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Context

Security Protocols
Distributed programs which aim at providing some security
properties.
Uses cryptographic primitives: e.g. encryption.
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Context: Attacker Model

Abstract Attacker Model
Network capabilities: worst-case scenario:
eavesdrop, block and forge messages.
Computational capabilities: adversary is a
Probabilistic Polynomial-time Turing Machine
(PPTM).

Attacks against security protocols can be very damageable, e.g. theft or
privacy breach.

We need strong security guarantees.
⇒ can be provided by cryptographic proofs.
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High-Confidence Security Guarantees

But security proofs are often complicated and error-prone:

OAEP padding scheme:
claimed secure in [BR94], proof flawed [Sho02].
Fiat-Shamir with aborts:
several proofs [Lyu12; KLS18] turned out to be flawed [Bar+23].
several logical attacks on TLS, e.g.:
TripleHandshake [Bha+14], LogJam [Adr+15].

These are critical cryptographic designs under a lot of public scrutiny.
⇒ for such cryptographic designs, manual proofs are insufficient.
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High-Confidence Security Guarantees

Verification for Cryptography
Formal mathematical proof of security protocols:

S |= Φ

system satisfies property

Machine-checked proofs yield a high degree of confidence.
general-purpose tools (e.g. Coq and Lean).
in security protocol analysis, mostly dedicated tools.
E.g. CryptoVerif, EasyCrypt, Squirrel.
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Computer-aided Verification of Cryptographic Protocols

Goal
Design formal frameworks allowing for mechanized verification of
cryptographic arguments.

At the intersection of cryptography and verification.
Particular verification challenges:

small or medium-sized programs
complex properties
probabilistic programs + arbitrary (resource-bounded) adversary
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Mechanizing Cryptographic Proofs



Cryptographic Protocol Verification

Verification
∀ ∈ C. ( || P) |= Φ

Requires a formal framework and a tool that can express:

P: the protocol under study.
∈ C: the adversarial model, i.e. the class of adversaries.

Φ: the security property.
|=: the cryptographic arguments.
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Cryptographic Protocol Verification

computational
model

EasyCrypt Squirrel

P program imperative program
(sequential modeling)

pure program
(execution trace modeled)

∈ C PPTM abstract & stateful
module A

uninterpreted pure
function att(·)

Φ game | Pr(G)| ≤ ϵ

| Pr(G) − Pr(G′)| ≤ ϵ

[ϕG ]
u⃗G ∼ u⃗G′

|= game-hops &
reductions

program logics
(pRHL)

probabilistic logics
(CCSA)

+ expressive logics

+ can target
implementations

+ temporal logic
+ higher-level rules

+ (usually) shorter proofs
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The Squirrel Prover

Tool for the verification of security protocols:
Input language: applied π-calculus.

Implements a CCSA probabilistic logic:
Reachability properties: [ϕG ]
Indistinguishability properties: u⃗G ∼ u⃗G′

In the asymptotic security setting. E.g.
u⃗G ∼ u⃗G′ ⇐⇒

∀ ∈ C. |Pr(G( ))− Pr(G′( ))| ≤ ϵnegl

Reasoning rules valid w.r.t. any computational
attacker .
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The Squirrel Prover

Proof assistant:
Users prove goals using sequences of tactics.

Generic maths. tactics, e.g. apply, rewrite.
Crypto. tactics, e.g. cpa.
Probabilistic tactics, e.g. fresh.
Structural tactics, e.g. trans.

Development done using a proof-general mode.
As in Coq, EasyCrypt ...
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The Squirrel Prover

Open-source tool

Project web-page:
https://squirrel-prover.github.io/

Documentation web-page:
https://squirrel-prover.github.io/documentation/
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Mechanizing Cryptographic Proofs
The CCSA Framework



Formalizing Cryptographic Proofs

Our formal framework must model and capture:

P: protocol
∈ C: adversarial model

Φ: security property
|=: cryptographic arguments
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Limitations: what is not in this talk

∈ C: adversarial model
in this talk: only classical adversaries, i.e. C = PPTM.
quantum adversaries (i.e. C = PQTM) are work-in-progress.

Φ: security property
in this talk: asymptotic security.
there exists a concrete security version of the logic [CSF’24]
(on paper, not implemented)

|=: cryptographic arguments
standard game-based proofs.
other techniques may be out-of-scope:
UC, rewinding, GGM, . . .
mechanizing crypto. proofs takes time:
your favorite, complicated, crypto. designs may be difficult to formalize.
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Modeling

∀ ∈ C. ( || P) |= Φ

Protocol P: a concrete concurrent program.
In Squirrel, described in the applied π-calculus.

Adversarial model ∈ C: an abstract (i.e. unknown) PPTM
program.

Full system = interaction ( || P).

13



Example: The Hash-Lock Protocol

A simple example
Two party authentication protocol: reader R ⇐⇒ RFID tag T.
Keyed-hash function H with a shared key k.

R T

nR

⟨nT , H(⟨nR , nT⟩, k)⟩

true/false
(if valid hash)
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The Hash-Lock Protocol

In the applied π-calculus:

T(i) : input(in).
ν nT,i.

let h = H(⟨in , nT,i⟩, k) in
let out = ⟨nT,i , h⟩ in
output(out)

R(j) : ν nR,j.

output(nR,j).
input(in).
output

(
π2(in) = H(⟨nR,j , π1(in)⟩, k)

)

H
as

h-
Lo

ck

R T

nR

⟨nT , H(⟨nR , nT⟩, k)⟩

true/false
(if valid hash)
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Modeling

How do we model the interaction ( || P) in a pure language?
=⇒ remove all stateful effects:

network I/O.
random samplings.
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Modeling: Network I/O

I/O effects

Network input ⇒ function call to .

Network output ⇒ add to ’s knowledge.

For a single I/O block T(i):

input(in)
ν nT,i

h := H(⟨in , nT,i⟩, k)
out := ⟨nT,i , h⟩
output(out)

in := ()
ν nT,i

h := H(⟨in , nT,i⟩, k)
out := ⟨nT,i , h⟩
output(out)

in := (frame)
ν nT,i

h := H(⟨in , nT,i⟩, k)
out := ⟨nT,i , h⟩
frame := frame :: out
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Modeling: Random Sampling

Probabilistic effects
Move to an early-sampling semantics with indexed names:

name nT is an array of i.i.d. random samplings.
random sampling ν nT,i =⇒ array access nT(i) .

I/O block T(i):

in := (frame)
ν nT,i

h := H(⟨in , nT,i⟩, k)
out := ⟨nT,i , h⟩
frame := frame :: out

in := (frame)
h := H(⟨in , nT(i) ⟩, k)
out := ⟨ nT(i) , h⟩
frame := frame :: out
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Modeling: Execution Trace

Single I/O blocks:

in := (frame)
h := H(⟨in , nT(i)⟩, k)
out := ⟨nT(i) , h⟩
frame := frame :: out

out := nR(j)
frame := frame :: out

in := (frame)
out :=

(
π2(in) = H(⟨nR(j) , π1(in)⟩, k)

)
frame := frame :: out

T(i)
R1(j)

R2(j)

Many I/O blocks, add the time:

index: type of session numbers.
timestamp: type of time-points in an execution trace.

τ ::= init | T(i) | R1(i) | R2(i) (where i : index)
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Modeling: Execution Trace

Execution trace: timestamp + order <.

Example:

init R1(j0) T(i0) R2(j0)

Protocol execution encoded by mutually recursive functions:

in@τ: input at time τ
out@τ: output at time τ
frame@τ: ’s knowledge at time τ, i.e. all out@τ0 for τ0 ≤ τ.
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Modeling: Execution Trace

in@τ = match τ with
| init→ empty
| _→ ( frame@pred(τ) )

frame@τ = match τ with
| init→ empty
| _→ frame@pred(τ) :: out@τ

out@τ = match τ with
| init→ empty
| T(i)→ ⟨nT(i) , H(⟨in@τ , nT(i)⟩, k)⟩
| R1(j)→ nR(j)
| R2(j)→ π2(in@τ) = H(⟨nR(j) , π1(in@τ)⟩, k)

R T

nR

⟨nT , H(⟨nR , nT⟩, k)⟩

true/false
(if valid hash)

21



Modeling: Execution Trace

in@τ = match τ with
| init→ empty
| _→ ( frame@pred(τ) )

frame@τ = match τ with
| init→ empty
| _→ frame@pred(τ) :: out@τ

out@τ = match τ with
| init→ empty
| T(i)→ ⟨nT(i) , H(⟨in@τ , nT(i)⟩, k)⟩
| R1(j)→ nR(j)
| R2(j)→ π2(in@τ) = H(⟨nR(j) , π1(in@τ)⟩, k)

R T

nR

⟨nT , H(⟨nR , nT⟩, k)⟩

true/false
(if valid hash)

21



The CCSA Logic: Terms

Core Syntax
A higher-order λ-calculus with library, adversarial and recursive
functions; names (for random samplings); and variables.

t ::= s | (t t) | λ(x : τ). t

| (t, . . . , t) | ∀(x : τ). t | match t with . . .

s ∈ {f ∈ Flib} ∪ { ∈ Fadv} ∪ {m ∈ Frec} ∪ {n ∈ N} ∪ {x ∈ X}

Types
(t : τ) is the type τ of term t:

a base type, e.g.

bool : {true, false} message : {0, 1}∗ int : N

timestamp : time-points index : session numbers

an arrow type τ0→ τ1, tuple type τ0 ∗ τ1, . . .
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The CCSA Logic: Terms

The semantics JtK uses discrete random variables, not distributions!

Shared source of randomness : set of random tapes T .

JtK : T → JτK

interpretation of term (t : τ)

random tapes interpretation domain, e.g.
{true, false} for bool
{0, 1}∗ for message
N for int

Allow probabilistic dependencies between terms.
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The CCSA Logic: Terms

Examples
If (n, n0 : message) then:

JnK ≈ sample w in {0, 1}η

J(n, n0)K ≈ sample w in {0, 1}η

sample w ′ in {0, 1}η independently
build (w ,w ′)

J(n, n)K ≈ sample w in {0, 1}η

build (w ,w)

J(n, n)K = (JnK, JnK) = (w ,w)
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The CCSA Logic: Terms

Semantics
Standard semantics JtKη,ρ

M ∈ JτKM parameterized by:
the model M.
the security parameter η.
a pair ρ = ( ρh , ρa ) of random tapes ρ ∈ Tη

M:
ρh for honest randomness , ρa for the adversary .
(tapes ρh, ρa must be finite.)

Jf(t) Kη,ρ
M

def= Mf (η, JtKη,ρ
M )

Jn(t) Kη,ρ
M

def= Mn (η, ρh ,JtKη,ρ
M )

J (t)Kη,ρ
M

def= M (η, ρa ,JtKη,ρ
M )

Machines Mf,Mn ,M are deterministic
ptime (w.r.t. η + size of the args.)
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The CCSA Logic: Terms

Names
Take n : index→ message.
n(i): uniform random samplings over bit-strings of length η

( ̸= name symbols or ̸= indices ) =⇒ independent samplings.
Thus:

Pr
ρ

(Jn0(i0)Kη,ρ = Jn1(i1)Kη,ρ) = 1
2η

if n0 ̸= n1 or if ( Ji0 ̸= i1Kη,ρ for all η, ρ).

Going further, if m does not occur in t:

Pr
ρ

(Jm = tKη,ρ) = 1
2η

For now, “m does not occur in t” means
t without recursive functions + m ̸∈ st(t).

26



The CCSA Logic: Terms

Names
Take n : index→ message.
n(i): uniform random samplings over bit-strings of length η

( ̸= name symbols or ̸= indices ) =⇒ independent samplings.
Thus:

Pr
ρ

(Jn0(i0)Kη,ρ = Jn1(i1)Kη,ρ) = 1
2η

if n0 ̸= n1 or if ( Ji0 ̸= i1Kη,ρ for all η, ρ).

Going further, if m does not occur in t:

Pr
ρ

(Jm = tKη,ρ) = 1
2η

For now, “m does not occur in t” means
t without recursive functions + m ̸∈ st(t).

26



The CCSA Logic: Terms

Names
Take n : index→ message.
n(i): uniform random samplings over bit-strings of length η

( ̸= name symbols or ̸= indices ) =⇒ independent samplings.
Thus:

Pr
ρ

(Jn0(i0)Kη,ρ = Jn1(i1)Kη,ρ) = 1
2η

if n0 ̸= n1 or if ( Ji0 ̸= i1Kη,ρ for all η, ρ).

Going further, if m does not occur in t:

Pr
ρ

(Jm = tKη,ρ) = 1
2η

For now, “m does not occur in t” means
t without recursive functions + m ̸∈ st(t).

26



The CCSA Logic: Terms

The logic has a standard semantics,
but a particular interpretation domain.

JtKη,ρ
M ∈ JτKM =⇒ JtKM ∈ RVM(τ)

RVM(τ): η-families of random-variables over JτKM.

RVM(τ) =
(
Tη
M → JτKM

)
η∈N
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Formalizing Cryptographic Proofs

Our formal framework must model and capture:

P: protocol ✓

∈ C: adversarial model ✓

Φ: security property
|=: cryptographic arguments

28



The CCSA Logic: Security Predicates

We consider two main security predicates:

[ϕ]: the term ϕ of type bool is overwhelmingly true:

M |= [ϕ] iff. Prρ
(
JϕKη,ρ

M
)

negligible in η.

u⃗0 ∼ u⃗1: u⃗0 and u⃗1 are indistinguishable:

M |= u⃗0 ∼ u⃗1 iff. ∀ ∈ C.

∣∣∣∣∣∣ Prρ
(

(η, Ju⃗0K
η,ρ
M , ρa)

)
− Prρ

(
(η, Ju⃗1K

η,ρ
M , ρa)

)
∣∣∣∣∣∣ negligible in η

(
u⃗0 = t1, . . . , tn
u⃗1 = s1, . . . , sn

and ti and si have the same type ∀i
)
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The CCSA Logic: Security Predicates

Authentication for Hash-Lock:
(out@R2(j) = true)⇒

∃i : index. R1(j) < T(i) < R2(j)
∧ out@R1(j) = in@T(i)
∧ out@T(i) = in@R2(j)



Weak privacy for Hash-Lock:

frame@pred(T(i)),H(⟨in@T(i) , nT(i)⟩, k)
∼ frame@pred(T(i)), nfresh

R T

nR

⟨nT , H(⟨nR , nT⟩, k)⟩

true/false
(if valid hash)
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The CCSA Logic: Global Logic

Squirrel’s has two kinds of formulas:

Local formulas are terms of type bool (e.g. ϕ0⇒∃x . (ϕ1 ∧ ϕ2)).

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∀x . ϕ | t = t | . . .

Global formulas: FO([ · ], · ∼ ·, . . . ).

F ::=

F ∧̃ F | ¬̃F | ∀̃x .F |

[ϕ] | t⃗ ∼ t⃗

| const(t) | . . .

Global formulas are Squirrel’s ambient logic.
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The CCSA Logic: Global Logic

Semantics of the global logic

Standard FO semantics but particular interpretation domain RVM(τ):

∀̃(x : τ) means “for all η-family of random variable x over JτK”

M |= ∀̃(x : τ). F iff. M{x 7→ X} |= F for all X ∈ RVM(τ)
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The CCSA Logic: Global Logic

Examples of valid global formulas

[(ϕ = true) ∨ (ϕ = false)]

(ϕ ∼ true) ⇔̃ [ϕ](
[s = t] ∧̃ u{s} ∼ v

)
⇒̃ (u{t} ∼ v)

[u = v ] ⇒̃ u ∼ v but not the converse:
e.g. n0 ∼ n1 but [n0 ̸= n1]

∼ is not compositional

(u0 ∼ u1) ∧̃ (v0 ∼ v1) does not always implies u0, v0 ∼ u1, v1

Counter-example:
n0 ∼ n0 and n0 ∼ n1 but n0, n0 ̸∼ n0, n1
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The CCSA Logic: Global Logic

Examples of valid global formulas
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The CCSA Logic: Global Logic

̸= between local/global formulas

[ϕ ∧ ψ] ?⇔ [ϕ] ∧̃ [ψ]

[ϕ ∨ ψ] ?⇔ [ϕ] ∨̃ [ψ]

[ϕ⇒ ψ] ?⇔ [ϕ] ⇒̃ [ψ]

Counter-example for ∨/∨̃:

[(b = true) ∨ (b = false)]
valid

[b = true] ∨̃ [b = false]
not valid

Counter-example for ⇒/⇒̃:

[(n = 0)⇒ (n = 1)]
not valid

[n = 0] ⇒̃ [n = 1]
valid
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The CCSA Logic: Global Logic

The global logic is used as ambient logic.

Authentication for Hash-Lock:

∀̃(j : index). const(j) ⇒̃


(out@R2(j) = true)⇒
∃i : index. R1(j) < T(i) < R2(j)

∧ out@R1(j) = in@T(i)
∧ out@T(i) = in@R2(j)



Weak privacy for Hash-Lock:

∀̃(i : index). const(i) ⇒̃

frame@pred(T(i)),H(⟨in@T(i) , nT(i)⟩, k)
∼ frame@pred(T(i)), nfresh
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Formalizing Cryptographic Proofs

Our formal framework must model and capture:

P: protocol ✓

∈ C: adversarial model ✓

Φ: security property ✓

|=: cryptographic arguments

36



Cryptographic Arguments

High-level structure of a game-hopping proof:

G0 ∼ϵ1 · · · ∼ϵn Gn ⇒
G0 ∼ϵ1+···+ϵn Gn

where each step Gi ∼ϵi+1 Gi+1 is justified by:

a cryptographic reduction to some hardness assumption.
up-to-bad argument |Pr(G)− Pr(G′)| ≤ Pr(bad).

Pr(bad) ≤ ϵ through a probabilistic argument (e.g. collision probability).
. . .

bridging steps showing that G ∼0 G′.

=⇒ how to capture these arguments in the logic?
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The CCSA Logic: Reasoning Rules

High-level structure
Basic properties of indistinguishability:

Trans
u⃗ ∼ w⃗ w⃗ ∼ v⃗

u⃗ ∼ v⃗

Sym
v⃗ ∼ u⃗
u⃗ ∼ v⃗

Refl

u⃗ ∼ u⃗
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The CCSA Logic: Reasoning Rules

Bridging steps
Captured by our rewriting rule:

[s = t] u⃗{t} ∼ v⃗
u⃗{s} ∼ v⃗

Rewrite

and generic mathematical reasoning to prove [s = t].

E.g. functional properties can be stated as axioms:

[∀m, k. sdec(senc(m, k), k) = m]
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The CCSA Logic: Reasoning Rules

Up-to-bad arguments
Two games G,G′ such that:

Pr(G ∧ ¬bad) = Pr(G′ ∧ ¬bad).

Then |Pr(G)− Pr(G′)| ≤ Pr(bad).

In the CCSA logic:
[ϕbad] [¬ϕbad⇒ u⃗ = v⃗ ]

u⃗ ∼ v⃗
U2B

(similar to the rewrite rule for overwhelmingly equalities.)

Other direction [ · ] ⇒ (· ∼ ·) also exists:
[ψ] ϕ ∼ ψ

[ϕ]
Rewrite-Equiv

=⇒ enables back-and-forth between both predicates.
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The CCSA Logic: Reasoning Rules

Probabilistic reasoning: collision of random samplings
n a name of type message:

Indep
[n ̸= t]

if n does not occur in t

How to check that n does not occur in t?

no recursive functions: direct syntactic check.
Example: [n ̸= (n0)]

with recursive functions: check recursive function definitions.
Example: [n ̸= (frame@τ)]
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The CCSA Logic: Reasoning Rules

More complicated with indexed names, e.g. nR(j0) ̸= (frame@τ).
=⇒ use local formulas to ensure freshness.

Indices at which nR is read in (frame@τ):

{j | R1(j) ≤ τ or R2(j) ≤ τ} = {j | R1(j) ≤ τ}

Thus, we can take:

[ τ < R1(j0) ⇒ nR(j0) ̸= (frame@τ)]

out@τ =
match τ with
| init→ empty
| T(i)→ ⟨nT(i) , H(⟨in@τ , nT(i)⟩, k)⟩
| R1(j)→ nR(j)
| R2(j)→ π2(in@τ) = H(⟨ nR(j) , π1(in@τ)⟩, k)

in@τ =
match τ with
| init→ empty
| _→ ( frame@pred(τ) )

frame@τ =
match τ with
| init→ empty
| _→ frame@pred(τ) :: out@τ
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The CCSA Logic: Reasoning Rules
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The CCSA Logic: Reasoning Rules

Probabilistic reasoning: collision of random samplings
General case: local formula ϕn,i

fresh(u⃗).
Ensures that n(i) fresh in u⃗.

Indep

[ϕn,i
fresh(t, i) ⇒ (t ̸= n(i))]

Computing such freshness formulas is non-trivial. Indeed:

ϕn,i
fresh(f (t)) ⇐⇒ cell i of array n never read in f (t) computation

This is undecidable.
=⇒ we rely on approximations.
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
An obvious reduction rule:

v⃗0 ∼ v⃗1

f(v⃗0) ∼ f(v⃗1)
FA where f ∈ {f ∈ Flib} ∪ { ∈ Fadv}

Proof
Take a model M and A against the conclusion.

Take B(v⃗) := { x←Mf(v⃗); return A(x) }.

B is polynomial-time since Mf and A are.

Thus Adv(A) = Adv(B), negligible by hypothesis.

⇒ FA moves a deterministic computation in the top-level adv.
(or a computation using adversarial randomness)
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Simple reductions rules:

u⃗0, v⃗0 ∼ u⃗1, v⃗1

u⃗0, f(v⃗0) ∼ u⃗1, f(v⃗1)
FA where f ∈ {f ∈ Flib} ∪ { ∈ Fadv}

[ϕn,i
fresh(u⃗, i) ∧̃ ϕm,j

fresh(v⃗ , j)]
u⃗ ∼ v⃗

u⃗, n(i) ∼ v⃗ , m(j)
Fresh

u⃗0, t0 ∼ u⃗1, t1

u⃗0, t0 , t0 ∼ u⃗1, t1 , t1
Dup

⇒ mostly book-keeping rules.
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Rules capturing reduction to hardness assumptions.

CPA

[ ϕekey ] [ ϕrand ]

[len(m0) = len(m1)]
u⃗, enc(m0, k, r)

∼ u⃗, enc(m1, k, r)

ϕekey : k only used in encryption key
position enc(·, k, ·) with fresh rands.
ϕrand : r fresh name.
u⃗,m0,m1 ptime-computable.

PRF

[ ϕhkey ] [ ϕhash ]

u⃗,H(t, k) ∼ u⃗, nfresh

ϕhkey : k only used in hash key
position H(·, k).
ϕhash : t never hashed by H(·, k).
u⃗, t ptime-computable.

As for Indep, we have side-conditions.
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
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The CCSA Logic: Reasoning Rules

High-level structure
The induction rule:

u⃗(0) ∼ v⃗(0)
∀̃(N : int). u⃗(N) ∼ v⃗(N) ⇒̃ u⃗(N + 1) ∼ v⃗(N + 1)

∀̃(N : int). u⃗(N) ∼ v⃗(N)

Only for a constant number of steps N.
Same reason as for hybrid arguments:

u⃗(0) ∼ · · · ∼ u⃗(N) =⇒ u⃗(0) ∼f1(η) · · · ∼fN(η) u⃗(N) ((fi)i negligible)
=⇒ u⃗(0) ∼∑

i≤N fi (η) u⃗(N)

∑
i≤N fi(η) may not be negligible if N polynomial in η.
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The CCSA Logic: Reasoning Rules

High-level structure
The induction rule:

u⃗(0) ∼ v⃗(0)
∀̃(N : int).

(
const(N) ∧̃ u⃗(N) ∼ v⃗(N)

)
⇒̃ u⃗(N + 1) ∼ v⃗(N + 1)

∀̃(N : int). const(N) ⇒̃ u⃗(N) ∼ v⃗(N)

Only for a constant number of steps N.
Same reason as for hybrid arguments:

u⃗(0) ∼ · · · ∼ u⃗(N) =⇒ u⃗(0) ∼f1(η) · · · ∼fN(η) u⃗(N) ((fi)i negligible)
=⇒ u⃗(0) ∼∑

i≤N fi (η) u⃗(N)

∑
i≤N fi(η) may not be negligible if N polynomial in η.

47



Formalizing Cryptographic Proofs

Our formal framework must model and capture:

P: protocol ✓

∈ C: adversarial model ✓

Φ: security property ✓

|=: cryptographic arguments ✓

We are done with our framework!
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The CCSA Logic: Summary

Logic with a probabilistic interpretation of terms:
protocol execution ⇒ terms of the logic.

Security predicates [ϕ] and u⃗0 ∼ u⃗1.
Abstract predicates: no probabilities and security parameter.
Can express temporal properties as formulas [ϕ]:
direct quantification on the execution trace (no encoding).

Reasoning rules to capture crypto. arguments:

generic math. reasoning
game-hopping steps

probabilistic arguments
crypto. reductions

The application conditions for crypto. and probabilistic rules are the
difficult part.
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Limitations

Two limitations of this CCSA logic:

guarantees provided: parametric vs polynomial security.
modularity: ad hoc rules for a fixed number of crypto. assumptions.
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A Concrete Security CCSA Logic
with D. Baelde, C. Fontaine, G. Scerri, T. Vignon



Limitation: Polynomial vs Parametric Security

We reason over a fixed trace T given by JtimestampKM.

This only yields parametric security. Informally, M |= Φ implies:

∀T . ∀A. Pr(Φ holds in T against A) is overwhelming in η

We expect the stronger polynomial security:

∀A. Pr(Φ holds in T chosen by A) is overwhelming in η
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Limitation: Polynomial vs Parametric Security

How to obtain polynomial security using CCSA [Bae+24, to appear]:

Change the execution model.
E.g. frame@N where (N : int) instead of frame@τ.

Difficulty: previous induction rule requires a constant number of
steps.
because

∑
i≤P(η) fi(η) is not always negligible,

even if fi(η) negligible ∀i and P(η) polynomial.

Solution: move to a concrete security setting.
concrete security predicates [ϕ]ϵ and u⃗0 ∼ϵ u⃗1.
reasoning rules with explicit bounds.
support general induction:
user must prove a uniform bound on all fi ’s.

For now, theoretical work (implementation in Squirrel is WIP).
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From Hardness Assumptions to
Logical Rules
with D. Baelde, J. Sauvage



Hardness Assumption: Example

A cryptographic hash function H(m , key).

message key

Unforgeability: cannot produce valid hashes without knowing key.

Init: key $←;

Ohash(m0) :=
L ← m0 :: L
return H(m0, key)

Ochallenge(m, s) :=

return

m ̸∈ L and s = H(m, key) (left game)

false (right game)

· · ·
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Hardness Assumption: Example

Example (
H(0, k),H(1, k)

)
= H(m, k) ⇒ m = 0 ∨ m = 1

Proof by reduction
Build an adversary against Unforgeability (UF):

compute h0 ← Ohash(0) and h1 ← Ohash(1);
black-box call: s ← (h0, h1);
compute m;
return Ochallenge(m, s).

AdvUF( ) = Adv( ) ∈ PPTM implies ∈ PPTM

Remark: rule valid only if m computable by the adversary.
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From Hardness Assumptions to Logical Rules

Until recently:

Squirrel supported a limited set of hardness assumptions
(symmetric/asymmetric encryption, signature, hash, DH, . . . )

Built-in tactics for each such assumptions:

hardness assumption (imperative, stateful programs)

⇐
reasoning rules (pure, logic)

Adding rules for new hardness assumptions is:
tedious, error-prone, and not in user-space (Ocaml code).
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From Hardness Assumptions to Logical Rules

Systematic cryptographic reductions: allows to translate hardness
assumptions into cryptographic rules.

Inputs:
an (imperative, stateful) hardness assumption G0 ≈ G1 .
an indistinguishability property, e.g. u0 ∼ u1 to prove, i.e.:

∀ .
∣∣∣Pr( (J u0 K))− Pr( (J u1 K))

∣∣∣ ≤ negl(η)

Goal: synthesize S poly-time such that


S G0 () = J u0 K

and S G1 () = J u1 K

Thus, for any :

Advu0∼u1( ) = AdvG0≈G1( ◦ S) ≤ negl(η)
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From Hardness Assumptions to Logical Rules

General framework to add new hardness assumptions.

Proof system to establish the existence of S.

Fully automated implementation (heuristic based ⇒ incomplete)
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Bi-Deduction

Take an hardness assumption G0 ≈ G1.

Bi-Terms
The bi-terms u# = #(u0; u1) represent a pair of left/right scenarios.
Factorize common behavior, e.g. f (v ,#(u0; u1)) = #(f (v , u0); f (v , u1))

Bi-deduction
New predicate u# ▷G0≈G1 v# which means:

∃S ∈ PPTM.

 SG0( Ju0K ) = J v0 K

and SG1( Ju1K ) = J v1 K

Inference Rule
∅▷G0≈G1 #(u0; u1)

u0 ∼ u1
Bi-Deduce
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Bi-Deduction: Rules

A few simple bi-deduction rules:

Transitivity

u⃗# ▷ v⃗# u⃗#, v⃗# ▷ w⃗#

u⃗# ▷ v⃗#, w⃗#

S(u⃗) := v⃗ ← S1(u⃗)
w⃗ ← S2(u⃗, v⃗)
return (v⃗ , w⃗)

Function application (where f ∈ Flib ∪ Fadv)

u⃗# ▷ v⃗#

u⃗# ▷ f(v⃗#)

S(u⃗) := v⃗ ← S1(u⃗)
x ←Mf(v⃗)
return x
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Bi-Deduction: Rules

Bi-deduction rules handling randomness:

Oracle
u⃗# ▷ v#

u⃗# ▷ H(v#, k)

S(u⃗) := v⃗ ← S1(u⃗)
x $← Ohash(v⃗)
return x

Name
u⃗# ▷ v#

u⃗# ▷ n(v#)

S(u⃗) := v ← S1(u⃗)
x $←Mnf(v , ρh )
return x

Problem: the Name rule allow S to read k!
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Bi-Deduction: Constraints

Problem: S should not access the game secret keys.

Solution: track randomness usage using logical constraints .
E.g. ensures that S does not directly use key.

Annotated bi-deduction predicate:

Oracle
⊢ u⃗# ▷ v#

(k : Tkey
G ) ⊢ u⃗# ▷ H(v#, k)

Name

(n : TS) ⊢ u⃗# ▷ n
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Bi-Deduction: Constraints

Eventually, check that the constraints are valid :

C ⊢ ∅▷ #(u0; u1) |= [Valid(C)]
u0 ∼ u1

Bi-Deduce

Example:
̸|= [Valid((k : Tkey

G ), (k : TS))]

Some additional difficulties:

We need to handle indexed names and conditions :

(n, i , ϕ : T)

Some weird constraints must be avoided, e.g.:

(n, n = 0 ,TS) ∧ (n, n ̸= 0 ,TG)
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Bi-Deduction: Statefulness

We also need to account for G’s statefulness.

Init: key $←;

Ohash(m0) :=
L ← m0 :: L
return H(m0, key)

Ochallenge(m, s) :=

return

m ̸∈ L and s = H(m, key) (left game)

false (right game)

· · ·
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Bi-Deduction: Statefulness

We track the state of G:

Add Hoare pre- and post- conditions:

( ϕ , ψ ) ⊢ u# ▷ v#

Semantics:

∃S ∈ PPTM. ∀µ |= ϕ . LSMGi
µ (ui) = (µ′, JviK) (∀i ∈ {0, 1})

where µ′ |= ψ

Modified proof-system:

( ϕ , χ ) ⊢ u⃗# ▷ v⃗# ( χ , ψ ) ⊢ u⃗#, v⃗# ▷ w⃗#

( ϕ , ψ ) ⊢ u⃗# ▷ v⃗#, w⃗#
Trans
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Conclusion: From Hardness Assumptions to Logical Rules

Framework to add new hardness assumptions using bi-deduction.

Proof system for bi-deduction.
Correct randomness usage using logical constraints.
E.g. ensures that S does not directly use k.
Tracking the state of G: Hoare pre- and post-conditions.
E.g. track the set of hashed messages L.
Soundness: existence of a suitable probabilistic coupling.

Implementation: fully automated (heuristic based ⇒ incomplete).
Approximate G state + randomness constraints (discharged to Squirrel).
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Conclusion



Conclusion

The CCSA logic behind Squirrel.
Modeling protocols as pure terms.
Reasoning rules to capture crypto. arguments.

Concrete security variant of the logic.

Framework to add new hardness assumptions
using bi-deduction.

Project web-page:
https://squirrel-prover.github.io/

Thank you for your attention
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Reduction to hardness assumptions using specific rules.
E.g. for PRF:

PRF
[ ϕk

hkey(u⃗, t) ]

u⃗,H(t, k) ∼ u⃗, if ϕk,t
hash(u⃗, t) then nfresh

else H(t, k)

ϕk
hkey(w⃗) : k only used in hash key position H(·, k) in w⃗ .

ϕk,t
hash(w⃗) : t was never hashed by H(·, k) in w⃗ .(

ϕk,t
hash(w⃗) ∧m hashed by k in w⃗

)
⇒ m ̸= t



The CCSA Logic: Reasoning Rules

Example: messages hashed by k in (frame@τ0):{
⟨in@T(i) , nT(i)⟩ | T(i) ≤ τ0

}
∪

{
⟨nR(j) , π1(in@R2(j))⟩ | R2(j) ≤ τ0

}

Thus, we can take:

ϕk,t
hash

(
(frame@τ0)

)def= ∀i. T(i) ≤ τ0 ⇒ t ̸= ⟨in@T(i) , nT(i)⟩

∧ ∀j. R2(j) ≤ τ0 ⇒ t ̸= ⟨nR(j) , π1(in@R2(j))⟩

out@τ =
match τ with
| init→ empty
| T(i)→ ⟨nT(i) , H( ⟨in@τ , nT(i)⟩ , k)⟩
| R1(j)→ nR(j)
| R2(j)→ π2(in@τ) = H( ⟨nR(j) , π1(in@τ)⟩ , k)

in@τ =
match τ with
| init→ empty
| _→ ( frame@pred(τ) )

frame@τ =
match τ with
| init→ empty
| _→ frame@pred(τ) :: out@τ



The CCSA Logic: Reasoning Rules

Example: messages hashed by k in (frame@τ0):{
⟨in@T(i) , nT(i)⟩ | T(i) ≤ τ0

}
∪

{
⟨nR(j) , π1(in@R2(j))⟩ | R2(j) ≤ τ0

}
Thus, we can take:

ϕk,t
hash

(
(frame@τ0)

)def= ∀i. T(i) ≤ τ0 ⇒ t ̸= ⟨in@T(i) , nT(i)⟩

∧ ∀j. R2(j) ≤ τ0 ⇒ t ̸= ⟨nR(j) , π1(in@R2(j))⟩

out@τ =
match τ with
| init→ empty
| T(i)→ ⟨nT(i) , H( ⟨in@τ , nT(i)⟩ , k)⟩
| R1(j)→ nR(j)
| R2(j)→ π2(in@τ) = H( ⟨nR(j) , π1(in@τ)⟩ , k)

in@τ =
match τ with
| init→ empty
| _→ ( frame@pred(τ) )

frame@τ =
match τ with
| init→ empty
| _→ frame@pred(τ) :: out@τ



The CCSA Logic: Reasoning Rules

Example: weak privacy for Hash-Lock.

frame@pred(T(i0)),H(t, k) ∼ frame@pred(T(i0)), nfresh

where t def= ⟨in@T(i0) , nT(i0) ⟩.

Since in@T(i0) = (frame@T(i0)), same scenario as previous slide!

Thus, using PRF+Rewrite: ∀i. T(i) < T(i0) ⇒ t ̸= ⟨in@T(i) , nT(i) ⟩

∧ ∀j. R2(j) < T(i0)⇒ t ̸= ⟨nR(j) , π1(in@R2(j)) ⟩


frame@pred(T(i0)),H(t, k) ∼ frame@pred(T(i0)), nfresh

Concludes using generic maths. reasoning + twice Indep to show:

T(i) < T(i0)⇒ nT(i0) ̸= nT(i)

R2(j) < T(i0)⇒ nT(i0) ̸= π1(in@R2(j))
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