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The 4G-AKA and 5G-AKA
Protocols



Authentication and Key Agreement Protocol

UE
SN HN

Wireless channel

µ

Secure channel (TLS)

Security Properties

Mutual authentication between the user and the
service provider.

Untraceability of the user against an outside observer.
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Sequence Numbers

Pseudo Random Number Generation
User side: all crypto primitives are computed in the SIM.

⇒ In 4G-AKA, no PRNG on the mobile phone.

Cryptographic Primitives
Asymmetric encryption requires randomness.
⇒ 4G-AKA uses only symmetric one-way functions.
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Sequence Numbers

Authentication
Authentication protocols need to prevent message replays:

The antenna uses a random challenge.
The mobile phone uses a sequence number sqn:

Incremented after each successful session.
Tracked by the user and the antenna (sqnu and sqnn).

⇒ De-synchronization possible.
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id, k, sqnu id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac

bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn
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Privacy in 4G-AKA

Not confidentiality of the user identity
The id is sent in plain text!

4G-AKA solution
Allow to use a temporary identity tmp-id instead of the
permanent identity id.
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id, k, sqnu id, k, sqnn

tmp-id or id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac

bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

assign-tmp-id
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Privacy in 4G-AKA

Confidentiality of the user identity
Once a temporary identity is set up, the id is protected if:

The protocol does not fail.

The adversary is a passive adversary.

⇒ This is not realistic!
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The imsi Catcher Attack [Strobel, 2007]

UE Attackertmp-id or id

“Permanent-ID-Request”
If tmp-id received

id

Why this is a major attack

Reliable: the attack always works.

Easy to deploy: only need an antenna.

Large scale: not targeted.
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Privacy in 5G-AKA

3GPP fix for 5G-AKA

Encrypt the permanent identity by sending {id}pkn
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id, k, pkn, sqnu id, k, skn, sqnn

tmp-id or {id}pkn〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check mac

bsqn ← check range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

assign-tmp-id
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Privacy in 5G-AKA

Is it enough?

For confidentiality of the id, yes.

For unlinkability, no.
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Unlinkability

Unlinkability Attack
Even if id is hidden, an attacker can link sessions of a user.

Example of an Unlinkability Scenario

F

A

A

B
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A
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∼
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The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA
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The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA
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New Attack on the PRIV-AKA Protocol

The PRIV-AKA Protocol
PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

Unlinkability Attack (four sessions)
We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t1.

Re-synchronize the user and the network.

Re-iterate the last two steps to get a second message t2.

Send both t1 and t2, which increments sqnn by two.

User permanently de-synchronized ⇒ unlinkability attack.
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Goal

Goal

Design a modified version of AKA, called AKA+, such that:

Provides some form of unlinkability.

Satisfies the design and efficiency constraints of 5G-AKA.

Is proved secure.
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The AKA+ Protocol



Random Number Generation in 5G-AKA

Random Number Generation by the User
In 5G-AKA, the user generates a random number only:

If no tmp-id is assigned.

In the session following a de-synchronization.

18



The AKA+ Protocol

Design Constraints

AKA+ should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for
re-synchronization or if no tmp-id is assigned.

The user can use only one-way functions and asymmetric
encryption.

Network complexity: try to have only three messages per
session.

19



The AKA+ Protocol

Design Constraints

AKA+ should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for
re-synchronization or if no tmp-id is assigned.

The user can use only one-way functions and asymmetric
encryption.

Network complexity: try to have only three messages per
session.

19



The AKA+ Protocol

Design Constraints

AKA+ should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for
re-synchronization or if no tmp-id is assigned.

The user can use only one-way functions and asymmetric
encryption.

Network complexity: try to have only three messages per
session.

19



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Architecture of AKA+

AKA+ Sub-Protocols

id sub-protocol:
uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

tmp-id uses a temporary identity.

assign-tmp-id assigns a fresh temporary identity.

id Sub-Protocol tmp-id Sub-Protocol

assign-tmp-id Sub-Protocol
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UEid

stateidu

HN

staten
n〈

{〈id , sqnu〉}ne
pkn

, Mac1
kidm

(〈{〈id , sqnu〉}ne
pkn

, n〉)
〉

sqnu ← sqnu + 1 bMac ← check-mac

if bMac then authenticated id

bInc ← bMac ∧ sqnu ≥ sqnid
n

if bInc then sqnid
n ← sqnu + 1

sessionid
n ← n

tmp-idid
n ← tmp-id

Mac2
kidm

(〈n , sqnu + 1〉)
bMac

if check-mac then authenticated HN

id
Sub-Protocol
(Simplified)
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The assign-tmp-id Sub-Protocol

UEid

stateidu

HN

staten

〈tmp-id⊕ Hr
kid(n) , Mac5

kidm
(〈tmp-id , n〉)〉

bacc ← check-mac
tmp-idu ← if bacc then tmp-id else UnSet
valid-tmpu ← bacc

24
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Security Proofs

Goal

Formally prove that AKA+ satisfies:

mutual authentication.

unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol
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Security Proofs

Goal

Formally prove that AKA+ satisfies:

mutual authentication.

unlinkability =⇒ σ-unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol
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The σ-Unlinkability Property

σ-Unlinkability
Show privacy only for a subset of the standard unlinkability
game scenarios.

Game-based definition (like standard unlinkability).

Parametric property (σ).

In general, weaker than unlinkability.

Allow to precisely quantify privacy guarantees.
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The σ-Unlinkability Property

Two Indistinguishable Executions
Each time the id sub-protocol is used, we can change the user’s
identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol
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σ-Unlinkability

Efficiency vs Privacy
There is a trade-off between:

Efficiency: the tmp-id sub-protocol is faster.

Privacy: the id sub-protocol provides some privacy.

Remark
If we use only the id sub-protocol, we get standard unlinkability.
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Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

A security property P ∼ Q is modeled by a formula:
~uP ∼ ~uQ

Implementation assumptions and cryptographic
hypothesis are modeled by axioms Ax.

We have to show that Ax |= ~uP ∼ ~uQ .
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Modeling: the Protocol

Messages and State

Symbolic trace of actions τ .
Example: τ = UEA, HN, UEB, UEA.

Symbolic frame φτ : sequences of messages observed by the
attacker.

Symbolic state στ : current state of the users and the
network.
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Modeling: the Protocol

UE n

Input n: b-authu ← n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

sqnu ← sqnu + 1

tenc
τ ≡ {〈id , σin

τ (sqnu)〉}ne
pkn

φτ ≡ φin
τ ,
〈
tenc
τ , Mac1kidm(〈t

enc
τ , g(φin

τ )〉)
〉

σup
τ ≡

{

sqnu 7→ suc(σin
τ (sqnid

u ))

b-authu 7→ g(φin
τ )

στ ≡ σin
τ · σup

τ

Adversary knowledge: φin
τ

Adversary computations: g

=⇒ Symbolic input: g(φin
τ )
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Base Axioms

Mac Unforgeability
If Mac is an euf-mac function, then the following axiom is valid:

verifykm(s,m)→
∨

u∈S m = u (euf-mac)

Where:

S = {u | Mackm
(u) ∈ st(s,m)}.

km appears only in Mac or verify key position in s,m.

Example

φ ≡ Mackm
(t1),Mackm

(t2),Mack′m(t3)

verifykm(g(φ), n) →

(
n = t1 ∨ n = t2

)
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Inference Rules

Function Application
If you cannot distinguish the arguments, you cannot distinguish
the images.

x1, . . . , xn ∼ y1, . . . , yn
f (x1, . . . , xn) ∼ f (y1, . . . , yn)

FA

33



Theorem

Definition
For every τ , we let τ be τ where we use a fresh identity each time
we run the id sub-protocol.

Lemma
For every valid τ , there is a derivation using Ax of φτ ∼ φτ .

Theorem

The AKA+ protocol is σ-unlinkable for an arbitrary number of
agents and sessions when:

The asymmetric encryption {_}__ is ind-cca1.

H and Hr (resp. Mac1–Mac5) are jointly prf.
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Remarks

Remarks

This is against an active attacker.

We show this for an arbitrary number of agents and
sessions.
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Proof

Proof
The proof is by induction over the symbolic trace τ . Finding the
invariant requires some work, as it needs to:

anticipate what will be needed later (e.g. encryptions).

match the left and right views of the adversary on the
state.

if στ (syncidu )

then στ (sqnid
u )− στ (sqnid

n )

else ⊥
∼

if στ (syncidτ
u )

then στ (sqnidτ
u )− στ (sqnidτ

n )

else ⊥

36



Proof

Proof
The proof is by induction over the symbolic trace τ . Finding the
invariant requires some work, as it needs to:

anticipate what will be needed later (e.g. encryptions).

match the left and right views of the adversary on the
state.

if στ (syncidu )

then στ (sqnid
u )− στ (sqnid

n )

else ⊥
∼

if στ (syncidτ
u )

then στ (sqnidτ
u )− στ (sqnidτ

n )

else ⊥

36



Conclusion



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Thanks for your attention
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No Pre-Fetching of Authentication Vectors

From the 3GPP specification for 5G-AKA ([3GPP, 2018],
p. 37)

5G AKA does not support requesting multiple 5G AVs, nei-
ther the SEAF pre-fetching 5G AVs from the home network
for future use.



UE

id,tmp-id, k, sqnu

HN

id,tmp-id, k, sqnn

tmp-id or id

if tmp-id was used: tmp-id← UnSet〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Input x:
nR, sqnR ← π1(x), π2(x)⊕ H5

k(nR)

bmac ← H1
k(〈sqnR , nR〉) = π3(x)

bsqn ← range(sqnu, sqnR)

sqnn ← sqnn + 1

sqnu ← sqnR
H2

k(nR)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (nR) , H1,∗
k (〈sqnu , nR〉)

〉
Input y:
sqn∗R ← π1(y)⊕ H5,∗

k (n)
if H1,∗

k (〈sqn∗R , n〉) = π2(y) then sqnn ← sqn∗R + 1

bmac ∧ ¬bsqn

4G-AKA
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id,tmp-id, k, skn, sqnn
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n , sqnn ⊕ H5

k(n) , H
1
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〉
Input x:
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UE

stateidu

HN(j)

staten
nj

Input nR: b-authu ← nR〈
{〈id , sqnu〉}ne

pkn
, Mac1

kidm
(〈{〈id , sqnu〉}ne

pkn
, nR〉)

〉
sqnu ← sqnu + 1 Input y:

〈idR , sqnR〉 ← dec(π1(y), skn)

bid
Mac ← π2(y) = Mac1

kidm(〈π1(y) , nj〉)
∧ idR = id

bid
Inc ← bid

Mac ∧ sqnR ≥ sqnid
n

if bid
Mac then b-authjn, e-auth

j
n ← id

if bid
Inc then sqnid

n ← sqnR + 1
sessionid

n ← nj

tmp-idid
n ← tmp-idj

Mac2
kidm

(〈nj , sqnR + 1〉)
bMac

Input z:

bok ← z = Mac2
kidm

(〈b-authu , sqnu〉)
e-authu ← if bok then b-authu else fail

id
Sub-Protocol



UE(id)

stateidu

HN(j)

staten

tmp-idu
valid-tmpu

valid-tmpu ← false Input x:
bid ← tmp-idid

n = x ∧ tmp-idid
n 6= UnSet

if bid then tmp-idid
n ← UnSet

b-authjn ← id
sessionid

n ← nj

〈
nj , sqnid

n ⊕ Hkid(nj) , Mac3
kidm

(〈nj , sqnid
n , tmp-idid

n 〉)
〉 bid

Input y:
nR, sqnR ← π1(y), π2(y)⊕ Hkid(nR)

bacc ← π3(y) = Mac3
kidm(〈nR , sqnR , tmp-idu〉))

∧ range(sqnu, sqnR)

if bacc then b-authu, e-authu ← nR

sqnu ← sqnu + 1

if ¬bacc then b-authu, e-authu ← fail

Mac4
kidm

(nR)
bacc

Input z:

bid
Mac ← (b-authjn = id) ∧ (z = Mac4

kidm
(nj))

bid
Inc ← bid

Mac ∧ sessionid
n = nj

if bid
Mac then e-authjn ← id

if bid
Inc then sqnid

n ← sqnid
n + 1

tmp-idid
n ← tmp-idj

tmp-id
Sub-Protocol



The assign-tmp-id Sub-Protocol

UE

stateidu

HN(j)

staten

〈tmp-idj ⊕ Hr
kid(n

j) , Mac5
kidm

(
〈
tmp-idj , nj

〉
)〉

e-authid
n = id

Input x:
tmp-idR ← π1(x)⊕ Hr

kidm
(e-authu)

bacc ←
(
π2(x) = Mac5

kidm(〈tmp-idR , e-authu〉)
)

∧ (e-authu 6= fail)

tmp-idu ← if bacc then tmp-idR else UnSet
valid-tmpu ← bacc
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