-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_quac_step1_infer.py
866 lines (732 loc) · 35.7 KB
/
run_quac_step1_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for question-answering on QuAC (Bert)."""
from ast import AsyncFunctionDef
from distutils.errors import DistutilsFileError
import os
from ossaudiodev import SNDCTL_DSP_SETFRAGMENT
import re
import argparse
import glob
import copy
import logging
import random
import timeit
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoTokenizer,
get_linear_schedule_with_warmup,
)
from quac_processors_step1_infer import (
QuacProcessor,
quac_convert_examples_to_features,
QuacResult
)
from quac_metrics import (
compute_predictions_logits,
read_target_dict,
quac_performance,
_get_best_indexes,
get_final_text
)
from modeling_auto_bert_ts import AutoModelForQuestionAnswering
from uce import eceloss, uceloss
from uce_plot import plot_save_conf, plot_save_entr
import matplotlib
import matplotlib.pyplot as plt
import collections
from collections import defaultdict, Counter
from transformers import BasicTokenizer
import json
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_list(tensor):
return tensor.detach().cpu().tolist()
def evaluate(args, model, tokenizer, prefix="", write_predictions=True):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
all_results = []
start_time = timeit.default_timer()
#TODO
start_logits = []
start_labels = []
end_logits = []
end_labels = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"temp_scale" : args.temp_scale, #TODO TODO
"bayesian" : args.bayesian, #TODO TODO
"T" : args.T, #TODO TODO
"label_smoothing" : args.label_smoothing, #TODO TODO,
"mc_drop_mask_num": args.mc_drop_mask_num, #TODO TODO,
}
if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart"]:
del inputs["token_type_ids"]
feature_indices = batch[3]
# XLNet and XLM use more arguments for their predictions
if args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
# for lang_id-sensitive xlm models
if hasattr(model, "config") and hasattr(model.config, "lang2id"):
inputs.update(
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
)
outputs = model(**inputs)
if args.bayesian: # for uncertainty
start_output = torch.softmax(outputs[0], dim=2).mean(dim=0)
end_output = torch.softmax(outputs[1], dim=2).mean(dim=0)
else:
start_output = torch.softmax(outputs[0], dim=1)
end_output = torch.softmax(outputs[1], dim=1)
start_logits.append(start_output.detach())
end_logits.append(end_output.detach())
start_labels.append(batch[6].detach())
end_labels.append(batch[7].detach())
for i, feature_index in enumerate(feature_indices):
eval_feature = features[feature_index.item()]
unique_id = int(eval_feature.unique_id)
if args.bayesian:
start_end_outputs = outputs[:2]
start_end_output = [output[:, i, :] for output in start_end_outputs]
mc_start_logits, mc_end_logits = start_end_output
cls_logits = outputs[2][i].tolist()
mean_start_logits = mc_start_logits.mean(dim=0).tolist()
mean_end_logits = mc_end_logits.mean(dim=0).tolist()
result = QuacResult(unique_id, mean_start_logits, mean_end_logits, cls_logits)
else:
output = [to_list(output[i]) for output in outputs]
fq_start_logits, fq_end_logits, cls_logits = output
result = QuacResult(unique_id, fq_start_logits, fq_end_logits, cls_logits)
all_results.append(result)
evalTime = timeit.default_timer() - start_time
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
#TODO: for plot
tensor_start_logits = torch.cat(start_logits, dim=0)
tensor_end_logits = torch.cat(end_logits, dim=0)
tensor_start_labels = torch.cat(start_labels, dim=0)
tensor_end_labels = torch.cat(end_labels, dim=0)
torch.save(tensor_start_logits, args.output_dir '/plot/tensor_start_logits.pt')
torch.save(tensor_end_logits, args.output_dir '/plot/tensor_end_logits.pt')
torch.save(tensor_start_labels, args.output_dir '/plot/tensor_start_labels.pt')
torch.save(tensor_end_labels, args.output_dir '/plot/tensor_end_labels.pt')
ece_start, acc_start, conf_start, confidence_start = eceloss(tensor_start_logits, tensor_start_labels)
ece_end, acc_end, conf_end, confidence_end = eceloss(tensor_end_logits, tensor_end_labels)
mean_confidence = (confidence_start confidence_end) / 2
uce_start, err_start, entr_start, uncertainty_start = uceloss(tensor_start_logits, tensor_start_labels)
uce_end, err_end, entr_end, uncertainty_end = uceloss(tensor_end_logits, tensor_end_labels)
mean_uncertainty = (uncertainty_start uncertainty_end) / 2
# mean_ece = (ece_start ece_end) / 2
# mean_uce = (uce_start uce_end) / 2
# if args.conf_or_uncer == 'uncer':
# print(mean_uce.item()*100)
# elif args.conf_or_uncer == 'conf':
# print(mean_ece.item()*100)
if args.bayesian:
if args.temp_scale:
plot_save_conf(args, ece_start, acc_start, conf_start, 'MC Start Calib.', args.output_dir '/plot/mc_calib_conf_start')
plot_save_entr(args, uce_start, err_start, entr_start, 'MC Start Calib.', args.output_dir '/plot/mc_calib_entr_start')
plot_save_conf(args, ece_end, acc_end, conf_end, 'MC End Calib.', args.output_dir '/plot/mc_calib_conf_end')
plot_save_entr(args, uce_end, err_end, entr_end, 'MC End Calib.', args.output_dir '/plot/mc_calib_entr_end')
else:
plot_save_conf(args, ece_start, acc_start, conf_start, 'MC Start Uncalib.', args.output_dir '/plot/mc_uncalib_conf_start')
plot_save_entr(args, uce_start, err_start, entr_start, 'MC Start UnCalib.', args.output_dir '/plot/mc_uncalib_entr_start')
plot_save_conf(args, ece_end, acc_end, conf_end, 'MC End Uncalib.', args.output_dir '/plot/mc_uncalib_conf_end')
plot_save_entr(args, uce_end, err_end, entr_end, 'MC End UnCalib.', args.output_dir '/plot/mc_uncalib_entr_end')
else:
if args.temp_scale:
plot_save_conf(args, ece_start, acc_start, conf_start, 'Freq. Start Calib.', args.output_dir '/plot/frequentist_calib_conf_start')
plot_save_entr(args, uce_start, err_start, entr_start, 'Freq. Start Calib.', args.output_dir '/plot/frequentist_calib_entr_start')
plot_save_conf(args, ece_end, acc_end, conf_end, 'Freq. End Calib.', args.output_dir '/plot/frequentist_calib_conf_end')
plot_save_entr(args, uce_end, err_end, entr_end, 'Freq. End Calib.', args.output_dir '/plot/frequentist_calib_entr_end')
else:
plot_save_conf(args, ece_start, acc_start, conf_start, 'Freq. Start Uncalib.', args.output_dir '/plot/frequentist_uncalib_conf_start')
plot_save_entr(args, uce_start, err_start, entr_start, 'Freq. Start UnCalib.', args.output_dir '/plot/frequentist_uncalib_entr_start')
plot_save_conf(args, ece_end, acc_end, conf_end, 'Freq. End Uncalib.', args.output_dir '/plot/frequentist_uncalib_conf_end')
plot_save_entr(args, uce_end, err_end, entr_end, 'Freq. End UnCalib.', args.output_dir '/plot/frequentist_uncalib_entr_end')
example_index_to_features = collections.defaultdict(list)
for feature, conf, uncer in zip(features, mean_confidence.tolist(), mean_uncertainty.tolist()):
example_index_to_features[feature.example_index].append([feature, conf, uncer])
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "start_index", "end_index", "start_logit", "end_logit", "class_logit"]
)
all_nbest_start_json = collections.OrderedDict()
for (example_index, example) in enumerate(examples):
_features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start end of position 0
score_null = 1000000 # large and positive
min_null_feature_index = 0 # the paragraph slice with min null score
null_start_logit = 0 # the start logit at the slice with min null score
null_end_logit = 0 # the end logit at the slice with min null score
null_class_logit = None
for (feature_index, _feature) in enumerate(_features):
feature = _feature[0]
result = unique_id_to_result[feature.unique_id]
start_indexes = _get_best_indexes(result.start_logits, 1)
end_indexes = _get_best_indexes(result.end_logits, 1)
# if we could have irrelevant answers, get the min score of irrelevant
feature_null_score = result.start_logits[0] result.end_logits[0]
if feature_null_score < score_null:
score_null = feature_null_score
min_null_feature_index = feature_index
null_start_logit = result.start_logits[0]
null_end_logit = result.end_logits[0]
null_class_logit = result.cls_logits
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= len(feature.tokens):
continue
if end_index >= len(feature.tokens):
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index 1
if length > args.max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index],
class_logit=result.cls_logits
)
)
prelim_predictions.append(
_PrelimPrediction(
feature_index=min_null_feature_index,
start_index=0,
end_index=0,
start_logit=null_start_logit,
end_logit=null_end_logit,
class_logit=null_class_logit
)
)
prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit x.end_logit), reverse=True)
_NbestPredictionStart = collections.namedtuple( # pylint: disable=invalid-name
"NbestPredictionStart", ["text", "start_logit", "end_logit", "answer_start", "confidence", "uncertainty"]
)
seen_predictions = {}
#TODO
nbest_start = []
for pred in prelim_predictions:
_feature = _features[pred.feature_index]
feature = _feature[0]
conf = _feature[1]
uncer = _feature[2]
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = feature.tokens[pred.start_index : (pred.end_index 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end 1)]
tok_text = tokenizer.convert_tokens_to_string(tok_tokens)
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, args.do_lower_case, args.verbose_logging)
#TODO
actual_doc_text = example.context_text
answer_start = actual_doc_text.find(final_text)
confidence = conf
uncertainty = uncer
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = 'CANNOTANSWER'
seen_predictions[final_text] = True
#TODO
actual_doc_text = example.context_text
answer_start = actual_doc_text.find(final_text)
confidence = conf
uncertainty = uncer
#TODO
nbest_start.append(_NbestPredictionStart(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit,
answer_start=answer_start, confidence=confidence, uncertainty=uncertainty))
# if we didn't include the empty option in the n-best, include it
if "CANNOTANSWER" not in seen_predictions:
#TODO
nbest_start.append(_NbestPredictionStart(text="CANNOTANSWER", start_logit=null_start_logit, end_logit=null_end_logit,
answer_start=answer_start, confidence=confidence, uncertainty=uncertainty))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest_start:
#TODO
nbest_start.append(_NbestPredictionStart(text="CANNOTANSWER", start_logit=0.0, end_logit=0.0,
answer_start=answer_start, confidence=confidence, uncertainty=uncertainty))
assert len(nbest_start) >= 1, "No valid predictions"
nbest_start_json = []
for (i, entry_start) in enumerate(nbest_start):
output = collections.OrderedDict()
output["text"] = entry_start.text
output["start_logit"] = entry_start.start_logit
output["end_logit"] = entry_start.end_logit
output["answer_start"] = entry_start.answer_start
output["confidence"] = entry_start.confidence
output["uncertainty"] = entry_start.uncertainty
nbest_start_json.append(output)
#TODO
all_nbest_start_json[example.qas_id] = nbest_start_json
output_nbest_with_start_index_conf_uncer_file = os.path.join(args.output_dir, "nbest_predictions_with_start_idx_conf_uncer_{}.json".format(prefix))
with open(output_nbest_with_start_index_conf_uncer_file, "w") as writer:
writer.write(json.dumps(all_nbest_start_json, indent=4) "\n")
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
#TODO
output_nbest_with_start_index_file = os.path.join(args.output_dir, "nbest_predictions_with_start_idx_{}.json".format(prefix))
# XLNet and XLM use a more complex post-processing procedure
if args.model_type in ["xlnet", "xlm"]:
start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top
else:
predictions, nbest_predictions = compute_predictions_logits(
examples,
features,
all_results,
args.n_best_size,
args.max_answer_length,
args.do_lower_case,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
output_nbest_with_start_index_file, #TODO
args.verbose_logging,
args.null_score_diff_threshold,
tokenizer,
write_predictions=write_predictions,
)
input_file = os.path.join(args.data_dir, args.predict_file)
target_dict = read_target_dict(input_file)
# Compute the F1 and exact scores.
results = quac_performance(predictions, target_dict)
return results
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0] and not evaluate:
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
# Load data features from cache or dataset file
input_dir = args.data_dir if args.data_dir else "."
cached_features_file = os.path.join(
input_dir,
"cached_transformers_{}_{}_{}_{}".format(
"eval" if evaluate else "train",
args.predict_file if evaluate else args.train_file,
list(filter(None, args.model_name_or_path.split("/"))).pop() if args.cache_prefix is None else args.cache_prefix,
str(args.max_seq_length),
str(args.max_query_length)
),
)
# Init features and dataset from cache if it exists
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features_and_dataset = torch.load(cached_features_file)
features, dataset, examples = (
features_and_dataset["features"],
features_and_dataset["dataset"],
features_and_dataset["examples"],
)
else:
logger.info("Creating features from dataset file at %s", input_dir)
processor = QuacProcessor(tokenizer=tokenizer, max_history=args.max_history)
if evaluate:
examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
else:
examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
features, dataset = quac_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
return_dataset="pt",
threads=args.threads
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
if args.local_rank == 0 and not evaluate:
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
if output_examples:
return dataset, examples, features
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " ", ".join(MODEL_TYPES),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Other parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
help="The input data dir. Should contain the .json files for the task."
"If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--train_file",
default=None,
type=str,
help="The input training file. If a data dir is specified, will look for the file there"
"If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--predict_file",
default=None,
type=str,
help="The input evaluation file. If a data dir is specified, will look for the file there"
"If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.",
)
parser.add_argument(
"--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.",
)
parser.add_argument(
"--doc_stride",
default=128,
type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.",
)
parser.add_argument(
"--max_query_length",
default=128,
type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.",
)
parser.add_argument(
"--verbose_logging",
action="store_true",
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal QuAC evaluation.",
)
parser.add_argument(
"--lang_id",
default=0,
type=int,
help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
)
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=0, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
parser.add_argument(
"--cache_prefix",
default=None,
type=str,
help="prefix for cached file of datasets, features, and examples",
)
parser.add_argument("--orig_loss_coeff", type=float, help="coeff for original loss")
#TODO TODO
parser.add_argument("--bayesian", action='store_true', help="to use bayesian")
parser.add_argument("--temp_scale", action='store_true', help="to use temp_scale")
parser.add_argument("--T", type=float, default="1.0", help="to use temp_scale")
parser.add_argument("--label_smoothing", action='store_true', help="to use label_smoothing")
parser.add_argument("--mc_drop_mask_num", type=int, default="10", help="mc_drop_mask_num")
parser.add_argument("--max_history", type=int, help="max_history")
parser.add_argument("--conf_or_uncer", type=str, default="", help="whether to use confidence or uncertainty")
args = parser.parse_args()
if args.doc_stride >= args.max_seq_length - args.max_query_length:
logger.warning(
"WARNING - You've set a doc stride which may be superior to the document length in some "
"examples. This could result in errors when building features from the examples. Please reduce the doc "
"stride or increase the maximum length to ensure the features are correctly built."
)
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
filename=args.output_dir '/logs.log', #
filemode='w',
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
force=True
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
args.model_type = args.model_type.lower()
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
#output_hidden_states=True,
#output_attentions=True,
#return_dict = True
)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = AutoModelForQuestionAnswering.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.local_rank == 0:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
# remove the need for this code, but it is still valid.
if args.fp16:
try:
import apex
apex.amp.register_half_function(torch, "einsum")
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if args.do_train:
logger.info("Loading checkpoints saved during training for evaluation")
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c)
for c in sorted(glob.glob(args.output_dir "/**/" WEIGHTS_NAME, recursive=True))
)
else:
logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
checkpoints = [args.model_name_or_path]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split("-")[-1] if re.search("checkpoint", checkpoint) else ""
model = AutoModelForQuestionAnswering.from_pretrained(checkpoint) # , force_download=True)
model.to(args.device)
# Evaluate
f1 = evaluate(args, model, tokenizer, prefix=global_step)
result = {'F1' : f1}
result = dict((k ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
results.update(result)
logger.info("Results: {}".format(results))
return results
if __name__ == "__main__":
main()