Skip to content

zeeva85/minimal_guide_to_readr_dplyr_tidyr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

A not so minimal guide to readr, dplyr and tidyr

Seevasant Indran
09 October, 2018

Table of contents
Packages required

Install by running

install.packages("packageName", dependencies = TRUE)

Why Data Manipulation

The fundamental processes to follow to understand the knowledge and insight a data provides are:

  1. Data manipulation
  2. Data visualization
  3. Statistical analysis/modeling
  4. Organization of results

80% of data analysis is spent on the process of cleaning and preparing the data. (Dasu and Johnson, 2003)

Makes data compatible for processing such as mathematical functions, visualization, hence reveals information and insights.

Examples of Messy vs Tidy data

messytidt

According to Hadley:-

Tidy data makes it easy for an analyst or a computer to extract needed variables because it provides a standard way of structuring a dataset. Different strategies to extract different variables are needed for untidy data. This slows analysis and invites errors. If you consider how many data analysis operations involve all of the values in a variable (every aggregation function), you can see how important it is to extract these values in a simple, standard way. Tidy data is particularly well suited for vectorised programming languages like R, because the layout ensures that values of different variables from the same observation are always paired. *Source

In tidy data:

  1. Each variable forms a column.
  2. Each observation forms a row.
  3. Each type of observational unit forms a table.

tidydat

A gapminder tidy <- untidy walkthough

                                                                                                        

Untidy gapminder (above) vs tidy gapminder (below).

Notice the differences:-

  • dimensions
  • observations
  • variables

gapminder2 dataset is in ending credits section

                                                                                                        

                                                                        

A dplyr walkthrough

Summary of the main dplyr functions

Quick data.frame

tbl_df

The most useful dplyr function

  1. filter
  2. select
  3. mutate
  4. group_by
  5. summarise
  6. arrange
  7. rename

the pipe operator

%>%

Relationship to the other functions

Tibble diff

tbl_df works similar to data.table in that it prints sensibly. Depreceated, use as_tibble() instead.

{base} R and dplyr

List of dplyr functions and the {base}R functions they"re related to:

Base Function dplyr Function(s) Special Powers
subset filter & select filter rows & select columns
transform mutate operate with columns not yet created
split group_by splits without cutting
lapply + do.call summarise apply and bind in a single bound
order + with arrange "I only have to specify dataframe once?"

Chaining

%>% works similiarly to the unix pipe | and the + in ggplot2.

> conclusion <- import(obeservation) %>% 
                    results %>% 
                    group_by(headache) %>%
                    discssion() %>% 
                plot() + common_plot_someting(aes(x = STAT545, y = hours_not_sleeping))
                
print(conclusion)

Basically previous input in chain supplied as argument 1 to function on right side.

The dplyr Functions

Most usefull dplyr functions for data manipulation

filter

  • Return Rows With Matching Conditions
    • Useful Filter Functions
      • ==, >, >=
      • &, |, !, xor()
      • is.na(), !is.na()
    • between(), %in%

Ussage - filter(.data, ...)

  • Use filter() find rows/cases where conditions are true. Unlike base subsetting with [, rows where the condition evaluates to NA are dropped.

mutate

  • Add New Variables.

Ussage - mutate_(.data, ...)

  • Mutate adds new variables and preserves existing; transmute drops existing variables.

summarise

  • Reduces Multiple Values Down To A Single Value
    • Useful Filter Functions
      • Center: mean(), median()
      • Spread: sd(), IQR(), mad()
      • Range: min(), max(), quantile()
      • Position: first(), last(), nth()
      • Count: n(), n_distinct()
      • Logical: any()

Ussage - summarise(.data, ...)

  • summarise() is typically used on grouped data created by group_by(). The output will have one row for each group.

rename

  • Modify Names By Name, Not Position.

Ussage - rename(x, replace, warn_missing = TRUE, warn_duplicated = TRUE)

  • warn_missing = TRUE, print a message if any of the old names are not actually present in x. warn_duplicated - TRUE print a message if any name appears more than once in x after the operation.

Import datasets with readr and the {base}R functions.

options(readr.num_columns = 0) 

# Import using the read_csv(), assign to `gapminder_school` variable. Lets call this school dataset

gapminder_school <- read.csv("https://query.data.world/s/bpbbjyj7t6k2u6owizb7tr4fm4h4fq", header = TRUE, check.names = FALSE) 

#gapminder_mortality <- read_csv(file.path(getwd(), "Infant mortality rate per 1 000 births.csv"), col_names = TRUE) # Aditional data, not used
dim(gapminder_school) # dimension of the data, 175 countries and 41 years
## [1] 175  41

dplyr::

tbl_df()

gapminder_school_df <- as.data.frame(gapminder_school) # change to dataframe for example
head(gapminder_school_df, n = 3) # displays (n = 3) the top dataset
##    Row Labels 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
## 1 Afghanistan  1.0  1.1  1.1  1.2  1.3  1.3  1.4  1.4  1.5  1.6  1.6  1.7
## 2     Albania  6.5  6.7  6.9  7.0  7.2  7.3  7.5  7.7  7.8  8.0  8.1  8.3
## 3     Algeria  1.9  2.0  2.1  2.2  2.3  2.4  2.5  2.7  2.8  2.9  3.1  3.3
##   1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
## 1  1.8  1.8  1.9  2.0  2.0  2.1  2.1  2.2  2.2  2.3  2.3  2.4  2.4  2.5
## 2  8.4  8.5  8.7  8.8  9.0  9.1  9.2  9.3  9.4  9.5  9.6  9.7  9.8  9.9
## 3  3.4  3.6  3.8  3.9  4.1  4.3  4.5  4.7  4.8  5.0  5.2  5.3  5.5  5.6
##   1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
## 1  2.6  2.6  2.7  2.7  2.8  2.9  2.9  3.0  3.0  3.1  3.1  3.2  3.3  3.3
## 2 10.0 10.1 10.2 10.3 10.4 10.4 10.5 10.6 10.7 10.7 10.8 10.9 10.9 11.0
## 3  5.8  5.9  6.1  6.2  6.3  6.5  6.6  6.7  6.8  7.0  7.1  7.2  7.3  7.3

This prints okay but the next one looks better, as explained above rownames are dropped, to preserve, convert to an explicit variable with rownames_to_column()

gapminder_school_tbl <- tbl_df(gapminder_school_df) # convert data into tibble diff
head(rownames_to_column(gapminder_school_tbl), n = 10)
## # A tibble: 10 x 42
##    rowname `Row Labels` `1970` `1971` `1972` `1973` `1974` `1975` `1976`
##    <chr>   <fct>         <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 1       Afghanistan     1      1.1    1.1    1.2    1.3    1.3    1.4
##  2 2       Albania         6.5    6.7    6.9    7      7.2    7.3    7.5
##  3 3       Algeria         1.9    2      2.1    2.2    2.3    2.4    2.5
##  4 4       Angola          2.3    2.4    2.5    2.7    2.8    2.9    3  
##  5 5       Antigua and…    8      8.2    8.4    8.6    8.7    8.9    9.1
##  6 6       Argentina       7      7.1    7.3    7.4    7.6    7.7    7.8
##  7 7       Armenia         7.8    7.9    8.1    8.2    8.4    8.5    8.7
##  8 8       Australia       9.9   10     10.2   10.3   10.4   10.5   10.6
##  9 9       Austria         9.3    9.4    9.5    9.6    9.8    9.9   10  
## 10 10      Azerbaijan      7.6    7.8    8      8.2    8.4    8.6    8.8
## # ... with 33 more variables: `1977` <dbl>, `1978` <dbl>, `1979` <dbl>,
## #   `1980` <dbl>, `1981` <dbl>, `1982` <dbl>, `1983` <dbl>, `1984` <dbl>,
## #   `1985` <dbl>, `1986` <dbl>, `1987` <dbl>, `1988` <dbl>, `1989` <dbl>,
## #   `1990` <dbl>, `1991` <dbl>, `1992` <dbl>, `1993` <dbl>, `1994` <dbl>,
## #   `1995` <dbl>, `1996` <dbl>, `1997` <dbl>, `1998` <dbl>, `1999` <dbl>,
## #   `2000` <dbl>, `2001` <dbl>, `2002` <dbl>, `2003` <dbl>, `2004` <dbl>,
## #   `2005` <dbl>, `2006` <dbl>, `2007` <dbl>, `2008` <dbl>, `2009` <dbl>

rename()

Use the dplyr::rename to rename the "Row Labels"" column to "country""

## The dplyr way, rename "Row Labels" to "country" in school dataset
gapminder_school <- gapminder_school %>%
  rename(country = "Row Labels")

## The base R way is more complicated, rename column `Row Lables` to `country` AND rename the remaining column minus the first column as it was previously.

# names(gapminder_school) <- c("country", names(gapminder_school)[-1]) 

# or 

# colnames(gapminder_school)[colnames(gapminder_school)=="Row Labels"] <- "country"

head(gapminder_school, n= 2)
##       country 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
## 1 Afghanistan  1.0  1.1  1.1  1.2  1.3  1.3  1.4  1.4  1.5  1.6  1.6  1.7
## 2     Albania  6.5  6.7  6.9  7.0  7.2  7.3  7.5  7.7  7.8  8.0  8.1  8.3
##   1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
## 1  1.8  1.8  1.9  2.0    2  2.1  2.1  2.2  2.2  2.3  2.3  2.4  2.4  2.5
## 2  8.4  8.5  8.7  8.8    9  9.1  9.2  9.3  9.4  9.5  9.6  9.7  9.8  9.9
##   1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
## 1  2.6  2.6  2.7  2.7  2.8  2.9  2.9  3.0  3.0  3.1  3.1  3.2  3.3  3.3
## 2 10.0 10.1 10.2 10.3 10.4 10.4 10.5 10.6 10.7 10.7 10.8 10.9 10.9 11.0

filter()

## School dataset has more countries (175) that the gapminder dataset, filter country from "gapminder_school" dataset with gapminder, to removed countries not in both dataset

gapminder_school_filtered <- gapminder_school %>% 
  filter(country %in% gapminder$country)

## How many country are filtered ?

(nrow(gapminder_school) - nrow(gapminder_school_filtered))
## [1] 42

select()

## The gapminder dataset has year till 2007, however the school dataset has year till 2009. Use select to filter the dates till 2007

gapminder_school_filtered <- gapminder_school_filtered %>% 
  select("country",as.character(unique(gapminder$year)[-c(1:4)])) # selects the first column and the years present from the gapminder dataset.

head(gapminder_school_filtered)
##       country 1972 1977 1982 1987 1992 1997 2002 2007
## 1 Afghanistan  1.1  1.4  1.8  2.1  2.3  2.6  2.9  3.2
## 2     Albania  6.9  7.7  8.4  9.1  9.6 10.1 10.5 10.9
## 3     Algeria  2.1  2.7  3.4  4.3  5.2  5.9  6.6  7.2
## 4      Angola  2.5  3.1  3.8  4.4  4.8  5.3  5.7  6.0
## 5   Argentina  7.3  8.0  8.6  9.1  9.6 10.1 10.6 11.0
## 6   Australia 10.2 10.7 11.1 11.4 11.7 11.9 12.1 12.3

Now we have a matching year but we have a problem, our dataset is not in tidy format. We have to fix that later its difficult to work with a messydataset. For example.

arrange()

gapminder_school_filtered %>%
  arrange (`2007`) %>% # arrange mean by lowest to highest
  head (n = 5)
##        country 1972 1977 1982 1987 1992 1997 2002 2007
## 1        Niger  0.5  0.6  0.8  1.1  1.4  1.8  2.2  2.5
## 2         Mali  0.9  1.1  1.4  1.7  1.9  2.2  2.4  2.6
## 3 Burkina Faso  0.7  0.9  1.2  1.5  1.8  2.1  2.5  2.8
## 4  Afghanistan  1.1  1.4  1.8  2.1  2.3  2.6  2.9  3.2
## 5      Somalia  1.2  1.5  1.8  2.2  2.5  2.8  3.0  3.2

Some live commetary.. Look at Niger, mean years in school for people aged between 25 - 34 is just 2.5 years!! in 2007.

%>%

## {base} R way to filter countries that are in both gapminder and gapminder school dataset and store into country
cntry <- unique(gapminder$country)[unique(gapminder$country) %in% # %in% same as match()
                                 gapminder_school_filtered$country] # This returns a logical vector. It is then used to subsets the gapminder country dataset 

## This subsets the gapminder dataset 
gpmd_cont <- gapminder %>% 
  filter(country %in% cntry) %>% 
  subset(!duplicated(country)) %>% 
  select("country","continent")

mutate()

gapminder_school_filtered <- gapminder_school_filtered %>%
  mutate(continent = gpmd_cont$continent)
  
head(gapminder_school_filtered) 
##       country 1972 1977 1982 1987 1992 1997 2002 2007 continent
## 1 Afghanistan  1.1  1.4  1.8  2.1  2.3  2.6  2.9  3.2      Asia
## 2     Albania  6.9  7.7  8.4  9.1  9.6 10.1 10.5 10.9    Europe
## 3     Algeria  2.1  2.7  3.4  4.3  5.2  5.9  6.6  7.2    Africa
## 4      Angola  2.5  3.1  3.8  4.4  4.8  5.3  5.7  6.0    Africa
## 5   Argentina  7.3  8.0  8.6  9.1  9.6 10.1 10.6 11.0  Americas
## 6   Australia 10.2 10.7 11.1 11.4 11.7 11.9 12.1 12.3   Oceania

summarise()

gapminder_school_filtered %>% 
  summarise("1972" = mean(gapminder_school_filtered$`1972`),
            "1977" = mean(gapminder_school_filtered$`1977`),
            "1982" = mean(gapminder_school_filtered$`1982`),
            "1987" = mean(gapminder_school_filtered$`1987`),
            "1992" = mean(gapminder_school_filtered$`1992`),
            "1997" = mean(gapminder_school_filtered$`1997`),
            "2002" = mean(gapminder_school_filtered$`2002`),
            "2007" = mean(gapminder_school_filtered$`2007`),
            ) 
##      1972     1977     1982     1987     1992     1997     2002    2007
## 1 5.02782 5.745113 6.435338 7.076692 7.630075 8.153383 8.638346 9.06015

group_by()

gapminder_school_filtered %>% 
  group_by(continent) %>% 
  summarise("1972" = mean(gapminder_school_filtered$`1972`),
            "1977" = mean(gapminder_school_filtered$`1977`),
            "1982" = mean(gapminder_school_filtered$`1982`),
            "1987" = mean(gapminder_school_filtered$`1987`),
            "1992" = mean(gapminder_school_filtered$`1992`),
            "1997" = mean(gapminder_school_filtered$`1997`),
            "2002" = mean(gapminder_school_filtered$`2002`),
            "2007" = mean(gapminder_school_filtered$`2007`),
            ) 
## # A tibble: 5 x 9
##   continent `1972` `1977` `1982` `1987` `1992` `1997` `2002` `2007`
##   <fct>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Africa      5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
## 2 Americas    5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
## 3 Asia        5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
## 4 Europe      5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
## 5 Oceania     5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06

Super %>% pipe

read.csv("https://query.data.world/s/bpbbjyj7t6k2u6owizb7tr4fm4h4fq", 
         header = TRUE, check.names = FALSE) %>%
  rename(country = "Row Labels")  %>% 
  filter(country %in% gapminder$country) %>% 
  select("country",as.character(unique(gapminder$year)[-c(1:4)])) %>%
  mutate(continent = gpmd_cont$continent) %>% 
  group_by(continent) %>% 
  summarise("1972" = mean(gapminder_school_filtered$`1972`),
            "1977" = mean(gapminder_school_filtered$`1977`),
            "1982" = mean(gapminder_school_filtered$`1982`),
            "1987" = mean(gapminder_school_filtered$`1987`),
            "1992" = mean(gapminder_school_filtered$`1992`),
            "1997" = mean(gapminder_school_filtered$`1997`),
            "2002" = mean(gapminder_school_filtered$`2002`),
            "2007" = mean(gapminder_school_filtered$`2007`),
            ) 
## # A tibble: 5 x 9
##   continent `1972` `1977` `1982` `1987` `1992` `1997` `2002` `2007`
##   <fct>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Africa      5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
## 2 Americas    5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
## 3 Asia        5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
## 4 Europe      5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
## 5 Oceania     5.03   5.75   6.44   7.08   7.63   8.15   8.64   9.06
# 
# gapminder_school_filtered %>% ggplot(aes (x = continent , y = gapminder_school_filtered$`1972`) + geom_bar(position = "dodge", stat = "identity")

A tidyr walkthrough

Summary of the tidyr main functions

List of tidyr functions and the relationship to the reshape2 functions:

reshape2 Function tidyr Function Special Powers
melt gather long format*
dcast spread wide format*

The tidyr Functions

Important tidyr for data manipulation


gather

  • Gather Columns Into Key-Value Pairs
    • Useful Filter Functions
      • data expression like x or an expression like x:y or c(x, y). In a data expression, you can only refer to columns from the data frame. Everything else is a context expression in which you can only refer to objects that you have defined with <-. -col1:col3 is a data expression that refers to data columns, while seq(start, end) is a context expression that refers to objects from the contexts.
      • c(x, !! x) selects the x column within the data frame and the column referred to by the object x defined in the context (which can contain either a column name as string or a column position)

Ussage - gather(data, key = "key", value = "value", ..., na.rm = FALSE, convert = FALSE, factor_key = FALSE)

  • key, value, names of new key and value of "key" columns, as strings or symbols.
  • ..., A selection of columns. If empty, all variables are selected, ect.. between x and z with x:z, exclude y with -y.
  • na.rm, If TRUE, remove rows from output where the value column is NA - convert, If TRUE, automatically runs type.convert() on the key column. This is useful if the column names are actually numeric, integer, or logical.
  • factor_key, If FALSE, default, the key values will be stored as a character vector. If TRUE, will stored as a factor, which preserves the original ordering of the columns.

spread

  • Spread A Key-Value Pair Across Multiple Columns
    • Useful Filter Functions
      • same with gather (see above) Ussage - spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE, sep = NULL)
  • fill, If set, missing values will be replaced with that value. Note 2 types of missingness in the input: explicit missing values (NA), and implicit missings, rows that simply aren"t present. Both types will be replaced by fill.
  • convert, If TRUE, type.convert() with asis = TRUE will be run on each of the new columns. This is useful if the value column was a mix of variables that was coerced to a string. If the class of the value column was factor or date, note that will not be true of the new columns that are produced, which are coerced to character before type conversion.
  • drop, If FALSE, will keep factor levels that don"t appear in the data, filling in missing combinations with fill.
  • sep, If NULL, the column names will be taken from the values of key variable. If non-NULL, the column names will be given by "<key_name><key_value>".

tidyr::

Some Data

# Look at the messydata
head(gapminder_school_filtered)
##       country 1972 1977 1982 1987 1992 1997 2002 2007 continent
## 1 Afghanistan  1.1  1.4  1.8  2.1  2.3  2.6  2.9  3.2      Asia
## 2     Albania  6.9  7.7  8.4  9.1  9.6 10.1 10.5 10.9    Europe
## 3     Algeria  2.1  2.7  3.4  4.3  5.2  5.9  6.6  7.2    Africa
## 4      Angola  2.5  3.1  3.8  4.4  4.8  5.3  5.7  6.0    Africa
## 5   Argentina  7.3  8.0  8.6  9.1  9.6 10.1 10.6 11.0  Americas
## 6   Australia 10.2 10.7 11.1 11.4 11.7 11.9 12.1 12.3   Oceania

gather()

gapminder_tidyschool <- gapminder_school_filtered %>% 
  gather(year, meanSchool, -c("country", "continent")) 

# Some sanity check
if (nrow(gapminder_school_filtered) * 8 == nrow(gapminder_tidyschool)) { # there are 8 years
  head(gapminder_tidyschool)
} else {
stop("n() rows dont match table")
}
##       country continent year meanSchool
## 1 Afghanistan      Asia 1972        1.1
## 2     Albania    Europe 1972        6.9
## 3     Algeria    Africa 1972        2.1
## 4      Angola    Africa 1972        2.5
## 5   Argentina  Americas 1972        7.3
## 6   Australia   Oceania 1972       10.2
# Convert year into interger
gapminder_tidyschool$year <- as.integer(gapminder_tidyschool$year)

We have a tidy dataset of gapminder mean years in school datase.

spread()

gapminder_school_filtered %>% 
  gather(year, meanSchool, -c("country", "continent")) %>% 
  spread(year, meanSchool) %>% 
  head()
##       country continent 1972 1977 1982 1987 1992 1997 2002 2007
## 1 Afghanistan      Asia  1.1  1.4  1.8  2.1  2.3  2.6  2.9  3.2
## 2     Albania    Europe  6.9  7.7  8.4  9.1  9.6 10.1 10.5 10.9
## 3     Algeria    Africa  2.1  2.7  3.4  4.3  5.2  5.9  6.6  7.2
## 4      Angola    Africa  2.5  3.1  3.8  4.4  4.8  5.3  5.7  6.0
## 5   Argentina  Americas  7.3  8.0  8.6  9.1  9.6 10.1 10.6 11.0
## 6   Australia   Oceania 10.2 10.7 11.1 11.4 11.7 11.9 12.1 12.3

A dplyr:: walkthrough

Summary of the 9 joint function

  1. inner_join()
  2. semi_join()
  3. left_join()
  4. anti_join()
  5. right_join()
  6. full_join()
  7. union
  8. intersect
  9. setdiff

inner_join()

inner_join(x, y): Return all rows from x where there are matching values in y, and all columns from x and y. If there are multiple matches between x and y, all combination of the matches are returned. This is a mutating join.

gapminder2 <- inner_join(gapminder, gapminder_tidyschool)
  head(gapminder2)
## # A tibble: 6 x 7
##   country     continent  year lifeExp      pop gdpPercap meanSchool
##   <chr>       <fct>     <int>   <dbl>    <int>     <dbl>      <dbl>
## 1 Afghanistan Asia       1972    36.1 13079460      740.        1.1
## 2 Afghanistan Asia       1977    38.4 14880372      786.        1.4
## 3 Afghanistan Asia       1982    39.9 12881816      978.        1.8
## 4 Afghanistan Asia       1987    40.8 13867957      852.        2.1
## 5 Afghanistan Asia       1992    41.7 16317921      649.        2.3
## 6 Afghanistan Asia       1997    41.8 22227415      635.        2.6

Match and join gapminder dataset which has 142 country into gapminder_tidyschool which has 133 country which should only match 1064, which looks correct.

semi_join()

semi_join(x, y): Return all rows from x where there are matching values in y, keeping just columns from x. A semi join differs from an inner join because an inner join will return one row of x for each matching row of y, where a semi join will never duplicate rows of x. This is a filtering join.

semi_join(gapminder, gapminder_tidyschool)
## # A tibble: 1,064 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1972    36.1 13079460      740.
##  2 Afghanistan Asia       1977    38.4 14880372      786.
##  3 Afghanistan Asia       1982    39.9 12881816      978.
##  4 Afghanistan Asia       1987    40.8 13867957      852.
##  5 Afghanistan Asia       1992    41.7 16317921      649.
##  6 Afghanistan Asia       1997    41.8 22227415      635.
##  7 Afghanistan Asia       2002    42.1 25268405      727.
##  8 Afghanistan Asia       2007    43.8 31889923      975.
##  9 Albania     Europe     1972    67.7  2263554     3313.
## 10 Albania     Europe     1977    68.9  2509048     3533.
## # ... with 1,054 more rows

Notice there is no meanSchool column, this returns all matches of x and y whist retaining the same column of original x. Like filter().

left_join()

left_join(x, y): Return all rows from x, and all columns from x and y. If there are multiple matches between x and y, all combination of the matches are returned. This is a mutating join.

left_join(gapminder, gapminder_tidyschool)
## # A tibble: 1,704 x 7
##    country     continent  year lifeExp      pop gdpPercap meanSchool
##    <chr>       <fct>     <int>   <dbl>    <int>     <dbl>      <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.       NA  
##  2 Afghanistan Asia       1957    30.3  9240934      821.       NA  
##  3 Afghanistan Asia       1962    32.0 10267083      853.       NA  
##  4 Afghanistan Asia       1967    34.0 11537966      836.       NA  
##  5 Afghanistan Asia       1972    36.1 13079460      740.        1.1
##  6 Afghanistan Asia       1977    38.4 14880372      786.        1.4
##  7 Afghanistan Asia       1982    39.9 12881816      978.        1.8
##  8 Afghanistan Asia       1987    40.8 13867957      852.        2.1
##  9 Afghanistan Asia       1992    41.7 16317921      649.        2.3
## 10 Afghanistan Asia       1997    41.8 22227415      635.        2.6
## # ... with 1,694 more rows

anti_join()

anti_join(x, y): Return all rows from x where there are not matching values in y, keeping just columns from x. This is a filtering join.

anti_join(gapminder, gapminder_tidyschool)
## # A tibble: 640 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Albania     Europe     1952    55.2  1282697     1601.
##  6 Albania     Europe     1957    59.3  1476505     1942.
##  7 Albania     Europe     1962    64.8  1728137     2313.
##  8 Albania     Europe     1967    66.2  1984060     2760.
##  9 Algeria     Africa     1952    43.1  9279525     2449.
## 10 Algeria     Africa     1957    45.7 10270856     3014.
## # ... with 630 more rows

right_join()

right_join(x, y): Return all rows from y, and all columns from x and y. If there are multiple matches between x and y, all combination of the matches are returned. This is a mutating join.

right_join(gapminder, gapminder_tidyschool)
## # A tibble: 1,064 x 7
##    country     continent  year lifeExp      pop gdpPercap meanSchool
##    <chr>       <fct>     <int>   <dbl>    <int>     <dbl>      <dbl>
##  1 Afghanistan Asia       1972    36.1 13079460      740.        1.1
##  2 Albania     Europe     1972    67.7  2263554     3313.        6.9
##  3 Algeria     Africa     1972    54.5 14760787     4183.        2.1
##  4 Angola      Africa     1972    37.9  5894858     5473.        2.5
##  5 Argentina   Americas   1972    67.1 24779799     9443.        7.3
##  6 Australia   Oceania    1972    71.9 13177000    16789.       10.2
##  7 Austria     Europe     1972    70.6  7544201    16662.        9.5
##  8 Bahrain     Asia       1972    63.3   230800    18269.        4.5
##  9 Bangladesh  Asia       1972    45.3 70759295      630.        2.6
## 10 Belgium     Europe     1972    71.4  9709100    16672.        8.9
## # ... with 1,054 more rows

full_join()

full_join(x, y): Return all rows from x and y, and all columns from x and y.

full_join(gapminder, gapminder_tidyschool)
## # A tibble: 1,704 x 7
##    country     continent  year lifeExp      pop gdpPercap meanSchool
##    <chr>       <fct>     <int>   <dbl>    <int>     <dbl>      <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.       NA  
##  2 Afghanistan Asia       1957    30.3  9240934      821.       NA  
##  3 Afghanistan Asia       1962    32.0 10267083      853.       NA  
##  4 Afghanistan Asia       1967    34.0 11537966      836.       NA  
##  5 Afghanistan Asia       1972    36.1 13079460      740.        1.1
##  6 Afghanistan Asia       1977    38.4 14880372      786.        1.4
##  7 Afghanistan Asia       1982    39.9 12881816      978.        1.8
##  8 Afghanistan Asia       1987    40.8 13867957      852.        2.1
##  9 Afghanistan Asia       1992    41.7 16317921      649.        2.3
## 10 Afghanistan Asia       1997    41.8 22227415      635.        2.6
## # ... with 1,694 more rows

dplyr:: extended

union()

rows that appear in both x and y

#  print all rows gapminder$country vs gapminder_school$country
union(gapminder$country, gapminder_school$country) %>% 
  tbl_df() # not required, when used, prints nice
## # A tibble: 184 x 1
##    value      
##    <chr>      
##  1 Afghanistan
##  2 Albania    
##  3 Algeria    
##  4 Angola     
##  5 Argentina  
##  6 Australia  
##  7 Austria    
##  8 Bahrain    
##  9 Bangladesh 
## 10 Belgium    
## # ... with 174 more rows

intersect()

rows that appear in both x and y

#  rows gapminder$country vs gapminder_school$country, prints difference
intersect(gapminder$country, gapminder_school$country) %>% 
  tbl_df() # not required, when used, prints nice
## # A tibble: 133 x 1
##    value      
##    <chr>      
##  1 Afghanistan
##  2 Albania    
##  3 Algeria    
##  4 Angola     
##  5 Argentina  
##  6 Australia  
##  7 Austria    
##  8 Bahrain    
##  9 Bangladesh 
## 10 Belgium    
## # ... with 123 more rows
intersect(gapminder$country, gapminder_school$country) %>% 
  tbl_df() # not required, when used, prints nice
## # A tibble: 133 x 1
##    value      
##    <chr>      
##  1 Afghanistan
##  2 Albania    
##  3 Algeria    
##  4 Angola     
##  5 Argentina  
##  6 Australia  
##  7 Austria    
##  8 Bahrain    
##  9 Bangladesh 
## 10 Belgium    
## # ... with 123 more rows

setdiff()

rows that appear in x but not y

#  rows gapminder$country vs gapminder_school$country, prints differences
setdiff(gapminder$country, gapminder_school$country) %>% 
  tbl_df() # not required, when used, prints nice
## # A tibble: 9 x 1
##   value                   
##   <chr>                   
## 1 Central African Republic
## 2 Czech Republic          
## 3 Dominican Republic      
## 4 Hong Kong, China        
## 5 Iceland                 
## 6 Korea, Dem. Rep.        
## 7 Libya                   
## 8 Puerto Rico             
## 9 Reunion
# gapminder_school$country vs gapminder$country diffences 
setdiff(gapminder_school$country, gapminder$country) %>% 
  tbl_df()
## # A tibble: 42 x 1
##    value               
##    <chr>               
##  1 Antigua and Barbuda 
##  2 Armenia             
##  3 Azerbaijan          
##  4 Bahamas             
##  5 Belarus             
##  6 Belize              
##  7 Cape Verde          
##  8 Central African Rep.
##  9 Cyprus              
## 10 Czech Rep.          
## # ... with 32 more rows

Bonus content

gather() part 2

# Use gather and create a column year and meanschool and use columb 2 to 9 as key

gapminder_school_filtered %>% 
  gather(key = year, value =  meanSchool, 2:9) %>% 
  arrange(country) %>% 
  head()
##       country continent year meanSchool
## 1 Afghanistan      Asia 1972        1.1
## 2 Afghanistan      Asia 1977        1.4
## 3 Afghanistan      Asia 1982        1.8
## 4 Afghanistan      Asia 1987        2.1
## 5 Afghanistan      Asia 1992        2.3
## 6 Afghanistan      Asia 1997        2.6

gather() part 3 - define year using subset of colnames

gapminder_school_filtered %>% 
  gather(key = year, value =  meanSchool,  
         names(gapminder_school_filtered)[2:9]) %>% 
  head()
##       country continent year meanSchool
## 1 Afghanistan      Asia 1972        1.1
## 2     Albania    Europe 1972        6.9
## 3     Algeria    Africa 1972        2.1
## 4      Angola    Africa 1972        2.5
## 5   Argentina  Americas 1972        7.3
## 6   Australia   Oceania 1972       10.2

spread() - part 2 with continent has the colnames and meanSchool as value

gapminder_school_filtered %>% 
  gather(year, meanSchool, -c("country", "continent")) %>% 
  spread(continent, meanSchool) %>%
  head()
##       country year Africa Americas Asia Europe Oceania
## 1 Afghanistan 1972     NA       NA  1.1     NA      NA
## 2 Afghanistan 1977     NA       NA  1.4     NA      NA
## 3 Afghanistan 1982     NA       NA  1.8     NA      NA
## 4 Afghanistan 1987     NA       NA  2.1     NA      NA
## 5 Afghanistan 1992     NA       NA  2.3     NA      NA
## 6 Afghanistan 1997     NA       NA  2.6     NA      NA

inner_join() part 2

inner_join(gapminder_tidyschool, gapminder) %>% 
  head()
##       country continent year meanSchool lifeExp      pop  gdpPercap
## 1 Afghanistan      Asia 1972        1.1  36.088 13079460   739.9811
## 2     Albania    Europe 1972        6.9  67.690  2263554  3313.4222
## 3     Algeria    Africa 1972        2.1  54.518 14760787  4182.6638
## 4      Angola    Africa 1972        2.5  37.928  5894858  5473.2880
## 5   Argentina  Americas 1972        7.3  67.065 24779799  9443.0385
## 6   Australia   Oceania 1972       10.2  71.930 13177000 16788.6295

Although, it looks similiar to the inner_join() from above but this one does not have the meanSchool column as it is not present in the gapminder dataset.

semi_join() part 2

semi_join(gapminder_tidyschool, gapminder) %>% 
  head()
##       country continent year meanSchool
## 1 Afghanistan      Asia 1972        1.1
## 2     Albania    Europe 1972        6.9
## 3     Algeria    Africa 1972        2.1
## 4      Angola    Africa 1972        2.5
## 5   Argentina  Americas 1972        7.3
## 6   Australia   Oceania 1972       10.2

Only retains column from the gapminder_tidyschool and all matching row in gapminder.

left_join() part 2

left_join(gapminder_tidyschool, gapminder) %>% 
  head()
##       country continent year meanSchool lifeExp      pop  gdpPercap
## 1 Afghanistan      Asia 1972        1.1  36.088 13079460   739.9811
## 2     Albania    Europe 1972        6.9  67.690  2263554  3313.4222
## 3     Algeria    Africa 1972        2.1  54.518 14760787  4182.6638
## 4      Angola    Africa 1972        2.5  37.928  5894858  5473.2880
## 5   Argentina  Americas 1972        7.3  67.065 24779799  9443.0385
## 6   Australia   Oceania 1972       10.2  71.930 13177000 16788.6295

In contrast to the left_join() doest have the meanScool column and it does not contain all the rows from the gapminder dataset.

anti_join() part 2

anti_join(gapminder_tidyschool, gapminder) %>% 
  head()
## [1] country    continent  year       meanSchool
## <0 rows> (or 0-length row.names)

No rows indicate all of the rows ingapminder_tidyschool matches all the rows in the gapminder dataset.

Ending credits: gapminder2

gapminder %>% tbl_df()
## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # ... with 1,694 more rows
gapminder_school %>%  tbl_df()
## # A tibble: 175 x 41
##    country `1970` `1971` `1972` `1973` `1974` `1975` `1976` `1977` `1978`
##    <fct>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Afghan…    1      1.1    1.1    1.2    1.3    1.3    1.4    1.4    1.5
##  2 Albania    6.5    6.7    6.9    7      7.2    7.3    7.5    7.7    7.8
##  3 Algeria    1.9    2      2.1    2.2    2.3    2.4    2.5    2.7    2.8
##  4 Angola     2.3    2.4    2.5    2.7    2.8    2.9    3      3.1    3.2
##  5 Antigu…    8      8.2    8.4    8.6    8.7    8.9    9.1    9.3    9.5
##  6 Argent…    7      7.1    7.3    7.4    7.6    7.7    7.8    8      8.1
##  7 Armenia    7.8    7.9    8.1    8.2    8.4    8.5    8.7    8.8    9  
##  8 Austra…    9.9   10     10.2   10.3   10.4   10.5   10.6   10.7   10.8
##  9 Austria    9.3    9.4    9.5    9.6    9.8    9.9   10     10.1   10.2
## 10 Azerba…    7.6    7.8    8      8.2    8.4    8.6    8.8    8.9    9.1
## # ... with 165 more rows, and 31 more variables: `1979` <dbl>,
## #   `1980` <dbl>, `1981` <dbl>, `1982` <dbl>, `1983` <dbl>, `1984` <dbl>,
## #   `1985` <dbl>, `1986` <dbl>, `1987` <dbl>, `1988` <dbl>, `1989` <dbl>,
## #   `1990` <dbl>, `1991` <dbl>, `1992` <dbl>, `1993` <dbl>, `1994` <dbl>,
## #   `1995` <dbl>, `1996` <dbl>, `1997` <dbl>, `1998` <dbl>, `1999` <dbl>,
## #   `2000` <dbl>, `2001` <dbl>, `2002` <dbl>, `2003` <dbl>, `2004` <dbl>,
## #   `2005` <dbl>, `2006` <dbl>, `2007` <dbl>, `2008` <dbl>, `2009` <dbl>
gapminder2 %>% tbl_df() 
## # A tibble: 1,064 x 7
##    country     continent  year lifeExp      pop gdpPercap meanSchool
##    <chr>       <fct>     <int>   <dbl>    <int>     <dbl>      <dbl>
##  1 Afghanistan Asia       1972    36.1 13079460      740.        1.1
##  2 Afghanistan Asia       1977    38.4 14880372      786.        1.4
##  3 Afghanistan Asia       1982    39.9 12881816      978.        1.8
##  4 Afghanistan Asia       1987    40.8 13867957      852.        2.1
##  5 Afghanistan Asia       1992    41.7 16317921      649.        2.3
##  6 Afghanistan Asia       1997    41.8 22227415      635.        2.6
##  7 Afghanistan Asia       2002    42.1 25268405      727.        2.9
##  8 Afghanistan Asia       2007    43.8 31889923      975.        3.2
##  9 Albania     Europe     1972    67.7  2263554     3313.        6.9
## 10 Albania     Europe     1977    68.9  2509048     3533.        7.7
## # ... with 1,054 more rows

About

Guide to readr, dplyr, and tidyr

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published