

Topic covered:

• Mathematical Tools (Session - 1) - JEE

Worksheet

1. Find the equation of the line whose slope is 3 and y intercept is -4.

a.
$$y = 2x - 3$$

c.
$$y = 3x - 4$$

b.
$$y = 3x + 4$$

d.
$$y = \sqrt{3x} - 0$$

2. Find the equation of the line parallel to the line passing through (5,7) and (2,3) and having x intercept as -4.

a.
$$3y = 4x - 16$$

c.
$$3y = 4x + 16$$

b.
$$4y = 3x - 16$$

d.
$$4y - 3x + 16$$

3. What is the slope of the line passing through the points (-2,3) and (2,7)?

4. In which quadrant does the point (-3, 4) lie?

5. Find the co-ordinate of the point(s) on x-axis, which is/are at a distance of 5 units from the point (6, -3).

c.
$$(2,10)$$
 and $(0,0)$

6. The quadrants where abscissa and ordinate have different signs are?

a.
$$1^{st} \& 2^{nd}$$

- 7. What is equation of a line passing through the points (4, 2) and (15, -4)?
- 8. Find the exact value of $\cos 15^{\circ}$.

9.
$$f(x) = x^2 + 32x - 12$$
. What is $f(4)$?

10. Show that
$$(1 - \cos^2 \theta) \csc^2 \theta = 1$$

11. Show that
$$\tan^4\theta + \tan^2\theta = \sec^4\theta - \sec^2\theta$$

- 12. Find the value of $cos(24^{\circ}) + cos(5^{\circ}) + cos(175^{\circ}) + cos(204^{\circ}) + cos(300^{\circ})$
- 13. Function f is defined by $f(x) = 2x^2 + 6x 3$. Find the value of f(-2).
- 14. How many unique solutions does the equation $4x^2 + 4x + 1 = 0$ have?
- 15. What is the degree of the polynomial $x^2(x^3)^2$?
- 16. Solve: $x^2 5x 14 = 0$
- 17. Find: cosα, cotα, tanα respectively if sinα = $\frac{5}{13}$ and $\frac{\pi}{2} < \alpha < \pi$
- 18. Calculate $\sin 15^{\circ} \cos 15^{\circ}$.
- 19. Height of a body in meters is given by $h(t) = 10 \sin(2\pi t) + 5$. Find its height at $t = 0.25 \ s$.
- 20. Find the nature of roots for the equation $x^2 + x + 12 = 0$

Answer Key

Question Number	1	2	3	4	5	6
Answer Key	(c)	(c)	(a)	(b)	(a)	(d)

Question Number	7	8	9	12	13	14
Answer Key	6x + 11y = 46	$\frac{\sqrt{3}+1}{2\sqrt{2}}$	132	$\frac{1}{2}$	-7	One

Question Number	15	16	17	18	19	20
Answer Key	8	(7, -2)	$-\frac{12}{13}, -\frac{12}{5}, -\frac{5}{12}$	$\frac{1}{4}$	15	Complex roots

Solutions

- 1. (c) Given m = 3 and c = -4, substituting values in y = mx + c, we get y = 3x 4.
- 2. (c) Slope of the given line $=\frac{7-3}{5-2} = \frac{4}{3}$

So the slope of the required line is also $\frac{4}{3}$. One point on this line is (-4,0). Hence the equation of the line is

$$y - 0 = \frac{4}{3}(x + 4) \Rightarrow 3y = 4x + 16$$

- 3. (a) $\frac{7-3}{2-(-2)} = 1$
- The point is negative in the x axis and positive for the y-axis, thus the point must lie in the 2^{nd} quadrant.
- 5. (a) Let the co-ordinate of the point on the x-axis be (x, 0). $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$, So $5^2 = (x - 6)^2 + (0 - (-3))^2$

$$50.5^{2} = (x - 6)^{2} + (0 - (-3)^{2})^{2}$$

$$\Rightarrow 25 = x^{2} - 12x + 36 + 9$$

$$\Rightarrow x = 2 \text{ or } x = 10$$

So the required points are (2,0) and (10,0)

6. (d)
The signs are different for 2nd and 4th quadrants.

7.
$$\frac{2+4}{4-15} = \frac{y-2}{x-4}$$
$$6x + 11y = 46$$

8. $\cos 15^{\circ} = \cos(45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$

9.
$$f(x) = x^2 + 32x - 12$$

 $f(4) = 4^2 + 32(4) - 12$
 $= 16 + 128 - 12$
 $= 132$

10. Let $A = (1 - \cos^2 \theta) \csc^2 \theta$ and B = 1. $A = (1 - \cos^2 \theta) \csc^2 \theta$

Because
$$\sin^2 \theta + \cos^2 \theta = 1$$
, we have $\sin^2 \theta = 1 - \cos^2 \theta$

Then,

$$A = \sin^2 \theta \cdot \cos^2 \theta$$

$$A = \sin^2 \theta \cdot (1/\sin^2 \theta)$$

$$A = \sin^2 \theta / \sin^2 \theta$$

Mathematical Tools (Session -1)

$$A = 1$$

 $A = B$ (Proved)

11. Let
$$A = \tan^4 \theta + \tan^2 \theta = \sec^4 \theta - \sec^2 \theta$$

$$A = \tan^4 \theta + \tan^2 \theta$$

$$A = \tan^2 \theta \times (\tan^2 \theta + 1)$$

We know that,

$$tan^{2}\theta = sec^{2}\theta - 1$$
$$tan^{2}\theta + 1 = sec^{2}\theta$$

Then,

$$A = (\sec^2 \theta - 1)(\sec^2 \theta)$$

$$A = \sec^4 \theta - \sec^2 \theta$$

$$A = B \text{ Proved}$$

12.
$$cos(175^{\circ}) = cos(180 - 5)^{\circ} = -cos(5)^{\circ}$$

$$\cos(204^{o}) = \cos(180 + 24)^{o} = -\cos(24)^{o}$$

$$\cos(300^{\circ}) = \cos(360 - 60)^{\circ} = \cos(60)^{\circ}$$

So result would be
$$\cos(60)^0$$
 that is $\frac{1}{2}$

$$13. f(-2) = 2(-2)^2 + 6(-2) - 3$$
$$f(-2) = -7$$

$$14. D = 4^2 - 4 \times 1 \times 4 = 0$$
. So equation has only one root.

15.8

$$16. x^{2} - 7x + 2x - 14 = 0$$
$$(x - 7)(x + 2) = 0$$

$$x = 7, -2$$

17.
$$\cos \alpha = -\sqrt{1 - \sin^2 \alpha} = -\frac{12}{13}$$

$$\tan \alpha = \frac{-5}{12}$$

$$\cot \alpha = \frac{-12}{5}$$

$$18. \ \frac{2\sin 15^{0} \cos 15^{0}}{2} = \frac{\sin 30^{0}}{2} = \frac{1}{4}$$

$$19. h(t) = 10 \sin(2\pi \times 0.25) + 5 = 15$$

20.
$$b^2 - 4ac = (1)^2 - 4(1)(12) = -47$$

So roots are complex.

Mathematical Tools (Session -1)