

https://www.researchgate.net/publication/226100504_Invariance_of_cones_and_comparison_results_for_some_classes_of_diffusion_processes

Chapter

Apr 2006

Pawel Kröger

Without Abstract

View

DOI:10.1007/BFb0043783

In book: Stochastic Differential Systems (pp.171-182)

Authors: Pawel Kröger


An extension of Günther?s volume comparison theorem
edit

An extension of Günther?s volume comparison theorem

https://www.researchgate.net/publication/225889482_An_extension_of_Gnthers_volume_comparison_theorem

Article

Aug 2004

Pawel Kröger

Abstract

The aim of this note if to give an extension of a classical volume comparison theorem for Riemannian manifolds with sectional curvature bounded above (see Günther, P. ‘‘Einige Sätze über das Volumenelement eines Riemannschen Raumes’’, Publ. Math. Debrecen 7, 78–93 (1960)). For the case of a n-dimensional simply connected complete Riemannian manifold with nonpositive sectional curvature our theorem states that the function t↦area(S t (p))/t n−2 is convex for every p∈M where S t (p) denotes the sphere of radius t with center p. In view of area(S 0 (p))=0, it is easy to see that our theorem implies the classical result. A similar result holds true for simply connected manifolds with sectional curvature bounded above by a negative constant.


View

August 2004

Mathematische Annalen

329(4):593-596

DOI:10.1007/s00208-004-0520-7


A short constructive proof of Jordan's decomposition theorem
edit

A short constructive proof of Jordan's decomposition theorem

https://www.researchgate.net/publication/2109917_A_short_constructive_proof_of_Jordan's_decomposition_theorem

Article

Jan 2004

Pawel Kröger

Abstract

Although there are many simple proofs of Jordan's decomposition theorem in the literature (see [1], the references mentioned there, and [2]), our proof seems to be even more elementary. In fact, all we need is the theorem on the dimensions of rang and kernel and the existence of eigenvalues of a linear transformation on a nontrivial finite dimensional complex vector space.


View

January 2004

SourcearXiv

Gradient Estimates for the Ground State Schrödinger Eigenfunction and Applications
edit

Gradient Estimates for the Ground State Schrödinger Eigenfunction and Applications

https://www.researchgate.net/publication/2860780_Gradient_Estimates_for_the_Ground_State_Schrodinger_Eigenfunction_and_Applications

Article

Jul 2002

Rodrigo Ba

Nuelos And

Pawel Kröger

Abstract

Introduction be a bounded convex domain in Euclidean space R : Consider the Schr?odinger operator 4 V for a nonnegative convex potential V under Dirichlet boundary conditions. Under these assumptions the eigenvalues are discrete and satisfy 0 < 3; : : : . When the potential is identically zero we will just write i; for these eigenvalues. The quantity is called the spectral gap. It was conjectured by M. van den Berg [4] that can be estimated below by 3 where d denotes the diameter of (See also [1], [2] and Problem 44 in [13].) The lower bound =4d was obtained in [11]. This bound was subsequently improvement to in [10] (see also [8]). For V = 0 and planar convex domains which are symmetric in both axes, Smits [12] obtained a similar lower bound with the diameter replaced by the length of the longest axes of symmetry. The symmetry assumption is needed in order to apply a result by L. Payne [9] which guarantees the existence of an


View

July 2002

Authors:

Rodrigo Ba

Nuelos And

Pawel Kröger


Gradient Estimates for the Ground State Schrödinger Eigenfunction and Applications
edit

Gradient Estimates for the Ground State Schrödinger Eigenfunction and Applications

https://www.researchgate.net/publication/227165749_Gradient_Estimates_for_the_Ground_StateSchrodinger_Eigenfunction_and_Applications

Article

Full-text available

Dec 2001

Rodrigo Banuelos

Pawel Kröger

Abstract

Let Ω be a planar convex domain which is symmetric with respect to each coordinate axes. In this paper we give a simple and very short proof, based on the maximum principle, of the sharp lower bound for the spectral gap of the Dirichlet Laplacian in Ω.

View

December 2001

Communications in Mathematical Physics

224(2):545-550

DOI:10.1007/s002200100551

Authors:

Rodrigo Banuelos

Purdue University

Pawel Kröger

Mathematics Department, Purdue University, West Lafayette, IN 47907 E-mail address:[email protected]

Departamento de Matematica, UTFSM, Valparaıso, Chile E-mail address:[email protected]


On the Placement of an Obstacle or a Well so as to Optimize the Fundamental Eigenvalue Evans M. Harrell II
edit

On the Placement of an Obstacle or a Well so as to Optimize the Fundamental Eigenvalue Evans M. Harrell II

https://www.researchgate.net/publication/2638549_On_the_Placement_of_an_Obstacle_or_a_Well_so_as_to_Optimize_the_Fundamental_Eigenvalue_Evans_M_Harrell_II

Article

Full-text available

Jun 2000

Evans Harrell

Pawel Kröger

Kazuhiro Kurata

Abstract

We investigate how to place an obstacle B within a domain# in Euclidean space so as to maximize or minimize the principal Dirichlet eigenvalue for the Laplacian on# n B. The shape of B is #xed a priori #usually as a ball#, and only its position varies. We establish that for a certain class of domains the minimizing B is in contact with @ while the maximizing B is in the interior, typically at the center #supposing that the domain is su#ciently symmetric for this statement to be meaningful#. Under special circumstances we can characterize the optimizing con#gurations with multiple obstacles. Our method relies on the Hadamard perturbation formula and a moving plane analysis. Similar facts are proved when the hard obstacle is replaced by a central nonnegative potential function supported in B, and we consider the Schr#odinger operator with this potential. Complementary facts are proved when the obstacle is replaced by a central nonpositive potential function. I. Introduction In thi..


View

June 2000

SIAM Journal on Mathematical Analysis

33(1)

DOI:10.1137/S0036141099357574

SourceCiteSeer

Authors:

Evans Harrell

Georgia Institute of Technology

Pawel Kröger

Kazuhiro Kurata

Tokyo Metropolitan Universit


On upper bounds for high order Neumann eigenvalues of convex domains in Euclidean space
edit

On upper bounds for high order Neumann eigenvalues of convex domains in Euclidean space

Article

Jun 1999

Pawel Kröger

We derive sharp upper bounds for eigenvalues of the Laplacian un- der Neumann boundary conditions on convex domains with given diameter in Euclidean space. We use the Brunn-Minkowski theorem in order to reduce the problem to a question about eigenvalues of certain classes of Sturm-Liouville problems.

View

On upper bounds for high order neumann eigenvalues of convex domains in euclidean space

Article

Jan 1999

Pawel Kröger

We derive sharp upper bounds for eigenvalues of the Laplacian under Neumann boundary conditions on convex domains with given diameter in Euclidean space. We use the Brunn-Minkowski theorem in order to reduce the problem to a question about eigenvalues of certain classes of Sturm-Liouville problems.

View

On the Ranges of Eigenfunctions on Compact Manifolds

Article

Nov 1998

Pawel Kröger

The aim of this note is to give a sharp upper bound on the ratio [formula] where φ is a nonconstant eigenfunction for the Laplace–Beltrami operator on a connected compact Riemannian manifold without boundary. This ratio is always positive, since maxφ>0 and minφ<0 for every nonconstant eigenfunction. We assume that maxφ≥−minφ, in order to simplify...

View

Isoperimetric-type bounds for solutions of the heat equation

Article

Mar 1997

Rodrigo Banuelos

Pawel Kröger

View

On explicit bounds for the spectral gap on compact manifolds

Article

Jan 1997

Pawel Kröger

View

On the ground state eigenfunction of a convex domain in Euclidean space

Article

Feb 1996

Pawel Kröger

We study the first eigenfunction f1 of the Dirichlet Laplacian on a convex domain in Euclidean space. Elementary properties of Bessel functions yield that $$\left\| {\phi _1 } \right\|_\infty /\left\| {\phi _1 } \right\|_2 \to \infty$$ if D is a sector in Euclidean plane with area 1 and the angle tends to 0. We aim to characterize those domains D...

View

A counterexample in parabolic potential theory

Article

Dec 1995

Pawel Kröger

View

Estimates for Sums of Eigenvalues of the Laplacian

Article

Nov 1994

Pawel Kröger

The aim of this paper is to give bounds for the eigenvalues of the Laplacian on a domain in Euclidean space and on a compact Riemannian manifold. First, we consider the eigenvalue problem for the Laplacian on a bounded domain in Euclidean space under Dirichlet and Neumann boundary conditions. Our method for obtaining an upper bound for sums of eige...

View

Regularity conditions on parabolic measures

Article

Oct 1994

Pawel Kröger

Without Abstract

View

H�lder continuity of normalized solutions of the Schr�dinger equation

Article

Jan 1993

Pawel Kröger

Karl-Theodor Sturm

Definition 1. Assume that V~ L~~ A function u is called local weak solution of the Schr6dinger equation (-�89 V)u = 0 on an open subset D c R d if u ~ L]~162 V. u ~ L~~ and 1 f u. ~r f. v.u. r = 0 v~, ~ ~e~mp(O). 2D o

View

ON The spectral gap for compact manifolds

Article

Sep 1992

Pawel Kröger

View

Upper Bounds for the Neumann Eigenvalues on a Bounded Domain in Euclidean Space

Article

Jun 1992

Pawel Kröger

Let μk be the the kth eigenvalue for the Neumann boundary value problem with respect to the Laplace operator on a bounded domain Ω with piecewise smooth boundary in Rn. Weyl's asymptotic formula states that . We aim to give an upper bound for partial sums ∑jk = 1 μj of eigenvalues. Our bound depends only on the volume of Ω and is to some extent asy...

View

A Counterexample for $L^1$-Estimates for Parabolic Differential Equations

Article

Sep 1992

Pawel Kröger

We show that the Dini (1) continuity of the coefficients of a linear parabolic differential operator in non-divergence form is in some sense the weakest condition such that the solutions of the corresponding initial value problem satisfy an L 1 -estimate. Here a function is called Dini (α) continuous for a positive number α if the modulus of contin...

View

Comparison theorems for diffusion processes

Article

Oct 1990

Pawel Kröger

We prove comparison theorems for diffusion processes onR d. From these theorems we derive lower and upper bounds for the transition probabilities of a diffusion process. In contrast to the known estimates for fundamental solutions of parabolic equations our bounds do not depend on the moduli of continuity of the coefficients of the differential ope...

View

Harmonic spaces associated with parabolic and elliptic differential operators

Article

Nov 1989

Pawel Kröger

View

Comparaison de diffusions. (Comparison of diffusion processes)
edit

https://www.researchgate.net/publication/266048003_Comparaison_de_diffusions_Comparison_of_diffusion_processes

Article

Jan 1987

Pawel Kröger

View

Comparaison de diffusions. (Comparison of diffusion processes)

January 1987

Comptes Rendus de l Académie des Sciences - Series I - Mathematics


Derivationen in L (D)
edit

https://www.researchgate.net/publication/266955156_Derivationen_in_L_D

Article

Jan 1975

Pawel Kröger

View

Derivationen in L (D)

January 1975

Wissenschaftliche Zeitschrift der Karl-Marx-Universität Leipzig.

Mathematisch-naturwissenschaftliche Reihe 24



Estimates for eigenvalues of the Laplacian

Article

Pawel Kröger

G. Pólya conjectured in 1954 that the first term in Weyl’s asymptotic formula is a lower bound for the Dirichlet eigenvalues and an upper bound for the Neumann eigenvalues of the Laplacian on a domain in Euclidean space. Although Pólya succeeded in proving his conjecture for a special class of domains with the property that the Euclidean space can...

View

Regularity properties of parabolic measures

Article

Pawel Kröger

View


Vergleichssätze für Diffusionsprozesse. (Comparison theorems for diffusion processes)
edit

Vergleichssätze für Diffusionsprozesse. (Comparison theorems for diffusion processes)

https://www.researchgate.net/publication/242220290_On_upper_bounds_for_high_order_Neumann_eigenvalues_of_convex_domains_in_Euclidean_space

Article

Pawel Kröger

edit

https://sites.google.com/site/pawelkroeger

Research related information

email: [email protected]

Publications: scholar.google MathSciNet Scopus zbMATH orcid.org


The best constant in the Poincaré inequality on a compact Riemannian manifold and related topics

An estimate under a lower bound on the Ricci curvature and an upper bound for the diameter was obtained in P. Kröger "On the spectral gap for compact manifolds",

J. Differ. Geom. 36, 315--330 (1992), Spectral gap compact manifolds.pdf . The final publication is available at proyecteuclid.org .

That estimate is sharp for all manifolds of a given dimension that satisfy the above bounds. The proof is based on the maximum principle technique.

The main problem in earlier works by S. T. Yau, P. Li and S. T. Yau, J. Q. Zhong and H. C. Yang was that the ranges of the eigenfunctions are not symmetric with respect

to the origin. That motivates our paper "On the ranges of eigenfunctions on compact manifolds", Bull. London Math. Soc. 30, 651--656 (1998)

Ranges of Eigenfunctions.pdf Ranges of Eigenfunctions2.pdf where sharp bounds for the quotients max u/(-min u) for eigenfunctions u are obtained.


Estimates for sums of eigenvalues of the Laplacian

Our estimates are based on the variational characterization of eigenvalues as applied by P. Li and S. T. Yau to the task of

estimating Dirichlet eigenvalues. We applied similar techniques to Neumann eigenvalues in P. Kröger "Upper bounds for

the Neumann eigenvalues on a bounded domain in Euclidean space", J. Funct. Anal. 106, 353--357 (1992)

https://doi.org/10.1016/0022-1236(92)90052-K Upper bounds Neumann eigenvalues.pdf .

Our aim in P. Kröger "Estimates for sums of eigenvalues of the Laplacian", J. Funct. Anal. 126, 217--227 (1994)

https://doi.org/10.1006/jfan.1994.1146 Sums of eigenvalues.pdf was to complement the previous bounds by upper bounds

for Dirichlet eigenvalues and lower bounds for Neumann eigenvalues.


Upper bounds for Neumann eigenvalues of convex domains in Euclideans space

We improve the bounds obtained earlier by S. Y. Cheng to sharp bounds for convex domains with given diameter in P. Kröger

"On upper bounds for high order Neumann eigenvalues of convex domains in Euclidean space", Proc. Amer. Math. Soc. 127,

1665--1669 (1999) Upper bounds Neumann eigenvalues convex.pdf .


A second-order differential inequality on area growth

We extend Günther's volume comparison theorem in order to obtain a second-order differential inequality.

Günther's theorem can be obtained from our theorem by integration.

P. Kröger "An extension of Günther's volume comparison theorem", Math. Ann. 329, 593--596 (2004)

The final publication is available at Springer via: https://doi.org/10.1007/s00208-004-0520-7 Günther's Volume Comparison.pdf.


Gradient estimates for solutions of the Schrödinger equation and the heat equation

Both articles are joint work with R. Bañuelos (Purdue) and are based on the maximum principle techique: R. Bañuelos, P. Kröger

"Gradient estimates for the ground state Schrödinger eigenfunction and applications", Comm. Math. Phys. 224, 545--550 (2001) with link to final

publication Springer https://doi.org/10.1007/s002200100551 Gradient estimates.pdf and "Isometric-type bounds for solutions of the heat equation",

Indiana Univ. Math. J. 46, 83--91 (1997) with link to Indiana Univ. Math. J.: Isoperimetric Bounds.


Potential theory, regularity of solutions of elliptic and parabolic equations

The papers P. Kröger "Regular Boundary Points and Exit Distributions for Parabolic Differential Operators", Potential Analysis 49, 203--207 (2018) with

Springer link to .pdf: Regular Boundary Points.pdf , P. Kröger "A counterexample in parabolic potential theory", Mathematika 42, 392--396 (1995)

Counterexample parabolic potential.pdf and P. Kröger "Harmonic spaces associated with parabolic and elliptic differential operators", Math. Ann. (1989)

available at Springer via: https://doi.org/10.1007/BF01455064 Springer link: Harmonic Spaces Parabolic Elliptic Operators deal with problems from potential theory.

The article with K.-Th. Sturm (Bonn) is concerned with Hölder continuity of solutions of the Schrödinger equation. It turns out that

quotients of solutions are more regular that the solutions themselves: P. Kröger, K.-Th. Sturm "Hölder continuity of normalized solutions of Schrödinger equations",

Math. Ann. 297, 663--670 (1993) and final publication available at Springer via: https://doi.org/10.1007/BF01459522 Hölder continuity Schrödinger.pdf.

The articles P. Kröger, "Regularity conditions on parabolic measures", Ark. Mat. 32, 373--391 (1994) https://doi.org/10.1007/BF02559577

Regularity parabolic measures.pdf and P. Kröger, "A counterexample for L1-estimates for parabolic differential equations", Z. Anal. Anwend. 11, 401--406 (1992)

Counterexample L^1 estimates.pdf deal with singular solutions.


Main Papers (with links)

Regular Boundary Points and Exit Distributions for Parabolic Differential Operators. Potential Analysis 49, 203--207 (2018)

Springer link to .pdf: Regular Boundary Points

An extension of Günther's volume comparison theorem. Math. Ann. 329, 593--596 (2004)

The final publication is available at Springer via: https://doi.org/10.1007/s00208-004-0520-7 Günther's Volume Comparison.pdf

(with R. Bañuelos) Gradient estimates for the ground state Schrödinger eigenfunction and applications.

Comm. Math. Phys. 224, 545--550 (2001) The final publication is available at Springer via: https://doi.org/10.1007/s002200100551 Gradient estimates.pdf

(with E. Harrell and K. Kurata) On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue.

SIAM J. Math. Anal. 33, 240--259 (2001) https://doi.org/10.1137/S0036141099357574 Placement Obstacle Eigenvalue.pdf

On upper bounds for high order Neumann eigenvalues of convex domains in Euclidean space.

Proc. Amer. Math. Soc. 127, 1665--1669 (1999) https://doi.org/10.1090/S0002-9939-99-04804-2 Upper bounds Neumann eigenvalues convex.pdf

On the ranges of eigenfunctions on compact manifolds. Bull. London Math. Soc. 30, 651--656 (1998) Ranges of Eigenfunctions.pdf Ranges of Eigenfunctions2.pdf

On explicit bounds for the spectral gap on compact manifolds. Soochow J. Math. 23, 339--344 (1997) Explicit bounds spectral gap.pdf

(with Bañuelos, R.) Isometric-type bounds for solutions of the heat equation. Indiana Univ. Math. J. 46, 83--91 (1997)

Link to Indiana Univ. Math. J.: Isoperimetric Bounds

On the ground state eigenfunction of a convex domain in Euclidean space. Potential Anal. 5, 103--108 (1996)

The final publication is available at Springer via: https://doi.org/10.1007/BF00276699 Ground state convex domain.pdf

Estimates for eigenvalues of the Laplacian. In: Proc. of the ICPT 94. Walther de Gruyter.

A counterexample in parabolic potential theory. Mathematika 42, 392--396 (1995) https://doi.org/10.1112/S0025579300014662

Counterexample parabolic potential.pdf

Regularity conditions on parabolic measures. Ark. Mat. 32, 373--391 (1994) https://doi.org/10.1007/BF02559577 Regularity parabolic measures.pdf

Estimates for sums of eigenvalues of the Laplacian. J. Funct. Anal. 126, 217--227 (1994) https://doi.org/10.1006/jfan.1994.1146 Sums of eigenvalues.pdf

(with Sturm, K.-Th.) Hölder continuity of normalized solutions of Schrödinger equations. Math. Ann. 297, 663--670 (1993)

The final publication is available at Springer via: https://doi.org/10.1007/BF01459522 Hölder continuity Schrödinger.pdf

On the spectral gap for compact manifolds. J. Differ. Geom. 36, 315--330 (1992) Spectral gap compact manifolds.pdf, final publication available at proyecteuclid.org

Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space. J. Funct. Anal. 106, 353--357 (1992)

https://doi.org/10.1016/0022-1236(92)90052-K Upper bounds Neumann eigenvalues.pdf

A counterexample for L1-estimates for parabolic differential equations. Z. Anal. Anwend. 11, 401--406 (1992) Counterexample L^1 estimates.pdf

Harmonic spaces associated with parabolic and elliptic differential operators, Math. Ann. 285 (3), 393-403 (1989)

The final publication is available at Springer via: https://doi.org/10.1007/BF01455064, Springer link: Harmonic Spaces Parabolic Elliptic Operators.


Other Web points of interest: ResearchGate Mathematics Genealogy Project IMO official 1972 IMO official 1973

Zeitschrift Alpha

edit

alpha (vollständiger Titel alpha – Mathematische Schülerzeitschrift) war eine vom Verlag Volk und Wissen in der DDR herausgegebene mathematische Zeitschrift für Schüler. Ihre erste Ausgabe erschien 1967. Es gab sechs Hefte pro Jahr. Chefredakteur im über fünfzehnköpfigen Redaktionskollegium war während der ersten zwanzig Jahre der Leipziger Mathematiklehrer Johannes Lehmann (1922–1995). Die Auflagenhöhe betrug zeitweilig knapp 100.000.[1]

Die Artikel in den 32-seitigen Heften, die über den Unterrichtsstoff hinausgingen und das Interesse an der Mathematik wecken sollten, stammten von Lehrern, Hochschullehrern und Wissenschaftlern und behandelten mathematische Methoden und Aufgaben, naturwissenschaftliche Themen mit mathematischem Hintergrund, Biographien usw. Sie waren jeweils gekennzeichnet, ab welcher Klassenstufe sie geeignet waren.

Zusätzlich gab es einige Seiten zum alpha-Wettbewerb. Pro Klassenstufe wurden etwa sechs Aufgaben aus den Bereichen Mathematik, Physik und Chemie veröffentlicht. Teilnehmer konnten Aufgaben ihrer Klassenstufe oder höherer Klassenstufen lösen. Erwachsene lösten Aufgaben der Klassenstufe 11/12. Eingesandte Lösungen wurden mit „sehr gut gelöst“, „gut gelöst“ oder „gelöst“ bewertet. Zum Wettbewerbsende wurden alle Lösungskarten eingesandt, um das alpha-Abzeichen in Gold, Silber oder Bronze zu erhalten. In der Zeitschrift erschienen Listen, über wie viele Jahre ein Schüler bereits erfolgreich am Wettbewerb teilgenommen hatte.