Skip to content

Latest commit

 

History

History
 
 

YOLOv3-Training-Snowman-Detector

Training YOLOv3 Object Detector - Snowman

  1. Install awscli

sudo pip3 install awscli

  1. Get the relevant OpenImages files needed to locate images of our interest

wget https://storage.googleapis.com/openimages/2018_04/class-descriptions-boxable.csv

wget https://storage.googleapis.com/openimages/2018_04/train/train-annotations-bbox.csv

  1. Download the images from OpenImagesV4

python3 getDataFromOpenImages_snowman.py

  1. Create the train-test split

python3 splitTrainAndTest.py /data-ssd/sunita/snowman/JPEGImages

Give the correct path to the data JPEGImages folder. The 'labels' folder should be in the same directory as the JPEGImages folder.

  1. Install Darknet and compile it.
cd ~
git clone https://github.com/pjreddie/darknet
cd darknet
make
  1. Get the pretrained model

wget https://pjreddie.com/media/files/darknet53.conv.74 -O ~/darknet/darknet53.conv.74

  1. Fill in correct paths in the darknet.data file

  2. Start the training as below, by giving the correct paths to all the files being used as arguments

cd ~/darknet

./darknet detector train /path/to/snowman/darknet.data /path/to/snowman/darknet-yolov3.cfg ./darknet53.conv.74 > /path/to/snowman/train.log

  1. Give the correct path to the modelConfiguration and modelWeights files in object_detection_yolo.py and test any image or video for snowman detection, e.g.

python3 object_detection_yolo.py --image=snowmanImage.jpg