-
Notifications
You must be signed in to change notification settings - Fork 1
/
alternative_sat.py
420 lines (362 loc) · 13.1 KB
/
alternative_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
"""
2-SAT solution for the graph 3-colouring problem
"""
from typing import Dict, Tuple, List, Set, Iterator
def read_graph(path: str) -> Tuple[Dict[int, List[int]], Dict[int, int]]:
"""
Read a graph from file
Args:
path: str path to file
Returns:
Tuple[Dict[int, List[int]], Dict[int, int]]: - the graph, and its vertice colours
"""
gr = {}
cols = {}
with open(path, "r", encoding="utf-8") as infile:
quints = map(
lambda x: tuple(map(int, x)),
[line.split(",") for line in infile.readlines()],
)
for obj in quints:
if obj[0] in gr:
gr[obj[0]].add(obj[1])
else:
gr[obj[0]] = {obj[1]}
if obj[1] in gr:
gr[obj[1]].add(obj[0])
else:
gr[obj[1]] = {obj[0]}
cols[obj[0]] = obj[2]
cols[obj[1]] = obj[3]
return {v: list(gr[v]) for v in gr}, cols
def write_graph(
path: str, graph: Dict[int, List[int]], colours: List[Tuple[int]]
) -> None:
"""
Write a graph with its colours to a file
Args:
path: str - the path to file
graph: Dict[int, List[int]] - the graph
colours: List[Tuple[int]] - the vertice colours
"""
colours = dict(colours)
written = set()
with open(path, "w", encoding="utf-8") as outfile:
for vertice, adjacent_list in graph.items():
for adjacent in adjacent_list:
if (vertice, adjacent) not in written and (
adjacent,
vertice,
) not in written:
outfile.write(
f"{vertice},{adjacent},{colours[vertice]},{colours[adjacent]}\n"
)
written.add((vertice, adjacent))
# The function is redundant now, but it has sentimental value for me
# Should someone delete this, I'll remove their kneecaps with an ice cream scoop
def form_sats(graph: Dict[int, List[int]], nodes: List[bool]) -> bool:
"""
Perform a conjunctive normal formula on a graph and it's colour representation
Args:
graph: Dict[int, List[int]] - a dictionary.
Basically an unsparsed adjacency matrix
nodes: List[bool] - list of booleans.
Those are triplets, that show colour.
Only one of the triplets should be True.
The list's length should be 3*n,
where n is the number of vertices
Example:
[False, False, True, True, False, False] shows a graph,
that has (0, 2) and (1, 0) (2nd number is the colour
Returns:
bool - whether the graph edge colouring is valid
"""
# nodes = {node: [False, False, False] for node in graph}
# print(nodes)
for node, items in graph.items():
node_col = nodes[(node * 3) : (node * 3 3)].count(True) == 1
# for y in items:
# for i in range(3):
# print(f"{(node*3 i, y*3 i)}: {not (nodes[node*3 i] and nodes[y*3 i])}")
no_neighbours = all(
not (nodes[node * 3 i] and nodes[y * 3 i])
for y in items
for i in range(3)
)
if not (node_col and no_neighbours):
return False
return True
# We should've taken the Catalan numbers
# This dfs is gonna get a hernia, the way it carries this algorithm
def dfs(
grp: Dict[int, List[int]],
cur: int,
visited: Set[int],
path: List[int],
*_,
colours: Dict[int, int] = None,
back_edges: List[Tuple[int]] = None,
) -> Tuple[List[int], List[List[int]], Dict[int, int], Dict[int, int]]:
"""
Perform dfs on graph
Args:
grp: Dict[int, List[int]] - a directed graph
cur: int - node to strt with
visited: Set[int] - visitd edges
path: List[int] - the path
colours: List[Tuple[int]] - array of colours
back_edges: List[Tuple[int]] - array of back edges
Returns:
Tuple[List[int], List[List[int]], Dict[int, int], Dict[int, int]] - ... yeah.
"""
if cur in visited:
return
graph = {vertice: sorted(edges) for vertice, edges in grp.items()}
result = []
stack = [cur]
base = 1
while stack:
s = stack[-1]
visited.add(s)
if s not in path:
path.append(s)
if isinstance(colours, dict) and s not in colours:
base = 0 if base else 1
colours[s] = base
if s in graph:
for node in reversed(graph.get(s)):
if node in visited and isinstance(back_edges, list):
back_edges.append((s, node))
if node not in visited:
stack.append(node)
stack.remove(s)
return (path, colours, back_edges)
def cycles_dfs(
graph: Dict[int, List[int]], start: int, end: int
) -> Iterator[List[int]]:
"""
Do a dfs on a graph
Args:
graph: Dict[int, List[int]] - a graph
start: int - the start node
end: int - the end node
Returns:
Iterator[List[int]] - the list of cycles
"""
fringe = [(start, [])]
while fringe:
state, path = fringe.pop()
if path and state == end:
yield path
continue
if state in graph:
for next_state in graph[state]:
if next_state in path:
continue
fringe.append((next_state, path [next_state]))
def get_cycle_intersections(
odd_cycles: List[List[int]], even_cycles: List[List[int]], * ,odds: bool=False
) -> List[List[int]]:
"""
Get intersections in lists of cycles
Args:
odd_cycles: List[List[int]]
even_cycles: List[List[int]]
Returns:
List[List[int]] - a list of intersections
"""
res = []
for ec in even_cycles:
for oc in [x for x in odd_cycles if x != ec]:
#if (
# oc[i] in ec
# and oc[i 1] in ec
# and not all(x in ec for x in oc)
# and (len(oc) > 3 and len(ec) > 3)
#):
# res.append(ec)
if any(x in oc and all(y not in ecc for y in ec) for ecc in even_cycles for x in ecc):
res.append(oc)
return res
def get_back_edges(
cycles: List[List[int]], back_edges: List[Tuple[int]]
) -> Iterator[Tuple[int]]:
"""
Get back edges for odd cycles
Args:
odd_cycles: List[List[int]] - the odd cycles
back_edges: List[Tuple[int]] - the back edges
Returns:
Iterator[Tuple[int]] - a generator of back edges
"""
for v1, v2 in back_edges:
if any((v2 in x and v1 not in x) or (v1 in x and v2 not in x) for x in cycles):
yield (v1, v2)
def make_impl_graph(edges: Tuple[int, int]) -> Dict[int, List[int]]:
"""
Make a directed implication graph from an undirected graph
Args:
edges: Tuple[int, int] - a pair of vertice literals (could be 1 or -1).
should be off-by-1, because there should be -0 and 0
Returns:
bool - whether the graph edge colouring is valid
x v y = !x -> y & !y -> x
"""
res = {}
for v1, v2 in edges:
if -v1 not in res:
res[-v1] = [v2]
else:
res[-v1].append(v2)
if -v2 not in res:
res[-v2] = [v1]
else:
res[-v2].append(v1)
return res
def invert_graph(graph: Dict[int, List[int]]) -> Dict[int, List[int]]:
"""
Invert the edges in a graph
Args:
graph: Dict[int, Lisst[int]] - a graph to be inverted
Returns:
Dict[int, List[int]] - an inverted graph
"""
new_graph = {}
for node, items in graph.items():
for item in items:
if item not in new_graph:
new_graph[item] = [node]
else:
new_graph[item].append(node)
return new_graph
def scc(graph: Dict[int, List[int]]) -> List[Set[int]]:
"""
Perform Kosaraju's algorith on graph
Args:
graph: a idrected graph
Returns:
List[Set[int]] - a list of strongly connected components
"""
visited = set()
base_path = []
for i in graph.keys():
if i not in visited:
_ = dfs(graph, i, visited, base_path)
graph_inv = invert_graph(graph)
visited.clear()
path = []
while len(base_path):
node = base_path.pop()
if node not in visited:
path, *_ = dfs(graph_inv, node, visited, [])
yield path[:]
path.clear()
return
def adjacent_edges(
graph: Dict[int, List[int]], edges: List[Tuple[int]]
) -> List[Tuple[int]]:
"""
Get edges that are adjacent.
Args:
graph: Dict[int, List[int]]
edges: List[Tuple[int]] - the list of edges
Returns:
List[Tuple[int]] - list of pairs of vertices of those edges
"""
res = []
for v1, v2 in edges:
for v_1, v_2 in edges:
if v1 != v_1 or v2 != v_2:
if v1 != v_1 and v1 in graph[v_1] and (v_1, v1) not in res:
res.append((v1, v_1))
if v1 != v_2 and v1 in graph[v_2] and (v_2, v1) not in res:
res.append((v1, v_2))
if v2 != v_1 and v2 in graph[v_1] and (v_1, v2) not in res:
res.append((v2, v_1))
if v2 != v_2 and v2 in graph[v_2] and (v_2, v2) not in res:
res.append((v2, v_2))
return res
def colour_graph(
graph: Dict[int, List[int]]
) -> List[Tuple[int]]:
"""
We're finally at the final step of solving the colouring problem.
I started off really hating this problem, but it's growing on me.
Maybe it's not that bad? Nah, it's probably stockholm syndrome.
Anything related to graphs is just pure abomination algoritmified.
Well, at least I won't have to suffer for long now. Cheers!
import collections
Args:
graph: Dict[int, List[int]] - the graph
Returns:
List[Tuple[int]] - list of pairs: a vertice and it's colour
"""
# This is just for comfort, won't be faster until the node count is like 10^5
clauses = []
graph = {v 1: [ver 1 for ver in graph[v]] for v in graph}
_, dfs_tree_colours, back_edges = dfs(
graph, 1, set(), [], colours={}, back_edges=[]
)
back_edges = list(set(back_edges))
all_cycles = [
tuple(path)
for node in graph
for path in cycles_dfs(graph, node, node)
if len(path) > 2
]
# This is neccesary, even though it eats like a ton of memory
cycles = []
set_cycles = []
for cycle in all_cycles:
if set(cycle) not in set_cycles:
set_cycles.append(set(cycle))
cycles.append(cycle)
odd_cycles, even_cycles = [], []
for cycle in cycles:
if len(cycle) % 2:
odd_cycles.append(cycle)
else:
even_cycles.append(cycle)
odd_cycles = list(set(map(tuple, odd_cycles)))
even_cycles = list(set(map(tuple, even_cycles)))
inters = list(set(get_cycle_intersections(odd_cycles, even_cycles)))
odd_inters = list(set(get_cycle_intersections(odd_cycles, odd_cycles)))
if len(odd_inters) > 1:
print("Odd cycles intersect. The 3-colouring might not exist >:-}")
back_edges = set(get_back_edges(odd_cycles, back_edges))
clauses.extend((-x, -y) for x, y in set(adjacent_edges(graph, back_edges)))
clauses.extend((-x, -y) for x, y in back_edges)
clauses.extend((-cycle[0], -cycle[-1]) for cycle in inters)
clauses.extend((-cycle[0], -cycle[-1]) for cycle in odd_cycles)
strongly_connected = list(scc(make_impl_graph(clauses)))
# We gonna check if the formula is satisfiable. If not, NOBODY CARES
# I have a general distaste for graphs, especially this stupid case
# Why not use backtracking or even just a forward-backward approach?
# Get unique numbers from list, gotta have them all
uniques = set()
apologise = True
cols = []
for clause in reversed(strongly_connected):
for lit in clause:
# No solution for CNF, so we can do nothing. The good ending
uniques.add(abs(lit))
if -lit in clause and apologise:
apologise = False
print(
"The 2-CNF might be unsatisfiable. The graph's colouring might not work"
)
#return [(v - 1, e) for v, e in dfs_tree_colours.items()]
# Not that much a 2-SAT, but more of a hack. Too bad!
j = len(strongly_connected) - 1
while len(cols) < len(uniques) and j >= 0:
if all(x not in cols and -x not in cols for x in strongly_connected[j]):
cols.extend(strongly_connected[j])
new = strongly_connected[j]
new = sorted(new, key=lambda x: len(graph[abs(x)]))
while new != []:
el = new.pop()
if all(dfs_tree_colours[x] != 2 for x in graph[abs(el)]):
if any(dfs_tree_colours[x] == dfs_tree_colours[abs(el)] for x in graph[abs(el)]):
dfs_tree_colours[abs(el)] = 2
j -= 1
return [(v - 1, e) for v, e in dfs_tree_colours.items()]