SI. No.

SSLC MODEL EXAMINATION, FEBRUARY - 2017.

PHYSICS

(English)

Lin	ie : 15	2 Hours Total Score : 4	ŧυ				
Inst	ructio	ns:					
•		15 minute duration is cool off time. Cool off time is given to read and understand the tions.	ne				
٠	Read	I the instructions of each questions carefully before answering.					
•		score of each question is given along with it. Answers written should be proportionate to the given.	ne				
		Sco	re				
1.	Write the name of electromagnetic wave which has the lowest frequency in the electromagnetic spectrum.						
2.	Study the relation in the first pair of each of the following and complete the second pair.						
	(a)	Discharge Lamp					
		Hydrogen: blue:: Nitrogen:					
	(b)	AC generated for distribution in our country	1				
		Voltage: 11 kV:: frequency:					
3.	Writ	re down two advantages and two limitations of Hydrogen as a fuel.	2				
4.	(a)	List out four advantages of nanotechnology.	2				
	(b)	Which characteristics of nano particle is utilised in nanotechnology?	1				
5.	(a)	A bulb of power 40 W is designed to operate at 240 V. Calculate resistance of the filament in the bulb.					
	(b)	What are the characteristics required for the material chosen for making filament of incandescent lamp?	2				
.		ish an G(A) an G(B) annual state.					
		ither 6(A) or 6(B) completely.					
6.	(A)	All the constituent colours of sunlight do not have same rate of scattering.	1922				
		(a) Write the reason for this?	1				
\$S.		(b) Describe an experiment to demonstrate that scattering of all colours are not equal.	2				
		(c) Under what condition all the colours are scattered equally.	1				
		OR	i.				

	(B)	Blue colour of sky is due to the phenomenon of scattering.						
	(2)		at is meant by scattering?	**************************************	1			
80		Page 1	v is Tyndal effect related to above phenomenon?		1			
			at are the advantages of using infrared photography?		1			
		(d) In w	hich colour does sky appear when viewed from moon?	39	1			
				(50)				
7.	The loudness of sound becomes maximum at resonance.							
£.	(a)	What is meant by resonance?						
	(b)	Write the name of an instrument used to demonstrate the resonance of air column.						
	(c)	Explain th	e mechanism by which sound propagates through air.		2			
			No. 1	*				
8.	Reverberation causes uneasiness to clearly distinguish sounds produced in closed rooms.							
	(a)	What caus	ses reverberation ?		1			
	(b)	Suggest m	ethods to minimise the disturbance due to reverberation.		1			

- (a) If current through 40 W bulb in the circuit A is 0.6 A what is the current through 100 W bulb in the same circuit.
- (b) Which among the above two circuit is suitable for house hold connection?
- (c) What are the advantages of using above circuit for house hold electric connection?
- 10. Match the following columns A, B and C suitably.

Observe the circuit A and B shown below.

9.

	A	. В	C
a	Green colour	Non conventional	Farad
b	Inductor	Secondary colour	Brown energy
c	Nuclear energy	_000000_	Violet
	N. S.	Complementary colour	Henry
			Magenta
	. 2	Conventional	Green energy

11. Distinguish between evaporation and vapourisation.

7

1

1

3

50									S	core
12,	Prim	Primary of a transformer has $20,000$ turns and the secondary has $30,000$ turns. 160 V AC is applied at the primary of the transformer.								
	appl							7		
	(a)	Wha	t is the vol	tage a	vailable at seco	ndary of the	above transforme	er?		2
8.	(b)	If the number of turns in the secondary transformer is greater than that in the primary then more voltage is induced in the secondary. Why?								
	(c)	How much power must be supplied to the primary of the transformer so that 500 W power is obtained from secondary?						1		
Ans	wer e	ither '	13(A) or 13	3(B) co	mpletely.				e e	
13.	(A)	Heat energy of 209300 J is required to increase the temperature of 5 kg of water from 303 K to 313 K.								
		(a)	Calculate	the sp	ecific heat capa	acity of wate	r. ,		•	2
	t	(b)	Write dov	vn two	practical situat	ion where th	e high specific he	at capa	city of water	2
					3.0	OR				
	(B)	Late	nt heat of f	usion	of ice is very hi	gh.				
		(a)	What is the	he uni	t of latent heat	of fusion?				1
		(b)	What is n	neant l	y Latent heat o	of fusion?				1
		(c)	Write do	wn two	o applications o	f high latent	heat of fusion of	ice.		2
14.	In w	In which of the following the calorific value of LPG is represented in correct unit.					1			
	(a)	5500	0 kJ/hr	(b)	55000 kJ/s	(c)	55000 kJ/kg	(d)	55000 kJ/g	