

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- 1. Let R_1 and R_2 be two relations defined on $\mathbb R$ by a R_1 *b* \Leftrightarrow *ab* \ge 0 and *a* R_2 *b* \Leftrightarrow *a* \ge *b*. Then,
	- (A) R_1 is an equivalence relation but not R_2
	- (B) *R*² is an equivalence relation but not *R*¹
	- (C) Both *R*¹ and *R*² are equivalence relations
	- (D) Neither R_1 nor R_2 is an equivalence relation

Answer (D)

Sol. $a R_1 b \Leftrightarrow ab \ge 0$

So, definitely $(a, a) \in R_1$ as $a^2 \ge 0$

If $(a, b) \in R_1 \implies (b, a) \in R_1$

But if $(a, b) \in R_1$, $(b, c) \in R_1$

 \Rightarrow Then (*a*, *c*) may or may not belong to R_1

{Consider $a = -5$, $b = 0$, $c = 5$ so (a, b) and $(b, c) \in$ R_1 but $ac < 0$ }

So, R_1 is not equivalence relation

 $a R_2 b \Leftrightarrow a \ge b$

 $(a, a) \in R_2 \implies$ so reflexive relation

If $(a, b) \in R_2$ then (b, a) may or may not belong to *R*²

 \Rightarrow So not symmetric

Hence it is not equivalence relation

2. Let *f*, $g : \mathbb{N} - \{1\} \rightarrow \mathbb{N}$ be functions defined by $f(a) = \alpha$, where α is the maximum of the powers of those primes p such that p^{α} divides a, and $g(a) = a$ + 1, for all $a \in \mathbb{N} - \{1\}$. Then, the function $f + g$ is

- (A) one-one but not onto
- (B) onto but not one-one
- (C) both one-one and onto
- (D) neither one-one nor onto

Answer (D)

Sol. *f*, $g: N - \{1\} \rightarrow N$ defined as

g(*a*) = *a* + 1,

 $f(a) = \alpha$, where α is the maximum power of those primes *p* such that *p* divides *a*.

$$
g(a) = a + 1,
$$

Now, $f(2) = 1$, $g(2) = 3$ \Rightarrow $(f + g)(2) = 4$
 $f(3) = 1$, $g(3) = 4$ \Rightarrow $(f + g)(3) = 5$
 $f(4) = 2$, $g(4) = 5$ \Rightarrow $(f + g)(4) = 7$
 $f(5) = 1$, $g(5) = 6$ \Rightarrow $(f + g)(5) = 7$

 \therefore $(f + g) (5) = (f + g) (4)$

 \therefore $f + g$ is not one-one

Now, \therefore $f_{\text{min}} = 1$, $g_{\text{min}} = 3$

So, there does not exist any $x \in N - \{1\}$ such that $(f + g)(x) = 1, 2, 3$

- \therefore $f + g$ is not onto
- 3. Let the minimum value *v*₀ of $v = |z|^2 + |z 3|^2 + |z 3|$ $6i^2$, $z \in \mathbb{C}$ is attained at $z = z_0$. Then

$$
\left|2z_0^2 - \overline{z}_0^3 + 3\right|^2 + v_0^2
$$
 is equal to
(A) 1000

$$
(B) 1024
$$

- (C) 1105
- (D) 1196

Answer (A)

Sol. Let $z = x + iy$ $v = x^2 + y^2 + (x - 3)^2 + y^2 + x^2 + (y - 6)^2$ $= (3x^2 - 6x + 9) + (3y^2 - 12y + 36)$ $= 3(x^2 + y^2 - 2x - 4y + 15)$ $= 3[(x-1)^2 + (y-2)^2 + 10]$ *v*min at *z* = 1 + 2*i* = *z*⁰ and *v*⁰ = 30 so |2(1 + 2*i*) ² – (1 – 2*i*) ³ + 3|² + 900 = |2(–3 + 4*i*) – (1 – 8*i* ³ – 6*i* (1 – 2*i*) +3|² + 900 $= |-6 + 8i - (1 + 8i - 6i - 12) + 3|^2 + 900$ $= |8 + 6i|^2 + 900$ $= 1000$

 $4.$

- $=$ $\left[(7k-2)^3 \right]^{674} + (7k_1)^{2021} 2021(7k_1)^{2020} + \dots 1$ = (7*k* 2 – 1)⁶⁷⁴ + (7*m* – 1) $=(7n + 1) + (7m - 1) = 7(m + n)$ (multiple of 7)
- \therefore Remainder = 0
- 6. Suppose *a*1, *a*2, … *an*, … be an arithmetic progression of natural numbers. If the ration of the sum of first five terms to the sum of first nine terms of the progression is $5:17$ and $110 < a_{15} < 120$, then the sum of the first ten terms of the progression is equal to
	- (A) 290
	- (B) 380
	- (C) 460
	- (D) 510

Answer (B)

Sol. \therefore a_1 , a_2 , \ldots a_n \ldots be an A.P of natural numbers and

$$
\frac{S_5}{S_9} = \frac{5}{17} \Rightarrow \frac{\frac{5}{2}[2a_1 + 4d]}{\frac{9}{2}[2a_1 + 8d]} = \frac{5}{17}
$$

 \implies 34*a*₁ + 68*d* = 18*a*₁ + 72*d*

$$
\Rightarrow 16a_1 = 4a
$$

$$
\therefore \quad \boxed{d=4a_1}
$$

And 110 < *a*¹⁵ <120

$$
\therefore 110 < a_1 + 14d < 120 \Rightarrow 110 < 57a_1 < 120
$$

$$
\therefore a_1 = 2 (\because a_i \in \mathsf{N})
$$

$$
d = 8
$$

- \therefore S₁₀ = 5 [4 + 9 × 8] = 380
- 7. Let $\mathbb{R} \to \mathbb{R}$ be function defined as

$$
f(x) = a \sin\left(\frac{\pi[x]}{2}\right) + [2 - x], a \in \mathbb{R}, \text{ where } [f] \text{ is the}
$$

greatest integer less than or equal to *t*. If $\lim_{x\to -1} f(x)$

exists, then the value of
$$
\int_{0}^{4} f(x) dx
$$
 is equal to

(A) –1 (B) –2 (C) 1 (D) 2

Answer (B)

Sol.
$$
f(x) = a \sin \left(\frac{\pi[x]}{2} \right) + [2 - x] a \in R
$$

Now,

$$
\lim_{x \to -1} f(x) \text{ exist}
$$
\n
$$
\lim_{x \to -1} f(x) = \lim_{x \to -1^{+}} f(x)
$$
\n
$$
\Rightarrow \quad \operatorname{asin}\left(\frac{-2\pi}{2}\right) + 3 = \operatorname{asin}\left(\frac{-\pi}{2}\right) + 2
$$
\n
$$
\Rightarrow -a = 1 \Rightarrow \boxed{a = -1}
$$
\nNow,
$$
\int_{0}^{4} f(x) dx = \int_{0}^{4} \left(-\sin\left(\frac{\pi[x]}{2}\right) + \left[2 - x\right]\right) dx
$$

\n
$$
= \int_{0}^{1} 1 dx + \int_{1}^{2} -1 dx + \int_{2}^{3} -1 dx + \int_{3}^{4} (1 - 2) dx
$$
\n
$$
= 1 - 1 - 1 - 1 = -2
$$

8. Let $I = \int_{0}^{\pi/3}$ /4 $I = \int_{\pi/4}^{\pi/3} \left(\frac{8 \sin x - \sin 2x}{x} \right) dx.$ π π $=\int_{\pi/4}^{\pi/3} \left(\frac{8\sin x - \sin 2x}{x}\right) dx$. Then (A) $\frac{\pi}{2} < l < \frac{3}{2}$ $\frac{\pi}{2}$ < *I* < $\frac{3\pi}{4}$ (B) $\frac{\pi}{5}$ < *I* < $\frac{5}{1}$ $\frac{\pi}{5}$ < *I* < $\frac{5\pi}{12}$ (C) $\frac{5\pi}{12} < l < \frac{\sqrt{2}}{2}$ 12 3 $\frac{\pi}{2}$ < *I* < $\frac{\sqrt{2}}{2}\pi$ (D) $\frac{3}{2}$ *I*π
4 < *I* < π

Answer (*)

Sol. I comes out around 1.536 which is not satisfied by any given options.

$$
\int_{\pi/4}^{\pi/3} \frac{8x - 2x}{x} dx > 1 > \int_{\pi/4}^{\pi/3} \frac{8 \sin x - 2x}{x} dx
$$

$$
\frac{\pi}{2} > 1 > \int_{\pi/4}^{\pi/3} \left(\frac{8 \sin x}{x} - 2 \right) dx
$$

$$
\frac{\sin x}{x}
$$
 is decreasing in $\left(\frac{\pi}{4}, \frac{\pi}{3} \right)$ so it attains maximum at $x = \frac{x}{4}$

$$
1 > \int_{\pi/4}^{\pi/3} \left(\frac{8 \sin \pi/3}{\pi/3} - 2 \right) dx
$$

$$
1 > \sqrt{3} - \frac{\pi}{6}
$$

9. The area of the smaller region enclosed by the curves $y^2 = 8x + 4$ and $x^2 + y^2 + 4\sqrt{3x - 4} = 0$ is equal to

(A)
$$
\frac{1}{3}(2-12\sqrt{3}+8\pi)
$$
 (B) $\frac{1}{3}(2-12\sqrt{3}+6\pi)$
(C) $\frac{1}{3}(4-12\sqrt{3}+8\pi)$ (D) $\frac{1}{3}(4-12\sqrt{3}+6\pi)$

Answer (C)

JEE (Main)-2022 : Phase-2 (27-07-2022)-Morning

Area of the required region

$$
= \frac{2}{3}\left(4 \times \frac{1}{2}\right) + 4^2 \times \frac{\pi}{6} - \frac{1}{2} \times 4 \times 2\sqrt{3}
$$

$$
= \frac{4}{3} + \frac{8\pi}{3} - 4\sqrt{3} = \frac{1}{3}\left\{4 - 12\sqrt{3} + 8\pi\right\}
$$

10. Let $y = y_1(x)$ and $y = y_2(x)$ be two distinct solution of the differential equation $\frac{dy}{dx} = x + y$, with $y_1(0) = 0$ and $y_2(0) = 1$ respectively. Then, the number of points of intersection of $y = y_1(x)$ and $y = y_2(x)$ is (A) 0 (B) 1

(C) 2 (D) 3

Answer (A)

Sol.
$$
\frac{dy}{dx} = x + y
$$

Let $x + y = t$

$$
1 + \frac{dy}{dx} = \frac{dt}{dt}
$$

$$
\frac{dx}{dx} - 1 = t \Rightarrow \int \frac{dt}{t+1} = \int dx
$$

$$
|\mathsf{In}|t+1| = x + C'
$$

$$
|t+1| = Ce^x
$$

$$
|x+y+1| = Ce^x
$$

For $y_1(x)$, $y_1(0) = 0 \implies C = 1$

For $y_2(x)$, $y_2(0) = 1 \Rightarrow C = 2$

*y*₁(*x*) is given by $|x + y + 1| = e^x$

*y*₂(*x*) is given by $|x + y + 1| = 2e^{x}$

At point of intersection

$$
e^x=2e^x
$$

No solution

So, there is no point of intersection of $y_1(x)$ and *y*2(*x*).

11. Let $P(a, b)$ be a point on the parabola $y^2 = 8x$ such that the tangent at *P* passes through the centre of the circle $x^2 + y^2 - 10x - 14y + 65 = 0$. Let *A* be the product of all possible values of *a* and *B* be the product of all possible values of *b*. Then the value of $A + B$ is equal to

Answer (D)

Sol. Centre of circle $x^2 + y^2 - 10x - 14y + 65 = 0$ is at (5, 7). Let the equation of tangent to $y^2 = 8x$ is *yt* = *x* + 2*t* 2 which passes through (5, 7) $7t = 5 + 2t^2$ \Rightarrow 2*t*² – 7*t* + 5 = 0 $t = 1, \frac{5}{2}$ $A = 2 \times 1^2 \times 2 \times \left(\frac{5}{2}\right)^2 = 25$ $= 2 \times 1^2 \times 2 \times \left(\frac{1}{2}\right)$ = $B = 2 \times 2 \times 1 \times 2 \times 2 \times \frac{5}{2} = 40$ $A + B = 65$ 12. Let $\vec{a} = \alpha \hat{i} + \hat{j} + \beta \hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} + 4\hat{k}$ be two

vectors, such that $\vec{a} \times \vec{b} = -\hat{i} + 9\hat{i} + 12\hat{k}$. Then the projection of $b - 2\vec{a}$ on $b + \vec{a}$ is equal to

Answer (D)

Sol.
$$
\vec{a} = \alpha \hat{i} + \hat{j} + \beta \hat{k}, \vec{b} = 3\hat{i} - 5\hat{j} + 4\hat{k}
$$

\n $\vec{a} \times \vec{b} = -\hat{i} + 9\hat{j} + 12\hat{k}$
\n $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 1 & \beta \\ 3 & -5 & 4 \end{vmatrix} = -\hat{i} + 9\hat{j} + 12\hat{k}$
\n $4 + 5\beta = -1 \Rightarrow \beta = -1$
\n $-5\alpha - 3 = 12 \Rightarrow \alpha = -3$
\n $\vec{b} - 2\vec{a} = 3\hat{i} - 5\hat{j} + 4\hat{k} - 2(-3\hat{i} + \hat{j} - \hat{k})$
\n $\vec{b} - 2\vec{a} = 9\hat{i} - 7\hat{j} + 6\hat{k}$
\n $\vec{b} + \vec{a} = (3\hat{i} - 5\hat{j} + 4\hat{k}) + (-3\hat{i} + \hat{j} - \hat{k})$
\n $\vec{b} + \vec{a} = -4\hat{j} + 3\hat{k}$
\nProjection of $\vec{b} - 2\vec{a}$ on $\vec{b} + \vec{a}$ is $= \frac{(\vec{b} - 2\vec{a}) \cdot (\vec{b} + \vec{a})}{|\vec{b} + \vec{a}|}$
\n $= \frac{28 + 18}{5} = \frac{46}{5}$

13. Let $\vec{a} = 2\hat{i} - \hat{j} + 5\hat{k}$ and $\vec{b} = \alpha \hat{i} + \beta \hat{j} + 2\hat{k}$. If $((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k} = \frac{23}{4}$ $(\vec{a} \times \vec{b}) \times \hat{i} \cdot \hat{k} = \frac{23}{2}$, then $|\vec{b} \times 2\hat{j}|$ is equal to (A) 4 (B) 5 (C) 21 (D) √17

Answer (B)

Sol. Given, $\vec{a} = 2\hat{i} - \hat{j} + 5\hat{k}$ and $\vec{b} = \alpha\hat{i} + \beta\hat{j} + 2\hat{k}$

Also, $((\vec{a} \times \vec{b}) \times \vec{i}) \cdot \hat{k} = \frac{23}{2}$ \Rightarrow $\left(\left(\vec{a} \cdot \hat{i} \right) \vec{b} - \left(\vec{b} \cdot \hat{i} \right) \cdot \vec{a} \right) \cdot \hat{k} = \frac{23}{2}$ $\left(\frac{\overline{a}}{2} \cdot i\right) b - \left(b \cdot i\right) \cdot \overline{a} + k = \frac{-\overline{a}}{2}$ \Rightarrow $(2 \cdot \vec{b} - \alpha \cdot \vec{a}) \cdot \hat{k} = \frac{23}{2}$ \Rightarrow 2.2-5 $\alpha = \frac{23}{2} \Rightarrow \alpha = \frac{-3}{2}$ $-2 - 5\alpha = \stackrel{25}{\longrightarrow} \Rightarrow \alpha = \stackrel{-5}{\longrightarrow}$ Now, $|\vec{b} \times 2 \vec{j}| = |(\alpha \hat{i} + \beta \hat{j} + 2\hat{k}) \times 2 \hat{j}|$ $= 2\alpha \hat{k} + 0 - 4\hat{i}$ $=\sqrt{4\alpha^2+16}$ $4\left(\frac{-3}{2}\right)^2 + 16$ (-3) $\left(\frac{-}{2}\right)$ + $= 5$

14. Let *S* be the sample space of all five digit numbers. It p is the probability that a randomly selected number from *S*, is multiple of 7 but not divisible by 5, then 9*p* is equal to

(C) 1.0285 (D) 1.1521

Answer (C)

Sol. Among the 5 digit numbers,

First number divisible by 7 is 10003 and last is 99995.

 \Rightarrow Number of numbers divisible by 7.

$$
=\frac{99995-10003}{7}+1
$$

 $= 12857$

First number divisible by 35 is 10010 and last is 99995.

 \Rightarrow Number of numbers divisible by

$$
35 = \frac{99995 - 10010}{35} + 1
$$

$$
= 2572
$$

Hence number of number divisible by 7 but not by 5

$$
= 12857 - 2572
$$

$$
= 10285
$$

$$
9P. = \frac{10285}{90000} \times 9
$$

- $= 1.0285$
- 15. Let a vertical tower *AB* of height 2*h* stands on a horizontal ground. Let from a point *P* on the ground a man can see upto height *h* of the tower with an angle of elevation 2α . When from P , he moves a distance *d* in the direction of *AP* , he can see the top B of the tower with an angle of elevation α . if d = $\sqrt{7}$ h , then tan α is equal to
	- (A) 5 2 [−]
	- (B) √3 –1
	- (C) √7 2
	- (D) √7 √3

Answer (C)

 \overline{B}

Sol.

APM gives

$$
\tan 2\alpha = \frac{h}{x} \qquad \qquad \ldots (i)
$$

AQB gives

$$
\tan \alpha = \frac{2h}{x+d} = \frac{2h}{x+h\sqrt{7}} \dots (ii)
$$

From (i) and (ii)

$$
tan\alpha = \frac{2\cdot tan2\alpha}{1+\sqrt{7}\cdot tan2\alpha}
$$

Let $t = \tan \alpha$

JEE (Main)-2022 : Phase-2 (27-07-2022)-Morning

$$
\Rightarrow t = \frac{2\frac{2t}{1-t^2}}{1+\sqrt{7}\cdot\frac{2t}{1-t^2}}
$$

$$
\Rightarrow t^2 - 2\sqrt{7}t + 3 = 0
$$

$$
t = \sqrt{7} - 2
$$

16. $(p \wedge r) \Leftrightarrow (p \wedge (-q))$ is equivalent to $(-p)$ when *r* is

Answer (C)

Sol. The truth table

Clearly $p \wedge q \Leftrightarrow p \wedge q \equiv \neg p$

 \therefore $r = q$

17. If the plane *P* passes through the intersection of two mutually perpendicular planes 2*x* + *ky* – 5*z* = 1 and $3kx - ky + z = 5$, $k < 3$ and intercepts a unit length on positive *x*-axis, then the intercept made by the plane *P* on the *y*-axis is

(A)
$$
\frac{1}{11}
$$
 (B) $\frac{5}{11}$

$$
(C) 6 \t\t (D) 7
$$

Answer (D)

Sol.
$$
P_1: 2x + ky - 5z = 1
$$

\n $P_2: 3kx - ky + z = 5$

\n $\therefore P_1 \perp P_2 \Rightarrow 6k - k^2 + 5 = 0$

\n $\Rightarrow k = 1, 5$

\n $\therefore k < 3$

\n $\therefore k = 1$

\n $P_1: 2x + y - 5z = 1$

\n $P_2: 3x - y + z = 5$

- 22 -

 P : (2x + y – 5z – 1) + λ (3x – y + z – 5) = 0

Positive *x*-axis intercept = 1

$$
\Rightarrow \frac{1+5\lambda}{2+3\lambda} = 1
$$

$$
\Rightarrow \lambda = \frac{1}{2}
$$

 \therefore *P* : 7*x* + *y* – 4*z* = 7

$$
y
$$
 intercept = 7.

18. Let *A*(1, 1), *B*(–4, 3), *C*(–2, –5) be vertices of a triangle *ABC*, *P* be a point on side *BC*, and Δ ₁ and 2 be the areas of triangles *APB* and *ABC*, respectively. If $\Delta_1 : \Delta_2 = 4 : 7$, then the area enclosed by the lines *AP*, *AC* and the *x*-axis is

Answer (C)

19. If the circle $x^2 + y^2 - 2gx + 6y - 19c = 0$, $g, c \in$ passes through the point (6, 1) and its centre lies on the line $x - 2cy = 8$, then the length of intercept made by the circle on *x*-axis is

(A)
$$
\sqrt{11}
$$
 (B) 4

 (C) 3 (D) $2\sqrt{23}$

Answer (D)

```
Sol. Circle : x^2 + y^2 - 2gx + 6y - 19c = 0
```
It passes through *h*(6, 1)

$$
\Rightarrow 36 + 1 - 12g + 6 - 19c = 0
$$

= 12g + 19c = 43 ...(1)

Line *x* – 2*cy* = 8 passes though centre

$$
\Rightarrow g + 6c = 8 \qquad ...(2)
$$

From (1) & (2)

$$
g = 2, c = 1
$$

$$
C: x^{2} + y^{2} - 4x + 6y - 19 = 0
$$

$$
xint = 2\sqrt{g^{2} - C}
$$

$$
= 2\sqrt{4 + 19}
$$

$$
= 2\sqrt{23}
$$

20. Let a function $f : \mathbb{R} \to \mathbb{R}$ be defined as :

$$
f(x) = \begin{cases} \int_{0}^{x} (5 - |t - 3|) dt, & x > 4 \\ 0 & x^{2} + bx, & x \leq 4 \end{cases}
$$

where $b \in \mathbb{R}$. If *f* is continuous at $x = 4$ then which of the following statements is **NOT** true?

(A) f is not differentiable at $x = 4$

(B)
$$
f'(3) + f'(5) = \frac{35}{4}
$$

$$
\begin{array}{c}\n 4 \\
 \end{array}
$$

(C) *f* is increasing in
$$
\left(-\infty, \frac{1}{8}\right) \cup (8, \infty)
$$

(D) *f* has a local minima at
$$
x = \frac{1}{8}
$$

Answer (C)

Sol. \therefore $f(x)$ is continuous at $x = 4$ \implies *f*(4⁻) = *f*(4⁺) \implies 16 + 4b = $((5 - |t - 3|))$ $16 + 4b = \int_0^4 (5 - |t - 3|) dt$ 0

$$
= \int_{0}^{3} (2+t) dt + \int_{3}^{4} (8-t) dt
$$

$$
= 2t + \frac{t^{2}}{2} \Big]_{0}^{3} + 8t - \frac{t^{2}}{3} \Big]_{3}^{4}
$$

$$
= 6 + \frac{9}{2} - 0 + (32 - 8) - \left(24 - \frac{9}{2}\right)
$$

 $16 + 4b = 15$

$$
\Rightarrow b = \frac{-1}{4}
$$

\n
$$
\Rightarrow f(x) = \begin{cases} \int_{0}^{x} 5 - |t - 3| dt & x > 4 \\ 0 & x^{2} - \frac{x}{4} \quad x \le 4 \end{cases}
$$

\n
$$
\Rightarrow f'(x) = \begin{cases} 5 - |x - 3| & x > 4 \\ 2x - \frac{1}{4} & x \le 4 \end{cases}
$$

\n
$$
\Rightarrow f'(x) = \begin{cases} 8 - x & x > 4 \\ 2x - \frac{1}{4} & x \le 4 \end{cases}
$$

\n
$$
f'(x) < 0 \Rightarrow x \in \left(-\infty, \frac{1}{8}\right) \cup \left(8, \infty\right)
$$

\n
$$
f'(3) + f'(5) = 6 - \frac{1}{4} = \frac{35}{4}
$$

\n
$$
f'(x) = 0 \Rightarrow x = \frac{1}{8} \text{ have local minima}
$$

(C) is only incorrect option.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, –00.33, –00.30, 30.27, –27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

JEE (Main)-2022 : Phase-2 (27-07-2022)-Morning

1. For $k \in R$, let the solution of the equation

$$
\cos\left(\sin^{-1}\left(x\cot\left(\tan^{-1}\left(\cos\left(\sin^{-1}\right)\right)\right)\right)\right) = k, 0 < |x| < \frac{1}{\sqrt{2}}
$$

Inverse trigonometric functions take only principal values. If the solutions of the equation $x^2 - bx - 5 = 0$

0 are
$$
\frac{1}{\alpha^2} + \frac{1}{\beta^2}
$$
 and $\frac{\alpha}{\beta}$, then $\frac{b}{k^2}$ is equal to _______.

Answer (12)

Sol.
$$
\cos \left(\sin^{-1} \left(\arct \left(\tan^{-1} \left(\cos \left(\sin^{-1} \right) \right) \right) \right) \right) = k
$$

\n $\Rightarrow \cos \left(\sin^{-1} \left(\arct \left(\tan^{-1} \sqrt{1 - x^2} \right) \right) \right) = k$
\n $\Rightarrow \cos \left(\sin^{-1} \left(\frac{x}{\sqrt{1 - x^2}} \right) \right) = k$
\n $\Rightarrow \frac{\sqrt{1 - 2x^2}}{\sqrt{1 - x^2}} = k$
\n $\Rightarrow \frac{1 - 2x^2}{1 - x^2} = k^2$
\n $\Rightarrow 1 - 2x^2 = k^2 - k^2x^2$
\n $\therefore x^2 - \left(\frac{k^2 - 1}{k^2 - 2} \right) = 0 \le \frac{\alpha}{\beta}$
\n $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 2 \left(\frac{k^2 - 2}{k^2 - 1} \right) \dots (1)$
\nand $\frac{\alpha}{\beta} = -1 \dots (2)$
\n $\therefore 2 \left(\frac{k^2 - 2}{k^2 - 1} \right) (-1) = -5$
\n $\Rightarrow k^2 = \frac{1}{3}$
\nand $b = S.R = 2 \left(\frac{k^2 - 2}{k^2 - 1} \right) - 1 = 4$
\n $\therefore \frac{b}{k^2} = \frac{4}{1} = 12$

2. The mean and variance of 10 observation were calculated as 15 and 15 respectively by a student who took by mistake 25 instead of 15 for one observation. Then, the correct standard deviation is

Answer (2)

________.

Sol. Given
$$
\frac{\sum_{i=1}^{10} x_i}{10} = 15
$$
 ...(1) $\Rightarrow \sum_{i=1}^{10} x_i = 150$

and
$$
\frac{\sum_{i=1}^{10} x_i^2}{10} - 15^2 = 15 \Rightarrow \sum_{i=1}^{10} x_i^2 = 2400
$$

Replacing 25 by 15 we get

$$
\sum_{i=1}^{9} x_i + 25 = 150 \qquad \qquad \Rightarrow \sum_{i=1}^{9} x_i = 125
$$

∴ Correct mean
$$
=
$$
 $\frac{\sum_{i=1}^{9} x_i + 15}{10} = \frac{125 + 15}{10} = 14$

9

Similarly,
$$
\sum_{i=1}^{2} x_i^2 = 2400 - 25^2 = 1775
$$

$$
\therefore \quad \text{correct variance} = \frac{\sum_{i=1}^{n} x_i^2 + 15^2}{10} - 14^2
$$

$$
=\frac{1775+225}{10}-14^2=4
$$

- \therefore correct S.D = $\sqrt{4}$ = 2.
- 3. Let the line $\frac{x-3}{2} = \frac{y-2}{4} = \frac{z-3}{4}$ 7 –1 –4 $\frac{x-3}{7} = \frac{y-2}{-1} = \frac{z-3}{-4}$ intersect the plane containing the lines $\frac{x-4}{1} = \frac{y+1}{2}$ 1 2 1 $\frac{x-4}{1} = \frac{y+1}{-2} = \frac{z}{1}$ and $4ax - y + z$ $5z - 7a = 0 = 2x - 5y - z - 3$, $a \in \mathbb{R}$ at the point $P(\alpha, \beta, \gamma)$. Then the value of $\alpha + \beta + \gamma$ equals _____.

Answer (12)

Sol. Equation of plane containing the line

4*ax* – *y* + 5*z* – 7*a* = 0 = 2*x* – 5*y* – *z* – 3 can be written as $4ax - y + 5z - 7a + \lambda(2x - 5y - z - 3) = 0$ $(4a + 2\lambda) x - (1 + 5\lambda) y + (5 - \lambda) z - (7a + 3\lambda) = 0$ Which is coplanar with the line *x*−4 *y*+1 *z*

$$
\frac{1}{1} = \frac{1}{-2} = \frac{1}{1}
$$

$$
4(4a + 2\lambda) + (1 + 5\lambda) - (7a + 3\lambda) = 0
$$

\n
$$
9a + 10\lambda + 1 = 0 \qquad ...(1)
$$

\n
$$
(4a + 2\lambda)1 + (1 + 5\lambda)2 + 5 - \lambda = 0
$$

\n
$$
4a + 11\lambda + 7 = 0 \qquad ...(2)
$$

\n
$$
a = 1, \lambda = -1
$$

\nEquation of plane is $x + 2y + 3z - 2 = 0$
\nIntersection with the line

3 v-2 z-3 7 –1 –4 $\frac{x-3}{7} = \frac{y-2}{-1} = \frac{z-2}{-1}$ $(7t + 3) + 2(-t + 2) + 3(-4t + 3) - 2 = 0$ $-7t + 14 = 0$ $t = 2$

So, the required point is (17, 0, –5)

$$
\alpha + \beta + \gamma = 12
$$

4. An ellipse $E: \frac{x^2}{2} + \frac{y^2}{2}$ $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the

vertices of the hyperbola $H: \frac{x^2}{x^2} - \frac{y^2}{x^2}$ $: \frac{1}{49} - \frac{9}{64} = -1$ *H* : $\frac{x^{2}}{x^{2}} - \frac{y^{2}}{x^{2}} = -1$. Let the major and minor axes of the ellipse *E* coincide with the transverse and conjugate axes of the hyperbola *H*, respectively. Let the product of the eccentricities

of E and H be $\frac{1}{2}$ $\frac{1}{2}$. If the length of the latus rectum of the ellipse *E*, then the value of 113*l* is equal to

$\overline{}$ **Answer (1552)**

Sol. Vertices of hyperbola = $(0, \pm 8)$

As ellipse pass through it i.e.,

$$
0 + \frac{64}{b^2} = 1 \implies b^2 = 64 \quad ...(1)
$$

As major axis of ellipse coincide with transverse axis of hyperbola we have *b* > *a* i.e.

$$
e_{E} = \sqrt{1 - \frac{a^{2}}{64}} = \frac{\sqrt{64 - a^{2}}}{8}
$$

and $e_{H} = \sqrt{1 + \frac{49}{64}} = \frac{\sqrt{113}}{8}$
 $\therefore e_{E} \cdot e_{H} = \frac{1}{2} = \frac{\sqrt{64 - a^{2}} \sqrt{113}}{64}$
 $\Rightarrow (64 - a^{2}) (113) = 32^{2}$
 $\Rightarrow a^{2} = 64 - \frac{1024}{113}$

L.R of ellipse
$$
=
$$
 $\frac{2a^2}{b} = \frac{2}{8} \left(\frac{113 \times 64 - 1024}{113} \right)$
 $= I = \frac{1552}{113}$

 \therefore 113*l* = 1552

5. Let $y = y(x)$ be the solution curve of the differential equation

$$
\sin\left(2x^2\right)\log_e\left(\tan x^2\right)dy
$$

+
$$
\left(4xy - 4\sqrt{2}x\sin\left(x^2 - \frac{\pi}{4}\right)\right)dx = 0
$$

$$
0 < x < \sqrt{\frac{\pi}{2}}
$$
, which passes through the point

$$
\left(\sqrt{\frac{\pi}{6}}, 1\right).
$$
 Then
$$
y\left(\sqrt{\frac{\pi}{3}}\right)
$$
 is equal to _______.

Answer (1)

$$
\begin{aligned}\n\text{Sol.} \quad & \frac{dy}{dx} + y \left(\frac{4x}{\sin(2x^2) \ln(\tan x^2)} \right) = \frac{4\sqrt{2} \, x \sin\left(x^2 - \frac{\pi}{4}\right)}{\sin(2x^2) \ln(\tan x^2)} \\
& \text{I.F.} \quad & = e^{\int \frac{4x}{\sin(2x^2) \ln(\tan x^2)}} \\
& = e^{\ln|\ln(\tan x^2)} = \ln(\tan x^2) \\
& \therefore \quad \int d\left(y \cdot \ln(\tan x^2)\right) = \int \frac{4\sqrt{2} \, x \sin\left(x^2 - \frac{\pi}{4}\right)}{\sin(2x^2)} \, dx \\
& \Rightarrow \quad y \ln(\tan x^2) = \ln\left|\frac{\sec x^2 + \tan x^2}{\csc x^2 - \cot x^2}\right| + C \\
& \text{In } \left(\frac{1}{\sqrt{3}}\right) = \ln\left(\frac{3}{2 - \sqrt{3}}\right) + C\n\end{aligned}
$$

$$
\left(\sqrt{3} + \sqrt{3}\right)
$$
\n
$$
e = \ln\left(\frac{1}{\sqrt{3}}\right) - \ln\left(\frac{\sqrt{3}}{2 - \sqrt{3}}\right)
$$
\nFor $y\left(\sqrt{\frac{\pi}{3}}\right)$

3 \vert 2 \vert 3

$$
y \ln(\sqrt{3}) = \ln \left| \frac{2 + \sqrt{3}}{\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}} \right| + \ln \left(\frac{1}{\sqrt{3}} \right) - \ln \left(\frac{\sqrt{3}}{2\sqrt{3}} \right)
$$

= $\ln(2 + \sqrt{3}) + \ln \left(\frac{1}{\sqrt{3}} \right) + \ln \left(\frac{1}{\sqrt{3}} \right) - \ln \left(\frac{\sqrt{3}}{2 - \sqrt{3}} \right)$
 $\Rightarrow y \ln \sqrt{3} = \ln \left(\frac{1}{\sqrt{3}} \right)$
 $\Rightarrow \frac{y}{2} \ln 3 = -\frac{1}{2} \ln 3$
 $\Rightarrow y = 1$
 $\therefore y \left(\sqrt{\frac{\pi}{3}} \right) = 1.$

6. Let *M* and *N* be the number of points on the curve $y^5 - 9xy + 2x = 0$, where the tangents to the curve are parallel to *x*-axis and *y*-axis, respectively. Then the value of $M + N$ equals

Answer (2)

 $\ddot{}$

Sol. Here equation of curve is

$$
y^5-9xy+2x=0
$$

On differentiating:
$$
5y^4 \frac{dy}{dx} - 9y - 9x \frac{dy}{dx} + 2 = 0
$$

...(i)

$$
\frac{dy}{dx} = \frac{9y-2}{5y^4-9x}
$$

When tangents are parallel to *x* axis then $9y - 2 =$ $\overline{0}$

$$
\therefore M = 1.
$$

For tangent perpendicular to x-axis

 $5y^4 - 9x = 0$...(ii)

From equation (1) and equation (2) we get only one point.

- \therefore $N = 1$.
- $M + N = 2$.
- 7. Let $f(x) = 2x^2 x 1$ and $S = \{n \in \mathbb{Z} : |f(n)| \le 800\}$. Then, the value of $\sum f(n)$ *f n* $\sum_{n \in S} f(n)$ is equal to ________.

n S

Answer (10620)

Sol.
$$
|f(n)| \le 800
$$

$$
\Rightarrow -800 \le 2n^2 - n - 1 \le 800
$$

$$
\Rightarrow 2n^2 - n - 801 \le 0
$$

$$
\therefore n \in \left[\frac{-\sqrt{6409} + 1}{4}, \frac{\sqrt{6409} + 1}{4}\right] \text{ and } n \in \mathbb{Z}.
$$

\n∴ n = -19, -18, -17,..........., 19, 20.
\n∴ $\sum (2x^2 - x - 1) = 2\sum x^2 - \sum x - \sum 1.$
\n= 2 · 2 · $(1^2 + 2^2 + ... + 19^2) + 2.20^2 - 20 - 40$
\n= 10620

8. Let *S* be the set containing all 3 × 3 matrices with entries from {–1, 0, 1}. The total number of matrices $A \in S$ such that the sum of all the diagonal elements of $A^T A$ is 6 is ________.

Answer (5376)

Sol. Sum of all diagonal elements is equal to sum of square of each element of the matrix.

i.e.,
$$
A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}
$$

then t_r ($A \cdot A^T$)

$$
= a_1^2 + a_2^2 + a_3^2 + b_1^2 + b_2^2 + b_3^2 + c_1^2 + c_2^2 + c_3^2
$$

- \therefore *a_i*, *b_i*, *c_i* \in {-1, 0, 1} for *i* = 1, 2, 3
- Exactly three of them are zero and rest are 1 or $-1.$

Total number of possible matrices $^{9}C_{3}\times2^{6}$

$$
=\frac{9 \times 8 \times 7}{6} \times 64
$$

$$
= 5376
$$

9. If the length of the latus rectum of the ellipse x^2 + $4y^2 + 2x + 8y - \lambda = 0$ is 4, and *l* is the length of its major axis, then λ + *l* is equal to ______

Answer (75)

Sol. Equation of ellipse is: $x^2 + 4y^2 + 2x + 8y - \lambda = 0$ $(x + 1)^2 + 4 (y + 1)^2 = \lambda + 5$

$$
\frac{(x+1)^2}{\lambda+5}+\frac{(y+1)^2}{\left(\frac{\lambda+5}{4}\right)}=1
$$

Length of latus rectum =
$$
\frac{2 \cdot \left(\frac{\lambda + 5}{4}\right)}{\sqrt{\lambda + 5}} = 4.
$$

$$
\therefore \quad \lambda = 59.
$$

Length of major axis = $2 \cdot \sqrt{\lambda} + 5 = 16 = l$

$$
\therefore \quad \lambda + l = 75.
$$

10. Let
$$
S = \{ z \in \mathbb{C} : z^2 + \overline{z} = 0 \}
$$
. Then

$$
\sum_{z \in S} (Re(z) + Im(z)) \text{ is equal to } \underline{\qquad}
$$

Answer (0)

Sol.
$$
\therefore
$$
 $z^2 + \overline{z} = 0$ Let $z = x + iy$
\n \therefore $x^2 - y^2 + 2ixy + x - iy = 0$
\n $(x^2 - y^2 + x) + i(2xy - y) = 0$
\n \therefore $x^2 + y^2 = 0$ and $(2x - 1)y = 0$
\nif $x = +\frac{1}{2}$ then $y = \pm \frac{\sqrt{3}}{2}$
\nAnd if $y = 0$ then $x = 0, -1$
\n \therefore $z = 0 + 0i, -1 + 0i, \frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i$
\n \therefore $\sum (R_e(z) + m(z)) = 0$

❑ ❑ ❑