Skip to content

A high-precision method for solving the inverse geodetic problem — finding the shortest path between two given points on the Earth

Notifications You must be signed in to change notification settings

whydenyscry/Inverse-Vincenty-method

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 

Repository files navigation

Inverse Vincenty's method

Solving the inverse problem of geodesy on the WGS-84 Earth model. It should be said that I have not considered special cases such as two nearly antipodal points, etc.

Algorithm

Suppose that there are two points on the Earth's surface, $\overline{A}\left(\varphi_1, L_1\right)$ and $\overline{B}\left(\varphi_2, L_2\right)$, each of which is defined by certain latitude ($\varphi$) and longitude ($L$) coordinates, then the distance $D$ between these points can be determined using the inverse Vincenty's method.

Introduce the following notation:
$a$ is the equatorial radius of the Earth model,
$f$ is the flattening factor of the Earth model,
$b$ is the polar radius of the Earth model,
$\alpha_1,\alpha_2$ — direct azimuths in points,
$U_1 = \arctan{\left(\left(1 - f\right)\tan{\varphi_1}\right)}$,
$U_2 = \arctan{\left(\left(1 - f\right)\tan{\varphi_2}\right)}$,
$L = L_2 - L_1$,
$\varepsilon_\lambda$ — the permissible error.

Set the initial value of $\lambda_k = L, k = 0$, and calculate the following expressions:

$$ \sin \sigma ={\sqrt {\left(\cos U_{2}\sin \lambda_k \right)^{2} \left(\cos U_{1}\sin U_{2}-\sin U_{1}\cos U_{2}\cos \lambda_k \right)^{2}}}, $$

$$ \cos \sigma =\sin U_{1}\sin U_{2} \cos U_{1}\cos U_{2}\cos \lambda_k, $$

$$ \sigma =\text {arctan2} \left(\sin \sigma ,\cos \sigma \right), $$

$$ \sin \alpha ={\frac {\cos U_{1}\cos U_{2}\sin \lambda_k }{\sin \sigma }}, $$

$$ \cos \left(2\sigma _{\text{m}}\right)=\cos \sigma -{\frac {2\sin U_{1}\sin U_{2}}{1-\sin ^{2}\alpha }}, $$

$$ C={\frac {1}{16}}f\cos ^{2}\alpha \left[4 f\left(4-3\cos ^{2}\alpha \right)\right], $$

$$ \lambda_{k 1} =L (1-C)f\sin \alpha \left\{\sigma C\sin \sigma \left[\cos \left(2\sigma _{\text{m}}\right) C\cos \sigma \left(-1 2\cos ^{2}\left(2\sigma _{\text{m}}\right)\right)\right]\right\}. $$

The iterative calculation continues until the end condition is met:

$$ \left|\lambda_{k 1}-\lambda_{k}\right|\leq\varepsilon_\lambda, $$

or until the limit on iterations is reached.

The geodetic distance and azimuths are then calculated:

$$ u^2 = \frac{a^2 - b^2}{b^2} \cos^2 \alpha, $$

$$ A = 1 \frac{u^2}{16384} \left\{ 4096 u^2 \left[ -768 u^2 (320 - 175u^2) \right] \right\}, $$

$$ B = \frac{u^2}{1024} \left\{ 256 u^2 \left[ -128 u^2 (74-47 u^2) \right] \right\}, $$

$$ \Delta \sigma = B \sin \sigma \left\{\cos(2 \sigma_m) \frac{1}{4}B \left[\cos \sigma \left(-1 2 \cos^2(2 \sigma_m)\right) - \frac{1}{6} B \cos(2 \sigma_m) (-3 4 \sin^2 \sigma) \left(-3 4 \cos^2 (2 \sigma_m)\right)\right]\right\}, $$

$$ D = b A\left(\sigma - \Delta \sigma\right), $$

$$ \alpha _{1}=\text {arctan2} \left(\cos U_{2}\sin \lambda_{k 1} ,\cos U_{1}\sin U_{2}-\sin U_{1}\cos U_{2}\cos \lambda_{k 1} \right), $$

$$ \alpha _{2}=\text {arctan2} \left(\cos U_{1}\sin \lambda_{k 1} ,\cos U_{1}\sin U_{2}\cos \lambda_{k 1} -\sin U_{1}\cos U_{2}\right). $$

Vincenty then proposed a more compact formula for $A$ ta $B$ using the Helmert parameter:

$$ F = \frac { \sqrt {(1 u^2)} - 1}{ \sqrt {(1 u^2)} 1},$$

$$ A = \frac {1 \frac {1}{4} F^2}{1 - F}, $$

$$ B = F\left(1 - \frac {3}{8}F^2\right).$$

References

  1. T. Vincenty. DIRECT AND INVERSE SOLUTIONS OF GEODESICS ON THE ELLIPSOID WITH APPLICATION OF NESTED EQUATIONS. Survey Review, 23(176):88–93, 4 1975. https://doi.org/10.1179/sre.1975.23.176.88
  2. T. Vincenty. GEODETIC INVERSE SOLUTION BETWEEN ANTIPODAL POINTS. DMAAC Geodetic Survey Squadron. 1975. https://doi:10.5281/zenodo.32999
  3. International Civil Aviation Organization. World Geodetic System – 1984 (WGS-84) manual, 2002. https://www.icao.int/NACC/Documents/Meetings/2014/ECARAIM/REF08-Doc9674.pdf

About

A high-precision method for solving the inverse geodetic problem — finding the shortest path between two given points on the Earth

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages