Fitxer:Fourier transform, Fourier series, DTFT, DFT.gif
Mida d'aquesta previsualització: 800 × 477 píxels. Altres resolucions: 320 × 191 píxels | 640 × 381 píxels | 1.128 × 672 píxels.
Fitxer original (1.128 × 672 píxels, mida del fitxer: 59 Ko, tipus MIME: image/gif)
Aquest fitxer i la informació mostrada a continuació provenen del dipòsit multimèdia lliure Wikimedia Commons. Vegeu la pàgina original a Commons |
Resum
DescripcióFourier transform, Fourier series, DTFT, DFT.gif |
English: A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function. |
|||
Data | ||||
Font | Treball propi | |||
Autor | Bob K | |||
Permís (Com reutilitzar aquest fitxer) |
Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
|
|||
Altres versions |
File:Variations_of_the_Fourier_transform.tif, Derivative works of this file: Fourier transform, Fourier series, DTFT, DFT.svg,
|
|||
GIF genesis InfoField | Aquesta GIF imatge rasteritzada ha estat creada amb LibreOffice |
|||
Octave/gnuplot source InfoField | click to expand
This graphic was created with the help of the following Octave script: pkg load signal
graphics_toolkit gnuplot
%=======================================================
% Consider the Gaussian function e^{-B (nT)^2}, where B is proportional to bandwidth.
T = 1;
% Choose a relatively small bandwidth, so that one cycle of the DTFT approximates a true Fourier transform.
B = 0.1;
N = 1024;
t = T*(-N/2 : N/2-1); % 1xN
y = exp(-B*t.^2); % 1xN
% The DTFT has a periodicity of 1/T=1. Sample it at intervals of 1/8N, and compute one full cycle.
% Y = fftshift(abs(fft([y zeros(1,7*N)])));
% Or do it this way, for comparison with the sequel:
X = [-4*N:4*N-1]; % 1x8N
xlimits = [min(X) max(X)];
f = X/(8*N);
W = exp(-j*2*pi * t' * f); % Nx1 × 1x8N = Nx8N
Y = abs(y * W); % 1xN × Nx8N = 1x8N
% Y(1) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4096/8N × t(n)) }
% Y(2) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4095/8N × t(n)) }
% Y(8N) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π × 4095/8N × t(n)) }
Y = Y/max(Y);
% Resample the function to reduce the DTFT periodicity from 1 to 3/8.
T = 8/3;
t = T*(-N/2 : N/2-1); % 1xN
z = exp(-B*t.^2); % 1xN
% Resample the DTFT.
W = exp(-j*2*pi * t' * f); % Nx1 × 1x8N = Nx8N
Z = abs(z * W); % 1xN × Nx8N = 1x8N
Z = Z/max(Z);
%=======================================================
hfig = figure("position", [1 1 1200 900]);
x1 = .08; % left margin for annotation
x2 = .02; % right margin
dx = .05; % whitespace between plots
y1 = .08; % bottom margin
y2 = .08; % top margin
dy = .12; % vertical space between rows
height = (1-y1-y2-dy)/2; % space allocated for each of 2 rows
width = (1-x1-dx-x2)/2; % space allocated for each of 2 columns
x_origin1 = x1;
y_origin1 = 1 -y2 -height; % position of top row
y_origin2 = y_origin1 -dy -height;
x_origin2 = x_origin1 dx width;
%=======================================================
% Plot the Fourier transform, S(f)
subplot("position",[x_origin1 y_origin1 width height])
area(X, Y, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
%=======================================================
% Plot the DTFT
subplot("position",[x_origin1 y_origin2 width height])
area(X, Z, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
%=======================================================
% Sample S(f) to portray Fourier series coefficients
subplot("position",[x_origin2 y_origin1 width height])
stem(X(1:128:end), Y(1:128:end), "-", "Color",[0 .4 .6]);
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
box on
%=======================================================
% Sample the DTFT to portray a DFT
FFT_indices = [32:55]*128 1;
DFT_indices = [0:31 56:63]*128 1;
subplot("position",[x_origin2 y_origin2 width height])
stem(X(DFT_indices), Z(DFT_indices), "-", "Color",[0 .4 .6]);
hold on
stem(X(FFT_indices), Z(FFT_indices), "-", "Color","red");
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
box on
|
Elements representats en aquest fitxer
representa l'entitat
Algun valor sense element de Wikidata
2 ago 2014
image/gif
Historial del fitxer
Cliqueu una data/hora per veure el fitxer tal com era aleshores.
Data/hora | Miniatura | Dimensions | Usuari/a | Comentari | |
---|---|---|---|---|---|
actual | 15:18, 23 ago 2019 | 1.128 × 672 (59 Ko) | Bob K | re-color the portion of the DFT that is computed by the FFT | |
14:43, 2 ago 2014 | 1.348 × 856 (71 Ko) | Bob K | User created page with UploadWizard |
Ús del fitxer
La pàgina següent utilitza aquest fitxer:
Ús global del fitxer
Utilització d'aquest fitxer en altres wikis:
- Utilització a ar.wikipedia.org
- Utilització a el.wikipedia.org
- Utilització a et.wikipedia.org
- Utilització a zh.wikipedia.org