
The 5G-AKA Authentication Protocol
Privacy

Adrien Koutsos
Max Planck Institute for Security and Privacy

November 5, 2019

1



The 4G-AKA and 5G-AKA
Protocols



Authentication and Key Agreement Protocol

UE
SN HN

Wireless channel

µ

Secure channel (TLS)

Security Properties

Mutual authentication between the user and the
service provider.

Untraceability of the user against an outside observer.

2



Authentication and Key Agreement Protocol

UE
SN HN

Wireless channel

µ

Secure channel (TLS)

Security Properties

Mutual authentication between the user and the
service provider.

Untraceability of the user against an outside observer.

2



Authentication and Key Agreement Protocol

UE
SN HN

Wireless channel

µ

Secure channel (TLS)

Security Properties

Mutual authentication between the user and the
service provider.

Untraceability of the user against an outside observer.

2



Sequence Numbers

Pseudo Random Number Generation
User side: all crypto primitives are computed in the SIM.

⇒ In 4G-AKA, no PRNG on the mobile phone.

Cryptographic Primitives
Asymmetric encryption requires randomness.
⇒ 4G-AKA uses only symmetric one-way functions.

3



Sequence Numbers

Pseudo Random Number Generation
User side: all crypto primitives are computed in the SIM.
⇒ In 4G-AKA, no PRNG on the mobile phone.

Cryptographic Primitives
Asymmetric encryption requires randomness.
⇒ 4G-AKA uses only symmetric one-way functions.

3



Sequence Numbers

Pseudo Random Number Generation
User side: all crypto primitives are computed in the SIM.
⇒ In 4G-AKA, no PRNG on the mobile phone.

Cryptographic Primitives
Asymmetric encryption requires randomness.
⇒ 4G-AKA uses only symmetric one-way functions.

3



Sequence Numbers

Authentication
Authentication protocols need to prevent message replays:

The antenna uses a random challenge.
The mobile phone uses a sequence number sqn:

Incremented after each successful session.
Tracked by the user and the antenna (sqnu and sqnn).

⇒ De-synchronization possible.

4



Sequence Numbers

Authentication
Authentication protocols need to prevent message replays:

The antenna uses a random challenge.
The mobile phone uses a sequence number sqn:

Incremented after each successful session.
Tracked by the user and the antenna (sqnu and sqnn).

⇒ De-synchronization possible.

4



Sequence Numbers

Authentication
Authentication protocols need to prevent message replays:

The antenna uses a random challenge.
The mobile phone uses a sequence number sqn:

Incremented after each successful session.
Tracked by the user and the antenna (sqnu and sqnn).

⇒ De-synchronization possible.

4



id, k, sqnu id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac

bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4G-AKA 5



id, k, sqnu id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac

bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4G-AKA 5



id, k, sqnu id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac

bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4G-AKA 5



id, k, sqnu id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac

bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4G-AKA 5



id, k, sqnu id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac

bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4G-AKA 5



Privacy in 4G-AKA

Not confidentiality of the user identity
The id is sent in plain text!

4G-AKA solution
Allow to use a temporary identity tmp-id instead of the
permanent identity id.

6



Privacy in 4G-AKA

Not confidentiality of the user identity
The id is sent in plain text!

4G-AKA solution
Allow to use a temporary identity tmp-id instead of the
permanent identity id.

6



id, k, sqnu id, k, sqnn

tmp-id or id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac

bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

assign-tmp-id

4G-AKA 7



Privacy in 4G-AKA

Confidentiality of the user identity
Once a temporary identity is set up, the id is protected if:

The protocol does not fail.

The adversary is a passive adversary.

⇒ This is not realistic!

8



Privacy in 4G-AKA

Confidentiality of the user identity
Once a temporary identity is set up, the id is protected if:

The protocol does not fail.

The adversary is a passive adversary.

⇒ This is not realistic!

8



The imsi Catcher Attack [Strobel, 2007]

UE Attackertmp-id or id

“Permanent-ID-Request”
If tmp-id received

id

Why this is a major attack

Reliable: the attack always works.

Easy to deploy: only need an antenna.

Large scale: not targeted.

9



The imsi Catcher Attack [Strobel, 2007]

UE Attackertmp-id or id

“Permanent-ID-Request”
If tmp-id received

id

Why this is a major attack

Reliable: the attack always works.

Easy to deploy: only need an antenna.

Large scale: not targeted.

9



Privacy in 5G-AKA

3GPP fix for 5G-AKA

Encrypt the permanent identity by sending {id}pkn

10



id, k, pkn, sqnu id, k, skn, sqnn

tmp-id or {id}pkn〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check mac

bsqn ← check range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

assign-tmp-id

5G-AKA 11



Privacy in 5G-AKA

Is it enough?

For confidentiality of the id, yes.

For unlinkability, no.

12



Privacy in 5G-AKA

Is it enough?

For confidentiality of the id, yes.

For unlinkability, no.

12



Privacy in 5G-AKA

Is it enough?

For confidentiality of the id, yes.

For unlinkability, no.

12



Unlinkability

Unlinkability Attack
Even if id is hidden, an attacker can link sessions of a user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

13



Unlinkability

Unlinkability Attack
Even if id is hidden, an attacker can link sessions of a user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

13



Unlinkability

Unlinkability Attack
Even if id is hidden, an attacker can link sessions of a user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

13



Unlinkability

Unlinkability Attack
Even if id is hidden, an attacker can link sessions of a user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

13



Unlinkability

Unlinkability Attack
Even if id is hidden, an attacker can link sessions of a user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

13



The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

14



The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

14



The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

14



The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

15



The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

15



The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

15



New Attack on the PRIV-AKA Protocol

The PRIV-AKA Protocol
PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

Unlinkability Attack (four sessions)
We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t1.

Re-synchronize the user and the network.

Re-iterate the last two steps to get a second message t2.

Send both t1 and t2, which increments sqnn by two.

User permanently de-synchronized ⇒ unlinkability attack.

16



New Attack on the PRIV-AKA Protocol

The PRIV-AKA Protocol
PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

Unlinkability Attack (four sessions)
We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t1.

Re-synchronize the user and the network.

Re-iterate the last two steps to get a second message t2.

Send both t1 and t2, which increments sqnn by two.

User permanently de-synchronized ⇒ unlinkability attack.

16



New Attack on the PRIV-AKA Protocol

The PRIV-AKA Protocol
PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

Unlinkability Attack (four sessions)
We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t1.

Re-synchronize the user and the network.

Re-iterate the last two steps to get a second message t2.

Send both t1 and t2, which increments sqnn by two.

User permanently de-synchronized ⇒ unlinkability attack.

16



New Attack on the PRIV-AKA Protocol

The PRIV-AKA Protocol
PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

Unlinkability Attack (four sessions)
We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t1.

Re-synchronize the user and the network.

Re-iterate the last two steps to get a second message t2.

Send both t1 and t2, which increments sqnn by two.

User permanently de-synchronized ⇒ unlinkability attack.

16



New Attack on the PRIV-AKA Protocol

The PRIV-AKA Protocol
PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

Unlinkability Attack (four sessions)
We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t1.

Re-synchronize the user and the network.

Re-iterate the last two steps to get a second message t2.

Send both t1 and t2, which increments sqnn by two.

User permanently de-synchronized ⇒ unlinkability attack.

16



New Attack on the PRIV-AKA Protocol

The PRIV-AKA Protocol
PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016],
and claimed unlinkable.

Unlinkability Attack (four sessions)
We found an attack to permanently de-synchronize the user:

Run a session but keep the last message t1.

Re-synchronize the user and the network.

Re-iterate the last two steps to get a second message t2.

Send both t1 and t2, which increments sqnn by two.

User permanently de-synchronized ⇒ unlinkability attack.

16



Goal

Goal

Design a modified version of AKA, called AKA+, such that:

Provides some form of unlinkability.

Satisfies the design and efficiency constraints of 5G-AKA.

Is proved secure.

17



Goal

Goal

Design a modified version of AKA, called AKA+, such that:

Provides some form of unlinkability.

Satisfies the design and efficiency constraints of 5G-AKA.

Is proved secure.

17



Goal

Goal

Design a modified version of AKA, called AKA+, such that:

Provides some form of unlinkability.

Satisfies the design and efficiency constraints of 5G-AKA.

Is proved secure.

17



The AKA+ Protocol



Random Number Generation in 5G-AKA

Random Number Generation by the User
In 5G-AKA, the user generates a random number only:

If no tmp-id is assigned.

In the session following a de-synchronization.

18



The AKA+ Protocol

Design Constraints

AKA+ should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for
re-synchronization or if no tmp-id is assigned.

The user can use only one-way functions and asymmetric
encryption.

Network complexity: try to have only three messages per
session.

19



The AKA+ Protocol

Design Constraints

AKA+ should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for
re-synchronization or if no tmp-id is assigned.

The user can use only one-way functions and asymmetric
encryption.

Network complexity: try to have only three messages per
session.

19



The AKA+ Protocol

Design Constraints

AKA+ should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for
re-synchronization or if no tmp-id is assigned.

The user can use only one-way functions and asymmetric
encryption.

Network complexity: try to have only three messages per
session.

19



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Key Ideas

Key Ideas Behind AKA+

Postpone re-synchronization to the next session:
{〈id , sqnu〉}pkn

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent
identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

The Encrypted id Replay Attack

20



Architecture of AKA+

AKA+ Sub-Protocols

id sub-protocol:
uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

tmp-id uses a temporary identity.

assign-tmp-id assigns a fresh temporary identity.

id Sub-Protocol tmp-id Sub-Protocol

assign-tmp-id Sub-Protocol

21



Architecture of AKA+

AKA+ Sub-Protocols

id sub-protocol:
uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

tmp-id uses a temporary identity.

assign-tmp-id assigns a fresh temporary identity.

id Sub-Protocol tmp-id Sub-Protocol

assign-tmp-id Sub-Protocol

21



Architecture of AKA+

AKA+ Sub-Protocols

id sub-protocol:
uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

tmp-id uses a temporary identity.

assign-tmp-id assigns a fresh temporary identity.

id Sub-Protocol tmp-id Sub-Protocol

assign-tmp-id Sub-Protocol

21



UEid

stateidu

HN

staten
n〈

{〈id , sqnu〉}ne
pkn

, Mac1
kidm

(〈{〈id , sqnu〉}ne
pkn

, n〉)
〉

sqnu ← sqnu + 1 bMac ← check-mac

if bMac then authenticated id

bInc ← bMac ∧ sqnu ≥ sqnid
n

if bInc then sqnid
n ← sqnu + 1

sessionid
n ← n

tmp-idid
n ← tmp-id

Mac2
kidm

(〈n , sqnu + 1〉)
bMac

if check-mac then authenticated HN

id
Sub-Protocol
(Simplified)

22



UEid

stateidu

HN

staten
n〈

{〈id , sqnu〉}ne
pkn

, Mac1
kidm

(〈{〈id , sqnu〉}ne
pkn

, n〉)
〉

sqnu ← sqnu + 1 bMac ← check-mac

if bMac then authenticated id

bInc ← bMac ∧ sqnu ≥ sqnid
n

if bInc then sqnid
n ← sqnu + 1

sessionid
n ← n

tmp-idid
n ← tmp-id

Mac2
kidm

(〈n , sqnu + 1〉)
bMac

if check-mac then authenticated HN

id
Sub-Protocol
(Simplified)

22



UEid

stateidu

HN

staten
n〈

{〈id , sqnu〉}ne
pkn

, Mac1
kidm

(〈{〈id , sqnu〉}ne
pkn

, n〉)
〉

sqnu ← sqnu + 1 bMac ← check-mac

if bMac then authenticated id

bInc ← bMac ∧ sqnu ≥ sqnid
n

if bInc then sqnid
n ← sqnu + 1

sessionid
n ← n

tmp-idid
n ← tmp-id

Mac2
kidm

(〈n , sqnu + 1〉)
bMac

if check-mac then authenticated HN

id
Sub-Protocol
(Simplified)

22



UEid

stateidu

HN

staten

tmp-idu
valid-tmpu

valid-tmpu ← false bid ← tmp-idid
n = tmp-idu 6= UnSet

if bid then tmp-idid
n ← UnSet

sessionid
n ← n

〈
n , sqnid

n ⊕ Hkid(n) , Mac3
kidm

(〈n , sqnid
n , tmp-idu〉)

〉 bid

bacc ← check-mac ∧ range(sqnu, sqnid
n )

if bacc then sqnu ← sqnu + 1

Mac4
kidm

(n)
bacc

bMac ← check-mac

if bMac then authenticated id

bInc ← bMac ∧ sessionid
n = n

if bInc then sqnid
n ← sqnid

n + 1
tmp-idid

n ← tmp-id

tmp-id
Sub-Protocol
(Simplified)

23



UEid

stateidu

HN

staten

tmp-idu
valid-tmpu

valid-tmpu ← false bid ← tmp-idid
n = tmp-idu 6= UnSet

if bid then tmp-idid
n ← UnSet

sessionid
n ← n

〈
n , sqnid

n ⊕ Hkid(n) , Mac3
kidm

(〈n , sqnid
n , tmp-idu〉)

〉 bid

bacc ← check-mac ∧ range(sqnu, sqnid
n )

if bacc then sqnu ← sqnu + 1

Mac4
kidm

(n)
bacc

bMac ← check-mac

if bMac then authenticated id

bInc ← bMac ∧ sessionid
n = n

if bInc then sqnid
n ← sqnid

n + 1
tmp-idid

n ← tmp-id

tmp-id
Sub-Protocol
(Simplified)

23



UEid

stateidu

HN

staten

tmp-idu
valid-tmpu

valid-tmpu ← false bid ← tmp-idid
n = tmp-idu 6= UnSet

if bid then tmp-idid
n ← UnSet

sessionid
n ← n

〈
n , sqnid

n ⊕ Hkid(n) , Mac3
kidm

(〈n , sqnid
n , tmp-idu〉)

〉 bid

bacc ← check-mac ∧ range(sqnu, sqnid
n )

if bacc then sqnu ← sqnu + 1

Mac4
kidm

(n)
bacc

bMac ← check-mac

if bMac then authenticated id

bInc ← bMac ∧ sessionid
n = n

if bInc then sqnid
n ← sqnid

n + 1
tmp-idid

n ← tmp-id

tmp-id
Sub-Protocol
(Simplified)

23



UEid

stateidu

HN

staten

tmp-idu
valid-tmpu

valid-tmpu ← false bid ← tmp-idid
n = tmp-idu 6= UnSet

if bid then tmp-idid
n ← UnSet

sessionid
n ← n

〈
n , sqnid

n ⊕ Hkid(n) , Mac3
kidm

(〈n , sqnid
n , tmp-idu〉)

〉 bid

bacc ← check-mac ∧ range(sqnu, sqnid
n )

if bacc then sqnu ← sqnu + 1

Mac4
kidm

(n)
bacc

bMac ← check-mac

if bMac then authenticated id

bInc ← bMac ∧ sessionid
n = n

if bInc then sqnid
n ← sqnid

n + 1
tmp-idid

n ← tmp-id

tmp-id
Sub-Protocol
(Simplified)

23



The assign-tmp-id Sub-Protocol

UEid

stateidu

HN

staten

〈tmp-id⊕ Hr
kid(n) , Mac5

kidm
(〈tmp-id , n〉)〉

bacc ← check-mac
tmp-idu ← if bacc then tmp-id else UnSet
valid-tmpu ← bacc

24



Security Proofs



Security Proofs

Goal

Formally prove that AKA+ satisfies:

mutual authentication.

unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol

25



Security Proofs

Goal

Formally prove that AKA+ satisfies:

mutual authentication.

unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol

25



Security Proofs

Goal

Formally prove that AKA+ satisfies:

mutual authentication.

unlinkability =⇒ σ-unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol

25



The σ-Unlinkability Property

σ-Unlinkability
Show privacy only for a subset of the standard unlinkability
game scenarios.

Game-based definition (like standard unlinkability).

Parametric property (σ).

In general, weaker than unlinkability.

Allow to precisely quantify privacy guarantees.

26



The σ-Unlinkability Property

σ-Unlinkability
Show privacy only for a subset of the standard unlinkability
game scenarios.

Game-based definition (like standard unlinkability).

Parametric property (σ).

In general, weaker than unlinkability.

Allow to precisely quantify privacy guarantees.

26



The σ-Unlinkability Property

Two Indistinguishable Executions
Each time the id sub-protocol is used, we can change the user’s
identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol

27



The σ-Unlinkability Property

Two Indistinguishable Executions
Each time the id sub-protocol is used, we can change the user’s
identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol

27



The σ-Unlinkability Property

Two Indistinguishable Executions
Each time the id sub-protocol is used, we can change the user’s
identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol

27



The σ-Unlinkability Property

Two Indistinguishable Executions
Each time the id sub-protocol is used, we can change the user’s
identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol

27



σ-Unlinkability

Efficiency vs Privacy
There is a trade-off between:

Efficiency: the tmp-id sub-protocol is faster.

Privacy: the id sub-protocol provides some privacy.

Remark
If we use only the id sub-protocol, we get standard unlinkability.

28



σ-Unlinkability

Efficiency vs Privacy
There is a trade-off between:

Efficiency: the tmp-id sub-protocol is faster.

Privacy: the id sub-protocol provides some privacy.

Remark
If we use only the id sub-protocol, we get standard unlinkability.

28



Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

A security property P ∼ Q is modeled by a formula:
~uP ∼ ~uQ

Implementation assumptions and cryptographic
hypothesis are modeled by axioms Ax.

We have to show that Ax |= ~uP ∼ ~uQ .

29



Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

A security property P ∼ Q is modeled by a formula:
~uP ∼ ~uQ

Implementation assumptions and cryptographic
hypothesis are modeled by axioms Ax.

We have to show that Ax |= ~uP ∼ ~uQ .

29



Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

A security property P ∼ Q is modeled by a formula:
~uP ∼ ~uQ

Implementation assumptions and cryptographic
hypothesis are modeled by axioms Ax.

We have to show that Ax |= ~uP ∼ ~uQ .

29



Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

A security property P ∼ Q is modeled by a formula:
~uP ∼ ~uQ

Implementation assumptions and cryptographic
hypothesis are modeled by axioms Ax.

We have to show that Ax |= ~uP ∼ ~uQ .

29



Modeling: the Protocol

Messages and State

Symbolic trace of actions τ .
Example: τ = UEA, HN, UEB, UEA.

Symbolic frame φτ : sequences of messages observed by the
attacker.

Symbolic state στ : current state of the users and the
network.

30



Modeling: the Protocol

Messages and State

Symbolic trace of actions τ .
Example: τ = UEA, HN, UEB, UEA.

Symbolic frame φτ : sequences of messages observed by the
attacker.

Symbolic state στ : current state of the users and the
network.

30



Modeling: the Protocol

UE n

Input n: b-authu ← n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

sqnu ← sqnu + 1

tenc
τ ≡ {〈id , σin

τ (sqnu)〉}ne
pkn

φτ ≡ φin
τ ,
〈
tenc
τ , Mac1kidm(〈t

enc
τ , g(φin

τ )〉)
〉

σup
τ ≡

{

sqnu 7→ suc(σin
τ (sqnid

u ))

b-authu 7→ g(φin
τ )

στ ≡ σin
τ · σup

τ

Adversary knowledge: φin
τ

Adversary computations: g

=⇒ Symbolic input: g(φin
τ )

31



Modeling: the Protocol

UE n

Input n: b-authu ← n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

sqnu ← sqnu + 1

tenc
τ ≡ {〈id , σin

τ (sqnu)〉}ne
pkn

φτ ≡ φin
τ ,
〈
tenc
τ , Mac1kidm(〈t

enc
τ , g(φin

τ )〉)
〉

σup
τ ≡

{

sqnu 7→ suc(σin
τ (sqnid

u ))

b-authu 7→ g(φin
τ )

στ ≡ σin
τ · σup

τ

Adversary knowledge: φin
τ

Adversary computations: g

=⇒ Symbolic input: g(φin
τ )

31



Modeling: the Protocol

UE n

Input n: b-authu ← n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

sqnu ← sqnu + 1

tenc
τ ≡ {〈id , σin

τ (sqnu)〉}ne
pkn

φτ ≡ φin
τ ,
〈
tenc
τ , Mac1kidm(〈t

enc
τ , g(φin

τ )〉)
〉

σup
τ ≡

{

sqnu 7→ suc(σin
τ (sqnid

u ))

b-authu 7→ g(φin
τ )

στ ≡ σin
τ · σup

τ

Adversary knowledge: φin
τ

Adversary computations: g

=⇒ Symbolic input: g(φin
τ )

31



Modeling: the Protocol

UE n

Input n: b-authu ← n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

sqnu ← sqnu + 1

tenc
τ ≡ {〈id , σin

τ (sqnu)〉}ne
pkn

φτ ≡ φin
τ ,
〈
tenc
τ , Mac1kidm(〈t

enc
τ , g(φin

τ )〉)
〉

σup
τ ≡

{

sqnu 7→ suc(σin
τ (sqnid

u ))

b-authu 7→ g(φin
τ )

στ ≡ σin
τ · σup

τ

Adversary knowledge: φin
τ

Adversary computations: g

=⇒ Symbolic input: g(φin
τ )

31



Modeling: the Protocol

UE n

Input n: b-authu ← n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

sqnu ← sqnu + 1

tenc
τ ≡ {〈id , σin

τ (sqnu)〉}ne
pkn

φτ ≡ φin
τ ,
〈
tenc
τ , Mac1kidm(〈t

enc
τ , g(φin

τ )〉)
〉

σup
τ ≡

{

sqnu 7→ suc(σin
τ (sqnid

u ))

b-authu 7→ g(φin
τ )

στ ≡ σin
τ · σup

τ

Adversary knowledge: φin
τ

Adversary computations: g

=⇒ Symbolic input: g(φin
τ )

31



Modeling: the Protocol

UE n

Input n: b-authu ← n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

sqnu ← sqnu + 1

tenc
τ ≡ {〈id , σin

τ (sqnu)〉}ne
pkn

φτ ≡ φin
τ ,
〈
tenc
τ , Mac1kidm(〈t

enc
τ , g(φin

τ )〉)
〉

σup
τ ≡

{
sqnu 7→ suc(σin

τ (sqnid
u ))

b-authu 7→ g(φin
τ )

στ ≡ σin
τ · σup

τ

Adversary knowledge: φin
τ

Adversary computations: g

=⇒ Symbolic input: g(φin
τ )

31



Base Axioms

Mac Unforgeability
If Mac is an euf-mac function, then the following axiom is valid:

verifykm(s,m)→
∨

u∈S m = u (euf-mac)

Where:

S = {u | Mackm
(u) ∈ st(s,m)}.

km appears only in Mac or verify key position in s,m.

Example

φ ≡ Mackm
(t1),Mackm

(t2),Mack′m(t3)

verifykm(g(φ), n) →

(
n = t1 ∨ n = t2

)

32



Base Axioms

Mac Unforgeability
If Mac is an euf-mac function, then the following axiom is valid:

verifykm(s,m)→
∨

u∈S m = u (euf-mac)

Where:

S = {u | Mackm
(u) ∈ st(s,m)}.

km appears only in Mac or verify key position in s,m.

Example

φ ≡ Mackm
(t1),Mackm

(t2),Mack′m(t3)

verifykm(g(φ), n) →

(
n = t1 ∨ n = t2

)

32



Base Axioms

Mac Unforgeability
If Mac is an euf-mac function, then the following axiom is valid:

verifykm(s,m)→
∨

u∈S m = u (euf-mac)

Where:

S = {u | Mackm
(u) ∈ st(s,m)}.

km appears only in Mac or verify key position in s,m.

Example

φ ≡ Mackm
(t1),Mackm

(t2),Mack′m(t3)

verifykm(g(φ), n) →

(
n = t1 ∨ n = t2

)

32



Base Axioms

Mac Unforgeability
If Mac is an euf-mac function, then the following axiom is valid:

verifykm(s,m)→
∨

u∈S m = u (euf-mac)

Where:

S = {u | Mackm
(u) ∈ st(s,m)}.

km appears only in Mac or verify key position in s,m.

Example

φ ≡ Mackm
(t1),Mackm

(t2),Mack′m(t3)

verifykm(g(φ), n) →
(
n = t1 ∨ n = t2

)
32



Inference Rules

Function Application
If you cannot distinguish the arguments, you cannot distinguish
the images.

x1, . . . , xn ∼ y1, . . . , yn
f (x1, . . . , xn) ∼ f (y1, . . . , yn)

FA

33



Theorem

Definition
For every τ , we let τ be τ where we use a fresh identity each time
we run the id sub-protocol.

Lemma
For every valid τ , there is a derivation using Ax of φτ ∼ φτ .

Theorem

The AKA+ protocol is σ-unlinkable for an arbitrary number of
agents and sessions when:

The asymmetric encryption {_}__ is ind-cca1.

H and Hr (resp. Mac1–Mac5) are jointly prf.

34



Theorem

Definition
For every τ , we let τ be τ where we use a fresh identity each time
we run the id sub-protocol.

Lemma
For every valid τ , there is a derivation using Ax of φτ ∼ φτ .

Theorem

The AKA+ protocol is σ-unlinkable for an arbitrary number of
agents and sessions when:

The asymmetric encryption {_}__ is ind-cca1.

H and Hr (resp. Mac1–Mac5) are jointly prf.

34



Theorem

Definition
For every τ , we let τ be τ where we use a fresh identity each time
we run the id sub-protocol.

Lemma
For every valid τ , there is a derivation using Ax of φτ ∼ φτ .

Theorem

The AKA+ protocol is σ-unlinkable for an arbitrary number of
agents and sessions when:

The asymmetric encryption {_}__ is ind-cca1.

H and Hr (resp. Mac1–Mac5) are jointly prf.

34



Remarks

Remarks

This is against an active attacker.

We show this for an arbitrary number of agents and
sessions.

35



Proof

Proof
The proof is by induction over the symbolic trace τ . Finding the
invariant requires some work, as it needs to:

anticipate what will be needed later (e.g. encryptions).

match the left and right views of the adversary on the
state.

if στ (syncidu )

then στ (sqnid
u )− στ (sqnid

n )

else ⊥
∼

if στ (syncidτ
u )

then στ (sqnidτ
u )− στ (sqnidτ

n )

else ⊥

36



Proof

Proof
The proof is by induction over the symbolic trace τ . Finding the
invariant requires some work, as it needs to:

anticipate what will be needed later (e.g. encryptions).

match the left and right views of the adversary on the
state.

if στ (syncidu )

then στ (sqnid
u )− στ (sqnid

n )

else ⊥
∼

if στ (syncidτ
u )

then στ (sqnidτ
u )− στ (sqnidτ

n )

else ⊥

36



Conclusion



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Conclusion

While 5G-AKA prevents the imsi-catcher attack, all others
known unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA+ protocol, which tries to satisfy the
design constraints of 5G-AKA.

We defined the notion of σ-unlinkability.

We proved in the BC logic that AKA+ is σ-unlinkability.

We also proved that AKA+ provides mutual authentication.

37



Thanks for your attention

38



References i

[3GPP, 2018] 3GPP (2018).
Ts 33.501: Security architecture and procedures for 5g
system.

[Arapinis et al., 2012] Arapinis, M., Mancini, L. I., Ritter, E.,
Ryan, M., Golde, N., Redon, K., and Borgaonkar, R. (2012).
New privacy issues in mobile telephony: fix and
verification.
In the ACM Conference on Computer and Communications
Security, CCS’12, pages 205–216. ACM.



References ii

[Bana and Comon-Lundh, 2014] Bana, G. and Comon-Lundh, H.
(2014).
A computationally complete symbolic attacker for
equivalence properties.
In 2014 ACM Conference on Computer and Communications
Security, CCS ’14, pages 609–620. ACM.

[Fouque et al., 2016] Fouque, P., Onete, C., and Richard, B.
(2016).
Achieving better privacy for the 3gpp AKA protocol.
PoPETs, 2016(4):255–275.



References iii

[Strobel, 2007] Strobel, D. (2007).
Imsi catcher.
Ruhr-Universität Bochum, Seminar Work.



No Pre-Fetching of Authentication Vectors

From the 3GPP specification for 5G-AKA ([3GPP, 2018],
p. 37)

5G AKA does not support requesting multiple 5G AVs, nei-
ther the SEAF pre-fetching 5G AVs from the home network
for future use.



UE

id,tmp-id, k, sqnu

HN

id,tmp-id, k, sqnn

tmp-id or id

if tmp-id was used: tmp-id← UnSet〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Input x:
nR, sqnR ← π1(x), π2(x)⊕ H5

k(nR)

bmac ← H1
k(〈sqnR , nR〉) = π3(x)

bsqn ← range(sqnu, sqnR)

sqnn ← sqnn + 1

sqnu ← sqnR
H2

k(nR)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (nR) , H1,∗
k (〈sqnu , nR〉)

〉
Input y:
sqn∗R ← π1(y)⊕ H5,∗

k (n)
if H1,∗

k (〈sqn∗R , n〉) = π2(y) then sqnn ← sqn∗R + 1

bmac ∧ ¬bsqn

4G-AKA



UE

id,tmp-id, k, pkn, sqnu

HN

id,tmp-id, k, skn, sqnn

tmp-id or {id}ne
pkn

if tmp-id was used: tmp-id← UnSet〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Input x:
nR, sqnR ← π1(x), π2(x)⊕ H5

k(nR)

bmac ← H1
k(〈sqnR , nR〉) = π3(x)

bsqn ← range(sqnu, sqnR)

sqnn ← sqnn + 1

sqnu ← sqnR
H2

k(nR)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (nR) , H1,∗
k (〈sqnu , nR〉)

〉
Input y:
sqn∗R ← π1(y)⊕ H5,∗

k (n)
if H1,∗

k (〈sqn∗R , n〉) = π2(y) then sqnn ← sqn∗R + 1

bmac ∧ ¬bsqn

5G-AKA



UE

stateidu

HN(j)

staten
nj

Input nR: b-authu ← nR〈
{〈id , sqnu〉}ne

pkn
, Mac1

kidm
(〈{〈id , sqnu〉}ne

pkn
, nR〉)

〉
sqnu ← sqnu + 1 Input y:

〈idR , sqnR〉 ← dec(π1(y), skn)

bid
Mac ← π2(y) = Mac1

kidm(〈π1(y) , nj〉)
∧ idR = id

bid
Inc ← bid

Mac ∧ sqnR ≥ sqnid
n

if bid
Mac then b-authjn, e-auth

j
n ← id

if bid
Inc then sqnid

n ← sqnR + 1
sessionid

n ← nj

tmp-idid
n ← tmp-idj

Mac2
kidm

(〈nj , sqnR + 1〉)
bMac

Input z:

bok ← z = Mac2
kidm

(〈b-authu , sqnu〉)
e-authu ← if bok then b-authu else fail

id
Sub-Protocol



UE(id)

stateidu

HN(j)

staten

tmp-idu
valid-tmpu

valid-tmpu ← false Input x:
bid ← tmp-idid

n = x ∧ tmp-idid
n 6= UnSet

if bid then tmp-idid
n ← UnSet

b-authjn ← id
sessionid

n ← nj

〈
nj , sqnid

n ⊕ Hkid(nj) , Mac3
kidm

(〈nj , sqnid
n , tmp-idid

n 〉)
〉 bid

Input y:
nR, sqnR ← π1(y), π2(y)⊕ Hkid(nR)

bacc ← π3(y) = Mac3
kidm(〈nR , sqnR , tmp-idu〉))

∧ range(sqnu, sqnR)

if bacc then b-authu, e-authu ← nR

sqnu ← sqnu + 1

if ¬bacc then b-authu, e-authu ← fail

Mac4
kidm

(nR)
bacc

Input z:

bid
Mac ← (b-authjn = id) ∧ (z = Mac4

kidm
(nj))

bid
Inc ← bid

Mac ∧ sessionid
n = nj

if bid
Mac then e-authjn ← id

if bid
Inc then sqnid

n ← sqnid
n + 1

tmp-idid
n ← tmp-idj

tmp-id
Sub-Protocol



The assign-tmp-id Sub-Protocol

UE

stateidu

HN(j)

staten

〈tmp-idj ⊕ Hr
kid(n

j) , Mac5
kidm

(
〈
tmp-idj , nj

〉
)〉

e-authid
n = id

Input x:
tmp-idR ← π1(x)⊕ Hr

kidm
(e-authu)

bacc ←
(
π2(x) = Mac5

kidm(〈tmp-idR , e-authu〉)
)

∧ (e-authu 6= fail)

tmp-idu ← if bacc then tmp-idR else UnSet
valid-tmpu ← bacc



PRIV-AKA [Fouque et al., 2016]



PRIV-AKA [Fouque et al., 2016]



Licenses

Smart-phone icon: Gregor Hagedorn, CC-BY-SA-3.0

Database icon: Font Awesome, CC-BY-4.0


	The 4G-AKA and 5G-AKA Protocols
	The imsi Catcher Attack
	The 5G-AKA Protocol
	Unlinkability Attacks Against 5G-AKA

	The AKA+ Protocol
	Design Constraints
	Key Ideas
	The AKA+ Protocol

	Security Proofs
	-Unlinkability
	Modeling in the Bana-Comon Model
	Theorem

	Conclusion
	Appendix

