MAPK12
Izgled
(Preusmjereno sa Mitogen-aktivirana protein kinaza)
Mitogen-aktivirana protein-kinaza 12 (MAP-kinaza 12), znana i kao vanćeliskim signalom regulirana kinaza 6 (ERK6) ili stresno aktivirana protein kinaza 3 (SAPK3), jest enzim koji je kod ljudi kodiran genom MAPK12 sa hromosoma 22.[5]
Aminokiselinska sekvenca
[uredi | uredi izvor]Dužina polipeptidnog lanca je 367 aminokiselina, a molekulska težina 41.940 Da.[5]
10 | 20 | 30 | 40 | 50 | ||||
---|---|---|---|---|---|---|---|---|
MSSPPPARSG | FYRQEVTKTA | WEVRAVYRDL | QPVGSGAYGA | VCSAVDGRTG | ||||
AKVAIKKLYR | PFQSELFAKR | AYRELRLLKH | MRHENVIGLL | DVFTPDETLD | ||||
DFTDFYLVMP | FMGTDLGKLM | KHEKLGEDRI | QFLVYQMLKG | LRYIHAAGII | ||||
HRDLKPGNLA | VNEDCELKIL | DFGLARQADS | EMTGYVVTRW | YRAPEVILNW | ||||
MRYTQTVDIW | SVGCIMAEMI | TGKTLFKGSD | HLDQLKEIMK | VTGTPPAEFV | ||||
QRLQSDEAKN | YMKGLPELEK | KDFASILTNA | SPLAVNLLEK | MLVLDAEQRV | ||||
TAGEALAHPY | FESLHDTEDE | PQVQKYDDSF | DDVDRTLDEW | KRVTYKEVLS | ||||
FKPPRQLGAR | VSKETPL |
Funkcija
[uredi | uredi izvor]Aktivacija članova porodice mitogen-aktiviranih protein kinaza je glavni mehanizam za transdukciju vanćelijskih signala. Proteinske kinaze aktivirane stresom su jedna potklasa MAP-kinaza. Protein kodiran ovim genom funkcionira kao pretvarač signala tokom diferencijacije mioblasta u miotube.[5]
Reference
[uredi | uredi izvor]- ^ a b c GRCh38: Ensembl release 89: ENSG00000188130 - Ensembl, maj 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000022610 - Ensembl, maj 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ a b c "Entrez Gene: mitogen-activated protein kinase 12".
Dopunska literatura
[uredi | uredi izvor]- Stiffler MA, Grantcharova VP, Sevecka M, MacBeath G (2006). "Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays". J. Am. Chem. Soc. 128 (17): 5913–22. doi:10.1021/ja060943h. PMC 2533859. PMID 16637659.
- Joneson T, Bar-Sagi D (1997). "Ras effectors and their role in mitogenesis and oncogenesis". J. Mol. Med. 75 (8): 587–93. doi:10.1007/s001090050143. PMID 9297626.
- Hou SW, Zhi HY, Pohl N, et al. (2010). "PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction". Cancer Res. 70 (7): 2901–10. doi:10.1158/0008-5472.CAN-09-3229. PMC 2848905. PMID 20332238.
- Gutierrez-Sanmartin D, Varela-Ledo E, Aguilera A, et al. (2008). "Implication of p38 mitogen-activated protein kinase isoforms (alpha, beta, gamma and delta) in CD4 T-cell infection with human immunodeficiency virus type I." J. Gen. Virol. 89 (Pt 7): 1661–71. doi:10.1099/vir.0.82971-0. PMID 18559936.
- Sabio G, Cerezo-Guisado MI, Del Reino P, et al. (2010). "p38gamma regulates interaction of nuclear PSF and RNA with the tumour-suppressor hDlg in response to osmotic shock". J. Cell Sci. 123 (Pt 15): 2596–604. doi:10.1242/jcs.066514. PMC 2908048. PMID 20605917.
- Zhang J, Harrison JS, Studzinski GP (2011). "Isoforms of p38MAPK gamma and delta contribute to differentiation of human AML cells induced by 1,25-dihydroxyvitamin D₃". Exp. Cell Res. 317 (1): 117–30. doi:10.1016/j.yexcr.2010.08.010. PMC 2998239. PMID 20804750.
- Kwong J, Hong L, Liao R, et al. (2009). "p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms". J. Biol. Chem. 284 (17): 11237–46. doi:10.1074/jbc.M808327200. PMC 2670128. PMID 19251701.
- Morishima-Kawashima M, Hasegawa M, Takio K, et al. (1995). "Hyperphosphorylation of tau in PHF". Neurobiol. Aging. 16 (3): 365–71, discussion 371–80. doi:10.1016/0197-4580(95)00027-C. PMID 7566346.
- Diskin R, Askari N, Capone R, et al. (2004). "Active mutants of the human p38alpha mitogen-activated protein kinase". J. Biol. Chem. 279 (45): 47040–9. doi:10.1074/jbc.M404595200. PMID 15284239.
- Askari N, Diskin R, Avitzour M, et al. (2007). "Hyperactive variants of p38alpha induce, whereas hyperactive variants of p38gamma suppress, activating protein 1-mediated transcription". J. Biol. Chem. 282 (1): 91–9. doi:10.1074/jbc.M608012200. PMID 17088247.
- Krauss RS, Cole F, Gaio U, et al. (2005). "Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact". J. Cell Sci. 118 (Pt 11): 2355–62. doi:10.1242/jcs.02397. PMID 15923648.
- Talmud PJ, Drenos F, Shah S, et al. (2009). "Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip". Am. J. Hum. Genet. 85 (5): 628–42. doi:10.1016/j.ajhg.2009.10.014. PMC 2775832. PMID 19913121.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
- Tosti E, Waldbaum L, Warshaw G, et al. (2004). "The stress kinase MRK contributes to regulation of DNA damage checkpoints through a p38gamma-independent pathway". J. Biol. Chem. 279 (46): 47652–60. doi:10.1074/jbc.M409961200. PMID 15342622.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Qi X, Pohl NM, Loesch M, et al. (2007). "p38alpha antagonizes p38gamma activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response". J. Biol. Chem. 282 (43): 31398–408. doi:10.1074/jbc.M703857200. PMID 17724032.
- Collins JE, Wright CL, Edwards CA, et al. (2004). "A genome annotation-driven approach to cloning the human ORFeome". Genome Biol. 5 (10): R84. doi:10.1186/gb-2004-5-10-r84. PMC 545604. PMID 15461802.
- Kukkonen-Macchi A, Sicora O, Kaczynska K, et al. (2011). "Loss of p38gamma MAPK induces pleiotropic mitotic defects and massive cell death". J. Cell Sci. 124 (Pt 2): 216–27. doi:10.1242/jcs.068254. PMID 21172807.
- Sofroniew MV, Howe CL, Mobley WC (2001). "Nerve growth factor signaling, neuroprotection, and neural repair". Annu. Rev. Neurosci. 24: 1217–81. doi:10.1146/annurev.neuro.24.1.1217. PMID 11520933.
- Bailey SD, Xie C, Do R, et al. (2010). "Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study". Diabetes Care. 33 (10): 2250–3. doi:10.2337/dc10-0452. PMC 2945168. PMID 20628086.
Vanjski linkovi
[uredi | uredi izvor]Ovaj članak uključuje tekst iz Nacionalne medicinske biblioteke Sjedinjenih Država, koji je u javnom vlasništvu.