দ্বিমাত্রিক ক্ষেত্র
দ্বি-মাত্রিক স্থান হল একটি জ্যামিতিক বিন্যকস যা একটি উপাদানের (যেমন- বিন্দু) অবস্থান নির্ধারণ করতে দুইটি মান (পরামিতিগুলি) প্রয়োজন হয়। গণিত সাস্ত্রে, এটি সাধারণত ℝ২ চিহ্ন দ্বারা চিহ্নিত করা হয়। ধারণার একটি সাধারণীকরণের জন্য, দেখুন মাত্রা।
দুটি দ্বিমাত্রিক স্থান একটি মহাবিশ্বের একটি তল সম্মুখের একটি অভিক্ষেপ হিসাবে দেখা যাবে। সাধারণত, এটি একটি ইউক্লিডীয় স্থান হিসাবে চিন্তা করা হয় এবং দুটি মাত্রা দৈর্ঘ্য এবং প্রস্থ বলা হয়।
ইতিহাস
[সম্পাদনা]বই-প্রথম থেকে চতুর্থ ও ষষ্ট-এর ইউক্লিডের এলিমেন্টগুলির দ্বি-মাত্রিক জ্যামিতির সাথে সমন্বয় করে, আকারের সমকেন্দ্রের মতো এই ধারণার উন্নয়নশীল, পিথাগরীয় উপপাদ্য (প্রস্তাবনা ৪৭), কোণের সমতা এবং এলাকার সমান্তরালতা, ত্রিভূজের কোণগুলির সমষ্টি, এবং তিনটি ক্ষেত্রে যেখানে ত্রিভূজগুলি "সমান" (একই এলাকা) আছে, অন্যান্য বিষয়ের মধ্যে।
পরবর্তীতে, একটি তথাকথিত কার্তিসিয়ান সমন্বয় ব্যবস্থায় সমতলটি বর্ণিত হয়েছে, একটি সমন্বয় পদ্ধতি যা প্রতিটি বিন্দু একটি সংখ্যাসূচক স্থানাঙ্কের একটি জোড়া দ্বারা সুনির্দিষ্টভাবে নির্দিষ্ট করে, যা বিন্দু থেকে সীমাবদ্ধ দূরত্ব দুটি নির্দিষ্ট সীমিত নির্দেশিত লাইনের মধ্যে মাপা হয় দৈর্ঘ্যের একই ইউনিট প্রতিটি রেফারেন্স লাইন একটি সমন্বয় অক্ষ বা সিস্টেমের অক্ষ বলা হয়, এবং যেখানে তারা পূরণ হয় তার উৎপত্তি হয়, সাধারণত অর্ডার দেওয়া জোড়া (0,0)। কোঅর্ডিনেটসকে দুটি অক্ষের উপর বিন্দুতে উল্লম্ব অনুমানের অবস্থান হিসাবে সংজ্ঞায়িত করা যেতে পারে, যা মূল থেকে স্বাক্ষরিত দূরত্ব হিসাবে প্রকাশ করা হয়েছে।
জ্যামিতি
[সম্পাদনা]পলিটোপস
[সম্পাদনা]দুইটি মাত্রাতে, অসীম অসংখ্য পলিটোপস আছে: বহুভুজ। প্রথম কয়েক নিয়মিত বহুভুজ নিচে দেখানো হয়েছে:
উত্তল
[সম্পাদনা]শ্লাফলি চিহ্ন {পি} একটি নিয়মিত পি - গন প্রতিনিধিত্ব করে।
নাম | ত্রিভুজ (2-simplex) |
স্কয়ার (2-orthoplex) (2-cube) |
পঞ্চভুজ | ষড়ভুজ | সপ্তভুজ | অষ্টভুজ | |
---|---|---|---|---|---|---|---|
Schläfli | {৩} | {৪} | {৫} | {৬} | {৭} | {৮} | |
চিত্র | |||||||
নাম | নবভুজ জ্যামিতিক ক্ষেত্র | দশভুজ | একাদশ বাহু ও কোণ সমন্বিত ক্ষেত্র বা তল | দ্বাদশভূজ | Tridecagon | Tetradecagon | |
Schläfli | {৯} | {১০} | {১১} | {১২} | {১৩} | {১৪} | |
চিত্র | |||||||
নাম | Pentadecagon | Hexadecagon | Heptadecagon | Octadecagon | Enneadecagon | Icosagon | ...n-gon |
Schläfli | {১৫} | {১৬} | {১৭} | {১৮} | {১৯} | {২০} | {n} |
চিত্র |
বিভক্ত (গোলাকার)
[সম্পাদনা]নিয়মিত হেনাগন {১} এবং নিয়মিত ডিজিওন {২} নিয়মিত বহুভুজকে ডিজিটাল করতে পারে। তারা নন-ইউক্লিডীয় স্পেসগুলিতে ননজেনেন্সের মতো একটি ২-গোলক বা একটি ২-টরুজ মতো বিদ্যমান থাকতে পারে।
নাম | হেনাগন | ডিজিওন |
---|---|---|
Schläfli | {১} | {২} |
চিত্র |
টপোলজি
[সম্পাদনা]টপোলজি, সমতল নিখুঁত চুক্তিবদ্ধ হিসাবে বিবেচনা করা হয় ২-ম্যানিফোড।
মাত্রা যে সমতল থেকে একটি বিন্দু সরানোর সময় একটি স্থানে সংযুক্ত করা হয়, কিন্তু না কেবল সংযুক্ত ছেড়ে যাওয়ার দ্বারা চিহ্নিত করা হয়।