Mechanizing and Automating Cryptographic Arguments ProTeCS: Proofs and Proof Techniques for Cryptographic Security

Adrien Koutsos Inria Paris 25 May 2024, Zurich

Context

Security Protocols

- **Distributed programs** which aim at providing some **security TT properties**.
- Uses **cryptographic primitives**: e.g. encryption.

Context: Attacker Model

Abstract Attacker Model

- **Network capabilities:** worst-case scenario: eavesdrop, block and forge messages.
- **Computational capabilities:** adversary is a Probabilistic Polynomial-time Turing Machine (PPTM).

Attacks against security protocols can be very **damageable**, e.g. theft or privacy breach.

Context: Attacker Model

Abstract Attacker Model

- **Network capabilities:** worst-case scenario: eavesdrop, block and forge messages.
- **Computational capabilities:** adversary is a Probabilistic Polynomial-time Turing Machine (PPTM).

Attacks against security protocols can be very **damageable**, e.g. theft or privacy breach.

We need strong **security guarantees**. ⇒ can be provided by **cryptographic proofs**. But security proofs are often **complicated** and **error-prone**:

- OAEP padding scheme: claimed secure in [\[BR94\]](#page-118-0), **proof flawed** [\[Sho02\]](#page-119-0).
- **Fiat-Shamir with aborts:**

several proofs [\[Lyu12;](#page-119-1) [KLS18\]](#page-119-2) turned out to be **flawed** [\[Bar+23\]](#page-118-1).

several **logical attacks** on TLS, e.g.: TripleHandshake [\[Bha+14\]](#page-118-2), LogJam [\[Adr+15\]](#page-118-3). But security proofs are often **complicated** and **error-prone**:

- OAEP padding scheme: claimed secure in [\[BR94\]](#page-118-0), **proof flawed** [\[Sho02\]](#page-119-0).
- **Fiat-Shamir with aborts:** several proofs [\[Lyu12;](#page-119-1) [KLS18\]](#page-119-2) turned out to be **flawed** [\[Bar+23\]](#page-118-1).
- several **logical attacks** on TLS, e.g.: TripleHandshake [\[Bha+14\]](#page-118-2), LogJam [\[Adr+15\]](#page-118-3).

These are **critical** cryptographic designs under a lot of **public scrutiny**. ⇒ for such cryptographic designs, **manual proofs are insufficient**.

Verification for Cryptography Formal mathematical proof of security protocols:

- **Machine-checked proofs** yield a high degree of confidence.
	- **general-purpose** tools (e.g. CoQ and LEAN).
	- **n** in security protocol analysis, mostly **dedicated** tools.
		- E.g. CryptoVerif, EasyCrypt, Squirrel.

Goal

Design **formal frameworks** allowing for **mechanized verification** of **cryptographic arguments**.

- At the intersection of **cryptography** and **verification**.
- **Particular verification challenges:**
	- small or medium-sized programs
	- complex properties
	- probabilistic programs $+$ arbitrary (resource-bounded) adversary

[Mechanizing Cryptographic Proofs](#page-8-0)

Verification

$$
\forall \mathbf{F} \in \mathcal{C}. \ (\mathbf{F} \parallel \mathcal{P}) \models \Phi
$$

Requires a **formal framework** and **a tool** that can express:

- \mathcal{P} : the **protocol** under study.
- $\bullet \subset \mathcal{C}$: the **adversarial model**, i.e. the class of adversaries.
- Φ: the **security property**.
- \blacksquare \models : the **cryptographic arguments**.

Tool for the verification of **security protocols**:

- **Input language**: applied *π*-calculus.
- \blacksquare Implements a **CCSA** probabilistic logic:
	- **Reachability** properties: ϕ_G
	- **Indistinguishability** properties: $\vec{u}_G \sim \vec{u}_{G'}$
	- In the **asymptotic security** setting. E.g.

$$
\vec{u}_{\mathcal{G}} \sim \vec{u}_{\mathcal{G}'}
$$
\n
$$
\forall \mathbf{d} \in \mathcal{C}. |\Pr(\mathcal{G}(\mathbf{d}^*)) - \Pr(\mathcal{G}'(\mathbf{d}^*))| \le \epsilon_{\text{negl}}
$$

Reasoning rules valid w.r.t. any computational attacker ...

Proof assistant:

- Users prove goals using sequences of tactics.
	- Generic maths. tactics, e.g. apply, rewrite.
	- **Crypto.** tactics, e.g. cpa.
	- **Probabilistic** tactics, e.g. fresh.
	- **Structural tactics, e.g. trans.**

Development done using a proof-general mode. As in Coq, EASYCRYPT ...

Open-source tool

Project web-page:

```
https://squirrel-prover.github.io/
```
Documentation web-page:

```
https://squirrel-prover.github.io/documentation/
```
[Mechanizing Cryptographic Proofs](#page-15-0) [The CCSA Framework](#page-15-0)

Our **formal framework** must model and capture:

- P : **protocol**
- ∈ C: **adversarial model**
- Φ: **security property**
- |=: **cryptographic arguments**

Limitations: what is not in this talk

∈ C: **adversarial model**

- \blacksquare in this talk: only **classical** adversaries, i.e. $C = \text{PPTM}$.
- **quantum** adversaries (i.e. $C = \text{PQTM}$) are work-in-progress.

Φ: **security property**

- **in this talk: asymptotic** security.
- there exists a **concrete** security version of the logic [CSF'24] (on paper, not implemented)

\blacksquare \models : cryptographic arguments

- standard **game-based** proofs.
- other techniques may be out-of-scope: UC, rewinding, GGM, *. . .*
- mechanizing crypto. proofs takes **time**: your favorite, complicated, crypto. designs may be difficult to formalize.

$\forall \mathbf{r} \in \mathcal{C}. \quad (\mathbf{r} \mid \mathcal{P}) \models \Phi$

- **Protocol** P: a **concrete** concurrent program. In SQUIRREL, described in the applied π -calculus.
- **Adversarial model** $\mathbf{F} \in \mathcal{C}$ **: an abstract** (i.e. unknown) PPTM program.
- **Full system** = interaction $\left(\frac{\bullet}{\bullet}\right)$ | \mathcal{P}).

A simple example

- **■** Two party **authentication protocol**: reader R \Longleftrightarrow RFID tag T.
- Keyed-hash function H with a shared key k .

The Hash-Lock Protocol

In the **applied** *π***-calculus:**

```
= - -T(i): input(in).
                            ν nT,i.
                            let h = H(\langle in, n_{\text{T},i} \rangle, k) in
                            let out = \langle n_{\text{T,i}} \rangle, h in
Hash-Lock
                            output(out)
              R(j): \nu n_{R,i}.
                            output(n_{R,i}).
                            input(in).
                             \textsf{output}(\pi_2(\textsf{in}) = \textsf{H}(\langle \textsf{n}_{\mathsf{R}, \textsf{j}} \, , \, \pi_1(\textsf{in}) \rangle, \textsf{k}))
```


How do we model the interaction $\left(\frac{\cdot}{\cdot}\right)$ | \mathcal{P}) in a **pure language**? \implies **remove all stateful effects:**

- network I/O .
- **random samplings.**

Modeling: Network I/O

I/O effects

Network input \Rightarrow function call to \bullet . \blacksquare

```
For a single I/O block T(i):
```


Modeling: Network I/O

I/O effects

- Network input \Rightarrow function call to \bullet .
- Network output \Rightarrow add to \bullet 's knowledge.

For a **single I/O block** T(i):

Probabilistic effects

Move to an **early-sampling semantics** with indexed **names**:

n name n_T is an array of **i.i.d. random samplings**.

random sampling $\nu n_{\text{T},i} \implies$ array access $n_{\text{T}}(i)$.

I/O block T(i):

Single I/O blocks:

Many I/O blocks, add the **time**:

- index: type of **session numbers**.
- timestamp: type of **time-points** in an execution trace.

 τ ::= init $|T(i)| R_1(i) | R_2(i)$ (where i : index)

Modeling: Execution Trace

Execution trace: timestamp + order *<*.

Example:

Protocol execution encoded by **mutually recursive functions**:

- in@*τ*: input at time *τ*
- out@*τ*: output at time *τ*
- **Figure 1 frame@***τ*: χ^* 's knowledge at time τ , i.e. all out@ τ_0 for $\tau_0 \leq \tau$.

Modeling: Execution Trace

 $in \mathcal{O}_T$ = match τ with $|$ init \rightarrow empty $|_\to \mathcal{F}(\text{frame@pred}(\tau))|$

frame@*τ* = match *τ* with $|$ init \rightarrow empty | _ → frame@pred(*τ*) :: out@*τ*

Modeling: Execution Trace

 $\sin \theta \tau =$ match τ with $\mathsf{init} \rightarrow \mathsf{empty}$ $|_\to \mathcal{E}$ (frame $\mathbb{Q}_\text{pred}(\tau)$)

frame@*τ* = match *τ* with $\mathsf{init} \rightarrow \mathsf{empty}$ | _ → frame@pred(*τ*) :: out@*τ*

Core Syntax

A higher-order *λ*-calculus with library, **adversarial** and recursive functions; names (for random samplings); and variables.

 $t := s | (t t) | \lambda(x : \tau)$.

 $s \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{g} \in \mathcal{F}_{\text{adv}}\} \cup \{m \in \mathcal{F}_{\text{rec}}\} \cup \{n \in \mathcal{N}\} \cup \{x \in \mathcal{X}\}\$

Core Syntax

A higher-order *λ*-calculus with library, **adversarial** and recursive functions; names (for random samplings); and variables.

 $t := s | (t t) | \lambda(x : \tau)$.

 $s \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{a}^* \in \mathcal{F}_{\text{adv}}\} \cup \{m \in \mathcal{F}_{\text{rec}}\} \cup \{n \in \mathcal{N}\} \cup \{x \in \mathcal{X}\}\$

Types

```
(t : \tau) is the type \tau of term t:
```
 \blacksquare a base type, e.g.

bool : {true*,* false} message : {0*,* 1} ∗ int : N timestamp : time-points index : session numbers **a** an arrow type $\tau_0 \to \tau_1$, tuple type $\tau_0 * \tau_1$, ...

Core Syntax

A higher-order *λ*-calculus with library, **adversarial** and recursive functions; names (for random samplings); and variables.

- $t := s | (t t) | \lambda(x : \tau) \cdot t | (t, \ldots, t) | \forall (x : \tau) \cdot t |$ match t with ...
- $s \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{a}^* \in \mathcal{F}_{\text{adv}}\} \cup \{m \in \mathcal{F}_{\text{rec}}\} \cup \{n \in \mathcal{N}\} \cup \{x \in \mathcal{X}\}\$

Types

 $(t : \tau)$ is the type τ of term t: \blacksquare a base type, e.g. bool : {true, false} message : $\{0,1\}^*$

timestamp : time-points index : session numbers

a an arrow type $\tau_0 \to \tau_1$, tuple type $\tau_0 * \tau_1$, ...

int : N

The **semantics** $\llbracket t \rrbracket$ uses **discrete random variables**, not **distributions**!

Shared source of randomness : **set of random tapes** T .

```
\begin{bmatrix} t \end{bmatrix} : \begin{bmatrix} \mathbb{T} & \rightarrow & \mathbb{I} \end{bmatrix}interpretation of term (t : τ)
random tapes \leftarrow interpretation domain, e.g.
                                                          {true, false} for bool
                                                           {0,1}^* for message
                                                          N for int
```
Allow **probabilistic dependencies** between terms.

Examples If $(n, n_0 : message)$ then: $\begin{bmatrix} n \end{bmatrix} \approx$ sample w in $\{0, 1\}^{\eta}$ $\llbracket (\mathsf{n},\mathsf{n}_0) \rrbracket \approx \text{sample w in } \{0,1\}^{\eta}$ sample w ′ in {0*,* 1} *η* **independently** build (w*,*w ′) $\llbracket (\mathsf{n},\mathsf{n}) \rrbracket \approx \text{sample } w \text{ in } \{0,1\}^{\eta}$ build (w, w)

 $\llbracket (n, n) \rrbracket = (\llbracket n \rrbracket, \llbracket n \rrbracket) = (w, w)$

Semantics

Standard semantics $\llbracket t \rrbracket^{\eta,\rho} \in \llbracket \tau \rrbracket_{\mathbb{M}}$ parameterized by:

- the model M.
- \blacksquare the **security** parameter η .

a pair $\rho = (\, \rho_{h} \, , \, \rho_{a} \,)$ of random tapes $\rho \in \mathbb{T}^{\eta}_{\mathbb{M}}$: *ρ*^h for honest randomness , *ρ*^a for the adversary . (tapes *ρ*h*, ρ*^a must be finite.)

Semantics

Standard semantics $\llbracket t \rrbracket^{\eta,\rho} \in \llbracket \tau \rrbracket_{\mathbb{M}}$ parameterized by:

- the model M.
- \blacksquare the **security** parameter η .

a pair $\rho = (\, \rho_{h} \, , \, \rho_{a} \,)$ of random tapes $\rho \in \mathbb{T}^{\eta}_{\mathbb{M}}$: *ρ*^h for honest randomness , *ρ*^a for the adversary . (tapes *ρ*h*, ρ*^a must be finite.)

$$
\begin{aligned}\n\llbracket f(t) \rrbracket_{\mathbb{M}}^{\eta,\rho} &\stackrel{\text{def}}{=} \mathbb{M}_{\text{f}} (\eta, \quad \llbracket t \rrbracket_{\mathbb{M}}^{\eta,\rho}) \\
\llbracket \mathbf{n}(t) \rrbracket_{\mathbb{M}}^{\eta,\rho} &\stackrel{\text{def}}{=} \mathbb{M}_{\mathsf{n}} (\eta, \rho_h, \llbracket t \rrbracket_{\mathbb{M}}^{\eta,\rho}) \\
\llbracket \boldsymbol{\mathcal{E}}(t) \rrbracket_{\mathbb{M}}^{\eta,\rho} &\stackrel{\text{def}}{=} \mathbb{M}_{\boldsymbol{\mathcal{E}}} (\eta, \rho_a, \llbracket t \rrbracket_{\mathbb{M}}^{\eta,\rho})\n\end{aligned}
$$

Machines M_f, M_f, M _. are deterministic ptime (w.r.t. η + size of the args.)
The CCSA Logic: Terms

Names

■ Take $n : index \rightarrow message$.

n(i): uniform random samplings over bit-strings of length *η*

The CCSA Logic: Terms

Names

- Take $n : index \rightarrow message$. n(i): uniform random samplings over bit-strings of length *η*
- **■** (\neq name symbols or \neq indices) \Longrightarrow **independent** samplings. Thus: $(\eta,\rho) = \frac{1}{2\pi}$

$$
\Pr_{\rho}([\![n_0(i_0)]\!]^{\eta,\rho} = [\![n_1(i_1)]\!]^{\eta,\rho}) = \frac{1}{2^{\eta}}
$$

if $n_0 \neq n_1$ or if $([\![i_0 \neq i_1]\!]^{\eta,\rho}$ for all $\eta, \rho)$.

The CCSA Logic: Terms

Names

■ Take $n : index \rightarrow message$.

n(i): uniform random samplings over bit-strings of length *η*

■ (\neq name symbols or \neq indices) \Longrightarrow **independent** samplings. Thus:

$$
\Pr_{\rho}([\![n_0(i_0)]\!]^{\eta,\rho} = [\![n_1(i_1)]\!]^{\eta,\rho}) = \frac{1}{2^{\eta}}
$$

if $n_0 \neq n_1$ or if $([\![i_0 \neq i_1]\!]^{\eta,\rho}$ for all $\eta, \rho)$.

Going further, if m does not occur in t:

$$
\Pr_{\rho}([\mathbb{m} = t]^{\eta,\rho}) = \frac{1}{2^{\eta}}
$$

For now, " m does not occur in t " means t without recursive functions + $m \notin st(t)$.

- The logic has a **standard semantics**,
- \blacksquare but a **particular** interpretation domain.

$$
\llbracket t \rrbracket_{\mathbb{M}}^{\eta,\rho} \in \llbracket \tau \rrbracket_{\mathbb{M}} \qquad \Longrightarrow \qquad \llbracket t \rrbracket_{\mathbb{M}} \in \mathbb{R} \mathbb{V}_{\mathbb{M}}(\tau)
$$

 $\mathbb{R}V_{\mathbb{M}}(\tau)$: *η*-families of random-variables over $\llbracket \tau \rrbracket_{\mathbb{M}}$.

$$
\mathbb{RV}_\mathbb{M}(\tau)=\left(\begin{array}{ccc}\mathbb{T}_\mathbb{M}^\eta&\to&\llbracket\tau\rrbracket_\mathbb{M}\end{array}\right)_{\eta\in\mathbb{N}}
$$

Our **formal framework** must model and capture:

- P: **protocol** ✓
- ∈ C: **adversarial model** ✓
- Φ: **security property**
- |=: **cryptographic arguments**

We consider two main **security predicates**:

 \bullet [ϕ]: the term ϕ of type bool is **overwhelmingly true**:

 $\mathbb{M} \models [\phi]$ iff. Pr_ρ ($[\![\phi]\!]_{\mathbb{M}}^{\eta,\rho}$) negligible in η .

We consider two main **security predicates**:

[*ϕ*]: the term *ϕ* of type bool is **overwhelmingly true**:

 $\mathbb{M} \models [\phi]$ iff. Pr_ρ ($[\![\phi]\!]_{\mathbb{M}}^{\eta,\rho}$) negligible in η .

 $\vec{u}_0 \sim \vec{u}_1$: \vec{u}_0 and \vec{u}_1 are **indistinguishable**:

$$
\mathbb{M} \models \vec{u}_0 \sim \vec{u}_1 \text{ iff. } \forall_i \mathbf{\hat{s}} \in \mathcal{C}. \left| \begin{array}{c} \text{Pr}_{\rho} \left(\mathbf{\hat{s}}^*(\eta, [\![\vec{u}_0]\!]_{\mathbb{M}}^{\eta,\rho}, \rho_a) \right) \\ - \text{Pr}_{\rho} \left(\mathbf{\hat{s}}^*(\eta, [\![\vec{u}_1]\!]_{\mathbb{M}}^{\eta,\rho}, \rho_a) \right) \end{array} \right| \text{ negligible in } \eta
$$

We consider two main **security predicates**:

[*ϕ*]: the term *ϕ* of type bool is **overwhelmingly true**:

 $\mathbb{M} \models [\phi]$ iff. Pr_ρ ($[\![\phi]\!]_{\mathbb{M}}^{\eta,\rho}$) negligible in η .

 $\vec{u}_0 \sim \vec{u}_1$: \vec{u}_0 and \vec{u}_1 are **indistinguishable**:

$$
\mathbb{M} \models \vec{u}_0 \sim \vec{u}_1 \text{ iff. } \forall_i \mathbf{\hat{s}} \in \mathcal{C}. \left| \begin{array}{c} \text{Pr}_{\rho} \left(\mathbf{\hat{s}}^*(\eta, [\![\vec{u}_0]\!]_{\mathbb{M}}^{\eta,\rho}, \rho_a) \right) \\ - \text{Pr}_{\rho} \left(\mathbf{\hat{s}}^*(\eta, [\![\vec{u}_1]\!]_{\mathbb{M}}^{\eta,\rho}, \rho_a) \right) \end{array} \right| \text{ negligible in } \eta
$$

 $\int \vec{u}_0 = t_1, \ldots, t_n$ $\vec{u}_0 = t_1, \ldots, t_n$ and t_i and s_i have the same type $\forall i$ $\left(\vec{u}_1 = s_1, \ldots, s_n\right)$ **Authentication** for Hash-Lock:

```
\sqrt{\text{(out@R}_2(j))} = \text{true} \Rightarrow\overline{1}\overline{1}\overline{1}\overline{1}\overline{1}\overline{1}\exists i : \text{index.} R_1(j) < T(i) < R_2(j)\wedge out QR_1(j) = \text{in} \mathbb{Q}T(i)\wedge out\mathsf{QT}(i) = in\mathsf{QR}_2(j)1
                                                                                                          \overline{1}\mathbf{I}\mathbf{I}\mathbf{I}\overline{\phantom{a}}
```
Weak **privacy** for Hash-Lock:

 $frame@pred(T(i)), H(\langle in@T(i), n_T(i) \rangle, k)$ ∼ frame@pred(T(i))*,* nfresh

SQUIRREL's has **two kinds of formulas**:

■ Local formulas are terms of type bool (e.g. $\phi_0 \Rightarrow \exists x. (\phi_1 \land \phi_2)$).

$$
\phi ::= \phi \land \phi \mid \neg \phi \mid \forall x. \phi \mid t = t \mid \dots
$$

SQUIRREL's has **two kinds of formulas**:

■ Local formulas are terms of type bool (e.g. $\phi_0 \Rightarrow \exists x.(\phi_1 \land \phi_2)$).

$$
\phi ::= \phi \land \phi \mid \neg \phi \mid \forall x. \phi \mid t = t \mid \dots
$$

Global formulas: FO([·]*,* · ∼ ·*, . . .*).

$$
F ::= \qquad [\phi] | \vec{t} \sim \vec{t}
$$

SQUIRREL's has **two kinds of formulas**:

■ Local formulas are terms of type bool (e.g. $\phi_0 \Rightarrow \exists x.(\phi_1 \land \phi_2)$).

$$
\phi ::= \phi \land \phi \mid \neg \phi \mid \forall x. \phi \mid t = t \mid \dots
$$

Global formulas: FO([·]*,* · ∼ ·*, . . .*).

$$
F ::= F \,\tilde{\wedge}\, F \mid \tilde{\neg}\, F \mid \tilde{\forall} x. \, F \mid [\phi] \mid \vec{t} \sim \vec{t} \mid \text{const}(t) \mid \dots
$$

Global formulas are Squirrel's **ambient logic**.

Semantics of the global logic

Standard FO semantics but particular interpretation domain $\mathbb{RV}_M(\tau)$:

 $\tilde{\forall}(x : \tau)$ means "for all *η*-family of random variable x over $\llbracket \tau \rrbracket$ "

$$
\mathbb{M} \models \tilde{\forall} (x : \tau). \ F \qquad \text{iff.} \qquad \mathbb{M} \{x \mapsto X\} \models F \ \text{for all} \ X \in \mathbb{R} \mathbb{V}_{\mathbb{M}}(\tau)
$$

Examples of valid global formulas

[(*ϕ* = true) ∨ (*ϕ* = false)]

Examples of valid global formulas

- **■** $[(\phi = true) \lor (\phi = false)]$
- (*ϕ* ∼ true) ⇔˜ [*ϕ*]

Examples of valid global formulas

- $[(\phi = true) \vee (\phi = false)]$
- (*ϕ* ∼ true) ⇔˜ [*ϕ*]
- $([s = t] \ \tilde{\land} \ u\{s\} \sim v) \Rightarrow (u\{t\} \sim v)$

Examples of valid global formulas

- **■** $[(\phi = true) \lor (\phi = false)]$
- (*ϕ* ∼ true) ⇔˜ [*ϕ*]
- $([s = t] \ \tilde{\land} \ u\{s\} \sim v) \Rightarrow (u\{t\} \sim v)$
- $[u = v] \stackrel{\sim}{\Rightarrow} u \sim v$ but not the converse: e.g. $n_0 \sim n_1$ but $[n_0 \neq n_1]$

Examples of valid global formulas

$$
\blacksquare~[(\phi = \mathsf{true}) \vee (\phi = \mathsf{false})]
$$

(*ϕ* ∼ true) ⇔˜ [*ϕ*]

$$
\blacksquare ([s=t] \ \tilde{\land} \ u\{s\} \sim v) \ \stackrel{\sim}{\Rightarrow} \ (u\{t\} \sim v)
$$

■ $[u = v] \stackrel{\sim}{\Rightarrow} u \sim v$ but not the converse: e.g. $n_0 \sim n_1$ but $[n_0 \neq n_1]$

∼ **is not compositional**

 $(u_0 \sim u_1) \tilde{\wedge} (v_0 \sim v_1)$ does not always implies $u_0, v_0 \sim u_1, v_1$ **Counter-example**:

 $n_0 \sim n_0$ and $n_0 \sim n_1$ but $n_0, n_0 \not\sim n_0, n_1$

 $\left[\phi \wedge \psi \right] \ \stackrel{?}{\Leftrightarrow} \ \left[\phi \right] \tilde{\wedge} \left[\psi \right]$ $\left[\phi \vee \psi \right] \ \stackrel{?}{\Leftrightarrow}\ \left[\phi \right] \tilde{\vee} \left[\psi \right]$ $[\phi \Rightarrow \psi] \stackrel{?}{\Leftrightarrow} [\phi] \stackrel{\preceq}{\Rightarrow} [\psi]$

 $\phi \wedge \psi$ \Leftrightarrow ϕ $\tilde{\wedge}$ ψ $\left[\phi \vee \psi \right] \ \stackrel{?}{\Leftrightarrow}\ \left[\phi \right] \tilde{\vee} \left[\psi \right]$ $[\phi \Rightarrow \psi] \stackrel{?}{\Leftrightarrow} [\phi] \stackrel{\preceq}{\Rightarrow} [\psi]$

 $\phi \wedge \psi$ \Leftrightarrow ϕ $\tilde{\wedge}$ ψ $\left[\phi \vee \psi\right] \Leftrightarrow \left[\phi\right] \tilde{\vee} \left[\psi\right]$ $[\phi \Rightarrow \psi] \stackrel{?}{\Leftrightarrow} [\phi] \stackrel{\preceq}{\Rightarrow} [\psi]$

Counter-example for ∨*/*∨˜**:**

$$
[(b = true) \vee (b = false)] \qquad [b = true] \tilde{\vee} [b = false]
$$

valid not valid

 $\phi \wedge \psi$ \Leftrightarrow ϕ $\tilde{\wedge}$ ψ $\left[\phi \vee \psi\right] \Leftrightarrow \left[\phi\right] \tilde{\vee} \left[\psi\right]$ $\phi \Rightarrow \psi \Rightarrow [\phi] \Rightarrow [\psi]$

Counter-example for ∨*/*∨˜**:**

$$
\frac{[(b = true) \lor (b = false)]}{value}
$$

 $[b = true] \tilde{V}$ $[b = false]$ not valid

Counter-example for ⇒/⇒:

$$
\frac{[(n=0) \Rightarrow (n=1)]}{\text{not valid}}
$$

$$
\frac{[n=0] \stackrel{\simeq}{\Rightarrow} [n=1]}{\text{valid}}
$$

The global logic is used as **ambient logic**.

Authentication for Hash-Lock:

 \lceil $(\mathsf{out@R}_2(j) = \mathsf{true}) \Rightarrow$ $\exists i : \textsf{index}. \quad \mathsf{R}_1(j) < \mathsf{T}(i) < \mathsf{R}_2(j)$ \wedge out $\mathsf{QR}_1(j) = \mathsf{in}\mathsf{QT}(i)$ \wedge out $\mathsf{QT}(i)$ $=$ in $\mathsf{QR}_{2}(j)$ 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

Weak **privacy** for Hash-Lock:

 $frame@pred(T(i)), H(\langle in@T(i), n_T(i) \rangle, k)$ ∼ frame@pred(T(i))*,* nfresh

The global logic is used as **ambient logic**.

Authentication for Hash-Lock:

 $\tilde{\forall} (j : \mathsf{index})$. $\mathsf{const}(j) \; \Rrightarrow$ \lceil $(\mathsf{out@R}_2(j) = \mathsf{true}) \Rightarrow$ $\exists i : \textsf{index}. \quad \mathsf{R}_1(j) < \mathsf{T}(i) < \mathsf{R}_2(j)$ \wedge out $\mathsf{QR}_1(j) = \mathsf{in}\mathsf{QT}(i)$ \wedge out $\mathsf{QT}(i)$ $=$ in $\mathsf{QR}_{2}(j)$ 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

Weak **privacy** for Hash-Lock:

 $\widetilde{\forall} (i : \text{index})$ *.* $\text{const}(i) \Rightarrow$ frame@pred $(\top(i))$ *,* H $(\langle \text{in} \mathbb{Q} \top(i), \, \text{n}_\top(i) \rangle, \text{k})$ $∼$ frame@pred $(T(i))$, n_{fresh}

Our **formal framework** must model and capture:

- P: **protocol** ✓
- ∈ C: **adversarial model** ✓
- Φ: **security property** ✓
- |=: **cryptographic arguments**

High-level structure of a **game-hopping** proof:

$$
G_0 \sim_{\epsilon_1} \cdots \sim_{\epsilon_n} G_n \Rightarrow
$$

$$
G_0 \sim_{\epsilon_1 + \cdots + \epsilon_n} G_n
$$

where each step $\mathcal{G}_i \sim_{\epsilon_{i+1}} \mathcal{G}_{i+1}$ is justified by:

- a cryptographic reduction to some hardness assumption.
- $\left|\text{up-to-bad argument }\right| \mathsf{Pr}(\mathcal{G}) \mathsf{Pr}(\mathcal{G'}) \right| \leq \mathsf{Pr}(\mathsf{bad}).$
	- Pr(bad) $\leq \epsilon$ through a probabilistic argument (e.g. collision probability). *. . .*
- bridging steps showing that $\mathcal{G} \sim_0 \mathcal{G}'$.

=⇒ how to **capture these arguments in the logic**?

High-level structure

Basic properties of indistinguishability:

Trans	$\vec{u} \sim \vec{w}$	$\vec{v} \sim \vec{v}$	$\vec{v} \sim \vec{u}$	REFL
$\vec{u} \sim \vec{v}$	$\vec{v} \sim \vec{u}$	$\vec{u} \sim \vec{v}$	$\vec{u} \sim \vec{u}$	

Bridging steps

Captured by our rewriting rule:

$$
\frac{[s=t] \quad \vec{u}\{t\} \sim \vec{v}}{\vec{u}\{s\} \sim \vec{v}} \text{ Rewrite}
$$

and generic mathematical reasoning to prove $[s = t]$.

E.g. **functional properties** can be stated as **axioms**: $[\forall m, k$. sdec(senc(m, k), k) = m]

Up-to-bad arguments

Two games G, G' such that: $Pr(\mathcal{G} \land \neg \text{bad}) = Pr(\mathcal{G}' \land \neg \text{bad}).$ Then $|Pr(\mathcal{G}) - Pr(\mathcal{G}')| \leq Pr(\mathsf{bad}).$

In the **CCSA** logic: $[\phi_{\text{bad}}]$ $[\neg \phi_{\text{bad}} \Rightarrow \vec{u} = \vec{v}]$ $\vec{u} \sim \vec{v}$ U2B

(similar to the rewrite rule for overwhelmingly equalities.)

Up-to-bad arguments

Two games G, G' such that: $Pr(\mathcal{G} \land \neg \text{bad}) = Pr(\mathcal{G}' \land \neg \text{bad}).$ Then $|Pr(\mathcal{G}) - Pr(\mathcal{G}')| \leq Pr(\mathsf{bad}).$

In the **CCSA** logic: $[\phi_{\text{bad}}]$ $[\neg \phi_{\text{bad}} \Rightarrow \vec{u} = \vec{v}]$ $\vec{u} \sim \vec{v}$ U2B

(similar to the rewrite rule for overwhelmingly equalities.)

Other direction $[\cdot] \Rightarrow (\cdot \sim \cdot)$ also exists: [*ψ*] *ϕ* ∼ *ψ* [*ϕ*] REWRITE-EQUIV

=⇒ enables **back-and-forth between both predicates**.

Probabilistic reasoning: collision of random samplings n a name of type message:

$$
\frac{\text{INDEX}}{[n \neq t]} \quad \text{if } n \text{ does not occur in } t
$$

Probabilistic reasoning: collision of random samplings n a name of type message:

$$
\frac{\text{INDEX}}{\left[n \neq t\right]}
$$
 if **n** does not occur in *t*

How to check that n does not occur in t ?

no recursive functions: direct syntactic check. Example: $[n \neq j^*(n_0)]$

Probabilistic reasoning: collision of random samplings n a name of type message:

$$
\frac{\text{INDEX}}{\left[n \neq t\right]}
$$
 if **n** does not occur in *t*

How to check that n does not occur in t ?

- no recursive functions: direct syntactic check. Example: $[n \neq j^*(n_0)]$
- with recursive functions: check recursive function definitions. Example: $[n \neq j^*$ (frame σ ₇)]

The CCSA Logic: Reasoning Rules

More complicated with **indexed names**, e.g. $n_R(j_0) \neq d^*(\text{frame@}\tau)$. \implies **use local formulas** to ensure freshness.

 ω ut θ ^{τ} = match *τ* with $\text{init} \rightarrow \text{empty}$ $| T(i) \rightarrow \langle n_T(i), H(\langle in\mathbb{Q}_T, n_T(i)\rangle, k) \rangle$ $| R_1(j) \rightarrow n_R(j)$ $| R_2(j) \rightarrow \pi_2(in\mathbb{Q}_T) = H(\langle n_R(j), \pi_1(in\mathbb{Q}_T) \rangle, k)$ $in@_{\tau}$ = match *τ* with $\mathsf{init} \rightarrow \mathsf{empty}$ $|\rightarrow \mathbf{P}$ (frame@pred(τ)) frame@*τ* = match *τ* with $\text{init} \rightarrow \text{empty}$ | _ → frame@pred(*τ*) :: out@*τ*

The CCSA Logic: Reasoning Rules

More complicated with **indexed names**, e.g. $n_R(j_0) \neq d^*(\text{frame@}\tau)$. \implies **use local formulas** to ensure freshness.

Indices at which n_R is read in (**f** (frame *Φ*):

 $\{j \mid R_1(j) \leq \tau \text{ or } R_2(j) \leq \tau\} = \{j \mid R_1(j) \leq \tau\}$

```
out@τ =
match τ with
     \text{init} \rightarrow \text{empty}| T(i) \rightarrow \langle n_T(i), H(\langle in\mathbb{Q}_T, n_T(i)\rangle, k) \rangle| R_1(j) \rightarrow n_R(j)| R_2(i) \rightarrow \pi_2(in\mathbb{Q}_T) = H(\langle n_R(i), \pi_1(in\mathbb{Q}_T) \rangle, k)\sin \theta \tau =match τ with
                                                                                                    | init \rightarrow empty
                                                                                                   |\rightarrow \mathbf{A}<sup>*</sup>(frame@pred(\tau))
                                                                                           frame@τ =
                                                                                            match τ with
                                                                                                 \mathsf{init} \rightarrow \mathsf{empty}| _ → frame@pred(τ) :: out@τ
```
The CCSA Logic: Reasoning Rules

More complicated with **indexed names**, e.g. $n_R(j_0) \neq d^*(\text{frame@}\tau)$. \implies **use local formulas** to ensure freshness.

Indices at which n_R is read in (**f** (frame *Φ*):

 $\{j \mid R_1(j) \leq \tau \text{ or } R_2(j) \leq \tau\} = \{j \mid R_1(j) \leq \tau\}$

Thus, we can take:

```
[\ \tau < \mathsf{R}_1(\mathsf{j}_0) \ \Rightarrow \ \mathsf{n}_\mathsf{R}(\mathsf{j}_0) \ \neq \mathsf{J}^\ast(\mathsf{frame} \mathsf{O} \tau) ]\omegaut \theta<sup>\tau</sup> =
match τ with
      \mathsf{init} \rightarrow \mathsf{empty}| T(i) \rightarrow \langle n_T(i), H(\langle in\mathbb{Q}_T, n_T(i)\rangle, k) \rangle| R_1(j) \rightarrow n_R(j)| R_2(i) \rightarrow \pi_2(in\mathbb{Q}_T) = H(\langle n_R(i), \pi_1(in\mathbb{Q}_T) \rangle, k)in@_{\tau} =
                                                                                                             match τ with
                                                                                                                  | init \rightarrow empty
                                                                                                                |\rightarrow \mathbf{A}<sup>r</sup> (frame@pred(\tau))
                                                                                                       frame@τ =
                                                                                                         match τ with
                                                                                                              \mathsf{init} \rightarrow \mathsf{empty}| _ → frame@pred(τ) :: out@τ
```
Probabilistic reasoning: collision of random samplings General case: local formula $\phi_{\text{fresh}}^{n,i}(\vec{u})$. Ensures that $n(i)$ fresh in \vec{u} .

INDEP

 $\left[\phi_{\text{fresh}}^{\mathsf{n},i}(t,i) \Rightarrow (t \neq \mathsf{n}(i))\right]$

Probabilistic reasoning: collision of random samplings General case: local formula $\phi_{\text{fresh}}^{n,i}(\vec{u})$. Ensures that $n(i)$ fresh in \vec{u} .

INDEP

$$
[\phi_{\text{fresh}}^{\mathsf{n},i}(t,i) \Rightarrow (t \neq \mathsf{n}(i))]
$$

Computing such freshness formulas is **non-trivial**. Indeed:

 $\phi_{\text{fresh}}^{\mathsf{n},i}(f(t)) \quad \Longleftrightarrow \quad$ cell *i* of array n never read in $f(t)$ computation

This is **undecidable**.

=⇒ we rely on **approximations**.

An obvious **reduction** rule:

$$
\frac{\vec{v}_0 \sim \vec{v}_1}{f(\vec{v}_0) \sim f(\vec{v}_1)} \to
$$

$$
\text{FA} \qquad \text{where } f \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{a}^* \in \mathcal{F}_{\text{adv}}\}
$$

An obvious **reduction** rule:

 $\vec{v}_0 \sim \vec{v}_1$ $f(\vec{v}_0) \sim f(\vec{v}_1)$

FA where $f \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{F} \in \mathcal{F}_{\text{adv}}\}$

Proof

Take a model M and A against the conclusion.

Take
$$
\mathcal{B}(\vec{v}) := \{x \leftarrow \mathbb{M}_{f}(\vec{v}); \text{ return } \mathcal{A}(x)\}.
$$

 β is polynomial-time since M_f and A are.

Thus $Adv(A) = Adv(B)$, negligible by hypothesis.

An obvious **reduction** rule:

 $\vec{v}_0 \sim \vec{v}_1$ $f(\vec{v}_0) \sim f(\vec{v}_1)$

FA where $f \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{F} \in \mathcal{F}_{\text{adv}}\}$

Proof

Take a model M and A against the conclusion.

Take
$$
\mathcal{B}(\vec{v}) := \{x \leftarrow \mathbb{M}_{f}(\vec{v}); \text{ return } \mathcal{A}(x)\}.
$$

 β is polynomial-time since M_f and A are.

Thus $Adv(A) = Adv(B)$, negligible by hypothesis.

⇒ FA moves a **deterministic computation** in the **top-level adv**. (or a computation using adversarial randomness)

Cryptographic reasoning Simple **reductions** rules:

$$
\frac{\vec{u}_0, \vec{v}_0 \sim \vec{u}_1, \vec{v}_1}{\vec{u}_0, f(\vec{v}_0) \sim \vec{u}_1, f(\vec{v}_1)}
$$
FA where $f \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{a}^* \in \mathcal{F}_{\text{adv}}\}$

$$
[\phi_{\text{fresh}}^{n,i}(\vec{u}, i) \land \phi_{\text{fresh}}^{m,j}(\vec{v}, j)]
$$

$$
\frac{\vec{u} \sim \vec{v}}{\vec{u}, n(i) \sim \vec{v}, m(j)}
$$
 FRESH

Cryptographic reasoning Simple **reductions** rules:

$$
\frac{\vec{u}_0, \vec{v}_0 \sim \vec{u}_1, \vec{v}_1}{\vec{u}_0, f(\vec{v}_0) \sim \vec{u}_1, f(\vec{v}_1)} \text{ FA} \quad \text{where } f \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{a}^* \in \mathcal{F}_{\text{adv}}\}
$$
\n
$$
[\phi_{\text{free}}^{n, i}(\vec{u}, i) \land \phi_{\text{free}}^{m, j}(\vec{v}, j)]
$$
\n
$$
\frac{\vec{u} \sim \vec{v}}{\vec{u}, n(i) \sim \vec{v}, m(j)} \text{ F}^{\text{RESH}} \quad \frac{\vec{u}_0, t_0 \sim \vec{u}_1, t_1}{\vec{u}_0, t_0, t_0 \sim \vec{u}_1, t_1, t_1} \text{ DUP}
$$

Cryptographic reasoning Simple **reductions** rules:

$$
\frac{\vec{u}_0, \ \vec{v}_0 \sim \vec{u}_1, \ \vec{v}_1}{\vec{u}_0, \ f(\vec{v}_0) \sim \vec{u}_1, \ f(\vec{v}_1)} \text{ FA} \quad \text{where } f \in \{f \in \mathcal{F}_{\text{lib}}\} \cup \{\mathbf{a}^* \in \mathcal{F}_{\text{adv}}\}
$$
\n
$$
[\phi_{\text{fresh}}^{n,i}(\vec{u}, i) \land \phi_{\text{fresh}}^{m,j}(\vec{v}, j)]
$$
\n
$$
\frac{\vec{u}_0, \ t_0 \sim \vec{u}_1, \ t_1}{\vec{u}_0, \ t_0, \ t_0 \sim \vec{u}_1, \ t_1} \text{ D} \mathbf{U}
$$
\n
$$
\frac{\vec{u}_0, \ t_0 \sim \vec{u}_1, \ t_1}{\vec{u}_0, \ t_0, \ t_0 \sim \vec{u}_1, \ t_1, \ t_1} \text{ D} \mathbf{U}
$$

⇒ mostly **book-keeping** rules.

Dup

Rules capturing **reduction** to **hardness assumptions**.

$$
\text{CPA} \frac{[\text{len}(m_0) = \text{len}(m_1)]}{\vec{u}, \text{enc}(m_0, \mathsf{k}, \mathsf{r})}
$$

$$
\sim \vec{u}, \text{enc}(m_1, \mathsf{k}, \mathsf{r})
$$

PRF \vec{u} , H(t, k) ∼ \vec{u} , n_{fresh}

Rules capturing **reduction** to **hardness assumptions**.

$$
\begin{array}{c}\n[\phi_{\text{ekey}}] & [\phi_{\text{rand}}] \\
\text{CPA} & \frac{[\text{len}(m_0) = \text{len}(m_1)]}{\vec{u}, \text{enc}(m_0, k, r)} \\
\sim \vec{u}, \text{enc}(m_1, k, r)\n\end{array}
$$

- \blacktriangleright ϕ_{ekev} : k only used in encryption key position enc (\cdot, k, \cdot) with fresh rands.
- ϕ _{rand} : **r** fresh name.
- \vec{u} , m_0 , m_1 ptime-computable.

$$
\text{PRF } \frac{\overline{d}}{\overline{d}, \text{H}(t, k) \sim \overline{d}, \text{n}_{\text{fresh}}}
$$

As for INDEP, we have **side-conditions**.

Rules capturing **reduction** to **hardness assumptions**.

$$
\frac{\left[\phi_{\text{ekey}}\right] \qquad \left[\phi_{\text{rand}}\right]}{\text{CPA}} \\ \frac{\left[\text{len}(m_0) = \text{len}(m_1)\right]}{\vec{u}, \text{enc}(m_0, k, r)} \\ \sim \vec{u}, \text{enc}(m_1, k, r)
$$

 $_{\rm PRF}$ $\textcolor{red}{\varrho_{\mathsf{hkey}}}$ $\textcolor{red}{\varrho_{\mathsf{hash}}}$ $\textcolor{red}{\varrho_{\mathsf{hash}}}$

- \blacktriangleright ϕ_{ekev} : k only used in encryption key position enc (\cdot, k, \cdot) with fresh rands.
- ϕ _{rand} : **r** fresh name.
- \vec{u} , m_0 , m_1 ptime-computable.
- \blacksquare ϕ_{hkev} : k only used in hash key position $H(\cdot, k)$.

$$
\blacksquare \varphi_{\mathsf{hash}}: t \text{ never hashed by } H(\cdot, k).
$$

 \vec{u} , *t* ptime-computable.

As for INDEP, we have **side-conditions**.

 \vec{u} , H(t, k) ∼ \vec{u} , n_{fresh}

High-level structure

The **induction** rule:

$$
\frac{\vec{u}(0) \sim \vec{v}(0)}{\forall (N : \text{int}). \ \ \vec{u}(N) \sim \vec{v}(N) \ \stackrel{\simeq}{\Rightarrow} \ \vec{u}(N+1) \sim \vec{v}(N+1)}{\forall (N : \text{int}). \ \ \vec{u}(N) \sim \vec{v}(N)}
$$

High-level structure

The **induction** rule:

$$
\vec{v}(0) \sim \vec{v}(0)
$$
\n
$$
\tilde{\forall} (N : \text{int}). \; [\vec{u}(N) \sim \vec{v}(N) \Rightarrow \vec{u}(N+1) \sim \vec{v}(N+1)]
$$
\n
$$
\tilde{\forall} (N : \text{int}). \; \vec{u}(N) \sim \vec{v}(N)
$$

Only for a **constant** number of steps N. Same reason as for **hybrid arguments**:

$$
\vec{u}(0) \sim \cdots \sim \vec{u}(N) \implies \vec{u}(0) \sim_{f_1(\eta)} \cdots \sim_{f_N(\eta)} \vec{u}(N) \quad ((f_i)_i \text{ negligible})
$$

$$
\implies \vec{u}(0) \sim_{\sum_{i \leq N} f_i(\eta)} \vec{u}(N)
$$

 $\sum_{i\leq N} f_i(\eta)$ may not be negligible if N polynomial in $\eta.$

High-level structure

The **induction** rule:

 $\vec{u}(0) \sim \vec{v}(0)$ $\widetilde{\forall} (N:\text{int})$. $(\mathsf{const}(N) \ \widetilde{\land}\ \ \vec{u}(N) \sim \vec{v}(N)) \mathrel{\tilde{\Rightarrow}}\ \ \vec{u}(N+1) \sim \vec{v}(N+1)$ $\tilde{\forall}(N : \text{int})$. const $(N) \stackrel{\sim}{\Rightarrow} \vec{u}(N) \sim \vec{v}(N)$

Only for a **constant** number of steps N. Same reason as for **hybrid arguments**:

$$
\vec{u}(0) \sim \cdots \sim \vec{u}(N) \implies \vec{u}(0) \sim_{f_1(\eta)} \cdots \sim_{f_N(\eta)} \vec{u}(N) \quad ((f_i)_i \text{ negligible})
$$

$$
\implies \vec{u}(0) \sim_{\sum_{i \leq N} f_i(\eta)} \vec{u}(N)
$$

 $\sum_{i\leq N} f_i(\eta)$ may not be negligible if N polynomial in $\eta.$

Our **formal framework** must model and capture:

- P: **protocol** ✓
- ∈ C: **adversarial model** ✓
- Φ: **security property** ✓
- |=: **cryptographic arguments** ✓

We are done with our framework!

The CCSA Logic: Summary

- Logic with a **probabilistic interpretation** of terms: protocol execution \Rightarrow terms of the logic.
- Security predicates ϕ and $\vec{u}_0 \sim \vec{u}_1$.
	- **Abstract** predicates: no **probabilities** and **security parameter**.
	- Can express **temporal properties** as formulas [*ϕ*]: direct quantification on the execution trace (no encoding).
- **Reasoning rules** to capture crypto. arguments:
	- generic math. reasoning

probabilistic arguments

game-hopping steps

crypto. reductions

The **application conditions** for crypto. and probabilistic rules are the difficult part.

Two **limitations** of this CCSA logic:

- **guarantees provided**: parametric vs polynomial security.
- **modularity**: ad hoc rules for a fixed number of crypto. assumptions.

[A Concrete Security CCSA Logic](#page-89-0)

[with D. Baelde, C. Fontaine, G. Scerri, T. Vignon](#page-89-0)

We reason over a **fixed trace** $\mathcal T$ given by $[\![$ timestamp $]\!]_{M}$.

This only yields **parametric** security. Informally, $M \models \Phi$ implies:

∀T *.* ∀A*.* Pr(Φ holds in T against A) is overwhelming in *η*

We expect the stronger **polynomial** security:

∀A*.* Pr(Φ holds in T chosen by A) is overwhelming in *η*

Limitation: Polynomial vs Parametric Security

How to obtain **polynomial security** using CCSA [\[Bae+24,](#page-118-0) to appear]:

Change the **execution model**.

E.g. frame@N where (N : int) instead of frame@*τ*.

Difficulty: previous induction rule requires a constant number of steps.

because $\sum_{i\leq P(\eta)}f_i(\eta)$ is not always negligible, even if $f_i(n)$ negligible $\forall i$ and $P(n)$ polynomial.

- **Solution: move to a concrete security setting.**
	- **concrete security predicates** $[\phi]_{\epsilon}$ and $\vec{u}_0 \sim_{\epsilon} \vec{u}_1$.
	- reasoning rules with **explicit bounds**.
	- support **general induction**:

user must prove a uniform bound on all f_i 's.

For now, theoretical work (implementation in S QUIRREL is WIP).

[From Hardness Assumptions to](#page-92-0) [Logical Rules](#page-92-0)

[with D. Baelde, J. Sauvage](#page-92-0)

Hardness Assumption: Example

$$
\mathsf{message} \leftarrow \rightarrow \mathsf{key}
$$

A **cryptographic hash** function H(m*,* key).

Unforgeability: cannot produce valid hashes without knowing key.

$$
\mathsf{message} \leftarrow \qquad \qquad \mathsf{key}
$$

A **cryptographic hash** function H(m*,* key).

Unforgeability: cannot produce valid hashes without knowing key.

Init: key $\stackrel{s}{\leftarrow}$;		
Onash(m_0) :=		
Let turn H(m_0 , key)		
Orballenge(m, s) :=		
Orballenge(m, s) :=		
Deturn	$\left\{ m \notin \mathcal{L} \text{ and } s = H(m, key) \right\}$ (left game)	
return	false	(right game)

Hardness Assumption: Example

Example

$$
\mathbf{d}^{\mathbf{k}}\big(\mathsf{H}(0,\mathsf{k}),\mathsf{H}(1,\mathsf{k})\big)=\mathsf{H}(m,\mathsf{k})\quad\Rightarrow\quad m=0\;\vee\;m=1
$$

Proof by reduction

Build an adversary **b** against UNFORGEABILITY (UF):

- **compute** $h_0 \leftarrow \mathcal{O}_{\text{hash}}(0)$ **and** $h_1 \leftarrow \mathcal{O}_{\text{hash}}(1)$ **;**
- **black-box call:** $s \leftarrow$ ($\mathbf{k}(h_0, h_1)$);
- compute m ;
- return $\mathcal{O}_{\text{challenge}}(m, s)$.

 $\text{Adv}_{\text{UF}}(\mathbf{X}) = \text{Adv}(\mathbf{X})$ $\mathbf{X} \in \text{PPTM}$ implies $\mathbf{X} \in \text{PPTM}$

Example

$$
\mathbf{d}^{\mathbf{k}}\Big(\mathsf{H}(0,\mathsf{k}),\mathsf{H}(1,\mathsf{k})\Big)=\mathsf{H}(m,\mathsf{k})\quad\Rightarrow\quad m=0\;\vee\;m=1
$$

Proof by reduction

Build an adversary $\frac{1}{3}$, against UNFORGEABILITY (UF):

- **compute** $h_0 \leftarrow \mathcal{O}_{\text{hash}}(0)$ **and** $h_1 \leftarrow \mathcal{O}_{\text{hash}}(1)$ **;**
- **black-box call:** $s \leftarrow$ (h_0, h_1);
- compute m ;
- return $\mathcal{O}_{\text{challenge}}(m, s)$.

 $\text{Adv}_{\text{UE}}(\mathbf{X}) = \text{Adv}(\mathbf{X})$ $\mathbf{X} \in \text{PPTM}$ implies $\mathbf{X} \in \text{PPTM}$

Remark: rule valid only if m computable by the adversary.

Until recently:

- SQUIRREL supported a limited set of hardness assumptions (symmetric/asymmetric encryption, signature, hash, DH, *. . .*)
- Built-in tactics for each such assumptions:

```
hardness assumption (imperative, stateful programs)
                         ⇐reasoning rules (pure, logic)
```
Adding rules for new hardness assumptions is: **tedious**, **error-prone**, and **not in user-space** (Ocaml code). **Systematic cryptographic reductions:** allows to translate hardness assumptions into cryptographic rules.

Inputs:

- **a** an (imperative, stateful) **hardness assumption** $\mathcal{G}_0 \approx \mathcal{G}_1$.
- **an indistinguishability property**, e.g. $u_0 \sim u_1$ to prove, i.e.:

$$
\forall \mathbf{F} \in \left| \Pr(\mathbf{F}(\mathbf{F}(\mathbf{F} \mathbf{u}_0 \mathbf{F})) - \Pr(\mathbf{F}(\mathbf{F}(\mathbf{F} \mathbf{u}_1 \mathbf{F})) \right| \leq \text{negl}(\eta)
$$

Goal: synthesize S poly-time such that $\sqrt{ }$ \int \mathcal{L} $\mathcal{S}^{\mathcal{G}_0}$ () $= \llbracket u_0 \rrbracket$ and $\mathcal{S}^{\mathcal{G}_1}$ $()$ $=$ $[\![u_1]\!]$

Thus, for any \mathcal{L} :

$$
\mathsf{Adv}_{u_0 \sim u_1}(\mathbf{a}^*) = \mathsf{Adv}_{\mathcal{G}_0 \approx \mathcal{G}_1}(\mathbf{a}^* \circ \mathcal{S}) \le \mathsf{negl}(\eta)
$$

- **General framework** to add new hardness assumptions.
- **Proof system** to establish the existence of S.
- **Fully automated implementation** (heuristic based ⇒ incomplete)

Bi-Deduction

Take an **hardness assumption** $\mathcal{G}_0 \approx \mathcal{G}_1$.

Bi-Terms

The **bi-terms** $u_{\#} = \#(u_0; u_1)$ represent a pair of left/right scenarios. Factorize common behavior, e.g. $f(v, \#(u_0; u_1)) = \#(f(v, u_0); f(v, u_1))$

Bi-Deduction

Take an **hardness assumption** $\mathcal{G}_0 \approx \mathcal{G}_1$.

Bi-Terms

The **bi-terms** $u_{\#} = \#(u_0; u_1)$ represent a pair of left/right scenarios. Factorize common behavior, e.g. $f(v, \#(u_0; u_1)) = \#(f(v, u_0); f(v, u_1))$

Bi-deduction

New predicate $u_{\#} \rhd_{\mathcal{G}_0 \approx \mathcal{G}_1} v_{\#}$ which means:

$$
\exists \mathcal{S} \in \mathrm{PPTM.} \; \left\{ \begin{matrix} \mathcal{S}^{\mathcal{G}_0}(\llbracket u_0 \rrbracket) = \llbracket v_0 \rrbracket \\ \text{and } \mathcal{S}^{\mathcal{G}_1}(\llbracket u_1 \rrbracket) = \llbracket v_1 \rrbracket \end{matrix} \right.
$$

Bi-Deduction

Take an **hardness assumption** $\mathcal{G}_0 \approx \mathcal{G}_1$.

Bi-Terms

The **bi-terms** $u_{\#} = \#(u_0; u_1)$ represent a pair of left/right scenarios. Factorize common behavior, e.g. $f(v, \#(u_0; u_1)) = \#(f(v, u_0); f(v, u_1))$

Bi-deduction

New predicate $u_{\#} \rhd_{\mathcal{G}_0 \approx \mathcal{G}_1} v_{\#}$ which means:

$$
\exists \mathcal{S} \in \mathrm{PPTM.} \; \left\{ \begin{matrix} \mathcal{S}^{\mathcal{G}_0}(\llbracket u_0 \rrbracket) = \llbracket v_0 \rrbracket \\ \text{and } \mathcal{S}^{\mathcal{G}_1}(\llbracket u_1 \rrbracket) = \llbracket v_1 \rrbracket \end{matrix} \right.
$$

Inference Rule

$$
\frac{\emptyset \rhd_{\mathcal{G}_0 \approx \mathcal{G}_1} \#(u_0; u_1)}{u_0 \sim u_1} \text{ BI-DeDuce}
$$

Bi-Deduction: Rules

A few simple **bi-deduction rules**:

Transitivity

$$
\frac{\vec{u}_{\#} \rhd \vec{v}_{\#} \qquad \vec{u}_{\#}, \vec{v}_{\#} \rhd \vec{w}_{\#}}{\vec{u}_{\#} \rhd \vec{v}_{\#}, \vec{w}_{\#}}
$$

 $\mathcal{S}(\vec{u}) := \vec{v} \leftarrow \mathcal{S}_1(\vec{u})$ $\vec{w} \leftarrow \mathcal{S}_2(\vec{u}, \vec{v})$ **return** (\vec{v}, \vec{w})

Bi-Deduction: Rules

A few simple **bi-deduction rules**:

Transitivity

$$
\frac{\vec{u}_{\#} \rhd \vec{v}_{\#} \qquad \vec{u}_{\#}, \vec{v}_{\#} \rhd \vec{w}_{\#}}{\vec{u}_{\#} \rhd \vec{v}_{\#}, \vec{w}_{\#}}
$$

$$
\begin{array}{rcl} \mathcal{S}(\vec{u}) := & \vec{v} \leftarrow \mathcal{S}_1(\vec{u}) \\ & \vec{w} \leftarrow \mathcal{S}_2(\vec{u}, \vec{v}) \\ & \text{return } (\vec{v}, \vec{w}) \end{array}
$$

Function application (where $f \in \mathcal{F}_{\text{lib}} \cup \mathcal{F}_{\text{adv}}$)

$$
\frac{\vec{u}_\#\rhd\vec{v}_\#}{\vec{u}_\#\rhd f(\vec{v}_\#)}
$$

$$
S(\vec{u}) := \vec{v} \leftarrow S_1(\vec{u})
$$

$$
x \leftarrow \mathbb{M}_{\mathsf{f}}(\vec{v})
$$
return x

Bi-deduction rules handling **randomness**:

ORACLE
\n
$$
\vec{u}_{\#} \triangleright v_{\#}
$$
\n
$$
\vec{u}_{\#} \triangleright H(v_{\#}, k)
$$

$$
\frac{\mathcal{S}(\vec{u}) := \vec{v} \leftarrow \mathcal{S}_1(\vec{u})}{x \stackrel{\text{s}}{\leftarrow} \mathcal{O}_{\text{hash}}(\vec{v})}
$$
\nreturn x

$$
\frac{\vec{u}_{\#} \triangleright v_{\#}}{\vec{u}_{\#} \triangleright \mathsf{n}(v_{\#})}
$$

Name

$$
\frac{\mathcal{S}(\vec{u}) := v \leftarrow \mathcal{S}_1(\vec{u})}{x \stackrel{\text{A}}{\leftarrow} \mathbb{M}_{n_f}(v, \rho_h)}
$$

return x

Bi-deduction rules handling **randomness**:

Problem: the NAME rule allow S to read $k!$

- **Problem:** S should not **access the game secret keys.**
- **Solution:** track **randomness usage** using logical **constraints** . E.g. ensures that S does not directly use key.
- Annotated bi-deduction predicate:

Name

 $(n : T_S)$ ⊢ $\vec{u}_{\#}$ \triangleright n
Bi-Deduction: Constraints

Eventually, check that the **constraints** are **valid** :

$$
\frac{\mathcal{C} \vdash \emptyset \rhd \#(u_0; u_1)}{u_0 \sim u_1} \models \text{[Valid}(\mathcal{C})]} \text{B}-\text{DeDUCE}
$$

Example:

 $\not\models$ [Valid((k: T_G $\binom{key}{G}$, $(k:T_S))$]

Bi-Deduction: Constraints

Eventually, check that the **constraints** are **valid** :

$$
\frac{\mathcal{C} \vdash \emptyset \rhd \#(u_0; u_1)}{u_0 \sim u_1} \models \underline{\text{[Valid}(\mathcal{C})]} \text{B}-\text{DeDUCE}
$$

Example:

$$
\not\models [\mathsf{Valid}((k:T_G^\mathsf{key}),(k:T_\mathcal{S}))]
$$

Some **additional difficulties**:

We need to handle **indexed names** and **conditions** :

 $(n, i, \phi : T)$

Some weird constraints must be avoided, e.g.:

$$
(n, n = 0, T_{\mathcal{S}}) \quad \wedge \quad (n, n \neq 0, T_{\mathcal{G}})
$$

We also need to account for G's **statefulness**.

We also need to account for G's **statefulness**.

We **track the state** of G:

Add **Hoare pre- and post- conditions**:

$$
(\phi,\psi)\vdash u_{\#}\rhd v_{\#}
$$

Semantics:

 $\exists \mathcal{S} \in \mathrm{PPTM}$. $\forall \mu \models \phi$. $\mathcal{S}^{\mathcal{G}_i}_{\mu}(u_i) = (\mu', \llbracket v_i \rrbracket)$ $(\forall i \in \{0, 1\})$ where $\mu'\models\psi$

We **track the state** of G:

Add **Hoare pre- and post- conditions**:

$$
(\phi,\psi)\vdash u_{\#}\rhd v_{\#}
$$

Semantics:

$$
\exists \mathcal{S} \in \mathrm{PPTM.} \; \forall \mu \models \phi \, . \quad \langle \mathcal{S} \rangle_{\mu}^{\mathcal{G}_i}(u_i) = (\mu', [\![v_i]\!]) \qquad (\forall i \in \{0, 1\})
$$
\nwhere $\mu' \models \psi$

Modified **proof-system**:

$$
\frac{(\phi, \chi) \vdash \vec{u}_{\#} \rhd \vec{v}_{\#} \qquad (\chi, \psi) \vdash \vec{u}_{\#}, \vec{v}_{\#} \rhd \vec{w}_{\#}}{(\phi, \psi) \vdash \vec{u}_{\#} \rhd \vec{v}_{\#}, \vec{w}_{\#}} \text{ Trans}
$$

Framework to add new hardness assumptions using **bi-deduction**.

- **Proof system for bi-deduction**.
	- Correct randomness usage using logical **constraints**. E.g. ensures that S does not directly use k .
	- Tracking the state of \mathcal{G} : **Hoare pre- and post-conditions**. E.g. track the set of hashed messages \mathcal{L} .
	- Soundness: existence of a suitable **probabilistic coupling**.

Implementation: fully automated (heuristic based ⇒ incomplete).

Approximate G state + randomness constraints (discharged to SQUIRREL).

[Conclusion](#page-115-0)

Conclusion

The CCSA logic behind SQUIRREL.

- **Modeling protocols as pure terms.**
- Reasoning rules to capture crypto. arguments.
- **Concrete security** variant of the logic.
- **Framework** to add new hardness assumptions using **bi-deduction**.
- Project web-page:

<https://squirrel-prover.github.io/>

Conclusion

The CCSA logic behind SQUIRREL.

- Modeling protocols as pure terms.
- Reasoning rules to capture crypto. arguments.
- **Concrete security** variant of the logic.

<https://squirrel-prover.github.io/>

Thank you for your attention

[References](#page-118-0)

- [Adr+15] David Adrian et al. "Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice". In: CCS. ACM, 2015, pp. 5-17.
- [Bae+24] David Baelde et al. "A Probablistic Logic for Concrete Security". In: IEEE CSF'24, to appear. 2024.
- [Bar+23] Manuel Barbosa et al. "Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium". In: CRYPTO (5). Vol. 14085. Lecture Notes in Computer Science. Springer, 2023, pp. 358–389.
- [Bha+14] Karthikeyan Bhargavan et al. "Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS". In: IEEE Symposium on Security and Privacy. IEEE Computer Society, 2014, pp. 98–113.
- [BR94] Mihir Bellare and Phillip Rogaway. "Optimal Asymmetric Encryption". In: EUROCRYPT. Vol. 950. Lecture Notes in Computer Science. Springer, 1994, pp. 92–111.
- [KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. "A Concrete Treatment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model". In: EUROCRYPT (3). Vol. 10822. Lecture Notes in Computer Science. Springer, 2018, pp. 552–586.
- [Lyu12] Vadim Lyubashevsky. "Lattice Signatures without Trapdoors". In: EUROCRYPT. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 738–755.
- [Sho02] Victor Shoup. "OAEP Reconsidered". In: J. Cryptol. 15.4 (2002), pp. 223–249.

Cryptographic reasoning

Reduction to **hardness assumptions** using specific rules. E.g. for PRF:

> PRF $\left[\phi^{\mathsf{k}}_{\mathsf{hkey}}(\vec{u},t)\right]$ \vec{u} , H(t, k) $\sim \vec{u}$, if $\phi_{\text{hash}}^{k, t}(\vec{u}, t)$ then n_{fresh} else H(t*,* k)

 $\phi_\mathsf{hkey}^\mathsf{k}(\vec{w})$: k only used in hash key position H (\cdot,k) in \vec{w} . $\phi^{k,t}_{\text{hash}}(\vec{w})$: t was never hashed by $H(\cdot, k)$ in \vec{w} .

$$
\left(\phi_{\mathsf{hash}}^{\mathsf{k},t}(\vec{w})\land m \text{ hashed by } \mathsf{k} \text{ in } \vec{w}\right) \Rightarrow m \neq t
$$

The CCSA Logic: Reasoning Rules

Example: messages hashed by k in χ ^{*} (frame σ _{*τ*0}): $\{ \, \langle \mathsf{in}\mathbb{O}\mathsf{T}(\mathtt{i})\,,\, \mathsf{n}_\mathsf{T}(\mathtt{i}) \rangle \qquad \quad \vert \ \mathsf{T}(\mathtt{i}) \leq \tau_0 \}$ $\cup\;$ $\{\,\langle \mathsf{n}_\mathsf{R}(\mathtt{j}) \, , \, \pi_1(\mathsf{in} \mathsf{@R}_2(\mathtt{j})) \rangle \; | \; \mathsf{R}_2(\mathtt{j}) \leq \tau_0\}$

```
\omegaut \theta<sup>\tau</sup> =
 match τ with
       \text{init} \rightarrow \text{empty}| T(i) \rightarrow \langle n_T(i), H(\langle in\mathbb{Q}\tau, n_T(i)\rangle, k) \rangle| R_1(i) \rightarrow n_R(i)| R_2(j) \rightarrow \pi_2(in\mathcal{Q}_7) = H(\langle n_R(j), \pi_1(in\mathcal{Q}_7) \rangle, k)
```

```
frame@τ =
match τ with
   init \rightarrow empty| _ → frame@pred(τ) :: out@τ
```

```
\sin \Theta \tau =match τ with
        \mathsf{init} \rightarrow \mathsf{empty}|\_\rightarrow \cdot \cdot | (frame \mathbb{Q}_{\text{pred}}(\tau))
```
The CCSA Logic: Reasoning Rules

Example: messages hashed by k in χ ^{*} (frame σ _{*τ*0}):

 $\{ \, \langle \mathsf{in}\mathbb{O}\mathsf{T}(\mathtt{i})\,,\, \mathsf{n}_\mathsf{T}(\mathtt{i}) \rangle \qquad \quad \vert \ \mathsf{T}(\mathtt{i}) \leq \tau_0 \}$ $\cup\;$ $\{\,\langle \mathsf{n}_\mathsf{R}(\mathtt{j}) \, , \, \pi_1(\mathsf{in} \mathsf{@R}_2(\mathtt{j})) \rangle \; | \; \mathsf{R}_2(\mathtt{j}) \leq \tau_0\}$

Thus, we can take:

 $\phi_{\text{ha}}^{\mathbf{k},t}$ $\frac{k,t}{\mathsf{hash}}(\bigcircled{\bullet}^{\epsilon}(\mathsf{frame@}_{\mathcal{T}_0})) \overset{\mathsf{def}}{=} \quad \forall \mathtt{i}. \; \mathsf{T}(\mathtt{i}) \leq \tau_0 \; \Rightarrow t \neq \, \langle \mathsf{in@T}(\mathtt{i}) \, , \, \mathsf{n}_{\mathsf{T}}(\mathtt{i}) \rangle$ $\land \forall$ j. R₂(j) $\leq \tau_0 \Rightarrow t \neq \langle n_R(j), \pi_1(in \mathbb{R}_2(j)) \rangle$

```
\omegaut \theta<sup>\tau</sup> =
 match τ with
     | init \rightarrow empty
      | T(i) \rightarrow \langle n_T(i), H(\langle in@ \tau, n_T(i) \rangle, k) \rangle| R_1(i) \rightarrow n_R(i)| R_2(j) \rightarrow \pi_2(in\mathbb{Q}_T) = H(\langle n_R(j), \pi_1(in\mathbb{Q}_T) \rangle, k)
```

```
frame@τ =
 match τ with
    \mathsf{init} \rightarrow \mathsf{empty}| _ → frame@pred(τ) :: out@τ
```

```
\sin \Theta \tau =match τ with
        \mathsf{init} \rightarrow \mathsf{empty}|\_\rightarrow \cdot \cdot | (frame \mathbb{Q}_{\text{pred}}(\tau))
```
The CCSA Logic: Reasoning Rules

Example: weak privacy for Hash-Lock.

 $frame@pred(T(i₀)), H(t, k) \sim frame@pred(T(i₀)), n_{fresh}$ where $t\stackrel{{\sf def}}{=} \langle \mathsf{in}{\mathsf{QT}}(\mathtt{i}_0)\,,\, \mathsf{n}_{{\mathsf T}}(\mathtt{i}_0)\,\,\rangle.$

Since in $\mathbb{Q}T(i_0) = \mathcal{L}$ (frame $\mathbb{Q}T(i_0)$), same scenario as previous slide!

Example: weak privacy for Hash-Lock.

frame@pred($T(i_0)$), $H(t, k) \sim$ frame@pred($T(i_0)$), n_{fresh} where $t\stackrel{{\sf def}}{=} \langle \mathsf{in}{\mathsf{QT}}(\mathtt{i}_0)\,,\, \mathsf{n}_{{\mathsf T}}(\mathtt{i}_0)\,\,\rangle.$

Since in $\mathbb{Q}T(i_0) = \mathcal{N}$ (frame $\mathbb{Q}T(i_0)$), same scenario as previous slide! Thus, using $PRF+REWRITE$:

> Г $\overline{1}$ $\forall \mathtt{i}.\ \mathsf{T}(\mathtt{i}) < \mathsf{T}(\mathtt{i}_0) \ \Rightarrow t \neq \langle \mathsf{in} \mathsf{QT}(\mathtt{i})\,,\, \mathsf{n}_\mathsf{T}(\mathtt{i}) \ \rangle$ $\land \forall$ j. $\mathsf{R}_2(\mathtt{j}) < \mathsf{T}(\mathtt{i}_0) \Rightarrow t \neq \langle \mathsf{n}_\mathsf{R}(\mathtt{j}) , \pi_1(\mathsf{in} \mathsf{Q} \mathsf{R}_2(\mathtt{j})) \rangle$ 1 \mathbf{I}

> frame@pred($T(i_0)$), $H(t,k) \sim$ frame@pred($T(i_0)$), n_{fresh}

Example: weak privacy for Hash-Lock.

frame@pred($T(i_0)$), $H(t, k) \sim$ frame@pred($T(i_0)$), n_{fresh} where $t\stackrel{{\sf def}}{=} \langle \mathsf{in}{\mathsf{QT}}(\mathtt{i}_0)\,,\; \mathsf{n}_{{\mathsf{T}}}(\mathtt{i}_0)\,\rangle.$

Since in $\mathbb{Q}T(i_0) = \mathcal{N}$ (frame $\mathbb{Q}T(i_0)$), same scenario as previous slide! Thus, using $PRF+REWRITE$:

> Г $\overline{1}$ $\forall \mathtt{i}.\ \mathsf{T}(\mathtt{i}) < \mathsf{T}(\mathtt{i}_0) \ \Rightarrow t \neq \langle \mathsf{in} \mathsf{CT}(\mathtt{i})\,,\ \mathsf{n}_\mathsf{T}(\mathtt{i}) \,\rangle$ $\land \forall j$. $\mathsf{R}_2(j) < \mathsf{T}(\mathtt{i}_0) \Rightarrow t \neq \langle \mathsf{n}_{\mathsf{R}}(j)\,,\,|\pi_1(\mathsf{in@R}_2(j))\,\rangle$ 1 \mathbf{I}

> frame@pred($T(i_0)$), $H(t,k) \sim$ frame@pred($T(i_0)$), n_{fresh}

Example: weak privacy for Hash-Lock.

frame@pred($T(i_0)$), $H(t, k) \sim$ frame@pred($T(i_0)$), n_{fresh} where $t\stackrel{{\sf def}}{=} \langle \mathsf{in}{\mathsf{QT}}(\mathtt{i}_0)\,,\; \mathsf{n}_{{\mathsf{T}}}(\mathtt{i}_0)\,\rangle.$

Since in $\mathbb{Q}T(i_0) = \mathcal{L}$ (frame $\mathbb{Q}T(i_0)$), same scenario as previous slide! Thus, using $PRF+REWRITE$:

$$
\left[\begin{array}{c} \forall i.\ T(i) < T(i_0) \Rightarrow t \neq \langle \mathsf{in} \mathsf{CT}(i),\ \mathsf{n}_T(i) \rangle \\[.5em] \wedge \forall j.\ \mathsf{R}_2(j) < T(i_0) \Rightarrow t \neq \langle \mathsf{n}_R(j),\ \pi_1(\mathsf{in} \mathsf{OR}_2(j)) \rangle \end{array}\right]
$$
\n
$$
\left.\begin{array}{c} \mathsf{frame}\mathsf{Q}\mathsf{pred}(T(i_0)), \mathsf{H}(t,k) \sim \mathsf{frame}\mathsf{Q}\mathsf{pred}(T(i_0)), \mathsf{n}_\mathsf{fresh} \end{array}\right]
$$

Concludes using generic maths. reasoning $+$ twice INDEP to show:

 $T(i) < T(i_0) \Rightarrow n_T(i_0) \neq n_T(i)$ $R_2(i) < T(i_0) \Rightarrow n_T(i_0) \neq \pi_1(in \mathbb{R}_2(i))$