Zafar's Audio Functions in Python for audio signal analysis.
Files:
zaf.py
: Python module with the audio functions.examples.ipynb
: Jupyter notebook with some examples.audio_file.wav
: audio file used for the examples.
See also:
- Zaf-Matlab: Zafar's Audio Functions in Matlab for audio signal analysis.
- Zaf-Julia: Zafar's Audio Functions in Julia for audio signal analysis.
This Python module implements a number of functions for audio signal analysis.
Simply copy the file zaf.py
in your working directory and you are good to go. Make sure you have Python 3, NumPy, and SciPy installed.
Functions:
stft
- Compute the short-time Fourier transform (STFT).istft
- Compute the inverse STFT.melfilterbank
- Compute the mel filterbank.melspectrogram
- Compute the mel spectrogram using a mel filterbank.mfcc
- Compute the mel-frequency cepstral coefficients (MFCCs) using a mel filterbank.cqtkernel
- Compute the constant-Q transform (CQT) kernel.cqtspectrogram
- Compute the CQT spectrogram using a CQT kernel.cqtchromagram
- Compute the CQT chromagram using a CQT kernel.dct
- Compute the discrete cosine transform (DCT) using the fast Fourier transform (FFT).dst
- Compute the discrete sine transform (DST) using the FFT.mdct
- Compute the modified discrete cosine transform (MDCT) using the FFT.imdct
- Compute the inverse MDCT using the FFT.
Other:
wavread
- Read a WAVE file (using SciPy).wavwrite
- Write a WAVE file (using SciPy).sigplot
- Plot a signal in seconds.specshow
- Display a spectrogram in dB, seconds, and Hz.melspecshow
- Display a mel spectrogram in dB, seconds, and Hz.mfccshow
- Display MFCCs in seconds.cqtspecshow
- Display a CQT spectrogram in dB, seconds, and Hz.cqtchromshow
- Display a CQT chromagram in seconds.
Compute the short-time Fourier transform (STFT).
audio_stft = zaf.stft(audio_signal, window_function, step_length)
Inputs:
audio_signal: audio signal (number_samples,)
window_function: window function (window_length,)
step_length: step length in samples
Output:
audio_stft: audio STFT (window_length, number_frames)
# Import the needed modules
import numpy as np
import scipy.signal
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Set the window duration in seconds (audio is stationary around 40 milliseconds)
window_duration = 0.04
# Derive the window length in samples (use powers of 2 for faster FFT and constant overlap-add (COLA))
window_length = pow(2, int(np.ceil(np.log2(window_duration*sampling_frequency))))
# Compute the window function (use SciPy's periodic Hamming window for COLA as NumPy's Hamming window is symmetric)
window_function = scipy.signal.hamming(window_length, sym=False)
# Set the step length in samples (half of the window length for COLA)
step_length = int(window_length/2)
# Compute the STFT
audio_stft = zaf.stft(audio_signal, window_function, step_length)
# Derive the magnitude spectrogram (without the DC component and the mirrored frequencies)
audio_spectrogram = np.absolute(audio_stft[1:int(window_length/2) 1, :])
# Display the spectrogram in dB, seconds, and Hz
number_samples = len(audio_signal)
plt.figure(figsize=(14, 7))
zaf.specshow(audio_spectrogram, number_samples, sampling_frequency, xtick_step=1, ytick_step=1000)
plt.title("Spectrogram (dB)")
plt.tight_layout()
plt.show()
Compute the inverse short-time Fourier transform (STFT).
audio_signal = zaf.istft(audio_stft, window_function, step_length)
Inputs:
audio_stft: audio STFT (window_length, number_frames)
window_function: window function (window_length,)
step_length: step length in samples
Output:
audio_signal: audio signal (number_samples,)
# Import the needed modules
import numpy as np
import scipy.signal
import zaf
import matplotlib.pyplot as plt
# Read the (stereo) audio signal with its sampling frequency in Hz
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
# Set the parameters for the STFT
window_length = pow(2, int(np.ceil(np.log2(0.04*sampling_frequency))))
window_function = scipy.signal.hamming(window_length, sym=False)
step_length = int(window_length/2)
# Compute the STFTs for the left and right channels
audio_stft1 = zaf.stft(audio_signal[:, 0], window_function, step_length)
audio_stft2 = zaf.stft(audio_signal[:, 1], window_function, step_length)
# Derive the magnitude spectrograms (with DC component) for the left and right channels
number_frequencies = int(window_length/2) 1
audio_spectrogram1 = abs(audio_stft1[0:number_frequencies, :])
audio_spectrogram2 = abs(audio_stft2[0:number_frequencies, :])
# Estimate the time-frequency masks for the left and right channels for the center
center_mask1 = np.minimum(audio_spectrogram1, audio_spectrogram2)/audio_spectrogram1
center_mask2 = np.minimum(audio_spectrogram1, audio_spectrogram2)/audio_spectrogram2
# Derive the STFTs for the left and right channels for the center (with mirrored frequencies)
center_stft1 = np.multiply(np.concatenate((center_mask1, center_mask1[-2:0:-1, :])), audio_stft1)
center_stft2 = np.multiply(np.concatenate((center_mask2, center_mask2[-2:0:-1, :])), audio_stft2)
# Synthesize the signals for the left and right channels for the center
center_signal1 = zaf.istft(center_stft1, window_function, step_length)
center_signal2 = zaf.istft(center_stft2, window_function, step_length)
# Derive the final stereo center and sides signals
center_signal = np.stack((center_signal1, center_signal2), axis=1)
center_signal = center_signal[0:np.shape(audio_signal)[0], :]
sides_signal = audio_signal-center_signal
# Write the center and sides signals
zaf.wavwrite(center_signal, sampling_frequency, "center_file.wav")
zaf.wavwrite(sides_signal, sampling_frequency, "sides_file.wav")
# Display the original, center, and sides signals in seconds
xtick_step = 1
plt.figure(figsize=(14, 7))
plt.subplot(3, 1, 1), zaf.sigplot(audio_signal, sampling_frequency, xtick_step)
plt.ylim(-1, 1), plt.title("Original signal")
plt.subplot(3, 1, 2), zaf.sigplot(center_signal, sampling_frequency, xtick_step)
plt.ylim(-1, 1), plt.title("Center signal")
plt.subplot(3, 1, 3), zaf.sigplot(sides_signal, sampling_frequency, xtick_step)
plt.ylim(-1, 1), plt.title("Sides signal")
plt.tight_layout()
plt.show()
Compute the mel filterbank.
mel_filterbank = zaf.melfilterbank(sampling_frequency, window_length, number_mels)
Inputs:
sampling_frequency: sampling frequency in Hz
window_length: window length for the Fourier analysis in samples
number_mels: number of mel filters
Output:
mel_filterbank: mel filterbank (sparse) (number_mels, number_frequencies)
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Compute the mel filterbank using some parameters
sampling_frequency = 44100
window_length = pow(2, int(np.ceil(np.log2(0.04 * sampling_frequency))))
number_mels = 128
mel_filterbank = zaf.melfilterbank(sampling_frequency, window_length, number_mels)
# Display the mel filterbank
plt.figure(figsize=(14, 5))
plt.imshow(mel_filterbank.toarray(), aspect="auto", cmap="jet", origin="lower")
plt.title("Mel filterbank")
plt.xlabel("Frequency index")
plt.ylabel("Mel index")
plt.tight_layout()
plt.show()
Compute the mel spectrogram using a mel filterbank.
mel_filterbank = zaf.melspectrogram(audio_signal, window_function, step_length, mel_filterbank)
Inputs:
audio_signal: audio signal (number_samples,)
window_function: window function (window_length,)
step_length: step length in samples
mel_filterbank: mel filterbank (number_mels, number_frequencies)
Output:
mel_spectrogram: mel spectrogram (number_mels, number_times)
# Import the needed modules
import numpy as np
import scipy.signal
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Set the parameters for the Fourier analysis
window_length = pow(2, int(np.ceil(np.log2(0.04*sampling_frequency))))
window_function = scipy.signal.hamming(window_length, sym=False)
step_length = int(window_length/2)
# Compute the mel filterbank
number_mels = 128
mel_filterbank = zaf.melfilterbank(sampling_frequency, window_length, number_mels)
# Compute the mel spectrogram using the filterbank
mel_spectrogram = zaf.melspectrogram(audio_signal, window_function, step_length, mel_filterbank)
# Display the mel spectrogram in dB, seconds, and Hz
number_samples = len(audio_signal)
plt.figure(figsize=(14, 5))
zaf.melspecshow(mel_spectrogram, number_samples, sampling_frequency, window_length, xtick_step=1)
plt.title("Mel spectrogram (dB)")
plt.tight_layout()
plt.show()
Compute the mel-frequency cepstral coefficients (MFCCs) using a mel filterbank.
audio_mfcc = zaf.mfcc(audio_signal, sample_frequency, number_filters, number_coefficients)
Inputs:
audio_signal: audio signal (number_samples,)
sampling_frequency: sampling frequency in Hz
number_filters: number of filters
number_coefficients: number of coefficients (without the 0th coefficient)
Output:
audio_mfcc: audio MFCCs (number_times, number_coefficients)
# Import the needed modules
import numpy as np
import scipy.signal
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Set the parameters for the Fourier analysis
window_length = pow(2, int(np.ceil(np.log2(0.04*sampling_frequency))))
window_function = scipy.signal.hamming(window_length, sym=False)
step_length = int(window_length/2)
# Compute the mel filterbank
number_mels = 40
mel_filterbank = zaf.melfilterbank(sampling_frequency, window_length, number_mels)
# Compute the MFCCs using the filterbank
number_coefficients = 20
audio_mfcc = zaf.mfcc(audio_signal, window_function, step_length, mel_filterbank, number_coefficients)
# Compute the delta and delta-delta MFCCs
audio_dmfcc = np.diff(audio_mfcc, n=1, axis=1)
audio_ddmfcc = np.diff(audio_dmfcc, n=1, axis=1)
# Display the MFCCs, delta MFCCs, and delta-delta MFCCs in seconds
number_samples = len(audio_signal)
xtick_step = 1
plt.figure(figsize=(14, 7))
plt.subplot(3, 1, 1)
zaf.mfccshow(audio_mfcc, number_samples, sampling_frequency, xtick_step), plt.title("MFCCs")
plt.subplot(3, 1, 2)
zaf.mfccshow(audio_dmfcc, number_samples, sampling_frequency, xtick_step), plt.title("Delta MFCCs")
plt.subplot(3, 1, 3)
zaf.mfccshow(audio_ddmfcc, number_samples, sampling_frequency, xtick_step), plt.title("Delta-delta MFCCs")
plt.tight_layout()
plt.show()
Compute the constant-Q transform (CQT) kernel.
cqt_kernel = zaf.cqtkernel(sampling_frequency, octave_resolution, minimum_frequency, maximum_frequency)
Inputs:
sampling_frequency: sampling frequency in Hz
octave_resolution: number of frequency channels per octave
minimum_frequency: minimum frequency in Hz
maximum_frequency: maximum frequency in Hz
Output:
cqt_kernel: CQT kernel (sparse) (number_frequencies, fft_length)
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Set the parameters for the CQT kernel
sampling_frequency = 44100
octave_resolution = 24
minimum_frequency = 55
maximum_frequency = sampling_frequency/2
# Compute the CQT kernel
cqt_kernel = zaf.cqtkernel(sampling_frequency, octave_resolution, minimum_frequency, maximum_frequency)
# Display the magnitude CQT kernel
plt.figure(figsize=(14, 5))
plt.imshow(np.absolute(cqt_kernel).toarray(), aspect="auto", cmap="jet", origin="lower")
plt.title("Magnitude CQT kernel")
plt.xlabel("FFT index")
plt.ylabel("CQT index")
plt.tight_layout()
plt.show()
Compute the constant-Q transform (CQT) spectrogram using a CQT kernel.
cqt_spectrogram = zaf.cqtspectrogram(audio_signal, sample_frequency, time_resolution, cqt_kernel)
Inputs:
audio_signal: audio signal (number_samples,)
sampling_frequency: sampling frequency in Hz
time_resolution: number of time frames per second
cqt_kernel: CQT kernel (number_frequencies, fft_length)
Output:
cqt_spectrogram: CQT spectrogram (number_frequencies, number_times)
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Compute the CQT kernel
octave_resolution = 24
minimum_frequency = 55
maximum_frequency = 3520
cqt_kernel = zaf.cqtkernel(sampling_frequency, octave_resolution, minimum_frequency, maximum_frequency)
# Compute the CQT spectrogram using the kernel
time_resolution = 25
cqt_spectrogram = zaf.cqtspectrogram(audio_signal, sampling_frequency, time_resolution, cqt_kernel)
# Display the CQT spectrogram in dB, seconds, and Hz
plt.figure(figsize=(14, 5))
zaf.cqtspecshow(cqt_spectrogram, time_resolution, octave_resolution, minimum_frequency, xtick_step=1)
plt.title("CQT spectrogram (dB)")
plt.tight_layout()
plt.show()
Compute the constant-Q transform (CQT) chromagram using a CQT kernel.
cqt_chromagram = zaf.cqtchromagram(audio_signal, sampling_frequency, time_resolution, octave_resolution, cqt_kernel)
Inputs:
audio_signal: audio signal (number_samples,)
sampling_frequency: sampling frequency in Hz
time_resolution: number of time frames per second
octave_resolution: number of frequency channels per octave
cqt_kernel: CQT kernel (number_frequencies, fft_length)
Output:
cqt_chromagram: CQT chromagram (number_chromas, number_times)
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Compute the CQT kernel
octave_resolution = 24
minimum_frequency = 55
maximum_frequency = 3520
cqt_kernel = zaf.cqtkernel(sampling_frequency, octave_resolution, minimum_frequency, maximum_frequency)
# Compute the CQT chromagram using the kernel
time_resolution = 25
cqt_chromagram = zaf.cqtchromagram(audio_signal, sampling_frequency, time_resolution, octave_resolution, cqt_kernel)
# Display the CQT chromagram in seconds
plt.figure(figsize=(14, 3))
zaf.cqtchromshow(cqt_chromagram, time_resolution, xtick_step=1)
plt.title("CQT chromagram")
plt.tight_layout()
plt.show()
Compute the discrete cosine transform (DCT) using the fast Fourier transform (FFT).
audio_dct = zaf.dct(audio_signal, dct_type)
Inputs:
audio_signal: audio signal (window_length,)
dct_type: dct type (1, 2, 3, or 4)
Output:
audio_dct: audio DCT (number_frequencies,)
# Import the needed modules
import numpy as np
import zaf
import scipy.fftpack
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Get an audio segment for a given window length
window_length = 1024
audio_segment = audio_signal[0:window_length]
# Compute the DCT-I, II, III, and IV
audio_dct1 = zaf.dct(audio_segment, 1)
audio_dct2 = zaf.dct(audio_segment, 2)
audio_dct3 = zaf.dct(audio_segment, 3)
audio_dct4 = zaf.dct(audio_segment, 4)
# Compute SciPy's DCT-I, II, III, and IV (orthogonalized)
scipy_dct1 = scipy.fftpack.dct(audio_segment, type=1, norm="ortho")
scipy_dct2 = scipy.fftpack.dct(audio_segment, type=2, norm="ortho")
scipy_dct3 = scipy.fftpack.dct(audio_segment, type=3, norm="ortho")
scipy_dct4 = scipy.fftpack.dct(audio_segment, type=4, norm="ortho")
# Plot the DCT-I, II, III, and IV, SciPy's versions, and their differences
plt.figure(figsize=(14, 7))
plt.subplot(3, 4, 1), plt.plot(audio_dct1), plt.autoscale(tight=True), plt.title("DCT-I")
plt.subplot(3, 4, 2), plt.plot(audio_dct2), plt.autoscale(tight=True), plt.title("DCT-II")
plt.subplot(3, 4, 3), plt.plot(audio_dct3), plt.autoscale(tight=True), plt.title("DCT-III")
plt.subplot(3, 4, 4), plt.plot(audio_dct4), plt.autoscale(tight=True), plt.title("DCT-IV")
plt.subplot(3, 4, 5), plt.plot(scipy_dct1), plt.autoscale(tight=True), plt.title("SciPy's DCT-I")
plt.subplot(3, 4, 6), plt.plot(scipy_dct2), plt.autoscale(tight=True), plt.title("SciPy's DCT-II")
plt.subplot(3, 4, 7), plt.plot(scipy_dct3), plt.autoscale(tight=True), plt.title("SciPy's DCT-III")
plt.subplot(3, 4, 8), plt.plot(scipy_dct4), plt.autoscale(tight=True), plt.title("SciPy's DCT-IV")
plt.subplot(3, 4, 9), plt.plot(audio_dct1-scipy_dct1), plt.autoscale(tight=True), plt.title("DCT-I - SciPy's DCT-I")
plt.subplot(3, 4, 10), plt.plot(audio_dct2-scipy_dct2), plt.autoscale(tight=True), plt.title("DCT-II - SciPy's DCT-II")
plt.subplot(3, 4, 11), plt.plot(audio_dct3-scipy_dct3), plt.autoscale(tight=True), plt.title("DCT-III - SciPy's DCT-III")
plt.subplot(3, 4, 12), plt.plot(audio_dct3-scipy_dct3), plt.autoscale(tight=True), plt.title("DCT-IV - SciPy's DCT-IV")
plt.tight_layout()
plt.show()
Compute the discrete sine transform (DST) using the fast Fourier transform (FFT).
audio_dst = zaf.dst(audio_signal, dst_type)
Inputs:
audio_signal: audio signal (window_length,)
dst_type: DST type (1, 2, 3, or 4)
Output:
audio_dst: audio DST (number_frequencies,)
Example: Compute the 4 different DSTs and compare their respective inverses with the original audio.
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Get an audio segment for a given window length
window_length = 1024
audio_segment = audio_signal[0:window_length]
# Compute the DST-I, II, III, and IV
audio_dst1 = zaf.dst(audio_segment, 1)
audio_dst2 = zaf.dst(audio_segment, 2)
audio_dst3 = zaf.dst(audio_segment, 3)
audio_dst4 = zaf.dst(audio_segment, 4)
# Compute their respective inverses, i.e., DST-I, II, III, and IV
audio_idst1 = zaf.dst(audio_dst1, 1)
audio_idst2 = zaf.dst(audio_dst2, 3)
audio_idst3 = zaf.dst(audio_dst3, 2)
audio_idst4 = zaf.dst(audio_dst4, 4)
# Plot the DST-I, II, III, and IV, their respective inverses, and their differences with the original audio segment
plt.figure(figsize=(14, 7))
plt.subplot(3, 4, 1), plt.plot(audio_dst1), plt.autoscale(tight=True), plt.title("DCT-I")
plt.subplot(3, 4, 2), plt.plot(audio_dst2), plt.autoscale(tight=True), plt.title("DST-II")
plt.subplot(3, 4, 3), plt.plot(audio_dst3), plt.autoscale(tight=True), plt.title("DST-III")
plt.subplot(3, 4, 4), plt.plot(audio_dst4), plt.autoscale(tight=True), plt.title("DST-IV")
plt.subplot(3, 4, 5), plt.plot(audio_idst1), plt.autoscale(tight=True), plt.title("Inverse DST-I (DST-I)")
plt.subplot(3, 4, 6), plt.plot(audio_idst2), plt.autoscale(tight=True), plt.title("Inverse DST-II (DST-III)")
plt.subplot(3, 4, 7), plt.plot(audio_idst3), plt.autoscale(tight=True), plt.title("Inverse DST-III (DST-II)")
plt.subplot(3, 4, 8), plt.plot(audio_idst4), plt.autoscale(tight=True), plt.title("Inverse DST-IV (DST-IV)")
plt.subplot(3, 4, 9), plt.plot(audio_idst1-audio_segment), plt.autoscale(tight=True)
plt.title("Inverse DST-I - audio segment")
plt.subplot(3, 4, 10), plt.plot(audio_idst2-audio_segment), plt.autoscale(tight=True)
plt.title("Inverse DST-II - audio segment")
plt.subplot(3, 4, 11), plt.plot(audio_idst3-audio_segment), plt.autoscale(tight=True)
plt.title("Inverse DST-III - audio segment")
plt.subplot(3, 4, 12), plt.plot(audio_idst4-audio_segment), plt.autoscale(tight=True)
plt.title("Inverse DST-IV - audio segment")
plt.tight_layout()
plt.show()
Compute the modified discrete cosine transform (MDCT) using the fast Fourier transform (FFT).
audio_mdct = zaf.mdct(audio_signal, window_function)
Inputs:
audio_signal: audio signal (number_samples,)
window_function: window function (window_length,)
Output:
audio_mdct: audio MDCT (number_frequencies, number_times)
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Compute the Kaiser-Bessel-derived (KBD) window as used in the AC-3 audio coding format
window_length = 512
alpha_value = 5
window_function = np.kaiser(int(window_length/2) 1, alpha_value*np.pi)
window_function2 = np.cumsum(window_function[1:int(window_length/2)])
window_function = np.sqrt(np.concatenate((window_function2, window_function2[int(window_length/2)::-1]))
/np.sum(window_function))
# Compute the MDCT
audio_mdct = zaf.mdct(audio_signal, window_function)
# Display the MDCT in dB, seconds, and Hz
number_samples = len(audio_signal)
plt.figure(figsize=(14, 7))
zaf.specshow(np.absolute(audio_mdct), number_samples, sampling_frequency, xtick_step=1, ytick_step=1000)
plt.title("MDCT (dB)")
plt.tight_layout()
plt.show()
Compute the inverse modified discrete cosine transform (MDCT) using the fast Fourier transform (FFT).
audio_signal = zaf.imdct(audio_mdct, window_function)
Inputs:
audio_mdct: audio MDCT (number_frequencies, number_times)
window_function: window function (window_length,)
Output:
audio_signal: audio signal (number_samples,)
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Compute the MDCT with a slope function as used in the Vorbis audio coding format
window_length = 2048
window_function = np.sin(np.pi/2*pow(np.sin(np.pi/window_length*np.arange(0.5, window_length 0.5)), 2))
audio_mdct = zaf.mdct(audio_signal, window_function)
# Compute the inverse MDCT
audio_signal2 = zaf.imdct(audio_mdct, window_function)
audio_signal2 = audio_signal2[0:len(audio_signal)]
# Compute the differences between the original signal and the resynthesized one
audio_differences = audio_signal-audio_signal2
y_max = np.max(np.absolute(audio_differences))
# Display the original and resynthesized signals, and their differences in seconds
xtick_step = 1
plt.figure(figsize=(14, 7))
plt.subplot(3, 1, 1), zaf.sigplot(audio_signal, sampling_frequency, xtick_step)
plt.ylim(-1, 1), plt.title("Original signal")
plt.subplot(3, 1, 2), zaf.sigplot(audio_signal2, sampling_frequency, xtick_step)
plt.ylim(-1, 1), plt.title("Resyntesized signal")
plt.subplot(3, 1, 3), zaf.sigplot(audio_differences, sampling_frequency, xtick_step)
plt.ylim(-y_max, y_max), plt.title("Original - resyntesized signal")
plt.tight_layout()
plt.show()
This Jupyter notebook shows some examples for the different functions of the Python module zaf
.
23 second audio excerpt from the song Que Pena Tanto Faz performed by Tamy.
- Zafar Rafii
- http://zafarrafii.com/
- CV
- GitHub
- Google Scholar