Skip to content
#

winsorization

Here are 7 public repositories matching this topic...

Language: All
Filter by language

This project explores the Framingham Heart disease dataset with the objective to predict its risk in 10 years. Various methods for handling missing values and outliers are explored as iterations. After analysing the dataset, important and necessary features are selected. Seven ML models are implemented, with evaluation on the basis of Test Recall.

  • Updated Apr 7, 2023
  • Jupyter Notebook

- Fundamentos de Estadística matemática. - Conceptos clave de Machine Learning. - Desarrollo de modelos y Algoritmos. -Proceso EDA y preprocesamiento de datos. -Tratamiento de Outliers y NaN. -Estandarización y Codificación de características para un modelo. - Entrenamiento de Modelo de ML. -Desarrollo de una APP a partir de un modelo.

  • Updated Nov 27, 2024
  • Jupyter Notebook

An end to end ML solution to predict customer churn, aiding businesses in identifying at-risk customers. This repository features a tuned LightGBM model, custom preprocessing, SMOTE for class balancing, and a user-friendly Streamlit app for predictions, emphasizing model optimization and deployment.

  • Updated Nov 14, 2024
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the winsorization topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the winsorization topic, visit your repo's landing page and select "manage topics."

Learn more