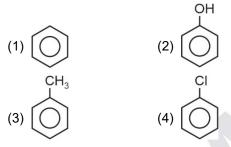


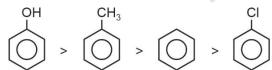
CHEMISTRY

SECTION - A


Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. In Kjeldahl's estimation of nitrogen, CuSO₄ act as
 - (1) Oxidizing agent
 - (2) Reducing agent
 - (3) Catalyst
 - (4) Reagent


Answer (3)

- **Sol.** CuSO₄ acts as catalyst in Kjeldahl's method of estimation of nitrogen.
- 2. Which of the following is most likely attacked by electrophile?

Answer (2)

Sol. Order of reactivity towards electrophile

Strength of +M/+R: $-OH > -CH_3 > -CI$

In case of halogens, their -I effect dominates over

+M hence -CI is deactivating and is lesser

reactive than for incoming electrophile.

3. **Statement-I:** PH₃ will have low boiling point than NH₃.

Statement-II: There are strong van der Wall forces in NH_3 and strong hydrogen-bonding in PH_3 .

- (1) Statement-I and statement-II both are true
- (2) Statement-I and statement-II both are false
- (3) Statement-I is true but statement-II is false
- (4) Statement-I is false but statement-II is true

Answer (3)

Sol. Boiling point: $NH_3 > PH_3$ due to hydrogen bonding in NH_3 .

4. Which of the following have trigonal bipyramidal shape?

PF₅, PBr₅, [PtCl₄]²⁻, SF₆, BF₃, BrF₅, PCl₅, [Fe(CO)₅]

- (1) PF₅, PBr₅, PCl₅ and Fe(CO)₅ only
- (2) BrF₅, PF₅, PCl₅ and PBr₅ only
- (3) PF₅, PCl₅ and [Fe(CO)₅] only
- (4) [Fe(CO)₅], BrF₅, PF₅, PBr₅, PCl₅ only

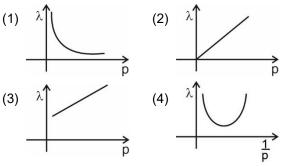
Answer (1)

Sol. PF₅, PCl₅, PBr₅, Fe(CO)₅ \Rightarrow Trigonal bipyramidal BrF₅ \Rightarrow Square pyramidal [PtCl₄]²⁻ \Rightarrow Square planar SF₆ \Rightarrow Octahedral

- 5. Which of the following is correct for adiabatic free expansion against vacuum
 - (1) q = 0, $\Delta U = 0$, W = 0 (2) $q \neq 0$, W = 0, $\Delta U = 0$
 - (3) q = 0, $\Delta U \neq 0$, W = 0 (4) q = 0, $\Delta U \neq 0$, $W \neq 0$

Answer (1)

Sol. q = 0 as adiabatic process is given

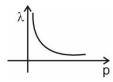

$$q + W = \Delta U$$

$$q = 0$$

$$W = 0$$

$$\Rightarrow \Delta U = 0$$

6. Which of the following is the correct plot between λ (de Broglie wavelength) and p(momentum)?


Answer (1)

$$\textbf{Sol.} \ \lambda = \frac{h}{p} \left[\lambda \propto \frac{1}{p} \right]$$

 $\Rightarrow \lambda p = h \text{ (constant)}$

So, the plot is a rectangular hyperbola.

7.
$$Cr_2O_7^{2-} + xH^+ + ye^- \rightarrow 2Cr^{3+} + AH_2O$$

Balance the above reaction and find x, y and A.

(1)
$$x = 7$$
, $y = 6$, $A = 14$ (2) $x = 14$, $y = 6$, $A = 7$

(3)
$$x = 14$$
, $y = 3$, $A = 7$ (4) $x = 8$, $y = 2$, $A = 1$

Answer (2)

Sol. The balanced reaction is,

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

x = 14

y = 6

A = 7

8. Complementary strand of DNA

ATGCTTCA is:

- (1) TACGAAGA
- (2) TACGAAGT
- (3) TAGCAACA
- (4) TAGCTACT

Answer (2)

Sol. Adenine base pairs with thymine with 2 hydrogen bonds and cytosine base pairs with guanine with 3 hydrogen bonds.

A	١	Т	G	С	Т	Т	С	Α	──DNA strand
Г	-	Α	С	G	Α	Α	G	Т	→ Complementary strand

9. What is the pH of CH₃COO-NH₄+ salt?

Given K_a of $CH_3COOH = 1.8 \times 10^{-6}$

 K_b of NH₄OH = 1.8 × 10⁻⁶

(At 25°C)

- (1) 7
- (2) 9
- (3) 8.9
- (4) 7.8

Answer (1)

Sol.
$$pH = \frac{pK_w + pK_a - pK_b}{2}$$

 $pK_a = pK_b$

$$\Rightarrow$$
 pH = $\frac{pK_w}{2}$ = 7

 We are given with 3 NaCl samples and their van't Hoff factors

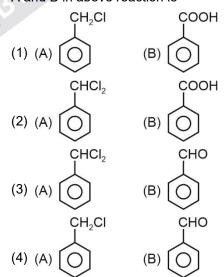
Sample	van't Hoff factor		
Sample-1 (0.1M)	i ₁		
Sample-2 (0.01M)	i ₂		
Sample-3 (0.001 M)	i ₃		

Choose the correct answer.

- (1) $i_1 = i_2 = i_3$
- (2) $i_1 > i_2 > i_3$
- (3) $i_3 > i_2 > i_1$
- (4) $i_1 > i_3 > i_2$

Answer (1)

Sol. As NaCl is strong electrolyte, its degree of dissociation (α) will remain same.


$$i = 2$$

For each sample,

$$i_1 = i_2 = i_3$$

CH₃

11.
$$Cl_2(2 \text{ eq}), hv \rightarrow A \xrightarrow{(i) \text{ NaOH}} B$$

A and B in above reaction is

Answer (3)

$$\begin{array}{c|c} \text{CH}_3 & \text{CHCl}_2 & \text{CHO} \\ \hline \\ \text{Sol.} & & & \\ \hline \\ &$$

JEE (Main)-2024: Phase-1 (01-02-2024)-Morning

- 12. We have a mixture of gases having 2 moles of monoatomic gas $\left(C_{v,m} = \frac{3R}{2}\right)$ and 6 moles of diatomic gas $\left(C_{v,m} = \frac{5R}{2}\right)$. Find out molar heat capacity (C_{vm}) of the mixture.
 - (1) $\frac{9R}{4}$
 - (2) $\frac{9R}{2}$
 - (3) 3R
 - (4) 4R

Answer (1)

Sol.
$$C_{vm} = \frac{2\left(\frac{3R}{2}\right) + 6\left(\frac{5R}{2}\right)}{2+6}$$
$$= \frac{3R+15R}{8} = \frac{18R}{8}$$
$$= \frac{9R}{4} \text{ (option (1))}$$

Assertion (A): KCN react with R-X to give cyanide and AgCN reacts with R - X to give isocyanide mainly.

Reason (R): KCN and AgCN both are ionic compounds

- (1) Both Assertion and Reason are true and Reason explains Assertion
- (2) Both Assertion and Reason is true but Reason does not explains Assertion
- (3) Assertion is true and Reason is false
- (4) Assertion is false but reason is true

Answer (3)

Sol. KCN
$$\longrightarrow$$
 K+ CN

$$R - X + KCN \longrightarrow R - CN + KX$$

$$R - X + AgCN \longrightarrow R - NC + AgX$$

KCN is ionic therefore ionised and attack occurs through carbon.

AgCN is covalent therefore attack starts with Nitrogen.

14. Consider the following two statements.

Statement I: $[Ni(H_2O)_6]^{2+}$ is of green colour Statement II : $[Ni(CN)_4]^{2-}$ is colourless

- (1) Statement I is true, statement II is false
- (2) Statement I is true, statement II is true
- (3) Statement I is false, statement II is true
- (4) Statement I is false, statement II is false

Answer (2)

Sol. $[Ni(H_2O)_6]^{2+}$ is octahedral and $[Ni(CN)_4]^{2-}$ is square planar.

In $[Ni(H_2O)_6]^{2+} \Rightarrow Ni^{2+}$ has two unpaired electrons and in $[Ni(CN)_4]^{2-} \Rightarrow Ni^{2+}$ has no unpaired electrons.

 $[Ni(H_2O)_6]^{2+}$ is coloured as it absorbs red light due to suitable d-d transition and complementary light emitted is green.

[Ni(CN)₄]²⁻ has strong field ligand so the electrons of Ni²⁺ pair up and it is colourless as it cannot absorb light from visible region.

15. **Statement-I:** Potassium hydrogen phthalate is primary standard for NaOH solution.

Statement-II: Phenolphthalein is used to detect completion of titration.

- (1) Both statement-I and statement-II are correct
- (2) Statement-I is correct and statement-II is incorrect
- (3) Statement-I is incorrect and statement-II is correct
- (4) Both statement-I and statement-II are incorrect

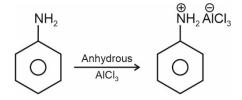
Answer (1)

Sol. Potassium hydrogen phthalate is used to standardize NaOH solutions.

Phenolphthalein is used as an indicator to detect completion of titrations.

 Statement-I: In aniline, –NH₂ group is strong deactivating group for all ESR.

Statement-II: Aniline does not show Friedel-Craft alkylation reaction.


- (1) Both statement-I and statement-II are correct
- (2) Both statement-I and statement-II are incorrect
- (3) Statement-I is correct and statement-II is incorrect
- (4) Statement-I is incorrect and statement-II is correct

Answer (4)

Sol. In aniline –NH₂ is strong activating group due to presence of lone pair in nitrogen.

Aniline does not show Friedel-Craft alkylation reaction, because anhydrous AlCl₃ and aniline form salt together

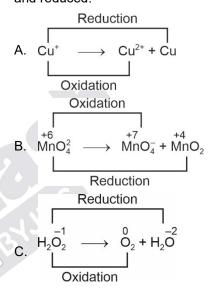
- 17. Which of the following is homoleptic complex?
 - (1) [Ni(CN)₄]²⁻
 - (2) $[Cu(H_2O)_3Cl_3]$
 - (3) [PtCl2Br₂]²⁻
 - (4) [Cu(NH₃)₅Cl]Cl₂

Answer (1)

- **Sol.** Homoleptic complexes in which a metal is bound to only one kind of donor groups/ligands.
- 18. For ionic reaction in organic compound which type of bond cleavage occur?
 - (1) Heterolytic cleavage
 - (2) Homolytic cleavage
 - (3) Free radical
 - (4) No cleavage of bond

Answer (1)

- **Sol.** In heterolytic bond cleavage ions are formed, hence for ionic reaction in organic compound heterolytic bond cleavage takes place.
- 19. Ka values of three acids A, B and C are 10^{-3} , 5 × 10^{-9} , 9 × 10^{-11} respectively. The acidic strength order of these acids is
 - (1) A > B > C
 - (2) B > A > C
 - (3) C > B > A
 - (4) C > A > B


Answer (1)

Sol. Higher the value of K_a, more is the acidic strength.

- 20. Which of the following is a disproportionation reaction?
 - A. $Cu^+ \longrightarrow Cu^{2+} + Cu$
 - B. $MnO_4^{2-} \longrightarrow MnO_4^- + MnO_2$
 - C. $H_2O_2 \longrightarrow O_2 + H_2O$
 - D. $CrO_4^{2-} \longrightarrow Cr^{3+} + H_2O$
 - (1) All A, B, C and D (2) A and B only
 - (3) A and C only
- (4) A, B and C only

Answer (4)

Sol. Disproportionation reaction is a reaction in which a substance (element) is simultaneously oxidised and reduced.

D.
$$CrO_4^{-6} \longrightarrow Cr^{3+} + H_2O$$
 (Reduction only)

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Find out total possible optical isomers of 2-chlorobutane.

Answer (2)

There is one chiral centre present in given compound which is unsymmetrical.

Total number of isomers = 2^n

JEE (Main)-2024: Phase-1 (01-02-2024)-Morning

n = number of stereogenic centre

$$= 2^{1}$$

Total two optical isomers are possible

22. We are given with following cell reaction:

$$2H^+ + 2e^- \longrightarrow H_2$$

$$P_{H_2} = 2 atm$$

$$\left(\frac{2.303RT}{F} = 0.06\right)$$

If E_{cell} for reaction is given by $-x \times 10^{-3}$ V, find out x.

Answer (9)

Sol.
$$E_{cell} = 0 - \frac{0.06}{2} \log 2$$

= -0.03(0.3)
= -0.009
= -9 × 10⁻³ V

$$x = 9$$

23. Total number of deactivating groups among the following

Answer (2)

Sol. $-C \equiv N, -C - CH_3$ are -R group which is

deactivating

O || -NH-C-CH₃ and -NH-CH₃ due to presence of lone pair in nitrogen atom behaves as activating (+R) group.

24. How many oxides are amphoteric in nature? SnO₂, PbO₂, SiO₂, P₂O₅, Al₂O₃, CO₂, CO, NO, N₂O

Answer (3)

Sol. Amphoteric oxides are those which can react with both acid and base

SnO₂, PbO₂ and Al₂O₃ are amphoteric oxide

SiO₂, P₂O₅, CO₂ are acidic oxides

CO, NO and N2O are neutral oxides

25. For carbon dating of a wood sample

$$\left(\frac{C^{14}}{C^{12}}\right)_t = \frac{1}{8} \left(\frac{C^{14}}{C^{12}}\right)_{t=0}.$$
 If Half life of C^{14} is 1580

years what is the life of wood sample (in yr)

Answer (4740)

Sol.
$$\left(\frac{C^{14}}{C^{12}}\right)_{t} = \frac{\left(\frac{C^{14}}{C^{12}}\right)_{t=0}}{\left(2\right)^{n}}$$

$$n = 3$$

$$t = 3 \times 1580$$

26. What is the minimum energy (in eV) required for an electron to excite from ground state to 1st excited state for hydrogen atom?

Answer (10)

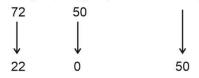
Sol. $n_1 = 1$

$$n_2 = 2$$

$$\Delta E = 13.6Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\Delta E = 13.6 \left(\frac{1}{1^2} - \frac{1}{2^2} \right)$$

$$\Delta E = 13.6 \left(1 - \frac{1}{4} \right)$$


$$\Delta E = 13.6 \times \frac{3}{4} \text{ eV}$$

=
$$10.05 \text{ eV} \approx 10 \text{ eV}$$

Find out moles of precipitate product formed when
moles of PbCl₂ reacts with 50 moles of (NH₄)₂SO₄.

Answer (50)

Sol. PbCl₂ + (NH₄)₂SO₄ \longrightarrow PbSO₄ \downarrow + 2NH₄Cl

Moles of PbSO₄ formed = 50 mol

- 28.
- 29.
- 30.