An edge labeling approach to concave polygon
clipping

Klamer Schutte

PREPRINT submitted 7 July 1995 to ACM Transactions on Graphics

Correspondence

K. Schutte

Pattern Recognition Group
Delft University of Technology
Lorentzweg 1

2628 CJ Delft

The Netherlands

e-mail: klamer@ph.tn.tudelft.nl
phone: +31-15-786054

telefax: +31-15-626740

Abstract

This paper describes an algorithm to perform clipping of two possibly concave
polygons. The approach labels the edges of the input polygons. This labeling is
used in classifying the resulting polygons in the sets AN B, A\ B and B\ A.
It is shown that its worst-case time complexity is not worse than the worst-case
complexity of the problem of polygon clipping itself. Suggestions are made how the
average time complexity can be improved.

1 Introduction

The process of clipping two polygons is needed in applications ranging from all types
of computer graphics applications to path planning and image processing[1]. The
polygon clipping algorithm described in this paper calculates the analytical sets of
the intersection and the difference of two input 2-D polygons that may be concave.

In literature some approaches to polygon clipping are described. Weiler and Ather-
ton [4, 5] describe an approach which doubles the input polygons in an inside and
an outside contour. Intersection points between the double contoured polygons are
calculated. Using a given set of rules the output polygons are created. The disad-
vantage of this approach is that the set of rules given does not cater for all special

cases possible. Sechrest and Greenberg [2] describe an approach which is based on
horizontal strips. A strip is bounded by events such as vertices and edge crossings.
Vatti [3] uses the same notion of strips. The problem of both strip-based approaches
is that special cases arise with more then one event on a strip bound. An example of
such a special case is a horizontal line. Schutte [1, appendix A] gives an algorithm
which is based on labeling edges. The algorithm described by Vatti can cope with
polygons with holes and self-intersecting polygons. The algorithms described by
Weiler and Atherton, and by Sechrest and Greenberg can deal with polygons with
holes using a method similar to the one described in section 7.2.

The algorithm described in this paper is very similar to the algorithm given in [1,
appendix A]. The difference is that the algorithm described in this paper can cope
with background holes between the input polygons.

Initial constraints set to the input polygons are:

e The polygons should not have holes.
e The polygons should not be self-intersecting.

e The polygons are clockwise oriented.

In section 7 is shown how the algorithm can be augmented to circumvent these
constraints.

2 The basic algorithm

Figure 1: Two input polygons. The area shared by the polygons is shaded with the
darkest grey.

The clipping process consists of the following steps:

1. Calculate the intersections between the two input polygons A and B. This
results in the same polygons, with the difference that the intersection points
with the other polygon are added as vertices to the polygons.

2. Label the edges from both polygons to Inside, Shared, or Outside. Inside
means that an edge is inside the other polygon. Shared means that both
polygons share this edge. Outside means that an edge is outside the other

polygon.
3. Find the minimal polygons which are created by the intersection.
4. Classify all minimal polygons into the output sets AN B, A\ B and B\ A.
The next section will show how the intersections can be computed. Section 4 de-
scribes the process of labeling the edges. Subsequently, section 5 will explain how to

find the minimal polygons. Section 6 finishes the description of the basic algorithm,
explaining how the minimal polygons are classified.

3 Calculating the intersections

*
*
€
K

o
K

=

Figure 2: The polygons before and after intersection calculation.

The intersection points between two polygons are calculated by intersecting all
the edges of the first polygon with all the vertices of the second polygon. These
intersection points are added to the polygons as vertices. The new created vertices
do contain a link to the corresponding vertices on the other polygon. We call the
resulting polygons augmented polygons.

We have a special case if we do not find any intersections. This means that we have
one of following situations:

1. Polygon A is inside B. This is the case when any vertex of A is inside B,
which easily can be tested. If A is inside B, we arbitrarily split B in two
polygons, with A somewhere on the split. We have to do this, because we do
not want polygons with holes.

2. Polygon B is inside B. Similar handled to the case above.

3. The polygons A and B are disjunct.

In all these three cases we are finished.

4 Labeling edges

All edges in the augmented polygons should be labeled Inside, Shared, or Qut-
side. An edge is Shared if both vertices of this edge are connected to the other
polygon and if the two vertices they are connected to on the other polygon are the
two vertices of one edge.

:‘ NN\ — e e e — —
- hd L] L]
- -
.1 '
M -
-
-
.
-
-
.

Figure 3: The labeling of the edges of the augmented polygons. The continues lines
are Outside, the large stipples Inside and the short stipple Shared.

The resulting problem is to see whether the edge is Inside or Outside the other
polygon. A tentative algorithm seems:

if is_inside(other_polygon, edge.some_point) then
edge.label = Inside
else
edge.label = Outside
Algorithm 1: A naive algorithm

The major problem in this approach is how to calculate edge.somepoint, this a point
on the edge. The vertices themselves are not usable, as they can coincide with
vertices on the other polygon. Any other point on an edge (such as the middle)
results in numerical errors due to rounding. Such numerical errors can dislocate
such a point from just beside an edge of the other polygon to on a position on that
other edge — for which position it is not possible to decide whether the point is
inside or outside the other polygon. A more stable algorithm is the following:

if edge.first_vertex.is_connected() then
label_angle(edge, edge.first_vertex.connect)

else if edge.second_vertex.is_connected() then
label_angle(edge, edge.second_vertex.connect)
else if is_inside(other_polygon, edge.a_vertex) then
edge.label = Inside
else
edge.label = Outside
Algorithm 2: Stable version of naive algorithm

A vertex is connected if it is an intersection point with the other polygon. The
routine label_angle() given below:

label_angle(edge, vertex)

begin
Vector prev = vertex - vertex.prev
Vector next = vertex.next - vertex

if angle(prev,next) > 7 then
if (angle(prev,edge) > 7) and (angle(next,edge) > 7) then
edge.label = Outside
else
edge.label = Inside
else
if (angle(prev,edge) > 7) or (angle(next,edge) > m) then
edge.label = Outside
else
edge.label = Inside
end
Algorithm 3: Computing label_angle

The idea behind this algorithm is that if one of the vertices on the edge is connected
to the other polygon we can check for that vertex whether it lies on the inside or
the outside of the other polygon. If neither of the vertices of the edge lay on an
edge of the other polygon we can use both vertices of the edge in the test whether
they are inside the other polygon. The calculation of angle(a,b) can be calculated
using the cross product (here we assume that the z component of a and b are 0):
(@ xb), = agby —ayb, = |a||b|sing. If this quantity is positive the angle ¢ is smaller
then 7 else ¢ is bigger then 7.

5 Finding minimal polygons

All the edges from both augmented polygons are doubled in a forward and a back-
ward edge, which we will call directed edges. Shared edges are doubled only once.
Figure 4 shows the directed edges. For all these directed edges we search for the
smallest clockwise oriented polygons it is part of. This is performed by following
the directed edges such that at every intersection we proceed with that directed
edge which starts at that intersection, and which has the smallest angle with the
previous directed edge. A directed edge can only be part of one polygon. This also
leads to one counter clockwise polygon, which is the outer contour of the union.
This polygon should be deleted from the set of minimal polygons.

NN

N

Figure 4: The forward and backward edges.

Z

6 Classifying minimal polygons

The set of minimal polygons found covers the whole area of the union of the two
input polygons. Now we have to classify each of the polygons to be member one of
the sets AN B, A\ B or B\ A. To perform this classification we introduce the term
parenthood. Parenthood is defined as a relation between edges and input polygons
and between minimal polygons and input polygons. If the parenthood is true it is
sure that the object is part of the input polygon. If the parenthood is false it is
sure that the object is not part of the input polygon. Besides the values true and
false, a parenthood can also be unknown and mixed. Unknown means that we do
not have conclusive evidence. Mixed means that contradictory evidence is present.
This is only possible for minimal polygons, and means that the minimal polygon is
a hole between the two input polygons.

The classification of the minimal polygons is performed in a two-step process. First
we check the parenthood of each minimal polygon. After that, we decide to which
set the minimal polygon belongs, based on its parenthood.

We are interested whether a minimal polygon is a child of each of the input polygons.
This question can be answered by using the labeling of the edges. For each edge of
a minimal polygon we compute the parenthood regarding the input polygons. This
means that for both input polygons we decide the parenthood of the edges of the
minimal polygons depending on their labeling;:

Shared the parenthood of the edge is ParentUnknown.

Outside the parenthood is ParentTrue if this edge resulted from the input
polygon currently considered. Otherwise it is ParentFalse.

Inside the parenthood is ParentTrue if the edge does not result from
the input polygon currently considered (and thus is an edge from
the other input polygon.) Otherwise we can not conclude anything
about the parenthood, and the parenthood is ParentUnknown.

This can result in the following parenthoods for the polygons:

ParentUnknown the parenthood of all the edges of this polygon were Parent-
Unknown.

ParentTrue the parenthood of at least one of its edges was ParentTrue, and
none was ParentFalse.

ParentFalse the parenthood of at least one of its edges was ParentFalse, and
none was ParentTrue.

ParentMixed the parenthood of at least one of its edges was ParentTrue and
the parenthood of at least one of its edges was ParentFalse.

Now we can classify the polygons:

1. If one of the parenthoods is ParentMixed, the polygon is a hole between the
two input polygons, and thus not a member of any of the sets.

2. If both parenthoods are not ParentFalse the polygon is member of AN B.

3. Else one of the parenthoods is ParentTrue. The polygon is part of that
polygon, and not of the other.

7 Extensions of the algorithm

In the introduction some constraints were posed which the input polygons should
satisfy. However, with some preprocessing of the input these constraints can be
circumvented.

7.1 Handling counter-clockwise polygons

The detection whether a polygon is clockwise or counter-clockwise oriented can be
done by calculation of its area. If the area is positive the polygon is clockwise
oriented. If the area is negative the polygon is counter-clockwise oriented. By
reversing the order of the vertices, a counter-clockwise oriented polygon will become
clockwise oriented. Such a check, and possible reversing, can be done at the very
beginning of the process.

7.2 Handling polygons with holes

A polygon with a hole A can seen as polygon A, with a hole A; such that A =
Ac\ Ap. We can use the algorithm described above to calculate A, \ Ap, which is
a set of polygons.

Thus to clip a polygon B with a polygon with a hole A we have to clip B with every
polygon in the set A, \ Ap.

7.3 Handling self-intersecting polygons

With a self-intersecting polygon we can calculate the intersection points with itself
similar to section 3. This results in an augmented polygon, of which minimal
polygons can be calculated similar to the procedure given in section 5.

The set of polygons retrieved by this procedure are not self intersecting, and does
cover the input polygon including implicit holes. No easy way exists (to the knowl-
edge of the author) to detect which of these polygons are implicit holes.

This means that input polygons which are self intersecting but do not include im-
plicit holes can be used as input to the algorithm.

8 Computational expense

The worst case complexity of the polygon clipping problem is O(nm), with n the
number of vertices in polygon A and m the number of vertices in polygon B. This
complexity is reached when every edge of the first polygon intersects with every
edge of the other polygon. An example of this can be seen in figure 5, where the
number of polygons in the set A N B equals nm/4. However, for other cases the
number of output polygons is smaller, with a minimum of 1.

The complexity of the algorithm described in this paper always is O(nm) for the
calculations of the intersections and the labeling of the edges, even in cases when
the number of output polygons is much smaller then nm. The other parts of the
algorithm have lower complexity.

8.1 Complexity of intersection calculation

Every edge in the first input polygon can intersect with every edge in the second
input polygon. This results in O(nm) complexity. If space partitioning techniques
are used not every edge of one polygon has be checked to all the edges of the other
polygon, but only those who are located in the same area element. This could result
in O(n + m) complexity for appropriate space partitioning techniques and simple
problems.

Figure 5: An example with complexity O(nm): the number of polygons in AN B
(black in the figure) equals nm /4. This example scales up by adding more zig-zags.

8.2 Complexity of labeling edges

The algorithm proposed in section 4 makes use of is_inside() to label edges which
are either completely outside or completely inside the other polygon. This check
does have to test against all edges of the other polygon for concave polygons.

However, this check is not strictly necessary. We already know that the polygon is
not completely inside or outside the other polygon, so there must be at least one
intersection point with the other polygon. If we classify the edges connected to
this vertex, we do not need to consider the edges completely inside or outside the
other polygon. We simply can label them as Unknown, and relying on the edges
connected to the intersection points to get the correct polygon labeling. This will
result in the following algorithm instead of algorithm 2:

if edge.first_vertex.is_connected() then
label_angle(edge, edge.first_vertex.connect)
else if edge.second_vertex.is_connected() then
label_angle(edge, edge.second_vertex.connect)
else
edge.label = Unknown
Algorithm 4: Improved version of stable algorithm

When making decisions about the parenthood of the edges as described in section 6
we use the rule that an edge label Unknown gives ParentUnknown as parenthood
for this edge. This leads to an algorithm with complexity O(m + n)

Acknowledgments

Support from SION and NWO is gratefully acknowledged. Much of the work has
been performed at the Measurement laboratory, Department of Electrical Engineer-
ing, University of Twente.

References

1. Klamer Schutte, Knowledge Based Recognition of Man-Made Objects, PhD The-
sis, University of Twente, ISBN90-9006902-X, 1994

2. Stuart Sechrest and Donald P. Greenberg, A visible polygon reconstruction al-
gorithm, ACM: Computer Graphics, 15, 1981, 17-27

3. Bala R. Vatti, A Generic Solution to Polygon Clipping, Communications of the
ACM, 25, 1992, 58-63

4. Kevin Weiler and Peter Atherton, Hidden surface removal using polygon area
sorting, Proc. of the 4th ann. conf. on computer graphics and interactive tech-
niques, 1977, pp. 214-222

5. Kevin Weiler, Polygon Comparison using a Graph Representation, SIGGRAPH
80, Computer Graphics, 14, 1980, 10-18

10

