-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathAllClass.R
65 lines (59 loc) · 2.18 KB
/
AllClass.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Class definitions
setClassUnion("character_or_list", c("character", "list"))
setClassUnion("df_or_matrix", c("data.frame", "matrix"))
setClassUnion("list_or_matrix", c("list", "matrix"))
setClassUnion("formulaOrNULL", c("formula", "NULL"))
#' An S4 class to define the glmmSeq output
#'
#' @slot info List including the matched call, dispersions, offset, designMatrix
#' @slot formula The model formula
#' @slot stats Statistics from fitted models
#' @slot predict Predicted values
#' @slot reduced Optional reduced formula for LRT
#' @slot countdata The input expression data with count data in rows
#' @slot metadata The input metadata
#' @slot modelData Model data for predictions
#' @slot optInfo Information on whether the model was singular or converged
#' @slot errors Any errors
#' @slot vars List of variables stored from the original call, including the
#' `id` variable (by default automatically identified from the random effect
#' term in the model) and `removeSingles` argument
setClass("GlmmSeq", slots = list(
info = "list",
formula = "formula",
stats = "list_or_matrix",
predict = "df_or_matrix",
reduced = "formulaOrNULL",
countdata = "df_or_matrix",
metadata = "df_or_matrix",
modelData = "df_or_matrix",
optInfo = "matrix",
errors = "character_or_list",
vars = "list"
))
#' An S4 class to define the lmmSeq output
#'
#' @slot info List including matched call, offset, designMatrix
#' @slot formula The model formula
#' @slot stats Statistics from fitted models
#' @slot predict Predicted values
#' @slot reduced Optional reduced formula for LRT
#' @slot maindata The input expression data with variables in rows
#' @slot metadata The input metadata
#' @slot modelData Model data for predictions
#' @slot optInfo Information on whether the model was singular or converged
#' @slot errors Any errors
#' @slot vars List of variables stored from the original call
setClass("lmmSeq", slots = list(
info = "list",
formula = "formula",
stats = "list_or_matrix",
predict = "df_or_matrix",
reduced = "formulaOrNULL",
maindata = "df_or_matrix",
metadata = "df_or_matrix",
modelData = "df_or_matrix",
optInfo = "matrix",
errors = "character_or_list",
vars = "list"
))