Падобны вынік у сферычнай геаметрыі сустракаецца ў трактаце «Sphaerica» Менелая Александрыйскага (прыблізна 100-ы год нашай эры) і хутчэй за ўсё, аналагічны вынік на плоскасці быў ужо вядомы. Гэтая тэарэма носіць імя Менелая, бо ранейшых пісьмовых успамінаў аб гэтым выніку не захавалася.
Правядзем праз пункт С прамую, паралельную прамой AB, і абазначым цераз K пункт перасячэння гэтай прамой з прамой A'C' . Трохвугольнікі і падобныя (па двум вуглам), таму
і, значыць —
.
З другога боку, падобнымі з’яўляюцца таксама і тровугольнікі і , таму
і, такім чынам —
.
Але ў такім выпадку
або
.
Магчымыя два размяшчэнні пунктаў і , альбо два з іх ляжаць на адпаведных баках трохвугольніка і адзін на падаўжэнні, альбо ўсе тры ляжаць на падаўжэннях адпаведных бакоў, адсюль для адносін накіраваных адрэзкаў маем