Skip to content

Fortran 2018 Reverse Polish Notation (RPN) calculator. Over 100 functions not in standard Fortran

License

Notifications You must be signed in to change notification settings

scivision/rpn-calc-fortran

Repository files navigation

RPN Reverse Polish Notation Calculator -- in Fortran

ci_cmake

Fortran logo

Fortran RPN Calculator screen

The funcs.90 module provides over 100 elemental functions not found in Fortran instrinsics. Bessel, complex gamma, psi and a few others come are vendored and modernized from Netlib Specfun under the specfun/ directory.

RPNcalc works on Linux, Mac and Windows.

The stack size is set by the user with command line option. Default size is 4.

Authors:

We have created some self-tests using Python SciPy, which is not necessary for normal use -- this is a standalone Fortran program.

Build

Build with CMake or Fortran package manager (FPM).

CMake:

cmake -B build

cmake --build build

ctest --test-dir build  # optional, compare with SciPy output.

Fortran Package Manager (FPM):

fpm build

fpm run

Usage

Run the "rpncalc" executable like:

build/rpncalc

or with:

fpm run

Enter numbers and operations separated by blanks or carriage returns. The contents of the X register will be printed after each carriage return. For example:

            X

2 3       5.0000
6 *      30.0000
SIN       0.5000

To exit the program, type:

q

To get a brief help:

help

Stack size: default stack size is 4, and may be betweeen 2..99 levels. Set the stack size at runtime, say 25 by:

rpncalc 25

Show what modes the calculator is in with:

MODES       Print modes

The Fortran 2018 RPN calculator has 3 operating modes. The default mode is REAL

COMPLEX     COMPLEX mode
REAL        REAL mode
RATIONAL    Rational (fraction) mode

Additionally, angle modes can be selected like any scientific calculator:

DEFAULT     Restore default modes

GRAD        Grads mode
RAD         Radians mode
DEG         Degrees mode

Number base selection:

DEC         Decimal mode   ( default )
BIN         Binary mode
HEX         Hexadecimal mode
OCT         Octal mode

Stack operations are fundamental to RPN use, and constitute some of RPN's key advantages over other calculating methods.

R           Roll stack down
U           Roll stack up
D           Drop lowest (X) register from stack

CLALL       Clear all
CLREG       Clear general registers
CLS         Clear summation registers
CLSTK       Clear stack
CLX         Clear X

RESET       Reset calculator to initial state

LASTX       Recall last X

PR          Print registers
PS          Print stack
PSUMS       Print sums

Registers:

There are ten registers (0..9) accessed with:

STOx       Store, where x ~ 0..9  e.g. STO3   STO6
RCLx       Recall, where x ~ 0..9 e.g. RCL3   RCL6

Digits of precision display:

For each case, x ~ (0..9) digits of DISPLAYED precision. Iinternal precision remains at 32 or 64 bits, set when compiled.

ENGx         Engineering notation
FIXx         Fix notation
SCIx         Scientific notation

Other display modes:

IMPROPER    Improper fraction display mode
MIXED       Mixed fraction display mode

ALL         ALL digits display mode

Common Functions:

            Addition
-           Subtraction
*           Multiplication
/           Division
^           Exponentiation
RECIP       Reciprocal


2X          2^x

SQR         Square
SQRT        Square root

HYPOT       Compute SQRT(X^2 Y^2)
HYPOT3      Compute SQRT(X^2 Y^2 Z^2)

CUBE        Cube
CBRT        Cube root

!           Factorial (= GAMMA(n 1))

ROUND       Round to integer

CHS         Change sign

FRAC        Fractional part
FRACTOL     Set fraction tolerance

Complex functions:

These utility functions are for operations with numbers having a real and imaginary component. Most of the functions overall in the program can handle real and complex numbers, using Fortran 2003 polymorphism.

ABS         Absolute value
CONJ        Complex conjugate

I           i (imaginary unit)

IM          Imaginary component
RE          Real component
ARG         Argument of a complex number

RI          Exchange real and imaginary parts

Conversions:

P>R         Polar to rectangular
R>D         Radians to degrees
R>P         Rectangular to polar
D>F         Decimal to fraction
D>R         Degrees to radians

C>F         Celsius to Fahrenheit
CM>IN       Centimeter to inches
F>C         Fahrenheit to Celsius
GAL>L       Gallons to liters
HMS>H       HMS to hours
KG>LB       Kilograms to pounds
L>GAL       Liters to gallons
H>HMS       Hours to HMS
LB>KG       Pounds to kilograms
IN>CM       Inches to centimeters

Trigonometric:

SIN         Sine
ASIN        Inverse sine

COS         Cosine
ACOS        Inverse cosine

COT         Cotangent
ACOT        Inverse cotangent
ACOT2       Inverse cotangent (2 args)

CSC         Cosecant
ACSC        Inverse cosecant

SEC         Secant
ASEC        Inverse secant

TAN         Tangent
ATAN        Inverse tangent
ATAN2       Inverse tangent (2 args)

AHAV        Inverse haversine
HAV         Haversine

Hyperbolic:

ACOSH       Inverse hyperbolic cosine
ACOTH       Inverse hyperbolic cotangent
COSH        Hyperbolic cosine
COTH        Hyperbolic cotangent

ASECH       Inverse hyperbolic secant
ACSCH       Inverse hyperbolic cosecant
ASINH       Inverse hyperbolic sine
ATANH       Inverse hyperbolic tangent

SINH        Hyperbolic sine
TANH        Hyperbolic tangent
SECH        Hyperbolic secant
CSCH        Hyperbolic cosecant

Logarithms:

XRT         X root of Y

EXP         exp(x)
10X         10^x

LN          Natural logarithm
LOG         Common logarithm
LOG2        Logarithm base 2

Rational numbers:

GCD         Greatest common divisor
LCM         Least common multiple

INT         Integer part
INT/        Integer division

Statistics:

CNR         Combinations
PNR         Permutations

LR          Linear regression (leaves b in X, m in Y)

X^          Linear estimate X
XMEAN       Mean of X

XS          Sample standard deviation of X
XSIG        Population standard deviation of X
XY          X-Y exchange
Y^          Linear estimate Y
YMEAN       Mean of Y
YS          Sample standard deviation of Y
YSIG        Population standard deviation of Y

Constants:

AMU         Atomic mass unit (kg)
AU          Astronomical unit (m)
C           Speed of light in vacuum (m/s)
ECHG        Elementary charge e (C)
EPS0        Permittivity of free space (F/m)
EULER       Euler-Mascheroni constant
G           Standard acceleration due to gravity (m/s^2)
GOLDEN      Golden ratio
GRAV        Gravitational constant G (m^3/kg s^2)
H           Planck constant (J s)
HBAR        Planck constant (J s)
KB          Boltzmann constant (J/K)
ME          Electron mass (kg)
MN          Neutron mass (kg)
MP          Proton mass (kg)
MU0         Permeability of free space (N/A^2)
MUB         Bohr magneton (A m^2)
MUN         Nuclear magneton (A m^2)
NA          Avogadro's number (mol^-1)


PI          Pi   ( ~ 22/7)
2PI         2 * pi
2PII        2 * pi * i

RGAS        Gas constant (J/mol K)
REARTH      Earth radius (m)

STEFAN      Stefan-Boltzmann constant (W/m^2 K^4)

logical:

AND         Logical AND
NOT         Logical NOT
OR          Logical OR
XOR         Logical XOR

Other Functions:

Many functions not commonly found in RPN calculators are included:

%           Percent
%CHG        Percent change
!!          Double factorial

A0          Bohr radius (m)

ACOVERS     Inverse coversine
ACRD        Inverse chord (of Ptolemy)

AEXSEC      Inverse exsecant

AVERS       Inverse versine
BESSELJ0    Bessel function of the first kind, order 0
BESSELJ1    Bessel function of the first kind, order 1
BESSELJ1P   first derivative J'1(x)
BESSELJ     Bessel function of the first kind, real order

BESSELY0    Bessel function of the second kind, order 0
BESSELY1    Bessel function of the second kind, order 1
BESSELY     Bessel function of the second kind, real order

BESSELI0    Modified Bessel function of the first kind, order 0
BESSELI1    Modified Bessel function of the first kind, order 1
BESSELI     Modified Bessel function of the first kind, real order

BESSELK0    Modified Bessel function of the second kind, order 0
BESSELK1    Modified Bessel function of the second kind, order 1
BESSELK     Modified Bessel function of the second kind, real order

JINC        [JINC sombrero function](https://en.wikipedia.org/wiki/Sombrero_function)  J1(x)/x

BETA        Beta function

COVERS      Coversine
CRD         Chord (of Ptolemy)

DIGAMMA     Digamma function
DUP         Duplicate X

ERF         Error function
ERFC        Complementary error function

EXSEC       Exsecant

GAMMA       Gamma function

HMS         HMS add
HMS-        HMS subtract


KEPLER      Solves elliptical Kepler's equation (e,M -> E)

MOD         Modulo

N           Number of points in summation

RAND        Random number

RCORR       Linear regression correlation coefficient

REDUCE      Reduce an angle

REV         Revs mode

RZETA       Riemann zeta function
S           Summation
S-          Delete summation

SGN         Signum

SINC        [cardinal sine (sinc) function  sin(x) / x](https://en.wikipedia.org/wiki/Sinc_function)

SINHC       Sinhc function

SUMX        Summation of X
SUMX2       Summation of X^2
SUMXY       Summation of XY
SUMY        Summation of Y
SUMY2       Summation of Y^2

TANC        Tanc function

TANHC       Tanhc function
TIME        Current date and time
VER         Print software version
VERS        Versine

Possible future operations:

?           Incomplete gamma functions (upper and lower)
?           Incomplete beta function
?           Spherical Bessel functions j, n
?           Legendre functions Pnm, Qnm (various normalizations)
?           Legendre polynomials
?           Elliptic integrals
?           Jacobi elliptic functions sn, cn, dn
?           Jacobi amplitude function am
?           Exponential integrals
?           Hypergeometric functions
?           Hermite polynomials