You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Please refer to the FAQ in doc and search for the related issues before you ask the question.
Describe the question(问题描述)
对deepmatch中的sdm模型进行模型存储和加载的尝试,出现
AttributeError: "Functional" object has no attribute "user_input"的错误,求助各路大神.谢谢~
Additional context
样例代码:
import pandas as pd
from deepctr.feature_column import SparseFeat, VarLenSparseFeat
from preprocess import gen_data_set_sdm, gen_model_input_sdm
from sklearn.preprocessing import LabelEncoder
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import optimizers
from tensorflow.python.keras.models import Model
from deepmatch.models import SDM
from deepmatch.utils import sampledsoftmaxloss
if name == "main":
data = pd.read_csvdata = pd.read_csv("./movielens_sample.txt")
sparse_features = ["movie_id", "user_id",
"gender", "age", "occupation", "zip", "genres"]
SEQ_LEN_short = 5
SEQ_LEN_prefer = 50
# 1.Label Encoding for sparse features,and process sequence features with `gen_date_set` and `gen_model_input`
features = ["user_id", "movie_id", "gender", "age", "occupation", "zip", "genres"]
feature_max_idx = {}
for feature in features:
lbe = LabelEncoder()
data[feature] = lbe.fit_transform(data[feature]) + 1
feature_max_idx[feature] = data[feature].max() + 1
user_profile = data[["user_id", "gender", "age", "occupation", "zip", "genres"]].drop_duplicates("user_id")
item_profile = data[["movie_id"]].drop_duplicates("movie_id")
user_profile.set_index("user_id", inplace=True)
# user_item_list = data.groupby("user_id")["movie_id"].apply(list)
train_set, test_set = gen_data_set_sdm(data, seq_short_len=SEQ_LEN_short, seq_prefer_len=SEQ_LEN_prefer)
train_model_input, train_label = gen_model_input_sdm(train_set, user_profile, SEQ_LEN_short, SEQ_LEN_prefer)
test_model_input, test_label = gen_model_input_sdm(test_set, user_profile, SEQ_LEN_short, SEQ_LEN_prefer)
# 2.count #unique features for each sparse field and generate feature config for sequence feature
embedding_dim = 32
# for sdm,we must provide `VarLenSparseFeat` with name "prefer_xxx" and "short_xxx" and their length
user_feature_columns = [SparseFeat("user_id", feature_max_idx["user_id"], 16),
SparseFeat("gender", feature_max_idx["gender"], 16),
SparseFeat("age", feature_max_idx["age"], 16),
SparseFeat("occupation", feature_max_idx["occupation"], 16),
SparseFeat("zip", feature_max_idx["zip"], 16),
VarLenSparseFeat(SparseFeat("short_movie_id", feature_max_idx["movie_id"], embedding_dim,
embedding_name="movie_id"), SEQ_LEN_short, "mean",
"short_sess_length"),
VarLenSparseFeat(SparseFeat("prefer_movie_id", feature_max_idx["movie_id"], embedding_dim,
embedding_name="movie_id"), SEQ_LEN_prefer, "mean",
"prefer_sess_length"),
VarLenSparseFeat(SparseFeat("short_genres", feature_max_idx["genres"], embedding_dim,
embedding_name="genres"), SEQ_LEN_short, "mean",
"short_sess_length"),
VarLenSparseFeat(SparseFeat("prefer_genres", feature_max_idx["genres"], embedding_dim,
embedding_name="genres"), SEQ_LEN_prefer, "mean",
"prefer_sess_length"),
]
item_feature_columns = [SparseFeat("movie_id", feature_max_idx["movie_id"], embedding_dim)]
K.set_learning_phase(True)
import tensorflow as tf
if tf.__version__ >= "2.0.0":
tf.compat.v1.disable_eager_execution()
# units must be equal to item embedding dim!
model = SDM(user_feature_columns, item_feature_columns, history_feature_list=["movie_id", "genres"],
units=embedding_dim, num_sampled=100, )
model.compile(optimizer="adam", loss=sampledsoftmaxloss) # "binary_crossentropy")
history = model.fit(train_model_input, train_label, # train_label,
batch_size=512, epochs=1, verbose=1, validation_split=0.0, )
model_name = "./sdm_model.h5"
model.save(filepath=model_name)
K.set_learning_phase(False)
# from keras_bert import get_custom_objects
from deepmatch.layers import *
from deepctr.layers.utils import *
loaded_model = tf.keras.models.load_model(model_name,
custom_objects={"EmbeddingIndex": EmbeddingIndex,
"AttentionSequencePoolingLayer": AttentionSequencePoolingLayer,
"DynamicMultiRNN": DynamicMultiRNN,
"SelfMultiHeadAttention": SelfMultiHeadAttention,
"UserAttention": UserAttention,
"PoolingLayer": PoolingLayer,
"SampledSoftmaxLayer": SampledSoftmaxLayer,
"NoMask": NoMask,
"sampledsoftmaxloss": sampledsoftmaxloss
})
# # 3.Define Model,train,predict and evaluate
test_user_model_input = test_model_input
all_item_model_input = {"movie_id": item_profile["movie_id"].values, }
user_embedding_model = Model(inputs=loaded_model.user_input, outputs=loaded_model.user_embedding)
item_embedding_model = Model(inputs=loaded_model.item_input, outputs=loaded_model.item_embedding)
user_embs = user_embedding_model.predict(test_user_model_input, batch_size=2 ** 12)
# user_embs = user_embs[:, i, :] # i in [0,k_max) if MIND
item_embs = item_embedding_model.predict(all_item_model_input, batch_size=2 ** 12)
print(user_embs)
print(item_embs.shape)
报错信息:
Traceback (most recent call last):
File "C:/Users/HP/Desktop/DeepMatch-master/examples/run_sdm_test.py", line 107, in
user_embedding_model = Model(inputs=loaded_model.user_input, outputs=loaded_model.user_embedding)
AttributeError: "Functional" object has no attribute "user_input"
Operating environment(运行环境):
python version [3.7.5]
tensorflow version [2.4.0,]
deepmatch version [0.2.0,]
The text was updated successfully, but these errors were encountered:
Please refer to the FAQ in doc and search for the related issues before you ask the question.
Describe the question(问题描述)
对deepmatch中的sdm模型进行模型存储和加载的尝试,出现
AttributeError: "Functional" object has no attribute "user_input"的错误,求助各路大神.谢谢~
Additional context
样例代码:
import pandas as pd
from deepctr.feature_column import SparseFeat, VarLenSparseFeat
from preprocess import gen_data_set_sdm, gen_model_input_sdm
from sklearn.preprocessing import LabelEncoder
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import optimizers
from tensorflow.python.keras.models import Model
from deepmatch.models import SDM
from deepmatch.utils import sampledsoftmaxloss
if name == "main":
data = pd.read_csvdata = pd.read_csv("./movielens_sample.txt")
报错信息:
Traceback (most recent call last):
File "C:/Users/HP/Desktop/DeepMatch-master/examples/run_sdm_test.py", line 107, in
user_embedding_model = Model(inputs=loaded_model.user_input, outputs=loaded_model.user_embedding)
AttributeError: "Functional" object has no attribute "user_input"
Operating environment(运行环境):
The text was updated successfully, but these errors were encountered: