
Automated Local Regression Discontinuity Design Discovery
William Herlands

Carnegie Mellon University
Pittsburgh, PA 15213
herlands@cmu.edu

Edward McFowland III
University of Minnesota
Minneapolis, MN 55455
emcfowla@umn.edu

Andrew Gordon Wilson
Cornell University
Ithaca, NY 14850

andrew@cornell.edu

Daniel B. Neill
New York University
New York, NY 10003
daniel.neill@nyu.edu

ABSTRACT
Inferring causal relationships in observational data is crucial for un-
derstanding scientific and social processes. We develop the first sta-
tistical machine learning approach for automatically discovering re-
gression discontinuity designs (RDDs), a quasi-experimental setup
often used in econometrics. Our method identifies interpretable,
localized RDDs in arbitrary dimensional data and can seamlessly
compute treatment effects without expert supervision. By applying
the technique to a variety of synthetic and real datasets, we demon-
strate robust performance under adverse conditions including un-
observed variables, substantial noise, and model misspecification.
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1 INTRODUCTION
Understanding causal mechanisms is critical for the social and
laboratory sciences. While randomized control trials are the gold
standard for identifying causal relationships, such experiments are
often time consuming, costly, or ethically inappropriate. In order to
exploit the plethora of observational data, econometricians often
rely on “natural experiments,” fortuitous circumstances of quasi-
randomization that can be exploited for causal inference.

Regression discontinuity designs (RDDs) are such a technique.
RDDs use sharp changes in treatment assignment for causal infer-
ence. For example, it is often difficult to assess the effect of academic
interventions since treated students may systematically differ from
other students. Yet, if a school intervenes on students who score
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below some threshold on a test, then students with scores just
above or below the threshold are not systematically different and
effectively receive random treatment [18]. That threshold induces
an RDD that can be used to infer the effect of the intervention.

RDDs require fewer assumptions than most causal inference
techniques and are arguably most similar to true randomized ex-
periments [21]. However, identifying RDDs is a painstakingly man-
ual process requiring human intuition and construction, and thus
limited by human biases. Indeed, many papers reuse the same or
analogous RDDs (e.g., discontinuities at geographic boundaries, or
test score cutoffs for school admission) and most of these RDDs
are one-dimensional, represented by a threshold value for a single
variable. Finally, RDDs often rely on the human “eye” to verify their
validity. The “tinkering” that is often done in practice implies that
RDDs discovered by humans are subject to multiple testing issues.

To aid in discovering RDDs, we use statistical machine learning
techniques to create the first general methodology to discover,
quantify, and validate RDDs in data. Our approach can discover
newRDDs across arbitrarily high dimensional spaces, enabling us to
use RDDs that humans would not be able to identify otherwise. Yet
these high dimensional RDDs are still interpretable, and we provide
a simple mechanism for ranking how (observed) variables influence
the discovered discontinuities. We derive two log likelihood ratio
statistics to search for RDDs in potentially heteroskedastic data with
either real-valued or binary treatments. Additionally, the technique
can seamlessly handle both real-valued and categorical covariates.
Finally, we present an integrated validation procedure ensuring
rigorous statistical and econometric validity.

We evaluate our approach on synthetic and real data. Using syn-
thetic data we demonstrate robust performance to out of sample
discontinuities and model misspecification. For real data we con-
sider three educational and health care settings previously studied
in the econometric literature. Our approach can identify the RDDs
in these data even with the injection of substantial additional noise.

While this is the first paper we know of that discovers RDDs in
general data, Card et al. [7] search for race-based “tipping” points
in housing markets using an RDD design. They employ two search
methods specific to the problem formulation: one inspired by the
shape of curves derived from their data, and one that draws on
structural break literature in time series [10]. Beyond RDDs, there is
increased interest in integrating econometric and machine learning
techniques [4, 24]. For example, deep learning and non-parametric
Bayesian methods have been used to predict counterfactuals and
compute individualized treatment effects [11, 14, 19]. Additionally,
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novel approaches have been developed for identifying heteroge-
neous treatment effects [5, 16]. Within the context of online rec-
ommendation systems, Sharma [31] and Sharma et al. [32] develop
mechanisms of searching for certain natural experiments.

1.1 Outline
The remainder of the paper proceeds as follows. §2 provides a
brief overview of RDDs including their causal assumptions. §3
introduces our local search for RDDs including the search statistics
used for the Normal (§3.1) and Bernoulli (§3.2) observation models,
neighborhood definitions (§3.3), discontinuity validation (§3.4), and
treatment effect estimation (§3.5). §4 discusses the synthetic and
real data experiments. §5 ends with concluding remarks.

2 REGRESSION DISCONTINUITY DESIGNS
We provide practical background on RDDs for a computer science
audience. There exist excellent papers for details on assumptions,
inference, convergence, and model variations [9, 17, 33].

Throughout this paper we consider data, (x ,T ,y), where x =
{x1, ...,xn }, are inputs that can include both categorical and real-
valued xi ∈ R

d variables, T = {T1, ...,Tn } is a treatment variable
that could either be binary, Ti ∈ {0, 1}, or real-valued, Ti ∈ R, and
y = {y1, ...,yn },yi ∈ R, is an outcome variable. Both x and T are
known a priori not to be affected by y. Additionally, we consider
“forcing variables,” z, which are a subset of the real-valued dimen-
sions of x . Typically, the dimensions of z ∈ x must be specified and
validated by the user, but our algorithm does this automatically.

In the most straightforward RDDs, called “sharp RDDs,” there is
a one-dimensional forcing vector, z, and a cutoff value, c , such that
before the cutoff value treatment is never assigned, E[T |z < c] = 0,
and after the cutoff treatment is always assigned, E[T |z > c] = 1.
Thus there is a sharp RDD at z = c since at that point T jumps
discontinuously from T = 0 to T = 1. As long as x does not also
change discontinuously at z = c , there is no reason to believe that
the data on either side of the discontinuity are systematically differ-
ent. Thus, conceptually, at the local area around the discontinuity
we can consider T to be randomly assigned. Notice that the RDD
is a function of x , z, and T but not y. Indeed, an RDD allows us to
investigate the effect of T on multiple different outputs, y.

RDDs appear in real-world settings where thresholds are used
to assign treatment. For example, academic punishments given to
students whose GPA drops below a specific value [22], or health
insurance that covers children until they reach a certain age [2].

For this paper we concentrate on “fuzzy RDDs” which generalize
the sharp RDD. Fuzzy RDDs exist where T is partially determined
by the discontinuity, i.e., where P(T = 1) jumps discontinuously at
z = c . The special case where that jump is from P(T = 1) = 0 to
P(T = 1) = 1 constitutes a sharp RDD [17]. Given a fuzzy RDD, the
treatment effect, τ , with respect to y, is,

τ =
limϵ→−0 E[y |z = c + ϵ] − limϵ→+0 E[y |z = c + ϵ]

limϵ→−0 E[T |z = c + ϵ] − limϵ→+0 E[T |z = c + ϵ]
. (1)

The limits in Eq. (1) indicate that although T is effectively random
at z = c , farther away from the discontinuity T is not expected to
be randomly assigned. That said, τ can be considered a weighted
average treatment effect across the entire data, where the weights
are ex-ante probabilities that a point is in the vicinity of z = c [21].

The fuzzy RDD assumes the following conditions for identifica-
tion [9] (the first two are also required for the sharp RDD):

• Imprecise control: the value of z cannot be precisely con-
trolled to fall at z = c ± ϵ . If such control did exist, those
individuals manipulating z to be just above or just below c
are likely to be systematically different than individuals who
do not manipulate z, thus invalidating the design.

• Excludability: x crossing z = c cannot affecty except through
affecting the probability distribution of T .

• Monotonicity: x crossing z = c cannot simultaneously cause
some data to increase T and other data to decrease T .

These assumptions are relatively light and the first is even testable
(see §3.4). Imprecise control replaces the ignorability or unconfound-
edness assumptions that are necessary in many causal models. And
unlike instrumental variables, RDDs do not assume anything about
exogeneity [21]. Thus RDDs are quite suitable for automated dis-
covery since they do not require the onerous, untestable, and often
unbelievable assumptions made by other causal inference methods.

3 METHOD
The essential element of an RDD, which our approach aims to dis-
cover automatically from data, is the discontinuity, or “unexpected
jump,” in T . Given a model, Ti = f (xi ) + ϵi , this constitutes a spe-
cial type of local anomaly where f (x) substantially deviates fromT
both before and after the discontinuity. See Fig. 1 for a 1-D example
where f (x) approximates the data well except for the two regions
of deviation on either side of the discontinuity. Note that the de-
viations are of opposite sign and may be of different magnitudes.

Figure 1: Illustration of a one-dimensional RDD (dashed
line). Blue dots are treatment Ti ; orange line is f (xi ).

Traditional anomaly detection, such as one-class SVMs [29], focus
on identifying individual outliers. Yet an RDD is fundamentally a
pattern of multiple data points. Thus we employ anomalous pattern
detection to search for RDDs. We frame the search as a log likeli-
hood ratio (LLR) comparison between the likelihood of a null model
that assumes no RDD exists, and the likelihood of an alternative
model that assumes an RDD exists. We locally search for circum-
scribed neighborhoods that contain a discontinuity. Although any
one neighborhood does not necessarily capture the entire discon-
tinuity, it uses local data from around the discontinuity which
can provide greater insight. The discovered discontinuities from
multiple local neighborhoods can be combined to more precisely
measure the treatment effect. Thus our approach is named “Local
Regression Discontinuity Design Discovery” (LoRD3). In a valid
RDD, z must be be real-valued since sharp differences are expected
to occur between data points with different values of a categorical
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variable. Thus, given data (x ,T ,y), we let all real-valued dimensions
of x be forcing variables, z. LoRD3 searches for RDDs as follows1:

(1) ModelT with smooth model, f (x), such thatTi = f (xi ) + ϵi .
(2) Compute the estimated value of T̂ using the learned model.
(3) For each neighborhood size, k = 1, ...,K :
(a) For each of the n data points, consider its k-sized neigh-

borhood, si,k , defined by z (see §3.3).
(i) Compute the likelihood of a null model which assumes

that si,k does not contain an RDD: L0(si,k ).
(ii) Repeatedly bisect the neighborhood into two mutually

exclusive partitions, assigning each point in the neigh-
borhood to one of these two groups (see §3.3).We denote
group assignment by дk, j . For each grouping, compute
the likelihood of an alternative model which assumes
that si,k contains an RDD with each group denoting
one side of the discontinuity: L1(si,k ,дk, j ).

(iii) Compute the maximum log likelihood ratio (LLR) over
all partitions for that neighborhood,

LLR(si,k ) = max
j

LLR(si,k ,дk, j ) = max
j

log
L1(si,k ,дk, j )

L0(si,k )
. (2)

(4) Test each of the neighborhoods for statistical significance
and econometric validity, controlling for multiple hypothesis
testing (see §3.4). For each “validated” neighborhood si,k that
passes these tests, record the corresponding дk, j .

(5) Estimate the τ using validated neighborhoods (see §3.5).
Notice that in step (a) the local neighborhoods are defined over

the potentially multidimensional z. While most research using
RDDs considers one-dimensional forcing variables z, even papers
that consider multiple dimensional z [26, 34] require human iden-
tification and are limited in practice to low dimensions. LoRD3
seamlessly considers z of arbitrary dimension, allowing it to dis-
cover more diverse and nuanced RDDs than previously studied.

In §3.1 and §3.2 we detail two observation models and LLR statis-
tics for real-valued treatments and binary treatments respectively.

3.1 Normal residual observation model
Given a model, Ti = f (xi ) + ϵi , we would expect f (x) to substan-
tially and systematically deviate from a jump discontinuity in T .
Specifically, near the discontinuity f (x) should underestimate the
true value of T on one side and overestimate T on the other side.
We search for such a pattern using the LLR statistic below.

In principle we can use any regression approach for f (x). Yet
the appropriate choice requires f (x) to be expressive enough to
faithfully model the data, yet not substantially overfit to a potential
discontinuity. For example, deep neural networks are untenable as
they can model discrete jumps in data. In order to elucidate LoRD3,
we consider polynomial models, f (x) =

∑
r=0:R γrx

R , which can be
made increasingly expressive by increasing the polynomial order.

Given data (x ,T ), a neighborhood s , and a bisection д of the
data points in s into “group 0” (дi = 0) and “group 1” (дi = 1), we
consider the residuals, ri = Ti − f (xi ). The null model H0 assumes
that no discontinuity exists in s . We define the null model as ri
Normally distributed around a single offset parameter, β0, which
accounts for any bias in f (x) over both groups. The alternative
1Code and data are available at https://gitlab.com/herlands/LORD3

model H1 states that a discontinuity exists between the two groups,
and assumes that the ri are Normally distributed around two distinct
mean shifts, one for each group. For maximal applicability, we
consider unconstrained heteroskedastic noise, ϵi ∼ N (0,σi ):

H0 : ri ∼ N
(
β0,σi

)
,∀i ∈ s

H1 : ri ∼ N
(
(1 − дi )βд0 + дiβд1 ,σi

)
,∀i ∈ s .

(3)

Letting the alternative mean, µi = (1−дi )βд0 +дiβд1 , for notational
simplicity, we can compute the LLR,

LLR(s,д) = log
Lik(H1(s,д))

Lik(H0(s))

= log
(∏
i ∈s

P
(
ri |N

(
µi ,σi

) )/∏
i ∈s

P
(
ri |N

(
β0,σi

) ) )
=
∑
i ∈s

(2ri (µi − β0) − µ2i + β
2
0 )/(2σ

2
i ).

(4)

For unrestricted heteroskedastic models we cannot directly com-
pute σi . Instead, we assume that within a local area around each
neighborhood the noise is homoskedastic. Thus we compute σi as
the empirical variance in the k-neighborhood around each point.

We use the MLE values of β0, βд0 , and βд1 from their respective
heteroskedastic Normal models. Thus for each neighborhood,

β∗0 =
(∑
i ∈s

ri

σ 2
i

)/ (∑
i ∈s

1
σ 2
i

)
β∗д0 =

( ∑
i ∈s∩(1−д)

ri

σ 2
i

)/ ( ∑
i ∈s∩(1−д)

1
σ 2
i

)
β∗д1 =

( ∑
i ∈s∩д

ri

σ 2
i

)/ ( ∑
i ∈s∩д

1
σ 2
i

)
.

(5)

3.2 Bernoulli log-odds observation model
For binary T , the Normal model is inappropriate since the residual
between a binary variable and f (x) is rarely Gaussian. Instead, we
model T as a Bernoulli distributed random variable and search for
discontinuities in the odds ratio [35].

Given amodel for probability of treatment,Ti ∼ Bernoulli(p(xi )),
we would expect p(x) to systematically under- and over-estimate
the true data around a jump discontinuity inT . We search for such a
pattern using the LLR statistic below.We use a basemodel of a Logis-
tic regressionwith polynomial functions,p(x) = Logit(

∑
r=0:R γrx

r ),
to model the probability of a data point having Ti = 1.

Given data (x ,T , s,д) as in §3.1, we consider the odds ratio of
Ti = 1. The null model assumes that no discontinuity exists in s .
We define the null model as a constant multiplicative scaled odds
ratio to account for any bias in p(x) over both groups,

H0 : odds(Ti ) = β0
p(xi )

1 − p(xi )
,∀i ∈ s . (6)

The alternative model assumes that a discontinuity exists between
the two groups. Continuing to let µi = (1 − дi )βд0 + дiβд1 , we
define the alternative model as an odds ratio with two distinct
multiplicative scales, one for each region,

H1 : odds(Ti ) = µi
p(xi )

1 − p(xi )
,∀i ∈ s . (7)
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These correspond to the null and alternative models,

H0 : Ti ∼ Bernoulli
( β0p(xi )

1 − p(xi ) + β0p(xi )

)
,∀i ∈ s

H1 : Ti ∼ Bernoulli
( µip(xi )

1 − p(xi ) + µip(xi )

)
,∀i ∈ s,

(8)

with which we can compute the LLR,

LLR(s,д) = log

∏
i ∈s P

(
Ti |Bernoulli

( µip(xi )
1−p(xi )+µip(xi )

) )
∏

i ∈s P
(
Ti |Bernoulli

( β0p(xi )
1−p(xi )+β0p(xi )

) )
=
∑
i ∈s

Ti log(µi/β0) + log(1 − p(xi ) + β0p(xi ))

− log(1 − p(xi ) + µip(xi )).

(9)

Unlike in the Normal case, there is no closed form solution for
the MLE of β0, βд0 , or βд1 . Instead, we solve for their values using a
binary search. Eq. (10) provides the derivative of the log likelihood
with respect to β0. Note that the sum is taken over all points in the
neighborhood (i ∈ s). Similar results hold for βд0 , summing over
group 0 (i ∈ s ∩ (1 −д)), and βд1 , summing over group 1 (i ∈ s ∩д).

δLL(s,д)

δβ0
=
∑
i ∈s

(Ti
β0

−
p(xi )

1 − p(xi ) + β0p(xi )

)
(10)

We can then solve β0
δLL(s,д)

δ β0
= 0 by an efficient binary search,

noting that this quantity decreases monotonically with β0 > 0.

3.3 Neighborhood definition and bisection
Using only z ∈ x to measure distance, the local neighborhood of
a point includes itself and its k − 1 nearest neighboring points.
Since we are interested in generalizing to arbitrary dimensional
RDDs we first compute the vector, νs,i , between the center point
of neighborhood s and each point i ∈ s . Then we bisect the neigh-
borhood with k − 1 hyperplanes, each of which passes through the
center point, and is orthogonal to a νs,i . Within each neighborhood,
LoRD3 selects the bisection that maximizes the LLR defined above,
testing the alternative hypothesis that there is an RDD for that
neighborhood and bisection against the null hypothesis of no RDD.

3.4 Validate RDD neighborhoods
LoRD3 produces O(n) neighborhoods - one centered at each data
point - each with a corresponding bisection and LLR(s). We can
automatically assess which neighborhoods are statistically and
econometrically valid using three techniques:

Randomization testing. As is typical when searching with LLR
statistics [20, 25], we use randomization to adjust for multiple test-
ing and determine whether discontinuities are significant at level
α . Specifically we use the following procedure:

(1) Draw data T (q) from the null model Q times at the same
covariates, x , as the true data.
• In the Normal observation model, since Ti = f (xi ) + ϵi
this corresponds to sampling the noise Q times.

• In the Bernoulli observation model, each Ti can be drawn
directly from the H0 Bernoulli distribution in Eq. (8).

(2) Run LoRD3 on each (x ,T (q)). For each run save the value
LLR(q) = maxs LLR(s).

(3) Compute an α threshold using the 1 − α quantile of the
LLR(q) values. Any original neighborhoods s with LLR(s)
above this threshold are considered statistically significant.

For the unconstrained heteroskedastic model, we estimate each
point’s σi from the variance of data within the k-local neighbor-
hood of that point, as in §3.1 above. Since LoRD3 evaluates O(kn)
possible neighborhood bisections, randomization is critical to ad-
dress multiple testing issues. Since we use the maximum score over
s for both original and replica data, this procedure provides an exact
test for the highest-scoring neighborhood and a conservative test
for secondary neighborhoods.

Density discontinuity. As discussed in §2, RDDs assume that pre-
cise manipulation ofT is not possible. A violation of this assumption
could be reflected in a discontinuous density of z since data might
“bunch” in z around the discontinuity to affect treatment status.
McCrary [23] provides a commonly used procedure to test for such
discontinuities in z. Since this test is limited to one dimension, we
map our data to the vector orthogonal to the hyperplane that bisects
the two groups in each neighborhood and apply the test on this
one-dimensional data [8]. For each s , if the split selected by LoRD3
rejects the null we invalidate this s .

Placebo Testing. In RDDs, placebo testing ensures that the discon-
tinuity in T cannot be explained by a corresponding discontinuity
or imbalance in x . While the forcing variables z are continuous
within each neighborhood s , any x \ z, such as categorical vari-
ables, may still present issues. In order to be conservative, we run
placebo tests on every dimension in x . We iteratively select one
observational variable, x (d ), and considering data (T ,x \ x (d )), we
estimate τ with x (d ) as the output (see §3.5 for how to compute τ̂ ).
We ensure that this τ̂ is statistically indistinguishable from zero.

3.5 Estimating the treatment effect τ
Given a validated set of neighborhood discontinuities from LoRD3,
practitioners may wish to further investigate the detected regions
using domain expertise. Yet, it is also possible to directly use the
neighborhood results from LoRD3 to estimate the treatment effect
τ of treatment T on some real-valued output y. Below we describe
three automated approaches for computing the estimate τ̂ given
the results from LoRD3. If LoRD3 detects more than one validated
neighborhood s , we compute τ̂s for each s and average them for the
final estimation. Pooling the regions themselves, such as Bertanha
[6] suggests for RDDs with multiple thresholds, is not possible in
this case since there is no defined orientation of the two groups.

2SLS estimator. A two-stage least squares estimation of τ first
instruments T̂ with a validated RDD neighborhood and then re-
gresses T̂ on y [3]. Given the data in neighborhood s , and indicators
дi for which group each data point is in, we first estimate,

Ti = νдi + f (xi ) + ϵ
(T )
i . (11)

Then we use the predicted T̂ to regress (where λ is a learned vector),

yi = τ̂T̂i + λxi + ϵ
(y)
i . (12)

Non-parametric estimator. Given a neighborhood and bisection,
a non-parametric estimator for τ draws on Eq. (1). Assuming that
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the neighborhood is sufficiently small to approximate the limit, we
use the empirical expectations over y and T to compute,

τ̂ =
E[y |д = 1] − E[y |д = 0]
E[T |д = 1] − E[T |д = 0]

. (13)

Group instrument. While the 2SLS works generally for RDDs,
using LoRD3 we can leverage information about µ to instrument T
in each group. For the Normal model we instrument,

T̂i = Ti − µi , (14)

while for the Bernoulli model we can instrument T̂ as,

T̂i =
µip(xi )

1 − p(xi ) + µip(xi )
. (15)

Then we can run the second stage regression from Eq. (12).

3.6 Forcing variable influence
When humans identify an RDD it is clear which variables are re-
sponsible for the discontinuity. Since we consider potentially high
dimensional z it is useful to identify which z variable(s) are most
responsible for the RDD. Given a neighborhood, consider νs , the
vector orthogonal to the bisecting hyperplane. After normalizing
the individual components of νs to lie in [0, 1], those components
indicate which dimensions of z most influence the discontinuity. For
multiple neighborhoods, we average multiple normalized ν1, ...,νS .

3.7 Evaluating discontinuities
Given a known discontinuity in synthetic or real data, we can
evaluate how well a neighborhood s and bisection д chosen by
LoRD3 correspond to the true discontinuity. Accuracy and precision
are not appropriate metrics since there is no defined orientation of
the two groups in a neighborhood. Instead, letting d ∈ {0, 1} define
the space on either side of the true discontinuity, we compute the
information gain (IG) of a k-sized neighborhood,

IG = k H

(
|s ∩ d |

k

)
− |s ∩ (1 − д)| H

(
|s ∩ (1 − д) ∩ d |

|s ∩ (1 − д)|

)
− |s ∩ д | H

(
|s ∩ д ∩ d |

|s ∩ д |

)
,

(16)

where H (p) is the entropy, H (p) = −p log(p) − (1−p) log(1−p). We
then normalize the IG to lie in [0, 1] by dividing by the optimal IG
for a neighborhood of size k with a bisection of points into two
equally sized groups, k ∗ H ( 12 ). This metric is optimized when the
neighborhood bisection overlaps fully with the true discontinuity
and when the bisection equally divides the neighborhood points.

We provide measures of the normalized information gain (NIG)
for all experiments in §4. Higher NIG is better since it indicates
that a neighborhood bisection provides information about the true
discontinuity. Lower NIG indicates that either the bisection is mis-
aligned or the neighborhood does not intersect the discontinuity.

3.8 Practical considerations
As a pre-processing step before running LoRD3, we remove any
data points with missing values and normalize each real-valued
dimension x j to have zero mean and unit variance. For datasets with
categorical variables, we include these in x but not in z. Thus we do
not consider heterogeneous treatment effects [15]. By default, all

real-valued x are in z, though users may exclude variables based on
domain knowledge. Finally, we note that approaches which analyze
a known RDD may fit two background functions - one to each
side of the discontinuity [21]. As detailed in §3, LoRD3 assumes a
single background function in order to enable an efficient search.
Additionally, we do not consider nonparametric f (x)models such as
local linear regression [17], but these could be easily incorporated.

4 EXPERIMENTS
In order to demonstrate the power and flexibility of LoRD3, we apply
the technique to a wide variety of synthetic and real data. RDDs are
injected into the synthetic data, while for the real data we consider
previously studied settings where known discontinuities exist. Note
that the known RDD locations are used for evaluation purposes
only, and are not provided to LoRD3. We inject additional noise
into the real data to stress-test the search technique and evaluate
its performance in the face of increasingly subtle discontinuities.
For one-dimensional RDDs, we provide a comparison to existing
changepoint detection methods in the literature.

4.1 Generating synthetic data
For synthetic experiments, we draw observed covariates, x ∈ Rd ,
and unobserved covariates, u ∈ R1, through independent draws
from a Uniform distribution, such that for i = 1 . . .n, j = 1 . . .d ,

xi, j ∼ Uniform(0, 1), ui ∼ Uniform(0, 1). (17)

We induce a discontinuity by randomly selecting a boundary, bj ∼
Uniform(0, 1) and defining an indicator,

Di =

d⋃
j=1

xi, j > bj . (18)

Thus the discontinuous region is a d-dimensional cube and out-of-
class for the hyperplanes LoRD3 uses to bisect each neighborhood.
Throughout all experiments we consider heteroskedastic noise,

ϵ
(T )
i , ϵ

(p)
i , ϵ

(y)
i ∼ N

©­«0, 1d
∑
j
xi, j

ª®¬ . (19)

Real-valued treatment indicators T are generated by selecting the
magnitude of the discontinuity, ζ ∈ R, and drawing,

γT ∼ N (0, Id )

µi = I (xi ∈ D)
ζ

2
− I (xi < D)

ζ

2
Ti = xiγT + µi + ϵ

(T )
i + ui .

(20)

Binary treatment indicators T are generated by selecting the mag-
nitude of the discontinuity, ζ > 0, and drawing,

γp ∼ N (0, Id )
µi = I (xi ∈ D) exp(ζ /2) + I (xi < D) exp(−ζ /2)

pi = Logit(xiγp + µi + ϵ
(p)
i + ui )

Ti ∼ Bernoulli(pi ).

(21)

Outputs yi ∈ R are generated by selecting τ ∈ R and drawing,
γy ∼ N (0, Id )

yi = xiγy +Tiτ + ϵ
(y)
i + ui .

(22)
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4.2 Synthetic real-valued treatment results
We generate real-valued T with x ∈ R2 and τ = 5. To demonstrate
how LoRD3 performs under different signal levels of discontinuity,
we vary ζ ∈ [0, 2.5]. For each ζ value we generate 50 experiments
with 1000 data points. For LoRD3 we let k = 50, z = x , and consider
the top scoring neighborhood for evaluation. Base f (x) models
are order r = 1, 2, 4 polynomials to demonstrate results from both
correctly and incorrectly specified models. Randomization testing
is performed to determine an α = .05 level for significance for
each experiment. Finally, throughout the synthetic and real data
experiments we have verified the placebo tests, as detailed in §3.4.

Fig. 2 provides an example of an experiment with ζ = 3. The axes
are the dimensions of x . The left plot depictsT as colored circles and
the square discontinuity is observable in the upper right. The center
plot depicts LLR(s) centered on each data point. The outline of
the discontinuity has relatively high LLR(s) indicating that LoRD3
has correctly identified neighborhoods along the boundary of the
discontinuity. The right plot highlights the two groups from the
neighborhood bisection with highest LLR(s).

Figure 2: Left plot: synthetic T ∈ R as a function of x . Cen-
ter plot: LLR(s) for each neighborhood using Normal model.
Right plot: neighborhood bisection with highest LLR(s).

We present results for NIG and power in Fig. 3. LoRD3 per-
formance improves as ζ increases since higher ζ induce a larger
magnitude discontinuity. While the more complex specifications of
f (x) have slightly decreased performance due to overfitting, both
NIG and power for all models are quite similar, demonstrating that
the approach is robust to model misspecification.

Figure 3: Left: NIG of top neighborhood forT ∈ R. The x-axis
indicates ζ . Right: power to reject the null at α = 0.05.

Estimates of the treatment effect τ̂ are plotted in Fig. 4. Due to
the data generating process of y in Eq. (22), at low ζ where there
is little to no discontinuity, LoRD3 tends to overestimate the true
τ . However, all f (x) model specifications (polynomials of degree
1,2,4) yield τ̂ that converge towards the true τ at larger ζ . While
the non-parametric and 2SLS approaches converge more slowly,
they tend to be more robust to model misspecification.

Varying dimension. Letting ζ = 2 and holding z fixed at two
dimensions, we vary the number of covariates from 2 to 20. We
apply LoRD3 with the three f (x) models as above and plot the

Figure 4: LoRD3 Normal model estimated τ̂ on T ∈ R. Each
plot represents a different f (x) specification. True τ = 5.

resulting NIG in the left panel of Fig. 5. Next we hold x fixed at
10 dimensions and vary the number of dimensions in z from 1 to
10, plotting the results in the right panel of Fig. 5. These results
indicate that given the same amount of data LoRD3 performance is
robust to large numbers of covariates but reduces in performance
over larger spaces of forcing variables.

Figure 5: NIG of LoRD3 Normal model for T ∈ R with vary-
ing the dimensions of x and z in left and right plots, respec-
tively.

4.3 Synthetic binary treatment results
We generate equivalent synthetic tests for T ∈ {0, 1}. For each
experiment we run LoRD3 with both Normal and Bernoulli ob-
servation models. We use p(x) of order r = 1, 2, 4 polynomials to
demonstrate results from correctly and incorrectly specified models.

Figure 6: Left showsT ∈ {0, 1} as a function ofx , center shows
LLR(s) of Bernoulli model, LLR(s) of Normal model.

Fig. 6 provides an example of an experiment with ζ = 4 and
LLR(s) using both the Bernoulli and Normal models. While both
models discover neighborhoods with high LLR around the discon-
tinuity boundary, the Normal model detects spuriously high LLR
elsewhere in the space. The advantage of the Bernoulli model for
binaryT is also seen through the NIG results in Fig. 7 where all p(x)
specifications using the Bernoulli model outperform the Normal
model. We plot τ̂ from the Bernoulli model in Fig. 8 where all p(x)
specifications have τ̂ that converge to the true τ = 5 at larger ζ .

4.4 Comparison to changepoint detection
In one dimension, RDD discovery is similar to changepoint detec-
tion, where the objective is to identify points between regimes with
persistent changes in mean or covariance structure. We consider
competitive changepoint methods that utilize Binary Segmentation
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Figure 7: NIG of top neighborhood for T ∈ {0, 1}. Left plot:
Normal model. Right plot: Bernoulli model.

Figure 8: LoRD3 Bernoulli model τ̂ on T ∈ {0, 1}. Each plot
represents a different p(x) specification. True τ = 5.

cluster analysis [30], parametric methods using Bartlett [13] and
Student-t [12] test statistics, and non-parametric methods using
Mann-Whitney [28] and Kolmogorov-Smirnov [27] test statistics.

We generate one-dimensional T ∈ R using ζ ∈ [0, 2.5] (see §4.1).
For each ζ value we generate 50 experiments with 1000 data points.
We apply all changepoint methods and LoRD3 with the Normal
model and three f (x) specifications. Mean squared error from the
true discontinuity is used to evaluate the results in Fig. 9.

Figure 9: Comparison of LoRD3 with changepoint methods.

We observe that all LoRD3 configurations are superior to change-
point methods for high ζ . Binary Segmentation equals the perfor-
mance of LoRD3 MSE at low ζ , but has worse MSE than LoRD3 as
ζ increases. Moreover, we note that these changepoint methods are
limited to one dimension. LoRD3 advances into new territory by dis-
covering RDDs in arbitrary dimensions and thus may be considered
a generalization of changepoints to multiple dimensions.

4.5 Student test score data
Jacob et al. [18] consider the effect of an educational intervention
on math test scores. We use their student test score dataset which
is based on seventh-grade math assessments. It contains two sets
of scores: “pre-test” scores that reflect student achievement before
a potential intervention, and “post-test” scores after the interven-
tion. Only students who received below 215 on the pre-test were
intervened upon. Thus there is a sharp RDD at pre-test score 215.

The data has 2,606 observations and eight covariates, x , for each
student. Six covariates are binary indicators for gender, special
education status, eligibility for reduced-price lunch, English as
second language status, and ethnicity (Black, White, Hispanic or

Asian). Two of the covariates are real-valued: age of student and
pre-test score. We use both real-valued variables as z even though
only pre-test score is the true relevant variable. The intervention
status is T and the post-test score is y. The true value of τ is 10.

We apply LoRD3 with the Normal and Bernoulli models, k = 100,
and a 1-degree polynomial for f (x) and p(x). LLR(s) is depicted in
Fig. 10. The strip of high LLR around pre-test score 215 indicates that
LoRD3 was able to locate the discontinuity with both observation
models.

Figure 10: LLR(s)with student age as x-axis and pre-test score
as y-axis. Normal model on left, Bernoulli model on right.

Table 1 lists the NIG, influence of the two z dimensions, and τ̂
over the top ten scoring neighborhoods. Both observation models
yield high NIG and correctly identify pre-test score as the primary
discontinuity variable. While the 2SLS and group instrument meth-
ods generally correctly yield τ̂ within the standard error of 10, the
non-parametric method underestimates τ in both models.

Table 1: NIG, influence of z, and τ̂ for the student test data.

Normal model Bernoulli model
NIG 0.92 ± 0.02 0.93 ± 0.04
Influence: pre-test score 1.0 ± 0.0 1.0 ± 0.0
Influence: age of student 0.0 ± 0.0 0.0 ± 0.0
τ̂ 2SLS 8.89 ± 1.11 9.88 ± 0.98
τ̂ non-parametric 6.66 5.91
τ̂ Group inst 9.57 ± 1.18 6.30 ± 1.14

While the true data contains a sharp RDD, we inject synthetic
noise to increase the difficulty of the search problem. We generate
noisy treatment, Tρ , such that P(Tρ,i = Ti ) = ρ, where ρ ∈ [0.5, 1].
Thus when ρ = 1, Tρ = T , and the data contains a sharp RDD.
When ρ = 0.5, Tρ,i is 0 or 1 with equal probability, resulting in
no signal. Between those two extremes, the data exhibits a fuzzy
RDD at pre-test score 215. Fig. 11 depicts Tρ at ρ ∈ {0.5, 0.75, 1} to
provide intuition for the magnitude of ρ noise.

Figure 11: Student data with pre-test score on y-axis, age of
student on x-axis, andT indicated by circle color. Left plot is
ρ = 1 (trueT ), center plot is ρ = 0.75, and right plot is ρ = 0.5.

For each value of ρ ∈ [0.5, 1], we generate 25 experiments with
2000 randomly sampled data points. We apply LoRD3 as above and
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Figure 12: NIG of top LoRD3 neighborhood on student test
score data using Normal and Bernoulli observation models.

Table 2: NIG and influence of z for full university GPA data.

Normal model Bernoulli model
NIG 0.59 ± 0.05 0.71 ± 0.06
Influence: GPA cutoff 0.79 ± 0.37 1.0 ± 0.0
Influence: HS grade pct 0.59 ± 0.36 0.11 ± 0.13
Influence: credits yr 1 0.20 ± 0.40 0.0 ± 0.0
Influence: age of student 0.0 ± 0.0 0.0 ± 0.0

show results from the top scoring neighborhood in Fig. 12. Both
observation models converge to nearly NIG = 1 well before ρ = 1,
demonstrating that they can identify RDDs in noisy data.

4.6 College GPA data
Lindo et al. [22] analyze the effect of academic probation on students
at a Canadian university with three campuses. Students are placed
on probation if their first year GPA is below a cutoff value. This
cutoff induces an RDD that Lindo et al. [22] use to determine the
causal effect of academic probation on educational outcomes.

The data has 44,362 observations and nine covariates, x , for each
student. Five of the covariates are binary indicators for gender,
English as a first language, being born in North America, and two
variables to indicate which campus the student attended. Four co-
variates are real-valued: matriculation age, credits attempted in first
year, high school grade percentile, and distance of GPA from the
GPA cutoff. We use all four real-valued variables in z even though
only distance from the GPA cutoff is the relevant factor. The inter-
vention status is T . There are five outcomes of interest: decision to
leave after the first academic term, GPA in the next academic term,
and whether the student graduated within 4, 5 or 6 years.

We apply LoRD3with Normal and Bernoulli models,k = 100, and
f (x) as a 1-degree polynomial. Table 2 lists the NIG and influence
of the z dimensions over the top ten scoring neighborhoods. The
Bernoulli model yields substantially higher NIG than the Normal
model, as expected in data with binary T . Both methods correctly
rank GPA cutoff as the most influential dimension of z, but the
importance of this variable is less pronounced in the Normal results.
Although [22] estimates τ̂ for each outcome using all students
within 0.6 grade points of the cutoff GPA, these are not ground
truth. Table 3 provides these values as well as LoRD3 τ̂ values using
the methods in §3.5. Though we expect deviations between these
estimates, most values, and nearly all signs, are quite similar.

Table 3: Estimated τ̂ on university GPA data.

Leave GPA y2 Grad y4 Grad y5 Grad y6
Lindo et al. [22] 0.018 0.233 -0.020 -0.044 -0.024
Normal LoRD3 model
2SLS 0.066 0.255 -0.211 -0.207 -0.116
Non-para 0.030 -0.025 -0.056 -0.189 -0.172
Group inst 0.058 0.188 -0.198 -0.187 -0.094
Bernoulli LoRD3 model
2SLS 0.021 0.219 -0.273 -0.245 -0.050
Non-para 0.017 0.125 -0.076 -0.036 0.105
Group inst 0.020 0.055 -0.293 -0.098 0.144

Figure 13: NIG of top LoRD3 neighborhood on university
GPA data using Normal and Bernoulli observation models.

In order to increase the difficulty of detection, we inject increas-
ingly high ρ noise, as described in §4.5. For each ρ value we generate
25 experiments with 2000 randomly sampled data points. We apply
LoRD3 with the same parameters as above and show NIG results
for the top scoring neighborhood in Fig. 13. In this case, there is
substantial improvement using the Bernoulli model. While both
models improve at higher values of ρ the Bernoulli increases to
NIG= 0.8 while the Normal model only reaches NIG= 0.7.

4.7 Emergency department usage
We consider aggregate emergency department (ED) patient data
used to study the impact of health insurance on ED usage [1, 2].
Data come from 2.2 million ED visits between 2002-2009 in Arizona,
California, Iowa, New Jersey, and Wisconsin. The only covariate is
patient age and previous studies identified RDDs at ages 19 and 23.
The existence of multiple discontinuities in this data is particularly
interesting and we apply LoRD3 to see which RDDs it can detect.
Note that due to endogeneity issues Anderson et al. [1] develop a
specialized τ estimation approach that is not replicated here.

Letting x = z be ED patient age, we separately considerT as per-
centage of ED patients with private insurance and T as percentage
of ED patients without insurance. In both cases we use f (x) as a
3-degree polynomial and run 1000 randomization tests. We depict
data, LLR(s), and the α = 0.05 significance threshold in Fig. 14.

The most prominent RDD peaks at 23 years 3 months for both
T . This corresponds to the RDD used in Anderson et al. [2] and
reflects that health insurance plans at the time allowed full-time
students to remain on their parents’ plans until age 23. Both setups
also identify an RDD at age 19 corresponding to the RDD used in
Anderson et al. [1]. This reflects that non-students were allowed to
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Figure 14: ED patients with private insurance on top, with-
out insurance on bottom. Left: % of patients vs. age. Right:
LLR(s) centered at each age. Red line indicates α = 0.05 level.

Table 4: LoRD3 and changepoint comparisons for ED data.

Private insurance Without Insurance
LoRD3 16.83, 19, 23.25, 25.33 16.83, 19, 23.25
Binary Seg 18, 19.08, 22, 26.67 19.08, 21.08, 24.42, 27.08
Student-t 17.42 17.42
Bartlett 17.42 17.33
Mann-Whitney 16.92 17.25
Kolmo.-Smirnov 16.92 17.25

remain on their parents’ insurance plans until age 19. Interestingly,
both setups also identify an additional RDD centered at 16 years 10
months which may provide useful information for research. Finally,
the setup with private insurance as T identifies a weaker RDD that
peaks at 25 years 4 months. The identification of both known and
unexplored discontinuities confirms the ability of LoRD3 to identify
RDDs and to provide potentially policy-relevant insights.

We compare these results to the changepoint methods from
§4.4. Binary Segmentation, which can find multiple changepoints,
correctly identified the discontinuity at age 19, but was not able to
discern the discontinuity at age 23. The remainder of the methods
seem to corroborate that there is a discontinuity around age 17,
though the precise values they detect differ slightly from LoRD3.

5 CONCLUSION
In this paper we described an automated statistical machine learn-
ing method for discovering RDDs in observation settings that is
domain-agnostic and applicable to multi-dimensional data. We de-
rive observation models for both real-valued and binary treatments
as well as an automated validation and treatment estimation frame-
work. After demonstrating robust performance in a variety of syn-
thetic settings, we apply the approach to three real datasets illus-
trating the method’s ability to discover both previously known, and
potentially unexplored, RDDs.
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