Skip to content

Latest commit

 

History

History

ESZSL

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Running the code

Train

python eszsl/eszsl_gzsl.py -data AWA2/AWA1/CUB/SUN/APY -mode train -alpha [KERNEL SPACE REGULARIZER] -gamma [ATT SPACE REGULARIZER]

For testing, set mode to test and set alpha, gamma to best combination from tables below.

Results

The numbers below are class-averaged top-1 accuracies (see ZSLGBU paper for details).

Classical ZSL

Dataset ZSLGBU Results Repository Results Hyperparams from Val
CUB 53.9 53.94 Alpha=3, Gamma=-1
AWA1 58.2 56.80 Alpha=3, Gamma=0
AWA2 58.6 54.82 Alpha=3, Gamma=0
aPY 38.3 38.56 Alpha=3, Gamma=-1
SUN 54.5 55.69 Alpha=3, Gamma=2

Generalized ZSL

Dataset ZSLGBU Results Repository Results Hyperparams from Val
U S H U S H
CUB 12.6 63.8 21.0 14.70 56.53 23.34 Alpha=3, Gamma=0
AWA1 6.6 75.6 12.1 5.29 86.84 9.98 Alpha=3, Gamma=0
AWA2 5.9 77.8 11.0 4.04 88.84 7.72 Alpha=3, Gamma=0
aPY 2.4 70.1 4.6 2.25 81.07 4.39 Alpha=2, Gamma=0
SUN 11.0 27.9 15.8 13.75 28.41 18.53 Alpha=3, Gamma=2

U -> Unseen Classes; S -> Seen Classes; H-> Harmonic Mean of the 2.

References

[1] Original MATLAB Code by Authors

[2] https://github.com/sbharadwajj/embarrassingly-simple-zero-shot-learning