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The Squirrel system [Baelde et al. 2021] is an interactive prover for the verification of cryptographic
protocols. It relies on a dedicated higher-order logic and provides security guarantees akin to those classically
obtained by cryptographers, against attackers modeled as arbitrary probabilistic polynomial-time Turing
machines. In this paper, we provide a high-level introduction to the logic behind Squirrel, and briefly describe
some of the interesting technical challenges encountered during its construction.

1. INTRODUCTION
Security protocols are widely used today to secure transactions that take place over
public channels like the Internet. Common uses include the secure transfer of sensitive
information such as credit card numbers, or user authentication on a system. Because of
their presence in many widely used applications (e.g. electronic commerce, government-
issued ID), developing methods and tools to verify security protocols has become an
important research challenge. Such tools help increase our trust in protocols, and hence
on the applications that rely on them.

Formal methods have brought various approaches to prove that cryptographic pro-
tocols indeed guarantee the expected security properties. An effective approach in
this area of research consists in modeling cryptographic messages as first-order terms,
together with an equational theory that represents attacker capabilities. This idea,
originally proposed in [Dolev and Yao 1981], has been refined over the years, resulting
in a variety of so-called symbolic models. These models encompass broad categories of
attackers and facilitate the automated verification of protocols. They have led to the
development of successful tools such as ProVerif [Blanchet 2001] and Tamarin [Meier
et al. 2013]. However, it is important to note that security in a symbolic model does not
necessarily imply security in the cryptographers’ standard model, called the computa-
tional model. In that model, attackers are represented by probabilistic polynomial-time
Turing machines (PPTMs), and one proves that a protocol is indistinguishable from an
idealized, obviously secure version of it. Verification techniques for the computational
model, though crucially needed, often exhibit less flexibility or automation compared to
ones for symbolic models. As an illustration, secret keys are faithfully modeled in the
computational model as long bitstrings that are drawn uniformly at random, whereas
they are modeled using abstract names in symbolic models. In symbolic models, two
distinct secret keys are represented by different names, which cannot be equal. However,
in the computational model, as in reality, it is possible (although unlikely) that the
sampled bitstrings are equal. In this column, we present a recent logic-based method
for verifying cryptographic protocols in the computational model, and some practical
aspects of its implementation in the Squirrel tool [Baelde et al. 2021; Baelde et al.
2023]. This system is built on the Computationally Complete Symbolic Attacker (CCSA)
approach of [Bana and Comon-Lundh 2012; Bana and Comon-Lundh 2014], which
relies on the symbolic setting of logic, but avoids the limitations of the symbolic models
mentioned above. Instead of modeling attacker capabilities by rules stating what the
adversary can do, the CCSA method relies on the specification of what the attacker
cannot do. Starting from the security properties of cryptographic primitives, one derives
rules that articulate which pairs of message sequences are indistinguishable. These
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rules are proved sound w.r.t. the interpretation of terms as PPTMs. Therefore, a proof
of a security property using these rules implies security in the computational model
under the initial cryptographic assumptions. The CCSA logic was later extended into a
meta-logic, which served as basis for the first version of Squirrel [Baelde et al. 2021],
before being generalized to a fully-fledged higher-order logic in [Baelde et al. 2023]. The
Squirrel tool is a proof assistant developed in a collaborative effort, which has been
successfully used on a variety of case studies [Baelde et al. 2022; Comon et al. 2020;
Cremers et al. 2022]. Instructions for installing the system are available on its website,
together with a user manual, tutorials, and an in-browser interface for playing with the
tool without installing it:

https://squirrel-prover.github.io

We first provide, in Section 2, an introduction to the computational model and the
CCSA approach, showing in particular how cryptographic assumptions translate into
logical rules. We elaborate on this in Section 3 to show how protocols can be modeled
in CCSA logic, discussing a subtle issue w.r.t. the intended notion of security. Finally,
Section 4 formally defines the higher-order CCSA logic, on which Squirrel is based, and
discusses some of its interesting technical features: the distinction between local and
global formulas, the subtleties tied to reasoning about probabilistic objects, and the key
notion of bi-deduction for reasoning about computational indistinguishability.

Related work. Squirrel is only a recent addition to the list of available systems for
verifying cryptographic protocols. We have mentioned above some tools that provide
guarantees in symbolic models; we now briefly present the tools providing guarantees
in the computational model. Several such systems exist, based on different approaches.
The earliest one is CryptoVerif [Blanchet 2008], which mechanizes proofs based on
high-level game transformations, following the style of pen-and-paper proofs. The
most prominent system today is probably EasyCrypt [Barthe et al. 2011], which is a
proof assistant also featuring higher-order logic. It notably embeds a domain-specific
probabilistic relational Hoare logic [Barthe et al. 2009], which can capture cryptographic
game transformations. This design makes it possible to carry out most cryptographic
arguments within EasyCrypt. Other systems are currently being developed, with
various goals: notably CryptHOL [Basin et al. 2020], which explores an alternative
modeling technique in Isabelle/HOL, and F⋆ [Swamy et al. 2016], which is a general-
purpose program verification framework based on refinement types that can be used (via
external arguments) to provide computational security guarantees. Those approaches
can be compared on several criteria [Barbosa et al. 2021].

Here, we only compare with the closest two tools, and only with respect to three
criteria, to highlight differences: modeling, automation, and proof methodology. Regard-
ing modeling, CryptoVerif and Squirrel have a similar level of detail and expressivity,
although CryptoVerif supports a larger range of cryptographic assumptions. EasyCrypt
is more expressive, with a higher level of detail, at the cost of modeling overhead, and
thus better suited for proving properties of primitives. Protocol specifications in Cryp-
toVerif and Squirrel are given in a process algebra, whereas protocols are encoded in
EasyCrypt as APIs, which is inconvenient for interactive protocols. Finally, CryptoVerif
does not support stateful protocols, while Squirrel and EasyCrypt do.

Overall, the current level of automation of Squirrel sits somewhere between Cryp-
toVerif, which can apply cryptographic arguments automatically, although it often
requires hints about which game transformations to use, and EasyCrypt, which does
not automatically apply cryptographic arguments.
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Finally, the most important difference between Squirrel and the other tools is the as-
sociated proof methodology: CryptoVerif relies on game transformations and EasyCrypt
performs Hoare-style proofs of programs, while Squirrel reasons over execution traces
of protocols.

2. A BASIC INDISTINGUISHABILITY LOGIC
We introduce in this section the CCSA approach, which is designed to reason on cryp-
tographic protocols, i.e. concurrent programs relying on cryptographic primitives to
achieve some functionality while running in a malicious environment. To simplify
our exposition, we delay the treatment of general protocols to Section 3, and restrict
our presentation to simple sequential cryptographic games for the time being. These
games are used by cryptographers to express security properties of cryptographic prim-
itives against attackers modeled as arbitrary polynomial-time computations. A key
concept about games is computational indistinguishability: roughly, two games are
indistinguishable if any polynomial-time adversary has at-best a negligible probability
in distinguishing them. In the CCSA approach, we use first-order logic to establish com-
putational indistinguishability: we first model the messages derived during a game’s
execution as first-order terms, and then reason about computational indistinguishability
in first-order logic, using inference rules derived from cryptographic assumptions.

A key aspect of the logic is that it abstracts cryptographic arguments as much
as possible. Notably, its syntax does not mention the length of keys or the value
of probabilities. Further, reduction-based arguments are implicit: they justify the
soundness of the proof rules, but the code underlying reductions is never explicitly
stated.

2.1. The core of the logic
Security in the real world is often conditional, as there is usually a small but non-zero
probability that the adversary manages to break the security of a system. Typically, one
cannot rule out that a lucky attacker guesses a secret key. To discard such unlikely cases,
security is considered up to a negligible probability of attack. A function f : N→ [0, 1]
is negligible if it is asymptotically lower than the inverse of any polynomial, i.e. if
∀ k ∈ N. ∃n0. ∀n ≥ n0. f(n) ≤ 1

nk . Conversely, f is overwhelming if 1− f is negligible. In
what follows, we will thus use a security parameter η ∈ N which can be, e.g., the length
of the secret keys, and security must hold with overwhelming probability w.r.t. η.

In the cryptographic literature, security properties are commonly specified using so-
called games, in which an adversary tries to mount an attack: the game might represent
an adversary attempting to guess a secret value, to forge a signature, . . . Games are
usually written in pseudo-code using an imperative style, as shown in Figure 1. The
statement x $← D stores the result of a random sampling following distribution D
into variable x: e.g. sk $← {0, 1}η uniformly samples a secret key sk of η bits. Games are
parameterized by an abstract interactive attacker, denoted byA. The statement o← A(i)
calls the adversary A on input i, and stores its answer in variable o. The adversary
is stateful, retaining information across its invocations. Standard assignments are
denoted in the same way: x← e stores the result of evaluating e into variable x.

Describing cryptographic games as probabilistic imperative programs lets cryptog-
raphers rely on the reader’s intuitive understanding of their semantics, and avoids
introducing convoluted execution models. However, this comes at a cost: formally rea-
soning over such programs can be difficult (one needs to deal with statefulness, loop
invariants, probabilistic dependencies, . . . ); moreover, encoding complex protocols as
imperative programs is possible but not natural, and complicates security proofs.

ACM SIGLOG News 3 0000, Vol. 0, No. 0



Game G:
1 : sk $← {0, 1}η;
2 : m← A();
3 : t← enc(m, sk);

4 : x← A(t);
5 : return x

A secret key sk of length η is randomly sampled. The
interactive attacker A is asked to provide a message m
which is then encrypted (using sk) and sent back to A.
Afterwards, A returns a second message x which is the
final output of the game.

Fig. 1. An example cryptographic game.

Cryptographic games in CCSA. In the CCSA approach, we do not explicitly represent
games. Instead, we shall only represent the messages computed at different points in
a game, using first-order terms. Those are pure, unlike the stateful games, and thus
easier to reason about. Our terms are built using:

— honest function symbols which represent the various primitives used to compute
messages (e.g. pairing, encryption);

— attacker function symbols, noted atti for i ∈ N, modeling arbitrary computations
performed by adversaries;

— name symbols, representing the sources of randomness: essentially, a name is a pointer
to a memory cell holding a value sampled at random before the game starts.

Example 2.1. Let us illustrate this approach by modeling the final result of the game
of Figure 1 as a single term. The sampling of the secret key is modeled by a name symbol
sk. The first call to the attacker A() is modeled by the term att0(). In the imperative
game modeling style, internal functions (e.g. the encryption enc) can be probabilistic,
but this is not so in our approach, where we precisely track probabilistic dependencies.
Thus, we explicitly specify the randomness used by the encryption function enc, by
introducing a name symbol r and using the term enc(att0(), r, sk) to model t in the game.
Then, the second call to the adversary can be modeled using a different adversarial
function symbol, as: att1(enc(att0(), r, sk)). Importantly, we have modeled two successive
calls to the stateful attacker A in the game by two pure functions (att0 and att1). This is
without loss of generality, as any state computed during the first call to A and used in
the second call can be recomputed when modeling the second call as att1.

Models of the logic. Defining the logic’s semantics in order to have a faithful trans-
lation from games to terms requires a bit of care. The interpretation of a term is
parameterized by the security parameter η ∈ N, as well as two explicit sources of
randomness provided by a pair ρ = (ρh, ρa) of tapes filled with random bits. A model M
of our logic must:

— provide for each honest function symbol f its interpretation as a PPTMMf ;
— associate to each name n a unique sub-sequence of η bits in ρh using a PPTMMn with

access to ρh, such that distinct names use disjoint parts of ρh;
— interpret any adversarial function symbol att as a PPTMMatt which can only access

the random tape ρa (but not ρh).

For the sake of simplicity, we forced names to be interpreted as uniform and independent
random samplings in {0, 1}η.

Our models are first-order models with a tailored interpretation domain. Thus, terms
can be interpreted in M using the standard semantics of first-order logic. In our specific
setting, a term t is interpreted as a function associating, to each value of the security
parameter η and random tapes ρ, the interpretation JtKη,ρM . More precisely, the function
η, ρ 7→ JtKη,ρM is computed by a PPTM.
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For example, the interpretation JnKη,ρM of a name symbol n is computed byMn(η, ρh),
and an adversarial computation is computed by Jatti(t)K

η,ρ
M = Matti(η, JtK

η,ρ
M , ρa). Im-

portantly, this interpretation is compositional and makes all probability dependencies
explicit, which will facilitate reasoning over cryptographic messages.

Example 2.2. Coming back to G from Figure 1, the value in the variable x at the end
of G’s execution follows the same probability distribution as

Jatt1(enc(att0(), r, sk))K
η,ρ
M

where the tapes in ρ are sampled at random, and where M interprets the encryption
and attacker functions as does G.

Using Turing machines to interpret terms gives us a high level of expressivity. For
instance, conditional branching in games can be internalized in the first-order terms
using an (if b then t else e) function symbol whose interpretation is forced to be the
natural one in all models.

Example 2.3. Consider the following game:

Game Gsk
1 : sk $← {0, 1}η;
2 : m← A();
3 : if m = sk then

4 : return 0

5 : else

6 : return 1

This game samples a fresh secret key and queries the at-
tacker to obtain a guess m for the key. The game outputs 0 if
the attacker correctly guessed the key, and 1 otherwise. The
message returned at the end of the game can be represented
by the following term:

ϕsk
def
= if (att0() = sk) then 0 else 1.

2.2. The computational indistinguishability predicate ∼
One of the most commonly used notions to define cryptographic properties is compu-
tational indistinguishability. Roughly, indistinguishability is expressed as a guessing
game in which an adversary must figure out which one of two scenarios GI or GR it is
interacting with. More precisely, two games GI and GR are indistinguishable, which
we write GI ≈ GR, when any PPTM adversary has at-best a negligible probability of
guessing whether it is interacting with GI or GR. Formally, we define the advantage of
the attacker A as the probability that it makes the two games behave differently. We
then require this advantage to be negligible in the security parameter η:

∀A ∈ PPTM. η 7→ |Pr(GI(A) = 1)− Pr(GR(A) = 1)| is negligible.

Typically, the game GR will correspond to an attack against the real primitives, while
GI will represent an attack against an idealized implementation of the primitives for
which security is obvious.

Example 2.4. Coming back to Example 2.3, the indistinguishability Gsk ≈ (return 1)
states that the probability that the adversary A guesses the secret key sk is negligible.
In that case, a simple probabilistic independence argument can be used to show that
the probability that A computes sk is 1

2η . Thus, the indistinguishability holds.

Squirrel’s logic relies on a predicate ∼ to represent computational indistinguishability.
Formally, for two terms u, v, the predicate u ∼ v holds in a model M if GMu ≈ GMv , where
GMt is the game where the adversary is provided with JtKη,ρM and must produce a bit b,
which the game returns. In other words, u ∼ v in M when:

∀A ∈ PPTM. η 7→ |Prρ(A(JuKη,ρM , ρa) = 1)− Prρ(A(JvKη,ρM , ρa) = 1)| is negligible.
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REFL

u ∼ u

REWRITE
(u = v) ∼ true C[v] ∼ w

C[u] ∼ w

FRESH

(t ̸= n) ∼ true

when t is a ground term
in which n does not occur

Fig. 2. Basic inference rules over ∼.

Example 2.5. Reusing Gsk and ϕsk from Example 2.3, checking ϕsk ∼ 1 amounts to
verifying that Gsk ≈ (return 1).

In the example above, we have used the indistinguishability predicate on booleans. In
that case, the semantics of ∼ can be restated in a simpler way, without a quantification
over all distinguishers A: it simply means that the two booleans have the same proba-
bility of being 1. The general semantics of ∼ becomes useful, though, to reason on it by
decomposing terms: for instance, it allows us to derive f(u) ∼ f(v) from u ∼ v for any u
and v of arbitrary types. Indeed, the existence of a PPTM distinguishing between f(u)
and f(v) implies the existence of a PPTM distinguishing between u and v: the latter
distinguisher is obtained by composing the former with the PPTM computing f .

Logical rules. We now present some rules that can be used to reason over ∼. We
intuitively describe some of those rules here, starting with the simpler rules that do not
rely on any security assumptions over the primitives.

Example 2.6. The following formulas are valid:

(1) t ∼ t for any term t; indistinguishability is reflexive.
(2) n ∼ n′ for any names n, n′; two uniform random samplings are indistinguishable.
(3) (n, n) ̸∼ (n, n′); the attacker sees, in one case, the same value twice, and in the other,

two distinct values (with overwhelming probability). Notice that this implies that
∼ does not lift to an arbitrary context: we have seen that n ∼ n′, but this example
shows that we do not have for all context C that C[n] ∼ C[n′].

(4) (if true then u else v = u) ∼ true for any terms u, v; more generally, any term
occurring in an indistinguishability can be rewritten into an equal term.

(5) (n ̸= n′) ∼ true; names, i.e. random samplings, collide with negligible probability.

We provide a first set of inference rules in Figure 2. REFL corresponds to the reflexivity
of ∼, and REWRITE allows replacing two terms that are equal with overwhelming
probability in any context. Finally, FRESH exploits the fact that a term syntactically
contains all its probabilistic dependencies: if a name n does not occur in a term t, then n
is a uniform random sampling independent of t, and thus t = n can only be true with
negligible probability.

Example 2.7. Let us go back to Example 2.5 and the formula ϕsk ∼ 1. We assume an
additional proof rule SIMPL≡ that allows to replace a term with another one equal to it
with probability one, which we note ≡, and where for instance, v ≡ (if false then u else v).
We can prove our goal with the following derivation:

REWRITE

SIMPL≡

FRESH
(att0() ̸= sk) ∼ true

((att0() = sk) = false) ∼ true
SIMPL≡

REFL
1 ∼ 1

(if false then 0 else 1) ∼ 1

(if att0() = sk then 0 else 1) ∼ 1

Here, we use twice SIMPL≡: once with the previously mentioned equality over a false
conditional, and once using the fact that ((att0() = sk) = false) ≡ (att0() ̸= sk).
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2.3. Unforgeability of hash functions: EUF-CMA

To reason over cryptographic games, a final piece of the puzzle is missing: assumptions
over cryptographic primitives. For each primitive (a cipher, a signature, a hash, . . . ),
there is a usual set of cryptographic assumptions made over it. Such assumptions are
expressed as an indistinguishability between two games, and cryptographic proofs take
the form of reduction-based arguments. To prove that the security of the primitive, for
instance expressed as PR ≈ PI , implies the security of some game GR ≈ GI , we prove
the contrapositive: assuming that there is a distinguisher against GR ≈ GI , we build a
distinguisher against PR ≈ PI . In our logic, we hide those reduction-based arguments
behind dedicated rules, one for each cryptographic assumption.

Consider the example of a keyed hash function h(x, sk) and of the EUF-CMA assump-
tion. Intuitively, a keyed hash function is a function that takes a message and a key, and
produces a short unpredictable value. More precisely, if a key sk is secret and randomly
sampled, then an attacker has a negligible probability of guessing the hash h(m, sk) of
any m, unless the attacker was directly given this value. Such a hash function is called
unforgeable, and this is formalized in the EUF-CMAh cryptographic game:

EUF-CMAh

1 : sk $← {0, 1}η;
2 : L ← ∅;

3 : t,m← AO();

4 : return (t = h(m, sk) ∧m /∈ L)

Hashing Oracle O(x)

1 : L ← {x} ∪ L;
2 : return h(x, sk)

This game asks the attacker to return a pair of values t,m such that t = h(m, sk). The
attacker is allowed to interact with the hashing oracle O, but it must return a m that
was never queried to O. This is enforced by storing in a set L all oracle inputs.

We can express the security of the hash function by assuming that for all attackers A,
EUF-CMAh ≈ (return false). Our goal is now to derive an inference rule which is sound
under this assumption.

As a warm-up, we restrict ourselves to models where the interpretation of h satisfies
the EUF-CMA assumption, and analyze the validity of a few statements:

— (h(0, sk) = att0()) ∼ false is valid. Otherwise, we would have a model (and thus an
attacker) able to output with non-negligible probability the value of h(0, sk) with-
out having access to any other hash values. This attacker would trivially break
EUF-CMAh, by directly outputting 0, h(0, sk).

— (h(0, sk) = att1(sk)) ∼ false is not valid, because the secret key is leaked to the attacker.
As such, the computation of att1(sk) cannot be seen as a computation made by an
adversary AO in the EUF-CMAh game, and the assumption does not apply.

— (h(0, sk) = att1(h(1, sk))) ∼ false is valid. Otherwise, we would have a model and thus
an attacker breaking EUF-CMAh: the attacker would compute h(1, sk) with a call to
oracle O(1), after which L = {1}, and return att1(h(1, sk)), which is the hash of 0 /∈ L.

To generalize this, we need to answer the following question: under which conditions
over t and m is (h(m, sk) = t) ∼ false a valid formula? We answer this by providing
sufficient conditions under which the terms t and m can be produced by some attacker
interacting with the EUF-CMAh game in such a way that m is never queried to O.

The first main condition is that all syntactic occurrences of sk in t and m must be as a
key to h (i.e. all occurrences are of the form h(u, sk) for some u). Otherwise, the terms
cannot be simulated, as the adversary A against EUF-CMAh does not know the key.

Once we know that sk is only used in key position, it is easy to syntactically track in
t and m what will be computed using queries to O: it is precisely the set of subterms
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Game G(R)

sk $← {0, 1}η;
L ← ∅;

b← AT,R();

return b

Tag T

n $← {0, 1}η;
x← ⟨n, h(n, sk)⟩;
L ← {x} ∪ L;
return x

Reader (real) Rr(x)

xn ← fst(x);

xh ← snd(x);

return (h(xn, sk) = xh)

Reader (ideal) Ri(x)

return x ∈ L

Fig. 3. Authentication game for the BASIC HASH protocol.

of the form h(x, sk), i.e. Sh
sk(t,m) = {h(u, sk) | h(u, sk) subterm of t or m}. Using this set,

we can then define a formula, inside our logic, expressing that all previously seen hash
values are distinct from m. Those two conditions are sufficient to obtain a rule enabling
us to use EUF-CMA to establish indistinguishabilities in the logic:

EUF-CMA

∧
h(u,sk)∈Sh

sk(t,m)

(
(u = m) ∼ false

)
(h(m, sk) = t) ∼ false

sk only occurs as h(x, sk) in t and m

This rule has a logical premise, which becomes a proof obligation when the rule is
applied to a proof goal, and a syntactic side condition automatically checked by Squirrel.

3. MODELING INTERACTIVE PROTOCOLS WITH RECURSIVE FUNCTIONS
Now that we have introduced the core CCSA framework, let us turn to how cryptographic
protocols are modeled. Compared to the simple games of the previous section, protocols
are concurrent systems, involving several communicating agents. An agent may for
instance be a key server, a bank, a user’s terminal. . . When analyzing the security
of a protocol, it is desirable to make worst-case assumptions. A typical one is that
the adversary has full control over the network: it receives all messages output by
protocol agents, and is tasked with feeding inputs to them, with messages resulting
from arbitrary computations. We also assume that the adversary schedules the actions
of the protocol’s agents: it decides when to spawn a new session, when to advance in a
session, . . . This can actually be modeled using cryptographic games, representing the
agents as oracles to which the adversary has access. Adversarial computations then
induce a sequence of interactions with the protocol’s agents, i.e. an execution trace of
the protocol. Following this style, quantifying over all adversaries implies quantifying
over all execution traces. We present this approach in more details in what follows,
illustrating it on a simplified version of the BASIC HASH protocol [Brusò et al. 2010].

3.1. An example: BASIC HASH protocol
The BASIC HASH protocol is a simple RFID protocol in which a tag T tries to authenti-
cate itself to a reader R. This is an access control protocol: e.g. the tag may be embedded
in an RFID fob, and the reader could guard access to some building. The tag and the
reader both share a secret key sk. Whenever the tag wants to authenticate itself to
the reader, it samples a random value n, hashes it with sk using an unforgeable keyed
hash function as presented in Section 2.3, and sends the pair ⟨n, h(n, sk)⟩ of the name
and its hash digest to the reader. The reader can check that a message x it received
from the network was generated by the tag by extracting the first component fst(x) of x,
re-computing its hash using the secret key sk and checking that this yields the second
component snd(x) of its input.

Authentication game. We can express the fact that this protocol provides some form
of authentication using the cryptographic game presented in Figure 3. The definitions
of T and Rr correspond to the tag and reader agents described above, with a single
addition that will be useful to express the security property: before sending its output
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x = ⟨n, h(n, sk)⟩ to the reader, the tag logs x into a set L. Further, Ri corresponds to an
idealized reader, which checks that its input x originates from Tby directly verifying
that x appears in the log L. Intuitively, the idealized reader looks, across space and
time, into the past internal memories of the tag to check whether it indeed generated x.
Obviously, Ri is only useful as a trick to model the expected authentication property,
and cannot be physically implemented.

The cryptographic game G(R), parameterized by the reader R ∈ {Rr,Ri}, samples
the secret key sk, initializes the log L, and runs the adversary AT,R by letting it interact
with the tag and reader oracles. The adversary must try to guess a bit b indicating
whether it is interacting with the real or ideal reader R: its guess b is the final result
of the game. The protocol is secure if A has a negligible advantage in guessing the
correct bit b, i.e. if the computational indistinguishability G(Rr) ≈ G(Ri) holds. Indeed,
if an attacker can make Rr accept while breaking authentication (i.e. no corresponding
tag produced the message), trying to do the same execution with Ri would fail by
construction, making it trivial to distinguish the two worlds.

3.2. Modeling protocol executions
During its execution, A can call the tag and reader oracles any number of times and
according to any interleaving. We are going to model the interaction of A with the
protocol agents T,R along an execution trace tr representing a fixed but arbitrary
interleaving. Thus, an execution trace tr is a finite sequence τ1, . . . , τn of timestamps,
where the j-th timestamp τj in the trace represents the agent the adversary interacted
with at this step. To distinguish multiple interactions with the same agents, actions are
indexed by a unique replication index i in some set of indices I. For BASIC HASH, we
use τ = T(i) and τ = R(i) for an interaction with respectively the tag and the reader.
For convenience, we also force τ1 to a special value init.

T ::= τ1, . . . , τn τi ::= init | T(i) | R(i) (n ∈ N, i ∈ I)

Modeling execution traces. We assume a typed logic, to enable reasoning over different
kinds of objects. Models of the logic provide an interpretation domain for each type,
where for instance message is interpreted as the set of bitstrings and bool as {0, 1}.
Intuitively, the type of all terms used in Section 2 is message or bool, with e.g. the
equality function symbol = typed as message → message → bool. The types index and
timestamp respectively represent the sets of indices I and timestamps T , and we use
function symbols T and R, both of type index → timestamp, to build timestamps from
indices, and init : timestamp for the initial timestamp. The execution trace tr is implicitly
encoded using two function symbols:

happens : timestamp→ bool · < · : timestamp→ timestamp→ bool

where happens(τ) states that τ has been scheduled in the execution trace, and τ < τ ′

that τ occurred before τ ′ in the trace. Each model M of the logic fixes the execution trace
by interpreting the types and function symbols above. We require, through an ad hoc
restriction on models of the logic, that the interpretation of index in any model is finite
and independent of the security parameter η. Further, we assume that any scheduled
timestamp uniquely corresponds to either init, some T(i) or some R(i).

Modeling the game’s execution. In the logic, the interaction of the adversary A with
the oracles T and R along an execution trace is modeled using several mutually
recursive functions called macros. A macro is identified by its name m and is evaluated
at a particular timestamp τ : informally, m@τ refers to the value of m at point τ in
the execution. We will use the following macros: input@τ and output@τ denote the
messages input and output by the oracle scheduled at time τ in the execution trace;
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and frame@τ is roughly the sequence of all messages output by any agent during the
execution up to timestamp τ . The frame is crucial to express security properties, as it
represents the full list of messages seen by the attacker. We assume a function symbol
pred : timestamp → timestamp that maps any scheduled timestamp different from init
to its predecessor in the execution trace, and all other timestamps to a fixed constant
undef, distinct from all scheduled timestamps. The macros can be defined as follows for
the game G(Rr) using the real reader:

inputr@τ = match τ with
| init→ empty
| _→ attτ (framer@pred(τ))

framer@τ = match τ with
| init→ empty
| _→ ⟨framer@pred(τ), outputr@τ⟩

outputr@τ = match τ with
| init→ empty
| T(i)→ ⟨n(i), h(n(i), sk)⟩
| R(i)→ h(fst(inputr@τ), sk) = snd(inputr@τ)

where empty is a symbol of type message representing the empty bitstring, and where
we generalized names to be of type index→ message, so that each n(i) is an independent
fresh name. The r subscript indicates that these macros are for the game using the real
reader. The macros definitions for the game with the ideal reader G(Ri), subscripted by
i, are identical except for the output macro: we only need to introduce a macro L@τ for
the value of the log L after the execution of the oracle at τ , and to modify the R(i) case
of output:

outputi@τ = match τ with
| R(i)→ inputi@τ ∈ L@τ
| . . .→ . . . (as before)

L@τ = match τ with
| init→ ∅
| T(i)→ {outputi@τ} ∪ L@pred(τ)
| R(i)→ L@pred(τ)

Then, the formula framer@τ ∼ framei@τ expresses the fact that, for any model M
defining an execution trace tr and an adversary A, the adversary has a negligible
probability of distinguishing the real and ideal versions of the protocol, i.e. G(Rr) ≈
G(Ri) holds along this particular execution trace (see Section 3.3 below for a discussion
of the security guarantees provided by this formula).

Cryptographic reasoning with recursive functions. The EUF-CMA reasoning rule
presented in Section 2.3 does not directly apply to terms containing recursive definitions:
we need to be able to reason over the occurrences of the hash function inside terms, and
thus possibly inside an arbitrary recursive unfolding. A first way to fix the EUF-CMA
rule is to forbid any occurrence of a hash in all the recursive functions occurring inside
a term, but it is of course too limiting: in BASIC HASH, we have for instance a set of
hash occurrences of the form h(n(i), sk) in outputr. We need to be able to reason over
such a set, for instance using some universal quantification over indices or timestamps.
We formally introduce such constructions in Section 4.2, and extend the cryptographic
rules in Section 4.4.

Implementation in Squirrel. The encoding of protocols using macros as described
above can be generalized to support a large class of security protocols. Given a protocol
P, we can use the same definitions for frame and input, and we only need to adapt the
definition of output according to the protocol specification, and, if necessary, introduce
additional macros for the protocol’s mutable variables (such as the macro L for the
log L). This method is expressive enough to encode complex protocol behaviors, and
allows all relevant information to be expressed as messages that our logic can handle.
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However, it is arguably not very intuitive to manipulate for users. To help with that,
Squirrel allows users to describe protocols as processes in a process algebra (a variant
of the applied π-calculus), and automatically translates them as macros (the actual
definition of Squirrel macros is slightly more involved than the one presented here, we
refer readers to [Baelde et al. 2022] for details).

3.3. The issue of asymptotic security
With the modeling style described here for protocols, we always reason on an arbitrary
but fixed trace. When proving a property, we show that it holds (up to negligible
probability) in all models of the logic, and the model includes the interpretation of the
order on timestamps, i.e. the interleaving of actions, as well as the interpretation of all
attacker function symbols. In particular, this means that in any given model, the trace
and the interpretation of adversarial functions is fixed, and only then do the security
parameter η and random tape ρ vary. In other words, when proving a property ϕ, what
we establish can informally be described by the formula:

∀ trace tr. ∀ adversary A. Prρ(ϕ holds in tr against A) is overwhelming in η.

While such a statement gives good security guarantees, it is weaker than what is
commonly expected. In cryptographic games, the adversary is indeed given access to the
protocol through oracles it may call at will any (polynomial) number of times. That is,
the adversary can choose the trace, rather than having it imposed on him. In particular,
the length of the trace may be chosen by the adversary and thus depend on η, while it
is fixed in our model. That would correspond to the stronger (informal) formula:

∀ adversary A. Prρ(ϕ holds in tr chosen by A) is overwhelming in η.

It is possible to overcome this limitation by changing the way we model protocols, to
let the adversary adaptively choose the trace during the protocol execution. However,
such alternatives have not yet been explored in practice.

4. THE GENERAL LOGIC & PROOF SYSTEM
We have considered so far a typed language with first-order terms and a single in-
distinguishability predicate, with inference rules that can be expressed as axioms in
first-order logic. Except for the addition of recursively defined functions, all this fits
within the original CCSA logic of [Bana and Comon-Lundh 2014], which is plain first-
order logic. Thus, proving statements in that logic can be done using any proof system
for classical first-order logic; only the CCSA axiom schemes would reflect the intended
probabilistic semantics of terms and the cryptographic assumptions on primitives.

We have seen, however, that syntactic side conditions, which are needed for cryp-
tographic rules, cannot be easily lifted to terms containing recursive definitions. In
addition, the logic appears ill-suited for some security properties. Recall the BASIC
HASH example, whose security we defined by using a real and an ideal system. Yet,
the intuitive security property should only be about a high-level fact verified by all
executions of the real system: whenever a reader accepts, the value it received was
produced by an honest tag.

To improve this aspect of the logic, a core idea is to introduce a more specific logic,
where special status is given to terms of type bool. We have seen axioms involving indis-
tinguishability, of the form t ∼ true or t ∼ false. For such formulas, using computational
indistinguishability for all PPTM distinguishers is overkill, and we can take a much
simpler approach: t ∼ true simply means that t is true with overwhelming probability.
Further, it is convenient to view t itself as a specific kind of formula: to this effect,
we can use function symbols representing propositional connectives, as we did for the
if - then -else construction; less obviously, the same can be done for quantifiers. In that
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context, t will be called a local formula, while the real first-order formulas are called
global. It turns out that CCSA proofs tend to intensively reason on local formulas. This
calls for a proof system that conveniently handles these like proper formulas. Squirrel
comes with one such proof system, which we present in this section.

4.1. Higher-order terms with a relaxed semantics
Before properly introducing local and global formulas and their proof systems, we
must come back to the semantics of terms. Indeed, since [Baelde et al. 2023], the logic
behind Squirrel features higher-order terms. There have been several motivations for
this significant generalization of the original CCSA logic. First, Squirrel developments
predominantly consist of proofs of local formulas, and higher-order features at this level
help structure these proofs in a modular way, and re-use them. Second, the constraints
of the original CCSA logic, namely that all terms are interpreted as PPTMs, make sense
for modeling cryptographic protocols and adversaries but are sometimes too restrictive
when writing proofs. For instance, it can be useful to talk about the discrete logarithm
over finite groups, even though this operation is (hopefully) not PTIME. It can also
be useful to quantify over infinite types in local formulas, e.g. to specify properties of
primitives over messages: anticipating on what follows, we will be able to write local
formulas such as ∀x, y : message. fst(⟨x, y⟩) = x.

The terms of our logic are thus simply-typed λ-calculus terms, additionally featuring
recursive definitions. In the tool, some limited forms of polymorphism are even available,
but we leave them unaccounted for in the theory. Each type τ is interpreted in a model
M as a family of sets JτKηM indexed by the security parameter η, with Jτ1 → τ2K

η
M =

Jτ1K
η
M → Jτ2K

η
M. We require that JboolKηM = {0, 1} and JmessageKηM = {0, 1}∗ for all M and

η. The potential dependency in η is however crucial e.g. to faithfully model the finite
groups used in Diffie-Hellman key exchanges.

Terms are no longer interpreted as PPTMs, but more generally as discrete random
variables, i.e. functions from random tapes to the desired domain. More precisely, a
model fixes a set of finite tapes TM,η for each η, and we let RVM(τ) be the set of all
η-indexed sequences of functions from TM,η to JτKηM. Then, given M, η and ρ, any term t
of type τ is interpreted as (ρ ∈ TM,η 7→ JtKη,ρM )η∈N ∈ RVM(τ) as follows:

JxKη,ρM = M(x)(η, ρ)

Jt t′Kη,ρM = JtKη,ρM (Jt′Kη,ρM )

Jλ(x : τ ′).tKη,ρM = (a ∈ Jτ ′KηM 7→ JtKη,ρM[x/a])

where M(x) is the interpretation of x in M, and M[x/a] is the model modified to interpret
x as a random variable X such that X(η, ρ) = a. Note that the interpretation of a term
only depends on the interpretation of its subterms for the same values of η and ρ, and
thus the value of M[x/a](x) is only relevant on η, ρ. We refer the reader to [Baelde et al.
2023] for the full details, including the interpretation of recursive definitions when they
satisfy a suitable well-foundedness condition, as well as how to check that some terms
do correspond to PPTM computations in order to apply cryptographic assumptions.

While it could seem more natural to have infinite tapes, rather than finite but arbi-
trarily long ones, this has technical motivations. It ensures that all functions computed
on tapes actually correspond to random variables, i.e. that they are measurable. This
restriction of our logic (and of the original CCSA logic) is not limiting when it comes
to modeling cryptographic protocols and attackers, which all run in PTIME. It is how-
ever crucial that the length of tapes can grow with η. The restriction to finite tapes is
standard in formal cryptographic reasoning: it is present, e.g., in approaches based on
Hoare logics [Barthe et al. 2011; Petcher and Morrisett 2015; Basin et al. 2020].
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4.2. Local and global formulas
Squirrel’s logic is structured around two kinds of formulas: we call global formulas the
formulas of first-order logic built around the ∼ predicate, and local formulas the terms
of type bool. To clearly distinguish the two, we add tildes to logical connectives and
quantifiers at the global level. We also note formulas with different letters: ϕ and ψ for
local formulas and F and G for global ones.

F := F ∧̃ F ′ | F ∨̃ F ′ | F ⇒̃ F ′ | ¬̃F | ∀̃x.F | ∃̃x.F | u⃗ ∼ v⃗ | [ϕ] | . . .
ϕ := ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | ϕ⇒ ϕ′ | ¬ϕ | ∀x.ϕ | ∃x.ϕ | u = v | . . .

Atomic global formulas include indistinguishabilities, but also atoms of the form [ϕ],
which can be understood as ϕ ∼ true. The syntax above is open-ended, as more predicates
will be used: in addition to custom predicates introduced by the user, e.g. to model
verifications on messages, we will make use of several extra predicates later in this
section. Note, however, that we will not use equality at the global level.

Indistinguishability atoms u⃗ ∼ v⃗ can only be formed when ui and vi have the same
type for all i. Moreover, this type must be of order at most 1, i.e. of the form τ1 → . . .→ τn
where all τk are base atomic types. Further, we assume that elements of base types can
be encoded as bitstrings, which allows interpreting these atoms as in Section 2.2, with
a generalization: we now consider a distinguisher that can access the (semantics of)
terms as oracles, which can be called on arbitrary inputs to obtain new data.

As said before, local formulas are just boolean terms. As such, the syntax above
should be understood as syntactic sugar: for instance, ϕ ∧ ψ stands for (∧) ϕ ψ where
(∧) is a constant function of type bool → bool → bool. We also view local quantifiers
in this way: ∀(x : τ). ϕ is a notation for ∀τ (λ(x : τ). ϕ) where ∀τ is a constant of type
(τ → bool) → bool. We require that all models interpret these logical constants as
expected. In particular, J∀x. ϕKη,ρM = 1 iff JϕKη,ρM[x/a] = 1 for all a ∈ JτKηM.

Example 4.1. Consider once again the BASIC HASH protocol of Figure 3. Instead of
expressing its security by using an equivalence, we can also state it with a local formula
over the previously defined macros inputr and outputr:

∀i : index. happens(R(i)) ∧ outputr@R(i) = true
⇒ ∃j : index. T(j) < R(i) ∧ inputr@R(i) = outputr@T(j)

Asking that this formula holds with overwhelming probability properly expresses
authentication for any trace: whenever some tag R(i) accepts, its input value must have
been produced in the past by an honest reader T(j).

As usual in first-order logic, a global formula can be satisfied (or not) in a model:
we write M |= F when this is the case. A global formula is valid when it is satisfied
in all models. We write F |= G if, for all M, M |= F implies M |= G. A local formula,
however, is valid if it is overwhelmingly true in all models: ϕ is valid iff [ϕ] is valid, i.e.
η 7→ Prρ∈TM,η

(JϕKη,ρM = 1) is overwhelming.

Example 4.2. We have [ϕ⇒ ψ] |= [ϕ] ⇒̃ [ψ]: if both ϕ⇒ ψ and ϕ are overwhelmingly
true, then so must be ψ. However, [ϕ]⇒̃ [ψ] ̸|= [ϕ⇒ ψ]: indeed, [ϕ]⇒̃ [ψ] might be satisfied
in a model where ϕ is not overwhelmingly true, but true for half of the tapes; hence ψ
could be always false, and [ϕ⇒ ψ] does not hold.

Example 4.3. We have [ϕ] ∨̃ [ψ] |= [ϕ∨ψ] but not the converse: there might be models
where only ϕ holds for half of the random tapes and only ψ holds for the other half,
hence ϕ ∨ ψ is overwhelmingly true (even exactly true) while neither ϕ nor ψ is.
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In each model, global formulas are either fixed to true or false, but their quantifiers
range over random variables, i.e. elements of RVM(τ) for some τ . In contrast, local
formulas are probabilistic and interpreted in RVM(bool), but their quantifiers range
over individuals, i.e. elements a ∈ JτKη,ρM . Despite this essential difference, we can relate
quantifiers at the two levels, as shown in [Baelde et al. 2023, Proposition 2].

PROPOSITION 4.4. For all M, we have M |= [∀(x : τ).ϕ] iff. M |= ∀̃(x : τ). [ϕ], and
similarly for the existential quantifiers.

4.3. Proof system for global and local reasoning
Squirrel’s proof system is given in a natural deduction style (though the tool’s tactics
are sometimes closer to sequent calculus rules) and it deals with two kinds of sequents.
Global sequents are of the form E ; Θ ⊢ F where F is a global formula, Θ is a set of
global formulas, and E is a list of typed variable declarations containing at least all free
variables of Θ, F . Such a sequent can be read as the global formula ∀̃E .(∧̃Θ ⇒̃ F ), and it
is valid when the associated formula is valid. Local sequents are of the form E ; Θ; Γ ⊢ ϕ
where ϕ is a local formula, Γ is a set of local formulas, and the other components are
as before, with E declaring all free variables of Θ,Γ and ϕ. The formula associated to a
local sequent is ∀̃E .(∧̃Θ ⇒̃ [∧Γ⇒ ϕ]).

It is important to note, in the meaning of local sequents, that the second implica-
tion happens at the local level. As a result, the global hypotheses of Θ and the local
hypotheses of Γ take a different meaning, illustrated in the following selected rules:

E ; Θ, F ⊢ F E ; Θ; Γ, ϕ ⊢ ϕ E ; Θ, [ϕ]; Γ ⊢ ϕ
E ; Θ; ∅ ⊢ ϕ
E ; Θ ⊢ [ϕ]

The first rule is the usual axiom rule for the global logic. The second and third rules
are local and global versions of the axiom rule for the local logic. The last rule allows
proving a global sequent whose conclusion is [ϕ] from the corresponding local sequent.

The local equality predicate gives rise to the ability to rewrite at the local level, which
is in fact a generalization of the REWRITE rule from Figure 2:

E ; Θ; Γ ⊢ u = v E ; Θ; Γ ⊢ ϕ{x 7→ u}
E ; Θ; Γ ⊢ ϕ{x 7→ v}

In the tool, a powerful rewrite tactic is provided, which builds on the previous rule
as well as more basic rules, to perform various kinds of rewriting. The tactic can be
invoked on a goal E ; Θ; Γ ⊢ ϕ to selectively replace occurrences of u into v inside Θ,Γ and
ϕ when u = v is part of the hypotheses (or can be simply derived from them). If u = v is
a local hypothesis, however, rewriting will only be possible in Γ and ϕ; rewriting in Θ
requires a global hypothesis [u = v], and is only possible at specific occurrences in Θ.

The previous result relating global and local quantifiers justifies that our sequents
only feature a top-level environment E corresponding to a global quantification. The
rules for universal quantifiers in our proof system are as follows, assuming that x does
not occur in E , and that t is a well-typed term of type τ in environment E :

E , x : τ ; Θ ⊢ F
E ; Θ ⊢ ∀̃(x : τ).F

E ; Θ ⊢ ∀̃(x : τ).F

E ; Θ ⊢ F{x 7→ t}
E , x : τ ; Θ; Γ ⊢ ϕ
E ; Θ; Γ ⊢ ∀(x : τ).ϕ

E ; Θ; Γ ⊢ ∀(x : τ).ϕ

E ; Θ; Γ ⊢ ϕ{x 7→ t}

Let us mention one last articulation between the global and local logics:

E ; Θ; Γ1 ⊢ ϕ1 E ; Θ ⊢ (∧Γ0 ⇒ ϕ0) ∼ (∧Γ1 ⇒ ϕ1)

E ; Θ; Γ0 ⊢ ϕ0
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In the tool, this rule is made available through a convenient rewrite equiv tactic,
typically used to establish local formulas when they essentially derive from indistin-
guishability assumptions.

Example 4.5. A common assumption over hash functions, stronger than EUF-CMA,
states that they can be seen as pseudo-random functions (PRF): for a fresh secret key
sk, an attacker cannot distinguish between x 7→ h(x, sk) and a fully random function.
It notably yields in our logic that h(0, sk), h(1, sk) ∼ n,m. Applying on both sides of
the equivalence the function λx, y : message. x ̸= y, we can obtain the validity of the
indistinguishability formula h(0, sk) ̸= h(1, sk) ∼ n ̸= m. With this global formula and
the rewrite equiv tactic, we can reduce the proof of the local sequent E ; Θ; · ⊢ h(0, sk) ̸=
h(1, sk) to the proof of E ; Θ; · ⊢ n ̸= m.

A more complete description of our proof system is given in [Baelde et al. 2023].
However, it is important to point out that the system presented in that paper (or any
earlier one) is only a collection of correct rules: it does not come with any completeness
or cut-elimination result. Ongoing investigations are starting to provide such proof-
theoretical results, though in a propositional fragment that allows to view our two-level
logic in the richer framework of modal logic.

4.4. Cryptographic reasoning with recursive functions
It is natural to lift cryptographic reasoning to either local or global reasoning depending
on the nature of the cryptographic assumption. In the case of EUF-CMA from Section 2.3,
it could become a local rule of the form:

EUF-CMA
E ; Θ; Γ ⊢

∧
h(u,sk)∈Sh

sk(t,m)(u ̸= m)

E ; Θ; Γ ⊢ h(m, sk) ̸= t
sk only occurs as h(x, sk) in t and m

Yet, now that terms contain recursive functions, the meaning of forbidding occur-
rences of sk is unclear: forbidden computations (e.g. a leak of a secret key) might occur
deep inside the recursive functions. Further, sk may be an indexed key k(i), and occur-
rences with distinct indices k(j) for j ̸= i should be ignored. Checking for such indirect
occurrences requires a deeper analysis of the terms involved.

Example 4.6. Let k(i) be a name symbol indexed by an integer i and representing a
key, and consider the following recursive function:

keys = λ(i : index). if (i = 0) then empty else ⟨k(i), keys(i− 1)⟩

where we assume to have functions symbols for the standard operations over integers.
Basically, keys(i) computes the list [k(i), k(i− 1), . . . , k(1)] (encoded as nested pairs). Con-
sider some index terms i0, j0 and assume that j0 < i0. To prove h(att(keys(j0)), k(i0)) ̸= t
with EUF-CMA, we need to check, among other things, that k(i0) does not occur in
keys(j0). The term keys(j0) cannot be evaluated without providing a concrete value for
j0. Moreover, if we attempted to directly check the condition on keys(j0)’s body, we would
find that it contains k(i) (for a bound i), which can a priori be equal to k(i0). To conclude
here, we need to exploit the hypothesis that j0 < i0 and details on how the recursive
function keys is defined. Thus, we need a more involved check exploiting additional
information that cannot be directly obtained from a superficial scrutiny of the terms.

Generalized subterms. We therefore introduce a generalized notion of subterm, to
compute an over-approximation of all the subterms that may occur during the evaluation
of a recursive function, for any model and random tapes. In addition, to allow exploiting
semantic information (e.g. the fact that for any k(i) in keys(j), we have i ̸= 0), we gather
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together with each subterm a local formula expressing the condition under which
that subterm may be computed. A generalized subterm, or occurrence, σ in a term
t is a tuple (V, ϕ, s): s is, roughly, a subterm of t (expanding recursive definitions), V
is a set of typed variables bound above s in t, and ϕ is the condition under which s
is evaluated in t, gathered from all if conditions. We use this notion, denoted ST(t),
in cryptographic rules to replace the previous conditions on syntactic subterms. For
instance, a condition expressing that k(i0) does not occur in t now instead requires
that for each (V, ϕ, k(i)) ∈ ST(t), the formula ∀V. ϕ⇒ i0 ̸= i holds. Taking all this into
account, the EUF-CMA rule finally becomes:

EUF-CMA

E ; Θ; Γ ⊢
( ∧

(V,ϕ,k(i))∈STh(t,m)

∀V. ϕ⇒ i0 ̸= i

)
∧
( ∧

(V,ϕ,h(u,k(i)))∈ST(t,m)

∀V. (ϕ ∧ i0 = i)⇒ u ̸= m

)
E ; Θ; Γ ⊢ h(m, k(i0)) ̸= t

where STh(t,m) is ST(t,m), where we excluded occurrences of k in subterms of the form
h(·, k(·)). An additional premise (omitted here) checks that t and m are computable in
polynomial time.

Making the verification effective. As presented here, the set of occurrences in a term
may be infinite: thus, we cannot generate one premise for each occurrence. To alleviate
this issue, we use heuristics that help Squirrel construct a proof obligation for the user
that over-approximates this infinite set in a way that makes it expressible as a single
formula. We illustrate how this can be done on an example.

Example 4.7. Continuing Example 4.6, consider arbitrary indices i0, j0 such that
j0 < i0. Recall that keys(j0) computes the list of keys [k(j0), . . . , k(1)]. In the style
described above, a condition for a rule may require us to consider all elements (V, ϕ, k(i))
of ST(att(keys(j0))) (for any i) to show that i cannot be equal to i0. There are countably
many such elements, all of the form (∅, j0 ̸= 0 ∧ j0−1 ̸= 0 ∧· · ·∧ j0− ℓ ̸= 0, k(j0− ℓ)) for
ℓ ∈ N. They can all be subsumed by using instead the occurrence (i, 0 < i ∧ i ≤ j0, k(i)).
The corresponding proof obligation is ∀i : index. 0 < i∧ i ≤ j0 ⇒ i ̸= i0, which can indeed
be proved under the hypothesis that j0 < i0.

4.5. Reasoning over traces: induction and case analysis
We now clarify the interpretation of traces in this logic, and what kind of reasoning we
can perform over them. Following the modeling approach outlined in Section 3, recall
that we may use A : index → timestamp to represent an indexed action. Assuming for
simplicity that we only have this action A, we restrict our attention to models M where

JtimestampKM = {init, undef} ∪ {A(n) | n ∈ N}

where N is a finite subset of JindexKM and undef is a special value used to interpret all
timestamps that do not happen. Then, the constants init and A are interpreted naturally,
independently of η, ρ:

JinitKη,ρM = init JAKη,ρM (n) = A(n) for n ∈ N JAKη,ρM (n) = undef otherwise

The following axiom is sound in this class of models:[
∀x : timestamp. happens(x)⇒

(
x = init ∨ ∃i : index. x = A(i)

)]
It can effectively be used to reason by case analysis on timestamps, but only at the level
of local formulas. At the global level, it is tempting to postulate a stronger axiom:

∀̃x : timestamp. [happens(x)] ⇒̃
(
[x = init] ∨̃ ∃̃i : index. [x = A(i)]

)
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However, this is too strong, and unsound in our class of models: consider for instance a
random variable over timestamps that is init for some random tapes and some A(n) for
other tapes. To avoid this problem, we crucially need to quantify over random variables
that are actually constant, i.e. which depend neither on η nor on ρ. Assuming a global
predicate const(·) with exactly this meaning, we can now write the following, which is
sound in our class of models:

∀x : timestamp. const(x) ∧̃ [happens(x)] ⇒̃
(
[x = init] ∨̃ ∃̃i : index. [x = A(i)]

)
In practice, such axioms are used in Squirrel proofs through the case tactic. This tactic,
when given a timestamp, will perform a case analysis for local or global goals. However,
when the goal is a global sequent, it will generate an additional subgoal to verify
that the timestamp is constant, corresponding to the hypothesis in our axiom above.
In practice, the constancy assumptions come from the target security property. For
instance, the equivalence of protocols modeled in Section 3.2 would more precisely be
stated as ∀̃τ. const(τ) ⇒̃ framer@τ ∼ framei@τ .

Case analysis over timestamps is not always sufficient to prove a goal, and induction
is sometimes needed. At the local level, induction is supported by the following axiom,
which is obviously valid in our intended class of models:

[∀(p : timestamp→ bool). (∀x. (∀y. y < x⇒ p y)⇒ p x)⇒ (∀x. p x)]

At the global level, the lack of higher-order quantification forces us to resort to an axiom
scheme and, more importantly, we need const(·) assumptions. For any global formula F ,
the following axiom is valid:(

∀̃x. const(x) ⇒̃ (∀̃y. const(y) ∧̃ [y < x] ⇒̃ F{x 7→ y}) ⇒̃ F
)
⇒̃

(
∀̃x. const(x) ⇒̃ F

)
Without the const(·) restrictions, the axiom would be unsound: in a nutshell, the problem
is that the well-founded relation < over JtimestampKM does not lift to a well-founded
relation [· < ·] over random variables. This can be generalized to arbitrary sets of
actions, and to arbitrary well-founded types: one may for instance reason by induction
over natural numbers or trees, along the same lines.

4.6. Bi-deduction & cryptographic reductions
Given the scope of the logic, the question of automating some proof steps in Squirrel
was quickly raised. A key property of computational indistinguishability is that it is
preserved by public computations: if u⃗ ∼ v⃗ holds then for any adversarially computable
function f , we have f(u⃗) ∼ f(v⃗). This property, introduced in [Baelde et al. 2022], is of
particular interest for two reasons:

— it is the theoretical justification behind many cryptographic proof steps;
— it is simple, notably because it is compositional, as opposed to indistinguishability ∼

which is not (see point 3 of Example 2.6).

For these reasons, this property turned-out to be a nice target for automation, reduc-
ing the proof-burden put on the user and allowing more high-level reasoning steps.

Bi-Deduction. Let ♯(v⃗0; v⃗1) be a pair of sequences of terms, representing the left and
right scenarios of an equivalence. We say that it is bi-deducible from another pair
♯(u⃗0; u⃗1), which we write ♯(u⃗0; u⃗1) ▷ ♯(v⃗0; v⃗1), if there exists a simulator function S
that can be efficiently computed by the adversary and such that S(Ju⃗iK) = Jv⃗iK for any
i ∈ {0; 1}. Crucially, the same simulator S is used for both i = 0 and 1: S ’s behavior
cannot depend on i as it does not know which side it is interacting with. The link
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between bi-deduction and indistinguishability is captured by the following rule:

BIDEDUCE
♯(u⃗0; u⃗1) ▷ ♯(v⃗0; v⃗1) u⃗0 ∼ u⃗1

v⃗0 ∼ v⃗1
Indeed, any efficient adversary A against the conclusion of this rule can be turned
into an adversary B against the premise by simply composing A with the simulator S
witnessing the bi-deduction premises. B is an efficient adversary as both A and S are,
and it has the same advantage as A’s.

The BIDEDUCE rule transforms the ∀ quantification over adversary of an equivalence
into an ∃ quantification: instead of proving a property against any possible adversaries,
of which there are infinitely many, it suffices to establish the existence of a program
witnessing bi-deduction. Of course, this observation is not new, as this is the key idea
behind all reduction-based arguments, whether it be in cryptography, computability or
computational complexity. The main novelty is how we use bi-deduction as an automated
entailment checker integrated in Squirrel tactics.

Rules. As already mentioned, bi-deduction is compositional, which allows decompos-
ing bi-deductions as follows:

BD.TUPLE
♯(u⃗0; u⃗1) ▷ ♯(v1;w1) . . . ♯(u⃗0; u⃗1) ▷ ♯(vn;wn)

♯(u⃗0; u⃗1) ▷ ♯(v1, . . . , vn;w1, . . . , wn)

Here are two selected (simple) bi-deduction rules:

BD.FA
♯(u⃗0; u⃗1) ▷ ♯(v⃗0; v⃗1)

♯(u⃗0; u⃗1) ▷ f(♯(v⃗0; v⃗1))

BD.TRANS
♯(u⃗0; u⃗1) ▷ ♯(w⃗0; w⃗1) ♯(u⃗0, w⃗0; u⃗1, w⃗1) ▷ ♯(v⃗0; v⃗1)

♯(u⃗0; u⃗1) ▷ ♯(v⃗0; v⃗1)

where common behaviors between the left and right scenarios are factorized when
possible: e.g. f(♯(v⃗0; v⃗1)) denotes ♯(f(v⃗0); f(v⃗1)). The BD.FA rule lets the adversary
simulate the computation f : indeed, if S computes ♯(v⃗0; v⃗1) from ♯(u⃗0; u⃗1), then f ◦ S
computes ♯(f(v⃗0); f(v⃗1)) from the same inputs. The transitivity rule BD.TRANS allows
extending the input ♯(u⃗0; u⃗1) of a simulator trying to compute ♯(v⃗0; v⃗1) by any sequence
♯(w⃗0; w⃗1) that is bi-deducible from ♯(u⃗0; u⃗1).

The more interesting bi-deduction rules deal with functions (seen as oracles) and
conditioned terms, for which we now present two simplified rules. Conditioned terms
are written (t | ϕ), which denotes the pair of terms (ϕ, if ϕ then t else witness), where
witness is a function symbol of the same type as t.

BD.ORACLE
▷ ♯(t0; t1)

⊢

[
w0{y 7→ t0} = v0 ∧
w1{y 7→ t1} = v1

]
λy. ♯(w0;w1) ▷ ♯(v0; v1)

BD.COND
▷ ♯(ψ0;ψ1)

⊢

[
ψ0 ⇒ (ϕ0 ∧ v0 = w0) ∧
ψ1 ⇒ (ϕ1 ∧ v1 = w1)

]
♯((w0 | ϕ0); (w1 | ϕ1)) ▷ ♯((v0 | ψ0); (v1 | ψ1))

The BD.ORACLE allows the simulator to call an oracle λy. ♯(w0;w1) it received as input
on any arguments ♯(t0; t1) that it can compute; the obtained terms ♯(w0{y 7→ t0};w1{y 7→
t1}) must be established, in the second proof obligation, to be equal to the wanted terms
♯(v0; v1). In BD.COND, the simulator retrieves from its inputs a conditioned term: the
bi-deduction premise ▷ ♯(ψ0;ψ1) guarantees that the simulator knows when to extract
the terms from its input; and the logical premise ensures that when it does (i.e. when
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ψ0 or ψ1 holds), the extracted value ♯(w0;w1) is given as inputs (i.e. when ϕ0 or ϕ1 holds)
and is equal to the wanted value ♯(v0; v1).

Implementation. We implemented a fully automated heuristic procedure for bi-
deduction and integrated it in the apply tactic of Squirrel: concretely, it is used to
automatically check the entailment between equivalences, e.g. u⃗0 ∼ u⃗1 ⇒̃ v⃗0 ∼ v⃗1. While
this procedure is heuristic, and thus incomplete, it remains a useful tool in practice.

Advanced bi-deduction. Bi-deduction gives a formal framework to establish the exis-
tence of a simulator S reducing an equivalence u⃗0 ∼ u⃗1 to another equivalence v⃗0 ∼ v⃗1.
This looks very similar to the problem of applying a cryptographic assumption expressed
as a pair of games G0 ≈ G1 (in the style of Section 2): for example, given a target equiva-
lence u⃗0 ∼ u⃗1, does there exist S such that SGi computes u⃗i for all i ∈ {0; 1}? Extending
bi-deduction to be able to handle cryptographic games would allow supporting new
cryptographic assumptions in Squirrel’s logic and implementation without having to
manually design rules as we did in Section 2.3 and Section 4.4. This would drastically
reduce the theoretical and programming work needed to support a new rule while
limiting the risk of mistakes. Furthermore, it would allow non-expert users to add new
cryptographic assumptions in Squirrel simply by writing, in user-space, the pair of
games G0 ≈ G1 associated to the assumptions.

Unfortunately, the simulators covered by our previous notion of bi-deduction are
too restricted for this. First, they can only interact with stateless oracles that are
provided as first-order terms of the logic. Second, they are deterministic programs:
while they may receive randomly sampled values from their inputs, they cannot do
random samplings themselves. This is too limiting: oracles of cryptographic games are
often stateful (e.g. EUF-CMA relies on a stateful log L); and the simulators justifying
Squirrel’s cryptographic rules must sample all the randomness that does not come
from the cryptographic game. Recently, we designed and implemented in Squirrel an
extended notion of bi-deduction supporting stateful oracles and probabilistic simula-
tors [Baelde et al. 2024]. This introduces a number of interesting aspects: we equipped
the bi-deduction predicate with Hoare-style pre- and post-conditions to handle game
statefulness; and random sampling usage is tracked through randomness constraints
that ensure that the constructed simulator does not directly access the game’s random
samplings. This approach, which showed good initial results, may become the standard
way of handling cryptographic assumptions in Squirrel.

5. CONCLUSION
We have developed a logic based on the CCSA logic described in [Bana and Comon-Lundh
2014], along with proof systems for verifying reachability and equivalence properties
within that framework. Our work demonstrates that this approach offers a straight-
forward, high-level strategy for conducting computer-assisted proofs of cryptographic
protocols, offering asymptotic security guarantees within the computational model. This
is reinforced by the development of the interactive prover Squirrel and its application
across different case studies [Baelde et al. 2021; Baelde et al. 2022; Cremers et al. 2022;
Baelde et al. 2024], summarized in Figure 4. The number of LoC mentioned includes
both the model and the proof script. The cryptographic assumptions on which the proof
relies are also indicated, as well as the security properties under study. We analyze
reachability properties, namely various forms of authentication, and some equivalence-
based properties, e.g. unlinkability on several RFID protocols, an anonymity property,
as well as a strong form of secrecy. The case studies are divided into two blocks, with
non-stateful protocols first and then stateful ones. The Squirrel prover was extended to
post-quantum security proofs in [Cremers et al. 2022], the corresponding protocols with
security guarantees against a quantum attacker are indicated with a ⋆.
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Protocol name LoC Assumptions Security Properties
Basic Hash ⋆ 100 PRF, EUF auth. & unlinkability
Hash Lock ⋆ 130 PRF, EUF auth. & unlinkability

LAK (with pairs) ⋆ 250 PRF, EUF auth. & unlinkability
MW ⋆ 300 PRF, EUF, XOR auth. & unlinkability

Feldhofer ⋆ 270 ENC-KP, INT-CTXT auth. & unlinkability
Private authentication ⋆ 100 CCA1, ENC-KP anonymity
Private authentication 100 CCA$ anonymity

Signed DDH [ISO 9798-3] 240 EUF, DDH auth. & strong secrecy
IKEV1PSK ⋆ 850 PRF auth. & strong secrecy

IKEV2SIGN
PSK ⋆ 300 PRF, EUF auth. & strong secrecy

BCGNP ⋆ 355 PRF, CCA1, XOR strong secrecy
FSXY ⋆ 620 PRF, CCA1, XOR strong secrecy

SC-AKE ⋆ 745 PRF, EUF, CCA1, XOR auth. & strong secrecy
CANAuth 450 EUF auth.

SLK06 80 EUF auth.
YPLRK05 160 EUF auth.

OSK (without reader) 320 ROM strong secrecy
OSK 370 EUF auth.

YubiKey 270 INT-CTXT auth.
YubiHSM 720 CCA1, INT-CTXT auth.

Fig. 4. Some results obtained with the Squirrel prover on various protocols.

Ongoing and Future Work. As explained in Section 3, the Squirrel tool allows cryp-
tographic protocols to be described in a process algebra, whereas the translation from
protocols to the logic relies on the definition of mutually recursive functions modeling
the protocol observables depending on the execution trace. To ease formal proofs, this
translation does not follow the granularity of elementary execution steps in the process
algebra. Instead, it groups together elementary steps in blocks following specific pat-
terns. Whereas the soundness of the translation is easy to obtain for a simple class of
protocols, some works remains to be done for more complex protocols.

We also aim to improve the automation of the prover. One option is to discharge parts
of the proof that do not rely on any cryptographic assumption to SMT solvers. Another
option is to rely on type systems: techniques based on typing have mainly been used
in symbolic models, but we are currently working to develop such a system to obtain
computational guarantees in the CCSA framework.

We aim to extend the scope of the post-quantum work initiated in [Cremers et al.
2022] and to analyze hybrid post-quantum protocols that rely on a combination of
asymmetric post-quantum algorithms with well-known and well-studied pre-quantum
asymmetric cryptography, e.g. based on the discrete logarithm problem.

Lastly, as mentioned in Section 3, the current notion of security in Squirrel differs
from the standard one in the computational model, as the number of sessions we
consider is arbitrary but fixed, in the sense that it does not depend on the security
parameter. We plan to overcome this limitation, notably by leveraging the composition
result outlined in [Comon et al. 2020]. Furthermore, we intend to expand on our
methodology to go beyond asymptotic guarantees and provide concrete security bounds.
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