Vés al contingut

Teorema de Stewart

De la Viquipèdia, l'enciclopèdia lliure
Teorema de Stewart

En geometria euclidiana, el teorema de Stewart estableix la relació entre la longitud dels costats d'un triangle i la longitud d'una ceviana que interseca amb el costat oposat, o amb la seva prolongació, en un punt conegut. Una ceviana és un segment del triangle que uneix un dels tres vèrtexs amb el costat oposat o la seva prolongació. El teorema afirma que, si tenim un triangle ABC i una ceviana que va des del vèrtex A fins a un punt de tall amb la recta que forma el costat a, tal que anomenem m el segment entre B i el punt de tall i n, el segment entre C i el punt de tall, llavors:

[1]

Tanmateix, s'ha de tenir en compte que els segments prenen valor negatiu quan no se superposen al triangle. Per aquesta raó, es pot dir que apareixerà un segment amb valor negatiu quan la ceviana intersequi la prolongació d'un costat.[1]

El teorema de Stewart deu el seu nom al matemàtic escocès Matthew Stewart; es creu que va ser ell la primera persona que el va enunciar, l'any 1746. Tanmateix, sembla que ja fou descobert per Arquimedes de Siracusa en el segle iii aC. De totes maneres, la primera demostració matemàtica de la qual es té coneixement és la de Robert Simson, de l'any 1751.[2]

Demostració

[modifica]
Construcció de la demostració

Es traça una altura h del triangle des del mateix vèrtex d'on surt la ceviana. Sense pèrdua de generalitat, assumim que el peu de l'altura cau sobre el costat de la ceviana anomenat m, tal com s'il·lustra a la dreta.

Aplicant el teorema de Pitàgores s'obtenen les equacions:

(m - z)² h² = c² i (n z)² h² = b²

Desenvolupant les identitats notables:

m² - 2mz z² h² = c² i n² 2nz z² h² = b²

Multiplicant l'equació de l'esquerra per n i la de la dreta per m:

nm² - 2mnz nz² nh² = nc² i mn² 2mnz mz² mh² = mb²

Sumant les dues equacions:

m²n n²m 2mnz - 2mnz nz² mz² nh² mh² = nc² mb²

Per procediments d'àlgebra:

(m n)mn (m n)(x² h²) = c²n b²m

Substituint a = m n, x² h² = d², i per àlgebra:

amn ad² = c²n b²m
b²m c²n = a(d² mn)

I aquesta última ja és l'expressió que buscàvem.

Referències

[modifica]
  1. 1,0 1,1 Weisstein, Eric W. «Teorema de Stewart» (en anglès). Wolfram MathWorld. [Consulta: 21 gener 2010].
  2. Alexander Bogomolny. «(Uns quants corol·laris del) Teorema de Pitàgores» (en anglès). cut-the-knot.org Interactive Mathematics Miscellany and Puzzles. [Consulta: 21 gener 2010].