JEE (Main)-2023 : Phase-2 (06-04-2023)-Evening

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

- 3. Which of the following is most basic
 - (1) Tl₂O₃
 - (2) Tl₂O
 - (3) Cr₂O₃
 - (4) B₂O₃

Answer (2)

- Sol. TI⁺ oxide is more basic than TI³⁺ Cr_2O_3 is amphoteric
- 4. Which of the following element is not present in Nessler's reagent?
 - (1) K
 - (2) Hg
 - (3) N
 - (4) I

Answer (3)

Sol. Nessler's reagent is alkaline solution of K_2HgI_4

- 5. Which of the following is not obtained on electrolysis of brine solution
 - (1) NaOH
 - (2) H₂ gas
 - (3) Cl₂ gas
 - (4) Na

Answer (4)

Sol. Anode

 $2Cl^{-} \longrightarrow Cl_2 + 2e^{-}$

Cathode

 $2e^- + 2H_2O \longrightarrow H_2 + 2OH^-$

Na metal is not obtained on electrolysis of brine.

- 6. BeCl₂ exists as in solid state, vapour phase and at high temperature of the order of 1200 K in that order.
 - (1) Polymer, Dimer and Monomer
 - (2) Dimer, Polymer and Monomer
 - (3) Monomer, Dimer and Polymer
 - (4) Polymer, Monomer and Dimer

Answer (1)

JEE (Main)-2023 : Phase-2 (06-04-2023)-Evening

Sol. BeCl₂ has a linear polymeric chain structure with Be-atom undergoing *sp*³ hybridisation. In the vapour phase BeCl₂ tends to form a chloro-bridged dimer,

which dissociates into the linear monomer at high temperature of the order of 1200 K.

- 7. Which of the following has highest hydration energy.
 - (1) Be⁺²
 - (2) Mg⁺²
 - (3) Ca++
 - (4) Ba+2

Answer (1)

- **Sol.** Hydration energy decreases down the group in the 2nd group metal cation.
- 8. Oxidation state of Mn in KMnO₄ changes by 3 units in which medium?
 - (1) Strongly acidic
 - (2) Strongly basic
 - (3) Aqueous neutral
 - (4) Weakly acidic

Answer (3)

Sol. KMnO₄ in aqueous neutral medium reduces to MnO₂.

 $2KMnO_4 + H_2O \rightarrow 2MnO_2 + 2KOH + \frac{3}{2}O_2$

- ∴ Oxidation state of Mn in KMnO₄ changes from +7 to +4 i.e., by 3 units.
- 9. IUPAC name of the compound $K_3[Co(C_2O_4)_3]$ is
 - (1) Potassium trioxalatocobalt (III)
 - (2) Potassium trioxalatocobaltate (III)
 - (3) Potassium cobalttrioxalate (II)
 - (4) Potassium oxalatocobaltate (III)

Answer (2)

Sol. IUPAC name of K₃[Co(C₂O₄)₃] is Potassium trioxalatocobaltate (III).

10. Consider the following reaction

Answer (1)

Sol.

11. During detection of Lead.

Formation of which of following compound is not used as confirmatory test.

- (1) PbSO₄
- (2) Pb(NO₃)₂
- (3) PbCrO₄
- (4) Pbl₂

Answer (2)

Sol. PbSO4	-	White ppt
PbCrO ₄	-	Yellow ppt
Pbl ₂	-	Yellow ppt
Pb(NO ₃) ₂	-	Soluble

12. Identify the final product (B) formed in the following sequence of reactions.

- Sol.
- 13. Consider the following:
 - (i) D.D.T.
 - (ii) Aldrin
 - (iii) Sodium arsenite
 - (iv) Sodium chlorate
 - How many of these are pesticides?
 - (1) 1
 - (2) 2
 - (3) 3
 - (4) 4
- Answer (2)

JEE (Main)-2023 : Phase-2 (06-04-2023)-Evening

- **Sol.** D.D.T. and Aldrin are pesticides while sodium arsenite and sodium chlorate are herbicides.
- 14. **Amino Acid** Letter code A. Alanine P. N B. Asparagine Q. A C. Aspartic acid R. R D. Arginine S. D (1) A - Q; B - S; C - P; D - R (2) A - Q; B - S; C - R; D - P (3) A - S; B - P; C - R; D - Q (4) A - S; B - P; C - P; D - R Answer (1) Sol. Alanine А Arginine R Aspartic acid D Asparagine Ν 15. 16. 17. 18. 19. 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. The number of compounds that give iodoform test

JEE (Main)-2023 : Phase-2 (06-04-2023)-Evening

Answer (02.00)

give iodoform test.

22. If a_0 is the radius of H-atom de-Broglie wavelength of e^- in 3rd orbit of Li²⁺ ion is $x\pi a_0$. Find out x.

Answer (02.00)

Sol. $r_3 = \frac{a_0 \times (3)^2}{(3)} = 3a_0$

 $2\pi r=3\lambda$

 $2\pi(3a_0) = 3\lambda$

 $\Rightarrow \lambda = 2\pi a_0$

- 23. How many of the following will have same relative lowering in vapour pressure?
 - (A) 1 M NaCl
 - (B) 1 M Urea
 - (C) 1.5 M AICI3
 - (D) 2 M Na₂SO₄

Answer (02.00)

Sol. $\frac{\Delta P}{p_{solvent}} = i(x_{solute})$

i.M should be same

- (A) $1 \times 2 = 2$
- (B) 1 × 1 = 1
- (C) $1.5 \times 4 = 6$
- (D) $2 \times 3 = 6$
- (C) & (D) will have same RLVP

24. We are given with 7 type of lattice.

A. Cubic

B. tetragonal

- C. Orthorhombic
- D. Hexagonal
- E. Rhombohedral
- F. Monoclinic
- G. Triclinic

How many of them can have BCC unit cell?

Answer (03.00)

- **Sol.** Cubic, tetragonal and orthorhombic can have BCC unit cell.
- 25. How many of the given molecules are square planar in shape?

XeF4, SF4, [Ni(CO)4], [Ni(CN)4]²⁻, [NiCl4]²⁻, [FeCl4]²⁻, [Cu(NH₃)4]²⁺, [PdCl4]²⁻

Answer (04.00)

Sol.	XeF ₄	:	square planar
	SF ₄	:	see saw
6	[Ni(CO)4]	:	tetrahedral
K,	[Ni(CN)4] ²⁻	:	square planar
Y	[NiCl4] ²⁻	:	tetrahedral
3	[FeCl4] ²⁻	:	tetrahedral
	[Cu(NH ₃) ₄] ²⁺	:	square planar
	[PdCl ₄] ²⁻	:	square planar

26. Volume of HBr (0.02 M) (in ml) needed to completely neutralise Ba(OH)₂ (0.01 M, 10 ml)

Answer (10)

Sol. mEq of HBr = mEq of $Ba(OH)_2$

 $0.02 \times V = 0.01 \times 10 \times 2$

$$V = \frac{0.02 \times 10}{0.02} = 10 \text{ m}$$

27.

- 28.
- 29.

30.

