-
Notifications
You must be signed in to change notification settings - Fork 3
/
eval_model.py
499 lines (427 loc) · 16.7 KB
/
eval_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import argparse
import collections
import glob
import os
import pickle
import re
import datasets
import torch
from common import *
from estimators import *
from made import MADE
# For inference speed.
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
print(DEVICE)
parser = argparse.ArgumentParser()
parser.add_argument("--inference-opts", action='store_true', help="Trace?")
parser.add_argument(
"--use-query-order",
action='store_true',
help="Whether to use the variable order from the query in eval.")
parser.add_argument(
"--use-best-order",
action='store_true',
help="Whether to use best available multi-order for the query in eval.")
parser.add_argument(
"--use-worst-order",
action='store_true',
help="Whether to use worst available multi-order for the query in eval.")
parser.add_argument("--early", action='store_true', help="Early stop?")
parser.add_argument("--print-unk",
action='store_true',
help="Print UNK embeddings?")
parser.add_argument("--special-orders",
type=int,
default=-1,
help="Number of special orderings to use. Disabled if -1.")
parser.add_argument("--num-queries", type=int, default=2000, help="# queries.")
parser.add_argument("--dataset", type=str, default='dmv', help="Dataset.")
parser.add_argument("--err-csv",
type=str,
default="out.csv",
help="Save to what path?")
parser.add_argument("--glob",
type=str,
default="models/*",
help="Ckpts to glob under models/.")
parser.add_argument("--psample", type=int, default=4000, help="#psamples.")
parser.add_argument("--order",
nargs=" ",
type=int,
required=False,
help="Use a specific order?")
parser.add_argument("--blacklist", type=str, help="Remove some glob'd files.")
# MADE.
parser.add_argument("--fc-hiddens",
type=int,
default=128,
help="# Units in FC.")
parser.add_argument("--layers", type=int, default=0, help="# layers in FC.")
parser.add_argument("--residual", action='store_true', help="ResMade?")
parser.add_argument("--direct-io", action='store_true', help="Do direct IO?")
parser.add_argument("--dropout", action='store_true', help="Dropout?")
parser.add_argument("--no-emb-opt",
action='store_true',
help="No embedding optimization?")
parser.add_argument("--special-dmv-arch",
action='store_true',
help="For testing...")
parser.add_argument("--inv-order",
action='store_true',
help="MADE needs inverse order...")
parser.add_argument("--embs-tied",
action='store_true',
help="tie in/out embeddings?")
# Transformer.
parser.add_argument("--blocks",
type=int,
default=0,
help="Transformer: num blocks.")
parser.add_argument("--dmodel",
type=int,
default=0,
help="Transformer: d_model.")
parser.add_argument("--dff", type=int, default=0, help="Transformer: d_ff.")
parser.add_argument("--heads",
type=int,
default=0,
help="Transformer: num heads.")
parser.add_argument("--transformer-act",
type=str,
default='gelu',
help="Transformer activation.")
parser.add_argument("--pos-emb",
action='store_true',
help="Use positional embs?")
parser.add_argument("--first-query-shared",
action='store_true',
help="First query vec shared?")
def InvertOrder(order):
if order is None:
return None
# 'order'[i] maps nat_i -> position of nat_i
# Inverse: position -> natural idx. This it the "true" ordering -- it's how
# heuristic orders are generated (less crucially) how Transformer works.
nin = len(order)
inv_ordering = [None] * nin
for natural_idx in range(nin):
inv_ordering[order[natural_idx]] = natural_idx
return inv_ordering
def ErrorMetric(est_card, card):
if card == 0 and est_card != 0:
return est_card
if card != 0 and est_card == 0:
return card
if card == 0 and est_card == 0:
return 1.0
return max(est_card / card, card / est_card)
def SampleTupleThenRandom(dataset,
all_cols,
num_filters,
rng,
table,
return_col_idx=False,
force_query_cols=None):
s = table.data.iloc[rng.randint(0, len(table.data))]
vals = s.values
if dataset == 'dmv':
# Giant hack for DMV.
vals[6] = vals[6].to_datetime64()
elif dataset == 'dmv-full':
vals[13] = vals[13].to_datetime64()
vals[14] = vals[14].to_datetime64()
if force_query_cols:
idxs = force_query_cols
num_filters = len(idxs)
print("Forcing columns to query", idxs)
else:
idxs = rng.choice(len(all_cols), replace=False, size=num_filters)
cols = np.take(all_cols, idxs)
# If dom size >= 10, okay to place a range filter.
# Otherwise, low domain size columns should be queried with equality.
ops = rng.choice(['<=', '>=', '='], size=num_filters)
# ops = rng.choice(['<=', '>=',], size=num_filters)
ops_all_eqs = ['='] * num_filters
sensible_to_do_range = [c.DistributionSize() >= 10 for c in cols]
# sensible_to_do_range = [c.DistributionSize() >= 1000000000 for c in cols]
ops = np.where(sensible_to_do_range, ops, ops_all_eqs)
if num_filters == len(all_cols):
if return_col_idx:
return np.arange(len(all_cols)), ops, vals
return all_cols, ops, vals
vals = vals[idxs]
if return_col_idx:
return idxs, ops, vals
return cols, ops, vals
def SampleFromDomains(all_cols, num_filters, rng, table, return_col_idx=False):
idxs = rng.choice(len(all_cols), replace=False, size=num_filters)
cols = np.take(all_cols, idxs)
# If dom size >= 10, okay to place a range filter.
# Otherwise, low domain size columns should be queried with equality.
ops = rng.choice(['<=', '>=', '='], size=num_filters)
# ops = rng.choice(['<=', '>=',], size=num_filters)
ops_all_eqs = ['='] * num_filters
sensible_to_do_range = [c.DistributionSize() >= 10 for c in cols]
# sensible_to_do_range = [c.DistributionSize() >= 1000000000 for c in cols]
ops = np.where(sensible_to_do_range, ops, ops_all_eqs)
vals = []
for c in cols:
l = 0
if pd.isnull(c.all_distinct_values[0]):
l = 1
vals.append(c.all_distinct_values[rng.randint(l, c.distribution_size)])
if return_col_idx:
return idxs, ops, vals
return cols, ops, vals
def GenerateQuery(dataset, all_cols, rng, table, return_col_idx=False, query_filters=None, force_query_cols=None):
### Generate a random query.
if query_filters:
num_filters = min(len(all_cols),
rng.randint(query_filters[0], query_filters[1]))
elif dataset in 'dmv':
num_filters = rng.randint(len(all_cols) // 2, len(all_cols) 1)
elif dataset == 'synthetic':
num_filters = rng.randint(2, 3)
else:
num_filters = min(len(all_cols), rng.randint(5, 12))
if hasattr(table, 'data'):
cols, ops, vals = SampleTupleThenRandom(dataset,
all_cols,
num_filters,
rng,
table,
return_col_idx=return_col_idx,
force_query_cols=force_query_cols)
else:
assert not force_query_cols, "not implemented"
cols, ops, vals = SampleFromDomains(all_cols,
num_filters,
rng,
table,
return_col_idx=return_col_idx)
# print('generated query', cols, ops, vals)
# assert False, type(cols)
return cols, ops, vals
def Query(estimators,
do_print=True,
oracle_card=None,
query=None,
table=None,
oracle_est=None):
assert query is not None
cols, ops, vals = query
### Actually estimate the query.
def pprint(*args, **kwargs):
if do_print:
print(*args, **kwargs)
# Actual.
s = time.time()
card = oracle_est.Query(cols, ops,
vals) if oracle_card is None else oracle_card
d = time.time() - s
pprint('{:.3}s oracle_est.Query()'.format(d))
if card == 0:
return
pprint('Q(', end='')
for c, o, v in zip(cols, ops, vals):
pprint('{} {} {}, '.format(c.name, o, str(v)), end='')
pprint('): ', end='')
pprint('\n actual {} ({:.3f}%) '.format(card,
card / table.cardinality * 100),
end='')
for est in estimators:
# print(cols, ops, vals)
est_card = est.Query(cols, ops, vals)
err = ErrorMetric(est_card, card)
est.AddError(err, est_card, card)
pprint('{} {} (err={:.3f}) '.format(str(est), est_card, err), end='')
pprint()
def ReportEsts(estimators):
v = -1
for est in estimators:
# print("Estimator error", est, "mean", np.mean(est.errs), "max",
# np.max(est.errs), "95th", np.quantile(est.errs, 0.95),
# "90th", np.quantile(est.errs, 0.9), "median",
# np.quantile(est.errs, 0.5))
print(str(est), "max", np.max(est.errs), "99th",
np.quantile(est.errs, 0.99), "95th", np.quantile(est.errs, 0.95),
"median", np.quantile(est.errs, 0.5))
v = max(v, np.max(est.errs))
return v
def RunN(table,
cols,
estimators,
rng=None,
num=20,
log_every=50,
num_filters=11,
oracle_cards=None,
oracle_est=None):
if rng is None:
rng = np.random.RandomState(1234)
last_time = None
for i in range(num):
do_print = False
if i % log_every == 0:
if last_time is not None:
print('{:.1f} queries/sec'.format(log_every /
(time.time() - last_time)))
do_print = True
print('Query {}:'.format(i), end=' ')
last_time = time.time()
query = GenerateQuery(args.dataset, cols, rng, table)
Query(estimators,
do_print,
oracle_card=oracle_cards[i] if oracle_cards is not None else None,
query=query,
table=table,
oracle_est=oracle_est)
max_err = ReportEsts(estimators)
if args.early and max_err > 370:
return True
return False
# TODO: unify MakeModel from eval/train files into one.
def MakeModel(scale, cols_to_train, seed, fixed_ordering=None):
if args.inv_order:
print('Inverting order!!!!!!!!!!')
fixed_ordering = InvertOrder(fixed_ordering)
return MADE(
nin=len(cols_to_train),
hidden_sizes=[
scale,
] * 4,
nout=sum([c.DistributionSize() for c in cols_to_train]),
input_bins=[c.DistributionSize() for c in cols_to_train],
input_encoding="embed",
output_encoding="embed",
embed_size=64,
# input_no_emb_if_leq=False,
embs_tied=args.embs_tied,
input_no_emb_if_leq=True,
seed=seed,
natural_ordering=False if seed is not None else True,
residual_connections=args.residual,
fixed_ordering=fixed_ordering,
do_direct_io_connections=args.direct_io,
dropout_p=args.dropout,
).to(DEVICE)
def MakeMadeDmv(cols_to_train, seed, fixed_ordering=None):
if args.inv_order:
print('Inverting order!!!!!!!!!!')
fixed_ordering = InvertOrder(fixed_ordering)
if args.special_dmv_arch:
return MADE(
nin=len(cols_to_train),
hidden_sizes=[256] * 5,
nout=sum([c.DistributionSize() for c in cols_to_train]),
input_bins=[c.DistributionSize() for c in cols_to_train],
input_encoding="embed",
output_encoding="embed",
embed_size=128,
input_no_emb_if_leq=True,
embs_tied=True,
seed=seed,
do_direct_io_connections=True, #args.direct_io,
natural_ordering=False if seed is not None else True,
residual_connections=args.residual,
fixed_ordering=fixed_ordering,
dropout_p=args.dropout,
).to(DEVICE)
hiddens = [args.fc_hiddens] * args.layers
natural_ordering = False
if args.layers == 0:
# Default ckpt.
hiddens = [512, 256, 512, 128, 1024]
natural_ordering = True
model = MADE(
nin=len(cols_to_train),
hidden_sizes=hiddens,
residual_connections=args.residual,
nout=sum([c.DistributionSize() for c in cols_to_train]),
input_bins=[c.DistributionSize() for c in cols_to_train],
input_encoding="embed"
if args.dataset in ["dmv-full", "kdd", "synthetic"] else "binary",
output_encoding="embed"
if args.dataset in ["dmv-full", "kdd", "synthetic"] else "one_hot",
seed=seed,
do_direct_io_connections=args.direct_io,
natural_ordering=False if seed is not None else True,
fixed_ordering=fixed_ordering,
dropout_p=args.dropout,
num_masks=max(1, args.special_orders),
).to(DEVICE)
# XXX this is copied from train_many_orderings
if args.special_orders > 0:
special_orders = [
# # MutInfo Max Marg
# np.array([6, 1, 4, 0, 7, 3, 5, 2, 10, 9, 8]),
# # CL Max Marg/Dom
# np.array([6, 1, 4, 0, 5, 7, 3, 2, 10, 9, 8]),
# # Random
# np.random.RandomState(0).permutation(np.arange(11)),
][:args.special_orders]
k = len(special_orders)
for i in range(k, args.special_orders):
special_orders.append(
np.random.RandomState(i - k 1).permutation(
np.arange(len(cols_to_train))))
print('Special orders', np.array(special_orders))
if args.inv_order:
for i, order in enumerate(special_orders):
special_orders[i] = np.asarray(InvertOrder(order))
print('Inverted special orders:', special_orders)
model.orderings = special_orders
if args.use_query_order:
model.use_query_order = True
if args.use_best_order:
model.use_best_order = True
if args.use_worst_order:
model.use_worst_order = True
return model
def MakeTransformer(cols_to_train, fixed_ordering, seed=None):
return Transformer(
num_blocks=args.blocks,
d_model=args.dmodel,
d_ff=args.dff,
num_heads=args.heads,
nin=len(cols_to_train),
input_bins=[c.DistributionSize() for c in cols_to_train],
use_positional_embs=args.pos_emb,
activation=args.transformer_act,
fixed_ordering=fixed_ordering,
dropout=args.dropout,
seed=seed,
first_query_shared=args.first_query_shared,
).to(DEVICE)
def ReportModel(model, blacklist=None):
ps = []
for name, p in model.named_parameters():
# print (p)
# assert 'embedding' not in name, name
if blacklist is None or blacklist not in name:
ps.append(np.prod(p.size()))
num_params = sum(ps)
mb = num_params * 4 / 1024 / 1024
print("number of model parameters: {} (~= {:.1f}MB)".format(num_params, mb))
# for name, param in model.named_parameters():
# print(name, ':', np.prod(param.size()))
print(model)
return mb
def SaveEstimators(path, estimators, return_df=False):
# name, query_dur_ms, errs, est_cards, true_cards
results = pd.DataFrame()
for est in estimators:
data = {
'est': [est.name] * len(est.errs),
# 'est': [str(est)] * len(est.errs),
'err': est.errs,
'est_card': est.est_cards,
'true_card': est.true_cards,
'query_dur_ms': est.query_dur_ms,
}
results = results.append(pd.DataFrame(data))
if return_df:
return results
results.to_csv(path, index=False)