Fitxer:Fourier transform, Fourier series, DTFT, DFT.gif

Fitxer original (1.128 × 672 píxels, mida del fitxer: 59 Ko, tipus MIME: image/gif)

Descripció a Commons

Resum

Descripció
English: A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.
Data
Font Treball propi
Autor Bob K
Permís
(Com reutilitzar aquest fitxer)
Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
Creative Commons CC-Zero L'ús d'aquest fitxer és regulat sota les condicions de Creative Commons de CC0 1.0 lliurament al domini públic universal.
La persona que ha associat un treball amb aquest document ha dedicat l'obra domini públic, renunciant en tot el món a tots els seus drets de d'autor i a tots els drets legals relacionats que tenia en l'obra, en la mesura permesa per la llei. Podeu copiar, modificar, distribuir i modificar l'obra, fins i tot amb fins comercials, tot sense demanar permís.

Altres versions File:Variations_of_the_Fourier_transform.tif, Derivative works of this file:  Fourier transform, Fourier series, DTFT, DFT.svg,
File:Fourier transform, Fourier series, DTFT, DFT.svg és una versió vectorial (SVG) d'aquest fitxer. En cas de ser millor, hauria de ser emprada en lloc d'aquesta imatge tramada.

File:Fourier transform, Fourier series, DTFT, DFT.gif → File:Fourier transform, Fourier series, DTFT, DFT.svg

Per a més informació pel que fa als gràfics vectorials, llegiu la transició a SVG en Commons.
També hi ha informació quant a la compatibilitat del MediaWiki amb les imatges SVG.

En altres idiomes
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  中文(臺灣)  /−
Nova imatge SVG

GIF genesis
InfoField
 
Aquesta GIF imatge rasteritzada ha estat creada amb LibreOffice
Octave/gnuplot source
InfoField
click to expand

This graphic was created with the help of the following Octave script:

pkg load signal
graphics_toolkit gnuplot
%=======================================================
% Consider the Gaussian function e^{-B (nT)^2}, where B is proportional to bandwidth.
  T = 1;
% Choose a relatively small bandwidth, so that one cycle of the DTFT approximates a true Fourier transform.
  B = 0.1;
  N = 1024;
  t = T*(-N/2 : N/2-1);                         % 1xN
  y = exp(-B*t.^2);                             % 1xN
% The DTFT has a periodicity of 1/T=1.  Sample it at intervals of 1/8N, and compute one full cycle.
% Y = fftshift(abs(fft([y zeros(1,7*N)])));
% Or do it this way, for comparison with the sequel:
  X = [-4*N:4*N-1];                             % 1x8N
  xlimits = [min(X) max(X)];
  f = X/(8*N);
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Y = abs(y * W);                               % 1xN × Nx8N = 1x8N
% Y(1)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4096/8N × t(n)) }
% Y(2)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4095/8N × t(n)) }
% Y(8N) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π × 4095/8N × t(n)) }
  Y = Y/max(Y);

% Resample the function to reduce the DTFT periodicity from 1 to 3/8.
  T = 8/3;
  t = T*(-N/2 : N/2-1);                         % 1xN
  z = exp(-B*t.^2);                             % 1xN
% Resample the DTFT.
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Z = abs(z * W);                               % 1xN × Nx8N = 1x8N
  Z = Z/max(Z);
%=======================================================
hfig = figure("position", [1 1 1200 900]);

x1 = .08;                   % left margin for annotation
x2 = .02;                   % right margin
dx = .05;                   % whitespace between plots
y1 = .08;                   % bottom margin
y2 = .08;                   % top margin
dy = .12;                   % vertical space between rows
height = (1-y1-y2-dy)/2;    % space allocated for each of 2 rows
width  = (1-x1-dx-x2)/2;    % space allocated for each of 2 columns
x_origin1 = x1;
y_origin1 = 1 -y2 -height;  % position of top row
y_origin2 = y_origin1 -dy -height;
x_origin2 = x_origin1  dx  width;
%=======================================================
% Plot the Fourier transform, S(f)

subplot("position",[x_origin1 y_origin1 width height])
area(X, Y, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
%=======================================================
% Plot the DTFT

subplot("position",[x_origin1 y_origin2 width height])
area(X, Z, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
%=======================================================
% Sample S(f) to portray Fourier series coefficients

subplot("position",[x_origin2 y_origin1 width height])
stem(X(1:128:end), Y(1:128:end), "-", "Color",[0 .4 .6]);
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
box on
%=======================================================
% Sample the DTFT to portray a DFT

FFT_indices = [32:55]*128 1;
DFT_indices = [0:31 56:63]*128 1;
subplot("position",[x_origin2 y_origin2 width height])
stem(X(DFT_indices), Z(DFT_indices), "-", "Color",[0 .4 .6]);
hold on
stem(X(FFT_indices), Z(FFT_indices), "-", "Color","red");
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
box on

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer
A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual15:18, 23 ago 2019Miniatura per a la versió del 15:18, 23 ago 20191.128 × 672 (59 Ko)Bob Kre-color the portion of the DFT that is computed by the FFT
14:43, 2 ago 2014Miniatura per a la versió del 14:43, 2 ago 20141.348 × 856 (71 Ko)Bob KUser created page with UploadWizard

La pàgina següent utilitza aquest fitxer:

Ús global del fitxer

Utilització d'aquest fitxer en altres wikis: