-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathWorkoutPlanGenerator.py
659 lines (557 loc) · 33.4 KB
/
WorkoutPlanGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# Copyright 2019 Michael J Simms
"""Handles the generation of a workout plan. Implements a celery worker."""
from __future__ import absolute_import
from CeleryWorker import celery_worker
import argparse
import datetime
import json
import logging
import os
import pandas
import random
import sys
import time
import traceback
import uuid
import AnalysisScheduler
import BikePlanGenerator
import Config
import DataMgr
import UserMgr
import Keys
import Units
import PlanGenerator
import RunPlanGenerator
import SwimPlanGenerator
import WorkoutScheduler
g_model = None
try:
import tensorflow as tf
except ModuleNotFoundError:
pass
class WorkoutPlanGenerator(object):
"""Class for performing the computationally expensive workout plan generation tasks."""
def __init__(self, config, user_obj):
self.user_obj = user_obj
self.data_mgr = DataMgr.DataMgr(config=config, root_url="", analysis_scheduler=AnalysisScheduler.AnalysisScheduler(), import_scheduler=None)
self.user_mgr = UserMgr.UserMgr(config=config, session_mgr=None)
super(WorkoutPlanGenerator, self).__init__()
def log_info(self, log_str):
"""Writes an error message to the log file."""
logger = logging.getLogger()
logger.info(log_str)
def log_error(self, log_str):
"""Writes an error message to the log file."""
logger = logging.getLogger()
logger.error(log_str)
@staticmethod
def calculate_goal_distances(inputs):
"""Adds the goal distances to the inputs."""
goal = inputs[Keys.PLAN_INPUT_GOAL_KEY]
goal_lower = goal.lower()
# Initialize.
inputs[Keys.GOAL_SWIM_DISTANCE_KEY] = 0.0
inputs[Keys.GOAL_BIKE_DISTANCE_KEY] = 0.0
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 0.0
# Distances for each event. For general fitness, set goals similar to a sprint tri, depending on available resources.
if goal_lower == Keys.GOAL_FITNESS_KEY.lower():
has_swimming_pool_access = inputs[Keys.USER_HAS_SWIMMING_POOL_ACCESS]
has_bicycle = inputs[Keys.USER_HAS_BICYCLE]
if has_swimming_pool_access:
inputs[Keys.GOAL_SWIM_DISTANCE_KEY] = 500.0
if has_bicycle:
inputs[Keys.GOAL_BIKE_DISTANCE_KEY] = 20000.0
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 5000.0
elif goal_lower == Keys.GOAL_5K_RUN_KEY.lower():
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 5000.0
elif goal_lower == Keys.GOAL_10K_RUN_KEY.lower():
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 10000.0
elif goal_lower == Keys.GOAL_15K_RUN_KEY.lower():
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 15000.0
elif goal_lower == Keys.GOAL_HALF_MARATHON_RUN_KEY.lower():
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = Units.METERS_PER_HALF_MARATHON
elif goal_lower == Keys.GOAL_MARATHON_RUN_KEY.lower():
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = Units.METERS_PER_MARATHON
elif goal_lower == Keys.GOAL_50K_RUN_KEY.lower():
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 50000.0
elif goal_lower == Keys.GOAL_50_MILE_RUN_KEY.lower():
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = Units.METERS_PER_50_MILE
elif goal_lower == Keys.GOAL_SPRINT_TRIATHLON_KEY:
inputs[Keys.GOAL_SWIM_DISTANCE_KEY] = 500.0
inputs[Keys.GOAL_BIKE_DISTANCE_KEY] = 20000.0
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 5000.0
elif goal_lower == Keys.GOAL_OLYMPIC_TRIATHLON_KEY:
inputs[Keys.GOAL_SWIM_DISTANCE_KEY] = 1500.0
inputs[Keys.GOAL_BIKE_DISTANCE_KEY] = 40000.0
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 10000.0
elif goal_lower == Keys.GOAL_HALF_IRON_DISTANCE_TRIATHLON_KEY:
inputs[Keys.GOAL_SWIM_DISTANCE_KEY] = 1.2 * Units.METERS_PER_MILE
inputs[Keys.GOAL_BIKE_DISTANCE_KEY] = 56.0 * Units.METERS_PER_MILE
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = Units.METERS_PER_HALF_MARATHON
elif goal_lower == Keys.GOAL_IRON_DISTANCE_TRIATHLON_KEY:
inputs[Keys.GOAL_SWIM_DISTANCE_KEY] = 2.4 * Units.METERS_PER_MILE
inputs[Keys.GOAL_BIKE_DISTANCE_KEY] = 112.0 * Units.METERS_PER_MILE
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = Units.METERS_PER_MARATHON
elif goal_lower == Keys.GOAL_METRIC_CENTURY_RIDE_KEY:
inputs[Keys.GOAL_SWIM_DISTANCE_KEY] = 0.0
inputs[Keys.GOAL_BIKE_DISTANCE_KEY] = 100000.0
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 0.0
elif goal_lower == Keys.GOAL_STANDARD_CENTURY_RIDE_KEY:
inputs[Keys.GOAL_SWIM_DISTANCE_KEY] = 0.0
inputs[Keys.GOAL_BIKE_DISTANCE_KEY] = 100.0 * Units.METERS_PER_MILE
inputs[Keys.GOAL_RUN_DISTANCE_KEY] = 0.0
return inputs
@staticmethod
def update_summary_data_cb(context, activity, user_id):
"""Callback function for update_summary_data."""
if Keys.ACTIVITY_SUMMARY_KEY not in activity:
context.data_mgr.schedule_activity_analysis(activity, user_id)
def optional_fetch_from_dict(self, dict, key):
"""Utility function for calculate_inputs."""
if key in dict:
return dict[key]
return 0.0
def optional_fetch_from_dict_with_array(self, dict, key):
"""Utility function for calculate_inputs."""
if key in dict:
return dict[key][0]
return 0.0
def calculate_inputs(self, user_id):
"""Looks through the user's data and calculates the inputs for the workout generation algorithm."""
now = time.time()
weeks_until_goal = None # Number of weeks until the goal, or None if not applicable
longest_runs_by_week = [0.0] * 4 # Longest run for each of the recent four weeks
longest_rides_by_week = [0.0] * 4 # Longest bike rides for each of the recent four weeks
longest_swims_by_week = [0.0] * 4 # Longest swims for each of the recent four weeks
run_intensity_by_week = [0.0] * 4 # Total training intensity for each of the recent four weeks
cycling_intensity_by_week = [0.0] * 4 # Total training intensity for each of the recent four weeks
swim_intensity_by_week = [0.0] * 4 # Total training intensity for each of the recent four weeks
running_paces = {}
# Fetch the details of the user's goal.
goal, goal_date = self.data_mgr.retrieve_user_goal(user_id)
if goal is None:
gen_plan_anyway = self.user_mgr.retrieve_user_setting(user_id, Keys.GEN_WORKOUTS_WHEN_RACE_CAL_IS_EMPTY)
if gen_plan_anyway:
goal = Keys.GOAL_FITNESS_KEY
else:
raise Exception("A goal has not been defined.")
# Compute the time remaining until the goal.
if goal is not Keys.GOAL_FITNESS_KEY:
# Sanity-check the goal date.
if goal_date is None:
raise Exception("A goal date has not been defined.")
if goal_date <= now:
raise Exception("The goal date should be in the future.")
# Convert the goal time into weeks. Round down to the whole week because the schedule is for next week.
weeks_until_goal = int((goal_date - now) / (7 * 24 * 60 * 60))
# Is the user interested in just completion, or do they care about performance (i.e. pace/speed)?
goal_type = self.user_mgr.retrieve_user_setting(user_id, Keys.PLAN_INPUT_GOAL_TYPE_KEY)
# Analyze any unanalyzed activities.
now = time.time()
num_unanalyzed_activities = self.data_mgr.analyze_unanalyzed_activities(user_id, now - DataMgr.SIX_MONTHS, now)
if num_unanalyzed_activities > 0:
raise Exception("Too many unanalyzed activities to generate a workout plan.")
# This will trigger the callback for each of the user's activities.
if not self.data_mgr.retrieve_each_user_activity(user_id, self, WorkoutPlanGenerator.update_summary_data_cb, None, None, False):
raise Exception("Error retrieving the user's activities.")
#
# Need cycling FTP and run training paces.
#
# Get the user's current estimated cycling FTP.
threshold_power = self.user_mgr.estimate_ftp(user_id)
#
# Need last four weeks averages and bests.
#
# Look through the user's four week records.
_, running_bests, _, cycling_summary_4_week, running_summary_4_week, swimming_summary_4_week = self.data_mgr.retrieve_bounded_activity_bests_for_user(user_id, now - DataMgr.FOUR_WEEKS, now)
# Estimate running paces from the user's four week records.
if running_bests is not None:
running_paces = self.data_mgr.compute_run_training_paces(user_id, running_bests)
#
# Get some data from the prior four weeks.
#
# Most recent week.
cycling_best_summary, running_best_summary, swimming_best_summary, cycling_week_summary, running_week_summary, swimming_week_summary = self.data_mgr.retrieve_bounded_activity_bests_for_user(user_id, now - (DataMgr.ONE_WEEK * 1), now - (DataMgr.ONE_WEEK * 0))
longest_runs_by_week[0] = self.optional_fetch_from_dict_with_array(running_best_summary, Keys.LONGEST_DISTANCE)
longest_rides_by_week[0] = self.optional_fetch_from_dict_with_array(cycling_best_summary, Keys.LONGEST_DISTANCE)
longest_swims_by_week[0] = self.optional_fetch_from_dict_with_array(swimming_best_summary, Keys.LONGEST_DISTANCE)
run_intensity_by_week[0] = self.optional_fetch_from_dict(running_week_summary, Keys.TOTAL_INTENSITY_SCORE)
cycling_intensity_by_week[0] = self.optional_fetch_from_dict(cycling_week_summary, Keys.TOTAL_INTENSITY_SCORE)
swim_intensity_by_week[0] = self.optional_fetch_from_dict(swimming_week_summary, Keys.TOTAL_INTENSITY_SCORE)
# Two weeks ago.
cycling_best_summary, running_best_summary, swimming_best_summary, cycling_week_summary, running_week_summary, swimming_week_summary = self.data_mgr.retrieve_bounded_activity_bests_for_user(user_id, now - (DataMgr.ONE_WEEK * 2), now - (DataMgr.ONE_WEEK * 1))
longest_runs_by_week[1] = self.optional_fetch_from_dict_with_array(running_best_summary, Keys.LONGEST_DISTANCE)
longest_rides_by_week[1] = self.optional_fetch_from_dict_with_array(cycling_best_summary, Keys.LONGEST_DISTANCE)
longest_swims_by_week[1] = self.optional_fetch_from_dict_with_array(swimming_best_summary, Keys.LONGEST_DISTANCE)
run_intensity_by_week[1] = self.optional_fetch_from_dict(running_week_summary, Keys.TOTAL_INTENSITY_SCORE)
cycling_intensity_by_week[1] = self.optional_fetch_from_dict(cycling_week_summary, Keys.TOTAL_INTENSITY_SCORE)
swim_intensity_by_week[1] = self.optional_fetch_from_dict(swimming_week_summary, Keys.TOTAL_INTENSITY_SCORE)
# Three weeks ago.
cycling_best_summary, running_best_summary, swimming_best_summary, cycling_week_summary, running_week_summary, swimming_week_summary = self.data_mgr.retrieve_bounded_activity_bests_for_user(user_id, now - (DataMgr.ONE_WEEK * 3), now - (DataMgr.ONE_WEEK * 2))
longest_runs_by_week[2] = self.optional_fetch_from_dict_with_array(running_best_summary, Keys.LONGEST_DISTANCE)
longest_rides_by_week[2] = self.optional_fetch_from_dict_with_array(cycling_best_summary, Keys.LONGEST_DISTANCE)
longest_swims_by_week[2] = self.optional_fetch_from_dict_with_array(swimming_best_summary, Keys.LONGEST_DISTANCE)
run_intensity_by_week[2] = self.optional_fetch_from_dict(running_week_summary, Keys.TOTAL_INTENSITY_SCORE)
cycling_intensity_by_week[2] = self.optional_fetch_from_dict(cycling_week_summary, Keys.TOTAL_INTENSITY_SCORE)
swim_intensity_by_week[2] = self.optional_fetch_from_dict(swimming_week_summary, Keys.TOTAL_INTENSITY_SCORE)
# Four weeks ago.
cycling_best_summary, running_best_summary, swimming_best_summary, cycling_week_summary, running_week_summary, swimming_week_summary = self.data_mgr.retrieve_bounded_activity_bests_for_user(user_id, now - (DataMgr.ONE_WEEK * 4), now - (DataMgr.ONE_WEEK * 3))
longest_runs_by_week[3] = self.optional_fetch_from_dict_with_array(running_best_summary, Keys.LONGEST_DISTANCE)
longest_rides_by_week[3] = self.optional_fetch_from_dict_with_array(cycling_best_summary, Keys.LONGEST_DISTANCE)
longest_swims_by_week[3] = self.optional_fetch_from_dict_with_array(swimming_best_summary, Keys.LONGEST_DISTANCE)
run_intensity_by_week[3] = self.optional_fetch_from_dict(running_week_summary, Keys.TOTAL_INTENSITY_SCORE)
cycling_intensity_by_week[3] = self.optional_fetch_from_dict(cycling_week_summary, Keys.TOTAL_INTENSITY_SCORE)
swim_intensity_by_week[3] = self.optional_fetch_from_dict(swimming_week_summary, Keys.TOTAL_INTENSITY_SCORE)
# Compute average running and cycling distances.
avg_running_distance = 0.0
avg_cycling_distance = 0.0
avg_cycling_duration = 0.0
avg_swimming_distance = 0.0
num_runs = 0.0
num_rides = 0.0
num_swims = 0.0
if Keys.TOTAL_ACTIVITIES in running_summary_4_week:
if running_summary_4_week[Keys.TOTAL_ACTIVITIES] > 0:
num_runs = running_summary_4_week[Keys.TOTAL_ACTIVITIES]
if Keys.TOTAL_DISTANCE in running_summary_4_week:
avg_running_distance = running_summary_4_week[Keys.TOTAL_DISTANCE] / num_runs
if Keys.TOTAL_ACTIVITIES in cycling_summary_4_week:
if cycling_summary_4_week[Keys.TOTAL_ACTIVITIES] > 0:
num_rides = cycling_summary_4_week[Keys.TOTAL_ACTIVITIES]
if Keys.TOTAL_DISTANCE in cycling_summary_4_week:
avg_cycling_distance = cycling_summary_4_week[Keys.TOTAL_DISTANCE] / num_rides
if Keys.TOTAL_DURATION in cycling_summary_4_week:
avg_cycling_duration = cycling_summary_4_week[Keys.TOTAL_DURATION] / num_rides
if Keys.TOTAL_ACTIVITIES in swimming_summary_4_week:
if swimming_summary_4_week[Keys.TOTAL_ACTIVITIES] > 0:
num_swims = swimming_summary_4_week[Keys.TOTAL_ACTIVITIES]
if Keys.TOTAL_DISTANCE in swimming_summary_4_week:
avg_swimming_distance = swimming_summary_4_week[Keys.TOTAL_DISTANCE] / num_swims
#
# Need information about the user.
#
# Compute the user's age in years.
birthday = int(self.user_mgr.retrieve_user_setting(user_id, Keys.USER_BIRTHDAY_KEY))
age_years = (now - birthday) / (365.25 * 24 * 60 * 60)
# Get the experience/comfort level for the user.
# This is meant to give us an idea as to how quickly we can ramp up the intensity.
experience_level = self.user_mgr.retrieve_user_setting(user_id, Keys.PLAN_INPUT_EXPERIENCE_LEVEL_KEY)
comfort_level = self.user_mgr.retrieve_user_setting(user_id, Keys.PLAN_INPUT_STRUCTURED_TRAINING_COMFORT_LEVEL_KEY)
# Store all the inputs in a dictionary.
inputs = {}
if len(running_paces) == 0:
inputs[Keys.SHORT_INTERVAL_RUN_PACE] = None
inputs[Keys.SPEED_RUN_PACE] = None
inputs[Keys.TEMPO_RUN_PACE] = None
inputs[Keys.FUNCTIONAL_THRESHOLD_PACE] = None
inputs[Keys.LONG_RUN_PACE] = None
inputs[Keys.EASY_RUN_PACE] = None
else:
inputs = running_paces
inputs[Keys.PLAN_INPUT_LONGEST_RUN_WEEK_1_KEY] = longest_runs_by_week[0]
inputs[Keys.PLAN_INPUT_LONGEST_RUN_WEEK_2_KEY] = longest_runs_by_week[1]
inputs[Keys.PLAN_INPUT_LONGEST_RUN_WEEK_3_KEY] = longest_runs_by_week[2]
inputs[Keys.PLAN_INPUT_LONGEST_RUN_WEEK_4_KEY] = longest_runs_by_week[3]
inputs[Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_1_KEY] = longest_rides_by_week[0]
inputs[Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_2_KEY] = longest_rides_by_week[1]
inputs[Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_3_KEY] = longest_rides_by_week[2]
inputs[Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_4_KEY] = longest_rides_by_week[3]
inputs[Keys.PLAN_INPUT_LONGEST_SWIM_WEEK_1_KEY] = longest_swims_by_week[0]
inputs[Keys.PLAN_INPUT_LONGEST_SWIM_WEEK_2_KEY] = longest_swims_by_week[1]
inputs[Keys.PLAN_INPUT_LONGEST_SWIM_WEEK_3_KEY] = longest_swims_by_week[2]
inputs[Keys.PLAN_INPUT_LONGEST_SWIM_WEEK_4_KEY] = longest_swims_by_week[3]
inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_1_KEY] = run_intensity_by_week[0] cycling_intensity_by_week[0] swim_intensity_by_week[0]
inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_2_KEY] = run_intensity_by_week[1] cycling_intensity_by_week[1] swim_intensity_by_week[1]
inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_3_KEY] = run_intensity_by_week[2] cycling_intensity_by_week[2] swim_intensity_by_week[2]
inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_4_KEY] = run_intensity_by_week[3] cycling_intensity_by_week[3] swim_intensity_by_week[3]
inputs[Keys.PLAN_INPUT_AGE_YEARS_KEY] = age_years
inputs[Keys.PLAN_INPUT_EXPERIENCE_LEVEL_KEY] = experience_level
inputs[Keys.PLAN_INPUT_STRUCTURED_TRAINING_COMFORT_LEVEL_KEY] = comfort_level
inputs[Keys.PLAN_INPUT_GOAL_KEY] = goal
inputs[Keys.PLAN_INPUT_GOAL_TYPE_KEY] = goal_type
inputs[Keys.PLAN_INPUT_GOAL_DATE_KEY] = goal_date
inputs[Keys.PLAN_INPUT_WEEKS_UNTIL_GOAL_KEY] = weeks_until_goal
inputs[Keys.PLAN_INPUT_AVG_RUNNING_DISTANCE_IN_FOUR_WEEKS] = avg_running_distance
inputs[Keys.PLAN_INPUT_AVG_CYCLING_DISTANCE_IN_FOUR_WEEKS] = avg_cycling_distance
inputs[Keys.PLAN_INPUT_AVG_CYCLING_DURATION_IN_FOUR_WEEKS] = avg_cycling_duration
inputs[Keys.PLAN_INPUT_AVG_SWIMMING_DISTANCE_IN_FOUR_WEEKS] = avg_swimming_distance
inputs[Keys.PLAN_INPUT_NUM_RUNS_LAST_FOUR_WEEKS] = num_runs
inputs[Keys.PLAN_INPUT_NUM_RIDES_LAST_FOUR_WEEKS] = num_rides
inputs[Keys.PLAN_INPUT_NUM_SWIMS_LAST_FOUR_WEEKS] = num_swims
inputs[Keys.THRESHOLD_POWER] = threshold_power
inputs[Keys.USER_HAS_SWIMMING_POOL_ACCESS] = self.user_mgr.retrieve_user_setting(user_id, Keys.USER_HAS_SWIMMING_POOL_ACCESS)
inputs[Keys.USER_HAS_OPEN_WATER_SWIM_ACCESS] = self.user_mgr.retrieve_user_setting(user_id, Keys.USER_HAS_OPEN_WATER_SWIM_ACCESS)
inputs[Keys.USER_HAS_BICYCLE] = self.user_mgr.retrieve_user_setting(user_id, Keys.USER_HAS_BICYCLE)
# Adds the goal distances to the inputs.
inputs = WorkoutPlanGenerator.calculate_goal_distances(inputs)
return inputs
def validate_inputs(self, inputs):
"""Sanity checks the input dictionary."""
# List of all the required keys.
keys = []
keys.append(Keys.SHORT_INTERVAL_RUN_PACE)
keys.append(Keys.SPEED_RUN_PACE)
keys.append(Keys.TEMPO_RUN_PACE)
keys.append(Keys.FUNCTIONAL_THRESHOLD_PACE)
keys.append(Keys.LONG_RUN_PACE)
keys.append(Keys.EASY_RUN_PACE)
keys.append(Keys.PLAN_INPUT_LONGEST_RUN_WEEK_1_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_RUN_WEEK_2_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_RUN_WEEK_3_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_RUN_WEEK_4_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_1_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_2_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_3_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_4_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_SWIM_WEEK_1_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_SWIM_WEEK_2_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_SWIM_WEEK_3_KEY)
keys.append(Keys.PLAN_INPUT_LONGEST_SWIM_WEEK_4_KEY)
keys.append(Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_1_KEY)
keys.append(Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_2_KEY)
keys.append(Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_3_KEY)
keys.append(Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_4_KEY)
keys.append(Keys.PLAN_INPUT_AGE_YEARS_KEY)
keys.append(Keys.PLAN_INPUT_EXPERIENCE_LEVEL_KEY)
keys.append(Keys.PLAN_INPUT_STRUCTURED_TRAINING_COMFORT_LEVEL_KEY)
keys.append(Keys.PLAN_INPUT_GOAL_KEY)
keys.append(Keys.PLAN_INPUT_GOAL_DATE_KEY)
keys.append(Keys.PLAN_INPUT_GOAL_TYPE_KEY)
keys.append(Keys.PLAN_INPUT_WEEKS_UNTIL_GOAL_KEY)
keys.append(Keys.PLAN_INPUT_AVG_RUNNING_DISTANCE_IN_FOUR_WEEKS)
keys.append(Keys.PLAN_INPUT_AVG_CYCLING_DISTANCE_IN_FOUR_WEEKS)
keys.append(Keys.PLAN_INPUT_AVG_CYCLING_DURATION_IN_FOUR_WEEKS)
keys.append(Keys.PLAN_INPUT_AVG_SWIMMING_DISTANCE_IN_FOUR_WEEKS)
keys.append(Keys.PLAN_INPUT_NUM_RUNS_LAST_FOUR_WEEKS)
keys.append(Keys.PLAN_INPUT_NUM_RIDES_LAST_FOUR_WEEKS)
keys.append(Keys.PLAN_INPUT_NUM_SWIMS_LAST_FOUR_WEEKS)
keys.append(Keys.THRESHOLD_POWER)
keys.append(Keys.USER_HAS_SWIMMING_POOL_ACCESS)
keys.append(Keys.USER_HAS_OPEN_WATER_SWIM_ACCESS)
keys.append(Keys.USER_HAS_BICYCLE)
# Make sure all the required keys are in the dictionary.
for key in keys:
if key not in inputs:
print(key)
self.log_error(key " not in the input dictionary.")
return False
return True
def generate_workouts(self, user_id, inputs):
"""Generates workouts for the specified user to perform in the next week."""
workouts = []
# Extract the necessary inputs.
total_intensity_week_1 = inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_1_KEY] # Most recent week
total_intensity_week_2 = inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_2_KEY]
total_intensity_week_3 = inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_3_KEY]
total_intensity_week_4 = inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_4_KEY]
goal = inputs[Keys.PLAN_INPUT_GOAL_KEY]
weeks_until_goal = inputs[Keys.PLAN_INPUT_WEEKS_UNTIL_GOAL_KEY]
# The training philosophy indicates how much time we intended
# to spend in each training zone.
training_philosophy = Keys.TRAINING_PHILOSOPHY_POLARIZED
# Is it time for an easy week? After four weeks of building we should include an easy week to mark the end of a block.
easy_week = PlanGenerator.PlanGenerator.is_time_for_an_easy_week(total_intensity_week_1, total_intensity_week_2, total_intensity_week_3, total_intensity_week_4)
# Are we in the pre-event taper?
in_taper = PlanGenerator.PlanGenerator.is_in_taper(weeks_until_goal, goal)
# Generate the swim workouts.
swim_planner = SwimPlanGenerator.SwimPlanGenerator(user_id)
if not swim_planner.is_workout_plan_possible(inputs):
raise Exception("The swim distance goal is not feasible in the time alloted.")
swim_workouts = swim_planner.gen_workouts_for_next_week(inputs, easy_week, in_taper)
workouts.extend(swim_workouts)
# Generate the bike workouts.
bike_planner = BikePlanGenerator.BikePlanGenerator(user_id, training_philosophy)
if not bike_planner.is_workout_plan_possible(inputs):
raise Exception("The bike distance goal is not feasible in the time alloted.")
bike_workouts = bike_planner.gen_workouts_for_next_week(inputs, easy_week, in_taper)
workouts.extend(bike_workouts)
# Generate the run workouts.
run_planner = RunPlanGenerator.RunPlanGenerator(user_id, training_philosophy)
if not run_planner.is_workout_plan_possible(inputs):
raise Exception("The run distance goal is not feasible in the time alloted.")
run_workouts = run_planner.gen_workouts_for_next_week(inputs, easy_week, in_taper)
workouts.extend(run_workouts)
# If the user's goal is only general fitness then make sure we don't have more
# than seven workouts as they don't need to be doing doubles. In that case,
# randomly select and remove workouts until we get down to a manageable amount.
if Keys.PLAN_INPUT_GOAL_KEY in inputs and inputs[Keys.PLAN_INPUT_GOAL_KEY] == Keys.GOAL_FITNESS_KEY:
while len(workouts) > 7:
index = int(random.uniform(0, len(workouts)))
del workouts[index]
return workouts
def generate_workouts_using_model(self, user_id, inputs, model):
"""Runs the neural network specified by 'model' to generate the workout plan."""
# Convert the input dictionary to an array as required by tf.
model_inputs = [ ]
model_inputs.append(inputs[Keys.SHORT_INTERVAL_RUN_PACE])
model_inputs.append(inputs[Keys.SPEED_RUN_PACE])
model_inputs.append(inputs[Keys.TEMPO_RUN_PACE])
model_inputs.append(inputs[Keys.FUNCTIONAL_THRESHOLD_PACE])
model_inputs.append(inputs[Keys.LONG_RUN_PACE])
model_inputs.append(inputs[Keys.EASY_RUN_PACE])
model_inputs.append(inputs[Keys.PLAN_INPUT_LONGEST_RUN_WEEK_1_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_LONGEST_RUN_WEEK_2_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_LONGEST_RUN_WEEK_3_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_LONGEST_RUN_WEEK_4_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_1_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_2_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_3_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_LONGEST_RIDE_WEEK_4_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_1_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_2_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_3_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_TOTAL_INTENSITY_WEEK_4_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_AGE_YEARS_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_EXPERIENCE_LEVEL_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_STRUCTURED_TRAINING_COMFORT_LEVEL_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_GOAL_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_GOAL_TYPE_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_WEEKS_UNTIL_GOAL_KEY])
model_inputs.append(inputs[Keys.PLAN_INPUT_AVG_RUNNING_DISTANCE_IN_FOUR_WEEKS])
model_inputs.append(inputs[Keys.PLAN_INPUT_AVG_CYCLING_DISTANCE_IN_FOUR_WEEKS])
model_inputs.append(inputs[Keys.PLAN_INPUT_AVG_CYCLING_DURATION_IN_FOUR_WEEKS])
model_inputs.append(inputs[Keys.PLAN_INPUT_NUM_RUNS_LAST_FOUR_WEEKS])
model_inputs.append(inputs[Keys.PLAN_INPUT_NUM_RIDES_LAST_FOUR_WEEKS])
model_inputs.append(inputs[Keys.THRESHOLD_POWER])
model_inputs.append(inputs[Keys.USER_HAS_SWIMMING_POOL_ACCESS])
model_inputs.append(inputs[Keys.USER_HAS_OPEN_WATER_SWIM_ACCESS])
model_inputs.append(inputs[Keys.USER_HAS_BICYCLE])
workouts = []
return workouts
def organize_schedule(self, user_id, workouts):
"""Arranges the user's workouts into days/weeks, etc. To be called after the outputs are generated, but need cleaning up."""
# What is the first day of next week?
today = datetime.datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0).date()
start_time = today datetime.timedelta(days=7-today.weekday())
end_time = start_time datetime.timedelta(days=7)
# Remove any existing workouts that cover the time period in question.
if not self.data_mgr.delete_workouts_for_date_range(user_id, start_time, end_time):
self.log_error("Failed to remove old workouts from the database.")
# Schedule the new workouts.
scheduler = WorkoutScheduler.WorkoutScheduler(user_id)
return scheduler.schedule_workouts(workouts, start_time)
def store_plan(self, user_id, scheduled_workouts):
"""Saves the user's workouts to the database."""
for scheduled_workout in scheduled_workouts:
result = self.data_mgr.create_workout(user_id, scheduled_workout)
if not result:
self.log_error("Failed to save a workout to the database.")
def generate_plan_for_user(self, model):
"""Entry point for workout plan generation. If a model is not provided then a simpler algorithm is used instead."""
# Sanity check.
if self.user_obj is None:
self.log_error("User information not provided.")
return []
if model is None:
self.log_info("Model not provided. Will use non-ML algorithm instead.")
workouts = []
try:
user_id = self.user_obj[Keys.USER_ID_KEY]
# When was the last time a plan was generated?
# Note this attempt to generate a workout plan.
now = datetime.datetime.utcnow()
self.user_mgr.update_user_setting(user_id, Keys.USER_PLAN_LAST_GENERATED_TIME, now, now)
# Compute the model inputs.
inputs = self.calculate_inputs(user_id)
# Generate the workouts. If an ML model was provided then use it. Otherwise, use the
# static logic of the hard-coded "expert" system.
if model is None:
workouts = self.generate_workouts(user_id, inputs)
else:
workouts = self.generate_workouts_using_model(user_id, inputs, model)
# Organize the workouts into a schedule.
scheduled_workouts = self.organize_schedule(user_id, workouts)
# Save to the database.
self.store_plan(user_id, scheduled_workouts)
except:
self.log_error("Exception when generating a workout plan.")
self.log_error(traceback.format_exc())
self.log_error(sys.exc_info()[0])
return workouts
def generate_plan_from_inputs(self, model, inputs):
"""Entry point for workout plan generation. If a model is not provided then a simpler algorithm is used instead."""
# Sanity check.
if model is None:
self.log_info("Model not provided. Will use non-ML algorithm instead.")
workouts = []
try:
# Generate the workouts.
if model is None:
workouts = self.generate_workouts(None, inputs)
else:
workouts = self.generate_workouts_using_model(None, inputs, model)
except:
self.log_error("Exception when generating a workout plan.")
self.log_error(traceback.format_exc())
self.log_error(sys.exc_info()[0])
return workouts
def generate_model(training_file_name):
"""Creates the neural network, based on training data from the supplied JSON file."""
model = None
with open(training_file_name, 'r') as f:
# Load the training data from the file.
datastore = json.load(f)
# This should give us an array for each piece of training data.
input_headers = datastore['input_headers']
input_data = datastore['input_data']
output_data = datastore['output_data']
num_inputs = len(input_data)
num_outputs = len(output_data)
if num_inputs > 0 and num_outputs > 0:
# Incorporate the column names for the input data.
input_columns = []
input_columns.append(tf.feature_column.numeric_column('metrics'))
# Transform the input JSON into something we can use in the model.
dataframe = pandas.DataFrame(input_data)
train_labels = dataframe.pop('plan_number')
dataset = tf.data.Dataset.from_tensor_slices((dict(dataframe), train_labels))
dataset = dataset.shuffle(buffer_size=len(dataframe))
# Build the model.
model = tf.keras.Sequential([
tf.keras.layers.DenseFeatures(input_columns),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy')
model.fit(dataset, epochs=5)
else:
print("Incomplete training data.")
return model
@celery_worker.task(ignore_result=True)
def generate_workout_plan_for_user(user_str, internal_task_id):
"""Entry point for the celery worker."""
global g_model
print("Starting workout plan generation...")
user_obj = json.loads(user_str)
generator = WorkoutPlanGenerator(Config.Config(), user_obj)
generator.generate_plan_for_user(g_model)
print("Workout plan generation finished.")
@celery_worker.task()
def generate_workout_plan_from_inputs(inputs, internal_task_id):
"""Entry point for the celery worker."""
global g_model
print("Starting workout plan generation...")
generator = WorkoutPlanGenerator(Config.Config(), None)
generator.generate_plan_from_inputs(g_model, inputs)
print("Workout plan generation finished.")
def main():
"""Entry point for a workout plan generator."""
global g_model
parser = argparse.ArgumentParser()
parser.add_argument("--user_id", default="", help="The user ID for whom we are to generate a workout plan.", required=False)
parser.add_argument("--train", default="", help="The path to the training plan model.", required=False)
parser.add_argument("--format", default="text", help="The output format.", required=False)
try:
args = parser.parse_args()
except IOError as e:
parser.error(e)
sys.exit(1)
if len(args.train) > 0:
g_model = generate_model(args.train, args.format)
if len(args.user_id) > 0:
data = {}
data['user_id'] = args.user_id
workouts = generate_workout_plan_for_user(json.dumps(data), None)
if __name__ == "__main__":
main()