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Protocols
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Mutual authentication between the user and the
service provider.

Untraceability of the user against an outside observer.
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Sequence Numbers

User side: all crypto primitives are computed in the SIM.
In 4G-AKA, no PRNG on the mobile phone.

Asymmetric encryption requires randomness.
4G-AKA uses only symmetric one-way functions.
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Sequence Numbers

Authentication protocols need to prevent message replays:

The antenna uses a random challenge.

The mobile phone uses a sequence number SQN:
Incremented after each successful session.

Tracked by the user and the antenna (SQN, and SQNy).
De-synchronization possible.
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bmac < check-mac

bsqn < check-range(sqn,, sQNy)




-

(n,saN, & Hi(n), He((saxy , n)))
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<n ,SQN, @ HE(n), HE((saNy, n>)>

bmac < check-mac SQN, < SQN, +j

bsqn < check-range(sqn,, sQNy)

bmac A bSQN

o

|

@:«—] “Auth-Failure” >
|

[ /b | (sav, @ HE™(n) , HE™ ((sae, )

If the mac is valid:

SQN, ¢ SQN; + 1
T
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Privacy in 4G-AKA

The ID is sent in plain text!



Privacy in 4G-AKA

The ID is sent in plain text!

Allow to use a temporary identity TMP-ID instead of the
permanent identity ID.



TMP-ID or ID

[ofsan] S=

D | D, k, SQN, |

<n ,SQN, @ HE(n), HE((saNy, n>)>

bmac < check-mac

bsqn < check-range(sqn,, sQNy)

bmac A bSQN

HZ(n)

|
“bmac

"Auth-Failure”

|
bmac “bSQN ‘

(san, @ HP™(n), HE™" ((sax, , n)))

If the mac is valid:
SQN, < SQN; + 1

A

ASSIGN-TMP-ID




Privacy in 4G-AKA

Once a temporary identity is set up, the 1D is protected if:

The protocol does not fail.

The adversary is a passive adversary.



Privacy in 4G-AKA

Once a temporary identity is set up, the 1D is protected if:

The protocol does not fail.
The adversary is a passive adversary.

This is not realistic!



The 1Ms1 Catcher Attack [Strobel, 2007]
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The 1Ms1 Catcher Attack [Strobel, 2007]

VE TMP-ID or ID AttjCker

1
[ N
| If TMP-ID received

“Permanent-ID-Request”

1D

Reliable: the attack always works.
Easy to deploy: only need an antenna.

Large scale: not targeted.



Privacy in 5G-AKA

Encrypt the permanent identity by sending {ID}pkN

10
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TMP-ID or {ID}
N

| I -
1D, K, sky, SQNy -

(n,sQNy @ HR(n), Hi((sQny, n)))

bmac < check mac

bsqn ¢ check range(sQn,, sQNy)

bmac /\ bSQN
u N Hi (n)

E:C] “Auth-Failure”
|

b A —b . .
mee A TBsan | (o, @ HP®(n) , HE ((sag , n))

If the mac is valid:
SQN, ¢ SQN; + 1

ASSIGN-TMP-ID
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Privacy in 5G-AKA

Is it enough?
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Privacy in 5G-AKA

Is it enough?
For confidentiality of the ID, yes.

For unlinkability, no.
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Unlinkability

Even if ID is hidden, an attacker can link sessions of a user.
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The Failure Message Attack [Arapinis et al., 2012]

E
UE(tDa) tauth = (N, SQNy ® Hi(n), Hi((sany, n))) i
Hi(n)
) t Attacker
auth
il [ |
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The Failure Message Attack [Arapinis et al., 2012]
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The Failure Message Attack [Arapinis et al., 2012]

UBEDA) o = (nsan, @ HE(n) , HE((sany , n))) AN
Hi(n)

UE(1Dg) Attacker

L tauth
If 1Dg 7 1DA “Auth-Failure”

I

?‘f D8 = DA | 4 e = (sQny & Hp™(n), H ™ ((sQny , n)))
| |
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The Encrypted 1D Replay Attack [Fouque et al., 2016]

UE(1DA)

| {aty, HIN
| l
UE(1pg) (D8} (DAY, HN
-/
tauth = (n,SQN, @ Hg(n), Hi({sQNy, n)))
| |
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The Encrypted 1D Replay Attack [Fouque et al., 2016]

UE(pa) (DA} HN
| N |
I i
UE(1Dg) {IDB}pkN {IDA}pkN HN
tauth = (n,SQN, @ Hg(n), Hi({sQNy, n)))
If
?IDB 7 1D Failure Message
| |
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The Encrypted 1D Replay Attack [Fouque et al., 2016]

UE(IDA) {IDA} " HN
l - |
I i

UE(1Dg) {IDB}pkN {IDA}pkN HN

-/

tauth = (n,SQN, @ Hg(n), Hi({sQNy, n)))

If 1Dg # DA |
l;iw[ Failure Message
|

If IDg = IDA

taccept = Hi(n)
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New Attack on the PRIV-AKA Protocol

PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.
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The PRIV-AKA Protocol
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New Attack on the PRIV-AKA Protocol

PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t.

Re-synchronize the user and the network.
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New Attack on the PRIV-AKA Protocol

PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t.
Re-synchronize the user and the network.

Re-iterate the last two steps to get a second message t».
Send both t; and tp, which increments sSQN, by two.

User permanently de-synchronized = unlinkability attack.
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Design a modified version of AKA, called AKA™, such that:

Provides some form of unlinkability.
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Design a modified version of AKA, called AKA™, such that:

Provides some form of unlinkability.
Satisfies the design and efficiency constraints of 5G-AKA.

Is proved secure.

17
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Random Number Generation in 5G-AKA

In 5G-AKA, the user generates a random number only:

If no TMP-ID is assigned.

In the session following a de-synchronization.
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The AKA™ Protocol

AKAT should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for
re-synchronization or if no TMP-ID is assigned.
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PRNG (user): at most one nonce per session, and only for
re-synchronization or if no TMP-ID is assigned.

The user can use only one-way functions and asymmetric

encryption.
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The AKA™ Protocol

AKAT should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for
re-synchronization or if no TMP-ID is assigned.

The user can use only one-way functions and asymmetric
encryption.

Network complexity: try to have only three messages per

session.
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Key ldeas
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Key Ideas

Key Ideas Behind AKA™

| The Failure Message Attack |

UE
(10a) tauth = (n,5QN, & Hi(n), He((sany, n))) HN
HE(n)
UE(1pB) Attacker
1 tauth
I
If IDg = IDA _ 5, 1, V)
tresyne = (SQNy @ HY"(n), H " ((sany , n)))
I

n n
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Key ldeas

Postpone re-synchronization to the next session:
{(1D, sQNy)} oy,

No re-synchronization message =—> no failure message attack.
No extra randomness for the user.
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Key Ideas

Key Ideas Behind AKA™

= Po | The Encrypted 1D Replay Attack |
UE(:DA) {Da}y, HN
! | lattack.
UE(ips) {108} oy, / {aty, HN
taen = (n,5QN, @ Hi(n), Hi((sany, n)))

If
IDg 7 IDA Failure Message
I
If IDg = IDA
;j S
I
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Key ldeas

Postpone re-synchronization to the next session:
{(1D, sQNy)} oy,

No re-synchronization message =—> no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n

({(, saNu)}y s Mack, (({(1p, saNu) by 5 n)))
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Architecture of AKA™

ID sub-protocol:

uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

1D Sub-Protocol
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Architecture of AKA™

ID sub-protocol:

uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

TMP-ID uses a temporary identity.

ASSIGN-TMP-ID assigns a fresh temporary identity.

1D Sub-Protocol TMP-1D Sub-Protocol

~ 7

ASSIGN-TMP-ID Sub-Protocol

21
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Sub-Protocol
(Simplified)
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UEi»

I state|” I

n

HN

I statey I

(L, sav,)}s

Macin ({0, sQNy)}oe 5 m)))

@NU —SsQN, +1

bmac ¢ check-mac
if bmac then authenticated 1D
binc ¢ bmac A sQN, > soNy
if bine then sQNy 4 SQN, + 1
-
sessiony < n

D

TMP-IDy < TMP-ID

1D

Sub-Protocol
(Simplified)
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UEi»

I state!” I

n

1D
HN Sub-Protocol

IStatew I (Simplified)

{(m, saNy) ok

Macie ({10, sQNu)}E o m))

@NU —SQN, +1

bmac ¢ check-mac

if bmac then authenticated 1D

if bine then sQNy

sessiony, < n
TMP-IDy <— TMP-ID

bine < bmac A SQN, > sQNY

< SQN, +1

D

Macﬁ:ﬂ((n , SQN, + 1))

LbMac

H if check-mac then authenticated HN H
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UE,»

D
state;

HN

I statey I

TMP-IDy

valid-tmp, « false

TMP-ID
Sub-Protocol
(Simplified)
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UE,»

D
state;

HN

I statey I

TMP-IDy

TMP-ID

Sub-Protocol
(Simplified)

valid-tmp, « false by = TMP-ID)’ = TMP-IDy # UnSet

if by, then TMP-IDY < UnSet
sessiony, < n

<n ,SQNY @ Hyno (n), Macﬁﬁ((n ,SQNY, TMP—IDU>)>
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UE;, HN

TMP-IDy |

valid-tmp, < false b, <~ TMP-IDY = TMP-IDy # UnSet

if by, then TMP-IDY < UnSet
sessiony, < n

D

<n ,8QNY @ Hio(n) , Macjio ((n, sQNY, TMP—IDU>)> L

bace +— check-mac A range(sqQNy,, sQNy)

if bacc then sQN, < sQng + 1

bace |

Macﬁﬁ(n)

TMP-ID

Sub-Protocol
(Simplified)
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UE,»

1D
state,

HN

I statey I

TMP-IDy

valid-tmp, < false

. »
if by, then TMP-TDy
sessiony,

b, <~ TMP-IDY = TMP-IDy # UnSet

< UnSet
<—n

<n ,8QNY @ Hio(n) , Macjio ((n, sQNY, TMP—IDU>)>

if bacc then sQN, < sQng + 1

bace +— check-mac A range(sqQNy,, sQNy)

bace |

Macﬁﬁ(n)

bmac < check-mac

if bine then sqQNy

if bmac then authenticated 1D

binc ¢~ bmac A sessiony’ = n

TMP-IDy <— TMP-ID

—sQNy +1

D

!

TMP-ID
Sub-Protocol
(Simplified)
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The ASSIGN-TMP-ID Sub-Protocol

UE,, HN

stateLD statey

(TMP-1D @ Hin (n) , Macgu ((TMP-ID, n)))

bace < check-mac
TMP-IDy < if bace then TMP-ID else UnSet
valid-tmp,; <= bacc

n n

24
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Security Proofs

Formally prove that AKA™ satisfies:

mutual authentication.

unlinkability.
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Security Proofs

Goal A

Formally prove t

7&
= mutual aut A

m unlinkability

TMP-ID sub-protocol
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Security Proofs

Formally prove that AKA™ satisfies:

mutual authentication.

unlinkability — o-unlinkability.
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The o-Unlinkability Property

Show privacy only for a subset of the standard unlinkability
game scenarios.
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The o-Unlinkability Property

Show privacy only for a subset of the standard unlinkability
game scenarios.
Game-based definition (like standard unlinkability).
Parametric property (o).
In general, weaker than unlinkability.

Allow to precisely quantify privacy guarantees.
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The o-Unlinkability Property

Each time the ID sub-protocol is used, we can change the user’s

identity.
A— B — A ) — B — B ) — B }—+>
Y]
A — B
1D sub-protocol TMP-ID sub-protocol
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The o-Unlinkability Property

Each time the ID sub-protocol is used, we can change the user’s

identity.
A— B — A ) — B — B ) — B }—+>
Y]
A B F1AJ)J—1 CFH CJ}J— C >
1D sub-protocol TMP-ID sub-protocol
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o-Unlinkability

There is a trade-off between:

Efficiency: the TMP-ID sub-protocol is faster.

Privacy: the ID sub-protocol provides some privacy.
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o-Unlinkability

There is a trade-off between:

Efficiency: the TMP-ID sub-protocol is faster.

Privacy: the ID sub-protocol provides some privacy.

If we use only the 1D sub-protocol, we get standard unlinkability.
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Modeling

The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.
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Modeling

The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

A security property P ~ @ is modeled by a formula:
Up ~ g

Implementation assumptions and cryptographic

hypothesis are modeled by axioms Ax.

We have to show that Ax |= up ~ .

29



Modeling: the Protocol

Symbolic trace of actions 7.
Example: 7 = UEa, HN, UEg, UEA.
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Modeling: the Protocol

Symbolic trace of actions 7.
Example: 7 = UEa, HN, UEg, UEA.

Symbolic frame ¢.: sequences of messages observed by the
attacker.

Symbolic state o.: current state of the users and the
network.
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Modeling: the Protocol

UE

|
-

‘Input n: b-authy + n‘

({0, 5aN)}p, » Mach, ({0, sa8,) )5, » 1))

“ SQN, < SQN, + 1 H
T

31



Modeling: the Protocol

UE

|
-

‘Input n: b-authy + n‘

<{<] son M\ Macl (/f/in con ML K > n>)>

SQN, < SQN, 4  Adversary knowledge: ¢"

Adversary computations: g

= Symbolic input: g(¢")
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Modeling: the Protocol

UE
: n
-
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T

Ne
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Modeling: the Protocol

UE

|
-

‘Input n: b-authy + n‘

({(, 5aN)} . Mach, ({0, san,)}y, s 1))

“ SQN, < SQN, + 1 H
T

t" = {(ID, 0" (sQNy))}"e

pky
by = T,<t$"°, Macilrg((tﬁnc, g( T)>)>
ot = .
b-auth, — g(o!")
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Modeling: the Protocol

UE

|
-

‘Input n: b-authy + n‘

({0, 5aN)}p, » Mach, ({0, sa8,) )5, » 1))

“ SQN, < sQnN, + 1 H
T

£ = {(1D, o (sQN)},
¢T T7<t$nc7 Maci$(<t7e.nc, g( I:)>)>
SQNy — suc(o"(sQNY))
o = i
b-authy +— g(¢")

)
~‘
Il
)
)
C
el
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Base Axioms

If Mac is an EUF-MAC function, then the following axiom is valid:

verify, (s,m) = \/ ,csm=u (EUF-MAC)
Where:

S = {u| Mac,_(u) € st(s,m)}.
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Base Axioms

If Mac is an EUF-MAC function, then the following axiom is valid:

verify, (s,m) = \/ ,csm=u (EUF-MAC)
Where:

S = {u| Mac,_(u) € st(s,m)}.

km appears only in Mac or verify key position in s, m.

Example

¢ = Mac,_(t1), Mac,_(t2), Mack,m(tg)

verify,_(g(¢),n) — (n=t1Vn=1t)
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Inference Rules

If you cannot distinguish the arguments, you cannot distinguish

the images.
X1y sXn ™~ Y1,---5Yn

f(xty.osxn) ~Ff(yi,-..,¥n)

FA
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For every 7, we let 7 be 7 where we use a fresh identity each time
we run the ID sub-protocol.
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we run the ID sub-protocol.
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For every 7, we let 7 be 7 where we use a fresh identity each time

we run the ID sub-protocol.
For every valid 7, there is a derivation using Ax of ¢, ~ ¢-.

The AKA™ protocol is o-unlinkable for an arbitrary number of

agents and sessions when:

The asymmetric encryption { }— is IND-CCAj.

H and H" (resp. Mac'~Mac®) are jointly PRF.
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This is against an active attacker.

We show this for an arbitrary number of agents and
sessions.
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The proof is by induction over the symbolic trace 7. Finding the
invariant requires some work, as it needs to:

anticipate what will be needed later (e.g. encryptions).

match the left and right views of the adversary on the
state.
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The proof is by induction over the symbolic trace 7. Finding the
invariant requires some work, as it needs to:

anticipate what will be needed later (e.g. encryptions).
match the left and right views of the adversary on the
state.

if o (sync'®) if o, (syncy ™)
then o, (SQNP) — 0, (SQNP) ~  then 0,(SQNy™) — 0, (SQNy 7)

else | else |
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known unlinkability attacks still applies.
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Conclusion

m While 5G-AKA prevents the 1MSI-catcher attack, all others
known unlinkability attacks still applies.

m We gave a new unlinkability attack against PRIV-AKA.

m We proposed the AKA™ protocol, which tries to satisfy the
design constraints of 5G-AKA.

m We defined the notion of o-unlinkability.
m We proved in the BC logic that AKA™ is o-unlinkability.

m We also proved that AKA™ provides mutual authentication.
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Thanks for your attention
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No Pre-Fetching of Authentication Vectors

5G AKA does not support requesting multiple 5G AVs, nei-
ther the SEAF pre-fetching 5G AVs from the home network
for future use.



UE HN

I 1D, TMP-ID, k, SQN,, I I ID, TMP-ID, k, SQN I

TMP-ID or ID

“ if TMP-ID was used: TMP-1D +— UnSet ”

(n.san, & Hi(n), HE((sany. n)))

Input x: SQNy ¢ SQN +Zl

nR, SQNg < m1(x), m2(x) @ Hy(nr)
bmac < Hi((sQNg . nRr)) = m3(x)
bsqn 4 range(sQNy, SQNR)

bmac A bsan

SQN,, < SQNg

HZ(nR)

I-‘E:c] “Auth-Failure”
|

brec A “Bsan [ o, @ HE™ (nr) , HE* ({50, » 1))

Input y:

sang « m(y) ® HY(n)

if HE"((sang, n)) = ma(y) then san, + sqNg +1
T

] ]




UE HN

I 1D, TMP-ID, k, pk,, SQN,, I I ID, TMP-ID, k, sky, SQN, I

TMP-ID or {ID}

“ if TMP-ID was used: TMP-ID <— UnSet ”

(n,sany @ Hi(n) , H((sany , n)))

Input x: SQNy < SQNy +Zl

nR, SQNg < m1(x), m2(x) @ Hy(nRr)
bmac < HE({(SQNg , NR)) = m3(x)
bsan ¢ range(sQN,, SQNR)

bmac A bsan

o

I_‘E:c] “Auth-Failure”
|

brmac A “Bsan [T, @ HE* () , HE™ (50, 1))

Input y:

SQNR = mi(y) @ Hp ™ (n)

if HE"((sang, n)) = m2(y) then sQN, + sQNg +1
T

. .



HNG)

I statey I

1D
Sub-Protocol

H Input ng: b-auth, < ng H

({n, sang) 3k Macke ({(0, saNu) 1k s nR)))

[

v SQN, +1

Input y:

(IDR , SQNR) < dec(71(y), sky)

biac ¢ ma(y) = Macigs ((m1(y) , ')

A1IDR = ID
inc ¢ biac /A SQNR > SQNY

if bl then b-authl, e-auth’, «+ >

if bine then sQNy < sQNg + 1
session!” <+ n/
TMP-1DY” < TMP-1D’

; bmac
Mac((n/, saxg +1)) i

Input z:

bok = z = Mac ((b-authy, san.))

e-auth, < if boy then b-auth, else fail




UE(1p) HN(j)
I state I
valid-tmp,, — |
I
1
EI mp, + false Input x:

i

by ¢~ TMP-IDY = x A TMP-ID) # UnSet
if by, then TMP-IDY — UnSet

b-auth!, «+ 1D

sessiony, < n’

<nf ,5QNY @ Hieo (1), Macjs (W, sQNY , T™P-1DY )>

| bio

Input y:

nR, SQNg = m1(y), m2(y) © Hieo (ng)
bace ¢ 73(y) = Macis ({nk , SQNg , TMP-ID,)))
A range(sQN,;, SQNR)

if bace then b-auth,, e-auth,, < ng

SN,

if —bacc then b-authy, e-auth, < fail

—SQN, +1

bace |

Macjs (nr)

TMP-ID
Sub-Protocol

Input z:
biac = (b-authl, = D) A (z = Macjp (n/))
inc ¢ biiac /\ session} = n/
if biac then e-authl < D
if bine then sQNY <+ sQNY + 1
TMP-ID® = TMP-1D/




The ASSIGN-TMP-ID Sub-Protocol

UE HN(/)
state;)

. . o -authy =
(TMP-1D/ & Hiow ('), Macg ((TMP-1D/ , /) eauthy =

Input x:

TMP-IDR «— m1(x) & Hiw (e-authy)

bace (TI'Q(X) = Macixrﬁ(<TMP-IDR, e—authU>))
A (e-authy # fail)

TMP-1Dy 4— if bacc then TMP-IDR else UnSet

valid-tmp,; < bacc




PRIV-AKA [Fouque et al., 2016]

Client Server Operator
(ske. skop: Pke), (Sanc. idxc), (TMSl., LAL,) (TMS) (skc, Skep, ske). (Sanop.c.idxop.c)
User Identity  Request
Rig
- @@

0

User  Identity  Answer
1D][Opy
N

®

Auth.  Vectors  Request
Val
N

®

Auth Vectors  Answer
(aviiy

@

Auth.  Challenge
RUY || Autn (|| AE Ency ik (TMSH, ik )
- @

Auth.  Response
Res

-

Update  Sequence  Number




PRIV-AKA [Fouque et al., 2016]

Client

Operator

(@): Compute the identifier:
Ifflagrus: := 0 then ID = TMSL.

Else, ID = PKE.Encpie(f5 (keys, Rig, IMSI, idxc ) ||Ria |IMSI||idxc).

flagrusi

(5): Compute AK using R,
Recover Sqn{} (from AK).
Check Macs value.
Compute: IK, CK;
Retrieve the received index and the new TMSI.
If abort caused or the AE does not verify, set flagrus) := 1 and

increment: idxc := idxc + 1.

Else, check validity of Sqn {}, i.e if one of the following
conditions is correct:
- Sanc = Sqnfi}.

- Sanc = inc(Sqn{™) and idx{? = idxc + 1.

If the first condition is accepted: reset the index idxc,
update the sequence number Sqnc = inc(Sanc) -

If the second condition is accepted: idxc=idxc+1 .
Compute Res := F; (keys, R(}, Sqn{'}, Ress, AMF )

Update the internal index.  Allocate the new TMSI.
flagrmgs = 0.

(@): Process the identifier ID:
Ifhe identier is a TMS! then Val =
IMSI. Otherwise, Val = (ID, Ry).

@ Store {AV (i1},

Choose AV{#} one by one in order.
Then, it sends the authentication
challenge and  the new couple

(TMSL,,, idx{?}) encrypted and

authenticated by the session keys.

(®): 1 the authentication of the
client is verified (Res — Macc), then
they ask to the server the update
of its sequence number. Otherwise,
the protocol is aborted.

(3): Verity the identiy of the client with Val

If this holds, retrieve idxc, set idxop,c := idxc
Generate (R(!}, ., R("}). Denote: keys := (skc, skop)
Foreachi=1,...,n, compute
Macs « Fi(keys, R}, Sqnii}, Ress, AMF),
Macc « F (keys,R{1}, Sqnt'}, Ress, AMF ),

CK « Fy(keys, RU}, Sqni'} Ress, AMF ),

IK + Fy(keys,RU}, Sqn{}, Ress, AMF ),

AK « Fs(keys,R{1}, Ress ),

Autn{} « (Sqn T} @ AK)[|AMF||Macs,

Sant} « inc(Sgnti=1})

AVED = (RUD, CK, IK, Autn{®}, Macc, idx (%), with
Sqn{!} := Sanop,c,

idx 11} = idxgp,c . Vi # 1,idx{} =0
End for.

(@) : Update the sequence number:
Sanop,c ¢ inc(Sanop,c). Reset the index idsop,c.
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