
Monthly Digital Functional Programming Magazine

02

FP LINE
for the

CHANGE HERE

December 2020

We are delighted to present our second issue of Bind The Gap (BTG), which also
happens to be the special festive winter issue!

The year 2020 was challenging for all of us. But at the same time, many exciting
events happened in the Haskell community. In this month's edition, we are going
to overview notable milestones in the Haskell ecosystem, highlight some features
and discuss the general roadmap for Haskell in the upcoming year.

Many people responded positively to BTG's first issue, and we are extremely
happy about that because we put our souls into work on it! We are grateful for
those who helped us spread the news about this new project across different FP
communities and who left constructive feedback about the pilot issue. Taking
that into account and inspired by your kind words, we continued working on
some of our permanent rubrics, but we are also exploring new ways to share the
news with everyone.

In this edition, we have many new surprises for you as well. Chris Penner joined
us with the part about beloved lenses. Impure Pics is ready to bring joy to our
readers one more time. We are grateful for their work. We also want to say thanks
to Richard Eisenberg for taking his time to speak to us, and also to Cate Roxl for
such tremendous help with proofreading!

We hope you enjoy our festive Edition of Bind The Gap. Merry Christmas and
Happy New Year 2021 everyone! Enjoy the reading!

{- | Introduction

Dmitrii Kovanikov <> Veronika Romashkina,
Editors-in-Chief
-}

MAP LINE FOLD LINE

Summary of 2020 for Haskell

Introduction to Dependent Types and
interview with Richard Eisenberg

Chris Penner crusades
lenses and other optics

Lensalot
Year SUMMARY

3-4

5-10

Loco-motive

Analytics of -Wmissing-export-lists

11

The -Wall Street
ANALYTICS

Tour to deriving in 2020

12-13

Deriving All
the WAY

Review of the time library

14-16

Whine Sommelier

Update copyrights using headroom

17-18

The wonderful
wizard of OS

19-21

10 blog posts about Haskell in 2020
RankNroll

22-23

Using type-level programming in
Haskell to parse tricky JSON

Overcoming
Stereo TYPES

24-25

Illustrations by Impure Pics

Pure gold
by impure PICS

26

Comparing all list sorting functions
from base

Baseline

27-29

FP Humour, challenges, puzzles
and surveys

fun for the whole
type family

29-31

Year 2020
It is the end of the crazy year 2020, phew. Looking into what has happened, it turned out that so many
exciting things happened to Haskell during this time! We want to share these positive memories with all
of you, so we can start a new year inspired by the accomplishments we all together achieved during these
extraordinary times.

GHC's innovation side also experienced a lot of
good buzz. The compiler received and
accepted a lot of significant proposals,
shaping the future of Haskell:

A lot of progress has been made on the
IDE front. In January, during the Bristol
Hackathon, the Haskell IDE Engine
(HIE) team joined forces with the ghcide team to
work on Haskell Language Server (HLS). And
now, the VSCode Haskell plugin is one of the most
reliable and featureful IDEs in Haskell. Yes, no
more "Haskell has no IDE" complaints! But it is
still the start of exciting technologies.

RecordDotSyntax — solution to the record
problem in Haskell.

Due to obvious reasons, a lot of things moved
from offline to online, which surprisingly was
not all bad for gathering from all corners of the
world. We saw more online conferences
(HaskellLove, ICFP, Haskell eXchange),
meetups, more streams, more video tutorials.
And generally, it became easier in some sense to
gather up from different countries without
leaving the bed (and staying at home!).

Amazingly, Haskell celebrated its 30th
anniversary this year! The first version of the
Haskell report was published
on 1 April 1990. But Haskell
came a long way to become
what we all use and love
now, and it is a significant milestone.

Development of GHC is in full swing. The main
Haskell compiler continues to provide more
awesome releases. The GHC developers team
released during 2020 the stable version GHC
8.8.4, new GHC 8.10 with the first version of the
groundbreaking non-moving garbage collector,
and even the first release candidate of GHC 9.0
with lots of fantastic stuff!

Summary

One of the most positively met things
happened to Haskell in 2020 is the
creation of the Haskell Foundation —
an organisation dedicated to
broadening the adoption of Haskell,
by supporting its ecosystem of tools,
libraries, education, and research.
Read the pilot issue of Bind The Gap,
where we interviewed Simon Peyton
Jones, to learn more about the Haskell
Foundation.

GHC2021 — established set of enabled by
default Haskell extensions.

LinearTypes — more advances in the type
system which was even implemented for
GHC 9.0.
Ergonomic Dependent Types — decision on
whether we want to move Haskell and
GHC towards support for Dependent
Types.

* HLS logo by George Thomas

Lots of important materials were released
this year as well. Different learning resources,
guides, video tutorials, etc. Several books
were published during this period, and more
books announced as being worked on:

Unfortunately, the year disastrously affected
lots of people’s jobs. At the same time, we also
noticed much more job announcements in
Haskell than in previous years!

Algorithm Design with Haskell
by Richard Bird and Jeremy Gibbons

Founded this monthly FP magazine
Bind The Gap

As you can see, Haskell is rapidly evolving in all
means. The language and its community are very
active. And more wonderful things are yet to come
to Haskell next year!

And we also want to reflect a bit on what we –
Kowainik – managed to achieve in this weird
and quite difficult year for us. Actually, it was
extremely productive! We:

 Haskell participated in Google Summer
of Code 2020 (GSOC), which shows the great
interest and support of the community. This
year again, many outstanding projects were
involved in improving the state of the Haskell
ecosystem and were completed successfully!
Read about them in the Haskell.Org GSOC
summary.

Algebra-Driven Design
by Sandy Maguire

Functional Design and Architecture
by Alexander Granin

Abstractions in Context
by William Yao

Isomorphism - Mathematics of Programming
by Liu Xinyu

(In progress) Production Haskell
by Matt Parsons

(In progress) Pragmatic type-level design
by Alexander Granin

(In progress) Sockets and Pipes
by Chris Martin and Julie Moronuki
(Type Classes)

(In progress) Do Pure Haskell Interview
by Dmitrii Kovanikov and Veronika Romashkina
(Kowainik)

Hope this means that significantly
more companies started using
functional principles to build their
products which will lead to the
broader adoption and growth of
the Haskell community.

Made the Learn4Haskell course, during
which we reviewed 480+ pull requests and
helped ~200 people to start with Haskell

Implemented Stan — Haskell static
analyser, a big project that used modern
GHC features such as HIE files to provide
robust static code analysis
Participated in the Bristol Hackathon, where
we developed policeman — Haskell PVP
adviser — and later wrote our experience
report about our project
Gave 4 talks this year — two talks about
Stan at the Haskell Love conference and
Haskell Implementers Workshop, one talk
about alternative standard library relude at
the Haskell Amsterdam meetup, and
Immutable Conversations with Alejandro
Serrano
Wrote 13 blog posts, including guides,
tutorials, experience reports, and created
two awesome lists (awesome-haskell-
sponsorship and awesome-cabal)

Developed and published to Hackage
10 Haskell libraries and tools (autopack,
colourista, extensions, prolens, policeman,
stan, validation-selective, trial, trial-
optparse-applicative, trial-tomland), not to
mention maintenance and updates to
existing libraries (Summoner 2.0 with
GitHub actions support, major tomland
update, relude-0.7.0.0 and much more)
Created a mailing list for a better
experience for our readers

https://kowainik.github.io/
https://github.com/kowainik/learn4haskell
https://kowainik.github.io/#subscribe

There always were a lot of talks around Dependent Types (DT) in Haskell, both within the community and outside. Finally, closer to the end
of the year 2020, GHC (the main Haskell compiler) received a critical proposal regarding Ergonomic Dependent Types [1]. This is huge
news. We are lucky to be in the community at such times when we can watch and be involved in historical events and changes in the
language. In order to keep up with the important trends that may affect us all in many functional communities, we decided to thoroughly
explore the feature and highlight the main parts you need to know about Dependent Types.

LOCO
MOTIVE

We start with answering straightaway a very popular counter-argument that people usually use against Haskell: "If Haskell is so type-safe,
why doesn't it have Dependent Types?" The thing is, when Haskell was created, DT weren't so popular, so the language was designed without
keeping in mind the ergonomic work with them. Therefore, Haskell specification doesn't have any mention and design ideas for this feature.
However, recently more and more people started showing their interest in applying this concept to Software Development. Haskell already
has multiple features in the area of types, so for many people Dependent Types seems like a natural next step for the language. Currently, DT
is discussed to be designed as an add-on to the language called extensions in Haskell. We even talked to the leading advocate of DT and the
author of the proposal Richard Eisenberg to clarify this feature's vision in the ecosystem.

[1]: http://bit.ly/edt-proposal

The ergonomic dependent types proposal is vital for Haskell not only as a feature but also because it defines the language roadmap and
further direction. Some people are even too extreme about this position, and they see Haskell of the future only with Dependent Types and are
confident that this would become its killer-feature that helps Haskell reach the mainstream. So, learning a bit about this possible significant
change to the language would benefit all of us. We hope that this section will help you by providing more information about Dependent Types
and its implications to the entire Haskell world.

Dependent type is a type that depends on
values of function arguments

(hence the name).

In Haskell, types are static, which means that you get what you
write, or what the compiler figured out for you due to the type
inference. At most, types can depend on other types, e.g. with
the Type Families feature in Haskell. But dependent types blur
the line between types and values making types first-class
entities. First-class entities are not a new thing for Haskell, and
it is one of the functional programming concepts. We all love
and use functions as first-class values, which means that we
can pass functions as the arguments to other functions, like in
the map function. Similarly to this common concept, with types
as first-class entities, functions can take types as arguments
and return types as their result or, most importantly, return
values of different types depending on arguments values.

Here is the deal: we want to write a function that configures the
settings of the application. In particular, it either returns a
default application configuration or reads it from the file,
depending on the provided settings method. We can model this

It sounds like a handy property to use, so it seems like there is
a big DT application area. However, when looking at all
examples advocating for DT's usefulness and necessity, we
always see some artificial, small and not really what you would
write at your job, for instance. Examples usually involve
Inductive Peano Natural numbers or typed lambda calculus, but
to be honest, we haven't seen many people writing their own
data types for Naturals daily. So let's try something new, and
see if we could explain DT and use them on some minimal code
example which could be easily found in some small application
program.

Let's start with the simple definition of DT: situation in Haskell with a sum type and a function that pattern
matches on it:

It is straightforward and absolutely valid Haskell, but notice
some redundancy: when the settings is Default, we still require
our function to work in IO, so we wrap the config in pure.
Though in reality, IO is only needed to read from the file in
another method. It is not a problem per se for now, but let's say
that we want to implement a pure test and we want to avoid the
possibility of doing any IO in this test. And this is exactly where
we can apply DT to solve it! While this example may look
superficial, it should demonstrate the capabilities and behaviour
of dependent types.

The solution to our problem in a hypothetical Haskell syntax
(close to the currently proposed design of DT in Haskell) may be
written as follows. First, we need to implement a function that
takes a value of type Settings, a type (which represents our
Config type) and either keeps the type unchanged or wraps it in
IO.

settingsType
 :: foreach (settings :: Settings)
 -> Type
 -> Type
settingsType Default t = t
settingsType (FromPath _) t = IO t

data Settings
 = Default
 | FromPath FilePath

configure :: Settings -> IO Config
configure Default = pure defaultConfig
configure (FromPath path) =
 readFile path >>= decodeConfig

https://github.com/goldfirere/ghc-proposals/blob/dependent-types/proposals/0000-dependent-type-design.rst
https://bit.ly/edt-proposal

configure
 :: foreach (settings :: Settings)
 -> settingsType settings Config
configure Default = defaultConfig
 -- ^ type is 'Config' here
configure (FromPath path) =
 readFile path >>= decodeConfig
 -- ^ type is 'IO Config' here

This function represents the switcher of types and depending
on the chosen settings method, and we will decide whether to
wrap everything in IO (when we need to read the file) or keep it
as it is, without adding any side-effects.

Now, we can use this function in the type of configure to allow
the resulting type to depend on a value of type Settings. Note
that we use settingsType as a function on the type-level to
decide on the output type:

The exact syntax is yet to be confirmed in the future. But you
already can see how DT provide us with some flexibility. At the
same time, the code becomes more complicated.

To recap what we did:

1. We defined a function that takes a Type and returns a new
Type. The function uses the new "foreach" keyword to enable DT
machinery. You can see how we can mix ordinary values (of
type Settings) and types in the same function.
2. We use this function in the type of another function. When
we pattern match on the Settings constructor, the function on
types computes its result as well. It is possible because we
know the pattern during the compile-time, and the compiler
can figure out how the function behaves for that pattern and
confirm if types match.

Dependent types exist for a while in other programming
languages, for instance, Agda, Idris, Coq, etc. They are known to
be used mostly in research areas (for writing proofs) or in
verification systems where it is crucial to get everything correct
(e.g. aeroplane software). But DT can also be used to solve the
following more real-world-oriented small problems:

You can see that these problems occur in a daily programming
job and are shared across different languages. And it makes
sense that they already have solutions without using dependent
types. However, DT will provide an alternative more type-safe
implementation, but with different trade-offs.

Trade-offs are the central part of DT discussions in Haskell. The
proposal's decision would depend on how the language is ready
to handle different difficulties and pay attention to various
aspects of the community. If the language decides to move
towards supporting ergonomic dependent types, it will affect
how people should write Haskell. According to the Dependent
Haskell (DH) design, none of these changes immediately affect
existing users. You still can continue writing Haskell as before.
But most likely, the proposal will change the way people will
write in Haskell, as many enthusiasts are interested in trying DT
in their projects (hobby or even at work). If you are a
maintainer, users might want to use your libraries with DH
ergonomically, and you might need to use DT as well.

Here are a few controversial changes we will experience with
the DT, that have been already brought up by different people:

1. Type-safe printf function, that allows you to write
printf "Name %s and value %d" and get a type-safe
function that takes exactly two arguments — a string and
an integer.

2. Regular expressions with result types depending on the
expression. For instance, you can get the type "list of
strings" if the regex matches multiple text entries.

3. The type of SQL query result can be automatically derived
from the query text and the schema type.

4. Matrix multiplication, where matrix sizes can be on type-
level, ensuring the resulting matrix size.

5. Neural networks with parameters on the type-level,
allowing to specify the structure on the network in types
and get more safety in ensuring that all math operations
are correct, or even derive the whole neural network solely
from types.

As you can see, these are colossal changes to how we used to
write Haskell code. And we definitely will need tools to refactor
code, if ergonomic dependent types are going to be supported.
Not to mention, almost every Haskell tutorial and guide will
become outdated or at least confusing.

We spoke to Richard Eisenberg to learn more about the plans
on DT, how the problems are going to be managed and how he
sees the future of the proposal.

1. Since values and types share the same
namespace, it won't be possible to define
constructors with the same name as the type. So no
more data User = User { ... }. This is called punning,
where identifiers of the same spelling are used at
the term and type level. A solution is to add some
prefix to constructors (e.g. Mk). Strictly speaking,
you are still allowed to write data User = User {..},
but GHC will warn you in these cases.

2. Several standard primitive types will have
different names. If you have DT, [Int] can mean
either a list of integers or list storing types with Int
as its single element. To disambiguate this situation,
when you mean list as a type, you will need to write
List Int, and use the [] syntax only for literals. The
same goes for other primitive types such as tuples
(,), etc.

3. DataKinds becomes redundant. The namespace
for types and values is the same, so no need to use
apostrophe `'` to promote constructors.

4. TypeFamilies could be deprecated as well, as you
can use ordinary functions in types with dependent
types.

5. No need to use the data Proxy a = Proxy type, as
you can pass types directly as arguments.

[Q]: Can you tell us more about your GHC
development involvement and your role in the
GHC Steering committee? What does the
GHC development workflow usually look
like?
Richard: I first got involved with GHC when I was
a PhD student. I think I got lucky by being in the
right place at the right time and working with
Stephanie Weirich at the University of
Pennsylvania. She connected me with Simon
Peyton Jones, who she had been working with
closely during a sabbatical in Cambridge. And that
connection then turned into a few contributions to
Haskell and Template Haskell, which then grew to
more and more contributions around GHC as my
research developed.

Richard
Eisenberg

Principal Researcher at Tweag I/O,
GHC Steering Committee member,

core contributor to GHC

Richard: From the very beginning, the goal was
actually to get it into the compiler. And at that
time, I don't think anyone thought it was going to
take this long. I still feel optimistic that it is going
to be right around the corner. And I wish I could
tell you why it is taking so long, other than the fact
that GHC is colossal and there are a lot of different
features to interact with. I've seen comments in the
codebase dating from 1994! There is a lot built up
over time, and it takes effort to workaround.

My involvement with DT was also essentially from
the beginning of my PhD. I wanted to get a PhD in
Programming Language Theory. My initial goal
was in bringing DT to the masses. Interestingly, my
first vision was dependent types in Java actually,
before I knew Haskell!

Let me tell you about my motivation around
dependent types. Before getting my PhD, I taught
Computer Science at secondary school for eight
years. And I wanted a way for students to have a
richer level of interaction with the compiler. Too
often, students would make mistakes, which made
them get stuck and frustrated by. As I was the only
person to teach and there were maybe 15 students
in my class, I couldn't be everywhere at all times.
So I wanted the compiler to be able to help me
guide students through.

[Q]: So Dependent Types is one of these big
features for you?

Richard: Yes, the Dependent Types will be one of
these features. My work recently has been more
laying the groundwork for DT than actually
implementing them. I've wanted to get to the meat
of implementation for four years now. In all truth,
GHC is a massive project. And, when we start
looking at how this one little feature DT is going to
fit, we realise: "Oh, the rest of GHC won't support
that until we have the strength in other parts",
which is actually good for everyone, not just for
DT. That ends up being accumulated into this long-
ish diversion until we can shore up that one part
after which eventually we'll get back to doing the
main core of the work.

[Q]: Let's talk about the "Ergonomic
Dependent Types" proposal. When did you
start working on DT? Was the initial goal for it
to land into the compiler eventually, or did it
start as a research project?

 I see Dependent Types
as one route to high
assurance software.

My workflow in GHC usually looks like this: I tend
to spend more time doing larger features in GHC
instead of fixing smaller bugs. I wish I had the time
to also resolve them, but it is hard to balance it all
out. So I usually tend to work on a patch for
several weeks. Then it should pass a fairly intensive
review process. There is a really high, high bar of
code quality in GHC, and the review process plays
a significant role in it. It usually clarifies some
moments, mostly by paying attention to
documentation as well, and it makes sure
everything will stand the test of time. Only after
we merge it and go to the next task.

There is a really high,
high bar of code quality
in GHC, and the review

process plays a
significant role in it.

I have this notion that if we could explain to the
compiler precisely what we mean through DT, it
could help us figure out why our code is wrong.
Though, we are decades away from being able to
do this. In reality, I didn't know that at the time, I
was naive. I thought that DT would solve all the
problems back then. I still believe that it will: once
we have DT, then lots of time figuring out the right
way to use them and the right compiler design. It
would be fantastic if in 30 years I can step back
into a secondary school classroom and students
there are programming with Dependent Types,
which allows each of them to work at their own
pace in a much better way than I was able to offer
them the last time I was teaching.
So, in some sense, my whole career in
programming, language research is just an effort to
have a better secondary school learning experience.
(*laughs*)

[Q]: Currently, ergonomic Dependent Types
stands as the "decision" rather than "action",
which should only affect the decisions on the
direction Haskell is taking in other proposals.
But if generally speaking about DT as a
feature, how will it look for end-users? Is
DependentTypes going to be a single or a set
of extensions?

Richard: I think it would be convenient for users to
have one -XDependentTypes extension, that may
imply other extensions. It is a little unclear what
the best design for that is at the moment. Some
people would say that we already have dependent
types because we can mimic any program written
with DT using singletons. So you could say that we
have DT in Haskell already through a variety of
extensions and encoding techniques. I don't really
agree with that, but in the end, I think having one
extension would be nice.

[Q]: How are people going to use it? How
would the interaction of DT code with
standard Haskell work? Is it a project-level,
module-level or function-level feature?

Richard: I think it's going to take a learning curve
for us as a community to figure out the best way of
using DT.

I don't think they should be used everywhere and
always. DT are a powerful tool, but they are also
an expensive tool. And that means that they should
be used just where we need either extra assurance
or just where we have some algorithm that is hard
to express in a non-dependently typed language.

And so, ideally, we would have a few places, a few
key libraries or a few key parts of libraries that use
DT and then expose a simply typed interface to
make them easier to use and more applicable. And
that also answers your question about determining
if it’s module-level or package-level. Again, I think
some of that has to be learned on the ground once
we have the Dependent Types. But I expect it to be
quite local.

There are a lot of other fun things that I've had
along the way, but in some sense, that's all where it
started from.

[Q]: Who would benefit from DT the most?
How do you see companies benefit from
that?
Richard: I see dependent types as one route to high
assurance software. Instead of writing lots of tests
for a certain function or set of functions or a data
type, we can imagine using dependent types to be
able to mathematically prove that our functions
work or our data type maintains its invariants. So
when we have a key type or a key set of functions
in a library where we want that high assurance for
(because we have to do that proof), it takes more
time to develop this. That's the time to use DT.

So who would benefit from it? Again, it depends on
what a company is doing. If you are writing some
Web-based API that serves low-security
information, you may not need DT. On the other
hand, if you are writing an encryption library
where we want to be sure never to mix up on
different quantities of different bit widths
accidentally, you might want DT right there. High
assurance is more important.

So, in some sense, my
whole career in

programming, language
research is just an effort to

have a better secondary
school learning experience.

[Q]: DT is quite a radical and heavyweight
change requiring many tradeoffs considered
to be accepted. Are there plans to implement
DT in some compiler fork and have
enthusiasts crush-test it there first?
Richard: I don't think that's necessary because DT
are not going to be disruptive in that way. I see
that there is a common misconception out there
that "having dependent types" means "losing lots of
features that we have in Haskell today". People will
say: "Oh, you can't have dependent types and type
inference in the same language!", or "DT requires
termination", or something else like that. I don't
think either of those things is true. There are a lot
of other misconceptions out there also. So in
particular, I think every program that we have
working in Haskell today, I expect those to
continue working. So there wouldn't be a need to
fork the compiler. The first versions of DT are
indeed going to have a few mistakes. And as we
introduce features, invariably we're building
something new. Some of these will be design
mistakes, which might mean that people who are
using these bleeding-edge features the way that we
implement at times might need to adapt to
frequent changes over releases. The next version
might invalidate the code that uses the first version
of DT. But none of that should change out of the
bedrock of Haskell that is solidified already today.

it's going to take a learning
curve for us as a community
to figure out the best way

of using DT.
I don't think they should be
used everywhere and always.

[Q]: Some folks are already intimidated by
Linear Types, Impredicative types and other
features. Do you think DT can add to the
Haskell intimidation factor?

Richard: I have to say I don't quite see the
connection between the idea of this "brain drain"
that I mentioned and the diversity goals. Diversity
is really, really important. We want to broaden the
adoption of Haskell. And, yes, it's true, I won't
disavow that comment. I do think that some people
in our community are really excited about
dependent types. And so if we as a community
decided to go away from DT, those people might
leave.

But that by itself doesn't say whether or not other
people might join. It's not a zero-sum game.

[Q]: A quote from the proposal:

Richard: Maybe? But I think it can be mitigated. In
my opinion, Haskell has done a poor job of
mitigating this intimidation factor.

The idea of "language levels" is one thing I've wanted
in Haskell for a number of years, and others
disagree with me here, so there is room for debate.
Another language Racket is the primary example
of these language levels. And the idea here is that
when you start programming, you give some
indication to the compiler of what total language
you are programming against. And then the
compiler can tailor its error messages accordingly.
In a language like Haskell, if we said that we are
new to Haskell and then get confused between the
term level namespace and the type level
namespace, the compiler wouldn't then say, "Did
you mean to enable DataKinds?" We shouldn't expect a
Haskell programmer on their first day of
programming to start using fancy kinds. The
problem right now is that, yes, we have this
extension mechanism that says what portions of
the language are components of the input. Still, the
extension mechanism doesn't really control what
the error messages are. There should be some other
way to handle that. I don't know exactly what it is;
we have the design work to do here, that
emphasises on the questions like "Where is this
user?", "How can we then give error messages that are
appropriate for that user?" And this would

Richard: Yes, it is an inescapable part of the
feature. I don't think we can keep our current level
with DT. With our current interaction story, when
you write some code and try to compile it, you can
get a full screen of error messages. This is not
sustainable. This is not the way it should be. So we
need to be able to fix that before being able to add
even more features.

[Q]: How do you handle concerns that
Dependent Types will fork the community? Is
this issue addressed in any way in the
implementation plan?
Richard: All of that community outreach and
education is very important. That is definitely
going to be the part of this effort. One main
challenge is that as the design around DT evolves,
those resources will necessarily become out of date.
Unfortunately, there is going to be a significant lag
between when DT first comes out and when those
resources become mature enough to allow people
an easy way in. We have to be patient to let things
settle. It would be a shame to write a book about
DT in Haskell as implemented in its first version.
In this case, only after two years, most of that book
will become outdated. This is not going to be
productive. Instead, what we are going to end up
doing is figuring out what the design is, having it
settle somewhat. During that time, people will
inevitably write blog posts about such. But then,
once that is settled, we can do more of that
community outreach.

[Q]: So improving the error messages is one
of the parts to make Dependent Types more
approachable?

decrease the intimidation level overall for Haskell
and allow us to do this high-end addition and
development without losing that lower-end
accessibility.

And actually, part of my research grant for DT
that I've been working with is recognising this
exact problem. The mentioned part of that research
grant is funding a retooling of the error message
mechanism within GHC so that we can start to
imagine these differing error messages. Right now,
our GHC infrastructure is tough to work with
around error messages. Therefore, we are going to
do a complete overhaul of that, actually in an
effort to support better DT, but by giving us better
control over error messages. Both will work well
with introductory users as well as advanced users.

Does this mean that the GHC driving force is
more focused on preserving some concrete
representatives of the community rather than
focusing on making it more diverse as a
whole?

That would likely lead to some brain
drain. I'm aware of a number of active
contributors to our community who are
excited about the possibility of dependent
types. And rejecting this proposal might
signal to them that Haskell is not
interested in what they have to offer.

The idea of "language levels" is
one thing I've wanted in Haskell
for a number of years. And this
would decrease the intimidation

level overall for Haskell and allow
us to do this high-end addition
and development without losing
that lower-end accessibility.

We are grateful to Richard for his time and for lightening this topic for us more. It is exciting to see the expert's perspective on
such an important feature for Haskell.

DT is not a completely new thing. It already exists in some proof-assistant languages. But what we are hoping for with this
proposal in Haskell, is that a lot more attention will be paid to where DT would be actually used throughout the whole Haskell
community that exists at the moment. We would love to see the committee to base their decision on different points of view.
Therefore, we think that some kind of survey for the companies and people that are currently using Haskell in production, in their
projects, could help to decide whether this would be a helper or the obstacle for their products. Moreover, we would love to see
all the trade-offs considered before the final decision is made, as Haskell is a growing community, so each such step requires a
lot of thinking.

[Q]: Maybe the Haskell Foundation can help
with one official, maintainable guide?.

I have several months worth of patches to write in
order to prepare for what we've identified as
"needed to happen before we can start DT".

The biggest due change is to use homogeneous
equality internally. At the moment, GHC depends
on heterogeneous equality. And we figured out in a
paper, that we wrote four years ago, that
homogeneous is the better one, but it turns out that
it is really hard to make this change.

As far as forking and these different designs
flavours of language. Yes, that is true that there are
certain existing features of Haskell which don't
play very well with DT. In particular, separate
namespaces. This means that people who want to
program with DT may use different type synonyms
than others.

Will this fork the language? I don't think so.
Everything remains inter-compatible really easily.
So modules will be able to import each other. It is
just going to come down to what names are used in
an individual module. So for a reader of Haskell
code, they might have to be aware of both using
brackets to denote a list as well as writing the word
List to indicate the list type. But beyond that, I
don't think it would cause too much trouble. There
is more fear around this than there will be trouble
in reality.

[Q]: Is GHC in the proper state to implement
DT at the moment? Is there a roadmap for
bringing in DT? What are the estimations on
DT implementation in GHC?

Richard: Yes. I think the Haskell Foundation right
now is very concerned with outreach and such. We
want to make the Haskell community welcoming
to everyone. As far as I know, educational pieces
and tutorials don't seem to be something that the
Foundation is embarking on in the near future, but
maybe it will become a part of it later.

There is some technical work
that we have to do before doing
the dependent types. All of this
proposal's work is more about

designing the surface language,
and that is going on in parallel.

Richard: I've been burned too many times by
giving estimations, so I don't wish to do that. I will
say that GHC is in the right state. But, to be
honest, that is a hard question to answer.
(*thinking*)

If I and maybe some other GHC developers
dropped everything else and just did DT, we could
probably finish it in 6 to 8 months.

But in reality, it is hard to do that. For instance,
there is another major project I'm working on right
now – introducing "lightweight existentials" into
Haskell. That will, for example, permit better
integration of Liquid Haskell into the DT story.
Liquid Haskell is doing a fantastic job of an easier
way of doing verification. And my hope is that the
Liquid Haskell story and the Dependent Haskell
story can one day meet up and be two parts of the
same thing. But this existentials project takes away
a significant amount of time from implementing
the DT, but it is really important. It is all a matter
of priorities. I wish I had more time to recharge.

The -Wall Street Analytics
GHC options, warnings and flags

Our beloved Haskell compiler GHC is indeed an
indispensable tool of every developer. It can do so
many things for you, and make your life easier in so
many ways. The compiler usually provides such
features through its options that you can configure for
your project. Today we will focus on one part of such,
which could help you with export lists, if you ask the
compiler politely.

So, without further ado, let's talk about the
-Wmissing-export-lists option (GHC warning).

What problem does it solve? In Haskell, all top-level
functions, types and classes are exported with the
default module header. For example, let's say we have a
following module:

However, you can also specify what you export from
this module manually. For instance, the exact
equivalent of the previous module example will be the
following:

You can see that we do not explicitly say what exactly
will be accessible from this module, if you decide to
import this module elsewhere. If you do not specify
this, then everything is exported in the order of
appearance in the source file (this is important for
documentation rendering).

Although, note, that it is recommended to
write export lists explicitly, this gives
much more flexibility and additional
features to your hands. Like in this
example of the same module:

module MyPackage.MyModule
 (-- * Type
 MyType (A)

 -- * How to Use
 -- $usage

 -- * Main API
 , myFunction
) where
...

The export list example above illustrates several features
of manual exports in Haskell. First of all, it allows you
to restrict your exports: see how we allow to export only
one constructor or only some functions. Also, this
aligned export list separates all functions and types by
sections and provides additional metadata: headers,
section names and arbitrary documentation using
named documentation chunks. All export list
documentation is written using Haddock syntax
(Haskell documentation tool).
As you can see, you can do quite a lot of things with
export lists, so you might not want to miss them. So, if
you enable -Wmissing-export-lists warning (which is not
a part of -Wall), you'll get warnings when your modules
don't have explicit export lists.

And there's a good reason to write them due to multiple
advantages:

module MyPackage.MyModule where

data MyType = A | B

myFunction :: ...
anotherFunction :: ..

module MyPackage.MyModule
 (MyType (..)
 , myFunction
 , anotherFunction
) where
...

You can have more low-level control of what you are
exporting (e.g. you can provide smart constructors
instead of exporting the whole data types).

As you can see, the quality of code can be improved
significantly, and we strongly recommend enabling
-Wmissing-export-lists and utilise this sanity check!

You have more control over the generated
documentation: order of functions, section names,
named documentation chunks to explain topics better,
etc.
You have a clear and explicit separation between
private (internal) and public interfaces.

Your code can run faster with explicit lists, because
GHC optimizes internal functions more efficiently on
average.

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/using-warnings.html#ghc-flag--Wmissing-export-lists

Deriving all the way

The deriving mechanism in Haskell is so much like Christmas! Look for yourself, what is the best
gift for Haskell developers, if not another way to reduce boilerplate and write even more
maintainable code? Fortunately, Haskell Santa compiler brings a wholesome bag of awesome
deriving features! Haskellers don't need to write tons of boilerplate and error-prone instances,
Santa's Elf helpers can do this for us, freeing us from doing tedious work, and allowing us to
enjoy Christmas holidays without bugs in production during this festive season!

So no way we leave our festive edition of Bind The Gap without deriving. Our present is going to
be a recap on all deriving news through 2020.

Deriving through newtype
In a one-line JSON class
Using the Generic type

DerivingAnyclass
Removing boilerplate
Making syntax bright

What fun it is to generate
All instances tonight

Deriving Show, deriving Ord
Deriving all the way

Oh, what fun it is to derive
In a one-line all of them

When a little child writes a letter to Santa, they describe what toy they want, e.g. cute,
plush, cartoon-character-alike. These toy properties can be interpreted as typeclasses. They
exist independently from the actual toy. At the same time, you can characterise a toy like a
plush bear by different qualities: plush, animal, smiling, etc. A letter to Santa is a function
implemented in terms of some typeclasses and, depending on toy characteristics, Santa will
choose a perfect match for a kid.

Kowainik started preparing for Christmas in advance, and earlier this year we wrote a
comprehensive guide about deriving in Haskell, which is also in Christmas thematic by the way. In
our detailed post, we described everything you need to know about deriving in Haskell, categorised,
explained and compared deriving mechanisms and strategies, all with real-life examples and best
practices for deriving.

Deriving is a giant piece of work, so let's start reviewing it from small parts.
In our guide, we provide an analogy between typeclasses and letters to Santa:

Continuing with this analogy, GHC (the Haskell compiler) is the Elf workshop. When
using deriving, you only need to specify what you want in a declarative way. And Elves
will do all the boring work for you. Though, you can give some instructions to Elves
about how to do their work in the form of deriving strategies (there are four of them):

stock — create new toys using standard factory parts

anyclass — throw all toy parts on the conveyor, hoping that somebody
else knows how and will assemble them

newtype — copy the toy from your elf colleague

via — take inspiration from other similar toys, but do on your own

https://kowainik.github.io/posts/deriving

The whole existing deriving machinery wasn't planned beforehand and was
implemented on top of an already existing basis. It grew naturally from the needs of
different people and their ideas. Kids want to play with more and more toys, and
Elves need to be able to build everything! So it is not a surprise that different syntax
constructions can simulate some semantically equivalent features. In our guide,
we've noticed that the DeriveAnyClass and DefaultSignatures extensions can be
simplified in favour of DerivingVia. Later, Matt Parsons noticed this property as well
in a blog post about simplifying deriving, and he went even further in these
reasonings. Matt proposed several more interesting ideas of the deriving
simplification. Most of the ideas are based on the fact that the DerivingVia feature
is very powerful and can substitute many existing Haskell features.

newtype MyTime = MT { lt :: LocalTime }
 deriving Binary via
 Time "%M/%d/%y %H:%M:%S"

data Person = Person
 { age :: Int
 , name :: String
 } deriving ToJSON
 via Override Person
 '[String `As` CharArray
 , "age" `As` Decimal
]

newtype Tile a = Tile
 { runTile :: Double -> Double -> a
 } deriving stock (Functor)
 deriving Applicative
 via (Compose
 ((->) Double) ((->) Double)
)

data User = User
 { userId :: Int
 , userFullName :: String
 } deriving Generic
 deriving (FromJSON, ToJSON)
 via JSON '[StripPrefix "user"
 , SnakeCase] User

Deriving strategies give you more control over how you want your typeclasses to look like, and we
recommend to always specify strategies explicitly. This is especially relevant when you have lots of
newtypes and tons of typeclasses.

GHC 8.8 (currently the most popular GHC version according to 2020 State of Haskell Survey
results) introduced the -Wmissing-deriving-strategies warning, that warns when strategies are not
written explicitly. Later, GHC 8.10, released in 2020, implemented the -Wderiving-defaults
warning (enabled by default, even without -Wall) that warns about possible strategy ambiguity in
the presence of the GeneralizedNewtypeDeriving and DeriveAnyClass extensions. We can say with
confidence that GHC encourages Haskell developers to consider deriving strategies in their code.

The via construction turns out to be extremely powerful, even outside deriving.
Baldur Blöndal, the main author of the DerivingVia proposal, also authored the
ApplyingVia proposal, that allows using the behaviour of different newtypes easier
in more places. The DerivingVia extension itself was attempted to be improved by
allowing underscores in the deriving clause. It is interesting how some features of
reducing boilerplate give birth to other innovative ideas.

Being able to derive boilerplate is so convenient, so people do this a lot. 2020 was
a year when people heavily used DerivingVia everywhere, even in an unexpected
way. And it turned out to be quite handy and exciting. Check out these ideas:

Haskell has many ways of enabling developers to focus more on solving real
problems and doing less tedious work. Especially when it comes to boilerplate
instances of typeclasses: you can use deriving, various deriving extensions,
TemplateHaskell or Generics. Of course, there is a separate question of trade-
offs for all these approaches. You can write typeclasses by yourself, ask Santa's
Elves, or outsource this problem to Elves from the South Pole. But it is nice to
have different options for solving various issues, and we are looking forward to
the next year, waiting to see what other exciting news deriving will bring to us!

https://www.parsonsmatt.org/2020/11/10/simplifying_deriving.html

Sommelier
~Degustate different libraries and check them against our appetite*~

Time is an integral part of our universe. No surprises that in programming, libraries to work with time are also essential.

Every programmer works with time data types daily in almost every program created for users. Work with time is a fundamental part of

many algorithms; time itself is a crucial piece of most applications. That is why it is so important to have a good tool to help you work

with time, as everyone knows, it is a challenging task itself!

In Haskell, the most common library to work with time is called time**. So, today, let's review this library and test how the standard

choice for time in Haskell passes the test of time and comfortability.

time2006

WHINE

* https://bit.ly/btg-lib
** https://hackage.haskell.org/package/time

time is a boot library, meaning that it comes with the GHC installation, and you don't need to wait for it to build when depending on

the package and using the version bundled with GHC.

time provides data types to get the current time, parse and format timestamps, work with UTC timestamps, time zones, parts of a

timestamp such as year, month and day, and handle different calendars.

We have been using time a lot in different applications and projects, so we know a lot about the library in the battle. Let's look at time

under different angles and see how suitable it is for production needs. We are going to examine the latest version from Hackage at the

moment, which is 1.11.1.1.

https://hackage.haskell.org/package/time
https://hackage.haskell.org/package/time
https://bit.ly/btg-lib

Since time is the standard library that comes
with the compiler and is maintained by the
dedicated people of the Haskell Libraries
Group, you may assume that the
documentation should be the best in the class
and Haskell generally. Having such high
expectations, let's look mindfully at the existing
documentation around the package.

Both README and .cabal header don't
contain much information and provide a poor
overview of the package. The documentation's
main source is Hackage with the module-based
documentation; there is no central docs web
page, which is not convenient for the standard
and community-representing library. The top-
level module Data.Time contains some
descriptions of types used in the library, but
that's about it. There are no pointers to this
place anywhere, so if you want to know how to
use the library, you need to manually browse
through modules on Hackage, read Haddock,
and try to guess what module would have the
information you would like to find. And even
so not all exported functions are documented
with Haddock.

There are several searchable high-level
resources about time, such as the wiki page
about time and A cheatsheet to the time
library [1]. StackOverflow also contains
multiple answered questions, e.g. how to get the
current time with the time zone. So it is
possible to learn about time through different
resources outside the library.

Still, it would be nice to have usage examples of
each function in Haddock and even test them
with doctest. Moreover, @since annotations are
almost not present. They are quite valuable for
time because it is a boot library that comes
with GHC, so it would be beneficial to see with
which version of GHC each function comes
when you read the API.

time is not the only library to work with time
data types, but it doesn't contain a comparison
with other libraries. As a boot library, maybe it
shouldn't have, but it would be nice to have lots
of links to such resources in the official place.
Fortunately, there's a blog post [2] that gives a
quick overview of three Haskell libraries to
work with time types.

Documentation Ease of use

[1]: https://williamyaoh.com/posts/2019-09-16-time-cheatsheet.html
[2]: http://bit.ly/3-time-packages

Being the standard time library, we expect the
interface to be battle-tested and refined to its
best version possible. Let's check how easy it is
to have time as part of your equipment during
project development.

Since time comes with GHC, you don't need to
install it separately, and it doesn't consume any
time during compilation when used. You can
even work with time in GHCi without the need
to configure anything. This is very convenient
for testing and even for personal usage (to
count days or weeks to some period of time in
the future, get the difference between two
timestamps in seconds, etc.)!

Lots of different modules are provided that are
responsible for various concepts and time
representations. You can export the Data.Time
module qualified to get almost everything
time-related. Though there are some data types
and functions that share names, so can't be
reexported simultaneously. That means that
you need to browse modules to get everything
you need. And module names are not always
obvious to help you with that. For instance, the
UTCTime data type comes from the module
Data.Time.Clock. Though functions and types
from time rarely have conflicts with identifiers
from other libraries.

The library provides a maintainable minimal
changelog, but it doesn't include the migration
guide. And breaking changes are happening
from time to time (who remembers the painful
transition to 1.8, put your hands in the air).

Generally, it is not always trivial to convert to
time types. For example, if you want to convert
seconds to NominalDiffTime, you need to work
with type Pico, which comes from base's
Data.Fixed, and is not that common.

On the bright side, because time is the
standard library, other libraries (databases,
encoding and decoding, serialising, web APIs,
testing) already provide integration with it,
and this doesn't cost anything in terms of
dependency size. While using a different time
library requires bringing in an entirely
different ecosystem or writing a lot of
conversion functions manually.

https://williamyaoh.com/posts/2019-09-16-time-cheatsheet.html
https://williamyaoh.com/posts/2019-09-16-time-cheatsheet.html
https://bit.ly/3-time-packages

To its credit, the library is maintained on a
high level, as you expect from the community's
standard library.

Looking at the library's source code hosting
page (which is GitHub), we can say that it is
managed well. Pull requests are being reviewed
and either accepted or at least answered. There
are no stale patches that require attention.
User requests and reports are also taken care
of. All issues in the tracker receive responses
very fast. We can say that maintainers take
care of the library backlog promptly.

The library follows PVP and understands well
that the consequences of any mistakes on this
front are potentially disastrous due to the
ubiquitous usage of the library. The project's
CI integration checks its work with GHC
versions back to 8.0.2. All top-level fields in the
.cabal file are filled, and you can easily jump
from Hackage to sources and issue tracker.
Each release is tagged on GitHub and
accompanied with the relevant changelog
entries.

It would be very helpful if the library
README contained badges to go to CI and
Hackage for convenience. But that's a very
minor detail that can be easily fixed. Great
work on the maintenance side!

Maintenance Code quality
Looking through the code in the time library is
a pleasant journey. We can recommend this
package source code to those who enjoy
learning idiomatic Haskell code through
reading the project's code.

The code in the package is easily readable and
formatted prettily. time compiles with -Wall
without any warnings produced by GHC,
though no additional warnings are enabled
besides -Wall.

However, time is not taking the opportunity of
code quality improvements by the tools like
HLint or Stan — it contains 187 HLint
suggestions (checked with hlint-3.2.3), 105 Stan
observations (checked with stan-0.0.1.0) and
even several Haddock warnings.

Some warnings are not so fearful, e.g. usage of
space leaking functions foldl, sum, many lazy
data type fields. But there are also usages of
partial functions (fromJust, !!, last, init, read,
undefined, Enum methods), as well as some
missing explicit constructors instead of
underscores during pattern matching.

The library implements a massive test-suite,
including unit and property-based tests. But, as
mentioned before, no doctest and code
examples in Haddock.

Summary
The time library is quite powerful and provides a lot of useful features. It's a go-to library to work with
time types. However, there are valid situations in which you are better using an alternative library for
time in Haskell. For example, high-performance requirements or type-safe time units usage. For that,
you would need to analyse your requirements against the library on your own and manually try to find
the better option for you, which could be challenging, as there are no good reference descriptions in the
defacto lead library for time about the pros and cons. The documentation for time could use some help,
so we encourage everyone to submit patches with documentation improvements. It is a great
opportunity to help the Haskell community!

Documentation: 3.5 / 10 (Poor)

Ease of use: 6.5 / 10 (Good)

Maintenance: 10 / 10 (Best-in-class)

Code quality: 6 / 10 (Good)

Summary: 6.5 / 10 (Good)

WINETIME

While people all around the world are counting days to the New Year and excited about what the
next one will bring to their lives, Open Source maintainers are looking at this with a bit of sadness in
their eyes. The New Year also means that all the copyright notices should be updated in all tools and
projects that they provide, which doesn't sound like good entertainment for Christmas and New Year
Eve. Luckily, there is a way to bring joy even into our lives! Vaclav Svejcar [1], also an OS maintainer,
created a tool called headroom [2], which helps with the licensing headers in general. Thanks to this
project, developers can breathe out and spend the holidays the way they want, leaving the headroom
to deal with these problems.

Headroom is a CLI tool for updating contents of any source code files by introducing/updating file
headers with the unified and configurable format. Such headers contain the license and copyright
data, as well as some metadata information. You can use headroom to bring headers to each file,
introduce consistent metadata fields across your project, update copyright years automatically, and
so on. So it is quite handy to have such a flexible tool that can maintain all this boring information
for you.

The

WIZARD

OS

WONDERFUL

of

We already use headroom in our projects in Kowainik. Here is the file headers produced
automatically by headroom example from Summoner, our Haskell project scaffolding tool:

{- |
Module : Summoner.GhcVer
Copyright : (c) 2017-2020 Kowainik
SPDX-License-Identifier : MPL-2.0
Maintainer : Kowainik <xrom.xkov@gmail.com>
Stability : Stable
Portability : Portable

Contains data type for GHC versions supported by Summoner
and some useful functions for manipulation with them.
-}

https://svejcar.dev/
https://github.com/vaclavsvejcar/headroom

optparse-applicative for CLI interface that helps to provide a nice
interface with useful help pages

yaml and mustache for configurations

pcre-light and pcre-heavy for regular expressions

time for copyright years managing

file-embed for embedding data files at compile-time and making the
distribution easier

The tool is very flexible and configurable, which is very convenient as you can either use the
standard template for your language or, if you already have a working scheme you use for your
projects, you can translate it into the template and apply it across the projects. You can specify
your desired header format with Mustache templates. Headroom reads Mustache variables and
other settings from YAML configuration and provides some additional variables as well for your
convenience.

[1]: https://svejcar.dev/
[2]: https://github.com/vaclavsvejcar/headroom

C

You can install headroom easily in multiple ways: download binary
from GitHub releases, use brew or build from sources.

So what are you waiting for? Give it a go and update all your
projects as it is just about a time!

The great news is that the tool supports different programming languages
(Java, Scala, C++, Rust, HTML, etc.). So you can recommend it to anyone
regardless of their choice of the programming side or language. Anyone
can install and use it on the project of their choice through the terminal.

Headroom itself is written in the functional style, using Haskell language. It uses a bunch of
common libraries for fulfilling its functionality:

Internals are using rio custom prelude with a bunch of other helpful libraries. The project is also
heavily supplied with tests and documentation.

Copyright that is afraid of
New Years

https://github.com/vaclavsvejcar/headroom
https://svejcar.dev/

Hi folks and welcome to Lensalot!

Today we'll be chatting about indexed optics.
This tutorial is more of a sampler than any sort
of comprehensive guide, but hopefully it
introduces something that's new to you smile.
For this article I recommend you already have
an understanding of lenses and folds before
diving in.

Indexes in optics are a sort of "expansion pack" to
all the regular lensy things you're used to.
Indexes enhance existing lenses, traversals and
folds by allowing you to track information
about your position within a structure as you
dive deeper into it.

This information can be anything that you
care about, but it's very often used with data
structures that already have an inherent notion
of indexing. For example, sequences like lists
have indexes, values in Maps have keys, values
in a tree can be identified by a unique path!

Most optics libraries support some form of
indexed optics, with the notable exception of
microlens. In fact, it's likely you've already used
some indexed optics without even knowing!
Indexed optics intermingle freely with "normal"
optics but provide additional functionality
when you ask nicely for it.

Here are some imports you'll need as we walk
through this post:

The type shows us that it's an
IndexedTraversal with an Int index, it keeps
track of the numeric index of each element it
focuses! This behaviour is completely ignored
in the previous examples, in fact the lens
library uses some clever tricks to ensure that
indexes aren't even computed unless they're
used. We can collect the index of each focus
along with the element itself by using
itoListOf instead:

Lensalot)
by Chris Penner

import Control.Lens
import qualified Data.Map as Map

Let's look at a combinator you might have seen
before. traversed is a Traversal which allows you
to focus on each member of a Traversable
container. We can see how it works on a few
traversable structures by collecting a list of its
focuses:

>>> toListOf traversed [0, 1, 2]
[0, 1, 2]

>>> toListOf traversed
 (Map.fromList
 [("Haskell", "Functional")
 , ("C", "Imperative")
 , ("Scala", "???")]
)
["Imperative", "Functional", "???"]

But did you know that traversed is actually
an indexed optic? That's right!

traversed
 :: Traversable t
 => IndexedTraversal Int (t a) (t b) a b

>>> itoListOf traversed [0, 1, 2]
[(0,0), (1,1), (2,2)]

>>> itoListOf traversed ['a', 'b', 'c']
[(0,'a'), (1,'b'), (2,'c')]

>>> itoListOf traversed
 (Map.fromList
 [("Haskell", "Functional")
 , ("C", "Imperative")
 , ("Scala", "???")]
)
[(0,"Imperative")
, (1,"Functional")
, (2,"???")]

The first step is to use itraversed in our first step so
we track the keys of the outer Map; then we need
to indicate that we want to keep the index of the
first itraversed and ignore the index of the
traversal over the list. The lens library provides
combinators like <. and .> which allow you to keep
the index from one combinator or another as you
compose optics. This means we can dive into our
list of pets while still keeping track of the owner:

The ideal index for lists is still an Int, so that
hasn't changed, but we see that the Map now
provides the key alongside each value. At first
glance it doesn't appear to provide much added
value over using something like Map.toList, but
have faith! Indexes start to pay off when we start
to look at more complex deeply nested values and
containers.

-- lists ALWAYS use numeric indexes
>>> itoListOf itraversed [0, 1, 2]
[(0,0), (1,1), (2,2)]

-- Maps use keys as their indexes
>>> itoListOf itraversed
 (Map.fromList
 [("Haskell", "Functional")
 , ("C", "Imperative")
 , ("Scala", "???")
])
[("C", "Imperative")
, ("Haskell", "Functional")
, ("Scala", "???")
]

It's easy enough to call Map.toList to get a list of
owners and their pets, but what if we want to
normalize the data? For instance, let's say we want
to print out each pet alongside their owner. Since
both maps and lists are traversable we could focus
the pets using traversed . traversed but we'd lose
track of who owns which pet. We need to keep track
of some context from higher up in our optics path;
exactly what indexed optics are good at!

>>> itoListOf
 (itraversed <. traversed)
 pets
[("Charlie", "Woodstock")
, ("Charlie", "Snoopie")
, ("Jon", "Garfield")
, ("Jon", "Odie")
]

Now we can easily print out each combination:

>>> itraverseOf_
 (itraversed <. traversed)
 (\owner pet -> putStrLn $
 pet <> " belongs to " <> owner
)
 pets

Woodstock belongs to Charlie
Snoopie belongs to Charlie
Garfield belongs to Jon
Odie belongs to Jon

pets :: Map.Map String [String]
pets = Map.fromList
 [("Jon"
 , ["Garfield", "Odie"]
)
 , ("Charlie"
 , ["Woodstock", "Snoopie"]
)
]

Due to the way optics inherit from one another, itoListOf works with any of these signatures:

itoListOf :: IndexedGetter i s a -> s -> [(i, a)]
itoListOf :: IndexedFold i s a -> s -> [(i, a)]
itoListOf :: IndexedLens' i s a -> s -> [(i, a)]
itoListOf :: IndexedTraversal' i s a -> s -> [(i, a)]

Consider this map of owners to their pets:

Let's see how it differs from its simpler cousin
traversed.

And if you prefer to
use operators, you can
try the infix version
(^@..).

Tracking the numeric
index is great and all,
but for a Map of keys
and values we'd really
love to use the key as
an index instead! Not
to worry, for that
we've got itraversed
which is a bit smarter.
The lens library
exports a
TraversableWithIndex
typeclass for
traversable types that
have some kind of
index associated with
them. Most types you
could want are
implemented for you
already, but if you've
got your own
datatypes you can
implement an instance
yourself.

There are many tools in the lens library which
make use of indexes, for instance we can use
elemIndicesOf to list all owners who have a
pet named "Garfield":

This is only a small taste of what indexed
optics can accomplish, and of course most
examples that are small enough to be helpful
are also easily accomplished without optics.
Trust me that there are dozens of other uses
which dove-tail nicely with many other
common tasks in the wild, and they'll start to
appear once you know how to find them. I
hope this helps make the world of indexed
optics just a little less intimidating.We can find the indexes of the first 10 even

fibonacci numbers:

>>> elemIndicesOf
 (itraversed <. traversed)
 "Garfield"
 pets
["Jon"]

>>> fibs = 0 : 1 :
 zipWith (+) fibs (tail fibs)
>>> take 10 $ findIndicesOf
 traversed
 even
 fibs
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

Or perhaps we want to truncate a paragraph,
but want to ensure we only do so at a valid
word break. We can use indexed combinators
to make smart choices which depend on both
the index of a character and the character
itself.

smartTruncate
 :: Int
 -> String
 -> String
smartTruncate numChars text =
 -- Take characters until we hit our
 -- size limit, then continue until
 -- a word break
 (text ^.. itakingWhile
 (\n c ->
 n < numChars
 || not (isSpace c)
) traversed
)
 <> "..."

>>> smartTruncate 15 "A spoonful of
sugar helps the medicine go down"
"A spoonful of sugar..."

>>> smartTruncate 10 "This is
supercalifragilisticexpialidocious
isn't it?"
"This is
supercalifragilisticexpialidocious..."

If we like we can keep track
of both the Map's index
and the list's index; the <.>
combinator will keep the
indexes to its left AND
right by pairing them up as
a tuple.

>>> itraverseOf_
 (itraversed <.> traversed)
 (\(owner, num) pet -> putStrLn
 $ pet
 <> " belongs to "
 <> owner
 <> " | Pet #"
 <> show num
)
 pets

Woodstock belongs to Charlie | Pet #0
Snoopie belongs to Charlie | Pet #1
Garfield belongs to Jon | Pet #0
Odie belongs to Jon | Pet #1

In this edition of RankNRoll, we want to highlight 10 blog posts (in no particular order) that
rocked 2020. We added to this list write-ups that we find enchanting, curious, useful, maybe
not receiving enough deserved attention, or generally fascinating. This year, there are so many
of them, but this list is just a part of variegated posts, which hopefully can help everyone find
what hit the spot.

Let's Rank'N'Roll, baby!

The year 2020 for Haskell started with
the blog post by Stephen Diehl called
"Haskell Problems For a New Decade". It
set the tone for the upcoming future
by highlighting several problems
requiring some attention for
improving the Haskell ecosystem.
And, indeed, during this year already
we saw movements towards many of
them: the delimited continuations
primops GHC proposal, HLS and
VSCode plugin, multiple proposals
related to dependent types, etc.! Read
the full blog post for inspiration for
your next project, and who knows,
maybe you will be the person to solve
one of the challenges!

Olle Fredriksson wrote an
interesting blog post named
"Speeding up the Sixty compiler". The
blog post describes multiple
things that helped improve the
Sixty language compiler's
performance. But the interesting
thing is that the suggestions are
quite general, and can be applied
to any project: web-backend, CLI
tool, decoding library, etc.

Application structure and Design
patterns are hot topics in Haskell this
year, which is a big step in the right
direction. And Felix Mulder shares
his views on the subject in the
"Revisiting application structure" post.
The blog post describes several
widespread approaches to structuring
subsystems in the big application and
provides a comparison of trade-offs.
It is an exciting read for everyone
wanting to learn how to design
bigger applications in Haskell.

 Debugging in Haskell is very
different from other mainstream
languages. Due to purity and laziness,
Haskell enables an approach called
equational reasoning. Gil Mizrahi
describes this approach in the post called
"Substitution and Equational Reasoning". It
is a very powerful technique! Fun story:
when we were working on the prolens
library that provides Profunctor
encoding of optics, we've implemented
one of the primitive operations wrongly,
and we've used equational reasoning to
debug our implementation.

https://www.stephendiehl.com/posts/decade.html
https://ollef.github.io/blog/posts/speeding-up-sixty.html
https://felixmulder.com/writing/2020/08/08/Revisiting-application-structure.html
https://gilmi.me/blog/post/2020/10/01/substitution-and-equational-reasoning

One of the Haskell distinguished
features is purity by default. But IO is
also a powerful tool, let's not forget that!

Of course, that only a tiny portion of all the awesome content written by the amazing
community during this year. Haskell Weekly publishes dozens of blog posts each week. People
write on very different topics, touching very diverse parts of the ecosystem. It is captivating how
the community evolves and how many improvements are happening at this exact moment. It is a
pleasure to be a part of such a lively and active community!

Rank'N'Roll
 Haskell has a very long story. It is a 30-
years old language! A lot of things happened to
Haskell within this time period. Type Classes
compiled a list of all significant milestones and
great moments in the "Haskell Timeline". It is a
colossal work, and we are very grateful for this
fascinating journey for everyone who wants to
dive into the history of the Haskell language.

Getting started with Haskell can be
challenging. It is an entirely new world!
And the UX is not always great. School of
FP wrote several guides to help beginners,
starting from "Setting Up Haskell
Development Environment: The Basics". It is a
series of three blog posts that explains
Haskell toolchain, and how to start with
both build tools cabal and stack. The
narrative way makes it interesting even for
experienced users!

Haskell is infamous for being not so well
supported on Windows. The situation is
improving, and one of the Haskell Foundation's
top priorities is to fix Windows support for
Haskell. But as developers, we all can play a role
in providing smooth UX for using our Haskell
tools on Windows. Iori Matsuhara wrote helpful
instructions on how to "Create a Windows installer
for your Haskell project". It is great to see the
accessible instructions on providing something
magical!

Vidar Holen shared with us "Lessons learned
from writing ShellCheck, GitHub’s now most
starred Haskell project". It is always
enjoyable to read about the journey of
such noticeable and huge projects!
ShellCheck brings joy to many developers,
and the story behind such a project
contains a lot of interesting details, both
technical and personal.

Alejandro Serrano describes in detail "The power of
IO in Haskell". It is an excellent guide about the IO
machinery, exceptions, asynchronous and
multithreading computations, resource pools and
streaming. We recommend reading it to everyone!

Our own blog post "Haskell mini-patterns handbook"
received a lot of attention this year, and we are
grateful to everyone supporting our work and
sharing it with everyone! It is good to know how to
structure the application in Haskell on a high-
level, but it is also helpful to be aware of some
small programming patterns that solve lower-level
problems. And our mini-patterns handbook
contains nine such examples, that proved to be
used by every FP developer.

https://typeclasses.com/timeline
https://schooloffp.co/2020/07/25/setting-up-haskell-development-environment-the-basics.html
https://schooloffp.co/2020/07/25/setting-up-haskell-development-environment-the-basics.html
https://blog.patchgirl.io/haskell/2020/10/30/windows-installer-for-haskell-software.html
https://blog.patchgirl.io/haskell/2020/10/30/windows-installer-for-haskell-software.html
https://www.vidarholen.net/contents/blog/?p=859
https://www.vidarholen.net/contents/blog/?p=859
https://www.vidarholen.net/contents/blog/?p=859
https://www.47deg.com/blog/io-haskell/
https://www.47deg.com/blog/io-haskell/
https://kowainik.github.io/posts/haskell-mini-patterns

-- /data/ranks/values.json
{ "data-ranks": [42, 10, 15]
}

-- /data/keys/values.json
{ "data-keys": [7, 3]
}

Stereo
Section with explanations of some advanced concepts and

type-level programming

Haskell has many ways to reduce boilerplate,
and some of them require usages of advanced
features. However, not all Haskellers
recommend doing that and accept the tradeoffs
that such type-level features carry. And a lot of
troubles are coming from the fact that it's not
always clear when to use such features. In this
section, we want to demonstrate some ways to
use them efficiently, showing the best ways to
apply advanced techniques on real-life
examples.

This time, let's review one problem similar to
the one we were solving for production. The
situation is the following. We need to query an
external REST API. This API provides multiple
endpoints for querying data types of the same
structure but under different names. The
response is always a JSON object with a single
key and array of integers. But the key name is
different for different REST endpoints. For
example, here are two samples of endpoints and
results they return:

We can solve this problem easily by writing
some boilerplate: duplicate data types for each
endpoint and each type of response and write
manual, repetitive JSON instances. But, as with
any boilerplate, this approach becomes tedious
if we need to add and remove such data types
periodically or test our integrations.

Here we want to present a solution using type-
level strings. Required Haskell extensions for
the solution: DataKinds, ScopedTypeVariables,
TypeApplications.

base also provides handy functionality to work
with type-level strings. You can perform some
primitive operations with them on the type level
using exported type families, e.g. comparing
type-level strings. But you also can convert
those type-level strings to runtime values. This
makes sense because if the value is known at
compile-time, you definitely can have it in the
runtime as well.

So, for our solution, we are going to introduce a
newtype with a type-level string as a phantom
type parameter:
newtype ResponseData (path :: Symbol) =
ResponseData
 { unResponseData :: [Int]
 }

This data type is a wrapper around the list of
integers, and it stores the relevant dynamic part
as a type-level tag. So in our particular case, we
will work with values of type ResponseData
"ranks" and ResponseData "keys" to represent
the API responses.

Next, we want JSON instances to depend on
this type-level string. Fortunately, this also can
be done! We are going to achieve this using the
symbolVal function that allows converting
type-level strings to runtime strings:

symbolVal
 :: KnownSymbol n
 => proxy n -> String

Overcoming

Types
Haskell allows
having string
literals as part of
types. The base standard
library provides such type-level strings as a kind
(type of a type) Symbol in addition to the
typical kind Type that most of the basic data
types have. Symbol is an opaque data type
promoted to the kind-level, one of the few kinds
that base provides naturally.

ghci> :set -XDataKinds
ghci> :set -XTypeApplications
ghci> import Data.Proxy
ghci> import GHC.TypeLits

ghci> :t Proxy
Proxy :: Proxy t

ghci> :t Proxy @"some string"
... :: Proxy "some string"

ghci> symbolVal
 $ Proxy @"some string"
"some string"

ghci> :t symbolVal
 $ Proxy @"some string"
... :: String

You see that this function imposes the
KnownSymbol constraint for "n". This
constraint allows us to reflect compile-time
strings to runtime. As always, we can play in
GHCi to see how this function works:

That is already useful, but it's not all we can get
from having type-level strings! We are also
using servant-client to query API, so it is
possible to define a single API only once, and
then just substitute relevant parts with type-
level strings:
type DataValuesApi (path :: Symbol)
 = "data"
 :> path
 :> "values.json"
 :> Get '[JSON] (ResponseData path)

To summarise this approach, when
implemented to solve the real problem, it gave
us the following benefits:

And here goes our FromJSON instance:
instance
 KnownSymbol path =>
 FromJSON (ResponseData path)
 where
 parseJSON = withObject
 ("ResponseData " ++ pathStr)
 $ \o -> do
 let topKey =
 "data-" <> toText pathStr
 values <- o .: topKey
 pure $ ResponseData values
 where
 pathStr :: String
 pathStr = symbolVal
 $ Proxy @path

Now, that's a lot going on here! Let's
disassemble this FromJSON instance definition:

1. We define a single instance for ResponseData
path with the KnownSymbol constraint for
"path" to get type-level strings in the runtime.
2. In the pathStr helper, we use the symbolVal
function to pass Proxy parameterised by our
path type variable (using TypeApplications to
specify type variables)
3. Now, having our String value, we can
concatenate it with the "data-" string or other
things to get our relevant parts of API.
4. The rest is the standard FromJSON instance.

1. Zero boilerplate. We only needed to
write instances and endpoints querying
once. And only specify missing parts on
usage.
2. Great maintainability. The client API
wasn't changing, so we never needed to
patch JSON instances. It was enough to
implement the logic, write tests and forget
about this problem. Whenever we wanted
to query another type of data (or remove
some existing type), it was only a two-line
addition (or deletion) in the code.
3. Easy migration. When we needed to
query an API under a different path, it was
pretty straightforward to migrate the
existing scheme: just change the names.
4. Newcomer-friendly. Since the
underlying implementation is rarely
changing, and all implementation details
are hidden behind the type-level API,
newcomers can easily add new types to the
query by copying existing usages of this
API. But, of course, we also write
documentation to our code, and this helps
people as well.

Using advanced features in Haskell can be
challenging, but we hope that our guides can
help with using them more efficiently!

Challenge: implement the ToJSON instance
for ResponseData that satisfies the
roundtrip property.

by Impure Pics

Pure Gold

Distilling functional programming for the
good of all

Impure
PICS

FP Artist & Content maker

sort :: Ord a => [a] -> [a]

The type signature reads "if you give me a
list of elements that can be compared with
each other, I'll return you a list of elements
of the same type". And the name suggests
that the resulting list will be sorted. After
playing with sort in GHCi, we observe that
the list is sorted in the ascending order.

The basic function for sorting in Haskell is
sort. It is not exposed by default from
Prelude, so you need to import it from the
Data.List module. The function has the
following type:

BASELINE
Interesting parts of the base standard library

Sorting algorithms is one of the favourite topics on many whiteboard job interviews. However, in real
life, you don't need to implement it by hand. You should be able just to take one such magic function
that sorts it out for you, and apply it where you need.

Though, the standard Haskell library base contains several functions for sorting lists. Even if knowing
algorithms under hood is not required, you still need to know about all of these provided functions and
their pros and cons to decide on the best choice for your case.

The sorting functions in Haskell have different types, different performance characteristics, and not all
of them are widely known. So let's discuss all of them to understand once and for all how to sort lists
properly in Haskell!

However, the sort function doesn't fit all use cases:

ghci> sort [3, 1, 2, 1]
[1, 1, 2, 3]

ghci> sort [0.0, -3.2, 5.55]
[-3.2, 0.0, 5.55]

ghci> sort ["words", "in", "list"]
["in", "list", "words"]

Interesting historical facts about
sort function in base: Initially, this
function was implemented using
the Quick Sort algorithm up until
2002. The old implementation was
then replaced with the Merge Sort
algorithm, which was superior and
guaranteed O(n log n) in worst-case
scenarios as it was shown in
benchmarks. However, this is also
not the final version of this function
in base. In 2009 the classical Merge
Sort algorithm was given up, and
the newer one was introduced,
which can be called Smooth
Applicative Merge Sort.

Some types don't have Ord
instances due to different reasons,
but you still may want to order
them.

Let's see if other functions can help us with these issues.

sort

You can have only one instance of
Ord per type, but sometimes you
want different orders (e.g. order
rows by name, date, rating, etc.),
which is impossible to achieve with
one data type.

To resolve the non-comparable elements
issue of sort, another function from
Data.List called sortBy comes to help:

very smoothly. And it reads as a natural
language!

sortBy
 :: (a -> a -> Ordering)
 -> [a] -> [a]

You can supply sortBy with a custom
"comparator", and it will sort the list
according to the given order. For example,
to sort the list of pairs by the second
element, use it like this:

sortBy

ghci> sortBy
 (\(_, x1) (_, x2) ->
 compare x1 x2
)
 [(1, 3), (10, 1)]

[(10,1), (1,3)]

This pattern is very common, so the
Data.Ord module has a helpful function
called comparing

comparing
 :: Ord a
 => (b -> a)
 -> b -> b -> Ordering

Using this function, you can write the
above sorting shorter:

sortBy
 (comparing snd)
 [(1, 3), (10, 1)]

sortOn

The pattern of sorting some values by some
field or by the result of some function is
also very common. So, Data.List
implements one more function for exactly
those reasons! Meet sortOn:

sortOn
 :: Ord b
 => (a -> b) -> [a] -> [a]

sortOn snd [(1, 3), (10, 1)]

sortWith

This is already quite nice, and at this point,
most people end their journey to the world
of list-sorting functions. But there is still
one more function! It is called sortWith and
it comes from a surprising place — the
GHC.Exts module:

sortWith
 :: Ord b
 => (a -> b) -> [a] -> [a]

You can notice that it has the same type as
sortOn, so a fair question would be "What
is the difference?" And the difference is in
performance. Let's look at the
implementations of both sortWith and
sortOn:

sortWith
 :: Ord b => (a -> b) -> [a] -> [a]
sortWith f = sortBy
 (\x y -> compare (f x) (f y))

sortOn
 :: Ord b => (a -> b) -> [a] -> [a]
sortOn f =
 map snd
 . sortBy (comparing fst)
 . map (\x ->
 let y = f x in y `seq` (y, x))

Aha! The implementation of sortWith is
probably what you expected from sortOn,
and the implementation of sortOn, in
reality, turned out to be more complicated.
But what sortOn actually does is caching
the result of the function application in the
first element of a pair, sorting the pair by
the first element, and then returning
elements themselves.

So, the sortOn function actually requires
more memory and is a bit slower than
sortWith because of that. However, there is
a reason for such implementation. If the
"comparator" – function, by which you
want to compare – is slow (e.g. list's length),
sortOn will call this function only once for
each element, while sortWith will call it
many more times, and the final sorting will
be slower.

Using sortOn, we can sort tuples by the
second element (as in the previous example)

That's a lot of sorting functions! In order not to get lost, here are our
compact info table and recommendation on when to use each:

Haskell Sorting Functions Table

sort

sortWith

Ord a [a] -> [a] Data.List
The type has the "Ord" instance, and
you want to sort in the ascending order

sortOn

sortBy

Ord b

Ord b

(a -> b)
-> [a] -> [a]

(a -> b)
-> [a] -> [a]

(a -> a -> Ordering)
-> [a] -> [a]

Data.List

Data.List

GHC.Exts
You want to sort by record field, or by
part of the type, which is "free' (only
extracting fields, not computing
anything)
You want to sort using some expensive
function (e.g. list's length)

For completely custom sorting
behaviour

Humourmorphism

Why can’t programmers tell the difference
between Halloween and Christmas?

Because Oct 31 = Dec 25

CHALLENGECHALLENGE
yo self

Send us your solutions to xrom.xkov@gmail.com,
or tag @bind_the_gap on your solution in Twitter

and we will highlight the most elegant and creative solutions in the following issue!

{-# LANGUAGE FlexibleInstances #-}

import Data.List

instance Eq a where (==) _ _ = False
instance {-# INCOHERENT #-} Ord a where
 compare _ _ = GT

reverse' :: [a] -> [a]
reverse' = sort

main = print $ reverse' [1..10]
 -- [10,9,8,7,6,5,4,3,2,1]

In the same spirit, @ajnsit wrote a clever solution that
exploits laziness in Haskell:

reverse = sortOn (_ _ -> undefined)

instance Eq a where
 _ == _ = False
instance Ord a where
 compare _ _ = GT

A less evil solution that uses safe Haskell abstractions is
written by @noaheasterly:
sortAsReverse :: forall a. [a] -> [a]
sortAsReverse = coerce (sort @(Rev a))

newtype Rev a = Rev a

instance Ord (Rev a) where
 compare _ _ = GT

instance Eq (Rev a) where
 _ == _ = False

The shortest solutions were provided by @marcellourbani,
@chrislpenner and @gilmi:

myreverse = map snd . sort . zip [0,-1..]

reverse = fmap snd . sortOn fst . zip [0,-1..]

reverse = map snd . sort . zip
 [(maxBound :: Int), (maxBound - 1) .. 0]

Thanks, everyone participating in our fun challenge, and we prepared a new one for you!

ghci> firstDigit (-5264)
5

Let's first sum up the last month' competition. The challenge of our last month was to implement the list reverse function using
sorting. There were lots of smart and interesting solutions. But we need to choose one!

The winner of this challenge with the most creative (and evil) solution that uses Incoherent Instances is @utdemir:

Congratulations, @utdemir! Send us an email with your
contact details to xrom.xkov@gmail.com or a message to
@bind_the_gap to claim your prize!

We are thankful to everyone participated! Here are a few
more highlights from you, our creative readers.

Implement the function that finds the first digit of a number, using as
fewer characters as possible (excluding imports and language extensions,
get creative!). A possible output:

https://twitter.com/bind_the_gap
https://twitter.com/bind_the_gap
mailto:xrom.xkov@gmail.com

TYPEemoj inat i on
Guess the standard function by the following type, written in emojis:

Tell us what you want to see happening in the Haskell world in 2021!

https://bit.ly/btg-survey-dec2020

Surveyvor
~ Monthly BTG survey, important community surveys and results ~

Present
We are happy to receive amazing content from our readers! After our pilot issue, Gleb
Popov shared with us Haskell art for the cup.

Look how gorgeous it is in the real world!

from Readers

https://drive.google.com/file/d/15UDMqeWOvUGT8KZZDlBueNi16hci8R5l/view?usp=sharing
https://bit.ly/btg-survey-dec2020

Way out

Closing Words
Thanks a lot for reading our magazine. The second issue of Bind The Gap is brought to you
by Kowainik — Veronika Romashkina and Dmitrii Kovanikov. The year was not easy for
most of us, so we tried to bring a bit of the holiday mood into our programming lives
through this edition. We hope you enjoyed it and it made you smile!

Besides BTG, we do a lot of open-source development, tutorials and guides writing,
mentorship. You can visit our website to read more about our work:

https://kowainik.github.io/

We have plenty of ideas and plans for future issues. Work on the magazine takes a lot of
time and effort. So your support is highly appreciated! You can support our work and BTG
in particular on Ko-Fi or via GitHub Sponsorship:

https://ko-fi.com/kowainik
https://github.com/sponsors/vrom911
https://github.com/sponsors/chshersh

Oh, and the special present for those who asked us about the Bind The Gap merchandise,
you can now get the first version of T-Shirt!

https://teespring.com/stores/kowainik

Merry Christmas & Happy New Year!
Hope to see you in 2021, folks ;)

https://kowainik.github.io/
https://ko-fi.com/kowainik
https://github.com/sponsors/vrom911
https://github.com/sponsors/chshersh
https://teespring.com/stores/kowainik

© All Rights Reserved, Kowainik 2020-2021

ALL CHANGE PLEASE

VOIDThis is

where this issue
terminates

Please remember to take all your

with you when you leave the
train

Monads

