Vés al contingut

Llei de Zipf-Mandelbrot

De la Viquipèdia, l'enciclopèdia lliure
Infotaula distribució de probabilitatLlei de Zipf-Mandelbrot
Tipusllei potencial Modifica el valor a Wikidata
EpònimGeorge Kingsley Zipf, Benoît Mandelbrot i Vilfredo Pareto Modifica el valor a Wikidata
Paràmetres (enter)
(real)
(real)
Suport
fpm
FD
Esperança matemàtica
Moda
Entropia

En teoria de probabilitat i estadística, la llei de Zipf-Mandelbrot és una distribució de probabilitat discreta. També coneguda com la llei de Pareto-Zipf, és una distribució de llei potencial a les dades classificades, anomenada així pel lingüista George Kingsley Zipf qui va suggerir una distribució més senzilla anomenada llei de Zipf i el matemàtic Benoit Mandelbrot, que posteriorment la va generalitzar.

La funció de massa de probabilitat ve donada per:

on és donat per:

que es pot considerar com una generalització d'un nombre harmònic. A la fórmula, és el rang de les dades i són paràmetres de la distribució. En el límit de quan s'acosta a l'infinit, es converteix en la funció zeta de Hurwitz . Per a finit i la llei de Zipf-Mandelbrot es converteix en la llei de Zipf. Per a infinit i es converteix en la distribució Zeta.

Aplicacions

[modifica]

La distribució de paraules classificades per la seva freqüència en un corpus lingüístic aleatori s'aproxima per una distribució de llei potencial, coneguda com a llei de Zipf.

Si es dibuixa el rang de freqüència de les paraules contingudes en un corpus de dades de text de mida moderada vers el nombre d'ocurrències o freqüències reals, s'obté una distribució de llei potencial, amb exponent proper a 1 (però vegeu Powers, 1998 i Gelbukh i Sidorov, 2001). La llei de Zipf assumeix implícitament una mida de vocabulari fixa, però la sèrie harmònica amb s=1 no convergeix, mentre que la generalització de la llei Zipf-Mandelbrot amb s>1 ho fa. A més, hi ha proves que la classe tancada de paraules funcionals que defineixen un idioma obeeix a una distribució Zipf-Mandelbrot amb diferents paràmetres de les classes obertes de paraules amb contingut que varien per tema, camp i registre.[1]

En estudis del camp ecològic, la distribució d'abundància relativa (és a dir, el gràfic del nombre d'espècies observades en funció de la seva abundància) es troba sovint conforme a la llei de Zipf-Mandelbrot.[2]

Dins de la música, moltes mètriques de la música «agradable» s'ajusten a les distribucions Zipf-Mandelbrot.

Referències

[modifica]
  1. Powers, David M W «Applications and explanations of Zipf's law» (en anglès). Association for Computational Linguistics, 1998, pàg. 151–160.
  2. Mouillot, D; Lepretre, A «Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity» (en anglès). Environmental Monitoring and Assessment. Springer, 63(2), 2000, pàg. 279–295. DOI: 10.1023/A:1006297211561.

Bibliografia

[modifica]

Enllaços externs

[modifica]